
 

 

 

MAPPING AND MODELING COTTON CROP, ITS 

PRODUCTION AND FUTURE PATTERNS USING GIS AND 

MACHINE LEARNING 

 

 

   

 

 

 

 

 

 

FINAL YEAR PROJECT UG 2019 

 

By 

 

            (Saba Fatima - 283612) 

            (Muhammad Uzair - 283922) 

           (Abdul Rehman Rahimi - 322364) 

            (Laiba Asif - 295212) 

 

 

Institute of Geographical Information System 

School of Civil and Environmental Engineering 

National University of Science and Technology, Islamabad, Pakistan 

YEAR 2023 

 



 

 

 

 

This is to certify that 

Final Year Project Titled 

 

MAPPING AND MODELING COTTON CROP, ITS 

PRODUCTION AND FUTURE PATTERNS USING GIS AND 

MACHINE LEARNING 

 

submitted by 

 

            (Saba Fatima - 283612) 

            (Muhammad Uzair - 283922) 

           (Abdul Rehman Rahimi - 322364) 

            (Laiba Asif - 295212) 

 

 

has been accepted towards the requirements for the undergraduate degree 

 

in 

(BE Geoinformatics) 

 

 

Quratulain Shafi  

Lecturer 

Institute of Geographical Information System 

School of Civil and Environmental Engineering 

 National University of Sciences and Technology, 

Islamabad, Pakistan



i 
 

FORM UGP-OBE-1 

 

INSTITUTE OF GEOGRAPHICAL INFORMATION SYSTEMS (IGIS) 

UNDERGRADUATE FINAL PROJECT 

(Formulation of Project Group and Advisor) 

Date: ______________ 

 

Project Title:  

Project Advisor: 

Name:  Mrs Quratulain Shafi  

Dept:   IGIS 

Project  Co - Advisor: 

Name:             Mr. Arif Goheer  

Dept:   GCISC 

Project Members 

1. Name (Group Leader):   Saba Fatima  CGPA:   3.84 

          NUST Regn No:  283612              Signature:______________ 

2. Name:  Muhammad Uzair                           CGPA:   3.41  

          NUST Regn No: 283922   Signature:______________ 

3. Name: Abdul Rahman Rahimi                          CGPA:   3.05  

 NUST Regn No: 322364   Signature:______________ 

4. Name:  Laiba Asif                           CGPA:   2.98 

 NUST Regn No: 295212   Signature:______________ 

Note: Group cannot be more than 4 students  

     

 

___________________________                _____________________________ 

Signature of Advisor        Signature of Head of Department 

      

 

APPROVAL 

 

 

____________________________ 

Signature of Associate Dean 

 



ii 
 

ABSTRACT 

Agriculture is the biggest contributor to Pakistan’s GDP that makes around 22.67 

percent to the total GDP. Cotton production alone accounts for 4.1 percent of 

Pakistan agriculture, 0.8% of GDP and for roughly 60% of Pakistan's international 

earnings. The fact that crop yield per hectare in Pakistan is less than its competitors 

call for methods like integration of GIS with Machine Learning to assist farmers 

and policymakers in making decisions for sustainable cotton growth. This study 

aims to integrate GIS with Remote Sensing data and Machine Learning algorithms 

to: (i) Map the cotton covered region. (ii) Predict cotton yield. (iii) Project the long-

term impacts of climate factors (maximum & minimum temperature, and 

precipitation) on cotton yield. Sentinel 2A Imagery was imported in GEE to extract 

specific ranges of five vegetation indices in cotton field and apply these ranges to 

other time periods to delineate cotton covered region from all other. Then 11 

vegetation indices and climate factors were used to model and estimate cotton yield. 

ALM, GLM, RF, GBT and SVM models were used to compare their results on the 

study area and provided data. Lastly, CMIP6 future projections of temperature and 

precipitations were used to correlate them with the vegetation indices and find out 

the pattern of crop yield from 2023 until 2099. The result not only showed the use 

of GIS, Remote Sensing and Machine Learning to map cotton fields, model cotton 

yield, but also emphasized the need for mitigation and adaptation for climate change 

to save cotton crops for better crop management practices. 

  



iii 
 

CONTRIBUTION TOWARDS SDGs 

This project aligns with multiple Sustainable Development Goals (SDGs) and 

contributes to their objectives. To begin, it intends to develop a robust method for 

predicting crop output by leveraging Remote Sensing (RS), Geographic Information 

System (GIS), and Machine Learning (ML) techniques in relation to SDG 8. 

Accurate crop yield forecast enables policymakers to apply policies and make 

educated economic decisions, promoting sustainable agricultural practices. 

Furthermore, it targets SDG 12 by focusing on cotton-field identification and 

mapping using RS and GIS. This selection technique lays the path for additional 

research and exploration of sustainable cotton crop methodologies. Hence 

contribute to the larger goal of developing sustainable agriculture in Pakistan by 

encouraging sustainable practices in the cotton sector. It recognizes the significant 

influence of long-term climate change on cropping patterns, especially cotton 

production, in relation to SDG 13 which can provide policymakers with vital 

insights into the environment's influence on agriculture by linking crop productivity 

with critical climate parameters such as temperature, humidity, and precipitation. 

This understanding of climatic impacts enables the application of adaptive 

measures, allowing policymakers to devise plans to reduce the consequences of 

climate change and ensure the resilience of Pakistan's cotton industry and 

agricultural sector as a whole. 

Overall, it contributes to the overarching sustainable development agenda by 

providing a methodology for yield prediction, encouraging research into sustainable 

cotton production, and assisting in climate-related decision-making for agricultural 

practices by addressing SDG 8, SDG 12, and SDG 13.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background Information 

Agriculture plays a vital role in helping life survive on earth, as it is the primary source of 

food for humans and animals. Other than food, it also supports many industries, such as 

textiles and biofuels, and offers employment opportunities for millions of people 

worldwide, hence becoming crucial for the economy. Since Pakistan is an agricultural state 

with development potential, agricultural advances are more important to its economy than 

any other industry. Agriculture is important because it provides food for people, raw 

materials for numerous businesses, and serves as a foundation for foreign exchange. 

Pakistan was ranked fifth in the world for cotton production (ICAC, 2021). 0.8% of GDP 

and 4.1% of the value added in agricultural GDP are accounted for by cotton production. 

Cotton provides the unprocessed supplies for textile commerce, the biggest agro-industrial 

segment of country’s economy, retains 17% of the workforce and generates 60% of the 

country's foreign exchange (IFPRI, 2022). Cotton agriculture along the Indus River 

irrigation structure spans almost 3 million hectares which is crucial for the country's 

economic strength. Pakistan's cotton belt stretches about 1200 kilometers along the Indus 

River, between latitudes of 27 N and 35 N and heights of 27 m to 155 m. The soil 

transitions from clay loam to sandy, with clay dominating to the south (ADB, 2008). Cotton 

is a kind of crop that is highly sensitive to the higher temperature range in semi-arid regions 

and shows a similar kind of trend when it comes to rainfall (Centin et al., 2010). Cotton 

farming spans around 2.79 million hectares in total. Upland cotton is mostly farmed in two 

provinces of Pakistan: Sindh and Punjab. The Punjab province has the greatest explicit 

cotton agriculture area, but Sindh is also well recognized for cotton cultivation. Cotton 

yield in Sindh province is 855 kilograms per hectare, whereas cotton production in Punjab 

province is 695 kg/ha on average (Pakistan Bureau of Statistics, 2020). When compared to 

global cotton production, these two figures are underwatered in areas where cotton 
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production is low. Normally, the maximum temperature for cotton growth is 28.5 C to 

35C (Singh et al., 2007), but in Pakistan, the temperature breadths to 35 C in summers 

when cotton is being grown, and as summers proceed it can go to 41 C to 47C, sometimes 

even 50C, which is too high for human and animal survival. Many other issues affecting 

cotton yield and production in Pakistan, such as heat stress and high input prices, are also 

affecting cotton yield and production. Cotton Leaf Curl Virus infections CLCV illness, a 

lack of water availability, and seed adulteration are all major issues. Crop insurance and a 

cotton marketing challenges system are also key issues affecting cotton output. 

1.2 GIS and RS in Agriculture 

Agriculture is a significant trading industry for a country with a strong economy. 

Agricultural proficiency can be successfully improved by applying information technology 

tools such as Geographical Information System (GIS) and Remote Sensing. Food 

production at a low cost is the prime goal of all cultivators, large-scale farm management, 

and regional agricultural agency (Priya & Shibasaki, 2001). The application of remote 

sensing and GIS to assess and display agricultural terrain has proven to be extremely 

beneficial to farmers and industry. It helps farmers increase production, cut costs, and 

manage their land more effectively, having a big impact on agriculture all across the world. 

New methods for processing and utilizing geographical information for evaluation, 

planning, and monitoring have emerged as a result of advances in computer technology. 

Precision Agriculture, also known as Precision Farming, allows for the automation and 

simplification of data collection and analysis using GIS and other technology (Hazarika et 

al., 2001). 

Geospatial Imagery and GIS are critical for understanding crop health, pest extent, 

potential yield, and soil conditions (Halder et al., 2013). It is used to look into agricultural 

applications like crop identification, area estimation, crop condition assessment, yield 

estimation, farm water management, and agrometeorological forecasting, among others. 

GIS-based mapping tools can help with monitoring crop health, locating crops that are 

growing across the nation, adjusting various variables, calculating yields from a specific 

farm, and increasing crop production. 
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1.3 Sentinel 2A 

Sentinel 2A satellite was launched by the European Space Agency late in 2014. It is an 

essential tool for remote sensing in agriculture due to its high spatial and temporal 

resolutions. Sentinel 2A operates in visible, near infrared, and shortwave infrared regions 

of the electromagnetic spectrum which enables identification of a wide range of crop types, 

including cotton crops. Its high spatial and temporal resolutions with a pixel size of 10X10 

meters makes it suitable for the detection of small-scale features such as individual crops. 

Moreover, its frequent revisits every five days enable the monitoring of crop growth and 

development over time. 

1.4 Google Earth Engine 

Google Earth Engine (GEE) is a free online cloud-based platform from Google that grants 

users access to an immense archive of satellite images from sources such as Sentinel, 

MODIS, Landsat, and others, as well as geospatial and metrological datasets.  GEE 

possesses a wide range of tools for analyzing, processing, demonstrating, and manipulating 

both geospatial and non-geospatial data. With GEE, users can easily retrieve satellite 

imagery, meteorological and geospatial datasets and perform complex analyses and 

generate dynamic visualizations without downloading data or purchasing licenses. In 

addition to its vast archive of satellite imagery and other datasets, Google Earth Engine 

(GEE) provides strong processing capabilities that allow users to execute complicated 

analyses on massive datasets. Users may utilize GEE's cloud-based architecture and 

Google's servers to perform extensive computations on massive geospatial datasets, such 

as machine learning algorithms and statistical analysis. This enables researchers and 

analysts to easily examine and understand enormous volumes of data, generating insights 

and predictions that would otherwise be difficult or impossible to achieve with traditional 

desktop-based software. 
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1.5 Cotton Cycle 

Cotton plants follow an interesting pattern throughout their cycle. From sowing to its 

harvesting, there are different crucial stages that come along, and each stage is closely 

monitored by the agronomists and farmers to get insights into how cotton plants are 

behaving this season. Cotton is generally grown in summers along the equator region. But 

its cycle varies from one region to another. The cotton cycle depends on different factors, 

weather conditions being one of them. The season generally starts in April-May and ends 

in September-November. This must be noticed that these patterns change over time thanks 

to the change in the climatic conditions (AARI, 2021). 

In Pakistan, first stage is apparently Sowing or Plantation stage when the cotton seeds are 

planted into the ground. In Southern Punjab, the sowing period starts from mid-April until 

mid-May. Some varieties of cotton are sown earlier than others to account for their unique 

features. Then it takes about 35 days to move towards the next stage that is known as 

Emergence. At this critical stage, the cotton seeds start to emerge out of ground after 

germination. This means that now the photosynthesis and active growth of cotton plants 

will start.  

After this stage, a square starts to appear on the cotton plant. Square is the fruiting bud that 

forms on the branches of cotton plant branches (Cotton Plant Development and Plant 

Mapping, n.d.). There are different kinds of square, first one is called First Square which 

includes the initial fruiting buds that appear on the plant, then comes Pinhead Squares 

where new squares can be classified, and then the Match Head Square which is subsequent 

stage of Pinhead Square. What follows next is the Flowering stage. It takes about 66-70 

days after the sowing for flowers to sprout. Flowering is the blooming period of this crop. 

When squares are matured enough, they translate into little flowers and then pollination 

occurs. Then ovules develop into cotton fruits or Bolls which is next stage after Flowering, 

and it takes 20 more days.  

Boll goes through three phases to reach the stage of maturation. The first step is 

enlargement where boll grows in size, followed by filling, and then maturation. Once the 

boll is fully mature, it is then harvested almost 163-170 days after the very first stage. After 
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harvesting, another step is critical raw cotton consisting of seeds and leaf trash are packed 

into modules, and then cotton fibers are separated from cotton seeds. 

 

1.6 Vegetation Indices  

Based on extensive literature review and previous research studies, this study opted 11 

different vegetation indices that have been used for similar goals before. All these 

vegetation indices have been made to pick on particular features of vegetation areas and 

this combination was thought to be helpful for this study. Some of them are related to one 

and other in some way but their slight differences can help in better forecasting of crop 

yields. Out of these 11 bands, Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) comes along with the MOD13A1 product as stated 

earlier. They were used given their enormous utilities in agriculture related studies. 

(Morelli-Ferreira, 2021) 

Table 01 lists the formulas and details of all indices used throughout this study. Difference 

Vegetation Index or DVI was calculated by subtracting near the red band reflectance from 

infrared band reflectance. It provides a measure of health and density of vegetation in a 

region that is less responsive to atmospheric interruptions. Then comes Ratio Vegetation 

Index or RVI is like DVI except it takes ration of NIR and Red bands. As efforts to improve 

indices results for different conditions increased, modified versions erupted to fill the gaps 

for different types of conditions. Soil Adjusted Vegetation Index or SAVI was developed 

to improve the NDVI performance by reducing the impacts of soil brightness. It includes a 

soil adjustment factor to account for the soil brightness. It measures the vegetation density 

with more accuracy when there is high soil brightness. But a difficulty occurred when soil 

background effect was adjusted for NDVI, the atmospheric variations got higher. This 

called for the making of a new and improved version of index called Soil Adjusted and 

Atmospherically Resistant Vegetation Index or SARVI. (Leprieur et al., 2000).  

Similarly, Optimized Soil Adjusted Vegetation Index or OSAVI is adjusted version of 

SAVI to perform better in areas with sparse vegetation cover. Randomized Difference 

Vegetation Index or RDVI is an improved version of Difference Vegetation Index to give 

https://www.tandfonline.com/author/Leprieur%2C+Catherine
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off more accurate results in the areas with high levels of noise. Transformed Vegetation 

Index or TVI was another shot at improving the performance of NDVI in regards with 

vegetation density and health. TVI establishes normal distributions to improve results. 

Wide Dynamic Range Vegetation Index or WDRVI includes a weighting coefficient of 

0.1-0.2 and increase association with vegetation section to improve performance of NDVI. 

Stress related Vegetation Index STVI-1 has shown a better relationship with vegetation 

cover and has proven useful for vegetation mapping. Online Index Database “Index 

Database. (n.d.).” can be searched to find other relevant information about any kind of 

index. Table 1 shows the vegetation indices included for this part of the project. 
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Table 1: Derived Vegetation Indices. 

Index Formula Full Name References 

DVI ρ NIR - ρ R Difference Vegetation 

Index 

 (Wu, 2014) 

RVI Ρ NIR / ρ R Ratio Vegetation Index  (Wu, 2014) 

NDVI (ρ NIR - ρ R) / (ρ NIR + ρ R) Normalized Difference 

Vegetation Index 

 (Huete et al., 2010) 

EVI 2.5 * (ρ NIR * ρ R) / (ρ NIR 

+ C1 * ρ R - C2 * ρ B + 

L) 

Enhanced Vegetation 

Index 

(Ihuoma et al., 2019 

& Wu, 2014) 

L = 1; C1 = 6, C2 = 7.5 

SAVI (1+L) (ρ NIR – ρ R) / (ρ NIR 

+ ρ R +L) 

Soil Adjusted Vegetation 

Index 

(Panda et al., 2010) 

L = 0.5 

OSAVI (ρ NIR – ρ R) / (ρ NIR – ρ R 

+0.16) 

Optimized Soil Adjusted 

Vegetation Index 

(Steven, 1998 & 

Rondeaux et al., 

1996) 

RDVI (ρ NIR – ρ R) / (ρ NIR + ρ 

R)1/2 

Randomized Difference 

Vegetation Index 

(Ihuoma et al., 2019) 

SARVI (1 + L) (ρ NIR – ρ RB) / (ρ 

NIR + ρ RB + L)  

Soil Adjusted and 

Atmospherically 

Resistant Vegetation 

Index 

 (Wu, 2014) 

ρ RB = ρ R - g * (ρ R – ρ B) 

 =   =  

TVI (ρ NDVI + 0.5) 1/2 Transformed Vegetation 

Index  

(Bannari et al., n.d.) 

WDRVI (0.1 * ρ NIR – ρ R) / (0.1 * 

ρ NIR + ρ R) 

Wide Dynamic Range 

Vegetation Index 

(Gitelson, 2004) 

STVI01 (ρ MIR * ρ R) / ρ NIR Stress related Vegetation 

Index 

(Jafari et al., 2007) 

 

Where R = Reflectance of Red Band, NIR = Reflectance of Near Infra-Red Band, 

MIR = Reflectance of Middle Infra-Red Band 
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1.7 Objectives 

This study was focused on mapping the cotton crop area, modelling the crop yield, and 

analyzing the future trends of cotton yield. Hence this study area is divided into three 

objectives: 

(i) Identify cotton-fields using Remote Sensing and classification algorithms. 

(ii) Develop a Machine Learning Model to predict cotton yield. 

(iii) Analyze the impacts of climatic factors (temperature range and precipitation) 

on cotton growth in future. 

 

1.8 Beneficiaries 

➢ Cotton covered area identification from all agricultural land present in selected area 

with the help of remote sensing. 

➢ Cotton production prediction to assist farmers and agronomists in making better 

management decisions. 

➢ Assessment of the effects of rainfall, temperature, and humidity on cotton growth 

will result in improved crop management, better prediction of future trends, 

increased resilience to climate change and establishment of baseline for more 

accurate future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Feng et al. (2019) discusses the significance of remote sensing data for crop classification, 

which is required for large-scale agricultural remote sensing monitoring, agricultural 

monitoring types, and government decision-making. There are two key approaches used 

for crop classification using Remote Sensing: one uses spectral features of high spatial 

resolution data combined with multitemporal features, and the other studies crop growth 

patterns and phenological characteristics. The article also discusses crop classification 

using Landsat, MODIS, and Sentinel data, as well as the benefits of using machine learning 

models like SVMs and random forests for crop multiclassification problems in comparison 

to the maximum likelihood model for classifying crops in the city of Yushu, China using 

Sentinel-2A images. Sentinel-2A images from the year 2017 were successfully used to 

extract spectral reflectance of 12 bands, 96 texture parameters, 7 vegetation indices, and 

11 phenological parameters. 

The following are the primary outcomes of this paper: 

 

I. The results show the combination of 13 features results in 88.96% accuracy for 

traditional classification and 98% for machine learning classification.  

II. The shortwave infrared band has a significant effect on classifying rice, corn, and 

soybean. 

III. The water vapor band distinguishes corn and rice. 

IV. GCVI assists in discriminating corn and soybean, while coastal band does so for 

other crops from dry fields. 

V. Rice identification is easier than maize and soybean identification, and machine 

learning methods perform significantly better than traditional classification 

procedures for recognition of multifeatured crops. 

 

It is also mentioned that the amount and accuracy of information extracted from Sentinel-

2A data can be affected by factors like atmospheric factors. Furthermore, the number of 
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available data periods influences the ability to extract phenological features from time 

series data. However, to fully benefit from the red edge band's high temporal and spatial 

resolution and additional information, methods for de-clouding and denoising the data must 

be developed. 

Bargiel, 2017 discusses the significance of accurate and complete crop type classification 

for assessing the effect of agrarian landuse on ecosystems. The study presents a modern 

multitemporal based categorization method that uses information about phenological shifts 

in crop lands to identify crop type phenological sequence patterns (PSP). The PSP 

approach's performance was evaluated over two vegetation terms using Sentinel-1 data and 

over 200 ground truth fields in northern Germany. The outcomes favored PSP over 

standard order strategies for meadows, maize, canola, sugar beets, and potatoes, with the 

PSP approach beating standard grouping techniques for grain harvests like spring grain, 

oat, winter grain, and rye. The PSP approach is likewise stronger to contrasts in cultivating 

the board and development conditions, as well as more delicate to unobtrusive changes, 

like weed extents inside a field. The strategy is reasonable for huge scope arrangement and 

can be assessed further with different multitemporal input information, for example, 

polarimetric highlights, optical sensor information, or imaging radar information at 

different frequencies. 

As indicated by research by Kwak et al. (2019), automated airborne vehicle (UAV) pictures 

can possibly be utilized in crop order in light of their high spatial and temporal goal. The 

utilization of GLCM-based surface data for crop distinction with time-series UAV pictures 

and machine learning algorithms calculations is examined in this exploration paper. For 

cases with at least one UAV picture as information, the effect of consolidating surface and 

otherworldly data on grouping execution is assessed. The impact of surface data on 

precision was determined by the GLCM. The extraction of GLCM-based surface elements 

requires cautious kernel size determination. The review found that multi-transient UAV 

pictures joined with GLCM-based surface elements accomplished the most precision, 

while surface data further developed proficient execution for a single August UAV picture. 

These discoveries infer that surface data can be helpful for crop order when just a set 

number of UAV pictures are accessible. Be that as it may, while utilizing multi-fleeting 
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pictures, the blend of surface highlights and unearthly data didn't fundamentally further 

develop better accuracy. 

Mapping and monitoring cropland and crop type distribution is critical for assisting 

policymakers and international organizations in mitigating food security risks, particularly 

those caused by climate change as mentioned in the article by Tariq et al. (2022). Remote 

sensing has grown in popularity as a tool for these purposes. However, because of the 

spectral similarity of crop types and cropping patterns, it is difficult to identify specific 

types and patterns using satellite data. 

In Pakistan's Gujranwala District, researchers looked for crop types like tobacco, wheat, 

barley, and gramme, and patterns like wheat-tobacco, wheat-gram, wheat-barley, and 

wheat-maize. Sentinel-2 and Landsat-8 data was combined with Machine Learning 

algorithms, including Decision Tree Classifier and Random Forest, for the study. 

The study used machine learning algorithms to link NDVI-based time-series from Sentinel-

2 and Landsat 8 with phenological parameters to identify most suitable time-periods for 

distinguishing cropland from other landuse. Landsat with crop data from 2020 and 2021, 

and ground data on patterns were used to evaluate the methodology. The study also tested 

temporal changes in cropping patterns and types, as well as a comparison of the spatial and 

temporal resolution of medium-resolution imagery. 

Following results were derived using 184 crop samples: 

I. The landscape configuration influenced cropland mapping accuracy. 

II. R2 values were high in 2021 at the sub-district level between crop-statistical and 

Sentinel-2 derived cropland data. 

III. Sentinel-2-derived zones for various crop categories matched well with crop-

statistical data. 

IV. Using Sentinel-2 derived data, the paper extracted the cropland on a large scale with 

high accuracy. These results vouched for accurate and precise results that can be 

considered at lower costs than other methods. 

V. Among all crop types, tobacco had the best estimation results. 
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VI. Wheat was the most widely cultivated crop in study region, covering 85% of total 

agricultural land, while barley had the least, covering only 0.07%. 

 

In the end, the importance of large-area studies that cover wide ecological gradients to 

reveal the benefits and drawbacks of using optical and radar data for crop type mapping in 

a variety of ecological conditions and data sources were highlighted.  

Fang et al. (2020) discusses the importance of wheat production in Henan Province, China, 

and the use of remote sensing technology for crop mapping. According to the article, 

remote sensing technology has been used for crop biomass, leaf area index, and yield 

mapping, as well as crop identification using machine learning algorithms such as SVMs, 

RF and NNs. However, the crop identification process is time-consuming and inefficient. 

Traditional remote sensing methods' limitations, such as low- and medium-resolution 

images and susceptibility to mixed pixels, are also highlighted. Then the Google Earth 

Engine (GEE) platform as a solution to these constraints is introduced, offering efficient 

computing capabilities as well as access to public geospatial datasets such as Landsat, 

MODIS, and Sentinel. GEE includes a number of machine learning algorithms that can be 

used for vegetation monitoring, land use/cover analysis, water change analysis, and 

drought analysis. The paper presents the use of machine learning algorithms, specifically 

support vector machine (SVM), random forest (RF), and classification and regression tree 

(CART), to identify and map winter wheat using Sentinel-2 images. The algorithms' 

hyperparameters were tuned using grid search and cross-validation, and their classification 

performances were compared. Finally, the effect of MODIS mixed pixel with medium 

resolution on crop mapping accuracy is investigated. 

With an overall accuracy (OA) of 0.95, a user accuracy (UA) of 0.95, a producer accuracy 

(PA) of 0.95, and a kappa coefficient of 0.92, the SVM algorithm performed the best in 

terms of classification. Investigations into the sensitivity of the algorithms to the 

hyperparameters revealed that SVM was more sensitive to C and gamma, RF was less 

susceptible to tree and split, and CART was more sensitive to maxD and minSP. According 

to the study, SVM and RF perform better at classifying data than CART. While RF is not 

sensitive to algorithm settings, SVM and CART are. The study's recommendations for 
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further research include looking into other machines and deep learning algorithms for this 

purpose. 

The approach for county-scale cotton mapping proposed in this research uses a random 

forest (RF) feature selection algorithm and classifier to choose multi-features like spectral, 

vegetation indices, and texture characteristics. SVM, ANN, and RF were the three machine 

learning methods used by Fei et al. (2022) to classify cotton using spectral characteristics, 

vegetation index, and texture features. The random forest technique was used to choose 

these features, and the classification outcomes were examined and contrasted based on the 

image date, feature selection, and classifier choice. The study found that adding more 

features can considerably increase classification accuracy, with RF exhibiting the most 

stability and effectiveness. Along with spectral data and the vegetation index, the study 

assesses the impact of texture features on cotton categorization accuracy. The feature-based 

classification improves on the pixel-based classification by including texture features. 

Characteristics of crops at various times taken into account. The study also determined the 

importance of various features in classification, with NIR ranking first among spectral 

features and GLCM ranking first among texture features. 

The findings demonstrated:  

1. The grey level co-occurrence matrix (GLCM) texture feature, which ranked second in 

contribution among all examined spectral, VI, and texture features, is useful for enhancing 

classification accuracy.  

II. The RF classifier surpassed SVM and ANN in terms of accuracy and stability.  

III. The average OA of the classification incorporating multiple features was 93.36%, 

which was 7.33% higher than the average OA of the single-time spectrum and 2.05% 

higher than the average OA of the multi-time spectrum.  

IV. The classification accuracy can be 92.12% after feature selection using RF, indicating 

outstanding accuracy and efficiency.  

This technique has the potential to be an effective county-scale method for classifying 

cotton. A method reference for precision cotton management at the county level was also 

offered by the study. 
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To better understand the techniques and features utilized in crop production prediction 

studies, Klompenburg et al. (2020) conducted a thorough literature evaluation of 567 

pertinent articles. After reviewing 50 papers, it was found that the most frequently utilized 

features were temperature, rainfall, and soil type, with Artificial Neural Networks (ANN) 

being the most frequently employed algorithm in these models. The study found that the 

scope of the study and the availability of data influence the choice of features. Not usually 

did models with more features outperform those with fewer characteristics. Random forest, 

neural networks, linear regression, and gradient boosting trees were the most frequently 

employed models. Convolutional Neural Networks (CNN), Long-Short Term Memory 

(LSTM), and Deep Neural Networks (DNN) were found to be the most often utilized deep 

learning algorithms after a second search to find papers based on deep learning. These 

results have significant ramifications for future agricultural yield prediction studies based 

on machine learning. 

The article discusses the importance of early crop yield estimation in countries like 

Pakistan, where agriculture is a major source of income. The study looks into the feasibility 

of using MODIS-derived vegetation indices and remote sensing to predict wheat yield in 

Pakistan's Potohar region. It also shows how multiple linear regression (MLR) models can 

be used in agricultural decision support, specifically yield forecasting. The study develops 

a statistical model using two MODIS products, MOD15A2H and MOD13A1, and wheat 

yield data from each district in Pakistan from 2009 to 2018. The results show that using 

geospatial techniques in conjunction with the statistical modelling approach, accurate 

wheat yield prediction can be made almost 2 months before harvesting, with an average 

difference of -1.986% between the actual and predicted yield (Hassan et al., 2020). 

The article does, however, acknowledge the MLR model's limitations, which include the 

potential overestimation of yield due to environmental factors that affect the crop after the 

forecasting date.  

The capacity of conventional techniques based on vegetation indices (VI) to evaluate 

environmental stress-related disorders that cannot be assessed using Vegetation Indices is 

constrained. These techniques can estimate agricultural yields. This paper suggests a new 

approach that uses a random forest regression algorithm and extra environmental factors 
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to estimate US corn and soybean yields. To increase the precision of a vegetation index-

based agricultural production estimation approach, the study used additional environmental 

factors and a random forest regression machine learning algorithm. According to the study, 

the RF approach delivers the most precise estimations, particularly in irrigated areas. The 

study supports the RF method's ability to forecast crop loss due to drought accurately 

(Sakamoto, 2019). 

The study quantified drought episodes from 2000 to 2018 utilizing indices such as STVI 

01, NDVI, EVI, and SAVI, as well as climatic data, with the goal of assisting decision-

making for drought monitoring and yield prediction. The research found a significant 

inverse relationship between wheat yield and temperature and a significant inverse 

relationship between wheat production and rainfall. The findings indicate that throughout 

this time, the region had comparatively higher winter mean temperatures and significant 

seasonal rainfall changes, which led to consistently low soil moisture and frequent drought 

occurrences. Vegetation indices identified two more drought events, and STVI 01 

identified three moderate and two light drought events. The study also found that, after 

temperature and rainfall, soil moisture had the most effect on wheat yield (Ijaz et al., 2021). 

Azmat et al. (2021) aimed to utilize two crop models and regional climate models to assess 

the effects of climate change on winter wheat in Pakistan's rainfed and irrigated regions. 

Different adaptation strategies were investigated, and experimental data for wheat 

phenology, biomass, and yield were obtained. Climate change had a significant impact on 

wheat phenology, biomass, and yield, with stronger impacts under RCP8.5. Wheat biomass 

and yield were improved by adaptation strategies, particularly sowing-2 under RCP4.5 in 

rainfed regions and irrigation-2 and the combination of sowing-1 + irrigation-2 in irrigated 

regions. 

STICS and APSIM crop models are used to simulate the effects of climate change and 

different adaptation strategies. According to the study, temperature and precipitation 

changes will have a significant impact on wheat growth and yield, with the APSIM model 

showing a more significant response to temperature changes. According to the STICS 

model, the sowing-2 adaptation strategy in rainfed regions and the combination of S1 and 

I2 strategies in irrigated regions can provide the best yield recovery. The study provides 
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policymakers and researchers with a credible range of potential outcomes regarding the 

potential impacts of climate change and adaptation strategies on wheat yield in South Asia 

in general, and Pakistan in particular. 

The article by Arunrat et al. (2021) aims to assess the impact of climate change on crop 

yields and water footprint (WF) in Thailand's lower north. The study employs five global 

circulation models to forecast crop yields and WF changes in the future under Shared 

Socioeconomic Pathways (SSPs) scenarios. 

i. Precipitation, maximum and lowest temperatures, and all time periods were 

predicted to increase under the SSP245 and SSP585 scenarios. 

ii. Under the RRR cropping method, it was anticipated that rice yields for all three 

crops would increase progressively. 

iii. According to the SSP585 scenario, the yields of the three rice crops would only 

modestly grow in the near future while decreasing in the mid- and long-term. 

iv. The first and second rice crop yields under the RR cropping system (in the rain-fed 

area) were both decreased by the SSP585 scenario (6.0-14.4% and 7.4-17.7%, 

respectively). 

v. The first and second rice crop yields improved by 3.0% and 4.3%, respectively, in 

the near future, according to the SSP245 scenario. 

vi. Future climate change had less impact on the production of maize, soybeans, and 

mung beans as opposed to a second rice crop, especially because the yield of mung 

beans was expected to modestly rise in all time periods under the SSP245 and 

SSP585 scenarios. 

Future WF variations were connected to future crop production variations; hence, a decline 

in WFs was brought on by the anticipated rise in crop yield, and vice versa.  



17 
 

 

CHAPTER 3 

MATERIAL & METHODOLOGY  

3.1 Study Area 

The focal point of study was Dera Ghazi Khan. It contains four districts named Dera Ghazi 

Khan, Layyah, Rajanpur, and Muzaffargarh with geographic extent of 30◦02’56” N, 

70◦38’43” E. It is a flat and agricultural area and the most prominent cotton producing 

region after Multan (Lodhran, Khanewal) ang Bahawalpur (RYK). Figure 1 shows the map 

of Dera Ghazi Khan with all districts. The city's overall climate is dry, with minimal rain. 

The winters are pleasant and dry, while the summers are extremely scorching. The mean 

high temperature in the summer is around 107 °F (42 °C), while the average low 

temperature in the winter is 40 °F (4 °C). Summer temperatures in Pakistan are typically 

among the hottest. 
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Figure 1: Map of study area 

 

3.2 Data Acquisition and Preprocessing 

3.2.1 Sentinel 2A Imagery 

Analyzing satellite images to identify specific crops like cotton can still be a challenging 

task as it requires advanced data processing and extensive analysis techniques. Therefore, 

the development of an accurate and reliable method to detect and classify cotton crops in 

Sentinel 2A imagery using different remote sensing techniques and various programming 

platforms have the potential to revolutionize the way cotton crops are mapped.  Accurate 

mapping of cotton crops using RS techniques can help in predicting crop yield, monitoring 

crop health, and providing early warnings of crop stress which ultimately lead to increased 

productivity and improved food security. (Moumni et al., 2021) 

In order to extract cotton mask, the Sentinel 2A images were extracted through Google 

Earth Engine from ESA archive for the months of cotton cycle for one year to analyze the 
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images later and apply the classification algorithm and cotton mask extraction. Once the 

Sentinel-2 image from the COPERNICUS/S2_HARMONIZED dataset was selected using 

ee.ImageCollection function, it was filtered by geographic bounds and date range, sorted 

by cloud cover, and the first image with least cloud percentage was selected for further 

analysis. After that, the processed images were created by mosaicking ten separate images 

together and then clipping the resulting mosaic to a specific area of interest (AOI). The 

final image is displayed as a three-band composite using the Red, Green, and Blue (RGB) 

bands ('B4', 'B3', 'B2') with a specified minimum and maximum value range (min: 0, 

max:3000) and gamma correction (gamma: 1.4). These steps were used to preprocess other 

various remote sensing to analyze the required combining multiple images into a single 

image for further analysis or visualization. The code for the above image processing and 

extraction is provided in Appendix A (Data extraction and mosaicking). 
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3.2.2 MOD13A1 Imagery 

Given the use of MODIS or Moderate Resolution Image Spectroradiometer in previous 

research studies regarding crop yield forecasts and other crop related studies, it was 

considered a suitable choice. Also, MODIS has a high radiometric sensitivity (12-bit) with 

36 spectral bands having wavelength extending from 0.4 µm to 14.4 µm. MOD13A1 

product of Terra MODIS was selected for its wide use in agricultural and environmental 

studies. It has per pixel based spatial resolution of 500 meters with a temporal resolution 

of just 16 days. This enables users who need to monitor changes of a region with short 

intervals. This frequency of data was a prominent factor for choosing MODIS product over 

other options. Data from the year 2008 until 2022 was readily available. 

MOD13A1 provides a Quality Assurance band as well, and the algorithm selects a pixel 

that gives off the best result in a 16-day period. Other bands used in this study were Red 

Reflectance band or Band 01, Near Infrared Reflectance band or Band 02, Blue Reflectance 

band or Band 03, and Mid Infrared Reflectance band or Band 04. Red reflectance band is 

sensitive to chlorophyll absorption and is used to estimate vegetation density. Near Infrared 

band can also be used for vegetation health and density, but it is more sensitive to the 

moisture content of vegetation. While Blue reflectance band mainly focus of atmospheric 

aerosols, the Mid Infrared band is sensitive to moisture content and atmospheric 

temperature and is also used to study vegetation stress (Myneni et al., 2007). 

MOD13A1 data is uploaded to Land Processes Distributed Active Archive Center and this 

data is Level 03 gridded product. Using the code attached in Appendix A (MODIS imagery 

acquisition and mosaicking). MOD13A1 data has already undergone atmospheric 

correction, geometric correction, and calibration. This means generally there is no need to 

do further preprocessing, unless required for the task. MOD13A1 provides two primary 

vegetation layers as well, named Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI) which are handy for any study associated with 

biophysical parameters. NDVI is a commonly used measure which is calculated using the 

ratio of near infrared reflectance and red band’s reflection. It is used to monitor vegetation 

dynamics, as its value ranges from -1 to +1. Value closer to +1 indicates denser vegetation. 

EVI is another vegetation index which is calculated using near infrared, red and blue bands 
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of electromagnetic spectrum. It also indicates vegetation dynamics but does it better than 

NDVI for regions that have higher density of atmospheric aerosols as it has better 

sensitivity for biomass.  

 

3.2.3 Meteorological Data 

It was clear from the previous research studies that just having phenological parameters 

associated with a certain crop cannot be enough to predict crop yield. There are plenty of 

other factors that have direct or indirect effect on the crop biophysical properties. A few of 

them could be soil related properties like soil pH, soil salinity etc.; others could be Cotton 

seed varieties related factors, and some could be about farmer practices and so on. It is near 

impossible to include all those factors at this stage of study. But climate related factors are 

on the top of list amongst these factors. Climate change is having an alarming impact on 

different aspects of life in this region, agriculture being one of most prominent amongst 

them being a source of income for major part of the residents there. (Akbar et al., 2020)  

For this study, three climate related factors were shortlisted being Maximum Temperature, 

Minimum Temperature, and Precipitation. The data for downloaded from the NASA Power 

online portal where historical data has been available for users to download free of cost. 

National Aeronautics and Space Administration or NASA maintains the data of NASA 

Power that provides solar and meteorological data for globe using combinations of satellite 

measurements, global climate models and ground weather stations. The data is available 

for the past 40 years starting from 1980. It is mainly focused on communities working for 

renewable energy, sustainable buildings, or agroclimatology. The data was downloaded 

separately for all the four districts in our study area, named Layyah, Dera Ghazi Khan, 

Muzaffargarh, and Rajanpur, from year 2008 until the year 2022.  

 

3.2.4 Annual Yield Data 

Cotton yield per hectare over the study period was downloaded to model cotton yield over 

it. Yield data was downloaded from Crop Reporting Services of Punjab “Crop Reporting 
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Service Punjab (2021)”, the data from 2008 until 2022 was downloaded for all the four 

districts in the study area.  

 

3.2.7 Climatic Projections Data  

To project the long-term impact of climatic factor on yield according to two scenarios i.e., 

SSP2-4.5 and SSP5-8.5 of CMIP6, first step was the collection of the climatic factors data 

under two major categorized, named as Observed data, and SSPs data. The SSPs data was 

later divided into Historical and Future data after data cleaning and processing. The 

observed data was extracted from NASA POWER, whereas the SSPs data was downloaded 

from CDS Climate - Copernicus Climate Change Service website. SSP2-4.5 and SSP5-8.5 

are two of the Shared Socioeconomic Pathways (SSPs) used to project future climate 

scenarios in the Coupled Model Intercomparison Project phase 6 (CMIP6). Based on the 

level of effort done to counteract climate change, these two scenarios illustrate different 

possible futures for the globe. SSP2-4.5 assumes moderate greenhouse gas emission 

reduction efforts, whereas SSP5-8.5 assumes no emissions reduction efforts and a high rate 

of world economic development. The collecting and analysis of these data sets is vital for 

understanding the possible implications of climate change on crop yields and creating 

mitigation strategies. 

Observed data consisted of daily minimum temperature, maximum temperature, and 

precipitation data from year 1981 till 2022 (Figure 2). To get this data, go to data access 

viewer portal of power.larc.nasa.gov and choose the temporal variation average (Daily), 

latitude and longitude of the target area i.e., coordinates of each district, time extent i.e., 

January 1981 – December 2022, file format(.csv) and selection parameters (Temperature 

at 2 meters maximum, Temperature at 2 meters minimum and precipitation). Once all the 

options are chosen, submit the request which provides the required data file after 

processing.  
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Figure 2: NASA Power viewer portal 

 

Both the Historical (January 2015 – December 2022) and Future data (January 2023 – 

December 2099) was obtained in form of the SSPs scenarios data of the three variable, 

Daily minimum near-surface air temperature, Daily maximum near-surface air temperature 

and Daily Precipitation, downloaded from online climate data store. In order to get this 

data, go to website and search CMIP6 climate projections from Datasets section. This leads 

to a webpage which provides an overview and documentation related to data that is 

available on the website and a download section. In the download section, some options 

need to be specified to get desired data such as Temporal resolution (Daily), Experiments 

(SSP2-4.5 and SSP5-8.5), variables (Temperature and Precipitation), Model 

(MIROC6(Japan)), Years (2015 – 2099) and file format. Once the requirements are 

specified, submit the request to get desired data in NetCDF format. To get the data for each 

scenario, this process was repeated individually for each variable. 

 

3.2.8 SSPs Data Preparation 

The data in NetCDF format cannot be visualized and used to proceed, so it was processed 

using ArcGIS. The raster tile of the downloaded data, obtained using NetCDF to Raster 

tool, displayed Global level view of data which was then processed to narrow down to get 
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data of pixels that lie in the study area by using NetCDF to Table tool. The NetCDF to 

Table tool provided data of each specified pixel for specified year i.e., 2015-2099. Later 

the pixels level data was edited in excel district wise based on which pixels lie in which 

district. (Figure 3 and 4) 

 

 

Figure 3: Visualization of data in ArcGIS 

 

 

Table 2: Latitude, Longitude and Number of pixels in each district 

District Lat Long No. of Pixels  

Layyah 31.052617 71.353702 4 

Dera Ghazi Khan 30.298565 70.480589 3 

Muzaffargarh 30.2362 71.211963 3 

Rajanpur 29.017244 70.163094 2 
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Figure 4: CMIP6 climate projections download portal. 

 

3.3 Cotton crop area identification using phenology-based Approach 

The study of the schedule of recurring natural phenomenon in plants and animals, such as 

blooming, fruiting, and migration, is known as phenology. Phenology can be used in 

remote sensing to distinguish various crop varieties based on their distinct patterns of 

growth and development. Each crop has its own phenological cycle, which relates to the 

progression and development phases during growing season, such as emergence, 

vegetative growth, blooming, and senescence.  

Remote sensing data, such as satellite imagery can be used to detect changes in vegetation 

patterns over time and to monitor crop phenology. In Addition, Remote Sensing data, for 

example, can be utilized to measure the timing of leaf emergence, peak leaf area, and leaf 

senescence, which can ultimately help in distinguishing various crop types. For instance, 

analyzing vegetation indices patterns in particular Normalized Different Vegetation Index 

NDVI over time can help identify crop types based on their unique phenological signature. 

For the cotton crop area identification, two different platforms were used: Python and 

Google Earth Engine. 
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3.3.1 Python Platform 

The primary goal of this part was to create a method that could accurately map cotton crops 

using Sentinel 2A imagery in python programming language. Python is an open-source 

popular programming language for data analysis and image processing in remote sensing 

applications. The proposed method involved using various Python programming language 

libraries such as NumPy, Pandas, Geopandas, Rasterio, Matplotlib and others, to read, 

analyze and process satellite downloaded imagery from European Space Agency's (ESA) 

official website. Initially, Normalized Difference Vegetation Index (NDVI) was computed 

for Rajanpur district.  5Subsequently, a unique NDVI range for cotton crops during a 

specific month was identified with the help of google earth pro, Extract by Mask and 

Random Points functions. A mask function was defined to convert the NDVI image to an 

array and then classify NDVI image pixels into two classes. Those pixels falling within the 

range were classified as class 1 (representing cotton crops) and the remaining pixels were 

classified as class 0 (representing additional features in the imagery). The end result was a 

new image with two distinct classes: Cotton Crops and Other features.  

                                    

3.3.2 Google Earth Engine Platform 

Two major methods were used to determine and map the Cotton Crop Area, one of which 

was carried out using GEE. Furthermore, two different approaches were used to determine 

which classification method more accurately determines the cotton area. The code to 

implement both these approaches is attached in Appendix A and explained in detail as 

follow: 

A. The suitability of GEE was evaluated and chosen as an appropriate platform to perform 

the analysis. The first step was to load the verified Ground Truth Cotton Fields shapefile 

from CRS (Crop Reporting Service) of Punjab and determine the unique boundary values 

of cotton crop NDVI reflectance using ee.Reducer.max(), ee.Reducer.min() functions for 

NDVI image that lies within the boundary of Reference cotton fields. Once the range was 

determined, this classification method of using NDVI range was applied on the 

preprocessed mosaicked images of study area as discussed in Section 3.2.1 consisting of 
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four districts of Deri Ghazi. The resulting classified image consisted of two classes: cotton 

crops and other features. The threshold range for NDVI that was unique to cotton only was 

between 0.49681705 and 0.629582268, whereas any pixel value falling within this range 

was classified as "1", while any pixel outside the range was classified as "2". The resulting 

cotton classified image was then converted to a shapefile to obtain the final Cotton mask 

for the study area.  

B. Since the resulting mask from the first approach had less accuracy, the Second 

approach was adopted which included four other indices as well with NDVI which 

enhanced the accuracy of the output cotton mask. Subsequently, five vegetation indices, 

included were Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 

Index (EVI), Difference Vegetation Index (DVI), Wide Dynamic Range Vegetation 

Index (WDRVI), and Stress Related Vegetation Index (STVI). A range for each indices 

were then determined and used in a mask function to derive a final classified image 

which consisted of two classes: Cotton Crops and Other Features. The process was 

employed three times, and the findings from each year were combined with the prior 

year's results to generate a time-series dataset. This method could be used to investigate 

the spatial and temporal patterns of any target vegetation, cotton in this research. 

 

3.4 Indices Derivation and Data Organization 

After the eleven indices were selected and their mathematical derivations were lined up, 

the next step was to go about the ways to implement them and drive their values. There is 

the usual way of using available GIS software to calculate vegetation indices in batch. 

ArcMap could be one option where the option of Raster Calculator is available to write 

mathematical equations to generate customized indices. While this seems quick, the fact is 

that to start with this method, a lot of data would need to be downloaded.  

To get a glimpse, the first step would be to go to LPDAAC online portal, provide them 

with dates of cotton cycle and shapefile of boundaries of study area selected for this thesis, 

and download the specific bands required for this study. There would be more than 100 

data files per year and combining them with a 14-year study period would elevate this 
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number significantly. Now each of these files would need to be imported in ArcMap 

software, which is heavy by its nature, and even importing data would consume huge 

amounts of time. Next step would be to calculate separate raster indices for each year that 

is again a humongous task. Finally, when 11 indices for each date of all 14 years are 

calculated, there would still be needed to mask these hundreds of files to the specific cotton 

region extracted in the earlier phase of this thesis. This is an extremely long task that 

demands a lot of attention and time as a small mistake could prove fatal for research.  

The alternate path is to use Google Earth Engine. GEE is a cloud-based platform to perform 

analysis related to geospatial data. It is also scalable for complex datasets and provides a 

wide range of satellite driven and climate related data. It has immense programming 

capabilities that can be used to write JavaScript code and automate processes that could 

otherwise be a hassle. Since the GEE provides access to huge satellite data, so downloading 

was not needed for this part of methodology as data can directly be imported in Earth 

Engine Code Editor. Secondly, instead of going for GIS software toolboxes, code could be 

written to automate the process of calculating vegetation indices. 

After signing up to GEE using Google account, code editor needs to be opened. Then there 

are options for Scripts, Documents and Assets. In the Asset section, the study area 

boundary shapefile and cotton shapefile extracted in earlier phase of this thesis needs to be 

uploaded. These Assets are related to the research study and can help to focus the data on 

study area and extract features of that region. Next there are documents or Docs where 

there are different methods and algorithms already available to help the users. Then in the 

Script section, new script must be created. This is where code needs to be written. The first 

step in Google Earth Engine Code Editor was to import the MOD13A1 product of Terra 

MODIS into the environment. Image Collection is a constructor in GEE where asset ID 

needs to be pasted to import required satellite data into the environment. The approach for 

this study was to import MOD13A1 data separately for all four districts of the study area 

to get some extra values of vegetation indices. The product was focused on specified 

districts by clipping and dates were also specified for required time. Once one district was 

done, the next district would be entered, and data would be clipped on that one. 



29 
 

 

Another crucial step was to write code for all the indices. As indices formulas were already 

known, the necessary bands had to be selected for each vegetative index function. All the 

indices’ values were calculated in GEE using the code provided in Appendix A (Indices 

Calculation).  Once all indices were calculated, the next step was to calculate the mean 

values of each month of the whole cotton cycle (Code given in Appendix A). This was 

mandatory so that different phenological parameters can be gathered to estimate how the 

cotton pattern changes on monthly basis, so pattern can be identified for estimation of yield 

instead of just the values. Just to make sure that all the formulas have been correctly 

implemented and issues that arise while writing code have been addressed properly, a 

recheck was advised using traditional methods. MOD13A1 data from LPDAAC was 

downloaded but only for just a few days amongst 14 years. The purpose of this activity 

was to confirm that the mean values calculated using the GEE code are in agreement with 

the mean values calculated using Raster Calculator values of ArcMap. This was not 

otherwise necessary, but the circumstances demanded this verification. The values came 

out to be synonymous. 

Once means were calculated and verified, an excel file was generated inside the code which 

contained all the mean values of eleven vegetation indices. Then that excel file was 

exported as CSV to Google Drive from where it was manually downloaded. Keeping the 

cotton cycle explained above, 8 months were picked for each year from 2008 until 2022. 

The starting month was April as it is the month for cotton seed plantation, and then the 

ending month was November was harvesting is done in this month. There were not just 

mean vegetation indices values of these 08 months in final excel file, but also three climate 

related factors explained above including maximum temperature, minimum temperature, 

and sum precipitation.  

After data was organized monthly, the next target was to average them over the years, 

because yield per hectare was available on a yearly basis. The annual average of all the 

eleven indices was taken separately for each year, starting from 2008 until 2022. Similarly, 

the annual average was taken for Maximum Temperature and Minimum Temperature. 

While in the case of Precipitation, sum of all monthly values was taken for each year. This 

is because temperature is a continuous variable that changes from day to night each day. 
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To get an accurate idea of temperature, there is need to average it over period to see its 

overall range. But in case of precipitation that is a discrete variable and happens over 

individual events throughout the time, it needs to be summed over that period. This helps 

to have a precise idea of how the climate has behaved in a region. 

3.5 Model Selection and Development 

After organizing all the data, the input data was ready to be fed into machine learning 

models to predict the cotton yield. There were 14 features (independent variables) and one 

dependent variable i.e., yield. Out of 14 independent variables, 11 were vegetation indices 

including DVI, RVI, NDVI, EVI, SAVI, OSAVI, RDVI, SARVI, TVI, WDRVI and 

STVI01 (Table 1); while the rest 03 were climate factors including maximum temperature, 

minimum temperature, and sum precipitation. All There were five models selected based 

on extensive literature review that have been used frequently for crop modelling. 

 

3.5.1 Automatic Linear Modelling 

Automatic Linear Modeling or ALM is a systematic model that includes variable selection, 

model fitting, and diagnostic checking to construct linear regression models. ALM is an 

expansion of stepwise regression, which picks variables iteratively based on their statistical 

significance, but with extra features that enhance the effectiveness of the resulting model. 

All predictor variables are first included in the model by the ALM algorithm, and then 

those that have a small impact on the prediction of the response variable are gradually 

removed. This is accomplished by utilizing hypothesis testing. It is especially helpful when 

there are a lot of factors to consider and the relationship between the predictors and the 

response variable is complex. (Panneerselvam et al., 2021) 

 

3.5.2 Generalized Linear Model 

Generalized Linear Model or GLMs performs the statistical modelling of relationships 

between a response variable and one or more predictor variables. By relaxing the constraint 

of constant variance and allowing the response variable to have a non-normal distribution, 
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the GLM generalizes the conventional linear regression model. A link function, which 

converts the predicted value of the response variable to a linear combination of the 

predictor variables, is used in a GLM to express the relationship between the response 

variable and the predictor variables. The relationship between the mean value of the 

response variable and the predictor factors can be modelled using the link function. This 

makes GLMs approach and applications different from those of ALM even though both 

are used for linear regression analysis. (Faramiñan, 2022) 

 

3.5.3 Random Forest 

Random Forest or RF is another machine learning which comprises of several decision 

trees that use random subsets of data to train these trees, hence the name. These decision 

trees then come together to create an output that is most accurate and robust amongst all. 

They are used for their accuracy and being less susceptible to overfitting. Like Linear 

Models, they can be used for regression as well as classification problems.( Paul et al., 

2018) and Charoen-Ung et al., 2018) have preferred the utility of Random Forest in crop 

modelling. 

 

3.5.4 Gradient Boosted Trees 

Gradient Boosted Trees or GBT are a refined and better version of Random Forest. They 

contain decision trees like RF but GBT functions by constructing a series of decision trees 

that are trained using the leftovers from the prior tree. Each subsequent tree in the sequence 

is created to fix the flaws of the preceding trees. GBTs are known for their accuracy and 

precision. However, they could need a lot of training data and may be computationally 

taxing (Krauss et al., 2017). 

 

3.5.5 Support Vector Machine 

Support Vector Machine or SVM is a machine learning model that operates by locating the 

hyperplane in the feature space that maximally separates the data points. The hyperplane 

https://ieeexplore.ieee.org/author/37085432879
https://ieeexplore.ieee.org/author/37086452382
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is selected so that the margin between the two groups of data points is maximized. SVM 

may be used with a number of kernel functions to handle various sorts of data and is quite 

effective at handling high-dimensional data. They can also be used for regression as well 

as classification problems. (Derek A. Pisner et al., 2020) & (Su Ying-xue et al., 2017). 

To develop Automatic Linear Model or ALM, a statistical software called IBM Statistical 

Package for the Social Sciences or SPSS was used. Through its graphical user interface, 

SPSS enables users to do different statistical analyses without having need to be familiar 

with any programming languages. Excel, CSV, and SQL databases are a few of the sources 

from which users can import data. Additionally, SPSS comes with a data editor that gives 

users the ability to work with data, clean it up, handle missing numbers, and change 

variables. The data visualization tools in SPSS include histograms, scatterplots, bar charts, 

and pie charts. The software also allows users to design their own graphs and charts. By 

using scripts and syntax commands, SPSS users can increase the software's functionality 

beyond its primary features. This can be very helpful for automating routine chores or 

running intricate analyses. 

GLM, RF, GBT and SVM were developed using an open-source platform for predictive 

analytics, machine learning, and data science called RapidMiner. This software presents 

numerous machine learning techniques, including decision trees, clustering, regression, 

neural networks, and deep learning, are offered by RapidMiner. A variety of tools for 

model evaluation and performance evaluation are also available. RapidMiner's visual 

interface, which enables users to construct data pipelines using drag-and-drop components, 

is one of its primary advantages. These components can be used for modelling and 

assessing prediction models as well as for several data preprocessing activities, including 

cleaning, filtering, and transforming data. 

 

3.6 Model Statistical Evaluation 

The performance of machine learning models for different applications is measured 

through many statistical methods available. This part of the study utilizes five frequently 

used machine learning models so to assess and validate the model's processing, three 
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evaluation metrices were used. The yields predicted by each model were compared with 

the actual yield recorded in input data to measure the number of errors in each. The Root 

Means Square Error (RMSE), Mean Absolute Error (MAE), and Mean Bias Error (MBE) 

were also used to assess the model's efficacy (Kahimba et al., 2009). Equation 1 was used 

for the approximation of the weighted error difference between the predicted and actual 

yield: 

𝑅𝑀𝑆𝐸 = √∑(𝑃𝑗−𝐴𝑗)
2

𝑛
   (1) 

where 𝐴𝑗 is the recorded yield, 𝑃𝑗  is the projected yield and n is the rows in data that was 

100 in this study. MAE measures the average absolute differentiation between the values 

of actual yield and predicted yield. Equation 2 was used for the computation of the 

weighted average of the absolute error: 

𝑀𝐴𝐸 =
∑|𝑃𝑗−𝐴𝑗|

𝑛
   (2) 

To evaluate the consistency of the error division and identify whether the model is under- 

or over-predicting, MBE was calculated. Positive or negative sign denote underprediction 

and overprediction, respectively. Positive and negative values are equally distributed when 

the value is zero. MBE was calculated utilizing Equation 3: 

𝑀𝐵𝐸 =
∑(𝑃𝑗−𝐴𝑗)

𝑛
  (3) 

3.7 Future cotton yield patterns 

3.7.1 Bias Correction and Downscaling 

After converting the collected data into CSV format, the next step was to remove the 

biasness in SSPs data using CMhyd tool. Climatic models are important instruments for 

understanding and predicting future climatic conditions, but their outputs are prone to 

biases that can impair the accuracy and dependability of their projections. To address this 

issue, bias correction approaches for adjusting climate model outputs using observable data 
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have been developed, minimizing systematic errors, and improving the depiction of current 

and future climate conditions. 

The CMhyd tool, which is created exclusively for hydrological variables such as 

precipitation and temperature, is one such bias correcting method. The CMhyd tool is a 

statistical downscaling strategy that uses a high-resolution collection of actual data to 

adjust for biases in climate model outputs. On a daily resolution, bias correction processes 

were employed to condense the variance amid observed and simulated climate variables, 

ensuring that models based on corrected simulated climate data reasonably match 

simulations based on observed climate data. Generally assuming stationarity, bias 

correction techniques used in climate science use the same methodology and 

parameterization for both present and future climate circumstances. Regarding their 

capacity to continue putting in strong work in the face of shifting circumstances in the 

future, there is some doubt. The statistical characteristics of climate data and the 

connections between climatic variables may change in the future, causing bias correction 

approaches to lose some of their efficiency even though they performed well during an 

evaluation period. In order to reduce the possible influence of future changes on the 

performance of these technologies, it is critical to test their performance under various 

future climatic scenarios, including extreme occurrences. 

1. To perform Bias correction and downscaling, an important step was to select which 

bias-correction method to employ as there are many options available on CMhyd 

including Linear scaling, Delta-change correction, power transformation, variance 

scaling and Distribution Mapping. The method used as Delta-change correction as it 

assumes that the changes in the model output between the historical period and the 

future period are consistent with the changes observed in the observations. The method 

works by first calculating the difference between the historical model output and the 

observed data for a given time period (the delta-change). This delta-change is then 

applied to the future model output to correct any biases. Additionally, it is a relatively 

simple and practical method to apply that takes into account variations in the mean 

and variability of the data, making it a robust method for correcting biases in climate 

model outputs. (Figure 5) 
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Figure 5: Selecting Bias Correction method on CMhyd 

 

2. Alongside, the SSPs data was split into Historical and Future datasets, 2015-

2022 and ten sets of future data i.e., 2023-30, 2031-38, 2039-46, 2047-54, 2055-

62, 2063-70, 2071-78, 2079-86, 2087-94, and 2095-99 respectively with an 

eight-year interval and then the datasets were converted into .txt format. 

3. Finally, the prepared data was input into the CMHyd as follows: 

i. Observed data into Observed climate input section. 

ii. Under Climate Model section, choose Historical data into historical data tab 

and, 

iii. Each Future dataset one after another into future data tab. 

4. Output data directory was then chosen to get the bias corrected data. 

5. The output included corrected data and several Graphs in Figure 6 that showed 

different aspects of Temperature and precipitation under both scenarios of 

CMIP6 bias correction.  

i. Mean Monthly Precipitation: This graph shows the average amount of 

variable (i.e., Temperature and precipitation) that falls in each month of 
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the year in the respective scenario. This information can be useful for 

understanding seasonal patterns of precipitation. 

ii.  Monthly Standard Deviation: This graph shows how much variation there 

is in variable from month to month in the respective scenario. A high 

standard deviation indicates that some months are much wetter or drier 

than others, while a low standard deviation indicates more consistent 

precipitation patterns. 

iii.  90th Percentile: This graph shows the amount of precipitation that exceeds 

the 90th percentile in the SSP285 scenario. This information can be useful 

for understanding extreme precipitation events. 

iv. Coefficient of Variation: This graph shows the ratio of the standard 

deviation to the mean precipitation in the SSP285 scenario. Bigger 

coefficient of variation indicates that there is a lot of variation in 

precipitation comparative to the mean, while a low coefficient of variation 

designates more consistent precipitation patterns. 

v. Wet Day Probability: This graph shows the probability of a day having 

precipitation in the SSP285 scenario. This information can be useful for 

understanding the frequency of precipitation events. 

vi. Precipitation Intensity: This graph shows the intensity of precipitation 

events in the SSP285 scenario. This information can be useful for 

understanding the severity of precipitation events. 

vii. All these steps were repeated for each future dataset under each SSP 

scenario for both variables Temperature and Precipitation.  
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Figure 6: Graphs showing different aspects of Temperature and Precipitation under both scenarios of 

CMIP6 bias correction. 

 

The bias corrected daily data was then combined into three files named Short, Mid 

and Long-term.  

1. Short-term projection: 2023-2040 (about 17 years) 

Short-term projection was focused on the near future, where the impact of 

climate change may not yet be fully realized. However, changes in weather 

patterns, water availability, and temperature can still affect crop yield.  

2. Mid-term projections: 2041-2060 (about 20 years) 

Mid-term projections could be focused on a period where the influence of 

climate variables on crop yield is expected to become more significant. This 

could be a period where adaptation measures are likely to be taken, and new 

technologies may be developed to cope with the changing climate. 

3. Long-term projections: 2061-2100 (about 39 years) 

Long-term projections could be focused on a period where the effect of climate 

change on crop yield is expected to be substantial, and adaptation measures may 

have reached their limits.   
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The data in these three files was then shrunk into Monthly resolution to be later used for 

predicting the future monthly values of vegetation indices that had relatively high 

correlation with cotton yield. 

 

3.7.2 Indices Prediction Model 

The next step was to make Models for highly correlating vegetation indices from Objective 

02 model prediction results, in order to get the future yield for all these three longs, mid, 

and short terms to later predict and analyze the impact of change in climatic factor on cotton 

yield under each SSP scenario. Those indices included NDVI, OSAVI, SARVI, STVI, and 

WDRVI. All the models were made on Google Collaboratory that is an online python code 

editing tool available freely for use by anyone.  

First, the past monthly Minimum temperature, Maximum temperature, Precipitation, and 

respective Indices data from 2015-2022 was loaded into the colab and then split into train 

and test dataset. Later, a function was made that consisted of various Machine learning 

models to determine which one performs best on the dataset provided and the data was then 

fed into that function. The models incorporated as options in the function included Linear 

Regression, Lasso, Ridge, ElasticNet, Decision Tree, Random Forest, gradient Boosting 

and SVM. The one that performed best for these Indices prediction was Random Forest 

with the least RMSE error and greatest Accuracy score for all the Indices.  

After Models were compared, the Optimized Parameters for the Random Forest were 

determined using GridSearchCV function and again model was trained and tested with the 

optimized parameters. Then the monthly three future data files were fed one after another 

into the trained model to predict future values for these Vegetation Indices. Once the future 

indices values were obtained on monthly basis, this indices data and the future SSPs 

climatic data was converted into even more general temporal resolution i.e., Yearly basis, 

so later can be used for future yield prediction.  
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 3.7.3 Future Yield Prediction Model 

To predict the future yield for the years 2023-2099, the past yearly data of years 2008-2022 

was considered for training the Prediction model. To achieve this, a linear regression model 

was built using advanced statistical methods, specifically the SPSS software. The model 

was developed using various climatic factors such as minimum and maximum temperature, 

precipitation, and Vegetation Indices such as NDVI, OSAVI, SARVI, STVI, and WDRVI. 

The first step in the process was to collect and preprocess the dataset, which involved 

removing missing values, duplicates, and outliers. Then, the dependent variable (cotton 

yield) and independent variables were defined, and the data created was divided into a 

training set and testing set. The Linear Regression tool in SPSS was used to build the 

model, and its performance was evaluated using metrics such as R-squared, adjusted R-

squared, Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). To visualize 

the variety in data values, a scatterplot was made using ZRESID on the y-axis and ZPRED 

on the x-axis. Table 3 shows the mean and standard deviation of data. Table 4 includes the 

suggested indices for the model. 

Table 3: Descriptive Statistics of Input Factors 
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Table 4: Variables used in model 

 

 

The developed model was then used to predict future cotton yield for the years 2023-2099 

based on the values of independent variables such as temperature, precipitation, and 

vegetation indices. The predicted values were validated against actual values to assess the 

accuracy of the model and make any necessary adjustments to improve its performance.  

The final step involved using the developed equation to forecast future cotton output based 

on the values of independent variables, and this information can be used to inform decision-

making in areas such as crop management, production planning, and risk assessment. 

Because the training data was small, advanced statistical methods such as SPSS software 

were utilized to build a linear regression model. The overall accuracy of the model was 

found to be moderate, exceeding 60%. However, to identify the most important factors 

influencing agricultural productivity, a Pearson correlation analysis was conducted. The 

results of the analysis revealed a significant correlation between cotton yield and maximum 

temperature. This features the effectiveness of studying maximum temperature as a key 

variable when developing climate change mitigation and adaptation strategies for the 

cotton sector. Figure 7 summarizes this whole methodology into a flowchart starting from 

the left and heading towards right after the achieving result from each dataset included. 
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Figure 7: Methodology Flowchart 
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CHAPTER 4 

RESULT & DISCUSSION 

4.1 Cotton Covered Area 

4.1.1 Python Results 

The accuracy of the classified image with python programming language was found to be 

unsatisfactory when assessed with user-producer accuracy assessment. As result, most of 

additional features were misclassified as cotton crops. The overall accuracy of the study, 

as measured by user-producer accuracy assessment was below 50 percent and kappa 

coefficient were around 40 percent. Hence, that is an unacceptable percentage for accuracy. 

Additionally, attempts to assign a specific coordinate system to the classified image using 

python libraries were unsuccessful. Assigning a coordinate system to an image is critical 

for many applications, including Geographic Information Systems (GIS) and Remote 

Sensing and leads to help in interpretation and analysis within spatial context. 

Moreover, in order to read, process and analyze an image in python it is necessary to 

download satellite imagery from a source which can be time-consuming and require strong 

internet connection. Python is unable to load imagery covering a large area and requires 

reducing imagery scale and extent (Figure 8). 

In comparison with the python approach which involved analyzing a single sentinel image, 

follow by Normalized Vegetation Index (NDVI) calculation and then range determination, 

the image classified with the google earth engine (GEE) which involved only Normalized 

Vegetation index (NDVI) range cotton crops identification appeared to be more accurate. 

However, a user-producer accuracy assessment was conducted to validate the result against 

ground truth and a shapefile provided by Global Change Impact Studies Center (GCISC). 

The assessment revealed an overall accuracy below 60 percent, indicating that the 

classification result was not adequate for the intended purpose. 
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Figure 8: Result of Python approach to extract cotton mask 

 

4.1.2 Google Earth Engine Results 

A. In consideration of the accuracy of the previous method, a new approach was devised. 

Initially, satellite imagery from different dates throughout a particular year were collected. 

Subsequently, the imagery was mosaicked and clipped to the area of interest shapefile to 

obtain the final imagery of the intended location. Cotton crop fields were digitized 

manually in Google Earth Pro as polygons using a reference shapefile and visual 

observation. Using ArcGIS, a new shapefile of digitized cotton crop fields was created. 

The final image was then clipped to the cotton crop fields in Google Earth Engine, and five 

vegetation indices (insert names) were computed. Subsequently, the ranges for each index 

were determined for cotton crops. Example index of NDVI is shown in Figure 9. 
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Figure 9: Classified Image 

User producer accuracy was employed to evaluate the correctness of this study’s 

classification results. We found that the overall accuracy of our classification was 87%, 

with a Kappa coefficient of 83.7%. These outcomes show that the given methodology is 

helpful in mapping cotton crops using Sentinel 2A imagery and five vegetation indices. 

(Figure 10) 

To validate our results, we compared them to a reference cotton shapefile that was created 

based on field survey. The reference shapefile had an accuracy of over 95%, which is 

considered to be highly accurate. Our results showed satisfactory agreement with the 

reference shapefile, indicating that our approach is reliable and robust. 
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Figure 10: Cotton mask extraction process using GEE 

 

4.2 Yield Prediction Model Results 

4.2.1 Automatic Linear Modelling 

Automatic Linear Model was developed with the objective of enhancing the accuracy of 

the model by using boosting techniques, instead of just using a standardized model. 

Forward stepwise was chosen as model method. The results given in Figure 11 depict the 

scatter plot between the predicted yield by the model on Y-axis versus the actual yield 

recorded on X-axis.  
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Figure 11: Scatter Plot of ALM Yield Prediction Result 

 

Table 5 shows the importance of different independent variables to predict yield using bar 

plot. It shows that the model gave most importance to maximum temperature, followed by 

precipitation, then SARVI and OSAVI. Also, it gave the least importance to the minimum 

temperature. Since cotton yield in this region is mostly impacted by maximum 

temperatures so this observation is valid. 

Table 5: ALM Weights Assigned to Independent Variables 

 

 

4.2.2 Generalized Linear Model 

The results of Generalized Linear Production Model are given in Figure 12 which depicts 

the scatter plot between the predicted yield by the model on Y-axis versus the actual yield 

recorded on X-axis. The points are more confined than the ALM model as can be seen.  
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Figure 12: Scatter Plot of GLM Yield Prediction Result 

 

Table 6 shows that the model gave most importance to NDVI, STVI and WDRVI. While 

this GLM did not give importance to any other parameter. The most logical explanation 

leads to the fact that GLM does not consider non-linear relationship between the input 

variables and outcome. 

Table 6: GLM Weights Assigned to Independent Variables 
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4.2.3 Random Forest 

The results of Random Forest Model are given in Figure 13 which depicts the scatter plot 

between the predicted yield by the model on Y-axis versus the actual yield recorded on X-

axis.  

 

Figure 13: Scatter Plot of RF Yield Prediction Result 

 

Table 7 shows the importance of different independent variables to predict yield using bar 

plot. It shows that the model gave most importance to maximum temperature, STVI and 

then minimum temperature, followed by vegetation indices like WDRVI and OSAVI. The 

minimum temperature could have popped up due to complex computation of random forest 

instead of simple decision trees. 
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Table 7: RF Weights Assigned to Independent Variables 

 

 

4.2.4 Gradient Boosted Trees 

The results of GBT Model are given in Figure 14 which illustrates the scatter plot between 

the predicted yield by the model on Y-axis versus the actual yield recorded on X-axis. The 

results of Gradient Boosted Trees are more scattered than the three models presented 

before, including ALM, GLM and RF.   

Table 08 shows the importance of different independent variables to predict yield using bar 

plot. It shows that the model gave most importance to WDRVI, followed by minimum 

temperature, STVI and then maximum temperature. This gives reasoning to the hypothesis 

made earlier that the minimum temperature has popped up above others due to even more 

complex computation of gradient boosted trees instead of simple decision trees. This means 

that the feature importance given by each model to the input parameters can be seen 

changing with each model. The most related output features would come from the model 

that shows better results.  



50 
 

 

 

Figure 14: Scatter Plot of GBT Yield Prediction Result 

 

Table 8: GBT Weights Assigned to Independent Variables 

 

 

4.2.5 Support Vector Machine 

The results of Support Vector Machine prediction model are given in Figure 15 which 

depicts the scatter plot between the predicted yield by the model on Y-axis versus the actual 

yield recorded on X-axis. The points are more confined in this chart apparently than others. 
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Figure 15: Scatter Plot of SVM Yield Prediction Result 

 

Table 9 shows the importance of different independent variables to predict yield using bar 

plot. It shows that the model gave most importance to WDRVI and STVI and followed by 

maximum temperature and minimum temperature. The precipitation has been put down as 

the study region is irrigated one. 

Table 9: SVM Weights Assigned to Independent Variables 
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The bar graph shown in Table 10 displays the weights assigned to the input variables as 

per their correlation with the yield. Maximum temperature was given highest weight as 

cotton yield needs on optimum temperature for its growth over which the flower starts to 

suffer. OSAVI, STVI and NDVI followed the maximum temperature in their correlation 

with yield. Precipitation can be seen at the lower end as the study area in this research is 

an irrigated region which does not depend much on rainwater for its crops. 

Table 10: Weights Assigned per Correlation of Independent Variables with Yield 

 

 

From above scattered plots, there can be seen that the points are highly clustered together 

near the line in case of Support Vector Machine model, while they are a little less clustered 

in case of Generalized Linear Model. Automatic Linear Model results follow the GLM in 

this perspective while in case of Random Forest and Gradient Boosted Trees results, points 

are loosely packed. 

The graph in Figure 16 shows the comparison between results of Automatic Linear Model, 

Generalized Linear Model, Random Forest model, Support Vector Machine and Gradient 
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Boosted Trees. It can be observed from the graph that SVM performed much better than 

all the other models this study experimented with. It has an RMSE of 28.34, with MAE of 

22.70 and MBE of just -2.59. It shows it has the least variation from the actual cotton yield 

values. GLM comes second in this evaluation as it has an RMSE of 29.10, MAE of 23.76 

and MBE of -10.0. These values further corroborate the fitness of SVM model with 

provided features in the given area. Subsequently, ALM undermines the yield prediction 

by -22.31, GBT by -24.60 and RF does it by -38.73. This shows that those models 

performed better which do not require huge amounts of features and number of samples.  

 

 

Figure 16:RMSE, MAE and MBE results of ALM, GLM, RF, GBT and SVM 

 

4.3 Future yield estimation using climatic projections and crop yield 

patterns. 

The descriptive statistic of the model shows that the Mean yield was around 305 units while 

Maximum Temperature was around 42 degrees Celsius. While taking yield as a dependent 

variable and various climatic factors and vegetation indices as independent variable to 
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make predictions, the resulting trained model had an R square error of 0.266 and R value 

of 0.516 which demonstrates that the climatic and vegetation variables used in the model 

explain only 51% of the variation in cotton yield (Table 11). This suggests that there can 

be other factors as well that might be impacting cotton output that are outside the purview 

of this model, and more research can be done to better predict the crop's productivity. The 

correlation table emphasized the positive and significant correlation between Yield and 

Maximum Temperature with unstandardized B value of 18.830. Whereas it showed a 

significant negative correlation of Yield with Precipitation with a standardized coefficients 

Beta value of -0.182 and a t value of -1.054.  

Meanwhile, the ANOVA in Table 12 showed an alpha value or p-value less than 0.05 

which indicates that the results obtained from the analysis are significant and trustworthy, 

and that the model is valuable in explaining the variation in the dependent variable 

supported by F (7,92) = 47.64 and p = 0.000. Table 13 shows beta statistics and t-values 

that shows the weights assigned to predictor variables and significance of coefficients 

respectively. Furthermore, the mean of residuals is 0.00 in Table 14, indicating that the 

linear regression model's predicted values are, on average, very close to the actual values. 

A mean residual of 0 shows that the model is unbiased, with errors distributed at random 

around zero. This checks that the model fits the data well and accurately captures the link 

between the dependent variable (yield) and the model's independent variables (climatic 

conditions and vegetation indices).  

The frequency vs regression standardized residual plot also displays a normal distribution, 

indicating that the residuals are normally distributed, and that the linear regression model 

fits the data well.  Figures 17, 18 and 19 demonstrate that the regression model's errors are 

random and not biased towards any certain value or direction. It also implies that the model 

has caught the underlying patterns in the data, and that any remaining variability is due to 

random fluctuations that the model cannot predict. This fact is supported by the scatter plot 

between regression standardized residual vs regression standardized predicted values, if 

this were to be following some pattern it would have mean that the results are biased and 

not well distributed. 
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Table 11: Model Summary 

 

 

 

 

Table 12: Regression and Residual values for ANOVA analysis 

 

 

Table 13: Coefficients analysis of all factors 
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Table 14: Residual Statistics of input data 

 

 

 

Figure 17:Graph between Regression Standardized Residual and Frequency 
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Figure 18: Scatterplot between Observed vs Expected Cumulative Probability  

 

 

Figure 19: Scatterplot between Regression Standardized Predicted & Residuals 
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Getting the results from yield prediction model, the yield for Short, Mid, and Long-term 

periods was plotted under two distinct climatic scenarios, SSP2 4.5 and SSP5 8.5. The 

graphs revealed interesting ups and downs for both scenarios. It was observed that the yield 

was higher under SSP2 4.5 in the Short and Mid-term periods in Figure 20 and 21 

respectively, which is the setting where Greenhouse Gas productions peak around mid-

century and then fall steadily. This scenario results in a 2.4°C addition in global 

temperature by the last of the century. Conversely, the trends for the SSP5 8.5 yield line 

were relatively lower, which envisions a society resulting in a 4.8°C surge in global 

temperature by the end of the century, with severe and potentially disastrous repercussions 

for the world and its population. 

However, the Long-term graph in Figure 22 showed the opposite trend, with the yield being 

higher under SSP5 8.5. For all three time periods, the general graph showed a wavy trend, 

with an increase in yield observed in specific years for both scenarios. For example, the 

yield showed an increasing trend in the years 2028, 2032, 2034, 2036, 2047, 2049, 2053, 

2057, 2060, 2069, 2077, and 2087, under both scenarios. However, there were also 

instances where the curve increased for SSP2 4.5 while decreasing for SSP5 8.5, such as 

in the years 2028, 2039, 2045, 2054, 2063, and 2095. Moreover, extreme peaks were 

observed in the years 2035, 2047, 2053, and 2077. 

These results emphasize the importance of contemplating the effects of different climatic 

scenarios on crop yield, as the yield varies significantly depending on the climatic 

conditions. The findings suggest that reducing greenhouse gas emissions could lead to 

higher yields in the Short and Mid-term periods, while in the Long-term, the impact could 

be different. 
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Figure 20: Short Term predicted yield 

 

 

Figure 21: Mid Term predicted yield 
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Figure 22: Long Term predicted yield 
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Chapter 5 

CONCLUSION & RECOMMENDATION  

5.1 Conclusions 

In conclusion, the study demonstrates the practicality of satellite imageries for cotton crops 

mapping. The use of Sentinel 2A imagery and five vegetation indices ranges enables the 

mapping of cotton crops with a high degree of accuracy. The approach can be extended to 

other crops and regions, providing valuable information for agricultural management and 

decision-making. In addition to crops mapping, the study emphasizes the adaptability and 

usefulness of Remote Sensing technologies in agriculture. This can solve the problem of 

accurate and reliable data for crop mapping at lower costs. 

The second part of study explains a descriptive approach of integrating Geographic 

Information System with Remote Sensing and Machine Learning to predict the crop yield. 

Different machine learning models were applied to the eleven vegetation indices and 

climate factors including temperature and precipitation to model crop yield. RMSE, MSE 

and MAE were used to prove that SVM showed the best results for the study area in given 

data, followed by GLM and then ALM. The study results can be improved by the addition 

of more features like soil data, additional climate data and other related variables. Farmers 

and agricultural managers may improve crop yields, cut expenses, and make well-informed 

decisions regarding sustainable agricultural practices by harnessing GIS integration in 

agriculture. 

The yield prediction model displayed interesting ups and downs under various climatic 

scenarios, emphasizing the importance of taking climate change into account when 

predicting crop yield. These findings underline the significance of considering the 

influence of different climatic scenarios on crop yield, as the yield varies significantly 

depending on the climatic conditions. The findings suggest that reducing greenhouse gas 

emissions could lead to higher yields in the Short and Mid-term periods, while in the Long-
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term, the impact could be different. This calls for suggestive adaptation strategies 

customized as per results of this and related studies. 

5.2 Recommendations 

Implementing the usage of cotton masks based on the Vegetation Index (VI), particularly 

during the critical month of September, is advised in order to optimize crop management 

and increase efficiency within the cotton business. This method can enable farmers to spot 

the locations where their cotton crops are growing poorly and then take the necessary 

corrective action. Farmers can improve their decision-making skills and produce better 

crops by using this proactive method. 

Machine learning techniques, such as Support Vector Machines (SVM), can help improve 

the accuracy of cotton yield projections. These models can consider a variety of elements, 

including weather conditions, historical yield data, and vegetation indices. SVM models 

can provide more precise estimations of cotton yield by considering these various variables. 

Using advanced machine learning techniques allows farmers to anticipate probable output 

variations and adapt quickly, improving profitability and sustainability in the cotton 

business. 

Given the expected effects of climate change on cotton productivity, policymakers and 

farmers must investigate alternate planting patterns that are more resilient to shifting 

climatic circumstances. It is advised to explore and promote the production of crops that 

demand less water and are temperature tolerant. The negative effects of climate change on 

cotton production can be reduced by diversifying crop choices and prioritizing resilient 

alternatives. Furthermore, this deliberate shift towards more sustainable cropping patterns 

benefits to agriculture's overall resilience and lifespan in Pakistan.   
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APPENDIX A 

Sentinel 2A Data acquisition and mosaicking using GEE 

 

var S1 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point1) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var S2 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point2) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var S3 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point3) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var S4 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point4) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var S5 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point5) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var S6 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point6) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

       

var S7 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point7) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

       

var S8 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point8) 

      .filterDate('2017-09-15', '2017-09-30') 
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      .sort('CLOUD_COVER') 

      .first(); 

       

var S9 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point9) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

       

var S10 =ee.ImageCollection("COPERNICUS/S2_HARMONIZED") 

      .filterBounds(point10) 

      .filterDate('2017-09-15', '2017-09-30') 

      .sort('CLOUD_COVER') 

      .first(); 

var mosaic = ee.ImageCollection.fromImages([S1, S2, S3, S4, S5, S6, S7, S8, 

S9, S10]).mosaic(); 

var FinalImage = mosaic.clip(AOI); 

 

 

Google Earth Engine platform 

 

 

// Loading Reference Cotton Fields (CRS data) 

var cottonRef = ee.Table("projects/ee-FYP/assets/Cotton"); 

// Specify the style for the shapefile 

var style = { 

  color: 'red', 

  width: 2, 

  opacity: 0.5 

}; 

// Add the shapefile to the map 

Map.addLayer(CottonRef, style, 'cotton'); 

 

Approach A:  

 

// ---------------- Calculate NDVI --------------------------- 

function getNDVI(image) { 

  var evi = image.expression( '((NIR - RED) / (NIR + RED))',  

    {'NIR': image.select('B8'),  

    'RED': image.select('B4') 

    } 

  ); 
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  return evi.divide(2.5); 

} 

var ndvi = getNDVI(FinalImage).rename('NDVI'); 

 

// Add the NDVI layer to the map 

Map.addLayer(ndvi, {min: -1, max: 1, palette: ['blue', 'black', 'green']}, 'NDVI'); 

 

// NDVI range calculation 

var maxNDVI = ndvi.reduceRegion({ 

  reducer: ee.Reducer.max(), 

  geometry: cottonRef, 

  scale: 250, 

}); 

var minNDVI = ndvi.reduceRegion({ 

  reducer: ee.Reducer.min(), 

  geometry: cottonRef, 

  scale: 250, 

}); 

print("Max NDVI: ", maxNDVI.get("ndvi")); 

print("Min NDVI: ", minNDVI.get("ndvi")); 

 

// ---------------------------- MASK --------------------------- 

// Set the min and max values for the NDVI range 

var minNDVI =  0.421478; 

var maxNDVI =  0.51763; 

// Create a binary mask where pixels within the specified range are set to 1 and all other 

pixels are set to 0 

var mask = ndvi.gte(minNDVI).and(ndvi.lte(maxNDVI)); 

// Create a new image with the mask applied 

var classifiedImage = ndvi.updateMask(mask).unmask().where(mask, 1).where(mask.not(), 

0).rename('Classified Image'); 

var studyAreaCottonMask = classifiedImage.clip(AOI); 

// Add the classified image to the map 

Map.addLayer(studyAreaCottonMask , {min: 0, max: 1, palette: ['black', 'yellow']}, 

'Classified Image'); 

 

 

 

Approach B:  

 

var FinalImage = image.clip(CottonRef); 
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//------------------- Indices calculation Functions ------------------- 

// DVI 

function getDVI(FinalImage) { 

  return  FinalImage.expression('(NIR/10000)-(RED/10000)',  

      {'NIR': FinalImage.select('B8'),  

      'RED': FinalImage.select('B4') 

      }); 

} 

// NDVI 

function getNDVI(image) { 

  var evi = image.expression( '((NIR - RED) / (NIR + RED))',  

    {'NIR': image.select('B8'),  

    'RED': image.select('B4') 

    } 

  ); 

  return evi.divide(2.5); 

} 

// EVI 

function getEVI(image) { 

  var evi = image.expression( '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',  

    {'NIR': image.select('B8'),  

    'RED': image.select('B4'),  

    'BLUE': image.select('B2') 

    } 

  ); 

  return evi.divide(2.5); 

} 

// WDRVI 

function getWDRVI(image) { 

  return image.expression( '(0.1 * NIR - RED) / (0.1 * NIR + RED)',  

    {'NIR': image.select('B8'),  

    'RED': image.select('B4') 

    } 

  ); 

} 

// SAVI 

function getSAVI(image) { 

  return image.expression('1.5 * (NIR - RED) / (NIR + RED + 0.5)',  

    {'NIR': image.select('B8'),  

    'RED': image.select('B4') 

    } 

  ); 
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} 

 

//---------------- Indices Ranges Determination ------------- 

var dvi = getDVI(FinalImage).rename('DVI'); 

Map.addLayer(dvi, {min:-1, max:1, palette: ['blue', 'orange', 'green']}, 'DVI'); 

var savi = getSAVI(FinalImage).rename('savi'); 

Map.addLayer(savi, {min:-1, max:1, palette: ['blue', 'purple', 'green']}, 'savi'); 

…….  Repeat for all indices …… 

 

var aoi = cotton; 

var maxNDVI = dvi.reduceRegion({ 

  reducer: ee.Reducer.max(), 

  geometry: aoi, 

  scale: 250, 

}); 

var minNDVI = dvi.reduceRegion({ 

  reducer: ee.Reducer.min(), 

  geometry: aoi, 

  scale: 250, 

}); 

…….  Repeat for all indices …… 

 

print("Max DVI: ", maxDVI.get("dvi")); 

print("Min DVI: ", minDVI.get("dvi")); 

print("Max NDVI: ", maxNDVI.get("dvi")); 

print("Min NDVI: ", minNDVI.get("dvi")); 

print("Max EVI: ", maxEVI.get("EVI")); 

print("Min EVI: ", minEVI.get("EVI")); 

print("Max WDRVI: ", maxWDRVI.get("wdvi")); 

print("Min WDRVI: ", minWDRVI.get("wdrvi")); 

print("Max SAVI: ", maxSAVI.get("savi")); 

print("Min SAVI: ", minSAVI.get("savi")); 

 

// Extracted Range values of each Indice for cotton crops 

var dviMin = -0.139139; 

var dviMax = 0.180406; 

var ndviMin = 0.421478; 

var ndviMax = 0.51763; 

var wdviMin = 0.065255; 

var wdviMax = 0.212198; 

var saviMin = 0.321439; 

var saviMax = 0.492743; 
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var eviMin = -0.240071; 

var eviMax = 0.150266; 

 

// Define a function to create a mask for cotton crops based on the vegetation indices 

function createCottonMask(image) { 

  var ndvi = image.select('NDVI'); 

  var dvi = image.select('DVI'); 

  var wdvi = image.select('WDRVI'); 

  var savi = image.select('SAVI'); 

  var evi = image.select('EVI'); 

  // Create a mask for each index based on the cotton crop range 

  var ndviMask = ndvi.gte(ndviMin).and(ndvi.lte(ndviMax)); 

  var dviMask = dvi.gte(dviMin).and(dvi.lte(dviMax)); 

  var wdviMask = wdvi.gte(wdviMin).and(wdvi.lte(wdviMax)); 

  var saviMask = savi.gte(saviMin).and(savi.lte(saviMax)); 

  var eviMask = evi.gte(eviMin).and(evi.lte(eviMax)); 

  // Combine the masks for all indices using the "and" operator 

  var combinedMask = 

ndviMask.and(dviMask).and(wdviMask).and(saviMask).and(eviMask); 

  // Return the final mask as a binary image 

  return combinedMask; 

} 

// Apply the mask to an image and clip it to the region of interest 

var maskedImage = image.updateMask(createCottonMask(image)).clip(regionOfInterest); 

// Add the masked image to the map 

Map.addLayer(maskedImage, {min: 0, max: 1, palette: ['black', 'white']}, 

'Cotton Masked Image'); 

 

// ---------------- Exporting Cotton Mask ---------------- 

// Set the parameters for the export 

var exportParams = { 

  image: studyAreaCottonMask, 

  description: 'Classified Image', 

  scale: 30, 

  fileFormat: 'GeoTIFF', 

  maxPixels: 1e13 

}; 

// Export the MASK to Google Drive 

Export.image.toDrive(exportParams); 

 

MODIS Imagery acquisition and mosaicking 
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// Define function to get start and end dates from user 

function getDates() { 

  // Display dialog to get start and end dates 

  var start = prompt('Enter start date (YYYY-MM-DD)'); 

  var end = prompt('Enter end date (YYYY-MM-DD)'); 

 

  // Check if both dates were entered 

  if (start && end) { 

    // Return start and end dates as an object 

    return { 

      start: ee.Date(start), 

      end: ee.Date(end) 

    }; 

  } else { 

    // Return null if either date is missing 

    return null; 

  } 

} 

// Example usage 

var selectedDates = getDates(); 

if (selectedDates) { 

  print(selectedDates.start); 

  print(selectedDates.end); 

} else { 

  print('Please enter both start and end dates.'); 

} 

var modis =ee.ImageCollection('MODIS/061/MOD13A1') 

      .filterBounds(first) 

      .filterDate(selectedDates.start, selectedDates.end) 

      .sort('CLOUD_COVER') 

      .first(); 

 

// ---------------- Clip function ---------------- 

var image_1 = modis.clip(first); 

var image_2 = modis.clip(scnd); 

var image_3 = modis.clip(thrd); 

var image_4 = modis.clip(frth); 

var image_5 = modis.clip(fifth); 

var image_6 = modis.clip(sixth); 

var image_7 = modis.clip(svnth); 

var image_8 = modis.clip(E_1_8); 

var image_8_1 = modis.clip(E_2_8); 

var image_9 = modis.clip(ninth); 
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// ---------------- Mosaicking function ---------------- 

var Rajanpor = ee.ImageCollection.fromImages([image_1, image_2, image_3]).mosaic(); 

var DGkhan = image_4; 

var Muzzafragh = ee.ImageCollection.fromImages([image_5, image_6, image_7,image_8, 

image_8_1]).mosaic(); 

var Layyah = image_9; 

 

// ---------------- Function to get name based on input ---------------- 

function getName() { 

  var input = parseInt(prompt("Enter 1 for Rajanpor, 2 for DGKhan, 3 for Muzzafragh and 4 

for Layyah:")); 

  if (input === 1) { 

    return Rajanpor; 

  } else if (input === 2) { 

    return DGkhan; 

  } else if (input === 3) { 

    return Muzzafragh; 

  } else if (input === 4) { 

    return Layyah; 

  } else { 

    return 'Invalid input. Please enter a number between 1 and 4.'; 

  } 

} 

 

// Example usage 

var image = getName(); // Get name based on user input 

Map.centerObject(first, 8); 

var visParams = {min: -0.2, max: 0.8, palette: ['red', 'yellow', 'green']}; 

 

Indices Calculation: 

 

//----------------Compute NDVI---------------- 

var ndvi_1 = image.normalizedDifference(['B8', 'B4']); 

var ndvi = ndvi_1.rename('NDVI'); 

Map.addLayer(ndvi, visParams, 'NDVI'); 

 

// ----------------Compute STVI01---------------- 

function getSTVI01(image) { 

  return image.expression( '(MIR*RED) / NIR',  

    {'NIR': image.select('sur_refl_b02'),  

    'RED': image.select('sur_refl_b01'), 

    'MIR': image.select('sur_refl_b07') 
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    } 

  ); 

} 

…….  Repeat for all indices …… 

 

var MeansOfNDVI = ndvi.reduceRegions({ 

  collection: AOI, 

  reducer: ee.Reducer.median(), 

  scale: 250, 

}); 

print("NDVI") 

print(ee.Feature(MeansOfNDVI.first())) 

var MeansOfSTVI01 = stvio1.reduceRegions({ 

  collection: AOI, 

  reducer: ee.Reducer.median(), 

  scale: 250, 

}); 

print("STVI01") 

print(ee.Feature(MeansOfSTVI01.first())) 

…….  Repeat for all indices …… 

 

// ----------------Create a table with the mean values---------------- 

var table = ee.FeatureCollection([ 

  ee.Feature(null, {'index': 'DVI', 'median': 

MeansOfDVI.reduceColumns(ee.Reducer.median(), ['median']).get('median')}), 

  ee.Feature(null, {'index': 'RVI', 'median':  

ee.Feature(null, {'index': 'STVI01', 'median': 

MeansOfSTVI01.reduceColumns(ee.Reducer.median(), ['median']).get('median')}) 

]); 

…….  Repeat for all indices …… 

 

// Print the table to the console 

print(table); 

 

// Export the table to Google Drive as a CSV file 

Export.table.toDrive({ 

  collection: table, 

  description: 'index_medians', 

  fileFormat: 'CSV' 

}); 
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