

Comparison of deep

convolutional neural

architectures for handwritten

numerals

By:

Ameera Arif

MS(CS) 318556

Supervisor:

Dr. Pakeeza Akram

Masters of Computer Science

School of Electrical Engineering and Computer Sciences (SEECS)

National University of Sciences and Technology, NUST H-12, Islamabad

September 2021

THESIS ACCEPTANCE CERTIFICATE

 It is certified that final copy of MS/MPhil thesis written by Miss Ameera Arif, (Registration

No MS (CS) 318556), of School of Electrical Engineering and Computer Science (SEECS) has

been vetted by undersigned and is found complete in all respects as per NUST

Statutes/Regulations. It is free of plagiarism, errors and mistakes and is accepted as partial

fulfillment for award of MS/M Phil degree. It is further certified that necessary amendments as

pointed out by GEC members of the scholar have also been incorporated in the said thesis.

Signature:

Name of Supervisor: Dr. Pakeeza Akram

Date: 26- Sep-2021

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

ii

APPROVAL PAGE

It is certified that the contents and form of the thesis entitled "Comparison of deep

convolution neural architectures for handwritten numerals" submitted by AMEERA

ARIF have been found satisfactory for the requirement of the degree.

Advisor: Pakeeza Akram

Signature:

Date: 15-Sep-2021

Committee Member 1: Dr. Rabia Irfan

Signature:

Date: 15-Sep-2021

Committee Member 2: Dr. Muhammad Khuram Shahzad

Signature:

Date: 17- Sep-2021

Committee Member 3: Dr. Abdul Wahid

Signature:

Date: 14-Sep-2021

iii

THIS THESIS IS DEDICATED TO MY BELOVED

PARENTS

iv

Certificate of Originality
2021 17:00:03

I hereby declare that this submission titled "Comparison of deep convolution neural

architectures for handwritten numerals" is my own work. To the best of my knowledge it

contains no materials previously published or written by another person, nor material

which to a substantial extent has been accepted for the award of any degree or diploma at NUST

SEECS or at any other educational institute, except where due acknowledgement has been made

in the thesis. Any contribution made to the research by others, with whom I have worked at

NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I also declare that the

intellectual content of this thesis is the product of my own work, except for the assistance from

others in the project’s design and conception or in style, presentation, and linguistics, which has

been acknowledged. I also verified the originality of contents through plagiarism software.

Author Name: Ameera Arif

Signature:

v

ACKNOWLEDGEMENT

This project would not have been possible without the support of many people. Special thanks to

my advisor, Dr. Pakeeza Akram, who read my numerous revisions and helped make some sense

of confusions. Also, thanks to my committee members, Dr. Khurram Shahzad, Dr. Abdul Wahid

and Dr. Rabia Irfan, who offered their guidance and support.

Thanks to the National University of Sciences and Technology (NUST) for awarding me

dissertation of Masters in Computer Science and providing me with the financial means to

complete this project. And finally, thanks to my, parents, and friends who endured this long process

with me, always offering their love and support.

vi

CONTENTS
Introduction ... 1

A. Motivation: .. 1

B. Problem Statement: .. 2

C. Approach: .. 3

Literature Review .. 4

Methodology ... 6

A. Dataset: .. 6

1. Collection of datasets: .. 6

2. Data Acquisition for Urdu numbers: .. 8

3. Other datasets (Persian dataset): .. 9

4. Other datasets (English Dataset): ... 9

B. Pre-processing: ... 10

C. Image Augmentation: ... 11

D. Visualization of dataset: ... 15

1. T-SNE: ... 15

2. T-SNE Visualization for Urdu dataset: .. 16

3. T-SNE Visualization for English dataset: .. 17

4. T-SNE Visualization for Persian dataset: ... 18

5. T-SNE Visualization for combination of data: ... 19

E. Proposed Model .. 31

1. CNN V1: .. 32

2. CNN V2: .. 34

3. CNN V3: .. 36

4. VggNet ... 38

5. GoogLeNet (Inception V3) .. 39

6. ResNet .. 40

7. Xception ... 41

Results ... 42

A. Learning curves .. 42

1. Custom built CNN models ... 42

2. Transfer Learning models .. 44

B. Evaluation Metrics ... 46

vii

C. Test Results ... 47

Discussion ... 49

A. Cost Calculations .. 49

B. Comparison with existing other techniques ... 50

Conclusion .. 52

A. Future Work ... 52

References ... 54

viii

LIST OF ABBREVIATIONS

ABBREVIATION MEANING

CNN Convolution Neural Network

MNIST Modified National Institute of Standards and

Technology

RESNET Residual Network

VGGNET Visual Geometry Group Network

ILSVRC ImageNet Large Scale Visual Recognition

Challenge

OCR Optical Character Recognition

ICR Intelligent Character Recognition

NADRA National Database and Registration Authority

ADBase Arabic Handwritten Digits Database

UNHD Urdu Nastilque Handwritten Data

KNN K- Nearest Neighbors

SVM Support Vector Machine

ANN Artificial Neural Network

RNN Recurrent neural network

BLSTM Bidirectional Long Short-Term Memory

MDLSTM Multi-Dimensional Long Short-Term Memory

t-SNE t-Distributed Stochastic Neighbor Embedding

PCA Principal Component Analysis

ZCA Zero phase Component Analysis

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

ADAM Adaptive Momentum estimation

CNN V1 Convolution Neural Network Version 1

CNN V2 Convolution Neural Network Version 2

CNN V3 Convolution Neural Network Version 3

TP True Positive

TN True Negative

FP False Positive

FN False Negative

ix

LIST OF TABLES

Table 1: Urdu, PERSIAN, and English numbers ... 2

Table 2: Labels assigned to all numbers .. 7

Table 3: Augmentation techniques for our dataset .. 12

Table 4: COMPARISON OF SETTINGS MODIFIED FOR EACH ARCHITECTURE ... 38

Table 5: Comparison of accuracies of all models .. 47

Table 6: Accuracy, depth, weights and parameters of deep learning models .. 49

Table 7: Comparison with state-of-the-art models .. 50

x

LIST OF FIGURES

Figure 1: Same label for Urdu, Persian, and English '1' .. 6

Figure 2: Same label for Persian and Urdu ‘2’ .. 6

Figure 3: Different label for English ‘2’ .. 7

Figure 4: Samples of collected data ... 8

Figure 5: A sample of the Persian digits .. 9

Figure 6: A sample of the English digits ... 9

Figure 7: A sample of crumbled paper is passed through Gaussian filter .. 10

Figure 8: T-SNE visualization of Urdu dataset.. 17

Figure 9: T-SNE visualization of English dataset .. 18

Figure 10: T-SNE visualization of Persian dataset .. 19

Figure 11: t-SNE visualization for Urdu ‘1’, English ‘1’ and Persian ‘1’ ... 20

Figure 12: t-SNE visualization for Urdu ‘9’, English ‘9’ and Persian ‘9’ ... 20

Figure 13: t-SNE visualization for Urdu ‘4’, English ‘4’ and Persian ‘4’ ... 21

Figure 14: t-SNE visualization for Urdu ‘6’, English ‘6’ and Persian ‘6’ ... 21

Figure 15: t-SNE visualization for Urdu ‘7’, English ‘7’ and Persian ‘7’ ... 22

Figure 16: t-SNE visualization for Urdu ‘8’, English ‘8’ and Persian ‘8’ ... 22

Figure 17: t-SNE visualization for English ‘0’ and Persian ‘0’ ... 23

Figure 18: t-SNE visualization for English ‘0’ and Urdu ‘0’ .. 23

Figure 19: t-SNE visualization for Urdu ‘0’ and Persian ‘0’ ... 24

Figure 20: t-SNE visualization for English ‘2’ and Urdu ‘2’ .. 24

Figure 21: t-SNE visualization for English ‘2’ and Persian ‘2’ ... 25

Figure 22: t-SNE visualization for Urdu ‘2’ and Persian ‘2’ ... 26

Figure 23: t-SNE visualization for English ‘3’ and Persian ‘3’ ... 26

Figure 24: t-SNE visualization for Urdu ‘3’ and English ‘3’ .. 27

Figure 25: t-SNE visualization for Urdu ‘3’ and Persian ‘3’ ... 28

Figure 26: t-SNE visualization for English ‘5’ and Persian ‘5’ ... 29

Figure 27: t-SNE visualization for Urdu ‘5’ and English ‘5’ .. 29

Figure 28: t-SNE visualization for Urdu ‘5’ and Persian ‘5’ ... 30

Figure 29: Methodology of Thesis .. 32

Figure 30: CNN V1 model .. 33

Figure 31: CNN V2 model .. 35

Figure 32: CNN v3 model ... 37

Figure 33: VGGNet model .. 39

Figure 34: GoogLenet (Inception V3) model .. 40

Figure 35: ResNet50 model ... 40

Figure 36: Xception model summary .. 41

Figure 37: Loss and accuracy curve for CNN v1 .. 43

Figure 38: Loss and accuracy curve for CNN v2 .. 43

Figure 39: Loss and accuracy curve for CNN v3 .. 44

Figure 40: Loss and accuracy curve for VGGNet ... 45

Figure 41: Loss and accuracy curve for GoogLeNet (Inception V3) ... 45

Figure 42: Loss and accuracy curve for ResNet50 .. 46

Figure 43: Loss and accuracy curve for Xception ... 46

xi

Figure 44: Predicted labels for Xception ... 48

xii

ABSTRACT

Urdu is a primitive and one of the most popular languages in South Asia. It has a rich history and

worldwide appeal with it being spoken in more than 200 countries around the globe. But in terms

of research and availability of data, it has been neglected for so long. People have built recognizers

for the language but with their own specific set of data. So, with a dearth of data for research

purposes we collect our own data for numerals and mix it with Persian numbers data. Urdu relies

heavily on Arabic and Persian calligraphy for vocabulary, which in turn makes it a combination of

loan words. Hence Urdu is thought to be an amalgamation of Arabic, Persian, Turkish and Sanskrit.

Urdu, and Persian numbers are written on similar patterns with certain differences between some

of their digits, so they are compatible for comparison purposes. Along with that English is the most

widely spoken, written, understood language and also has huge datasets for research available. So,

we employ Urdu and Persian handwritten numerals with English numerals to make a novel dataset

that can be used for classification and recognition of all the three languages. We establish a unique

way to exploit the similarities between these languages while keeping in view our main goal of

reviving Urdu language’s importance in research field.

We present a combination of Urdu, English, and Persian handwritten numbers to build deep

learning-based models that can categorize the different numbers by understanding the subtle

similarities between each other. Our novel dataset contains 9800 images of handwritten Urdu

numerals written by over 200 individuals with their left and right hands in order to incorporate

diversity in dataset. The popular Persian dataset by E. Kabir et al. and MNIST dataset for English

numbers is incorporated to make a combined dataset of these three languages. We propose some

versions of custom-built convolutional neural network to achieve remarkable accuracy in

recognizing characters belonging to the proposed dataset. Along with our own proposed CNN, we

use CNN architectures VGGNet, ResNet, GoogLeNet and Xception to achieve remarkable results.

Our proposed models are powerful, yet simple, and obtain excellent performance when evaluated

on our novel dataset.

1

Chapter 1

INTRODUCTION

A. MOTIVATION:
The concept of optical character recognition was introduced in the early 1970s to recognize the

printed text for blind people. It works by scanning printed characters using sensors to determine

their edge information and then translating the input into characters [1]. Since then, it has been

employed in various applications ranging from data entry to information extraction to image

searching and further to build assistive technologies for handicapped people. This field gave birth

to other domain specific applications like handwriting recognition, identification of handwritten

digits, intelligent word recognition, real-time character recognition and furthermore. Among these,

handwritten digits recognition is a classical but important problem in computer science. It has

various applications in different areas and can be embedded into bigger systems. The very first

OCR systems dealt with reading Latin numerals only [2]. Recent advancements in OCR lead to its

adoption for recognizing cursive as well as non-cursive languages like Urdu, Portuguese, Russian,

English, Mandarin, Arabic, Persian to digitalize existing printed text and handwritten documents.

Urdu is a primitive and one of the most popular languages used in South Asia. With its rich history

and worldwide appeal it is being spoken in more than 200 countries around the globe. There are

around 80 to 90 million native speakers of Urdu [3]. There were 62 million in just India per the

2001 census making almost 6% of the population [4]. Out of these approximately 20 million reside

in Pakistan or 7.57% per the 1998 census and several hundred thousand in Bangladesh [5]. It is

the national language of Pakistan along with it being the official language of 6 districts in India

namely Jammu and Kashmir, Uttar Pradesh, Bihar, Telangana, Jharkhand, and West Bengal. So,

this ‘living language’ according to BBC is spoken by close to 100 million people around the world

[6]. In Pakistan’s provinces, it is spoken with different dialects and accents as these provinces have

other secondary languages too [7]. As a result, it is the base language of the country with it being

taught as a compulsory subject in higher secondary and graduate schools.

Urdu is written in a transformed Arabic script form. In almost middle of the 8th century, Persians

began to use the Arabic script with purpose of adding some letters for Persian sounds that were

previously not used in Arabic language [8]. So, this brought refinement in Persian language.

Besides that, Urdu script relies heavily on Arabic and Persian calligraphy for vocabulary, which

in turn makes it a combination of loan words. Hence Urdu is thought to be an amalgamation of

Arabic, Persian, Turkish and Sanskrit. It is bidirectional with its numerals written from left to right

while the script is written in opposite direction. It has up to 40 letters in its script and 10 numerals.

Same is the case for Persian which has almost 32 letters for script and 10 numbers. As is evident

from our discussion that both Urdu and Persian have similar roots with certain prefatory

differences in writing styles and some alphabets. Owing to their similarities recognizers for these

languages face the same challenges and advances too.

On the other hand, we have English language which is not only spoken worldwide as a global

language but is also the secondary official language of many countries. As of 2019, English is the

official language of 82 countries [9] and over 2 billion people speak it. Because it is so widely

spoken, it is referred to as the lingua franca of the modern era [10]. The print media or books

2

available worldwide is in English providing ease to people as it is most commonly understood.

Computer science borrows extensively from English language as compared to other sciences

where Greek and Latin are the major sources of vocabulary. Since the birth of computer sciences,

computer users were limited to use English alphabets due to the lack of standards. As time

progressed this ease of access developed into the new normal for the use of this language. So, it

deemed necessary that we use English language along with Persian and Urdu for our study. The

English language comprises of 26 letters having both upper- and lower-case forms and 10

numerals.

B. PROBLEM STATEMENT:
Text recognizers for many languages like English, French, Persian are available in the market. For

Urdu language much work has been done but is still limited due to lack of resources and required

techniques. Thus, research work on Urdu and intelligent recognition of its text carries huge

importance. As Urdu has similar appearance with Persian and Arabic script, so employing either

one of these for research could substantially increase uses of such recognizers. We also add English

language to this list because it is most widely spoken, written, understood and also has huge

datasets for research available. Urdu and Persian are bidirectional languages with their script

written from right direction to the left and numerals written from left direction to right. This

becomes a problem in recognizing their similar patterns. Also, Urdu, and Persian numbers are

written on similar patterns with certain differences between some of their digits. So, we will be

focusing this thesis on Urdu and Persian numbers along with English numbers since they have vast

differences but subtle similarities. Table 1 shows a sample of all these languages that show their

similarities and differences.

TABLE 1: URDU, PERSIAN, AND ENGLISH NUMBERS

Urdu ۰ ۱ ۲ ۳

۵ ۶ ۸ ۹

Persian ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷

۹

English 0 1 2 3 4 5 6 7 8 9

There are huge datasets available for these languages and huge amount of work has already been

done on them. But for Urdu language the research gap lies in the recognizer for handwritten

Urdu numerals. There is no publicly available dataset for Urdu numbers so huge research can be

done in this domain. So, the aim of this thesis is to bring Urdu language at academic level. By

combining handwritten Urdu numerals dataset with handwritten Persian and English numbers,

we can achieve a recognizer that can work in different domains. Its usability could be in

Pakistan’s NADRA system for processing national ID cards where both English and Urdu

numbers could be identified. Pakistan’s currency notes have both English and Urdu numbers

written on them that could be categorized by using our recognizer. Although the number plates in

Pakistan have been renewed recently by making them according to a pattern so that they can be

identified by cameras. But still there are so many people who have not adopted this system so a

recognizer that could read both Urdu and English numerals could help in this way. The

development of handwritten numeral recognizer can remove the barriers faced in different

writing styles, poor quality of image graphics or illegible handwriting.

3

The motivation behind developing Urdu numeral classifier is that majority of the work has been

done on English numerals, so it is the need of the hour that techniques of deep learning are

applied to our mother language ‘Urdu’. As no dataset of Urdu numerals is available publicly for

research purposes so we present a novel dataset gathered specifically for this study. In this way

the problems related to Urdu character recognition, OCR and Intelligent Character Recognition

could be solved as efficiently as they are solved in other languages.

C. APPROACH:
We present a combination of Urdu, English, and Persian handwritten numbers to build a deep

learning-based model that can categorize the different numbers. Our novel dataset contains 9800

images of handwritten Urdu numerals written by over 200 individuals with their left and right

hands in order to incorporate diversity in dataset. Another dataset for Persian numbers contains

13000 images of handwritten digits gathered from entrance exam to for an Iran university [11].

These images are different in sizes and angles. They are captured in varying lighting conditions

containing shadows too. Thus, they contain rotation variations, noise, and distortion. The dataset

for English numbers is the popular MNIST dataset by Y. LeCun of total 70,000 images written by

high school students and employees [12]. The proposed data is a combination of these three

datasets. It contains same label for similar digits while unique labels for different digits. We

propose some versions of Convolutional neural network (CNN) to achieve remarkable accuracy

in recognizing characters belonging to the proposed dataset. Along with our own proposed CNN,

we use CNN architectures VGGNet, ResNet, GoogLeNet and Xception to achieve remarkable

results. Our proposed models are significant, yet straightforward, and obtain performance

equivalent or higher than state-of-the-art when evaluated on our novel dataset.

4

Chapter 2

LITERATURE REVIEW
One of the most challenging tasks in the field of pattern analysis and recognition is handwriting

recognition. Along with its challenges, the scarcity of reasonable datasets and dearth of people

ready to dive into analysis of Urdu language, the work carried out on our national language is very

less. As we employ machine learning and deep learning techniques on Urdu, Persian and English

numerals so our literature review consists of papers from all these domains. In 2015, N. Gautam,

R. S. Sharma and G. Hazrati, [13] state work done on Eastern Arabic numerals through OCR. As

Urdu and Persian numerals have their foundation in Arabic numerals, so using a combination of

all these Eastern Arabic numerals can be fruitful for applications belonging to all these languages.

They extract the features and classify with an accuracy of just 82.91%. S. Abdelazeem in [14]

compare the problems encountered in Latin and Arabic handwritten numerals by using MNIST

and Arabic Handwritten Digits Database (ADBase) respectively. They use 10 classifiers on both

datasets differently which are mainly linear models, KNN, SVM, ANN and LeNet to get accuracies

ranging from 92% to 96%. H. Kour and N. K. Gondhi propose a recognition system [15] based on

approaches of segmentation for feature extraction, slant analysis for slant removal and dictionary

search for classification. It results in recognition rate of 80.93% for isolated Urdu characters and

numerals. In another study [16], J. Memon, M. Sami and R. A. Khan provide in-depth review of

statistical, kernel, artificial neural network (ANN), template matching and structural methods for

classification of OCR for both handwritten Urdu digits and characters. Their accuracies for all the

techniques are of more than 90%.

In a very interested work presented by Ahmed, S.B. et al. [17] obtained 6.04–7.93% error rate on

700 unique text lines (including Urdu numerals and Urdu handwritten samples) after applying 1-

D bidirectional long short-term memory (BLSTM) networks. In [18] L. Javed, M. Shafi, M. I.

Khattak, N. Ullah present utilization of Kohonen Self Organization Maps on 6000 hand-written

Urdu numerals and obtained an efficiency of 91%. Kohonen self-organizing maps are very

interesting unsupervised neural networks based on competition among neural networks neurons.

During the initial phase, a winner is chosen whose weight vector coincides with the input pattern.

This winner and its neighbors are permitted to update their weights in a topological fashion. A

work similar to this paper is done by Saad Ahmad [19] where Urdu text is integrated with Modified

National Institute of Standards and Technology dataset (MNIST) to learn similar nature of

patterns. They used CNN and multi-dimensional long short-term memory (MDLSTM) on UNHD

(Urdu Nastilque Handwritten Data) samples by pre-training network on MNIST. Their results

show highest recall 91 of 0.84 and 0.93 for precision. But a catch in their work is that they train

the models on MNIST data and use these pre-trained models for Urdu numbers classification. In

[20] MA Chhajro et al. present a comparative study of Urdu handwritten digits where they

implement Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) algorithm, Multi-Layer

5

Perceptron (MLP), Concurrent Neural Network (CNN), Recurrent Neural Network (RNN) and

Random Forest Algorithm (RF) for classification of digits. Although they perform meaningful

work, but their findings show inconsistencies as their dataset is not available to replicate the results.

Also, they use a dataset of merely 5000 images which cannot get good results for machine learning

tasks.

Finally, a recent notable technique MetaQNN discussed in [21] was put forward in 2018. It relies

on reinforcement learning for the design of CNN architectures and has its roots in neuro-evolution

of committees of CNN. It has an error rate of 0.44% and 0.32% when using an ensemble of the

most appropriate found neural networks. Another novel technique is Capsule Net that has been

presented by Geoffrey Hinton [22] recently and is implemented for handwritten Urdu numerals

recognition in [23]. When a group of additional neurons are put in a typical convolutional neural

network, they form a capsule. Such capsules have activity vector to denote initialization parameters

for an object. For classification and recognition of handwritten Urdu digits, they achieve 98.5%

accuracy which is better than CNN’s 96% accuracy. In [24] techniques similar to our paper are

employed on Urdu digits and characters on almost 7000 samples. Specifically, they implement the

following top-notch models: LeNet, AlexNet, VGGNet, DenseNet, Xception. Their best accuracy

for digits is achieved by Xception which is 98.94%.

Lastly, since data collection covers a huge portion of this paper so major work is done on

preprocessing of images. Ahmed, R. et al. in [25] provide the insight on how to go forward with

the data collection and preprocessing. They implement algorithms of binarization, dots removing

and thinning which are used for our feature extraction phase.

6

Chapter 3

METHODOLOGY

A. DATASET:

1. COLLECTION OF DATASETS:

For machine learning and deep learning tasks, data is the essential key to receive accurate results.

A well collected and refined dataset leads to exemplary evaluation of the mathematical

configurations that are assessed on it. Moreover, it is pertinent to mention here that a dataset is

needed to set a benchmark. For our problem at hand which is to classify similar digits as one label

and distinct images according to their preferred label, we combine three datasets. One is our

proposed handwritten Urdu numerals dataset while the others are Persian and English handwritten

numbers dataset. For instance, the numeral for Urdu ‘1’, English ‘1’ and Persian ‘1’ is written in

same way, so we assigned one label to it. While Urdu ‘2’ and Persian ‘2’ have same shape so they

are labelled in one folder and English ‘2’ is kept distinct as is evident in Figure 2.

FIGURE 1: SAME LABEL FOR URDU, PERSIAN, AND ENGLISH '1'

FIGURE 2: SAME LABEL FOR PERSIAN AND URDU ‘2’

7

FIGURE 3: DIFFERENT LABEL FOR ENGLISH ‘2’

Similarly, we combined labels for Urdu ‘0’ and Persian ‘0’ as they both are written as a dot

while English ‘0’ is written in a different manner. The Urdu and Persian numbers ‘3’ and ‘5’

were combined in the same way while English ‘3’ and ‘5’ were given different labels. For ‘4’,

‘6’ and ‘8’ of all the three languages, we gave different labels as they have distinct writing style.

Lastly, ‘9’ was assigned one label for the three languages as it is written in similar pattern.

Following Table 2 gives a detailed insight on how we categorized these numerals:

TABLE 2: LABELS ASSIGNED TO ALL NUMBERS

8

2. DATA ACQUISITION FOR URDU NUMBERS:

Image acquisition is the first step in any computer vision task. Acquiring data in digital form for

the purpose of manipulating is known as image acquisition. It can be gathered by two methods

mainly - offline method and online method. In online method the data can be entered using a tablet

and a pen into the computer. Scanning the text into images via camera or a scanner can be termed

as offline method. The images can be stored in any format like jpeg, bmp, png etc. In order to

continue with our research work, we sought on making our own unique dataset for Urdu numbers

by offline method. Our dataset contains a total of 9800 images of 10 Urdu numerals written from

left and right hands. We scrutinized our data by collecting it from following categorized groups of

people:

• Different age groups (12-60 years)

• Social circles (family, friends, neighbors, servants)

• Various handwriting styles

This was done subconsciously so as to bring diversity in our collection. Each person wrote 0 to 9

numerals 4 times twice with their left hand and twice from right hand. These were people

belonging to various age groups and different fields of life. These people had different writing

styles and by writing with their left hands it brought so much variation in our dataset that it

encompassed all the behaviors of writing patterns. Also, as the dataset was not by one single

person, so it was very unlikely for our model to overfit. In order to keep the uniform structure for

all datasets we collected data on white blank sheets with black marker. Then we scanned the text

pages on a flatbed scanner. Our inspiration for dataset collection was MNIST dataset which is for

English numerals and is used all around the globe for academic purposes. In order to maintain

proximity with the real world, we added ink blots, crumbled some pages, tore some other pages.

Some samples of the data collected are as follows in Figure 4:

FIGURE 4: SAMPLES OF COLLECTED DATA

9

3. OTHER DATASETS (PERSIAN DATASET):

To include diversity and maintain usability of our project we included Persian numerals dataset to

our previous set. Urdu and Persian numbers have certain similar numbers, so it is easier to classify

such numbers as one. While some numerals of both the languages are different which again brings

in heterogeneity in our data. Persian script is written from right to left and its digits are written

from left to right just like Urdu. We used the popular dataset by E. Kabir and H. Khosravi which

was published in their paper titled ‘Introducing a very large dataset of handwritten Farsi digits and

a study on their varieties’ [11]. The dataset contains binary images of 102,352 images written by

students applying to university on registration forms. These digits are in blue or black ink and the

background is almost red which is binarized to get binary images. A sample of the images extracted

is in Figure 5.

FIGURE 5: A SAMPLE OF THE PERSIAN DIGITS

4. OTHER DATASETS (ENGLISH DATASET):

Another dataset that we used for our study is the popular English numerals’ dataset by LeCun et

al [12]. MNIST database of handwritten English digits has a training set of 60,000 examples and

test set of 10,000 images. These digits were collected by 250 people of 50% high school students

and 50% Census Bureau employees. The images were entered in a 28 × 28 size with 256 gray

levels. They were normalized and centered in a fixed size image. Sample of the collected dataset

is as follows:

FIGURE 6: A SAMPLE OF THE ENGLISH DIGITS

10

B. PRE-PROCESSING:
In this phase, the images acquired from all the three datasets went through some pre-processing

steps so that they could be manipulated without any confusion by deep learning algorithms. Our

Urdu dataset had images of smudged, torn, blotted papers and some images were also blur or

disoriented. To contain all types of noise in our dataset, we crumbled some pages, added additional

dots on the page and dropped ink spots so the classifier does not have a simple version of the

dataset but instead has complex samples. This all was done specifically to include noise distortions

because previous Urdu datasets were so clean that the models were unable to learn the real-world

variations. During pre-processing, a number of techniques like image thresholding, smoothing,

binarization and cropping were applied. In [26], the writers deemed it necessary to remove noise

from images by converting the grayscale images into binary which we test on our data too. This

resulted in less error prone results for classification and recognition. Hussain et al. [27] found in

their paper that the data contained irregularities called hooks because of erratic handwriting or the

movement of pen up and down inaccuracies by users who were writing on tablets. So, they applied

smoothing to remove these points. Khan et al. [28] and Jan et al. [29] used filtering techniques to

extract the region of interest and remove noise.

The simplest form of image segmentation is thresholding which is to convert an RGB or gray

image to a bi-level image [30]. The Urdu and Persian images were RGB while English numbers

were gray images. So we applied appropriate thresholding on all these three sets to get bi-level

images having 2 levels for their pixels which is either 0 or 1.

Then we moved on to suppressing the noise by applying Gaussian filter. An appropriate Gaussian

filter not only subdues the effect of noise but also maintains the sharp edges [31]. Filters with

different sigma values were applied and the ideal sigma value was found to be 3 which was

checked in accordance with thresholding.

FIGURE 7: A SAMPLE OF CRUMBLED PAPER IS PASSED THROUGH GAUSSIAN

FILTER

Finally, the Urdu images were cropped in a way so as to remove maximum background and obtain

images like MNIST. Then all the three sets were resized to 28 × 28 pixels and saved in their

respective folders for ease of labelling.

11

C. IMAGE AUGMENTATION:
One of the problems encountered during deep learning-based tasks is limited data. A huge amount

of data plays a vital role in the sense that the model can learn the variations as well as similarities

in it. This not only stops the model from overfitting but also gets a well-generalized model. These

skillful models employ image data augmentation to artificially expand the size of the dataset by

some modifications on the actual dataset. Augmentation is one of the popular techniques that

includes a range of operations to be performed on the dataset like changes in image contrast, zoom,

flip, rotation, brightness, and many more. The purpose is to expand the dataset with different varied

examples of the original dataset but preserving the underlying characteristics and also retaining

same labels post-augmentation. For example, in a classification problem where the model has to

classify cats and dogs given some images of both the classes, a horizontal flip of picture of dog

makes sense. This could mean that the photo was taken from the right. Another example could be

of a zoomed in picture which would be able to show variations. But a vertical flip of the dog does

not validate the experiment as it is very unlikely that the model is given an upside-down picture of

dog.

In our dataset, we experimented with different types of augmentation techniques like changing:

• brightness range

• rotation range

• ZCA whitening

• Zoom range

• Horizontal and vertical width shift range

• Horizontal and vertical flip

• Cropping

• Color space variations

A safe augmentation technique is the one where label is preserved post transformation. For

instance, flips and rotations are safe for ImageNet dataset but not safe for numerals dataset, where

an English ‘6’ could be transformed into ‘9’ upon such a transformation. So, considering this

observation we carefully applied all these techniques. Intuitively if we apply horizontal flip on

Urdu ‘2’ or Persian ‘2’ it becomes the language’s ‘6’. After applying both the horizontal and

vertical flips, we confirmed our intuition as it considerably decreased the model’s accuracy. Same

happened for the horizontal and vertical shifts. As we can instinctively say that shifting an image

horizontally when the numeral is written on the edges, it would remove the information within the

image. Like if Urdu ‘3’ or Persian ‘3’ is written on the right edge of image and we shift it

horizontally, some of its pixels will drop and result in Persian or Urdu ‘2’. When we applied this

augmentation technique on our data, the accuracy of our models decreased considerably. So, we

decided that it is not safe to use such augmentation techniques for our data. The following table

gives an insight of the techniques that we researched on and out of them which one were found to

be precise for our dataset.

12

TABLE 3: AUGMENTATION TECHNIQUES FOR OUR DATASET

Augmentatio

n

Technique

Property

of

technique

Original Image Effect of technique Applied

or not

Why?

Brightness Increases

or

decreases

brightness

of image

No

(range of

[0.5, 1.0]

to darken

the

image)

Pixels are

already in

black or

white form so

no need for

more

brightness

Rotation Rotates

image at a

specified

angle

Yes

(applied

for 25

degrees)

A slight

rotation

retains the

shape of

original

image

Horizontal

and vertical

width shift

Shifts

image

horizontall

y or

vertically

Yes

(applied

for 0.1

value)

A small shift

range does

not change

the image

Vertical shift

did not work

because it

clipped off

important

part of

number

13

Zoom Zooms in

or out of

image

Yes (for

range

=0.1)

It zoomed a

tiny amount

bringing

uniform

change into

image

Horizontal

flip

Flips

image in a

horizontal

fashion

No It changed

the label for

image. The

original

image of

Urdu ‘2’

when flipped

becomes

Urdu ‘6’

Vertical flip Flips

image

vertically

No It changes the

label for

image as is

evident in

example.

Cropping Crops a

random

part of

image

No It changes

label of

image when

applied for a

number like

‘3’

14

Color

variation

Adds or

removes

color

varieties to

the image

No It brings no

effect as

images are

black and

white

Then we browsed into other techniques and implemented them individually on our data. Firstly,

we added random brightness with a minimum range onto the image. This one help model to

generalize well by getting images taken from different lighting levels. It specifies a min-max range

for selecting a brightness amount. It has an ideal amount of 1.0 which has no effect on the image.

Values less than 1.0 dim the lighting of image while those greater than 1.0 have a brighter effect

on the image. So, we have to define a range from 1.0 to a value less than or more than 1.0 to be

applied on the image. In our case, we applied range of [0.5, 1.0] to darken the image as our images

were already relatively bright. Individually this worked well with our model, but when it was

applied in combination with other augmentation techniques it gave very little accuracy, so we

dropped it.

The zoom augmentation zooms into the image or zooms out of the image randomly. We have to

specify a zoom range [1- value, 1+ value]. This works by adding and subtracting the value specified

from 1 to make its range. For our dataset we applied, zoom of 0.1 which made a range of [0.9, 1.1]

to be applied on the image. As we applied a tiny amount to be zoomed, this not only brought

change in our original image but also zoomed uniformly so none of our information was lost.

Along with that we applied random rotation which ranges from 0 to 360 degrees in clockwise

direction. It rotates the image in such a way that the pixels are rotated out of the image frame and

leaves certain pixels without data. We checked for many values and finally picked out 25 degrees

which yields the best results on numbers dataset. So, this again brings disparity in the dataset which

helps the model learn distinct variations and helps it not to overfit. Lastly, we did random shifting

of images but in horizontal fashion so as to retain maximum information. Again, we used a

minimum value, so it does bring some change but also retains the original label. A value of 0.1

was tested which gave accurate results. All these three augmentation techniques were applied in

combination to yield different variations of the dataset and get least overfitting.

15

D. VISUALIZATION OF DATASET:

1. T-SNE:

A well-known method for visualizing datasets in high dimensions is t-Distributed Stochastic

Neighbor Embedding (t-SNE). It works by appointing each datapoint from multiple classes a

location in two or three-dimensional map. In simpler terms, it is suitable for high dimensional

data that lies on several different but related low dimension manifolds like images belonging to

multiple classes. It was presented by Hinton and Maaten in 2008 to reveal structure of dataset at

different scales [32].

t-SNE’s algorithm works in a nonlinear fashion by performing various transformations on

different regions and adapting to the underlying data. It works on two types of parameters which

need to be optimized – cost function parameters and optimization parameters. Perplexity which

balances the attention between local and global aspects of data is the cost function parameter. Its

typical value is between 5 and 50. Number of iterations, learning rate and momentum are the

optimization parameters. It computes the similarity between datapoints in the low dimension

space using the pairwise similarities function in equation 1:

But this similarity function causes issues when either of the points is an outlier. For such points

the pairwise distance ||xi – xj ||
2 becomes very large for xi and the consequence is that pij becomes

very small for the respective j. This makes the effect of outlier very little on the cost function

which does not determine the position of that point as compared to the positions of other points.

So, Hinton introduced the usage of joint probabilities pij in high dimensional space to cater this

problem. It is set to be:

 Pij =
 Pj|i+ Pi|j

2𝑛
 (2)

This makes sure that all the datapoints xi make significant contribution to the cost function.

Hence the conditional probability is given by equation 3:

For each iteration, it computes low dimensional affinities qij and gradient δC /δY

16

These parameters minimize the following cost function:

So, t-SNE works by emphasizing on modeling the dissimilar points by means of their large

pairwise distances while modeling the similar points by their small pairwise distances. These

characteristics of t-SNE make it easier to optimize its cost function by using joint probabilities.

2. T-SNE VISUALIZATION FOR URDU DATASET:

To get a better understanding of our new Urdu dataset, we deemed it necessary to visualize it so

we could get an understanding of our data. Also, before moving on to the implementation, we

wanted to see whether our collected data had some underlying structure or not.

We start by computing Principal Components Analysis (PCA) of our dataset. This helped us reduce

the dimensionality of the dataset which was set to 3 and also accelerates the process of calculating

the pairwise similarities. For each class a color is set, which is used to determine the location of

the data points belonging to each cluster. This color coding also helped us to evaluate the

similarities within each cluster. It is plotted in the form of a scatter plot in two dimensions. For

hyperparameter tuning, we used perplexity and number of iterations. Perplexity can have a value

between 5 and 50. As for number of iterations, there is no such ideal value because different dataset

can yield different results and also take different number of iterations for convergence. For our

Urdu dataset, the ideal perplexity value turned out to be 30 with 1500 iterations.

17

FIGURE 8: T-SNE VISUALIZATION OF URDU DATASET

As shown in the figure 7, datapoints are clustered into their respective clusters while some of them

show overlap. Urdu ‘2’ and Urdu ‘3’ have almost similar shape so this can be seen on the bottom

side that blue and green dots are overlapping. Similarly Urdu ‘0’ and Urdu ‘5’ have similar shapes

and they have coincident points on the extreme left side in blue and brown shades.

3. T-SNE VISUALIZATION FOR ENGLISH DATASET:

Similarly in order to manipulate our datasets, we visualized them before combining them into one

set. Figure 8 shows the t-SNE visualization for English numerals which are extracted from the

popular MNIST dataset. The perplexity value of 25 with almost 1500 iterations yield the best

results. The separate clusters show that each shape of English numeral is dissimilar which validates

our thesis. A point to be noted here is that the distance between these clusters relate no information

about the properties or similarities of points in the 2D space.

18

FIGURE 9: T-SNE VISUALIZATION OF ENGLISH DATASET

4. T-SNE VISUALIZATION FOR PERSIAN DATASET:

For Persian handwritten numerals dataset, we extracted the images from the popular dataset by

E. Kabir and H. Khosravi. The Persian script has similar numerals as Urdu with only ‘4’, ’6’, ‘7’,

‘8’ differing in writing style. The ideal perplexity and iterations value was picked out to be 25

and 1500 respectively. The numbers ‘2’ and ‘3’ are written in almost same way so they are

clustered in an overlapping fashion on the most left side in blue and green points. The rest of the

digits are clustered in their respective circles.

19

FIGURE 10: T-SNE VISUALIZATION OF PERSIAN DATASET

The overlapping points represent certain variations between the digits plotted in the graph. Yet

again the distances or closeness between certain clusters gives no information about whether they

contain coincident points or not.

5. T-SNE VISUALIZATION FOR COMBINATION OF DATA:

Finally, after ample validation of our datasets we combined them into their respective folders based

on their similarities or dissimilarities with each other as shown in table 2. In order to authenticate

our experiments, we visualized these similar numerals. For instance, the numerals ‘1’ and ‘9’ are

same for all the three datasets so in their t-SNE visualization they are clustered together as shown

in figure 10 and 11. Similarly, ‘4’, ‘6’, ‘7’, ‘8’ are written in different patterns in all the three

languages so the t-SNE plots for these numbers showed no overlapping points. This is evident in

the figures 12, 13, 14, and 15. The rest of the digits have similarity in Urdu and Persian like Urdu

‘0’ and Persian ‘0’ are written in the same way while English ‘0’ is written in another pattern. The

Urdu ‘2’, ‘3’ and ‘5’ have same shape as that of Persian letters so they are close to each other while

distant from their respective English labels.

20

FIGURE 11: T-SNE VISUALIZATION FOR URDU ‘1’, ENGLISH ‘1’ AND PERSIAN ‘1’

FIGURE 12: T-SNE VISUALIZATION FOR URDU ‘9’, ENGLISH ‘9’ AND PERSIAN ‘9’

As depicted in Figure 11 and Figure 12, all the datapoints overlap because of similarity in shape.

For Figure 11, the green points represent English’s ‘1’ data, blue points show Persian’s ‘1’

datapoints while the red dots show Urdu’s ‘1’ points. The Urdu points are scattered all over the

plane because the images taken for this experiment were 500 in number. Persian and English

datapoints were almost 250 in number so their quantity is clearly shown by t-SNE. Besides that,

we experimented with various perplexity values for this experiment. A very low perplexity value

like 2 made the local variations supersede so it became hard to detect similarities in the plot.

However, increasing the perplexity value to almost 500 showed no structure of the dataset. By

21

these experiments of perplexity value, we concluded that perplexity value should range between

the datapoints in the plot but should not be necessarily very small.

FIGURE 13: T-SNE VISUALIZATION FOR URDU ‘4’, ENGLISH ‘4’ AND PERSIAN ‘4’

FIGURE 14: T-SNE VISUALIZATION FOR URDU ‘6’, ENGLISH ‘6’ AND PERSIAN ‘6’

22

FIGURE 15: T-SNE VISUALIZATION FOR URDU ‘7’, ENGLISH ‘7’ AND PERSIAN ‘7’

FIGURE 16: T-SNE VISUALIZATION FOR URDU ‘8’, ENGLISH ‘8’ AND PERSIAN ‘8’

The figures above show the datapoints namely ‘4’, ‘6’, ‘7’ and ‘8’ in t-SNE plane visualized

according to their respective clusters. The size of datapoints in each folder was kept 50 so as to get

clear segmented clusters. Intuitively it can be deduced that the digit ‘4’ for each of the three

languages should belong to separate clusters because it writing style is unrelated for each language.

Our intuition makes sense when we tune the perplexity value to 20 for each experiment. Figure 13

shows various shades of blue to denote the number ‘4’ belonging to separate classes. Figure 14

uses red, green, and purple color palette to depict the different cluster of number ‘6’. For numeral

‘7’ the datapoints are aligned in separate clusters according to their respective labels in Figure 15.

Lastly, Figure 16 exhibits the clusters of number ‘8’ in non-identical clusters. It should be noted

here that we kept the perplexity value neither too small nor very large (approaching the number of

datapoints) in order to get perfect non-overlapping clusters.

23

FIGURE 17: T-SNE VISUALIZATION FOR ENGLISH ‘0’ AND PERSIAN ‘0’

FIGURE 18: T-SNE VISUALIZATION FOR ENGLISH ‘0’ AND URDU ‘0’

We move onto those digits next which have similarities between two classes, so we get 3 types of

plots for each of them. Figure 17 shows the distinct points for English ‘0’ and Persian ‘0’. While

Figure 18 displays the separation of clusters for Urdu digit ‘0 and English digit ‘0’. This being

said we have Figure 19 to display the similarity of Urdu ‘0’ and Persian ‘0’ owing to their similarity

in writing style. Keeping in mind these differentiations, we assign the Persian ‘0’ and Urdu ‘0’ a

same label. Similarly, English ‘0’ is assigned a separate label because of its dissimilarity between

its counter Urdu and Persian numbers.

24

FIGURE 19: T-SNE VISUALIZATION FOR URDU ‘0’ AND PERSIAN ‘0’

FIGURE 20: T-SNE VISUALIZATION FOR ENGLISH ‘2’ AND URDU ‘2’

25

FIGURE 21: T-SNE VISUALIZATION FOR ENGLISH ‘2’ AND PERSIAN ‘2’

Here again we have similar patterns of t-SNE for the digit ‘2’ in Figure 20 and Figure 21. The

numerals for Urdu and Persian labelled as ‘2’ have identical shape. It only differs when a person

writes with a slant or when the image is noisy. This disruption is depicted in the form of outliers

in plot; wherever the points are out of range or coinciding with the other cluster it is because of

such problems. This not only gives us variations of a cluster but also validates a part of our

proposed thesis that we have used a variable dataset.

A perfect overlap of points is visible in Figure 22 which plots the Persian digit ‘2’ and Urdu digit

‘2’. Instinctively this authenticates our claim that such digits should belong to a same class. Not

only does this experiment reduce the number of classes to be learned but also lessens the

parameters, weights and time associated in training of its networks.

26

FIGURE 22: T-SNE VISUALIZATION FOR URDU ‘2’ AND PERSIAN ‘2’

FIGURE 23: T-SNE VISUALIZATION FOR ENGLISH ‘3’ AND PERSIAN ‘3’

27

FIGURE 24: T-SNE VISUALIZATION FOR URDU ‘3’ AND ENGLISH ‘3’

In Figure 23 and Figure 24, t-SNE illustrates the differences between digit ‘3’ for English and

Persian classes, and English, Urdu class respectively. For this plot we experimented with number

of iterations as the hyperparameter. We started with 25 epochs which gave us pinched clusters in

the plot, so we increased the epochs to a random large value 250. But these epochs did not give a

stable result too. So, we came back to the original number of epochs and gradually started

increasing its number. At epoch 70 we reached a relatively stable configuration hence we deduced

the conclusion that a particular range of epochs does not work every time. Hence it is much needed

to fluctuate the number or iterations.

28

FIGURE 25: T-SNE VISUALIZATION FOR URDU ‘3’ AND PERSIAN ‘3’

Figure 25 shows a remarkable curve for Urdu and Persian digit ‘3’. This almost perfect curve is

just because of the similarity in shape of both the classes. The blue dots denote ‘3’ for Urdu

language while the red one shows it for Persian. This again attests the truth of our intuition that

numbers belonging to Urdu and Persian for digit ‘3’ should be labelled in the same class. Hence

based on these results we identify same label for Urdu and Persian ‘3’ but different label for

English ‘3’.

29

FIGURE 26: T-SNE VISUALIZATION FOR ENGLISH ‘5’ AND PERSIAN ‘5’

FIGURE 27: T-SNE VISUALIZATION FOR URDU ‘5’ AND ENGLISH ‘5’

Digits labelled as Urdu ‘5’ and Persian ‘5’ have similar shape as that of a vertically flipped heart.

An interesting phenomenon that we encountered while playing with different values of

hyperparameters was that each run gave us a different result. After studying its underlying paper,

30

we came to the conclusion that t-SNE has an objective function that is non-convex. Its objective

function uses random weights upon initialization; hence it was okay for different hyperparameter

values to display variable results.

FIGURE 28: T-SNE VISUALIZATION FOR URDU ‘5’ AND PERSIAN ‘5’

Figure 26, Figure 27, and Figure 28 display the results for digit ‘5’ for all the classes. The

distinctions between points are clearly visible for Urdu and English, Persian and English. An

important point to note here is that since all the images are different so the points belonging to

same classes are also non-overlapping. So, when points overlap in Figure 28 that does not

necessarily mean that only some of them match particular images. It is actually because we have

incorporated so many variations during pre-processing step that almost each image is different

from the other.

Our illustrations of t-SNE results not only authenticates our intuition but also builds up the

foundation for authenticity of our models. The high accuracies that we achieve further down the

chapters despite so much pre-processing is because our models are able to capture the underlying

distribution of the dataset.

31

E. PROPOSED MODEL
Convolutional neural network is the progressive neural network that has a huge accuracy in

learning features of visual data. In a CNN, the input is transformed to get accurate predictions by

traversing through some layers. It consists of 4 core sub-structures which are used repeatedly with

different activation functions to deduce best results.

• The input layer contains raw pixel values and in this case each image of size 28 × 28 × 3

pixels is fed to the CNN. Here 28 represents the width and height of image while 3 is the

color channels- red, green, and blue.

• Convolution layer connects local receptive field of the input with neurons in next layer.

This is done by a simple dot product of kernel and input image. Kernel size of 3 × 3 is

maintained throughout the model whereas padding is set to 1.

• The pooling layer downsamples input along spatial dimensions. One of the most famous

pooling layers is ‘Max Pooling’ which is used here to extract highest pixel value in current

space. These extracted features are then fed to the classifiers which are discussed further.
Our proposed model classifies 22 classes of handwritten Urdu, Persian and English numerals using

convolutional neural networks with feature mapped output layer. We use custom CNNs along with

popular CNN architectures for our dataset to get a comparison of the various classification methods

that can be applied on our dataset. The details of the different models that we applied on our dataset

are explained in the following sections. Figure 29 explains the methodology that has been followed

in this thesis.

32

FIGURE 29: METHODOLOGY OF THESIS

1. CNN V1:

We started by making a simple model for training so that we could evaluate the quality of our

dataset and then move on to better models. For our first model, we combined the primitive layers

- convolution layers, activation function and pooling layer. Convolution layer works by

connecting the pixels in input with neurons in the next layer after taking dot product of kernel

and input. Kernel of size 5 × 5 is maintained throughout the model whereas padding is set to 1.

Padding ensures that image is not shrunk by adding zero value pixels along the border of input

[33]. It is followed by activation function where each output from neurons of previous layer are

fed to the RELU activation function. We chose RELU activation function as it works better than

other functions like sigmoid in terms of vanishing gradient problem [34]. It was picked out of

other non-linearities after comparing their results in our CNN model. Lastly pooling layer was

applied to get reduced number of parameters in the end and to reduce overfitting [35]. Three sets

of these layers were applied to get summarized results which were fed into the fully connected

layers using the Softmax classifier. We used the Softmax classifier as it works best for

classification problems. During compilation of model, we used stochastic gradient descent

(SGD) function for optimization. It achieves a reasonable gradient at a low convergence rate at a

minimum cost, so it is mostly preferred in huge datasets. A summary of this model is as follows:

33

FIGURE 30: CNN V1 MODEL

34

2. CNN V2:

We improved the model by looking at ideas that could help us tune our model in a better way.

We started by tuning the learning rate for SGD. First, we experimented with very large values

and moved onto smaller values. This gave us an almost ideal value of 0.001 as compared to the

previous value of 0.1. Then we dug into literature and found Rumethart, William and Hinton’s

paper of backpropagation learning which introduced the concept of momentum in combination

with SGD [36]. With momentum the gradient of loss is accelerated as compared to the classical

SGD which made the gradient trave in the same direction and thus preventing any kind of

oscillations. Along with momentum we found Nesterov accelerated momentum which in

combination with momentum for SGD gives better and faster results. Instead of evaluating

gradient at the current position, Nesterov momentum keeps a check on the lookahead gradient

step. Thus, it helps the model adapt to the update of error function and speed up SGD in turn

[37].

35

FIGURE 31: CNN V2 MODEL

36

3. CNN V3:

In order to achieve the best results for our dataset, we moved onto advanced optimization

algorithms and retuned our hyperparameters. Adam [38] is one of the latest optimization

algorithms and takes very little time to converge and promises best results. It works by computing

adaptive learning rates for each parameter by keeping an exponentially decaying mean of past

calculated gradients [39]. It is also used as an alternative for SGD+ Nesterov as that requires

intense tuning of hyperparameters. We used the default value of learning rate = 0.001 for Adam.

Another technique to improve a model’s performance is batch normalization. It simply

standardizes the layers for each batch which stabilizes the learning process in a few epochs. So,

our model was modified by keeping in view these additions and it a glimpse of it is as follows:

37

FIGURE 32: CNN V3 MODEL

After considerable research, we came across another method to solve overfitting and get quick

convergence. Previously we were using 150 to 200 epochs to get convergence which in turn lead

38

to overfitting. So, by we employed early stopping which needs an arbitrary number of epochs to

be set but it stops training when the model’s performance reaches its best on validation data i.e. it

stops improving. Its parameters monitor, mode, and patience need tuning to get accurate results.

For the training to end, a parameter has to reach some convergence. The parameter whose

convergence we need to acquire is specified in ‘monitor’. ‘Mode’ defines the objective of selected

metric to be achieved whether its minimum or maximum value is required. To cater the delay to

the trigger for epochs on which we would like to see no improvement we use the ‘patience’

argument. Its accurate value varies between the ideal model for different datasets. We monitored

the minimum validation loss for a patience value of 5 to get precisely accurate results.

4. VGGNET

Deep learning has become a key instrument in artificial intelligence applications [40]. Research

fields like natural language processing, computer vision and speech recognition have produced

remarkable results in deep learning. This growing interest has given birth to innovations in this

field. Transfer learning is one such aspect where pre-trained deep learning architectures that have

won the ImageNet competition are implemented on relatively contrasting datasets. We present the

implementation of 4 models on our dataset. For all these 4 implementations, we keep some

redundant settings same. The last layers are freezed and replaced with global average pooling fed

into the RELU activation map. Also, the image size is kept as 75 x75 x3 for all the architectures.

We only feed the augmented images into the models while using early stopping.

TABLE 4: COMPARISON OF SETTINGS MODIFIED FOR EACH ARCHITECTURE

Model Depth Top-5 accuracy Settings added

VGGNet 16 0.901 • Global average pooling,

• ReLU activation map,

• Dense neurons,

• Fully connected layer of 22

neurons

ResNet50 50 0.933 • Global average pooling,

• ReLU activation map,

• Fully connected layer of 22

neurons with Softmax activation

GoogLeNet

(Inception V3)

48 0.941 • 2D Global average pooling,

• ReLU activation map,

• Fully connected layer of 22

neurons with Softmax activation

Xception 36 0.945 • 2D Global average pooling,

• ReLU activation map,

• Fully connected layer of 22

neurons

39

VGGNet was the runner-up for ILSVRC 2014 and was presented by Karen Simonyan and Andrew

Zisserman [41]. It was one of the first deep networks to be presented as it had 16-18 layers. This

increased depth was proven to be a critical component to achieve good performance. It works on

the phenomenon of smaller filters and deeper networks. The benefit of these smaller filters is that

they have same receptive field as a larger filter but with lesser parameters. They replaced a 7x7

filter with a stack of three 3x3 filters which yields quick computations with less parameters. Hence

less storage and time was required for it despite it being a deep network. The final version features

a homogeneous architecture that only performed 3 x3 convolutions and 2 x2 pooling from the very

beginning till the end. With the correct selection of hyperparameters we achieved best accuracy in

almost 45 epochs with validation accuracy greater than 95%.

FIGURE 33: VGGNET MODEL

5. GOOGLENET (INCEPTION V3)

GoogLeNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014 [42].

It is based on the idea of inception layer which covers a large area but maintains fine resolution on

dataset for small information. The convolution and projection layers use ReLU as activation

function while working on receptive field of 224x224 with 3 color channels. It is 27 layers deep if

we count the layers with parameters too. It includes convolution layers, max pooling layers, fully

connected layers, and finally linear layers. Because GoogLeNet achieved top 5 error-rate of 6.67%

so we used it to train numeral dataset.

We used its version 3 for our task as this version had the latest improvements in the model. Along

with the basic features of GoogLeNet it adds on label smoothing, factorized 7 x 7 convolutions

and auxiliary classifier to deliver label information down the model [43]. A major task was to tune

parameters mainly number of epochs, batch size, and learning rate. But as we used Adam optimizer

and early stopping, they solved the problem of learning rate and number of epochs. For batch size

we trained on many values and found 128 to be the appropriate size. It achieved accuracy greater

than 90 in almost 12 epochs when trained with the proper parameters.

40

FIGURE 34: GOOGLENET (INCEPTION V3) MODEL

6. RESNET

Like GoogLeNet, ResNet was the winner of ILSRVC 2015 with an error rate of 3.6%. It is based

on very deep neural networks using residual connections. A residual connection (also called skip

connection) copies the learned layers from shallow model and sets additional layers to identity

mapping [44]. Instead of making a network deeper and deeper which causes problems like

vanishing gradient and severe overfitting on both training and validation data, it uses layers to fit

a residual map. The idea was to stack these residual blocks to make a deep network instead of

simply stacking layers.

FIGURE 35: RESNET50 MODEL

41

For our dataset, we kept images of size 75x75x3 and used the ResNet50 version which has 50

layers in its network. We used the Adam optimizer to yield best results with a batch size of 128

and almost 47 epochs.

7. XCEPTION

Xception is based on the idea that inception modules in CNN are an intermediate step in normal

convolutions and depth wise separable convolution [45]. Figure 36 gives a complete description

of the specifications of the network where data enters through the entry flow followed by middle

flow and then out of the exit flow. As we are working on classification task, so the convolutional

mesh of networks will end on a logistic regression layer. Linear residual connections are used in

the convolutional layers which are gathered into 14 modules. According to its settings this model

beats the Inception V3 for ImageNet dataset. It uses the model parameters in an efficient way as

compared to Inception V3. Here a 1 x1 convolution is done before an n x n convolution so it

changes the order of operations. It also dismisses non-linearities throughout the model. For our

model we used, 75x75x3 image size to work for 27 epochs and get best results. Simply speaking

it is a linear pile of depthwise separable convolutions having residual connections. Hence, the

model is very easy to modify and define with approx. 40 lines of code.

FIGURE 36: XCEPTION MODEL SUMMARY

42

Chapter 4

RESULTS
Our integrated dataset of handwritten numerals is manually developed and has 22 classes for Urdu,

Persian and English numerals, the details of which are explained in the previous chapters. These

classes have 1000 images each so making a total of 22000 images by 28x28x3 shape. We segregate

our models into two categories – one is the custom-built CNN which has 3 versions and other is

the transfer learning model which has 4 architectures. We divided our dataset in 80- 20 ratio for

train and test data. Out of train data we picked validation data of 10%. The experiments that we

performed with all these models to get their finest results are discussed in the following

subsections.

We conducted the experiments using Python Keras language on an Intel(R) Core (TM) i7-10510U

CPU @ 1.80GHz @2.30 GHz desktop system with 16 GB RAM and an Nvidia K80 / T4 GPU.

However, the CPU is not used for training or testing. Our computer works on Windows 20H2

version. For development purposes we used Python 3.6. 9, Keras 2.4.3, and TensorFlow 2.6.0.

A. LEARNING CURVES

1. CUSTOM BUILT CNN MODELS

For our three versions of custom-built CNN, we tried out different parameter and modified their

settings to yield accurate results. Their learning curves gave us huge insight as to what kind of

learning experience each of these had. Figure 37, Figure 38 and Figure 39 show the learning curves

for each of the three CNN versions that we tried out. All of the plots show no overfitting or

underfitting which is a good measure of the accuracy of our models. It is to be noted here that these

plots were the one that were achieved after considerable hyperparameter tuning and though they

may appear to be almost perfect but show either less accuracy or huge epochs for convergence.

The plots for training loss and validation loss decrease till they achieve a point of stability. It is

useful to track training and validation loss to evaluate the batches during forward pass. A very high

or very low learning rate impacts these plots by showing an unnatural curve which would turn

upwards or downwards in an abrupt manner. A low learning rate makes improvements in an almost

linear fashion while a high value results in an exponential growth of curve. So, an ideal value is

achieved after considerable selection of learning rates. Another major point to be considered in

this implementation is that certain values for learning rate work well with SGD optimizer while

others work best for Adam. Since, we used SGD in CNN v1 and v2, we kept a value of 0.1 for

both of these. But when we added more parameters like momentum and Nesterov accelerated

momentum for v3 we changed this value to 0.001 after trying out various values as it submitted

the prime results. Also, for both CNN v1 and v2, we used 80 and 50 epochs respectively where

43

they finally converged. These epochs were yet again tuned by hit and trial. The Figure 38 shows

convergence of values after almost 30 epochs and iterations more than that were not necessary.

The CNN v3 employs Adam as an optimizer, early stopping as a halting technique and batch

normalization for standardization process of layers, so it yields the best accuracy among the three

of them. Its optimization learning curve in Figure 39 shows a wiggle in the loss which is because

of Adam optimizer’s performance. Moreover, its performance learning curve shows a remarkable

achievement of accuracy in almost 10 epochs which is remarkable considering we had huge

dataset. This was possible because of early stopping as it got excellent result in minimum time.

FIGURE 37: LOSS AND ACCURACY CURVE FOR CNN V1

FIGURE 38: LOSS AND ACCURACY CURVE FOR CNN V2

44

FIGURE 39: LOSS AND ACCURACY CURVE FOR CNN V3

2. TRANSFER LEARNING MODELS

In order to evaluate the performance of our models, we used models from Keras.applications

library. For all these 4 implementations, we keep some redundant settings same. The last layers are

freezed and replaced with global average pooling fed into the RELU activation map. Also, the

image size is kept as 75 x75 x3 for all the architectures. We only feed the augmented images into

the models while using early stopping. Figure 40, Figure 41, Figure 42 and Figure 43 demonstrate

the optimization and performance learning curves for out integrated dataset. We used the popular

architectures VGGNET, ResNet, GoogLeNet because they show excellent results for problems

ranging from image classification to semantic and instance-based object segmentation. Moreover,

the advanced techniques like RNN, fast RCNN, Feature pyramid networks are built on the lines of

these networks. Thus, it deemed necessary that we use these architectures too to validate our study

on our novel dataset.

All the models depicted reasonable convergence in a small number of epochs after considerable

hyper parameter tuning except for GoogLeNet V3 which converged in a time span of 7 minutes

only. The learning curve for VGGNet shows its convergence at 45 iterations with an accurate fit

of training and validation accuracies as shown in Figure 40. Due to its depth and complexity of

operations it takes longer time in comparison to other architectures. So, although it achieves

remarkable results it is tiresome to deploy it owing to its large weights, training time and resources

required. The GoogLeNet V3 boosts the accuracy of inception module for classification tasks. It

is inception module acts as a multi-level feature extractor thus reducing the need for redundant

convolution layers. This argument is validated in Figure 41 where a start of huge accuracy

differences leads to convergence in just a few epochs without using immense resources. Out of all

the four models, it converged quickly in over 5 minutes.

45

FIGURE 40: LOSS AND ACCURACY CURVE FOR VGGNET

FIGURE 41: LOSS AND ACCURACY CURVE FOR GOOGLENET (INCEPTION V3)

Like GoogLeNet, ResNet has been the winner of ILSRVC in the early 2000s. It basically relies on

micro-architecture modules to build extremely deep networks. It drastically reduces the feature

space and attains a smaller model by using global average pooling rather than simple fully

connected layers. Figure 42 shows its representation of accuracy and loss curve which yet again

shows an accurate fit curve. The last architecture under discussion is the advanced Xception which

is an extension of the inception net architecture. It uses L2 regularization as a built-in technique

which surges the learning curves. But as all is well that ends well, it converges beautifully in

minimum number of iterations.

46

FIGURE 42: LOSS AND ACCURACY CURVE FOR RESNET50

FIGURE 43: LOSS AND ACCURACY CURVE FOR XCEPTION

B. EVALUATION METRICS
To achieve the optimal state of models, we picked out accuracy to get a fair comparison of the

experiments that we carried out. Accuracy is the ratio of correctly detected images to the total

number of input images which is written in equation 7 as:

47

Here TP = True positive which denotes the correctly predicted labels,

TN = True negative stands for the correctly predicted labels that do not belong to a particular

class,

FP = False positive denotes those incorrectly identified labels that did belong to the class,

FN = False negative represents the incorrectly predicted identities that did not belong to the

detected class.

So, classification accuracy concerns with how often the classifier detected the correct labels. It is

quite noteworthy that our custom-built neural network that we call ‘CNN v3’ achieved

remarkable accuracy which is almost equivalent to that achieved by deep learning models. It not

only learned the underlying distribution of the data but also performed exceptionally well on test

data. There was slight variation of the training and validation accuracy for the proposed model,

which shows that the model was not subjected to overfitting. This also changed the validation

and testing score of the model by decreased it slightly upon increase of training data size. The

highest accuracy is achieved by Xception which is the latest architecture in the deep learning era.

It has less parameters, requires less hyperparameter tuning, consumes least memory among all

and is relatively deep. Although VGGNet, GoogLeNet and ResNet are runner ups in their

respective order but still their accuracies are above 95% which is groundbreaking for a unique

dataset. Another aspect is that these high accuracies are achieved on augmented dataset so that

also brought enough variations into the data. The custom-built CNN v1 and v2 achieved

reasonable accuracies but they are not worth using since they just show the excess experiments

that we performed. Table 5 shows the accuracies achieved on train, validation, and test data for

each model.

TABLE 5: COMPARISON OF ACCURACIES OF ALL MODELS

Models Train accuracy Validation accuracy Test accuracy

CNN v1 93.46% 87.65% 92.98%

CNN v2 97.84% 96.19% 97.09%

CNN v3 99.31% 99.37% 98.91%

VGGNet16 97.24% 97.04% 97.18%

GoogLeNet

(Inception V3)

96.92% 96.42% 93.72%

ResNet50 96.02% 92.14% 94.79%

Xception 99.46% 99.65% 99.01%

C. TEST RESULTS
To validate our results, we give some random sample images to all our models and judge its

predicted label. By Table 5, we can deduce that Xception and custom-built CNN performed best

out of all the models. Although the accuracy of CNN V3 is not on that much of a difference with

48

Xception but still its runner up. The theory behind this difference of accuracies could be evaluated

based on Xception’s paper [45]. This model performs depthwise convolution and pointwise

convolutions instead of conventional convolution. Depthwise convolutions are the channel-wise

convolution in spatial n×n dimension so instead of lengthy and intense operations like in

conventional convolution operation, it just performs convolution in n×n dimension. Pointwise

convolution is another name for the 1×1 convolution so it works only to change the dimensions of

channels. Hence, upon comparison with original convolution operations, these modifications are

performed across specified channels which reduce the parameters, weights to be learned and also

the time complexity of model. Another important change in this network is that pointwise

convolution is done before depthwise convolution which is inspired from GoogLeNet Inception

V3. Hence, it outperforms all the other models mentioned in this thesis. In the Figure 44 below we

show random samples of images and their predicted labels by the best model out of all i.e., Xception.

FIGURE 44: PREDICTED LABELS FOR XCEPTION

49

Chapter 5

DISCUSSION
Moving forward we discuss the performance, parameters, cost, and computational size of each

model. The VGGNet16 achieved better performance in terms of classification accuracy and

optimization losses. Its convergence rate seemed to be significant at initial epochs in comparison

to other models. With our representable portion of dataset, Inception V3 did not experience

divergence which is a clear sign of exact fit instead of overfit. Also, it does not demand huge

epochs to get better accuracy thus, early stopping proved to be excellent for it. Out of all the models

ResNet50 performed worse. It achieved very low scores at initial epochs but improved with larger

iterations. This happened because of residual connections which increases the complexity of the

model. Lastly, Xception outperformed all the models by achieving excellent accuracies for all

subsets of data.

A. COST CALCULATIONS
To get further insight of our models, we analyze the cost and space specifications of all these

models. Although they are deep learning models which are supposed to be heavy weight and

expensive to perform, still usage of proper hyperparameters can yield an intermediate sized model

which can achieve better accuracies. It is evident from Table 6 that our custom built CNNs use

minimum number of parameters, weights and in turn have less depth but still outperform the deep

learning models.

TABLE 6: ACCURACY, DEPTH, WEIGHTS AND PARAMETERS OF DEEP LEARNING

MODELS

Models Accuracy Depth Weights size Parameters

CNN V1 93.46% 15 96MB 24,093,244

CNN V2 97.84% 15 97 MB 25,609,913

CNN V3 99.31% 9 84 MB 14,722,960

VGGNet 97.24% 16 528 MB 138,357,544

ResNet 96.92% 50 99 MB 25,636,712

GoogLeNet

(Inception V3)

96.02% 48 92 MB 23,851,784

Xception 99.46% 36 88 MB 22,910,480

VGG model is relatively four time deep than the custom-built CNN and have approximately 50

times more parameters and in turn more weights. On the other hand, ResNet model is similar to

VGG model in terms of architecture but is deeper with extra parameters. Its number of parameters

50

are approximately 5 to 6 times more than VGGNet. Lastly, the number of parameters and depth of

Inception V3 is similar to that of ResNet. Among these deep network architectures, only Xception

is the one with fewer layers, parameters, weights and also achieves remarkable accuracy on our

novel data. So, it was found that Xception and CNN v3 are the least expensive models out of all.

Table 6 shows comparison between parameters, weights, depth, and time complexity of each

model. We conducted the experiments using Python Keras language on an Intel(R) Core (TM) i7-

10510U CPU @ 1.80GHz @2.30 GHz desktop system with 16 GB RAM and an Nvidia K80 / T4

GPU. However, the CPU is not used for training or testing. Our computer works on Windows

20H2 version. For development purposes we used Python 3.6.9, Keras 2.4.3, and TensorFlow

2.6.0. Our custom built CNNs use minimum time since they are built with less layers and have less

parameters. VGGNet takes the most time since it has huge number or parameters and calculates

more non-linearities for each layer. GoogLeNet and ResNet take almost similar time as their

parameters are also similar in number but still, they get lost in finding features within their

modules. Xception beats the timing among transfer learning models since it has lesser parameters,

layers, and weights.

B. COMPARISON WITH EXISTING OTHER TECHNIQUES
The proposed methods are compared with other CNN based architectures for handwritten numerals

belonging to Urdu, Persian, English, or a set of these classes. The Table 7 shows that our proposed

models have outperformed the previous architectures in terms of accuracy and amount of dataset.

TABLE 7: COMPARISON WITH STATE-OF-THE-ART MODELS

Reference Dataset No. of images Classifier Accuracy

[46] Urdu numbers

from printed

documents

2000 samples KNN and SVM 98.128%

[47] Handwritten

Urdu characters

900 samples AlexNet,

GoogLeNet,

ResNet18

AlexNet (93.14%),

GoogLeNet

(91.04%),

ResNet18 (89.97%)

[48] Handwritten

Urdu numbers

8000 numeral

images

CNN 98.3%

[49] Urdu

handwritten

numbers

17740 numerals OCR-AlexNet,

OCR- GoogLeNet

OCR-AlexNet (96.3

%),

OCR-GoogLeNet

(94.7%)

[50] Handwritten

Urdu digits

7000 numbers

Xception

98.94%

51

[51] Urdu digits and

characters

 Random forest

98.44%

Proposed

Custom CNN

v3

Handwritten

Urdu, Persian

and English

numbers

22,000 images CNN 99.31%

Proposed

Xception model

Handwritten

Urdu, Persian

and English

numbers

22,000 images Xception 99.46%

Also, in comparison to the previous papers, in terms of test accuracy, our approach achieved

99.31% as compared to their previous maximum accuracy of 98.3% which is optimal considering

that our numeral dataset is novel. This dataset shows promising training and validation accuracies

on GoogLeNet, ResNet, VGGNet, Xception and proposed approach.

52

Chapter 6

CONCLUSION
In this dissertation, we present important research in the field of handwritten text in Urdu, Persian

and English languages that yields benchmark performance on all the proposed architectures. As

Urdu is a complex language which is bidirectional too with its numerals written from left to right

while script written in opposite direction. This induces complexities in the recognition process. Its

numerals are written on similar patterns as of Persian. So, we employ Urdu and Persian

handwritten numerals with English numerals to make a novel dataset that can be used for

classification and recognition of all the three languages. We present a unique way to exploit the

similarities between these languages while keeping in view our main goal of reviving Urdu

language’s importance in research field.

Our proposed approach is remarkably noteworthy for Urdu text research and its related practical

applications. We performed repetitive experiments in detail to incorporate the strokes in

handwriting styles which are present in Persian and English languages so that our model can work

on similar pattern for Urdu language too. By the inclusion of deep learning architectures, the

capability of learning process of model is enhanced, and hence state-of-the-art results are deduced.

We present a combination of Urdu, English, and Persian handwritten numbers to build a deep

learning-based model that can categorize the different numbers. Versions of custom-built

convolutional neural network (CNN) are implemented to achieve remarkable accuracy in

recognizing numerals. Along with our own proposed CNN, we use CNN architectures VGGNet,

ResNet, GoogLeNet (Inception V3) and Xception to achieve remarkable results.

A. FUTURE WORK
In the future, we plan on increasing Urdu numeral dataset and then make it publicly available so

as to motivate researchers to work in this field. Increasing this dataset will also increase the

accuracies on all models. Besides this, our dataset and CNN can help develop a system to identify

and count currency notes as Pakistani currency notes have both English and Urdu digits written on

them. Using our model, OCR system will be able to read both kinds of numbers as it has been

trained on a data that is an amalgamation of both these languages. Its usability could be in

Pakistan’s NADRA system for processing national ID cards where both English and Urdu numbers

could be identified. Although the number plates in Pakistan have been renewed recently by making

them according to a pattern so that they can be identified by cameras. But still there are so many

people who have not adopted this system so a recognizer that could read both Urdu and English

numerals could help in this way. The development of handwritten numeral recognizer can remove

the barriers faced in different writing styles, poor quality of image graphics or illegible

53

handwriting. Since performance of deep learning algorithms in real world applications is of utmost

importance, so we plan on testing it on other applications such as recognizing Surah numbers of

The Holy Quran and numbers on Pakistani postage stamps. The sole motivation of this paper is to

bring our mother language Urdu on competitive level with all the latest research.

54

REFERENCES

[1] R. Singh, "A Literature Review On Handwritten Character Recognition Based On Artificial

Neural Network," International Journal Of Computer Sciences And Engineering, vol. 6, no.

11, pp. 753-758, 2018.

[2] H. N. a. H. Y. Shunji Mori, "Optical character recognition," John Wiley & Sons, Inc., 1999.

[3] "Urdu 11th most spoken language in world: Study," NATION, CURRENT AFFAIRS,

[Online]. Available: https://www.deccanchronicle.com/nation/current-affairs/200119/urdu-

11th-most-spoken-language-in-world-study.html. [Accessed 25 May 2021].

[4] "Abstract of speakers’ strength of languages and mother tongues," Government of India,

2001.

[5] M. Lewis, Ethnologue: Languages of the World, Summer Institute of Linguistics, Inc., 2009.

[6] BBC, "BBC - Languages - Urdu - A Guide To Urdu - 10 Facts About The Urdu Language,"

2020. [Online]. Available: https://www.bbc.co.uk/languages/other/urdu/guide/facts.shtml.

[Accessed 2021].

[7] M. Mirzayeva, "History Of Urdu Language And Its Status In India And Pakistan,"

ACADEMICIA: AN INTERNATIONAL MULTIDISCIPLINARY RESEARCH JOURNAL,

vol. 11, no. 2, pp. 584-591, 2021.

[8] "What are the top 200 most spoken languages?," [Online]. Available:

https://www.ethnologue.com/guides/ethnologue200. [Accessed 09 April 2021].

[9] Central Intelligence Agency, "Field Listing - Languages, The World Factbook," Central

Intelligence Agency, 2000.

[10] D. Graddol, "The Future of English?," The British Council, 1997.

[11] H. K. &. E. Kabir, "Introducing a very large dataset of handwritten Farsi digits and a study

on their varieties," Pattern Recognition Letters, vol. 2, no. 28, 2007.

[12] L. e. B. Y. B. P. H. Yann LeCun, "Gradient-based learning applied to document recognition,"

in Proceedings of the IEEE, 1998.

55

[13] R. S. S. G. H. Neha Gautam, "Eastern Arabic Numerals: A Stand out from Other Jargons,"

in International Conference on Computational Intelligence and Communication Networks

(CICN), 2015.

[14] S. Abdelazeem, "Comparing Arabic and Latin Handwritten Digits Recognition Problems,"

International Journal of Computer and Information Engineering , pp. 1583 - 1587, 2009.

[15] N. K. G. Herleen Kour, "Machine Learning approaches for Nastaliq style Urdu handwritten

recognition: A survey," in 2020 6th International Conference on Advanced Computing and

Communication Systems (ICACCS), 2020.

[16] J. Memon, M. Sami, R. A. Khan and M. Uddin, "Handwritten Optical Character Recognition

(OCR): A Comprehensive Systematic Literature Review (SLR)," IEEE Access, vol. 8, pp.

142642-142668, 2020.

[17] S. M. Shoab Ahmed Khan, "Urdu online handwriting recognition.," in Proceedings of the

IEEE Symposium on Emerging Technologies,, Islamabad, Pakistan, 2005.

[18] M. S. M. I. K. N. U. L. JAVED++, "Hand-written Urdu Numerals Recognition Using

Kohonen Self Organizing Maps," SINDH UNIVERSITY RESEARCH JOURNAL (SCIENCE

SERIES), vol. 47, no. 3, pp. 403-406, 2015.

[19] I. A. H. S. N. M. I. R. R. Y. SAAD BIN AHMED, "Evaluation of Handwritten Urdu Text

by Integration of MNIST Dataset Learning Experience," IEEE Access, vol. 7, pp. 153566-

153578, 2019.

[20] H. K. F. K. K. K. A. A. W. S. S. M Ameen Chhajro, "Handwritten Urdu character recognition

via images using different machine learning and deep learning techniques," INDIAN

JOURNAL OF SCIENCE AND TECHNOLOGY, p. 9, 2020.

[21] Y. S. P. I. Alejandro Baldominos, "Evolutionary Convolutional Neural Networks: An

Application to Handwriting Recognition," Neurocomputing , vol. 283, p. 38–52, 2018.

[22] G. E. Hinton, A. Krizhevsky and S. D. Wang., "Transforming Auto-Encoders," ICANN 2011,

pp. 44-51, 2011.

[23] H. A. ,. M. M. S. ,. S. K. C. T. Talha Iqbal, "Capsule-Net for Urdu Digits Recognition," in

10th IEEE International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications, Metz, France, 2019.

[24] W. Jiang, "Evaluation of deep learning models for Urdu handwritten characters," in Journal

of Physics: Conference Series, China, 2020.

56

[25] M. M. Rawia Ahmed, "Preprocessing Phase for Offline Arabic Handwritten Character

Recognition," International Journal Of Computer Applications Technology And Research ,

vol. 5, no. 12, pp. 760-763, 2016.

[26] S. A. H. S. N. H. u. R. Tabassam Nawaz, "Optical character recognition system for Urdu

(Naskh font) using pattern matching technique," Int. J. Image Process, vol. 3, no. 3, pp. 92-

103, 2009.

[27] A. S. F. A. S. A. Husain, "Online Urdu character recognition system," in Proc. IAPR Conf.

Mach. Vis. Appl. (MVA), 2007.

[28] R. U. N. A. K. N. Khalil Khan, "Urdu Character Recognition using Principal Component

Analysis," International Journal of Computer Applications , vol. 60, no. 11, pp. 1-4, 2012.

[29] M. S. M. A. K. A. A. a. M. M. Zahoor Jan, "Online Urdu handwriting recognition system

using geometric invariant features," The Nucleus, vol. 53, no. 2, pp. 89-98, 2016.

[30] S. S. a. A. Wahab, "Optical character recognition system for Urdu," in 2010 International

Conference on Information and Emerging Technologies, Karachi, 2010.

[31] N. H. Khan and A. Adnan, "Urdu Optical Character Recognition Systems: Present

Contributions and Future Directions," IEEE Access, vol. 6, pp. 46019-46046, 2018.

[32] G. H. Laurens van der Maaten, "Visualizing Data using t-SNE," Journal of Machine

Learning Research, vol. 9, pp. 2579-2605, 2008.

[33] M. Hashemi, "Enlarging smaller images before inputting into convolutional neural network:

zero-padding vs. interpolation," Journal of big data, vol. 6, no. 8, 2019.

[34] H. Ide and T. Kurita, "Improvement of learning for CNN with ReLU activation by sparse

regularization," 2017 International Joint Conference on Neural Networks (IJCNN), pp.

2684-2691, 2017.

[35] H. K. Hossein Gholamalinezhad, "Pooling Methods in Deep Neural Networks, a Review,"

Computer Vision and Pattern Recognition, 2020.

[36] D. E. Rumelhart, G. Hinton and R. J. Williams, "Learning representations by back-

propagating errors," vol. 323, p. 533–536.

[37] M. B. Chaoyue Liu, "Accelerating SGD with momentum for over-parameterized learning,"

arXiv preprint, 2018.

57

[38] J. B. Diederik P. Kingma, "Adam: a Method for Stochastic Optimization," in International

Conference on Learning Representations, 2015.

[39] T. Dozat, "INCORPORATING NESTEROV MOMENTUM INTO ADAM," ICLR, 2016.

[40] Yann LeCun, Y. B. & and G. Hinton, "Deep Learning," Nature, pp. 436-44, 2015.

[41] A. Z. Karen Simonyan, "Very deep convolutional networks for large-scale image

recognition," arXiv preprint , 2014.

[42] W. L. Y. J. P. S. S. R. D. A. D. E. V. V. A. R. Christian Szegedy, "Going Deeper with

Convolutions," in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015.

[43] W. L. Y. J. P. S. S. R. D. A. D. E. V. V. A. R. Christian Szegedy, "Rethinking the inception

architecture for computer vision," in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016.

[44] K. He, "Deep residual learning for image recognition," in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016.

[45] F. Chollet, ""Xception: Deep Learning with Depthwise Separable Convolutions."," arXiv

preprint, 2017.

[46] H. Sharma, D. V. Sharma and G. S. Lehal, "Extraction and Recognition of Numerals from

Machine-Printed Urdu Documents," in Computer Vision and Image Processing, Jaipur,

India, 2019.

[47] S. P. M. Y. C. Mohammed Aarif KILVISHARAM OZIUDDEEN, "A Novel Deep

Convolutional Neural Network Architecture Based on Transfer Learning for Handwritten

Urdu Character Recognition," 2020.

[48] M. Husnain, M. M. S. Missen, S. Mumtaz, M. Z. Jhanidr, M. Coustaty and M. M. Luqman,

"Recognition of Urdu Handwritten Characters Using Convolutional Neural Network," MDPI

, 2019.

[49] S. P. Mohammed Aarif K.O, "OCR-Nets: Variants of Pre-trained CNN for Urdu Handwritten

Character Recognition via Transfer Learning," in Third International Conference on

Computing and Network Communications (CoCoNet’19), 2020.

[50] W. Jiang, "Evaluation of deep learning models for Urdu handwritten characters recognition,"

in Journal of Physics: Conference Series, 2020.

58

[51] M. A. Chhajro, H. Khan, F. Khan, K. Kumar, A. A. Wagan and S. Solangi2\, "Handwritten

Urdu character recognition via images using different machine learning and deep learning

techniques," in INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2020.

