
Department of Computer and Software Engineering

College of Electrical and Mechanical Engineering

National University of Science and Technology (NUST)

Islamabad, Pakistan

September 2022

Establishing test-to-code traceability links

using dynamic and static techniques for C#

Applications

By

Mudassar Saleem

00000273951

Supervisor

Dr. Wasi Haider Butt

Department of Computer and Software Engineering

College of Electrical and Mechanical Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

September 2022

Establishing test-to-code traceability links

using dynamic and static techniques for C#

Applications

By

Mudassar Saleem

00000273951

Supervisor

Dr. Wasi Haider Butt

A thesis submitted in conformity with the

requirements for the degree of Master of Science in

Software Engineering

I

Declaration

I, Mudassar Saleem declare that this thesis titled “Establishing test-to-

code traceability links using dynamic and static techniques for C#

Applications” and the work presented in it are my own and has been

generated by me as result of my own original research.

Mudassar Saleem

00000273951

II

Plagiarism Report

This thesis report has been checked for plagiarism. The Turnitin report is

also attached, and approved by the supervisor.

Mudassar Saleem

00000273951

Signature of Supervisor

III

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author and lodged in the Library of NUST College

of EME. Details may be obtained by the Librarian. This page must form part

of any such copies made. Further copies (by any process) may not be made

without the permission (in writing) of the author.

• The ownership of any intellectual property rights which may be described in

this thesis is vested in NUST College of EME., subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of CEME, which will prescribe the

terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and

exploitation may take place is available from the Library of NUST College of

EME, Islamabad.

IV

Abstract

With the fast-paced development such as DevOps and other agile development

methodologies, the code is rapidly changing with the incoming requirements and it

is really hard to maintain the quality of a software. Unit tests are the first step that a

developer takes to ensure everything is according to the requirements. Tracing

which test case is associated to a code artifact (method or class), is a hard task if

done manually. A traceability link is a way to maintain and trace the links between

different software artifacts. Test-to-code traceability links help a developer to keep

track of the test cases that are related to a specific piece of code. These links restrict

a developer to remain consistent with the existing architecture when a change is

made to the code. These links also reduce the risk of missed or unseen faults in the

code. But most of times, the development processes do not adopt this approach due

to the extra burden it puts on the developer. Manually creating these traceability

links is a hectic routine for the developer and maintaining these links is another big

ask. Also, doing all of these manually makes it prone to the errors. In this research, I

am introducing an approach and a tool to automatically develop the test-to-code

traceability links using static and dynamic approaches for the C# applications

(Libraries, ASP.NET Core application). There are many tools built for the JAVA

application, but there’s not much work done for the C# applications solely. C#

language has been around for many years. It is constantly gaining popularity over

the time and many large-scale applications are being developed on it. Especially

with the introduction .NET Core (which is an open-source and platform-independent

framework), it is getting better and better with respect to performance, and more

developers are inclined to it. This tool will help these developers in creating these

traceability links.

Keywords: Traceability, Software testing, Unit testing, Software development,

Software engineering

V

Acknowledgment

All praise to Allah (the omnipotent and the omnipresent) who has bestowed me with

ardor, courage, and patience with which I have completed another phase of my

academic journey.

I would like to dedicate this thesis to my beloved younger sister who holds a special

place in my heart. I would also dedicate this thesis to my parents, teachers, siblings,

and students, who were continuous source of motivation in my tough times. They

always encouraged me to continue higher studies and fully supported me to full fill

my dream degree. My parents played a pivotal role in my MS degree by providing

moral and financial support.

Most importantly, I want to pay special gratitude to my supervisor “Dr. Wasi Haider

Butt” without whom I would not have been able to take this task to fruition. He

enlightens my path with continuous support and made me competent during the

whole duration of research.

Finally, I am thankful to “Dr. Arsalan Shaukat”, “Dr. Ali Hassan” and all my friends

who assisted me in this thesis and throughout the whole research process.

VI

Table of Contents

Declaration ... 1

Plagiarism Report ... 2

Copyright Notice .. 3

Abstract .. 4

Acknowledgment ... 5

Table of Contents ... 6

Table of Figures ... 8

Table of Tables ... 9

INTRODUCTION .. 10

1.1. Motivation .. 12

1.2. Problem Statement ... 12

1.3. Aims and Objectives .. 12

1.3.1. Literature Review Objectives .. 13

1.3.2. Tool Objectives ... 13

1.4. Structure of Thesis ... 13

LITERATURE REVIEW ... 14

2.1. Overview .. 14

2.2. Traceability Approaches .. 15

2.2.1. Naming Convention (NC) ... 15

2.2.2. Naming Convention Contains (NCC) ... 15

2.2.3. Lexical Analysis (LA) ... 16

2.2.4. Longest Common Subsequence (LCS) ... 16

2.2.5. Levenshtein Distance .. 16

2.2.6. Static Call Graph (SCG) .. 16

2.2.7. Last Call Before Assert (LCBA) ... 17

2.2.8. Tarantula.. 17

2.2.9. Term Frequency – Inverse Document Frequency (TF-IDF) 17

2.2.10. Call Depth Analysis .. 18

VII

2.3. Related Work.. 18

2.4. Discussion .. 21

METHODOLOGY ... 23

3.1. Approach .. 23

3.2. Techniques ... 24

3.2.1. Dynamic Techniques ... 24

3.2.2. Static Techniques .. 27

3.2.3. Score Scaling ... 28

3.3. Link Prediction ... 30

3.3.1. Prediction at Method Level ... 30

3.3.2. Prediction at Class Level ... 30

3.4. Implementation... 31

EVALUATION .. 35

4.1. Subjects .. 35

4.2. Ground Truths .. 35

4.3. Measures... 36

4.4. Results .. 37

4.4.1. Prediction at Method Level ... 37

4.4.2. Prediction at Class Level ... 39

CONCLUSION AND FUTURE WORK ... 42

5.1. Conclusion .. 42

5.2. Contribution ... 42

5.3. Future Work ... 43

References .. 44

VIII

Table of Figures

Figure 1 - Hypothetical Traceability graph between Software Artifacts [8] 11

Figure 2 - Implementation of Tracer Tool .. 32

Figure 3 - Dynamic Call Traces Output ... 33

Figure 4 - JSON map for test method hits .. 34

Figure 5 – Ground truth at Method level and Class level attribute 36

Figure 6 - Candidate Pair Ranking ... 37

file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959732
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959733
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959734
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959735
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959736
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc110959737

IX

Table of Tables

Table 1 - Score Range, Normalization and Thresholds .. 29

Table 2 - ServiceStack.Text - Method level metrics .. 38

Table 3 - Aeron.NET - Method level metrics ... 38

Table 4 - ServiceStack.Text – Class level metrics ... 40

Table 5 - Aeron.Net - Class level metrics ... 40

file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc111029464
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc111029465
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc111029466
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc111029467
file:///D:/Study/Thesis/Paper/Thesis%20Report%20-%20Mudassar.docx%23_Toc111029468

10

CHAPTER 1

INTRODUCTION

Software testing is a process in which a program is executed with a goal of

discovering errors in an application. Its purpose is not to show that something is

working or not, but the underline intent is to improve the quality of an application

and add value to it in terms of quality and reliability. Ensuring the quality and

reliability of a software application builds up confidence that the application does

what it is supposed to do and does not do what it is not supposed to do [1]. And

ensuring this is very expensive in terms of personnel, time, and money [2].

Unit testing is the first step to ensure that a unit is working as it is intended. A unit is

the smallest module or a block of code (method), that can be tested independently.

Unit testing is mainly the responsibility of a developer and it’s the first step in

ensuring quality. It is very cost-effective as it catches problems with the code at the

early stages of development. These small tested units are then integrated, and

integration testing is performed [3]. Writing these unit tests and integration tests is

among the primary activity in the Test-Driven Development (TDD), and it has been

found an effective way of fault detection and localization. [4].

Apart from making sure that the software application does what it is intended to do,

the important considerations is to make sure that the documents (test cases) should

be traceable [3]. So, whenever some functionality/feature is modified, it can be

easily traced which test cases are associated with the specific feature. Software

traceability is a vital part of the development process. In the fast-paced agile

development process, the traceability links address the need of the industry and it is

also implemented successfully in different industries [5]. A trace link represents an

association between the source and target software artifacts [6]. In the case of a test-

to-code traceability link, it’s a link between the test artifact (test class, test method)

to code artifacts (class, method). In the software engineering that are a lot of

document/artifact repository are maintained and all of these artifacts are isolated

from each other. And these artifacts are maintained by many different individuals. A

11

person working on one artifact may not have knowledge about the other artifact that

is related to it, and does not know about the ripple effect it can create or its

consequences. The traceability links tends to resolved these and many other issues

between the artifacts [7][50]. Figure 1 shows how the artifacts are linked in the

different phases of the software engineering process.

The test to code traceability links are very important in agile software

methodologies. As the code is continuously changing to reflect the customer’s

needs, the test cases/suits need to be updated as well. The traceability can provide

both forward and backward links that help in maintaining these artifacts. The

traceability link helps in locating the code to be maintained, or test case to be

updated especially in code refactoring [9]. Few of the benefits of test-to-code

traceability.

• It helps in the maintenance of source code and test suites i.e. test cases and

code remain synced.

• It reduces the risk of unseen faults and test failures.

• It helps in maintaining an accurate model of the system.

• It helps in reducing architectural degradation.

Figure 1 - Hypothetical Traceability graph between Software Artifacts [8]

12

1.1. Motivation

The research and literature (Explained in Chapter 2) that exists till date mainly

focuses on the Java Applications. There are a few very well-known tools e.g.

SCOTCH+ and TCTracer, which generate the test-to-code traceability links. Some

other tools and techniques have also been developed solely for the Java-based

applications. But no such tool is developed for C# based applications that generate

test-to-code traceability links automatically. C# language has been constantly

gaining popularity over time and many large-scale applications are being developed

on it [10]. Especially with the introduction of .NET Core (open-source, platform-

independent), it is getting better and better with respect to performance, more and

more developers are inclined to it [11][12].

C# language is one popular programming language among the developers and many

organizations. From mobile applications to video games, desktop applications to

web applications, and cloud applications, C# is being widely used to develop these

applications. Adobe Photoshop, Adobe Systems, Mozilla Firefox, Stackoverflow,

GoDaddy, Bing, UPS, BBC Good Foods, and Microsoft services are among the

applications that are developed in C# and ASP.Net [13]. There is a need for the

developers who are working on the C# projects, to have a tool that develops the

traceability links between the tests and code.

1.2. Problem Statement

Test-to-code traceability links maintain the link between test artifacts (unit,

regression test) and the code artifacts (class, method). Developing and maintaining

these links manually is a difficult task and it puts an extra burden on the shoulder of

developers. To automatically establishes test-to-code traceability links in the

software applications developed using the C# language is a crucial element for

improving software maintenance, code refactoring, and effective test case selection

in case of regression testing. The main goal of the research is to develop a tool that

automatically develops these traceability links.

1.3. Aims and Objectives

The objective of the research is to understand the importance of the test-to-code

traceability links, how it helps the developers to remain consistent with the

13

architecture, and how it enables reduction of faults. The aim is to provide a tool that

automatically generates these traceability links. Introducing a tool not only pulls off

the burden from the developer but it also reduces the risk of errors which may occur

when it is done manually.

1.3.1. Literature Review Objectives

The objectives of the literature review are:

✓ To identify the importance of traceability among the software artifacts.

✓ To identify the importance of traceability between tests and code.

✓ Review existing approaches, techniques and tools for test-to-code traceability.

✓ Effective selection of test-to-code traceability techniques.

1.3.2. Tool Objectives

The objectives of the tools are:

✓ To develop test-to-code traceability links automatically.

✓ To take off the burden from the developers’ shoulders.

✓ To reduce the risk of errors that may occur if it is done manually.

1.4. Structure of Thesis

The rest structure of thesis is followed as: Chapter 2 provides an overview and

discussion of the existing literature. Chapter 3 explains the approaches and

techniques used for tool. Chapter 4 explains the evaluation criteria and the results.

And Chapter 5 summarizes the research, its goals and the future work.

14

CHAPTER 2

LITERATURE REVIEW

Literature review is one of the primary components of any research. The main

objective of the literature review is to summarize the prior research efforts, what

were the findings of that efforts, and what conclusions were made through that

effort. Also, it tells about the accuracy and completeness of that knowledge. Instead

of reinventing the wheel, it can give ideas about your own research [14].

In this chapter, a review of the literature has been presented. It discusses the

different techniques for developing traceability links between test and code, and the

tools that can help in developing these traceability links.

2.1. Overview

Unit testing is the early activity that a developer does when writing the code. It is the

responsibility of the developer to write the code, and then regularly update test cases

as the code changes [15]. A survey shows that creating and maintaining these unit

tests is really hard for the developers as it puts an extra responsibility on the

developers [16]. One of the main goals of the test cases is that the tests should be

traceable. It should tell which test case is associated with a specific feature or

requirement [4]. This is called traceability.

Traceability between the software artifacts is managed through the traceability links

in which a source artifact is associated with the target artifacts [6]. These links

provide a forward and backward flow that can help in locating the ripple effect in a

specific artifact. Test-to-Code traceability link help locate which test case needs to

be updated when a code is updated, or locating a fault when test case fails [17].

Another main benefit of these links is that it helps in software maintainability. Code

refactoring is one of the common practices that is usually done by the developers.

The traceability links definitely help in refactoring the test cases as well that are

associated with the code. But it is not practically followed in most of the agile

methods [9]. In the regression testing, traceability link can also minimize the number

15

of test cases to be executed for the regression test (as a result of code change) [17].

Coevolution of both test and code artifacts is not consistently practiced. Over the

time, the both of these artifacts get desynchronized. A coevolution analysis is code

on the code, which clearly shows that the production code and test code are never in

sync. The test code is updated in a separate commit and production code in a

separate commit [18]. Traceability links can help the developers to get these two

artifacts in sync. Not only that, it also helps in fault localization. Unit tests are

generally written to test a specific piece of code i.e. method. Most of the time

naming convention is followed that help in tracing. A good coding convention

usually follow this approach [19]. In Continuous integration (CI), these traceability

links also help while doing integration testing and regression testing as it can

identify which test case needs to be executed that is potentially affected by a change

[20][49]. Developing and maintaining these links also comes with a lot of challenges

as well [21].

2.2. Traceability Approaches

Different traceability approaches are used to create a link between unit tests and

code artifacts. Following are few of the techniques [9][20][22][23] that can be used.

2.2.1. Naming Convention (NC)

Naming convention is the simplest way to identify the methods and classes under

test and create a link. If the unit test method or unit test class starts or ends with the

“test”, removing the “test” will give us the name of the method or class under test.

For example, if the testCalculateTax is a test method, removing the “test” gives us

CalculateTax i.e. method name under test.

2.2.2. Naming Convention Contains (NCC)

Naming convention contains is derived from the Naming convention approach. It is

possible that name does not match exactly the same after removing “test” from it.

Because there are times a method under test is tested by more than one unit test. In

that case the if the test method name contains the part of method under test name, it

is possible that the unit test is testing the specific method.

16

2.2.3. Lexical Analysis (LA)

Lexical analysis is done based on the lexical token. A vocabulary is defined by a

developer that is used in the source code. Vocabulary can be a simple natural

language e.g. Type identifiers, names, etc. The unit test and the methods under test

should be using same the vocabulary in the code. Based on that it can be determined

whether the unit test is testing a method or not.

2.2.4. Longest Common Subsequence (LCS)

Longest common subsequence is a way to find the sequence that is common in the

given sequences. This approach can be used to determine if a unit test is testing a

specific method. The name of the unit test or class is compared with the method or

class under test. Based on longest common subsequence it can be identified whether

the unit test or class is testing the specific method or class.

• Longest Common Subsequence Both (LCS-B): This is a variant of LCS in

which we determine if the unit test name and method name matches exactly

the same. This approach is similar to NC that also match the whole name.

• Longest Common Subsequence Unit (LCS-U): This is another variant of

LCS in which we determine the longest subsequence that is common. And

then it can be determined whether the unit test is testing a method or not.

This approach is similar to NCC.

2.2.5. Levenshtein Distance

Levenshtein distance is a metric that works on the string. It measures the difference

between the two strings [24]. The distance between the unit test name and method

name is measured using the Levenshtein Distance, and based on that it can be

determined whether the unit test is testing a method or not. The lower the value of

distance, higher the chance that unit test is testing a method.

2.2.6. Static Call Graph (SCG)

The Static call graph is a technique in which references are maintained from test

case to production code. But not all methods or classes are tested that are called from

the test case. All of the classes are collected called from a test case, and then a set of

17

classes is selected if it has higher references. Based on that it can be determined

whether the unit test is testing a method or not.

2.2.7. Last Call Before Assert (LCBA)

A common pattern that many developers follow when creating a unit is [25]:

𝐴𝑟𝑟𝑎𝑔𝑒 → 𝐴𝑐𝑡 → 𝐴𝑠𝑠𝑒𝑟𝑡

• Arrange: In these statements, all the required inputs are arranged and put

together.

• Act: In these statements, the test cases are called i.e. the object states are

modified.

• Assert: In these statements, the expected result is compared with the actual

result and assertion is made whether the test is successful or not.

In the unit test, it is an assumption that method under test is called before the assert

statement [39]. Last call before assert approach works on that assumption, and based

on that it can be determined whether the unit test is testing a method or not.

2.2.8. Tarantula

Tarantula is a fault localization algorithm that helps in detecting a fault that is

causing a test to fail. The algorithm determines the suspiciousness of each line in a

test case. It calculates the ratio of successful and failed test cases. If the ratio for the

failed test cases is higher, the suspiciousness is also higher [26]. It can be defined as

follows where 𝑡 is the code entity (test case):

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑛𝑒𝑠𝑠(𝑡) =

𝑝𝑎𝑠𝑠𝑒𝑑 (𝑡)
𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙𝑒𝑑

𝑝𝑎𝑠𝑠𝑒𝑑 (𝑡)
𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑠𝑠𝑒𝑑

+
𝑓𝑎𝑖𝑙𝑒𝑑(𝑡)

𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙𝑒𝑑

A heuristic can be used to identify a method that is relevant to a unit test. Based on

that it can be determined whether the unit test is testing a method or not.

2.2.9. Term Frequency – Inverse Document Frequency (TF-IDF)

Term frequency–inverse document frequency is a statistical and natural language

processing (NLP) technique. It tells the significance of a word in a document. The

18

value is increased as the word appears frequently in a document. It is used for

information retrieval and is widely used in the recommender systems and search

engines. It can be defined [27] as:

𝑡𝑓 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑇𝑖𝑚𝑒𝑠𝑊𝑜𝑟𝑑𝐴𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝐼𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙𝑊𝑜𝑟𝑑𝑠𝐼𝑛𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑖𝑑𝑓 = 𝑙𝑜𝑔
𝑇𝑜𝑡𝑎𝑙𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

Where

𝑡𝑓 − 𝑖𝑑𝑓 = 𝑡𝑓 × 𝑖𝑑𝑓

TF-IDF can be used in linking the test and code artifacts. The tests are considered as

the documents, and the methods are considered as the term. The higher the

frequency of terms in the document, the higher the possibility that a unit test

executes the method. Based on that it can be determined whether the unit test is

testing a method or not.

2.2.10. Call Depth Analysis

Call depth analysis looks at the call stack of a method and determine how far it is

called from the unit test. The method that is too far way is less likely to be tested by

a unit test. Based on that it can be determined whether the unit test is testing a

method or not.

2.3. Related Work

Test-to-code traceability links have many benefits in the software development

process as explained in Chapter 1. And many researches have been conducted

recently due to its significance in the engineering process. Also, different tools have

been implemented to develop and maintain these traceability links over the past few

years. Establishing the traceability links manually is a difficult job, and later it can’t

be maintained. Doing all of this manually requires the efforts of the developers and

other stakeholders involved with the linked artifacts. TestRoutes is another manually

curated dataset for test-to-code traceability. It contains about 2000 methods

19

classification and maintaining this large number is not an easy task [28]. To improve

manual maintenance of the traceability links, and gamification concepts are used

[29]. But these approaches are not significantly adopted.

There are generally two ways to generate the test-to-code traceability links; Static

and Dynamic. For static traceability, the physical code files are parsed. For dynamic

traceability, the source code is executed and code coverage information is gathered

to extract the information [30]. The analysis and importance of different static and

dynamic approaches used to develop these traceability links have shown these link

are helpful when it comes to the maintenance of the test suites [31].

Slicing and Coupling based Test to Code trace Hunter (SCOTCH) is an approach

that uses conceptual coupling to differentiate the test class and helper classes. It

gives a better accuracy as compared to other techniques such as NC and LCBA

because of its limitation [32]. SCOTCH+ works by dynamically slicing to identify

the candidate tested classes. These candidates are selected based on the last executed

assert statements. And then textual information (Name Similarity - NS) is used to

differentiate between the actual methods (that need testing) and the helper methods.

This approach gives better results than NC and LCBA [44].

TCTracer is another tool that uses an ensemble of different approaches such as NC,

NCC, LCBA, and LCS (described in Section 2.2.). It uses both static and dynamic

information to automatically develop the traceability links. Static information is

collected through parsing the Java class source files. Dynamic information is

collected through code instrumentation and execution of the code. The tool is

developed for Java applications and tested on the open source applications as well.

The tool not only works on the class level but it also works on the method level. It

gives a mean average percentage (MAP) of 85% for test-to-method links and 92%

for test-to-class links [34].

In DevOps-based software engineering environments, the production code is

continuously updated by the developer. In this environment, the traceability links

development has critical importance. SAT-Analyzer is a traceability tool that

establishes the links between software artifacts i.e. Source code and unit test code.

Junit test code is processed through Java Grammar and ANTLR. Then the

20

traceability links are developed using string comparison and Levenshtein Distance

algorithms. The tool provides an accuracy of 71% on average [35].

Another approach that automatically identifies the methods under test also called

focal methods in the unit tests. Discriminating between these focal and non-focal

methods manually is hard. The approach uses Data Flow Analysis (DFA) to gather

information regarding unit tests (JUnit) and code (Java). The research focuses on the

Java classes and it identifies F-MUTs in the unit test case. The prototype

implementation of the approach is fully automatic and it has an accuracy of 85%

[36].

ETUCA is another automatic approach to generate the links. This approach

introduces a custom attribute for .NET Unit tests. The attribute ensures that the

traceability links are established at the time of unit test creation. The responsibility

of creating the traceability link now falls on the shoulder of developers given they

correctly embed the attribute. The quality of this approach is assessed through a

survey of questionnaires. Its quality assessment of ETUCA resulted high from the

user’s perspective [37].

Test-to-code traceability link recovery has received attention due to fast-paced

integration and deployment processes. A Hierarchical Trace Map visualization

technique is proposed that tries to recover the traceability links [39]. Another

visualization technique is proposed that combines approaches such as NC, LCBA,

and SCG to recover the traceability links [38]. TCTracVis is another visualization

tool that visually shows the links between the unit test and methods/classes. But the

literature does not show any accuracy and performance evaluation [33]. Natural

language processing methods are extensively used in the traceability recovery

techniques. It is found that Word Embedding and Latent Semantic Indexing (LSI)

performs better than AST-based identifier extraction and API documentation [40].

LSI has been found very effective among the natural language processing techniques

and it can increase the results by 30% [47]. Among the LSI and TF-IDF has been

found a good candidate for the traceability links and produced good results [49].

Another automated approach is presented that leverages the semantics of the

software artifacts and creates traceability. It generates the domain-specific concept

models and creates the trace links. The concept model is created based on the textual

21

information [41].

Fault localization techniques such as Tarantula have been found useful in finding out

the link between the test artifact and the code artifact [20]. But in a different study, a

comparison has been done between the Spectrum based Fault Localization with the

traditional traceability approaches. After experimenting on the three different

projects, it was found that this fault localization approach does not perform better

than the tradition traceability approaches [42].

Different machine learning (ML) approaches e.g. neural networks and deep learning

have also been used to develop the traceability links between test and code.

TestNMT is one such approach that uses neural machine translation to generate the

function-to-test links. But the approach has few limitations [43]. In another approach

TCTracer, the results are compared with the simple feed forward neural network,

and the results were not as satisfactory as compared to simple test-to-code

traceability e.g. NS, NCC, LCBA, etc. Also generating the test data (ground truth)

for these approaches is not feasible [34].

2.4. Discussion

Traceability links are a way to link the different software artifacts in the software

engineering process and there is clearly a need for these links. The literature review

presented in this section clearly shows the importance of the test to code traceability.

It provides the bi-directional tracing between the tests and code artifacts making it

useful when making a change to a system as the production code is changed

frequently in the DevOps approaches.

The literature also shows that production code and unit test are not always synced.

Production code is updated in different commits and unit tests in a different commit.

Co-evolution of both of these artifacts is not possible. Manually creating these links

is also not feasible. Having a tool that generated these links automatically is s relief

for the developers. The literature also presents the tools such as SCHOTCH+,

TCTracer does that automatically.

The literature also shows that there are dynamic and static approaches to create the

traceability links. Using one approach to establish the traceability links does not give

22

an optimal result. The ensemble of these approaches gives better results. Name

Similarity (NS), Name Contains (NC), Longest Common Subsequence (LCS), Last

call before assert (LCBA), and Levenshtein Distance (LD) are a few of the

techniques. Few other fault localization approaches and machine learning

approaches are also implemented. But it is found that the traditional test-to-code

traceability approaches (textual information based such as NC, LCS, etc.)

The literature also shows that most of the tools and approaches cater to the needs of

Java based projects. The tools that are presented use Java languages and Junit for the

test suits. Not much is done when it comes to C#. There is clearly a need for such

tools that use C# language and test suits.

23

CHAPTER 3

METHODOLOGY

3.1. Approach

The proposed approach is an embed of different test-to-code traceability techniques.

First the candidate traceability links are created between the test artifacts and code

artifacts. The candidate links are created using the static information and the

dynamic information. These links are evaluated and scores are assigned. Based on

the score, it is predicted whether the link is an actual link between test and code

artifact.

Static information can be easily collected without executing the actual code. Simple

parsing can be done to gather this information. Traditional static techniques such as

name similarity (NS) are incorporated in our approach as well. The static

information includes the fully qualified names (FQNs) of methods and classes for

both test artifacts and code artifacts. The text similarity and comparison-based

approaches has been around and used in many approaches. An evaluation of these

approaches tells us that the combination of these techniques significantly improves

the quality of test-to-code traceability links [44].

Dynamic information is also utilized in our approach. It includes the call traces such

as which method is called before the assert statement (LCBA) [45], which method is

called from the test method and what is the depth of call. For dynamic information,

the source code (system) needs to executed. But for large number of projects,

executing each system is not feasible as it consumes a lot of time to run each system.

For the very same reason, static information is as used in this approach.

Once information is collected, we have applied different techniques to assign a

score. Some techniques simply give a score either 0 or 1. 0 means the candidate link

is not a traceability link and 1 means the candidate link is a true traceability link. For

some techniques we had to apply score scaling and applied threshold in order to

predict the true traceability links.

24

Our approach also utilizes the method level information along with the class level

information. The techniques are described in the following section.

3.2. Techniques

Our approach also utilizes different string comparison techniques. We have selected

two variants of name convention (NC, NCC) techniques in our approach as

described in Section 2. We have also used the Longest Common Subsequence

technique and used two variants i.e. LCS-B and LCS-U as described in Section 2.

Furthermore, we have used Tarantula (fault localization technique) and Term

Frequency-Inverse Document Frequency (TF-IDF) as describe in section. Both of

these techniques are statistical techniques. We have also used Last Call Before

Assert (LCBA) as it is seen in the literature that It performs well for test-to-code

traceability.

There are mainly two way to gather information and create the test-to-code

traceability links: Static and Dynamic. The static analysis requires the physical files

to be parsed and dynamic analysis requires the code to be executed and control flow

information is collected [45]. Following are the techniques that will be used in our

analysis:

3.2.1. Dynamic Techniques

The dynamic techniques that are used to get information are described as follow.

3.2.1.1. Naming Convention (NC)

Name convention (NC) compares the name of the test and name of the method. The

“test” is removed from the test name and comparison is done. If the name of the test

and method is same, the link is established. E.g. calculateTax is a method that is

tested by testCalculateTax test.

If 𝑛𝑡 is the name of test 𝑡 (after removing test from it) and 𝑛𝑚 is the name of method

𝑚:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = {
1
0

𝑖𝑓 𝑛𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 𝑛𝑚

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

25

3.2.1.2. Naming Convention Contains (NCC)

Name convention contains (NCC) is a variant of NC but it does not compare the

exact name, instead it looks for a substring that matches. After removing the “test”

from the test name, if part of the method name matches with the test name, the link

is established. E.g. calculateTax is the method that is tested by testCalculateTaxPass

test.

If 𝑛𝑡 is the name of test 𝑡 (after removing test from it) and 𝑛𝑚 is the name of method

𝑚:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = {
1
0

𝑖𝑓 𝑛𝑚 𝑖𝑠 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑛𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2.1.3. Longest Common Subsequence Both (LCS-B)

Longest common subsequence (LCS) is a one of the name similarity (NS) technique.

It finds the subsequence that has more characters in common. If the names are

exactly the same, it has the highest score. LCS-B works on the same approach. If the

test name and the method name are exactly same, the score is maximized at 1.

If 𝑛𝑡 is the name of test 𝑡 (after removing test from it) and 𝑛𝑚 is the name of method

𝑚:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) =
|𝐿𝐶𝑆(𝑛𝑡, 𝑛𝑚)|

max (|𝑛𝑡|, |𝑛𝑚|)

𝐿𝐶𝑆(𝑛𝑡, 𝑛𝑚) = 𝑛𝑡 when 𝑛𝑡 is equal to the 𝑛𝑚 i.e. test name and method name is

exactly the same.

3.2.1.4. Longest Common Subsequence Unit (LCS-U)

LCS-U is another variant of LCS. It finds the subsequence that has more characters

in common. Instead of finding the exact same name, if finds a substring just like

NCC. If the test name contains the method name, the score is maximized at 1.

If 𝑛𝑡 is the name of test 𝑡 (after removing test from it) and 𝑛𝑚 is the name of method

𝑚:

26

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) =
|𝐿𝐶𝑆(𝑛𝑡, 𝑛𝑚)|

|𝑛𝑚|

3.2.1.5. Levenshtein Distance

Levenshtein distance computes the distance between the test name and the method

name. If the distance is lower, it means it takes a smaller number of edits to convert

test name into method name, the more chances are the test is testing the method. The

distance is normalized as to give a higher value [46].

If 𝑛𝑡 is the name of test 𝑡 and 𝑛𝑚 is the name of method 𝑚:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = 1 −
𝐿𝑒𝑣𝑒𝑛𝑠ℎ𝑡𝑒𝑖𝑛(𝑛𝑡, 𝑛𝑚)|

max (|𝑛𝑓|, |𝑛𝑚|)

3.2.1.6. Last Call Before Assert (LCBA)

Last call before assert (LCBA) looks for the last method called before the assert

statement and assumes that it is the same method that is tested by the current test.

Based on the assumption the link is established between the test and method. If the

link is established the score is 1 otherwise 0.

If 𝑡 is the test 𝑡 and 𝑚 is the method:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = {
1
0

𝑖𝑓 𝑚 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑠𝑠𝑒𝑟𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2.1.7. Tarantula

Tarantula is used to find the suspiciousness of a test as described in the Section 2. If

the value is higher, the higher the probability that the code is faulty. If 𝑐 is the code

entity, the suspiciousness can be defined as follows:

𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑛𝑒𝑠𝑠(𝑐) =

𝑓𝑎𝑖𝑙𝑒𝑑𝑇𝑒𝑠𝑡𝑠 (𝑐)
𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙𝑒𝑑𝑇𝑒𝑠𝑡𝑠

𝑝𝑎𝑠𝑠𝑒𝑑𝑇𝑒𝑠𝑡𝑠 (𝑐)
𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑠𝑠𝑒𝑑𝑇𝑒𝑠𝑡𝑠

+
𝑓𝑎𝑖𝑙𝑒𝑑𝑇𝑒𝑠𝑡𝑠(𝑐)

𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑖𝑙𝑒𝑑𝑇𝑒𝑠𝑡𝑠

To calculate the score for the traceability link, we assume that all the test is passed

except the one that is under consideration. This heuristic is used to identify the

method under test. If 𝑇 is the set of all tests, and the method 𝑚 tested by 𝑡 is the

27

method:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) =
1

|{𝑡 ∈ 𝑇: 𝑚 ∈ 𝑡}| − 1
|𝑇| − 1

+ 1

3.2.1.8. Term Frequency-Inverse Document Frequency (TF-IDF)

TF-IDF is used to get the frequency of term inside the document and the documents

repository. If the term has high frequency inside the document and low frequency in

rest of the documents, its significance is higher with respect to that document. The

same approach is applied her while creating the traceability link. The method name

is considered as the term and all tests are considered as the documents. If a method

has high frequency in test and not in other tests, it is possible that test is testing that

specific method.

If 𝑡 is the test 𝑡 and 𝑚 is the method:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = 𝑡𝑓(𝑡, 𝑚). 𝑖𝑑𝑓(𝑚)

If 𝑀 is the set of all methods and 𝑇 is the set of all tests, then:

𝑡𝑓(𝑡, 𝑚) = ln (1 +
1

|{𝑚 ∈ 𝑀: 𝑚 ∈ 𝑡}|
)

𝑖𝑑𝑓(𝑚) = ln (1 +
1

|{𝑡 ∈ 𝑇: 𝑚 ∈ 𝑡}|
)

3.2.2. Static Techniques

The static techniques that are used to get information are described as follow.

3.2.2.1. Static Naming Convention (NC)

Static name convention now includes another condition. Instead of just comparing

the names of the methods, it also compares the name of test class and class-under-

test. The comparison is done after removing “test” from the test name and test class

name. If the name of the test and test class is the same as the method name and class

name, the link is established.

If 𝑛𝑡 is the name of test 𝑡 , 𝑛𝑡𝑐 in test class name (after removing test from it), 𝑛𝑚 is

28

the name of method and 𝑛𝑚𝑐 is the name of class under test, then:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = {
1
0

𝑖𝑓 𝑛𝑡 𝑒𝑞𝑢𝑎𝑙𝑠 𝑛𝑚 ^ 𝑛𝑡𝑐 𝑒𝑞𝑢𝑎𝑙𝑠 𝑛𝑚𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2.2.2. Static Naming Convention Contains (NCC)

Static name convention contains now includes another condition. Instead of just

comparing the names of the methods, it also compares the name of test class and

class-under-test. The comparison is done after removing “test” from the test method

name and test class name. If the name of the test and test class contains the method

name and class name, the links are established.

If 𝑛𝑡 is the name of test 𝑡 , 𝑛𝑡𝑐 in test class name (after removing test from it), 𝑛𝑚 is

the name of method and 𝑛𝑚𝑐 is the name of class under test, then:

𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) = {
1
0

𝑖𝑓 𝑛𝑚 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑛𝑡 ^ 𝑛𝑚𝑐 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔 𝑜𝑓 𝑛𝑡𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2.2.3. Static Longest Common Subsequence Both (LCS-B)

LCS-B is used similar to dynamic approach. The score is calculated the same way.

3.2.2.4. Static Longest Common Subsequence Unit (LCS-U)

LCS-U is used similar to dynamic approach. The score is calculated the same way.

3.2.2.5. Static Levenshtein Distance

Levenshtein distance is used similar to dynamic approach. The score is calculated

the same way.

3.2.3. Score Scaling

In our approach following are the two score scaling techniques are applied:

3.2.3.1. Call Depth Discounting

The method that is closer to the test in the call stack is a method that is under test.

We have included the call depth discounting factor that discounts the test-to-method

pair based on the distance between them.

If 𝑡 is the test 𝑡 and 𝑚 is the method:

29

Technique Score Normalized
Threshold -

Method Level

Threshold -

Class Level

NC 0 or 1 - - -

NCC 0 or 1 - - -

LCS-B [0, 1] Yes 0.30 0.30

LCS-U [0, 1] Yes 0.75 0.25

Levenshtein [0, 1] Yes 0.30 0.25

LCBA 0 or 1 - - -

Tarantula [0, 1] Yes 0.65 0.99

TF-IDF [0, 1] Yes 0.35 0.20

Static NC 0 or 1 - - -

Static NCC 0 or 1 - - -

Static LCS-B [0, 1] Yes 0.30 0.25

Static LCS-U [0, 1] Yes 0.75 0.25

Static Levenshtein [0, 1] Yes 0.30 0.25

Combined [0, 1] Yes 0.35 0.20

Table 1 - Score Range, Normalization and Thresholds

𝑠𝑐𝑜𝑟𝑒𝑑(𝑡, 𝑚) = 𝑠𝑐𝑜𝑟𝑒(𝑡, 𝑚) . 𝛾(𝑑𝑖𝑠𝑡(𝑡,𝑚)−1) where 𝛾 ∈ [0, 1]

If a method is directly called from the test then 𝑑𝑖𝑠𝑡(𝑡, 𝑚) becomes 1, the discount

factor becomes 0 because of subtracting one of it. The discount factor does not need

to be applied in this case.

3.2.3.2. Normalization

The concept of normalization is very useful in the statistical and classification

problems, especially in machine learning approaches. And it clearly improves the

accuracy of a classification problem [48]. As the score is used to rank and predict the

true traceability link. But the score can vary in different techniques. In order to

maintain the score on a single scale, we have used the normalization approach to

scale the score between 0 and 1.

If 𝑡 is the test 𝑡 and 𝑚 is the method:

𝑠𝑐𝑜𝑟𝑒𝑛(𝑡, 𝑚) =
𝑠𝑐𝑜𝑟𝑒𝑑(𝑡, 𝑚) − min ({𝑠𝑐𝑜𝑟𝑒𝑑(𝑡, 𝑚) | 𝑚 ∈ 𝑡})

min ({𝑠𝑐𝑜𝑟𝑒𝑑(𝑡, 𝑚) | 𝑚 ∈ 𝑡}) − max ({𝑠𝑐𝑜𝑟𝑒𝑑(𝑡, 𝑚) | 𝑚 ∈ 𝑡})

30

Then thresholds 𝜏 are applied on the values to make the score either 0 or 1 where 1

describes the true traceability link.

The Table 1 shows the normalization and threshold values applied on the

approaches.

3.3. Link Prediction

The links are constructed with the help of prediction. Two types of link prediction is

done; class level and method level. The techniques are first applied to the test and

methods, and then it is applied on the test classes and tested classes.

3.3.1. Prediction at Method Level

The individual traceability techniques are executed at the method level and score are

calculated. A matrix is formed with the result/score of each technique. If 𝑇 is the set

of all tests and 𝑀 is the set of all methods, the matrix can be defined as:

𝑀 ∈ ℝ|𝑇|×|𝑀|

Each element of the matrix (𝑀𝑡𝑚) represents a score for the test to method pair

(𝑡, 𝑚) ∈ (𝑇 × 𝑀) .

Then each matrix is normalized and combined to get another matrix. Threshold (𝜏) is

then applied on all of the matrix for each technique (Table 1). The score above the

threshold is considered as 1 i.e. it represents a true traceability link. The traceability

link can be constructed as:

𝑇𝑀 = {(𝑡, 𝑚) ∈ 𝑇 𝑋 𝑀 | 𝑀𝑡𝑚 ≥ 𝜏 }

3.3.2. Prediction at Class Level

Just as the method level prediction, same steps are applied for the class level. A

matrix is formed with the result/score of each technique. If 𝑇𝐶 presents the set

containing all test classes and 𝑀𝐶 is the set containing all classes under test, the

matrix can be defined as:

31

𝐶 ∈ ℝ|𝑇𝐶|×|𝑀𝐶|

Each element of the matrix (𝐶𝑐𝑡𝑐𝑚
) represents a score for the test class-class pair

(𝑐𝑡, 𝑐𝑚) ∈ (𝑇𝐶 × 𝑀𝐶) .

Then each matrix is normalized and combined to get another matrix. Threshold (𝜏) is

then applied on all of the matrix for each technique (Table 1). The score above the

threshold is considered as 1 i.e. it represents a true traceability link. The traceability

link can be constructed as:

𝑇𝐶 = {(𝑐𝑡, 𝑐𝑚) ∈ (𝑇𝐶 × 𝑀𝐶) | 𝐶𝑐𝑡𝑐𝑚
≥ 𝜏 }

3.4. Implementation

The developed prototype tool is compatible with the C# (.NET 4.7, .NET Core 3.1, and

.NET 5,6) applications that use the NUnit testing framework as their backbone for unit

testing. There are a few other testing frameworks such as XUnit and MS Test are also, but

the tool is focused on NUnit tests.

The tool uses both information and dynamic information to rank the traceability links. The

static information is collected simply from the Assembly/Dynamic Link Library (.dll) file

for the Test Project. Assembly is the collection of types (e.g. Test classes and methods) that

are built to form a logical unit. These are the building block of .NET Applications [51]. The

tool has an Assembly Analyzer module that parses the Test project assembly using the

concept of Reflection [52] and gets the information regarding test class, test method, and the

methods that are called inside the test method.

The dynamic information is collected through execution call traces. To collect the call

traces, there is no direct way of gather this information. This information is collected

through the concept of Aspect Oriented Programming (AOP). It is a concept of applying

common routines to whole application e.g. Logging or exception handling [53]. PostSharp

[55] is a utility that provides an easy way of intercepting the methods. we have used this

utility for instrumentation to attach some extra information at each test method calls. It uses

the concept reflection to add extra information at runtime. Whenever a test method is starts,

the dynamic call traces are written to the output as show in the Figure 3.

32

These output traces are collected in the log file. The log data represent the raw data that

needs to be converted into meaningful information. The logs are then parsed to collect the

method hits made from the unit test. The information is parsed and saved in the form of a

JSON file for both dynamic and static information as shown in Figure 4. This information is

then used to form the candidate test to code links.

First, the score at the method level is calculated. The scores are calculated for the individual

technique for each test-method to method pair. The scores are scaled using normalization

because some of the techniques do not have a range between 0 and 1. The score is then

combined by taking averaging of all scores for a pair and normalized again to form a

Figure 2 - Implementation of Tracer Tool

33

combined score. The same process is then repeated for the class level. The score for each

test-class to class pair is calculated, and normalized. Then the scores are combined and

normalized again. For each pair, a threshold technique is applied that does not give discreet

values. Based on that, the candidate link is ranked whether it is a true traceability link or not.

Figure 3 - Dynamic Call Traces Output

34

Figure 4 - JSON map for test method hits

35

CHAPTER 4

EVALUATION

The evaluation of the tool is done on the open source projects after defining the

ground truths.

4.1. Subjects

For the evaluation purpose, two open source projects are selected that have unit

tests written with the NUnit testing framework.

• ServiceStack.Text (https://github.com/ServiceStack/ServiceStack.Text)

• Aeron.NET (https://github.com/AdaptiveConsulting/Aeron.NET)

The source code for both of these projects is available at the GitHub platform. Both

of the projects are using different naming conventions for the test class names and

test method names.

4.2. Ground Truths

The ground truth is developed for both of the subjects to measure the quality of the

techniques used in the tool. There was no existing ground truth available. For this

purpose, a team of two developers who work in the well known software houses

and have an experience around 4-5 years helped in establishing the ground truth.

For the ground truth, the tool exposes an attribute/annotation built in C#. This

attribute can be applied on both levels i.e. class and method. For class level, the

attribute is applied on the class level. The attribute takes an argument of the fully

qualified names for the classes under test i.e. classes which are tested by the test

class. Similarly, the attribute is then applied on the methods. For method it takes an

argument of fully qualified names for methods under test. In this way, the ground

truth is established for both class and method levels. The ground truth annotation

can be seen in Figure 5.

https://github.com/ServiceStack/ServiceStack.Text
https://github.com/AdaptiveConsulting/Aeron.NET

36

4.3. Measures

For the evaluation purposes, we have selected one of the basic measures: precision,

recall, accuracy and F1 score. These measures are one of the basic evaluation

measures for the classification problems. Precision tells us the ratio of all true

positives out of all positives, and Recall tell us the ratio of all true positive out of

all predictions. Accuracy tell us the ratio of how accurate the model is at prediction

[56].

F1 Score is a similar metric that maintain the ratio of both precision and recall at

optimal. It is a harmonic mean of precision and recall. Instead of maintaining

precision and recall separately, it is easier to maintain this one metric that

maximizes both of these metrics [56].

Precision, Recall, Accuracy and F1 Score can be calculated as follow:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙

Figure 5 – Ground truth at Method level and Class level attribute

37

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.4. Results

The tool outputs the results for each test to code candidate pair and rank it as a true

traceability link. Based on the scores, thresholds are applied and each candidate

pair is ranked telling us whether a pair represents the true traceability link or not.

The output of these can be seen in the Figure 5.

4.4.1. Prediction at Method Level

Figure 6 - Candidate Pair Ranking

38

Technique Precision Recall Accuracy F1Score Efficiency

NC 0 0 50 0 100

NCC 86 23 60 36 96

Levenshtein 100 54 77 70 100

LCS B 100 42 71 59 100

LCS U 95 69 83 80 96

Tarantula 74 100 83 85 65

TF IDF 62 100 69 76 38

LCBA 54 58 54 56 50

NC Static 0 0 26 0 100

NCC Static 0 0 26 0 100

Levenshtein Static 100 54 66 70 100

LCS B Static 100 31 49 47 100

LCS U Static 95 69 74 80 89

Combined 78 86 85 86 73

Table 3 - Aeron.NET - Method level metrics

Technique Precision Recall Accuracy F1Score Efficiency

NC 100 12 57 22 100

NCC 95 45 72 61 98

Levenshtein 88 72 82 79 90

LCS B 83 75 80 79 86

LCS U 94 75 80 79 86

Tarantula 63 92 70 75 48

TF IDF 56 70 59 62 48

LCBA 76 65 73 70 81

NC Static 100 3 39 5 100

NCC Static 100 3 39 5 100

Levenshtein Static 93 76 81 84 91

LCS B Static 88 78 80 83 82

LCS U Static 94 78 83 85 91

Combined 97 78 88 86 98

Table 2 - ServiceStack.Text - Method level metrics

39

The method level score for ServiceStack.Text and Aeron.NET are shown in Table

2 and 3 respectively. NCC seems to perform better at the method level than NC.

Both NC and NCC both are better choices where proper naming conventions are

followed. NC performs poorly when the method names are long and descriptive.

For example, NC precision and F1 Score is 0 for Aeron.NET as shown in Table

3. In this project, there are no methods found that have the same name as test

method names. LCS-U and LCS-U static also perform well in the method level

scoring due to their better F1 Score. LCBA does not perform well for both of the

projects. The reason for this is, the last call before asserts are usually the helper

methods. It is not always the same method that is under test.

If we see at the combined score for both projects, it seems to be performing well.

It provides a better F1 Score and better accuracy than each of the individual

techniques.

4.4.2. Prediction at Class Level

The class level score for ServiceStack.Text and Aeron.NET are shown in the Table

4 and 5 respectively. NCC seems to perform better at the class level than NC. Both

NC and NCC both are better choices where proper naming conventions are

followed. NC performs poorly when the method names are long and descriptive.

But at class level, mostly the test class names have almost the same names as the

class under test. LCS-B performs better at class level then the LCS-U because it

has better F1 Score and accuracy. Similarly, LCS-U static seems to be performing

better than LCS-B static.

LCBA does not perform well for both of the projects. The reason for this is, last

call before asserts are usually the helper methods. It is not always the same method

which is under test.

40

Technique Precision Recall Accuracy F1Score Efficiency

NC 100 50 77 67 100

NCC 100 50 77 67 100

Levenshtein 90 90 91 90 92

LCS B 83 100 91 95 92

LCS U 83 100 91 91 83

Tarantula 57 80 64 67 50

TF IDF 90 90 91 90 92

LCBA 60 90 68 72 50

NC Static 100 56 75 71 100

NCC Static 100 56 75 71 100

Levenshtein Static 89 89 88 89 86

LCS B Static 90 100 94 95 86

LCS U Static 90 100 94 95 86

Combined 91 100 95 95 92

Table 5 - Aeron.Net - Class level metrics

Technique Precision Recall Accuracy F1Score Efficiency

NC 100 25 59 40 100

NCC 100 31 62 48 100

Levenshtein 92 69 79 79 92

LCS B 100 75 86 86 100

LCS U 86 75 79 80 85

Tarantula 83 62 72 71 85

TF IDF 92 69 79 79 92

LCBA 69 69 66 69 62

NC Static 100 29 47 44 100

NCC Static 100 36 53 53 100

Levenshtein Static 91 71 74 80 80

LCS B Static 100 64 74 78 100

LCS U Static 100 71 79 83 100

Combined 88 88 86 88 85

Table 4 - ServiceStack.Text – Class level metrics

41

If we see at the combined score for both projects, it seems to be performing well. It

provides better F1 Score and better accuracy than each of the individual

techniques.

42

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

Test to code traceability links is really helpful in maintaining the code artifacts. It

provides traceability information when the code is changed at production. It tells

which test needs to be updated when a code is changed. Not only that, it provides an

efficient selection of tests that needs to be run when regression or integration testing

is done. But developing these links manually and maintaining them is a difficult task

for the developers.

The prototype tool presented in this research helps in developing these links

automatically. It reduces the burden on the developers by doing it automatically. It

creates the link based on the traditional techniques. The tool uses a combined

approach that gives a better result in terms of better accuracy and f1 score as

discussed and presented in Chapter 4.

The tool provides traceability links between two types. 1) test method-to-method

traceability links 2) test class-to-class traceability. The tool provides more effective

results at both class and method levels than the individual technique as shown in

Chapter 4.

5.2. Contribution

.NET (C#) is among the most used and trending programming languages. Many

enterprise applications are being developed using the new framework such as .Net

Core and .NET 5,6 as it provides the benefits of cross-platform and performance

improvements.

There are no tools available that can test and code artifacts automatically for these

projects. The tools that are available work with Java programming languages. A

couple of tools are available for C# for this purpose, but the code needs to be

updated for this purpose. A developer needs to insert code inside the classes and

43

methods to generate the traceability links. Which again, puts the burden on the

developers and it is again manual work.

The tool presented does not require any code changes inside the code. It simply uses

the concept of Aspect Oriented Programming (AOP), to inject the code at runtime

and collect the call traces. Then based on these traces, the tool automatically

develops the traceability links.

5.3. Future Work

The prototype tool presented in this research works with the NUnit testing

frameworks. There are a few other testing frameworks that are also popular and

adopted by the developers as well. These testing frameworks include the XUnit and

MS Test. The tool needs to be generalized to cater to these two frameworks as well.

The basics of these testing frameworks are the same. So, there is a need for these

frameworks to be incorporated into the tool as well.

The tool does not clearly distinguish between interface/abstract and concrete

implementations. Some work is required at this end as well. The tool needs to filter

out these abstract implementations as well.

44

References

[1] Sandler, C., Badgett, T., & Myers, G. (2013). The art of software testing.

Hoboken, N.J.: Wiley. doi: 10.1002/9781119202486

[2] Garousi, V., & Zhi, J. (2013). A survey of software testing practices in

Canada. Journal Of Systems And Software, 86(5), 1354-1376. doi:

10.1016/j.jss.2012.12.051

[3] Abhijit A. Sawant, Pranit H. Bari, P. M. Chawan (2012). Software Testing

Techniques and Strategies. International Journal of Engineering Research

and Applications, 2248-9622.

[4] Tosun, A., Ahmed, M., Turhan, B., & Juristo, N. (2018). On the effectiveness

of unit tests in test-driven development. Proceedings Of The 2018

International Conference On Software And System Process. doi:

10.1145/3202710.3203153

[5] Cleland-Huang, J., Gotel, O., Huffman Hayes, J., Mäder, P., & Zisman, A.

(2014). Software traceability: trends and future directions. Future Of Software

Engineering Proceedings. doi: 10.1145/2593882.2593891

[6] Gotel, O., Cleland-Huang, J., Hayes, J., Zisman, A., Egyed, A., &

Grünbacher, P. et al. (2011). Traceability Fundamentals. Software And

Systems Traceability, 3-22. doi: 10.1007/978-1-4471-2239-5_1

[7] Königs, S., Beier, G., Figge, A., & Stark, R. (2012). Traceability in Systems

Engineering – Review of industrial practices, state-of-the-art technologies and

new research solutions. Advanced Engineering Informatics, 26(4), 924-940.

doi: 10.1016/j.aei.2012.08.002

[8] Wiederseiner, C., Garousi, V., & Smith, M. (2011). Tool Support for

Automated Traceability of Test/Code Artifacts in Embedded Software

Systems. 2011IEEE 10Th International Conference On Trust, Security And

Privacy In Computing And Communications. doi: 10.1109/trustcom.2011.151

[9] Qusef, A. (2013). Test-to-code traceability: Why and how?. 2013 IEEE

Jordan Conference On Applied Electrical Engineering And Computing

Technologies (AEECT). doi: 10.1109/aeect.2013.6716450

[10] Krajewski, R. (2022). The State Of C# Development In 2022. Retrieved 14

July 2022, from https://www.ideamotive.co/blog/the-state-of-csharp-

development

[11] Saltali, I. (2022). What is new in DotNET 5.0. Retrieved 14 July 2022, from

https://www.kloia.com/blog/what-is-new-in-.net-5.0

https://www.ideamotive.co/blog/the-state-of-csharp-development
https://www.ideamotive.co/blog/the-state-of-csharp-development
https://www.kloia.com/blog/what-is-new-in-.net-5.0

45

[12] Lander, R. (2022). Announcing .NET 6 -- The Fastest .NET Yet. Retrieved

14 July 2022, from https://devblogs.microsoft.com/dotnet/announcing-net-

6/#performance

[13] .NET customers showcase | See what devs are building. (2022). Retrieved 14

July 2022, from https://dotnet.microsoft.com/en-us/platform/customers

[14] Ridgway, J. and McCusker, S. and Pead, D. (2004) 'Literature review of e-

assessment.', Project Report. Futurelab, Bristol. https://dro.dur.ac.uk/1929/

[15] Runeson, P. (2006). A survey of unit testing practices. IEEE Software, 23(4),

22-29. doi: 10.1109/ms.2006.91

[16] Daka, E., & Fraser, G. (2014). A Survey on Unit Testing Practices and

Problems. 2014 IEEE 25Th International Symposium On Software Reliability

Engineering. doi: 10.1109/issre.2014.11

[17] A., A., Akour, M., Alazzam, I., & Hanandeh, F. (2016). Regression Test-

Selection Technique Using Component Model Based Modification: Code to

Test Traceability. International Journal Of Advanced Computer Science And

Applications, 7(4). doi: 10.14569/ijacsa.2016.070411

[18] Vidacs, L., & Pinzger, M. (2018). Co-evolution analysis of production and

test code by learning association rules of changes. 2018 IEEE Workshop On

Machine Learning Techniques For Software Quality Evaluation (Maltesque).

doi: 10.1109/maltesque.2018.8368456

[19] Kicsi, A., Vidács, L., & Gyimóthy, T. (2020). TestRoutes. Proceedings Of

The 17Th International Conference On Mining Software Repositories. doi:

10.1145/3379597.3387488

[20] Elsner, D., Hauer, F., Pretschner, A., & Reimer, S. (2021). Empirically

evaluating readily available information for regression test optimization in

continuous integration. Proceedings Of The 30Th ACM SIGSOFT

International Symposium On Software Testing And Analysis. doi:

10.1145/3460319.3464834

[21] Parizi, R., Lee, S., & Dabbagh, M. (2014). Achievements and Challenges in

State-of-the-Art Software Traceability Between Test and Code

Artifacts. IEEE Transactions On Reliability, 63(4), 913-926. doi:

10.1109/tr.2014.2338254

[22] Rompaey, B., & Demeyer, S. (2009). Establishing Traceability Links between

Unit Test Cases and Units under Test. 2009 13Th European Conference On

Software Maintenance And Reengineering. doi: 10.1109/csmr.2009.39

[23] Csuvik, V., Kicsi, A., & Vidács, L. (2019). Evaluation of Textual Similarity

Techniques in Code Level Traceability. Computational Science And Its

https://devblogs.microsoft.com/dotnet/announcing-net-6/#performance
https://devblogs.microsoft.com/dotnet/announcing-net-6/#performance
https://dotnet.microsoft.com/en-us/platform/customers
https://dro.dur.ac.uk/1929/

46

Applications – ICCSA 2019, 529-543. doi: 10.1007/978-3-030-24305-0_40

[24] Yan, Q., Li, Y., Wu, Y., & Zhou, J. (2021). DFlow : A Data Flow Analysis

Tool for C/C++. IEEJ Transactions On Electrical And Electronic

Engineering, 16(12), 1635-1641. doi: 10.1002/tee.23467

[25] Ma'ayan, D. (2018). The quality of junit tests. Proceedings Of The 1St

International Workshop On Software Qualities And Their Dependencies. doi:

10.1145/3194095.3194102

[26] Jones, J., & Harrold, M. (2005). Empirical evaluation of the tarantula

automatic fault-localization technique. Proceedings Of The 20Th IEEE/ACM

International Conference On Automated Software Engineering - ASE '05. doi:

10.1145/1101908.1101949

[27] Christian, H., Agus, M., & Suhartono, D. (2016). Single Document

Automatic Text Summarization using Term Frequency-Inverse Document

Frequency (TF-IDF). Comtech: Computer, Mathematics And Engineering

Applications, 7(4), 285. doi: 10.21512/comtech.v7i4.3746

[28] Kicsi, A., Vidács, L., & Gyimóthy, T. (2020). TestRoutes. Proceedings Of

The 17Th International Conference On Mining Software Repositories. doi:

10.1145/3379597.3387488

[29] Meimandi Parizi, R., Kasem, A., & Abdullah, A. (2015). Towards

Gamification in Software Traceability: Between Test and Code

Artifacts. Proceedings Of The 10Th International Conference On Software

Engineering And Applications. doi: 10.5220/0005555503930400

[30] Gergely, T., Balogh, G., Horváth, F., Vancsics, B., Beszédes, Á., &

Gyimóthy, T. (2018). Differences between a static and a dynamic test-to-code

traceability recovery method. Software Quality Journal, 27(2), 797-822. doi:

10.1007/s11219-018-9430-x

[31] Gergely, T., Balogh, G., Horváth, F., Vancsics, B., Beszédes, Á., &

Gyimóthy, T. (2018). Analysis of Static and Dynamic Test-to-code

Traceability Information. Acta Cybernetica, 23(3), 903-919. doi:

10.14232/actacyb.23.3.2018.11

[32] Qusef, A., Bavota, G., Oliveto, R., Lucia, A., & Binkley, D. (2012).

Evaluating test-to-code traceability recovery methods through controlled

experiments. Journal Of Software: Evolution And Process, 25(11), 1167-

1191. doi: 10.1002/smr.1573

[33] Aljawabrah, N., & Qusef, A. (2019). TCTracVis. Proceedings Of The Second

International Conference On Data Science, E-Learning And Information

Systems - DATA '19. doi: 10.1145/3368691.3368735

47

[34] (2022). TCTracer: Establishing test-to-code traceability links using dynamic

and static techniques. Empirical Software Engineering, 27(3). doi:

10.1007/s10664-021-10079-1

[35] Rubasinghe, I., Meedeniya, D., & Perera, I. (2018). Automated Inter-artefact

Traceability Establishment for DevOps Practice. 2018 IEEE/ACIS 17Th

International Conference On Computer And Information Science (ICIS). doi:

10.1109/icis.2018.8466414

[36] Ghafari, M., Ghezzi, C., & Rubinov, K. (2015). Automatically identifying

focal methods under test in unit test cases. 2015 IEEE 15Th International

Working Conference On Source Code Analysis And Manipulation (SCAM).

doi: 10.1109/scam.2015.7335402

[37] Rafati, A., Lee, S., Parizi, R., & Zamani, S. (2015). A test-to-code traceability

method using .NET custom attributes. Proceedings Of The 2015 Conference

On Research In Adaptive And Convergent Systems. doi:

10.1145/2811411.2811553

[38] Aljawabrah, N., Gergely, T., Misra, S., & Fernandez-Sanz, L. (2021).

Automated Recovery and Visualization of Test-to-Code Traceability (TCT)

Links: An Evaluation. IEEE Access, 9, 40111-40123. doi:

10.1109/access.2021.3063158

[39] Aung, T., Huo, H., & Sui, Y. (2019). Interactive Traceability Links

Visualization using Hierarchical Trace Map. 2019 IEEE International

Conference On Software Maintenance And Evolution (ICSME). doi:

10.1109/icsme.2019.00059

[40] Csuvik, V., Kicsi, A., & Vidacs, L. (2019). Source Code Level Word

Embeddings in Aiding Semantic Test-to-Code Traceability. 2019 IEEE/ACM

10Th International Symposium On Software And Systems Traceability (SST).

doi: 10.1109/sst.2019.00016

[41] Liu, Y., Lin, J., Zeng, Q., Jiang, M., & Cleland-Huang, J. (2020). Towards

Semantically Guided Traceability. 2020 IEEE 28Th International

Requirements Engineering Conference (RE). doi:

10.1109/re48521.2020.00043

[42] Laghari, G., Dahri, K., & Demeyer, S. (2018). Comparing Spectrum Based

Fault Localisation Against Test-to-Code Traceability Links. 2018

International Conference On Frontiers Of Information Technology (FIT). doi:

10.1109/fit.2018.00034

[43] White, R., & Krinke, J. (2018). TestNMT: function-to-test neural machine

translation. Proceedings Of The 4Th ACM SIGSOFT International Workshop

On NLP For Software Engineering. doi: 10.1145/3283812.3283823

48

[44] Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., & Binkley, D. (2014).

Recovering test-to-code traceability using slicing and textual

analysis. Journal Of Systems And Software, 88, 147-168. doi:

10.1016/j.jss.2013.10.019

[45] Gergely, T., Balogh, G., Horváth, F., Vancsics, B., Beszédes, Á., &

Gyimóthy, T. (2018). Differences between a static and a dynamic test-to-code

traceability recovery method. Software Quality Journal, 27(2), 797-822. doi:

10.1007/s11219-018-9430-x

[46] Yujian, L., & Bo, L. (2007). A Normalized Levenshtein Distance

Metric. IEEE Transactions On Pattern Analysis And Machine

Intelligence, 29(6), 1091-1095. doi: 10.1109/tpami.2007.1078

[47] András Kicsi, László Tóth, and László Vidács. (2018). Exploring the benefits

of utilizing conceptual information in test-to-code traceability. Proceedings of

The 6Th International Workshop on Realizing Artificial Intelligence

Synergies in Software Engineering, 8–14. doi:10.1145/3194104.3194106

[48] Jayalakshmi, T., & Santhakumaran, A. (2011). Statistical Normalization and

Back Propagationfor Classification. International Journal Of Computer

Theory And Engineering, 89-93. doi: 10.7763/ijcte.2011.v3.288

[49] Kicsi, A., Csuvik, V., & Vidacs, L. (2021). Large Scale Evaluation of Natural

Language Processing Based Test-to-Code Traceability Approaches. IEEE

Access, 9, 79089-79104. doi: 10.1109/access.2021.3083923

[50] Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. 2012. Software and

Systems Traceability. Springer Publishing Company, Incorporated.

[51] Assemblies in .NET. (2022). Retrieved 9 August 2022, from

https://docs.microsoft.com/en-us/dotnet/standard/assembly/

[52] Reflection (C#). (2022). Retrieved 9 August 2022, from

https://docs.microsoft.com/en-us/dotnet/csharp/programming-

guide/concepts/reflection

[53] Clarke, J. (2009). Platform-Level Defenses. SQL Injection Attacks And

Defense, 377-413. doi: 10.1016/b978-1-59749-424-3.00009-8

[54] Groves, M. (2013). The Fundamentals of AOP. AOP in .NET: Practical

Aspect-Oriented Programming, Shelter Island: Manning.

[55] AOP in .NET | Aspect-Oriented Programming – PostSharp. (2022). Retrieved

9 August 2022, from https://www.postsharp.net/aop.net

[56] Precision vs Recall. (2022). Retrieved 9 August 2022, from

https://medium.com/@shrutisaxena0617/precision-vs-recall-386cf9f89488

https://docs.microsoft.com/en-us/dotnet/standard/assembly/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/reflection
https://www.postsharp.net/aop.net
https://medium.com/@shrutisaxena0617/precision-vs-recall-386cf9f89488

