
Department of Computer and Software Engineering

College of Electrical and Mechanical Engineering

National University of Science and Technology (NUST)

Islamabad, Pakistan

September 2022

Automatically Categorizing Software

Technologies

By

Suleman Khan

00000274810

Supervisor

Dr. Wasi Haider Butt

Department of Computer and Software Engineering

College of Electrical and Mechanical Engineering

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

September 2022

Automatically Categorizing Software

Technologies

By

Suleman Khan

00000274810

Supervisor

Dr. Wasi Haider Butt

A thesis submitted in conformity with the

requirements for the degree of Master of Science in

Software Engineering

i

DECLARATION

I verify that this research exertion titled “Automatically Categorizing Software

Technologies” is my own work. It has not been presented anywhere else for valuation

or publication. The facts and figures which have been used in this research from other

sources have been properly referred.

Student’s Signature

Suleman Khan

MS-18 CSE

ii

PLAGIARISM CERTIFICATE (TURNITIN REPORT)

 Turnitin report sanctioned by Supervisor is attached.

Student’s Signature

Suleman Khan

00000274810

Supervisor’s Signature

iii

COPYRIGHT STATEMENT

• Copyright in text of this proposal rests with the understudy creator. Duplicates

(by any cycle) either in full, or of concentrates, might be made exclusively as

per directions given by the creator and held up in the Library of NUST College

of Electrical and Mechanical Engineering (CEME). Subtleties might be acquired

by the Librarian. This page should frame a piece of any such duplicates made.

Further duplicates (by any cycle) may not be made without the consent (recorded

as a hard copy) of the creator.

• The responsibility for protected innovation privileges which might be depicted

in this postulation is vested in NUST College of Electrical and Mechanical

Engineering (CEME), dependent upon any earlier consent going against the

norm, and may not be made accessible for use by outsiders without the composed

authorization of the CEME, which will recommend the agreements of any such

arrangement.

• Additional data on the circumstances under which revelations and double-

dealing might occur is accessible from the Library of NUST College of Electrical

and Mechanical Engineering (CEME), Islamabad.

iv

ACKNOWLEDGEMENTS

I am beholden to Allah Almighty to have shown me the way all over this research

at every step and for every new thought undeniably. Whosoever helped me throughout

the course of my thesis, whether my parents, or any other individual was Your will, so

indeed none be worthy of praise but You.

I would also like to express special gratitude to my supervisor Dr. Wasi Haider

Butt for his assistance all over this journey, and to GEC members Dr. Muhammad Umar

Farooq and Dr. Arslan Shaukat for their guidance. Lastly, I would like to express my

gratitude to all the individuals who have rendered valuable assistance to my thesis.

v

ABSTRACT

The following research aims to create an automatic detection of programing

language. Taking source codes of a programing language as an input and giving output

the names of the programming languages of the respective input data. Due to unstructured

form of the literature and data available on internet and data repositories regarding this

topic, it is hard for researchers and users to manage that kind of data easily. Categorization

is the best way to develop formal knowledge base of unstructured data in a formal way

by considering source code of different programming languages and relationship of data

available. Detection of programing languages related research slightly increases in recent

years as it is not easy to develop expert systems or artificial intelligence-based systems

using raw data of huge amount of source codes. In this research Resource description

framework data regarding the source code of programming languages such as C, C++,

Python etc. has been collected and used for developing a system which not only detect

the name of the language whose source code is entered, but also ensures maximum

attainable level of accuracy.

Existing available detection tools rather focuses on the lack of informal language

and software technology standard taxonomy makes it impossible to analyze technology

trends on forums and other online sites. Furthermore, it defines its function (commercial,

PHP). By extension, this method can dynamically compile the list using all technologies

of a given type.

Keywords: IDE, PHP, WITT, WebIsADb, WiBiTaxonomy

vi

CONTENT

Declaration ... i

Plagiarism Certificate (Turnitin Report) ... ii

Copyright Statement .. iii

Acknowledgements .. iv

Abstract ... v

Content ... vi

List of Figures .. viii

CHAPTER 1: INTRODUCTION ... 10

1.1 Background and Drive... 11

1.2 Aims & Objectives .. 12

1.3 Structure of thesis: ... 13

CHAPTER 2: LITERATURE REVIEW .. 15

2.1 Overview ... 15

2.2 Categorization ... 17

 Application of Software Categorization .. 17

 WiBiTaxonomy.. 18

2.3 Programing languages ... 19

 C language ... 19

 Python .. 20

 Java .. 20

 MATLAB ... 20

 Csharp .. 21

 PHP .. 21

 HTML .. 21

 SQL .. 21

2.4 REASONS FOR DEVELOPING PROGRAMING LANGUAGE DETECTION

TOOL: ... 21

2.5 RELATED WORK.. 22

CHAPTER 3: PROPOSED METHODOLOGY & IMPLEMENTATION 24

3.1 Problem Definition .. 24

3.2 Research Methodology .. 24

 Data Gathering ... 25

 Data Extraction .. 26

 Data Transformation and Loading ... 26

 Data indexing ... 27

3.3 Importing Excel data file into MATLAB tool ... 27

 Open MATLAB code file in MATLAB Tool.. 27

vii

 How dataset is loaded into the MATLAB ... 28

CHAPTER 4: Results & discussion ... 30

4.1 Automatic Detection of Programing Languages and other steps 30

4.2 Results of all the functions except Program language detection 30

4.3 Result for Detection of Programing Language.. 32

4.4 Discussion & Comparison ... 33

CHAPTER 5: Detection Assessment ... 36

5.1 Expert assessment: .. 36

 Comparison Evaluation:... 36

CHAPTER 6: CONCLUSION & FUTURE WORK ... 40

6.1 Conclusion ... 40

6.2 Future Work .. 40

REFERENCES ... 42

viii

LIST OF FIGURES

Figure 1 Detection Algorithm ... 30

Figure 2 Secondary Functions .. 31

Figure 3 Confusion Matrix: Languages .. 31

Figure 4 Confusion Matrix: Platforms .. 32

Figure 5 Detection of Programing Language ... 32

Figure 6 Accuracy for hypernym detection .. 33

Figure 7 Dataset Sample ... 33

Figure 8 Algorithm ... 34

Figure 9 Confusion Matrix (for comparison) ... 36

Figure 10 Confusion Matrix (for comparison) ... 37

Figure 11 Confusion Matrix (for comparison) ... 37

Figure 12 Accuracies (for comparison) .. 38

ix

1st Chapter

Introduction

10

CHAPTER 1: INTRODUCTION

Knowledge is inadequate and useless if it is not presented and managed in an

efficient manner. Efficient sharing of knowledge helps in achieving innovations and it

results in development of humankind. In past decade, there is a bang of knowledge

available on the internet and research publications. Specially, in the domain of software

tools and technologies, huge amount of research been carried-out and sharing this

categorization knowledge made an important instrumental step towards development.

However, a lot of software knowledge is stored in the form which is not easy to access

for everyone because of its unstructured nature. Massive research on this topic is available

on internet but it is difficult to obtain the required results. If data related to the hypernyms,

source codes and tags related to different software tools and technologies is easily

accessible to everyone then there would be many advantages accomplished including,

accurate knowledge sharing and reusability.

At present, people are intrigued about the concept of automatic detection of the names of

programing languages, automatically categorization of software technologies and the

usage of artificial intelligence knowledge. They are more worried about their time and

want to have a system which give them complete knowledge about the best available tool.

The method in use for detection of programing languages is Glasslang and for software

categorization is MUDABlue. This method would categorize an enormous collection of

software platforms automatically. It does not only organize computer software structures

but also find out clusters from the classifications group inevitably. This technique can sort

starved of any information about the software in search. Moreover, they employed an

interface to this method, a category-based package repository browsing system. This

method permits scanning a depository considered, where a system can fit into numerous

classes [1].

 These people use search engines for search of their particular information. These

type of searches over the internet increases on daily basis by persons do not belong to

software domain. Particularly, the data or information in software categorization domain

available in unstructured manner on and on the web [2]. Most commonly used search

engines like Google have not able to address this issue until now. Main cause of this issue

is the lack of semantic orientation of data available online on publication or web [3]. If

11

data related to software tools easily accessible to everyone then there would be many

advantages accomplished including, accurate information sharing and reusability.

1.1 Background and Drive

There is a huge amount of literature on software applications or tools is created in

last few decades, key reason for this explosion is the development of new tools and

technologies every other day. Now it becomes tangible that this huge textual form of data

can be efficiently used through automated text extraction approaches [4]. Huge amount

of software data or information is available on internet in an unstructured form, but the

one cannot easily extract required results [5]. In software domain, there is a lot of

information present in unstructured form in publications. This problem is not yet

addressed by commonly used search engines and text extraction tools and techniques [4].

One of the main reasons for this issue is lack of semantic orientation of available data on

internet and publications, which makes search engines unable to get required results. If

this information will be easily available to the people, then people can use it for their

benefit in an efficient way.

Semantic web terminology is usually profited without rich consideration of the

associations and backgrounds data. It is an extension of the World Wide Web (www) that

are associated in such a way that they can easily be processed by machines or computers

instead of human operators [6]. Thus, PCs can make significant translations like the way

human interaction data to accomplish their objectives. This nature of semantic web

permits putting away information in underlying structure. Converting conventional web

toward semantic is really challenging task. Thus, this leads our goal towards creating a

system which may have organized data and will help in detection of programming

languages from their source codes.

Programming order is officially characterized as "Express association of programming in

a gathering. These gatherings permit programming to be figured out with regards to those

classifications, rather than particularities of each bundle. Different arrangement plans

think about various parts of order." [7]. Software depositories sustain programs that are

usually classified to boost the usefulness of several conservation responsibilities.

Appropriately classified programs permit collaborators to detect necessities interrelated

to their programs and envisage conservation glitches in software packages. Manual

12

cataloguing is exorbitant, monotonous, and arduous. Therefore, automatic categorization

methods are attaining prevalent significance. Regrettably, for unalike legitimate and

organizational details, the software’s source code is every so often unavailable, hence

making it hard to robotically sort these software’s. In addition, the authors recommend an

innovative method in which they use these requests from independent libraries for the

programmed sorting of programming systems which utilize these requests.

Natural language as well as the non-existence of a set of nomenclature for applications

prepare it hard to dependably evaluate automation courses on debate mediums as well as

alternative networking platforms. Authors suggest an automated method known as Witt

for software package technologies categorization (an extended form of the hypernym

unearthing problem). This method obtains as input a sentence unfolding an application

technology or notion and gives back a standard class that elaborates it (e.g., IDE), together

with features that further certify. In addition, the method empowers the run-time

formulations of catalogues of entire technologies of a specified kind. Furthermore, Stack

Overflow as well as Wikipedia are the two main sources of this technique. In addition to

this, it encompasses several novel field transformations and a resolution to standardizing

spotted hypernyms' issue. Authors compare Witt with six autonomous classification

technologies and figure out that, once applied to software terms, this technique

established improved exposure compared to all gauged substitute methods, without

conforming to dilapidation in false-positive rate [8].

Software development is growingly dependent on off-the-shelf elements in the shape of

frames, libraries, coding languages as well as instruments to practice them. Natural

language and the want of a typical classification for programs concoct it hard to

dependably examine high-tech trends in dialogue mediums as well as additional

ubiquitous places. Witt is recommended for an automatic classification of software

methods. A simple sentence is acquired by the system which describes a package notion

and gives back a common class which explains it (e.g., an IDE), accompanying

characteristics that certify it even further. By means of augmentation, the method permits

the run-time formation of catalogue of all applications of a specified nature [9].

1.2 Aims & Objectives

The abundance of data which come from various sources may hinder the retrieving

13

process of useful knowledge. Due to that reason, detection and categorization approach

in data integration has attracted the attention due to its ability in doing research work.

Henceforth, the available study on the idea of automatic detection of programing

languages has lot of potential and study related to an automatic categorization of software

technologies could be studied in more detail and offered in a holistic form for individuals

as well as corporations. So that they can get the best viable options when they are going

to search online. The better the categorization technology the better the results. Moreover,

it will not only give required results but also save individuals’ valuable time.

Consequently, it is necessary to conduct the systematic literature review to figure out the

details about the available software technologies in a market for automatic detection.

1.3 Structure of thesis:

 1st chapter: Includes an Overview of the thesis, derive behind this research work

and domain information, motivation for topic selection and objectives of the research and

structure of this thesis. 2nd chapter comprises the detailed systematic literature review

whereas the 3rd chapter highlights the proposed methodology and implementation of our

proposed idea. 4th chapter comprises Results and Validation. 5th chapter comprises

conclusion that concludes the thesis along with ideas for further improving the existing

work under the heading future work.

14

2nd Chapter

Literature Review

15

CHAPTER 2: LITERATURE REVIEW

In this section overview of the already research presented on the subject of the

automatic detection of software languages is produced. Related work for the domain of

software tools, which are developed by different data sources and their features, are

presented comprehensively in this chapter. The shortcoming of these related developed

technologies is discussed and how we try to overcome these shortcomings. The features

and coverage of general categorization tools are also discussed.

2.1 Overview

The automatic detection of language relations can usually trace back to the

development of WordNet [10], which is a hand-made catalogue of connotations, like

hypernyms or synonyms. Of particular relevance to researcher’s effort is Miller et al.

Explanation off’s pseudonym 'A concept x is a pseudonym for the concept y because

native English speakers accept sentences composed of frames, such as x is a (some kind)

y''.

Then automatically construct word relations using text extraction: Hearst proposes

a series of dictionary syntax patterns that usually represent lower words (e.g., "like X")

[11], and Caraballo expands this idea by putting upper words together in a hierarchical

structure add [12]. These methods have been improved by using language dependence [7]

as well as guided algorithms of deep learning [8]. These methods function by exploiting

a plethora of text. One of the up-to-date related technologies is the WebIsADb [9], that

extrapolates as of Common Crawl, which accesses billions of web pages.

Earlier research has every so often used Wikipedia as the vital source for the

taxonomy construction, as it is considered the immense easily accessible assortment of

encyclopedia knowledge [9].

Witt cannot depend on these out-of-date methods since the label info on Stack

Overflow is usually brief and every so often lacking; the author cannot accept the

existence of related links. Therefore, they implemented a new linking method founded on

diverse information and precise field circumstances.

Other researchers are working to extract semantic relationships between Wikipedia

articles. e.g., Zhongshan et al. [13] search for any semantic relationship by discovering

16

related terms and predicates of the relationship. THD efforts to use the link hypernym

data set generated from Wikipedia [14], [15] to invent the superordinate of the enquiry.

Given the figure of relations and metadata available on Wikipedia, many other methods

of extracting information are possible, such as the use of word matches [16], keyword

popularity [17] or HTML tables [18]. The Wikipedia Bitaxonomy Project (WiBi) takes

out data from Wikipedia articles to complement to the nomenclature of Wikipedia groups,

and contrarywise, [19] to improve the value of the consequential facts’ assembly.

Lastly, some organized information takes out effort on Wikipedia came to DBPedia

[20]. Which is a structured information database, and through various tools and APIs,

hyperlinks can also be called [21]. The industry is also making similar efforts [22].

The work contrasts with researchers’ efforts to search for purposeful terms in

hyperlinks instead of extracting entities from text, so they have to tackle by inadequate

background data to discover related articles. Researchers get the better of this want of

background by means of domain-specific knowledges.

Some researchers used NLP to take out key notions from the qualifiers demarcated

in the code and merge them into a structure similar to WordNet, including their top

relationship [23]. Similarly, another researcher uses heuristics to determine wherever

notions related to the qualifiers in the source [24] are introduced or described. In both

methods, each expression is obtained from code rudiments, and this material is not usually

used to classify software technologies.

Labels are frequently used as descriptors of software technology so that they can

be used as groups. On the usage of labels in work system management, authors originate

that inventor established implied and obvious devices to oversee tag vocabulary [25].

Used for software projects such as free codes to offer a larger label vocabulary on

websites, Wang et al. An equality measure has been proposed to derive lexically

correlated labels in addition establish a nomenclature [26]. An agglomerated tiered

grouping outline is proposed, which depends on the similarity of every two labels,

exploiting information as of Ohloh [27]. It should be noted that their effort does not

harvest a pecking order of hypernyms: e.g., the term hibernation is grouped as a child

node of java.lang.org. In addition, earlier research has anticipated a label commendation

method for works on Ohloh and Freecode [28]. Furthermore, a method for finding alike

programs founded on Source Forge labels [29].

17

Tags are employed to specify programming lingoes, outlines, environmental issues,

fields, and non-functional matters in Stack Overflow [30]. Numerous methods have been

technologically advanced to recommend tags for Stack Overflow reports, together with

discriminant prototypical methods [31], Bayesian probability models [31], and a method

that combines multiple techniques called TagCombine [32]. Witt method inevitably

classifies software applications.

2.2 Categorization

Categorization can be defined as a clear description of a conceptualization. The

term first used by Aristotle and borrowed from philosophy. In philosophy it is a

systematic version of any existence. In Artificial intelligence existence mean which can

be represented efficiently. When domain knowledge is presented in declarative form then

the set of objects represented are called “universe of discourse”. These sets and

relationship between them can be converted into representational knowledge based (KB)

program that shows knowledge [33]. In Artificial intelligence, it can be a set of procedures

which defines set of representational terminologies. Thus, categorization can also be

defined as set of entities which can be grouped in a way which is based upon their uses

or purposes. Generally, it is a methodology developing logical sets[34]. Therefore, this

type of technique can be used in building many types of applications such as expert

systems, and Natural Language Processing (NLP), and could be used as a basis for

Semantic Web [35].

 Application of Software Categorization

Categorization is the way to act as a base for development of expert and intelligent

systems. It also gives an efficient answer to the question which is better tool between the

two tools. One of the main advantages of using categorization is increase in efficiency, it

can be act as a basis for development of another such tools due to its identical novel

approach. Ontology can also provide foundational base for semantic web as ontologies

are opposite to closed world traditional databases, these databases are limited to a

particular domain knowledge [36]. As it possesses flexible nature that can be used for

gathering more and more information, data, and knowledge. It designates the concepts

and relation between these ideas which are correlated to a particular area. The application

ideas are currently in market are following.

18

 WiBiTaxonomy

The WiBiTaxonomy Project (WiBi) [20] uses NLP technology and existing links between

articles and categories to create a better relationship chart from all articles and groups of

Wikipedia. For example, WiBi bank on the hypothesis that the primary sentence of a

piece of an article explains the theme of that.

2.2.2.1 THD

Targeted Hypernym Discovery (THD) [15], [16] uses manual vocabulary syntax patterns

to detect hypernyms from target data foundations.

2.2.2.2 WordNet

WordNet [4] is a vocabulary database that contains information such as top and bottom

ratios. The database is handmade and is measured the gold standard for many linguistic

programs.

2.2.2.3 DBpedia Spotlight

DBpedia [21] is a crowdfunding database full of organized info from Wikipedia. Entry

encompasses, amongst additional gears, the relationship of hypernyms. It is a method for

recording manuscripts with DBpedia accesses. It extracts the published text as input and

automatically extracts DBpedia entries.

2.2.2.4 WebIsADb

The WebIsADb was created by applying a set of sophisticated and extensive grammatical

patterns (similar to the Hearst pattern) to the large network document corpus common

crawl. Additionally, to find hypernyms, WebIsADb too practices pre-adjusters and post-

modifiers. This concept is comparable to our properties.

2.2.2.5 Google

The Google search engine defines definition operators. It will try to find the word

definition from the operator in the case of a search engine. If in any case only single

explanation is reckoned, it will seem in a special container at the topmost portion of the

network link. They use the definition as a hypernym when label is analyzed as a noun.

They only cast-off totaled explanations, or instances.

19

2.2.2.6 Witt

Researchers considered three variants of Witt (What is Technology) method for

evaluation purposes. Their variant reproduces only the original hypernym as explained in

up-coming section (WittH). The other option pays back only the name of the main

category lacking any extra attributes and treats the pay back category as a hypernym

(WittC). For a given label, the third variant returns the corresponding category and all

additional properties (WittCA). These variants are desirable to response the second query:

What is the effect of the novel hypernym abstraction stage on the grouping equivalent

technology?

2.3 Programing languages

Software’s are written into many different languages due to their vast domain. The

languages which we have used for our initial research work are.

• C

• Python

• Java

• MATLAB

• Csharp

• PHP

• HTML

• SQL

 C language

C is a procedural programming language with a static framework that has the

usefulness of organized programming, recursion, and lexical variable expansion. C is

planned with develops that move well to general equipment guidelines. It has a stretched

past of purpose in programs recently inscribed in composite linguistic. It is a machine-

free coding language which is predominantly in use to make numerous sorts of

consumptions and employed frameworks such as Microsoft-Windows and other complex

projects e.g., the Oracle data set, Git, the Python translator, and games, and is regarded

as a fundamental software development. during the period used up learning another

programming language. Employed frameworks and different application structures for

20

Personal computers (PCs) models: mainframes to PLCs and implanted frameworks are

illustrations of such software’s.

 Python

Python is a significant level, broadly useful, deciphered, object-situated programming

language. Like PERL, It is also a well-known software development language with software

engineers expertise in C++ and Java. By working in this language, clients may decipher

articulations on different working frameworks, together with UNIX-based frameworks, Mac

OS, MS-DOS, OS/2, and various renditions of Microsoft Windows 10 and Windows 11.

 Java

Java is a universally useful, software development language projected to partake

less organization dependance. It is a useful phase for the improvement of software

application’s development. Accordingly, it is fast, safe as houses, and trustworthy. It is

sketchily operated for the advancement of Java applications on Personal computers,

server farms, game control center, rational workstations, cell phones etc.

 MATLAB

It is a product improvement language created by MathWorks. It started as a

framework program composing language where customary variable-based number

related composing PC programs was essential. It might be run both under savvy

gatherings and as a bundle work. This educational activity gives you powerfully a

sensitive show of MATLAB programming language. It is expected to give students

experience with MATLAB programming language. Issue based MATLAB models have

been given in direct and straightforward way to make your getting on rapidly and

reasonable.

This software is integrated into hardware as part of larger systems to control its

various functions. This type of software is embedded in the system ROM (Read Only

Memory). For example, the keyboard control software embedded in a microwave or

washing machine where it has to analyze data and make decisions and actions that allow

the product to function as desired. This software is also called smart software because of

its performance.

21

 Csharp

Csharp is a generally helpful, present day and thing arranged programming

language enunciated as "C Sharp". Microsoft made it drove by Anders Hejlsberg and his

gathering inside the .NET drive and was upheld by the European PC Producers Affiliation

(ECMA) and Global Principles Association (ISO). C# is among the tongues for Normal

Language Foundation. C# is an incredible arrangement like Java semantically and is

straightforward for clients who have some familiarity with C, C++, or Java.

 PHP

PHP is an open-source server-side prearranging language that numerous versions

use for web advancement. It is likewise a broadly useful language that you can use to

make loads of tasks, including Graphical User Interfaces (GUIs).

 HTML

HTML grants web clients to make and configuration portions, areas, and

associations using parts, names, and qualities. Regardless, it's very huge that HTML isn't

seen as a programming language as it can't make dynamic convenience.

 SQL

It has hanged around an unfailingly recognized pronouncement for dataset

throughout the long term, generally due to its usability and the profoundly productive way

it questions, controls, totals information, and plays out many different capabilities to

change assortments. enormous measures of organized information in valuable. data.

2.4 REASONS FOR DEVELOPING PROGRAMING LANGUAGE

DETECTION TOOL:

The foremost purpose for developing this is information sharing for the

investigators and researchers, which required information related to similar domain [37].

Some other reasons are listed below,

• Sharing the information required in similar domain.

• Reusing previously created ontologies related to same domain.

• Extracting domain knowledge efficiently from general or operational

knowledge.

22

2.5 RELATED WORK

Existing devices like Google Code Prettify [38] are accessible that permit features

language structure in source code pieces utilizing heuristics. Sentence structure for all of

the upheld programming dialects are now predefined in the application. Yet typically this

cannot distinguish the programming language of piece of code. There are additionally

devices like SyntaxHighlighter [39] or Feature [40] that grammar label bits in blog entries

utilizing predefined set of watchwords accessible. Devices like SourceClassifier [41]

utilize Credulous Bayes classifiers for recognition programming language of an asset. As

affirmed by our outcomes in this paper it is by all accounts very lacking as their precision

strategies are a lot of lower than what might be viewed as satisfactory by and by. Little et

al. [42] proposes a measurable method for programming language recognition

in view of the location of blocks or remark strings of the asset and execution

measurable examination for exceptional characters, for example, sections, the main word

in a line, last person, administrators, accentuation and so on. This technique performs

better compared to execution of Source Classifier yet is still very unsatisfactory

practically speaking with a precision that falls well beneath half. Source code web search

tools like SearchCode [43] and Codase [44] have filed vast number of source codes and

give accessibility to explicit catchphrases. Notwithstanding, they primarily utilize quick

ordering strategies catchphrases for delivering results. They do not be guaranteed to

distinguish the programming language. These strategies can function admirably for

getting assets in an exceptional programming language, yet will not work for applications,

for example, programmed sentence structure featuring

23

3rd Chapter

Proposed Methodology &

Implementation

24

CHAPTER 3: PROPOSED METHODOLOGY &

IMPLEMENTATION

3.1 Problem Definition

There are many bits of source code shared by clients' famous internet-based

discussions devoted to investigating and tackling programming issues related questions

like Stack Exchange [45]. Notwithstanding, most web crawlers appear to fundamentally

track down assets in unambiguous programming dialects because of the absence of

programmed source language discovery. Frequently, most sites and gatherings use

dependable guidelines to track down the language by utilizing development and

additionally marker-based techniques to recognize catchphrases. However, with

substantial number of online discussions accessible, the source language for most assets

stays anonymous and they merely show up as pure writing records. It will be very

valuable on the off chance that efficient means are utilized to decide the programming

language wherein an asset or even a piece of code is composed. This, obviously, would

prompt greater code reuse and better web search tool perceivability. Looking for source

code motors like SearchCode [43] or Codase [44] can enormously profit from this model

having the option to record assets by confining the language. In this paper we propose a

Bayesian learning-based model for the revelation of fundamental programming language

from a source or piece of code.

This examination plans to foster an instrument for programmed recognition of

programming dialects utilizing MATLAB. After thought of numerous information

wellspring of programming dialects we develop our own dataset comprising generally

around 1000 source codes since we want to play out this undertaking according to novel

viewpoint. It contains information including the name of some of programming dialects,

source codes, and labels. The total examination technique is made sense of in this part

[46].

3.2 Research Methodology

In order to create automatic detection tool for programing languages firstly data

from Google, IEEE, ACM, and other internet sources is collected, refined, and saved in

an excel file. After that data is loaded into MATLAB tool. Then data is distributed into

25

test data and train data sets. Moreover, tokenization is done and classifiers’ training using

knn and ecoc and testing using prediction model is performed [47]. In addition to,

confusion matrix is generated to validate the results. At the last phase, the name of

programing languages is automatically detected. Research methodology at abstract level

is describes in figure below. Each step is then further explained in detail in this chapter.

Figure 3.1 (Research Methodology)

 Data Gathering

As mentioned above we use Google Scholar, IEEE, ACM, Google, and other

internet sources as a data source to generate dataset for this research. Google search serves

as a core source as for collection of source codes of different programing languages used

in our research. Detail of steps carried out to obtain desirable data from these data banks.

This, clearly, would incite more prominent code reuse and better web search apparatus

detectable quality. Searching for source code engines like SearchCode [43] or Codase

[44] can gigantically benefit from this model having the choice to record resources by

restricting the language. In this paper we propose a Bayesian learning-based model for

the disclosure of key programming language from a source or piece of code.

START

 DATA
EXTRACTION

DATA
TRANSFORMATION &

LOADING

DATA
GATHERING

Programing
 Language
DETECTION

DATA
TOKENIZAION

END

CONCEPT
MAPPING

26

 Data Extraction

In the wake of setting up the information, Google program used to extricate

information from other web assets. There are two delivery arrangements of Google.

Transformation framework incorporates both as result of assets. In our review we pick

unstructured as result data. Designers and specialists rouse to utilize unstructured data in

light of the fact that it offers significant benefits in source jargon straightforwardness and

address the total semantics of each source jargon [48]. Additionally, more suitable

portrayals of idea name, source, and progressive data (connection). We removed

information in unstructured utilizing program to pick our subset. Information extraction

brings about GBs of unstructured records. To remove information from Google and

convert that information into literary records that will be viable for stacking it into data

set, following advances ought to be done.

 Data Transformation and Loading

As we have tremendous size extricated information from different data sets which

is in unstructured configuration. We have use ETL (Extract, Load, Transform) way to

deal with manage Google and different data sets information. The separated information

ought to be stacked into a legitimate configuration for recognition. For this reason, we

have made dataset and compose a bunch content to stack information from unstructured

configuration to organized design. The course of information stacking is displayed in

Figure.

27

Figure 3.2 (Data transformation & Loading)

 Data indexing

In the wake of stacking information into Excel document, stacked records are in

thousands and it ought to be filed. Record design of dataset further develops the

information recovery procedure on .csv document. Files activity rapidly search the

expected information from table without looking through each record of dataset. For this

reason, manual investigation has been performed.

3.3 Importing Excel data file into MATLAB tool

To import data into MATLAB tool for automatic detection of programing

languages from source code following steps are followed.

 Open MATLAB code file in MATLAB Tool.

In MATLAB tool, go to Open file icon and press a click on it. Then go to the

folder of source code and select the code file and press enter. In this way code file is

opened tool, and ready to run. Before running the file, one needs to the add path of code

file to the same destination where tool is running. Now, code can be run and produce

desired results.

START
MANUAL
ANALYSIS

EXCEL FILE
CREATION

END

END

UNSTRUCTURED
DATA

COLLECTED
 USEFUL
 DATA

28

Figure 3.3 (Open code in MATLAB)

 How dataset is loaded into the MATLAB

The dataset is loaded by using the data read function of MATLAB language. It is

depicted in the following diagram

Figure 3.4 (Dataset Loading)

29

4th Chapter

Results & Discussions

30

CHAPTER 4: RESULTS & DISCUSSION

After applying all steps of research methodology automatic detection of

programing languages’ names from their source codes are finally become possible. All

required steps: First, loading of data. Secondly, partitioning of datasets into test and

training data. Thirdly, transforming the data for hypernyms. Fourthly, tokenized

document. Fifthly, usage of remove Stopword function to remove extra spaces for better

efficiency. Sixthly, use the bagofWords function. Seventhly, use training and testing

classifiers for data classification. Eighthly, plot confusion matrixes to find out the

accuracy of the classification. In the end, detect the name of the programing language by

entering source code.

4.1 Automatic Detection of Programing Languages and other steps

The figure below is showing the working of our algorithm of automatic detection

of programing languages from source code in MATLAB tool.

Figure 1 Detection Algorithm

4.2 Results of all the functions except Program language detection

Following figure shows the results of all the functions such as bag, cvp, data,

dataTest, dataTrain, documents, Documents, Documents1, documents_text, dataset

loading, model1, model2, testhyper, testing_time, and testlabel. These are the results of

functions which we have used in our code to set a platform the detection of programing

language in an efficient way.

31

Figure 2 Secondary Functions

Figure 3 Confusion Matrix: Languages

32

Figure 4 Confusion Matrix: Platforms

4.3 Result for Detection of Programing Language

 After showing all the above-mentioned function. Finally, following two figures

shows the result for automatic detection of programing language from a source code and

second figure shows the accuracy of this algorithm.

Figure 5 Detection of Programing Language

33

Figure 6 Accuracy for hypernym detection

4.4 Discussion & Comparison

For building our model we collected over 1000 source codes of eight programing

languages (C, C#, Python, Java, MATLAB, PHP, HTML, and SQL) from publicly

available repositories as Google Scholar, IEEE, ACM, GitHub, and other internet sources.

Using these resources, we have created our dataset [49]. A manual testing was finished

on the sources to change the unstructured type of information into organized structure.

Following two figures show the sample of our final dataset.

Figure 7 Dataset Sample

Moreover, the following figure again shows our algorithm

34

Figure 8 Algorithm

35

5th Chapter

Detection Evaluation

36

CHAPTER 5: DETECTION ASSESSMENT

5.1 Expert assessment:

For the assessment of any software detection algorithm commonly used methods

are expert opinion and automated evaluation. But, for automated detection of the names

of programing languages the state-of-the-art system should be available for particular

domain. In case of our algorithm there is system available. So, we chose to evaluate our

model with that model named as Glasslang. And at the same time also we conducted

surveys from experts. 10 software experts were chosen from different software houses of

Pakistan and a google form-based questionnaire is forwarded to them to record their

opinion. 5-point like scale (Strongly Agree, Agree, Neutral, Disagree, Strongly Agree) is

used to evaluated expert opinion about the newly developed detection algorithm. This

evaluation covered the accuracy results of classifier and confusion matrixes.

 Comparison Evaluation:

Now will briefly provide the comparison with another detection tool. Although this

tool is built on large dataset as compared to our dataset, but its accuracy is bit on the lower

side then our predicted model. Moreover, Naïve Bayes classifier, Bayesian Network, and

Multinomial Naïve Bayes classifiers with accuracy of 82.48%, 89.59%, and 93.48%.

Whereas the accuracy of our algorithm is almost 98% as shown in the Figure 6,9,10,and 11

show the confusion matrixes for the algorithm which we are using for comparison with our

model and Figure 12 shows the accuracy result of the compared algorithm.

Figure 9 Confusion Matrix (for comparison)

37

Figure 10 Confusion Matrix (for comparison)

Figure 11 Confusion Matrix (for comparison)

It shows the disorder network for the Naive Bayes Classifier. The confusion grid shows

the quantity of sources that were precisely portrayed for each language what is more, the

quantity of sources that were misclassified. Out of 2392 source archives which we used as

test data; 1973 records were precisely described giving a precision of 82.48%. Likewise,

shows the confusion lattice for the Bayesian Network Classifier. The Bayesian Network

Classifier is out and out more definite over the Naïve Bayes Model. Out of 2392 records used

for test data, 2143 source archives have been precisely recognized and 249 records have been

incorrectly perceived giving a precision of 89.59%. Also, they show the disorder framework

resulting to using Multinomial Credulous Bayes Classifier. The results show that Multinomial

Naive Bayes Classifier has performed better contrasted with Bayesian Network Classifier

model. This consequently spreads out the transcendence of Multinomial Naive Bayes model

over Naive Bayes model. Out of 2392 archives which were used as test data, MNB Classifier

is skilled to precisely organize 2236 source records, where only 156 reports have been

mistakenly portrayed. This furnishes us with the precision of 93.48%, which is the best result

among all the Bayesian classifier models used in their preliminary [50].

38

Figure 12 Accuracies (for comparison)

On the other hand, we used KNN and COC classifiers for the development of

our models. The following figure shows accuracy of our models

Figure 13 Accuracies

Although, our models are showing better accuracy as compared to above mentioned

classifiers, but we know that our dataset is much smaller than the dataset used for the research

with which we are comparing. In addition to, our research is also doing tokenization and

remove stopword which are not only beneficial for automatic detection of programing

languages from source code, but their main advantage will be shown in our future research

on automatic categorization of software technologies. Confusion matrixes of our model are

already provided under the chapter of results and discussion.

39

6th Chapter

Conclusion & Future Work

40

CHAPTER 6: CONCLUSION & FUTURE WORK

6.1 Conclusion

In this paper we introduced a calculation for programmed location of programing

dialects from source code. Taking source codes of a programing language as an

information and giving result the names of the programming dialects of the particular

information. Because of unstructured type of writing and information accessible on web

and information archives in regard to this subject, it is hard for scientists and clients to

handily deal with such an information. Order is the most effective way to foster

conventional information base of unstructured information in a proper manner by

considering source code of various programming dialects and relationship of information

accessible. Identification of programing dialects related research somewhat increments as

of late as it is not difficult to foster master frameworks or man-made reasoning-based

frameworks utilizing crude information of colossal measure of source codes. In this

exploration Resource portrayal structure information with respect to the source code of

programming dialects, for example, C, C++, Python and so on has been gathered and

utilized for fostering a framework which not just recognize the name of the language

whose source code is placed, yet in addition guarantees most extreme feasible degree of

precision.

6.2 Future Work

As we do not guarantee that our answer is all around unrivaled to existing scientific

classification devices. For sure, it was created with the objective of performing great for

the product area, and therefore it encodes numerous product explicit guidelines. By the

by, the assessment gives us certainty that to consequently classify programming

advancements, Witt is presently the most ideal choice that anyone could hope to find. In

future the developed detection algorithm can be used to develop an algorithm for much

bigger dataset then what we have collected and developed for our research work. Another

future dimension is incorporation of multiple languages for expanding the scope of our

detection algorithm for helping the people who want to use automatic detection algorithm

for programing languages. Furthermore, we will also work on another aspect of this

research which is automatic categorization of software technologies. Here in this paper,

41

we just give very brief touch of this topic. For this purpose, we will integrate our

developed dataset with other bigger chunk of data.

42

References

REFERENCES

[1] S. Kawaguchi, P. G. (2005). MUDABlue: an automatic categorization system for

open-source repositories. 11th Asia-Pacific Software Engineering Conference.

Busan, Korea (South): IEEE.

[2] Ramona-Cristina, P., Vasilateanu, A., & Goga, N. (2016). Ontology based multi-

system for SME knowledge workers. 2016 IEEE International Symposium on

Systems Engineering (ISSE). doi: 10.1109/syseng.2016.7753132

[3] Weikum, Gerhard, and Martin Theobald. "From information to knowledge:

harvesting entities and relationships from web sources." Proceedings of the twenty-

ninth ACM SIGMOD- SIGACT-SIGART symposium on Principles of database

systems. ACM,(2010).

[4] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller, “Introduction

to Wordnet: An on-line lexical database,” International Journal of Lexicography,

vol. 3, no. 4, pp. 235–244, 1990

[5] Rabie, O., & Norcio, A. (2013). Discussion of Some Challenges Concerning

Biomedical Ontologies. Human-Computer Interaction. Applications And Services,

173-180. doi: 10.1007/978-3-642-39262-7_20

[6] Bouchiha, D., & Malki, M. (2010). Towards re-engineering Web applications into

Semantic Web Services. 2010 International Conference on Machine and Web

Intelligence. doi: 10.1109/icmwi.2010.5648057

[7] Software categories - Wikipedia. (2022). Retrieved 7 July 2022, from

https://en.wikipedia.org/wiki/Software_categoriesFlouris, Giorgos, et al.

"Ontology change: Classification and survey." Knowledge Engineering Review

23.2 (2008): 117-152.

[8] Mathieu Nassif, C. T. (JANUARY 2020). Automatically Categorizing Software

Technologies. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

46, NO. 1,.

[9] Sidramappa, K. M. (2019). A Novel Approch Automatically Categorizing Software

Technologies. International Research Journal of Engineering and Technology

(IRJET) .

43

[10] [4] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. J. Miller,

“Introduction to Wordnet: An on-line lexical database,” International Journal of

Lexicography, vol. 3, no. 4, pp. 235–244, 1990

[11] [5] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in

Proceedings of the 14th Conference on Computational Linguistics, 1992, pp. 539–

545.

[12] [6] R. Snow, D. Jurafsky, and A. Y. Ng, “Learning Syntactic Patterns for Automatic

Hypernym Discovery,” in Proceedings of the 18th Annual Conference on Neural

Information Processing Systems, 2004

[13] [10] M. Dojchinovski and T. Kliegr, “Entityclassifier.eu: Real-time classification

of entities in text with wikipedia,” in Machine Learning and Knowledge Discovery

in Databases, ser. Lecture Notes in Computer Science, H. Blockeel, K. Kersting, S.

Nijssen, and F. elezn, Eds. Springer, 2013, vol. 8190, pp. 654–658

[14] [11] T. Kliegr, V. Svatek, K. Chandramouli, J. Nemrava, and E. Izquierdo,

“Wikipedia as the premiere source for targeted hypernym discovery,” in

Proceedings of the ECML PKDD Workshop Wikis, Blogs, Bookmarking Tools:

Mining the Web 2.0, 2008

[15] [12] I. Yamada, K. Torisawa, J. Kazama, K. Kuroda, M. Murata, S. D. Saeger, F.

Bond, and A. Sumida, “Hypernym Discovery Based on Distributional Similarity

and Hierarchical Structures,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 2009, pp. 929–937

[16] [13] Z. Kozareva and E. Hovy, “A semi-supervised method to learn and construct

taxonomies using the web,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 2010, pp. 1110–1118

[17] [14] B. B. Dalvi, W. W. Cohen, and J. Callan, “WebSets: Extracting sets of entities

from the web using unsupervised information extraction,” in Proceedings of the

Fifth ACM International Conference on Web Search and Data Mining, 2012, pp.

243–252

[18] [15] T. Flati, D. Vannella, T. Pasini, and R. Navigli, “Two is bigger (and better)

than one: the Wikipedia Bitaxonomy Project,” in Proceedings of the 52nd Annual

Meeting of the Association for Computational Linguistics, 2014

[19] [16] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S.

Hellmann, “DBpedia - a crystallization point for the web of data,” Web Semantics:

44

Science, Services and Agents on the World Wide Web, vol. 7, no. 3, pp. 154–165,

Sep. 2009

[20] [17] P. N. Mendes, M. Jakob, A. Garc´ıa-Silva, and C. Bizer, “DBpedia Spotlight:

Shedding light on the web of documents,” in Proceedings of the 7th International

Conference on Semantic Systems, 2011, pp. 1–8

[21] [18] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: A probabilistic taxonomy

for text understanding,” in Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2012, pp. 481–492

[22] [19] J.-R. Falleri, M. Huchard, M. Lafourcade, C. Nebut, V. Prince, and M. Dao,

“Automatic extraction of a WordNet-like identifier network from software,” in 18th

IEEE International Conference on Program Comprehension (ICPC), 2010, pp. 4–

13

[23] [20] J. Nonnen, D. Speicher, and P. Imhoff, “Locating the meaning of terms in

source code: Research on ”term introduction”,” in Proceedings of the 18th Working

Conference on Reverse Engineering, 2011, pp. 99–108.

[24] [21] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3, pp.

130–137, 1980

[25] [27] C. Treude and M.-A. Storey, “Work item tagging: Communicating concerns

in collaborative software development,” IEEE Transactions on Software

Engineering, vol. 38, no. 1, pp. 19–34, 2012

[26] [24] S. Wang, D. Lo, and L. Jiang, “Inferring semantically related software terms

and their taxonomy by leveraging collaborative tagging,” in Proceedings of the 28th

International Conference on Software Maintenance, 2012, pp. 604–607

[27] [28] X. Li, H. Wang, G. Yin, T. Wang, C. Yang, Y. Yu, and D. Tang, “Inducing

taxonomy from tags: An agglomerative hierarchical clustering framework,” in

Advanced Data Mining and Applications, ser. Lecture Notes in Computer Science,

S. Zhou, S. Zhang, and G. Karypis, Eds. Springer Berlin Heidelberg, 2012, vol.

7713, pp.64–77

[28] [29] T. Wang, H. Wang, G. Yin, C. X. Ling, X. Li, and P. Zou, “Tag

recommendation for open-source software,” Frontiers of Computer Science, vol. 8,

no. 1, pp. 69–82, 2014

[29] [30] D. Lo, L. Jiang, and F. Thung, “Detecting similar applications with

collaborative tagging,” in Proceedings of the International Conference on Software

Maintenance, 2012, pp. 600–603

45

[30] [31] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and

answer questions on the web? (NIER Track),” in Proceedings of the 33rd

International Conference on Software Engineering, 2011, pp. 804–807

[31] [32] A. K. Saha, R. K. Saha, and K. A. Schneider, “A discriminative model

approach for suggesting tags automatically for Stack Overflow questions,” in

Proceedings of the 10th Working Conference on Mining Software Repositories,

2013, pp. 73–76

[32] [33] C. Stanley and M. D. Byrne, “Predicting tags for StackOverflow posts,” in

Proceedings of the 12th International Conference on Cognitive Modelling, 2013,

pp. 414–419

[33] [19] Jia, M., Bing-ru, Y., De-quan, Z., & Wei-cong, S. (2009). Research on Domain

Ontology Construction in Military Intelligence. 2009 Third International

Symposium on Intelligent Information Technology Application. doi:

10.1109/iita.2009.80

[34] [20] Wisniewski, D., Potoniec, J., Ławrynowicz, A., & Keet, C. (2019). Analysis

of Ontology Competency Questions and their formalizations in SPARQL-OWL.

Journal Of Web Semantics, 59, 100534. doi: 10.1016/j.websem.2019.100534

[35] [21] Horridge, M., Tudorache, T., Nuylas, C., Vendetti, J., Noy, N. and

[36] [23] Musen MA. AMIA 2008 tutorial T26: ontologies in biomedicine. Washington,

DC, November 9; 2008.

[37] SNOMED CT http://www.snomed.org/

[38] Google Code Prettify, http://code.google.com/p/google-code-prettify/

[39] SyntaxHighlighter, http://alexgorbatchev.com/SyntaxHighlighter/

[40] Highlight.js, http://highlightjs.org

[41] SourceClassifier, https://github.com/chrislo/sourceclassifier

[42] Klein, D., Murray, K., Weber, S.: Algorithmic programming language

identification. CoRR abs/1106.4064 (2011)

[43] SearchCode, http://searchcode.com

[44] Codase, http://codase.com

[45] Stack Exchange, http://stackexchange.com

[46] Sousa, D., & Couto, F. (2020). BiOnt: Deep Learning Using Multiple Biomedical

http://www.snomed.org/
http://code.google.com/p/google-code-prettify/
http://alexgorbatchev.com/SyntaxHighlighter/
http://highlightjs.org/
https://github.com/chrislo/sourceclassifier
http://searchcode.com/
http://codase.com/
http://stackexchange.com/

46

Ontologies for Relation Extraction. Lecture Notes in Computer Science, 367-374.

doi: 10.1007/978-3-030-45442-5_46

[47] Maurice, P., Dhombres, F., Blondiaux, E., Friszer, S., Guilbaud, L., Lelong, N.,

Khoshnood, B., Charlet, J., Perrot, N., Jauniaux, E., Jurkovic, D. and Jouannic, J.

(2017). Towards ontology-based decision support systems for complex ultrasound

diagnosis in obstetrics and gynecology. Journal of Gynecology Obstetrics and

Human Reproduction, 46(5), pp.423-429.

[48] Runnan Liu, Puwei Wang, & Shixian Zheng. (2012). A Framework for

Personalized Management of Domain Ontologies. 2012 IEEE/ACIS 11Th

International Conference on Computer and Information Science. doi:

10.1109/icis.2012.6

[49] Silva, F., & Girardi, R. (2014). An Approach to Join Ontologies and Their Reuse

in the Construction of Application Ontologies. 2014 IEEE/WIC/ACM International

Joint Conferences on Web Intelligence (WI) And Intelligent Agent Technologies

(IAT). doi: 10.1109/wi-iat.2014.66

[50] Ianni, G., Martello, A., Panetta, C., & Terracina, G. (2008). Efficiently Querying

RDF(S) Ontologies with Answer Set Programming. Journal Of Logic and

Computation, 19(4), 671-695. doi: 10.1093/logcom/exn043

