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ABSTRACT  

Urdu is a primitive and one of the most popular languages in South Asia. It has a rich history and 

worldwide appeal with it being spoken in more than 200 countries around the globe. But in terms 

of research and availability of data, it has been neglected for so long. People have built recognizers 

for the language but with their own specific set of data. So, with a dearth of data for research 

purposes we collect our own data for numerals and mix it with Persian numbers data. Urdu relies 

heavily on Arabic and Persian calligraphy for vocabulary, which in turn makes it a combination of 

loan words. Hence Urdu is thought to be an amalgamation of Arabic, Persian, Turkish and Sanskrit. 

Urdu, and Persian numbers are written on similar patterns with certain differences between some 

of their digits, so they are compatible for comparison purposes. Along with that English is the most 

widely spoken, written, understood language and also has huge datasets for research available. So, 

we employ Urdu and Persian handwritten numerals with English numerals to make a novel dataset 

that can be used for classification and recognition of all the three languages. We establish a unique 

way to exploit the similarities between these languages while keeping in view our main goal of 

reviving Urdu language’s importance in research field. 

We present a combination of Urdu, English, and Persian handwritten numbers to build deep 

learning-based models that can categorize the different numbers by understanding the subtle 

similarities between each other. Our novel dataset contains 9800 images of handwritten Urdu 

numerals written by over 200 individuals with their left and right hands in order to incorporate 

diversity in dataset. The popular Persian dataset by E. Kabir et al. and MNIST dataset for English 

numbers is incorporated to make a combined dataset of these three languages. We propose some 

versions of custom-built convolutional neural network to achieve remarkable accuracy in 

recognizing characters belonging to the proposed dataset. Along with our own proposed CNN, we 

use CNN architectures VGGNet, ResNet, GoogLeNet and Xception to achieve remarkable results. 

Our proposed models are powerful, yet simple, and obtain excellent performance when evaluated 

on our novel dataset. 
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Chapter 1 

INTRODUCTION 
 

A. MOTIVATION: 
The concept of optical character recognition was introduced in the early 1970s to recognize the 

printed text for blind people. It works by scanning printed characters using sensors to determine 

their edge information and then translating the input into characters [1]. Since then, it has been 

employed in various applications ranging from data entry to information extraction to image 

searching and further to build assistive technologies for handicapped people. This field gave birth 

to other domain specific applications like handwriting recognition, identification of handwritten 

digits, intelligent word recognition, real-time character recognition and furthermore. Among these, 

handwritten digits recognition is a classical but important problem in computer science. It has 

various applications in different areas and can be embedded into bigger systems. The very first 

OCR systems dealt with reading Latin numerals only [2]. Recent advancements in OCR lead to its 

adoption for recognizing cursive as well as non-cursive languages like Urdu, Portuguese, Russian, 

English, Mandarin, Arabic, Persian to digitalize existing printed text and handwritten documents. 

Urdu is a primitive and one of the most popular languages used in South Asia. With its rich history 

and worldwide appeal it is being spoken in more than 200 countries around the globe. There are 

around 80 to 90 million native speakers of Urdu [3]. There were 62 million in just India per the 

2001 census making almost 6% of the population [4]. Out of these approximately 20 million reside 

in Pakistan or 7.57% per the 1998 census and several hundred thousand in Bangladesh [5]. It is 

the national language of Pakistan along with it being the official language of 6 districts in India 

namely Jammu and Kashmir, Uttar Pradesh, Bihar, Telangana, Jharkhand, and West Bengal. So, 

this ‘living language’ according to BBC is spoken by close to 100 million people around the world 

[6]. In Pakistan’s provinces, it is spoken with different dialects and accents as these provinces have 

other secondary languages too [7]. As a result, it is the base language of the country with it being 

taught as a compulsory subject in higher secondary and graduate schools.  

Urdu is written in a transformed Arabic script form. In almost middle of the 8th century, Persians 

began to use the Arabic script with purpose of adding some letters for Persian sounds that were 

previously not used in Arabic language [8]. So, this brought refinement in Persian language. 

Besides that, Urdu script relies heavily on Arabic and Persian calligraphy for vocabulary, which 

in turn makes it a combination of loan words. Hence Urdu is thought to be an amalgamation of 

Arabic, Persian, Turkish and Sanskrit. It is bidirectional with its numerals written from left to right 

while the script is written in opposite direction. It has up to 40 letters in its script and 10 numerals. 

Same is the case for Persian which has almost 32 letters for script and 10 numbers. As is evident 

from our discussion that both Urdu and Persian have similar roots with certain prefatory 

differences in writing styles and some alphabets. Owing to their similarities recognizers for these 

languages face the same challenges and advances too.   

On the other hand, we have English language which is not only spoken worldwide as a global 

language but is also the secondary official language of many countries. As of 2019, English is the 

official language of 82 countries [9] and over 2 billion people speak it. Because it is so widely 

spoken, it is referred to as the lingua franca of the modern era [10]. The print media or books 
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available worldwide is in English providing ease to people as it is most commonly understood. 

Computer science borrows extensively from English language as compared to other sciences 

where Greek and Latin are the major sources of vocabulary. Since the birth of computer sciences, 

computer users were limited to use English alphabets due to the lack of standards. As time 

progressed this ease of access developed into the new normal for the use of this language. So, it 

deemed necessary that we use English language along with Persian and Urdu for our study. The 

English language comprises of 26 letters having both upper- and lower-case forms and 10 

numerals.   

 

B. PROBLEM STATEMENT: 
Text recognizers for many languages like English, French, Persian are available in the market. For 

Urdu language much work has been done but is still limited due to lack of resources and required 

techniques. Thus, research work on Urdu and intelligent recognition of its text carries huge 

importance. As Urdu has similar appearance with Persian and Arabic script, so employing either 

one of these for research could substantially increase uses of such recognizers. We also add English 

language to this list because it is most widely spoken, written, understood and also has huge 

datasets for research available. Urdu and Persian are bidirectional languages with their script 

written from right direction to the left and numerals written from left direction to right. This 

becomes a problem in recognizing their similar patterns. Also, Urdu, and Persian numbers are 

written on similar patterns with certain differences between some of their digits. So, we will be 

focusing this thesis on Urdu and Persian numbers along with English numbers since they have vast 

differences but subtle similarities. Table 1 shows a sample of all these languages that show their 

similarities and differences. 

 
TABLE 1: URDU, PERSIAN, AND ENGLISH NUMBERS 

Urdu ۰ ۱ ۲ ۳ 
 

۵ ۶  ۸ ۹ 

Persian ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ 
 

۹ 

English 0 1 2 3 4 5 6 7 8 9 

 

There are huge datasets available for these languages and huge amount of work has already been 

done on them. But for Urdu language the research gap lies in the recognizer for handwritten 

Urdu numerals. There is no publicly available dataset for Urdu numbers so huge research can be 

done in this domain. So, the aim of this thesis is to bring Urdu language at academic level. By 

combining handwritten Urdu numerals dataset with handwritten Persian and English numbers, 

we can achieve a recognizer that can work in different domains. Its usability could be in 

Pakistan’s NADRA system for processing national ID cards where both English and Urdu 

numbers could be identified. Pakistan’s currency notes have both English and Urdu numbers 

written on them that could be categorized by using our recognizer. Although the number plates in 

Pakistan have been renewed recently by making them according to a pattern so that they can be 

identified by cameras. But still there are so many people who have not adopted this system so a 

recognizer that could read both Urdu and English numerals could help in this way. The 

development of handwritten numeral recognizer can remove the barriers faced in different 

writing styles, poor quality of image graphics or illegible handwriting.  
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The motivation behind developing Urdu numeral classifier is that majority of the work has been 

done on English numerals, so it is the need of the hour that techniques of deep learning are 

applied to our mother language ‘Urdu’. As no dataset of Urdu numerals is available publicly for 

research purposes so we present a novel dataset gathered specifically for this study. In this way 

the problems related to Urdu character recognition, OCR and Intelligent Character Recognition 

could be solved as efficiently as they are solved in other languages. 

 

C. APPROACH: 
We present a combination of Urdu, English, and Persian handwritten numbers to build a deep 

learning-based model that can categorize the different numbers. Our novel dataset contains 9800 

images of handwritten Urdu numerals written by over 200 individuals with their left and right 

hands in order to incorporate diversity in dataset. Another dataset for Persian numbers contains 

13000 images of handwritten digits gathered from entrance exam to for an Iran university [11]. 

These images are different in sizes and angles. They are captured in varying lighting conditions 

containing shadows too. Thus, they contain rotation variations, noise, and distortion. The dataset 

for English numbers is the popular MNIST dataset by Y. LeCun of total 70,000 images written by 

high school students and employees [12]. The proposed data is a combination of these three 

datasets. It contains same label for similar digits while unique labels for different digits. We 

propose some versions of Convolutional neural network (CNN) to achieve remarkable accuracy 

in recognizing characters belonging to the proposed dataset. Along with our own proposed CNN, 

we use CNN architectures VGGNet, ResNet, GoogLeNet and Xception to achieve remarkable 

results. Our proposed models are significant, yet straightforward, and obtain performance 

equivalent or higher than state-of-the-art when evaluated on our novel dataset. 



4 
 

Chapter 2 

LITERATURE REVIEW 
One of the most challenging tasks in the field of pattern analysis and recognition is handwriting 

recognition. Along with its challenges, the scarcity of reasonable datasets and dearth of people 

ready to dive into analysis of Urdu language, the work carried out on our national language is very 

less. As we employ machine learning and deep learning techniques on Urdu, Persian and English 

numerals so our literature review consists of papers from all these domains. In 2015, N. Gautam, 

R. S. Sharma and G. Hazrati, [13] state work done on Eastern Arabic numerals through OCR. As 

Urdu and Persian numerals have their foundation in Arabic numerals, so using a combination of 

all these Eastern Arabic numerals can be fruitful for applications belonging to all these languages. 

They extract the features and classify with an accuracy of just 82.91%. S. Abdelazeem in [14] 

compare the problems encountered in Latin and Arabic handwritten numerals by using MNIST 

and Arabic Handwritten Digits Database (ADBase) respectively. They use 10 classifiers on both 

datasets differently which are mainly linear models, KNN, SVM, ANN and LeNet to get accuracies 

ranging from 92% to 96%. H. Kour and N. K. Gondhi propose a recognition system [15] based on 

approaches of segmentation for feature extraction, slant analysis for slant removal and dictionary 

search for classification. It results in recognition rate of 80.93% for isolated Urdu characters and 

numerals. In another study [16], J. Memon, M. Sami and R. A. Khan provide in-depth review of 

statistical, kernel, artificial neural network (ANN), template matching and structural methods for 

classification of OCR for both handwritten Urdu digits and characters. Their accuracies for all the 

techniques are of more than 90%. 

In a very interested work presented by Ahmed, S.B. et al. [17] obtained 6.04–7.93% error rate on 

700 unique text lines (including Urdu numerals and Urdu handwritten samples) after applying 1-

D bidirectional long short-term memory (BLSTM) networks. In [18] L. Javed, M. Shafi, M. I. 

Khattak, N. Ullah present utilization of Kohonen Self Organization Maps on 6000 hand-written 

Urdu numerals and obtained an efficiency of 91%. Kohonen self-organizing maps are very 

interesting unsupervised neural networks based on competition among neural networks neurons. 

During the initial phase, a winner is chosen whose weight vector coincides with the input pattern. 

This winner and its neighbors are permitted to update their weights in a topological fashion. A 

work similar to this paper is done by Saad Ahmad [19] where Urdu text is integrated with Modified 

National Institute of Standards and Technology dataset (MNIST) to learn similar nature of 

patterns. They used CNN and multi-dimensional long short-term memory (MDLSTM) on UNHD 

(Urdu Nastilque Handwritten Data) samples by pre-training network on MNIST. Their results 

show highest recall 91 of 0.84 and 0.93 for precision. But a catch in their work is that they train 

the models on MNIST data and use these pre-trained models for Urdu numbers classification. In 

[20] MA Chhajro et al. present a comparative study of Urdu handwritten digits where they 

implement Support Vector Machine (SVM), K-Nearest Neighbor (K-NN) algorithm, Multi-Layer 
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Perceptron (MLP), Concurrent Neural Network (CNN), Recurrent Neural Network (RNN) and 

Random Forest Algorithm (RF) for classification of digits. Although they perform meaningful 

work, but their findings show inconsistencies as their dataset is not available to replicate the results. 

Also, they use a dataset of merely 5000 images which cannot get good results for machine learning 

tasks.  

Finally, a recent notable technique MetaQNN discussed in [21] was put forward in 2018. It relies 

on reinforcement learning for the design of CNN architectures and has its roots in neuro-evolution 

of committees of CNN. It has an error rate of 0.44% and 0.32% when using an ensemble of the 

most appropriate found neural networks. Another novel technique is Capsule Net that has been 

presented by Geoffrey Hinton [22] recently and is implemented for handwritten Urdu numerals 

recognition in [23]. When a group of additional neurons are put in a typical convolutional neural 

network, they form a capsule. Such capsules have activity vector to denote initialization parameters 

for an object. For classification and recognition of handwritten Urdu digits, they achieve 98.5% 

accuracy which is better than CNN’s 96% accuracy. In [24] techniques similar to our paper are 

employed on Urdu digits and characters on almost 7000 samples. Specifically, they implement the 

following top-notch models: LeNet, AlexNet, VGGNet, DenseNet, Xception. Their best accuracy 

for digits is achieved by Xception which is 98.94%.  

Lastly, since data collection covers a huge portion of this paper so major work is done on 

preprocessing of images. Ahmed, R. et al. in [25] provide the insight on how to go forward with 

the data collection and preprocessing. They implement algorithms of binarization, dots removing 

and thinning which are used for our feature extraction phase. 
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Chapter 3 

METHODOLOGY 
 

A.  DATASET: 

1. COLLECTION OF DATASETS: 

For machine learning and deep learning tasks, data is the essential key to receive accurate results. 

A well collected and refined dataset leads to exemplary evaluation of the mathematical 

configurations that are assessed on it. Moreover, it is pertinent to mention here that a dataset is 

needed to set a benchmark. For our problem at hand which is to classify similar digits as one label 

and distinct images according to their preferred label, we combine three datasets. One is our 

proposed handwritten Urdu numerals dataset while the others are Persian and English handwritten 

numbers dataset. For instance, the numeral for Urdu ‘1’, English ‘1’ and Persian ‘1’ is written in 

same way, so we assigned one label to it. While Urdu ‘2’ and Persian ‘2’ have same shape so they 

are labelled in one folder and English ‘2’ is kept distinct as is evident in Figure 2.  

 

FIGURE 1: SAME LABEL FOR URDU, PERSIAN, AND ENGLISH '1' 

 

 

FIGURE 2: SAME LABEL FOR PERSIAN AND URDU ‘2’ 
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FIGURE 3: DIFFERENT LABEL FOR ENGLISH ‘2’ 

Similarly, we combined labels for Urdu ‘0’ and Persian ‘0’ as they both are written as a dot 

while English ‘0’ is written in a different manner. The Urdu and Persian numbers ‘3’ and ‘5’ 

were combined in the same way while English ‘3’ and ‘5’ were given different labels. For ‘4’, 

‘6’ and ‘8’ of all the three languages, we gave different labels as they have distinct writing style. 

Lastly, ‘9’ was assigned one label for the three languages as it is written in similar pattern. 

Following Table 2 gives a detailed insight on how we categorized these numerals: 

TABLE 2: LABELS ASSIGNED TO ALL NUMBERS 
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2. DATA ACQUISITION FOR URDU NUMBERS:  

Image acquisition is the first step in any computer vision task. Acquiring data in digital form for 

the purpose of manipulating is known as image acquisition. It can be gathered by two methods 

mainly - offline method and online method. In online method the data can be entered using a tablet 

and a pen into the computer. Scanning the text into images via camera or a scanner can be termed 

as offline method. The images can be stored in any format like jpeg, bmp, png etc. In order to 

continue with our research work, we sought on making our own unique dataset for Urdu numbers 

by offline method. Our dataset contains a total of 9800 images of 10 Urdu numerals written from 

left and right hands. We scrutinized our data by collecting it from following categorized groups of 

people: 

• Different age groups (12-60 years) 

• Social circles (family, friends, neighbors, servants) 

• Various handwriting styles 

This was done subconsciously so as to bring diversity in our collection. Each person wrote 0 to 9 

numerals 4 times twice with their left hand and twice from right hand. These were people 

belonging to various age groups and different fields of life. These people had different writing 

styles and by writing with their left hands it brought so much variation in our dataset that it 

encompassed all the behaviors of writing patterns. Also, as the dataset was not by one single 

person, so it was very unlikely for our model to overfit. In order to keep the uniform structure for 

all datasets we collected data on white blank sheets with black marker. Then we scanned the text 

pages on a flatbed scanner. Our inspiration for dataset collection was MNIST dataset which is for 

English numerals and is used all around the globe for academic purposes. In order to maintain 

proximity with the real world, we added ink blots, crumbled some pages, tore some other pages. 

Some samples of the data collected are as follows in Figure 4: 

 

FIGURE 4: SAMPLES OF COLLECTED DATA 
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3.   OTHER DATASETS (PERSIAN DATASET): 

To include diversity and maintain usability of our project we included Persian numerals dataset to 

our previous set. Urdu and Persian numbers have certain similar numbers, so it is easier to classify 

such numbers as one. While some numerals of both the languages are different which again brings 

in heterogeneity in our data. Persian script is written from right to left and its digits are written 

from left to right just like Urdu. We used the popular dataset by E. Kabir and H. Khosravi which 

was published in their paper titled ‘Introducing a very large dataset of handwritten Farsi digits and 

a study on their varieties’ [11]. The dataset contains binary images of 102,352 images written by 

students applying to university on registration forms. These digits are in blue or black ink and the 

background is almost red which is binarized to get binary images. A sample of the images extracted 

is in Figure 5. 

 

FIGURE 5: A SAMPLE OF THE PERSIAN DIGITS 

 

4. OTHER DATASETS (ENGLISH DATASET): 

Another dataset that we used for our study is the popular English numerals’ dataset by LeCun et 

al [12]. MNIST database of handwritten English digits has a training set of 60,000 examples and 

test set of 10,000 images. These digits were collected by 250 people of 50% high school students 

and 50% Census Bureau employees. The images were entered in a 28 × 28 size with 256 gray 

levels. They were normalized and centered in a fixed size image. Sample of the collected dataset 

is as follows: 

  

 
FIGURE 6: A SAMPLE OF THE ENGLISH DIGITS 
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B.  PRE-PROCESSING: 
In this phase, the images acquired from all the three datasets went through some pre-processing 

steps so that they could be manipulated without any confusion by deep learning algorithms. Our 

Urdu dataset had images of smudged, torn, blotted papers and some images were also blur or 

disoriented. To contain all types of noise in our dataset, we crumbled some pages, added additional 

dots on the page and dropped ink spots so the classifier does not have a simple version of the 

dataset but instead has complex samples. This all was done specifically to include noise distortions 

because previous Urdu datasets were so clean that the models were unable to learn the real-world 

variations. During pre-processing, a number of techniques like image thresholding, smoothing, 

binarization and cropping were applied.  In [26], the writers deemed it necessary to remove noise 

from images by converting the grayscale images into binary which we test on our data too. This 

resulted in less error prone results for classification and recognition. Hussain et al. [27] found in 

their paper that the data contained irregularities called hooks because of erratic handwriting or the 

movement of pen up and down inaccuracies by users who were writing on tablets. So, they applied 

smoothing to remove these points. Khan et al. [28] and Jan et al. [29] used filtering techniques to 

extract the region of interest and remove noise. 

 

The simplest form of image segmentation is thresholding which is to convert an RGB or gray 

image to a bi-level image [30]. The Urdu and Persian images were RGB while English numbers 

were gray images. So we applied appropriate thresholding on all these three sets to get bi-level 

images having 2 levels for their pixels which is either 0 or 1.  

Then we moved on to suppressing the noise by applying Gaussian filter. An appropriate Gaussian 

filter not only subdues the effect of noise but also maintains the sharp edges [31]. Filters with 

different sigma values were applied and the ideal sigma value was found to be 3 which was 

checked in accordance with thresholding.  

 

 

                                                              
FIGURE 7: A SAMPLE OF CRUMBLED PAPER IS PASSED THROUGH GAUSSIAN 

FILTER 

 

Finally, the Urdu images were cropped in a way so as to remove maximum background and obtain 

images like MNIST. Then all the three sets were resized to 28 × 28 pixels and saved in their 

respective folders for ease of labelling. 
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C.  IMAGE AUGMENTATION: 
One of the problems encountered during deep learning-based tasks is limited data. A huge amount 

of data plays a vital role in the sense that the model can learn the variations as well as similarities 

in it. This not only stops the model from overfitting but also gets a well-generalized model. These 

skillful models employ image data augmentation to artificially expand the size of the dataset by 

some modifications on the actual dataset. Augmentation is one of the popular techniques that 

includes a range of operations to be performed on the dataset like changes in image contrast, zoom, 

flip, rotation, brightness, and many more. The purpose is to expand the dataset with different varied 

examples of the original dataset but preserving the underlying characteristics and also retaining 

same labels post-augmentation. For example, in a classification problem where the model has to 

classify cats and dogs given some images of both the classes, a horizontal flip of picture of dog 

makes sense. This could mean that the photo was taken from the right. Another example could be 

of a zoomed in picture which would be able to show variations. But a vertical flip of the dog does 

not validate the experiment as it is very unlikely that the model is given an upside-down picture of 

dog.  

In our dataset, we experimented with different types of augmentation techniques like changing: 

• brightness range 

• rotation range 

• ZCA whitening  

• Zoom range 

• Horizontal and vertical width shift range 

• Horizontal and vertical flip 

• Cropping 

• Color space variations 

A safe augmentation technique is the one where label is preserved post transformation. For 

instance, flips and rotations are safe for ImageNet dataset but not safe for numerals dataset, where 

an English ‘6’ could be transformed into ‘9’ upon such a transformation. So, considering this 

observation we carefully applied all these techniques. Intuitively if we apply horizontal flip on 

Urdu ‘2’ or Persian ‘2’ it becomes the language’s ‘6’. After applying both the horizontal and 

vertical flips, we confirmed our intuition as it considerably decreased the model’s accuracy. Same 

happened for the horizontal and vertical shifts. As we can instinctively say that shifting an image 

horizontally when the numeral is written on the edges, it would remove the information within the 

image. Like if Urdu ‘3’ or Persian ‘3’ is written on the right edge of image and we shift it 

horizontally, some of its pixels will drop and result in Persian or Urdu ‘2’. When we applied this 

augmentation technique on our data, the accuracy of our models decreased considerably. So, we 

decided that it is not safe to use such augmentation techniques for our data. The following table 

gives an insight of the techniques that we researched on and out of them which one were found to 

be precise for our dataset. 
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TABLE 3: AUGMENTATION TECHNIQUES FOR OUR DATASET 

Augmentatio

n 

Technique 

Property 

of 

technique 

Original Image Effect of technique Applied 

or not 

Why? 

Brightness Increases 

or 

decreases 

brightness 

of image 

  

No 

(range of 

[0.5, 1.0] 

to darken 

the 

image) 

Pixels are 

already in 

black or 

white form so 

no need for 

more 

brightness 

Rotation Rotates 

image at a 

specified 

angle 

 

 

Yes 

(applied 

for 25 

degrees) 

A slight 

rotation 

retains the 

shape of 

original 

image 

Horizontal 

and vertical 

width shift 

Shifts 

image 

horizontall

y or 

vertically 

  

Yes 

(applied 

for 0.1 

value) 

A small shift 

range does 

not change 

the image 

Vertical shift 

did not work 

because it 

clipped off 

important 

part of 

number 
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Zoom Zooms in 

or out of 

image 

  

Yes (for 

range 

=0.1) 

It zoomed a 

tiny amount 

bringing 

uniform 

change into 

image 

Horizontal 

flip 

Flips 

image in a 

horizontal 

fashion 

  

No It changed 

the label for 

image. The 

original 

image of 

Urdu ‘2’ 

when flipped 

becomes 

Urdu ‘6’ 

Vertical flip Flips 

image 

vertically 

  

No It changes the 

label for 

image as is 

evident in 

example. 

Cropping Crops a 

random 

part of 

image 

 

 

No It changes 

label of 

image when 

applied for a 

number like 

‘3’ 
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Color 

variation 

Adds or 

removes 

color 

varieties to 

the image 

  

No It brings no 

effect as 

images are 

black and 

white 

 

Then we browsed into other techniques and implemented them individually on our data. Firstly, 

we added random brightness with a minimum range onto the image. This one help model to 

generalize well by getting images taken from different lighting levels. It specifies a min-max range 

for selecting a brightness amount. It has an ideal amount of 1.0 which has no effect on the image. 

Values less than 1.0 dim the lighting of image while those greater than 1.0 have a brighter effect 

on the image. So, we have to define a range from 1.0 to a value less than or more than 1.0 to be 

applied on the image. In our case, we applied range of [0.5, 1.0] to darken the image as our images 

were already relatively bright. Individually this worked well with our model, but when it was 

applied in combination with other augmentation techniques it gave very little accuracy, so we 

dropped it.  

The zoom augmentation zooms into the image or zooms out of the image randomly. We have to 

specify a zoom range [1- value, 1+ value]. This works by adding and subtracting the value specified 

from 1 to make its range. For our dataset we applied, zoom of 0.1 which made a range of [0.9, 1.1] 

to be applied on the image. As we applied a tiny amount to be zoomed, this not only brought 

change in our original image but also zoomed uniformly so none of our information was lost.  

Along with that we applied random rotation which ranges from 0 to 360 degrees in clockwise 

direction. It rotates the image in such a way that the pixels are rotated out of the image frame and 

leaves certain pixels without data. We checked for many values and finally picked out 25 degrees 

which yields the best results on numbers dataset. So, this again brings disparity in the dataset which 

helps the model learn distinct variations and helps it not to overfit. Lastly, we did random shifting 

of images but in horizontal fashion so as to retain maximum information. Again, we used a 

minimum value, so it does bring some change but also retains the original label. A value of 0.1 

was tested which gave accurate results. All these three augmentation techniques were applied in 

combination to yield different variations of the dataset and get least overfitting. 
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D.  VISUALIZATION OF DATASET: 

1. T-SNE: 

A well-known method for visualizing datasets in high dimensions is t-Distributed Stochastic 

Neighbor Embedding (t-SNE). It works by appointing each datapoint from multiple classes a 

location in two or three-dimensional map. In simpler terms, it is suitable for high dimensional 

data that lies on several different but related low dimension manifolds like images belonging to 

multiple classes. It was presented by Hinton and Maaten in 2008 to reveal structure of dataset at 

different scales [32].  

t-SNE’s algorithm works in a nonlinear fashion by performing various transformations on 

different regions and adapting to the underlying data. It works on two types of parameters which 

need to be optimized – cost function parameters and optimization parameters. Perplexity which 

balances the attention between local and global aspects of data is the cost function parameter. Its 

typical value is between 5 and 50. Number of iterations, learning rate and momentum are the 

optimization parameters. It computes the similarity between datapoints in the low dimension 

space using the pairwise similarities function in equation 1: 

 

But this similarity function causes issues when either of the points is an outlier. For such points 

the pairwise distance ||xi – xj ||
2  becomes very large for xi and the consequence is that pij becomes 

very small for the respective j. This makes the effect of outlier very little on the cost function 

which does not determine the position of that point as compared to the positions of other points. 

So, Hinton introduced the usage of joint probabilities pij in high dimensional space to cater this 

problem. It is set to be: 

                                              Pij =  
 Pj|i+  Pi|j

2𝑛
     (2) 

This makes sure that all the datapoints xi make significant contribution to the cost function. 

Hence the conditional probability is given by equation 3: 

 

For each iteration, it computes low dimensional affinities qij and gradient δC /δY 
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These parameters minimize the following cost function: 

 

So, t-SNE works by emphasizing on modeling the dissimilar points by means of their large 

pairwise distances while modeling the similar points by their small pairwise distances.  These 

characteristics of t-SNE make it easier to optimize its cost function by using joint probabilities. 

 

2. T-SNE VISUALIZATION FOR URDU DATASET: 

To get a better understanding of our new Urdu dataset, we deemed it necessary to visualize it so 

we could get an understanding of our data. Also, before moving on to the implementation, we 

wanted to see whether our collected data had some underlying structure or not.  

We start by computing Principal Components Analysis (PCA) of our dataset. This helped us reduce 

the dimensionality of the dataset which was set to 3 and also accelerates the process of calculating 

the pairwise similarities. For each class a color is set, which is used to determine the location of 

the data points belonging to each cluster. This color coding also helped us to evaluate the 

similarities within each cluster. It is plotted in the form of a scatter plot in two dimensions. For 

hyperparameter tuning, we used perplexity and number of iterations. Perplexity can have a value 

between 5 and 50. As for number of iterations, there is no such ideal value because different dataset 

can yield different results and also take different number of iterations for convergence. For our 

Urdu dataset, the ideal perplexity value turned out to be 30 with 1500 iterations.  
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FIGURE 8: T-SNE VISUALIZATION OF URDU DATASET 

As shown in the figure 7, datapoints are clustered into their respective clusters while some of them 

show overlap. Urdu ‘2’ and Urdu ‘3’ have almost similar shape so this can be seen on the bottom 

side that blue and green dots are overlapping. Similarly Urdu ‘0’ and Urdu ‘5’ have similar shapes 

and they have coincident points on the extreme left side in blue and brown shades. 

 

3. T-SNE VISUALIZATION FOR ENGLISH DATASET: 

Similarly in order to manipulate our datasets, we visualized them before combining them into one 

set. Figure 8 shows the t-SNE visualization for English numerals which are extracted from the 

popular MNIST dataset. The perplexity value of 25 with almost 1500 iterations yield the best 

results. The separate clusters show that each shape of English numeral is dissimilar which validates 

our thesis. A point to be noted here is that the distance between these clusters relate no information 

about the properties or similarities of points in the 2D space. 
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FIGURE 9: T-SNE VISUALIZATION OF ENGLISH DATASET 

 

4. T-SNE VISUALIZATION FOR PERSIAN DATASET: 

For Persian handwritten numerals dataset, we extracted the images from the popular dataset by 

E. Kabir and H. Khosravi. The Persian script has similar numerals as Urdu with only ‘4’, ’6’, ‘7’, 

‘8’ differing in writing style. The ideal perplexity and iterations value was picked out to be 25 

and 1500 respectively. The numbers ‘2’ and ‘3’ are written in almost same way so they are 

clustered in an overlapping fashion on the most left side in blue and green points. The rest of the 

digits are clustered in their respective circles. 
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FIGURE 10: T-SNE VISUALIZATION OF PERSIAN DATASET 

The overlapping points represent certain variations between the digits plotted in the graph. Yet 

again the distances or closeness between certain clusters gives no information about whether they 

contain coincident points or not.  

 

5. T-SNE VISUALIZATION FOR COMBINATION OF DATA: 

Finally, after ample validation of our datasets we combined them into their respective folders based 

on their similarities or dissimilarities with each other as shown in table 2. In order to authenticate 

our experiments, we visualized these similar numerals. For instance, the numerals ‘1’ and ‘9’ are 

same for all the three datasets so in their t-SNE visualization they are clustered together as shown 

in figure 10 and 11. Similarly, ‘4’, ‘6’, ‘7’, ‘8’ are written in different patterns in all the three 

languages so the t-SNE plots for these numbers showed no overlapping points. This is evident in 

the figures 12, 13, 14, and 15. The rest of the digits have similarity in Urdu and Persian like Urdu 

‘0’ and Persian ‘0’ are written in the same way while English ‘0’ is written in another pattern. The 

Urdu ‘2’, ‘3’ and ‘5’ have same shape as that of Persian letters so they are close to each other while 

distant from their respective English labels. 
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FIGURE 11: T-SNE VISUALIZATION FOR URDU ‘1’, ENGLISH ‘1’ AND PERSIAN ‘1’ 

 

 

FIGURE 12: T-SNE VISUALIZATION FOR URDU ‘9’, ENGLISH ‘9’ AND PERSIAN ‘9’ 

As depicted in Figure 11 and Figure 12, all the datapoints overlap because of similarity in shape. 

For Figure 11, the green points represent English’s ‘1’ data, blue points show Persian’s ‘1’ 

datapoints while the red dots show Urdu’s ‘1’ points. The Urdu points are scattered all over the 

plane because the images taken for this experiment were 500 in number. Persian and English 

datapoints were almost 250 in number so their quantity is clearly shown by t-SNE. Besides that, 

we experimented with various perplexity values for this experiment. A very low perplexity value 

like 2 made the local variations supersede so it became hard to detect similarities in the plot. 

However, increasing the perplexity value to almost 500 showed no structure of the dataset. By 
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these experiments of perplexity value, we concluded that perplexity value should range between 

the datapoints in the plot but should not be necessarily very small. 

 

FIGURE 13: T-SNE VISUALIZATION FOR URDU ‘4’, ENGLISH ‘4’ AND PERSIAN ‘4’ 

 

FIGURE 14: T-SNE VISUALIZATION FOR URDU ‘6’, ENGLISH ‘6’ AND PERSIAN ‘6’ 
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FIGURE 15: T-SNE VISUALIZATION FOR URDU ‘7’, ENGLISH ‘7’ AND PERSIAN ‘7’ 

 

FIGURE 16: T-SNE VISUALIZATION FOR URDU ‘8’, ENGLISH ‘8’ AND PERSIAN ‘8’ 

The figures above show the datapoints namely ‘4’, ‘6’, ‘7’ and ‘8’ in t-SNE plane visualized 

according to their respective clusters. The size of datapoints in each folder was kept 50 so as to get 

clear segmented clusters. Intuitively it can be deduced that the digit ‘4’ for each of the three 

languages should belong to separate clusters because it writing style is unrelated for each language. 

Our intuition makes sense when we tune the perplexity value to 20 for each experiment. Figure 13 

shows various shades of blue to denote the number ‘4’ belonging to separate classes. Figure 14 

uses red, green, and purple color palette to depict the different cluster of number ‘6’. For numeral 

‘7’ the datapoints are aligned in separate clusters according to their respective labels in Figure 15. 

Lastly, Figure 16 exhibits the clusters of number ‘8’ in non-identical clusters. It should be noted 

here that we kept the perplexity value neither too small nor very large (approaching the number of 

datapoints) in order to get perfect non-overlapping clusters. 
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FIGURE 17: T-SNE VISUALIZATION FOR ENGLISH ‘0’ AND PERSIAN ‘0’ 

 

FIGURE 18: T-SNE VISUALIZATION FOR ENGLISH ‘0’ AND URDU ‘0’ 

We move onto those digits next which have similarities between two classes, so we get 3 types of 

plots for each of them. Figure 17 shows the distinct points for English ‘0’ and Persian ‘0’. While 

Figure 18 displays the separation of clusters for Urdu digit ‘0 and English digit ‘0’.  This being 

said we have Figure 19 to display the similarity of Urdu ‘0’ and Persian ‘0’ owing to their similarity 

in writing style. Keeping in mind these differentiations, we assign the Persian ‘0’ and Urdu ‘0’ a 

same label. Similarly, English ‘0’ is assigned a separate label because of its dissimilarity between 

its counter Urdu and Persian numbers. 
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FIGURE 19: T-SNE VISUALIZATION FOR URDU ‘0’ AND PERSIAN ‘0’ 

 

FIGURE 20: T-SNE VISUALIZATION FOR ENGLISH ‘2’ AND URDU ‘2’ 
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FIGURE 21: T-SNE VISUALIZATION FOR ENGLISH ‘2’ AND PERSIAN ‘2’ 

Here again we have similar patterns of t-SNE for the digit ‘2’ in Figure 20 and Figure 21. The 

numerals for Urdu and Persian labelled as ‘2’ have identical shape. It only differs when a person 

writes with a slant or when the image is noisy. This disruption is depicted in the form of outliers 

in plot; wherever the points are out of range or coinciding with the other cluster it is because of 

such problems. This not only gives us variations of a cluster but also validates a part of our 

proposed thesis that we have used a variable dataset. 

A perfect overlap of points is visible in Figure 22 which plots the Persian digit ‘2’ and Urdu digit 

‘2’. Instinctively this authenticates our claim that such digits should belong to a same class. Not 

only does this experiment reduce the number of classes to be learned but also lessens the 

parameters, weights and time associated in training of its networks.  
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FIGURE 22: T-SNE VISUALIZATION FOR URDU ‘2’ AND PERSIAN ‘2’ 

 

FIGURE 23: T-SNE VISUALIZATION FOR ENGLISH ‘3’ AND PERSIAN ‘3’ 
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FIGURE 24: T-SNE VISUALIZATION FOR URDU ‘3’ AND ENGLISH ‘3’ 

In Figure 23 and Figure 24, t-SNE illustrates the differences between digit ‘3’ for English and 

Persian classes, and English, Urdu class respectively. For this plot we experimented with number 

of iterations as the hyperparameter. We started with 25 epochs which gave us pinched clusters in 

the plot, so we increased the epochs to a random large value 250. But these epochs did not give a 

stable result too. So, we came back to the original number of epochs and gradually started 

increasing its number. At epoch 70 we reached a relatively stable configuration hence we deduced 

the conclusion that a particular range of epochs does not work every time. Hence it is much needed 

to fluctuate the number or iterations. 
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FIGURE 25: T-SNE VISUALIZATION FOR URDU ‘3’ AND PERSIAN ‘3’ 

Figure 25 shows a remarkable curve for Urdu and Persian digit ‘3’. This almost perfect curve is 

just because of the similarity in shape of both the classes. The blue dots denote ‘3’ for Urdu 

language while the red one shows it for Persian. This again attests the truth of our intuition that 

numbers belonging to Urdu and Persian for digit ‘3’ should be labelled in the same class. Hence 

based on these results we identify same label for Urdu and Persian ‘3’ but different label for 

English ‘3’. 
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FIGURE 26: T-SNE VISUALIZATION FOR ENGLISH ‘5’ AND PERSIAN ‘5’ 

 

 

FIGURE 27: T-SNE VISUALIZATION FOR URDU ‘5’ AND ENGLISH ‘5’ 

Digits labelled as Urdu ‘5’ and Persian ‘5’ have similar shape as that of a vertically flipped heart. 

An interesting phenomenon that we encountered while playing with different values of 

hyperparameters was that each run gave us a different result. After studying its underlying paper, 
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we came to the conclusion that t-SNE has an objective function that is non-convex. Its objective 

function uses random weights upon initialization; hence it was okay for different hyperparameter 

values to display variable results.  

 

FIGURE 28: T-SNE VISUALIZATION FOR URDU ‘5’ AND PERSIAN ‘5’ 

Figure 26, Figure 27, and Figure 28 display the results for digit ‘5’ for all the classes. The 

distinctions between points are clearly visible for Urdu and English, Persian and English. An 

important point to note here is that since all the images are different so the points belonging to 

same classes are also non-overlapping. So, when points overlap in Figure 28 that does not 

necessarily mean that only some of them match particular images. It is actually because we have 

incorporated so many variations during pre-processing step that almost each image is different 

from the other.  

Our illustrations of t-SNE results not only authenticates our intuition but also builds up the 

foundation for authenticity of our models. The high accuracies that we achieve further down the 

chapters despite so much pre-processing is because our models are able to capture the underlying 

distribution of the dataset. 
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E.  PROPOSED MODEL 
Convolutional neural network is the progressive neural network that has a huge accuracy in 

learning features of visual data. In a CNN, the input is transformed to get accurate predictions by 

traversing through some layers. It consists of 4 core sub-structures which are used repeatedly with 

different activation functions to deduce best results. 

• The input layer contains raw pixel values and in this case each image of size 28 × 28 × 3 

pixels is fed to the CNN. Here 28 represents the width and height of image while 3 is the 

color channels- red, green, and blue. 

• Convolution layer connects local receptive field of the input with neurons in next layer. 

This is done by a simple dot product of kernel and input image. Kernel size of 3 × 3 is 

maintained throughout the model whereas padding is set to 1.  

• The pooling layer downsamples input along spatial dimensions. One of the most famous 

pooling layers is ‘Max Pooling’ which is used here to extract highest pixel value in current 

space. These extracted features are then fed to the classifiers which are discussed further.  
Our proposed model classifies 22 classes of handwritten Urdu, Persian and English numerals using 

convolutional neural networks with feature mapped output layer. We use custom CNNs along with 

popular CNN architectures for our dataset to get a comparison of the various classification methods 

that can be applied on our dataset. The details of the different models that we applied on our dataset 

are explained in the following sections. Figure 29 explains the methodology that has been followed 

in this thesis. 
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FIGURE 29: METHODOLOGY OF THESIS 

 

1. CNN V1: 

We started by making a simple model for training so that we could evaluate the quality of our 

dataset and then move on to better models. For our first model, we combined the primitive layers 

- convolution layers, activation function and pooling layer. Convolution layer works by 

connecting the pixels in input with neurons in the next layer after taking dot product of kernel 

and input. Kernel of size 5 × 5 is maintained throughout the model whereas padding is set to 1. 

Padding ensures that image is not shrunk by adding zero value pixels along the border of input 

[33]. It is followed by activation function where each output from neurons of previous layer are 

fed to the RELU activation function. We chose RELU activation function as it works better than 

other functions like sigmoid in terms of vanishing gradient problem [34]. It was picked out of 

other non-linearities after comparing their results in our CNN model. Lastly pooling layer was 

applied to get reduced number of parameters in the end and to reduce overfitting [35]. Three sets 

of these layers were applied to get summarized results which were fed into the fully connected 

layers using the Softmax classifier. We used the Softmax classifier as it works best for 

classification problems. During compilation of model, we used stochastic gradient descent 

(SGD) function for optimization. It achieves a reasonable gradient at a low convergence rate at a 

minimum cost, so it is mostly preferred in huge datasets. A summary of this model is as follows: 
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FIGURE 30: CNN V1 MODEL 
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2. CNN V2: 

We improved the model by looking at ideas that could help us tune our model in a better way. 

We started by tuning the learning rate for SGD. First, we experimented with very large values 

and moved onto smaller values. This gave us an almost ideal value of 0.001 as compared to the 

previous value of 0.1. Then we dug into literature and found Rumethart, William and Hinton’s 

paper of backpropagation learning which introduced the concept of momentum in combination 

with SGD [36]. With momentum the gradient of loss is accelerated as compared to the classical 

SGD which made the gradient trave in the same direction and thus preventing any kind of 

oscillations. Along with momentum we found Nesterov accelerated momentum which in 

combination with momentum for SGD gives better and faster results. Instead of evaluating 

gradient at the current position, Nesterov momentum keeps a check on the lookahead gradient 

step. Thus, it helps the model adapt to the update of error function and speed up SGD in turn 

[37].   



35 
 

 

FIGURE 31: CNN V2 MODEL 
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3. CNN V3: 

In order to achieve the best results for our dataset, we moved onto advanced optimization 

algorithms and retuned our hyperparameters. Adam [38] is one of the latest optimization 

algorithms and takes very little time to converge and promises best results. It works by computing 

adaptive learning rates for each parameter by keeping an exponentially decaying mean of past 

calculated gradients [39]. It is also used as an alternative for SGD+ Nesterov as that requires 

intense tuning of hyperparameters. We used the default value of learning rate = 0.001 for Adam. 

Another technique to improve a model’s performance is batch normalization. It simply 

standardizes the layers for each batch which stabilizes the learning process in a few epochs. So, 

our model was modified by keeping in view these additions and it a glimpse of it is as follows: 
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FIGURE 32: CNN V3 MODEL 

After considerable research, we came across another method to solve overfitting and get quick 

convergence. Previously we were using 150 to 200 epochs to get convergence which in turn lead 
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to overfitting. So, by we employed early stopping which needs an arbitrary number of epochs to 

be set but it stops training when the model’s performance reaches its best on validation data i.e. it 

stops improving. Its parameters monitor, mode, and patience need tuning to get accurate results. 

For the training to end, a parameter has to reach some convergence. The parameter whose 

convergence we need to acquire is specified in ‘monitor’. ‘Mode’ defines the objective of selected 

metric to be achieved whether its minimum or maximum value is required. To cater the delay to 

the trigger for epochs on which we would like to see no improvement we use the ‘patience’ 

argument. Its accurate value varies between the ideal model for different datasets. We monitored 

the minimum validation loss for a patience value of 5 to get precisely accurate results. 

 

4. VGGNET 

Deep learning has become a key instrument in artificial intelligence applications [40]. Research 

fields like natural language processing, computer vision and speech recognition have produced 

remarkable results in deep learning. This growing interest has given birth to innovations in this 

field. Transfer learning is one such aspect where pre-trained deep learning architectures that have 

won the ImageNet competition are implemented on relatively contrasting datasets. We present the 

implementation of 4 models on our dataset. For all these 4 implementations, we keep some 

redundant settings same. The last layers are freezed and replaced with global average pooling fed 

into the RELU activation map. Also, the image size is kept as 75 x75 x3 for all the architectures. 

We only feed the augmented images into the models while using early stopping. 

TABLE 4: COMPARISON OF SETTINGS MODIFIED FOR EACH ARCHITECTURE 

Model Depth Top-5 accuracy Settings added 

VGGNet 16 0.901 • Global average pooling,  

• ReLU activation map,  

• Dense neurons,  

• Fully connected layer of 22 

neurons 

ResNet50 50 0.933 • Global average pooling,  

• ReLU activation map,  

• Fully connected layer of 22 

neurons with Softmax activation 

GoogLeNet 

(Inception V3) 

48 0.941 • 2D Global average pooling,  

• ReLU activation map,  

• Fully connected layer of 22 

neurons with Softmax activation 

Xception 36 0.945 • 2D Global average pooling,  

• ReLU activation map,  

• Fully connected layer of 22 

neurons 
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VGGNet was the runner-up for ILSVRC 2014 and was presented by Karen Simonyan and Andrew 

Zisserman [41]. It was one of the first deep networks to be presented as it had 16-18 layers. This 

increased depth was proven to be a critical component to achieve good performance. It works on 

the phenomenon of smaller filters and deeper networks. The benefit of these smaller filters is that 

they have same receptive field as a larger filter but with lesser parameters. They replaced a 7x7 

filter with a stack of three 3x3 filters which yields quick computations with less parameters. Hence 

less storage and time was required for it despite it being a deep network. The final version features 

a homogeneous architecture that only performed 3 x3 convolutions and 2 x2 pooling from the very 

beginning till the end. With the correct selection of hyperparameters we achieved best accuracy in 

almost 45 epochs with validation accuracy greater than 95%.  

 

FIGURE 33: VGGNET MODEL 

 

5. GOOGLENET (INCEPTION V3) 

GoogLeNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2014 [42]. 

It is based on the idea of inception layer which covers a large area but maintains fine resolution on 

dataset for small information. The convolution and projection layers use ReLU as activation 

function while working on receptive field of 224x224 with 3 color channels. It is 27 layers deep if 

we count the layers with parameters too. It includes convolution layers, max pooling layers, fully 

connected layers, and finally linear layers. Because GoogLeNet achieved top 5 error-rate of 6.67% 

so we used it to train numeral dataset.  

We used its version 3 for our task as this version had the latest improvements in the model. Along 

with the basic features of GoogLeNet it adds on label smoothing, factorized 7 x 7 convolutions 

and auxiliary classifier to deliver label information down the model [43]. A major task was to tune 

parameters mainly number of epochs, batch size, and learning rate. But as we used Adam optimizer 

and early stopping, they solved the problem of learning rate and number of epochs. For batch size 

we trained on many values and found 128 to be the appropriate size. It achieved accuracy greater 

than 90 in almost 12 epochs when trained with the proper parameters. 
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FIGURE 34: GOOGLENET (INCEPTION V3) MODEL 

 

6. RESNET  

Like GoogLeNet, ResNet was the winner of ILSRVC 2015 with an error rate of 3.6%. It is based 

on very deep neural networks using residual connections. A residual connection (also called skip 

connection) copies the learned layers from shallow model and sets additional layers to identity 

mapping [44]. Instead of making a network deeper and deeper which causes problems like 

vanishing gradient and severe overfitting on both training and validation data, it uses layers to fit 

a residual map. The idea was to stack these residual blocks to make a deep network instead of 

simply stacking layers.  

 

FIGURE 35: RESNET50 MODEL 
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For our dataset, we kept images of size 75x75x3 and used the ResNet50 version which has 50 

layers in its network. We used the Adam optimizer to yield best results with a batch size of 128 

and almost 47 epochs. 

 

7. XCEPTION 

Xception is based on the idea that inception modules in CNN are an intermediate step in normal 

convolutions and depth wise separable convolution [45]. Figure 36 gives a complete description 

of the specifications of the network where data enters through the entry flow followed by middle 

flow and then out of the exit flow. As we are working on classification task, so the convolutional 

mesh of networks will end on a logistic regression layer. Linear residual connections are used in 

the convolutional layers which are gathered into 14 modules. According to its settings this model 

beats the Inception V3 for ImageNet dataset. It uses the model parameters in an efficient way as 

compared to Inception V3. Here a 1 x1 convolution is done before an n x n convolution so it 

changes the order of operations. It also dismisses non-linearities throughout the model. For our 

model we used, 75x75x3 image size to work for 27 epochs and get best results. Simply speaking 

it is a linear pile of depthwise separable convolutions having residual connections. Hence, the 

model is very easy to modify and define with approx. 40 lines of code.  

 

FIGURE 36: XCEPTION MODEL SUMMARY 
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Chapter 4 

RESULTS 
Our integrated dataset of handwritten numerals is manually developed and has 22 classes for Urdu, 

Persian and English numerals, the details of which are explained in the previous chapters. These 

classes have 1000 images each so making a total of 22000 images by 28x28x3 shape. We segregate 

our models into two categories – one is the custom-built CNN which has 3 versions and other is 

the transfer learning model which has 4 architectures. We divided our dataset in 80- 20 ratio for 

train and test data. Out of train data we picked validation data of 10%. The experiments that we 

performed with all these models to get their finest results are discussed in the following 

subsections. 

We conducted the experiments using Python Keras language on an Intel(R) Core (TM) i7-10510U 

CPU @ 1.80GHz @2.30 GHz desktop system with 16 GB RAM and an Nvidia K80 / T4 GPU. 

However, the CPU is not used for training or testing. Our computer works on Windows 20H2 

version. For development purposes we used Python 3.6. 9, Keras 2.4.3, and TensorFlow 2.6.0.  

 

A. LEARNING CURVES 

1. CUSTOM BUILT CNN MODELS 

For our three versions of custom-built CNN, we tried out different parameter and modified their 

settings to yield accurate results. Their learning curves gave us huge insight as to what kind of 

learning experience each of these had. Figure 37, Figure 38 and Figure 39 show the learning curves 

for each of the three CNN versions that we tried out. All of the plots show no overfitting or 

underfitting which is a good measure of the accuracy of our models. It is to be noted here that these 

plots were the one that were achieved after considerable hyperparameter tuning and though they 

may appear to be almost perfect but show either less accuracy or huge epochs for convergence. 

The plots for training loss and validation loss decrease till they achieve a point of stability. It is 

useful to track training and validation loss to evaluate the batches during forward pass. A very high 

or very low learning rate impacts these plots by showing an unnatural curve which would turn 

upwards or downwards in an abrupt manner. A low learning rate makes improvements in an almost 

linear fashion while a high value results in an exponential growth of curve. So, an ideal value is 

achieved after considerable selection of learning rates. Another major point to be considered in 

this implementation is that certain values for learning rate work well with SGD optimizer while 

others work best for Adam. Since, we used SGD in CNN v1 and v2, we kept a value of 0.1 for 

both of these. But when we added more parameters like momentum and Nesterov accelerated 

momentum for v3 we changed this value to 0.001 after trying out various values as it submitted 

the prime results. Also, for both CNN v1 and v2, we used 80 and 50 epochs respectively where 
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they finally converged. These epochs were yet again tuned by hit and trial.  The Figure 38 shows 

convergence of values after almost 30 epochs and iterations more than that were not necessary.  

The CNN v3 employs Adam as an optimizer, early stopping as a halting technique and batch 

normalization for standardization process of layers, so it yields the best accuracy among the three 

of them. Its optimization learning curve in Figure 39 shows a wiggle in the loss which is because 

of Adam optimizer’s performance. Moreover, its performance learning curve shows a remarkable 

achievement of accuracy in almost 10 epochs which is remarkable considering we had huge 

dataset. This was possible because of early stopping as it got excellent result in minimum time.  

 

FIGURE 37: LOSS AND ACCURACY CURVE FOR CNN V1 

 

FIGURE 38: LOSS AND ACCURACY CURVE FOR CNN V2 
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FIGURE 39: LOSS AND ACCURACY CURVE FOR CNN V3 

 

2. TRANSFER LEARNING MODELS 

In order to evaluate the performance of our models, we used models from Keras.applications 

library. For all these 4 implementations, we keep some redundant settings same. The last layers are 

freezed and replaced with global average pooling fed into the RELU activation map. Also, the 

image size is kept as 75 x75 x3 for all the architectures. We only feed the augmented images into 

the models while using early stopping. Figure 40, Figure 41, Figure 42 and Figure 43 demonstrate 

the optimization and performance learning curves for out integrated dataset. We used the popular 

architectures VGGNET, ResNet, GoogLeNet because they show excellent results for problems 

ranging from image classification to semantic and instance-based object segmentation. Moreover, 

the advanced techniques like RNN, fast RCNN, Feature pyramid networks are built on the lines of 

these networks. Thus, it deemed necessary that we use these architectures too to validate our study 

on our novel dataset. 

All the models depicted reasonable convergence in a small number of epochs after considerable 

hyper parameter tuning except for GoogLeNet V3 which converged in a time span of 7 minutes 

only. The learning curve for VGGNet shows its convergence at 45 iterations with an accurate fit 

of training and validation accuracies as shown in Figure 40. Due to its depth and complexity of 

operations it takes longer time in comparison to other architectures. So, although it achieves 

remarkable results it is tiresome to deploy it owing to its large weights, training time and resources 

required. The GoogLeNet V3 boosts the accuracy of inception module for classification tasks. It 

is inception module acts as a multi-level feature extractor thus reducing the need for redundant 

convolution layers. This argument is validated in Figure 41 where a start of huge accuracy 

differences leads to convergence in just a few epochs without using immense resources. Out of all 

the four models, it converged quickly in over 5 minutes. 
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FIGURE 40: LOSS AND ACCURACY CURVE FOR VGGNET 

 

 

FIGURE 41: LOSS AND ACCURACY CURVE FOR GOOGLENET (INCEPTION V3) 

Like GoogLeNet, ResNet has been the winner of ILSRVC in the early 2000s. It basically relies on 

micro-architecture modules to build extremely deep networks. It drastically reduces the feature 

space and attains a smaller model by using global average pooling rather than simple fully 

connected layers. Figure 42 shows its representation of accuracy and loss curve which yet again 

shows an accurate fit curve. The last architecture under discussion is the advanced Xception which 

is an extension of the inception net architecture. It uses L2 regularization as a built-in technique 

which surges the learning curves. But as all is well that ends well, it converges beautifully in 

minimum number of iterations. 
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FIGURE 42: LOSS AND ACCURACY CURVE FOR RESNET50 

 

 

FIGURE 43: LOSS AND ACCURACY CURVE FOR XCEPTION 

 

B. EVALUATION METRICS 
To achieve the optimal state of models, we picked out accuracy to get a fair comparison of the 

experiments that we carried out. Accuracy is the ratio of correctly detected images to the total 

number of input images which is written in equation 7 as: 
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Here TP = True positive which denotes the correctly predicted labels, 

TN = True negative stands for the correctly predicted labels that do not belong to a particular 

class, 

FP = False positive denotes those incorrectly identified labels that did belong to the class, 

FN = False negative represents the incorrectly predicted identities that did not belong to the 

detected class. 

So, classification accuracy concerns with how often the classifier detected the correct labels. It is 

quite noteworthy that our custom-built neural network that we call ‘CNN v3’ achieved 

remarkable accuracy which is almost equivalent to that achieved by deep learning models. It not 

only learned the underlying distribution of the data but also performed exceptionally well on test 

data. There was slight variation of the training and validation accuracy for the proposed model, 

which shows that the model was not subjected to overfitting. This also changed the validation 

and testing score of the model by decreased it slightly upon increase of training data size. The 

highest accuracy is achieved by Xception which is the latest architecture in the deep learning era. 

It has less parameters, requires less hyperparameter tuning, consumes least memory among all 

and is relatively deep. Although VGGNet, GoogLeNet and ResNet are runner ups in their 

respective order but still their accuracies are above 95% which is groundbreaking for a unique 

dataset. Another aspect is that these high accuracies are achieved on augmented dataset so that 

also brought enough variations into the data. The custom-built CNN v1 and v2 achieved 

reasonable accuracies but they are not worth using since they just show the excess experiments 

that we performed. Table 5 shows the accuracies achieved on train, validation, and test data for 

each model.  

TABLE 5: COMPARISON OF ACCURACIES OF ALL MODELS 

Models Train accuracy Validation accuracy Test accuracy 

CNN v1 93.46% 87.65% 92.98% 

CNN v2 97.84% 96.19% 97.09% 

CNN v3 99.31% 99.37% 98.91% 

VGGNet16 97.24% 97.04% 97.18% 

GoogLeNet 

(Inception V3) 

96.92% 96.42% 93.72% 

ResNet50 96.02% 92.14% 94.79% 

Xception 99.46% 99.65% 99.01% 

 

C. TEST RESULTS 
To validate our results, we give some random sample images to all our models and judge its 

predicted label. By Table 5, we can deduce that Xception and custom-built CNN performed best 

out of all the models. Although the accuracy of CNN V3 is not on that much of a difference with 
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Xception but still its runner up. The theory behind this difference of accuracies could be evaluated 

based on Xception’s paper [45]. This model performs depthwise convolution and pointwise 

convolutions instead of conventional convolution.  Depthwise convolutions are the channel-wise 

convolution in spatial n×n dimension so instead of lengthy and intense operations like in 

conventional convolution operation, it just performs convolution in n×n dimension. Pointwise 

convolution is another name for the 1×1 convolution so it works only to change the dimensions of 

channels. Hence, upon comparison with original convolution operations, these modifications are 

performed across specified channels which reduce the parameters, weights to be learned and also 

the time complexity of model. Another important change in this network is that pointwise 

convolution is done before depthwise convolution which is inspired from GoogLeNet Inception 

V3. Hence, it outperforms all the other models mentioned in this thesis. In the Figure 44 below we 

show random samples of images and their predicted labels by the best model out of all i.e., Xception.  

 
FIGURE 44: PREDICTED LABELS FOR XCEPTION 
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Chapter 5 

DISCUSSION 
Moving forward we discuss the performance, parameters, cost, and computational size of each 

model. The VGGNet16 achieved better performance in terms of classification accuracy and 

optimization losses. Its convergence rate seemed to be significant at initial epochs in comparison 

to other models. With our representable portion of dataset, Inception V3 did not experience 

divergence which is a clear sign of exact fit instead of overfit. Also, it does not demand huge 

epochs to get better accuracy thus, early stopping proved to be excellent for it. Out of all the models 

ResNet50 performed worse. It achieved very low scores at initial epochs but improved with larger 

iterations. This happened because of residual connections which increases the complexity of the 

model. Lastly, Xception outperformed all the models by achieving excellent accuracies for all 

subsets of data. 

A. COST CALCULATIONS  
To get further insight of our models, we analyze the cost and space specifications of all these 

models. Although they are deep learning models which are supposed to be heavy weight and 

expensive to perform, still usage of proper hyperparameters can yield an intermediate sized model 

which can achieve better accuracies.  It is evident from Table 6 that our custom built CNNs use 

minimum number of parameters, weights and in turn have less depth but still outperform the deep 

learning models.  

TABLE 6: ACCURACY, DEPTH, WEIGHTS AND PARAMETERS OF DEEP LEARNING 

MODELS 

Models Accuracy Depth Weights size Parameters 

CNN V1 93.46% 15 96MB 24,093,244 

CNN V2 97.84% 15 97 MB 25,609,913 

CNN V3 99.31% 9 84 MB 14,722,960 

VGGNet 97.24% 16 528 MB 138,357,544 

ResNet 96.92% 50 99 MB 25,636,712 

GoogLeNet 

(Inception V3) 

96.02% 48 92 MB 23,851,784 

Xception 99.46% 36 88 MB 22,910,480 

 

VGG model is relatively four time deep than the custom-built CNN and have approximately 50 

times more parameters and in turn more weights. On the other hand, ResNet model is similar to 

VGG model in terms of architecture but is deeper with extra parameters. Its number of parameters 
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are approximately 5 to 6 times more than VGGNet. Lastly, the number of parameters and depth of 

Inception V3 is similar to that of ResNet. Among these deep network architectures, only Xception 

is the one with fewer layers, parameters, weights and also achieves remarkable accuracy on our 

novel data. So, it was found that Xception and CNN v3 are the least expensive models out of all. 

Table 6 shows comparison between parameters, weights, depth, and time complexity of each 

model. We conducted the experiments using Python Keras language on an Intel(R) Core (TM) i7-

10510U CPU @ 1.80GHz @2.30 GHz desktop system with 16 GB RAM and an Nvidia K80 / T4 

GPU. However, the CPU is not used for training or testing. Our computer works on Windows 

20H2 version. For development purposes we used Python 3.6.9, Keras 2.4.3, and TensorFlow 

2.6.0. Our custom built CNNs use minimum time since they are built with less layers and have less 

parameters. VGGNet takes the most time since it has huge number or parameters and calculates 

more non-linearities for each layer. GoogLeNet and ResNet take almost similar time as their 

parameters are also similar in number but still, they get lost in finding features within their 

modules. Xception beats the timing among transfer learning models since it has lesser parameters, 

layers, and weights. 

 

B. COMPARISON WITH EXISTING OTHER TECHNIQUES 
The proposed methods are compared with other CNN based architectures for handwritten numerals 

belonging to Urdu, Persian, English, or a set of these classes. The Table 7 shows that our proposed 

models have outperformed the previous architectures in terms of accuracy and amount of dataset.  

TABLE 7: COMPARISON WITH STATE-OF-THE-ART MODELS 

Reference Dataset No. of images Classifier Accuracy 

[46] Urdu numbers 

from printed 

documents 

2000 samples KNN and SVM 98.128% 

[47] Handwritten 

Urdu characters 

900 samples AlexNet, 

GoogLeNet, 

ResNet18 

AlexNet (93.14%), 

GoogLeNet 

(91.04%),  

ResNet18 (89.97%) 

[48] Handwritten 

Urdu numbers 

8000 numeral 

images 

 

CNN 98.3% 

[49] Urdu 

handwritten 

numbers 

17740 numerals OCR-AlexNet, 

OCR- GoogLeNet 

OCR-AlexNet (96.3 

%),  

OCR-GoogLeNet 

(94.7%) 

[50] Handwritten 

Urdu digits 

 

7000 numbers 

 

Xception 

 

98.94% 
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[51] Urdu digits and 

characters 

 

 Random forest 

 

98.44% 

 

Proposed 

Custom CNN 

v3 

Handwritten 

Urdu, Persian 

and English 

numbers 

22,000 images CNN 99.31% 

Proposed 

Xception model 

Handwritten 

Urdu, Persian 

and English 

numbers 

22,000 images Xception 99.46% 

 

Also, in comparison to the previous papers, in terms of test accuracy, our approach achieved 

99.31% as compared to their previous maximum accuracy of 98.3% which is optimal considering 

that our numeral dataset is novel. This dataset shows promising training and validation accuracies 

on GoogLeNet, ResNet, VGGNet, Xception and proposed approach.   
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Chapter 6 

CONCLUSION 
In this dissertation, we present important research in the field of handwritten text in Urdu, Persian 

and English languages that yields benchmark performance on all the proposed architectures. As 

Urdu is a complex language which is bidirectional too with its numerals written from left to right 

while script written in opposite direction. This induces complexities in the recognition process. Its 

numerals are written on similar patterns as of Persian. So, we employ Urdu and Persian 

handwritten numerals with English numerals to make a novel dataset that can be used for 

classification and recognition of all the three languages. We present a unique way to exploit the 

similarities between these languages while keeping in view our main goal of reviving Urdu 

language’s importance in research field. 

Our proposed approach is remarkably noteworthy for Urdu text research and its related practical 

applications. We performed repetitive experiments in detail to incorporate the strokes in 

handwriting styles which are present in Persian and English languages so that our model can work 

on similar pattern for Urdu language too. By the inclusion of deep learning architectures, the 

capability of learning process of model is enhanced, and hence state-of-the-art results are deduced. 

We present a combination of Urdu, English, and Persian handwritten numbers to build a deep 

learning-based model that can categorize the different numbers. Versions of custom-built 

convolutional neural network (CNN) are implemented to achieve remarkable accuracy in 

recognizing numerals. Along with our own proposed CNN, we use CNN architectures VGGNet, 

ResNet, GoogLeNet (Inception V3) and Xception to achieve remarkable results.  

 

A. FUTURE WORK 
In the future, we plan on increasing Urdu numeral dataset and then make it publicly available so 

as to motivate researchers to work in this field. Increasing this dataset will also increase the 

accuracies on all models. Besides this, our dataset and CNN can help develop a system to identify 

and count currency notes as Pakistani currency notes have both English and Urdu digits written on 

them. Using our model, OCR system will be able to read both kinds of numbers as it has been 

trained on a data that is an amalgamation of both these languages. Its usability could be in 

Pakistan’s NADRA system for processing national ID cards where both English and Urdu numbers 

could be identified. Although the number plates in Pakistan have been renewed recently by making 

them according to a pattern so that they can be identified by cameras. But still there are so many 

people who have not adopted this system so a recognizer that could read both Urdu and English 

numerals could help in this way. The development of handwritten numeral recognizer can remove 

the barriers faced in different writing styles, poor quality of image graphics or illegible 
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handwriting. Since performance of deep learning algorithms in real world applications is of utmost 

importance, so we plan on testing it on other applications such as recognizing Surah numbers of 

The Holy Quran and numbers on Pakistani postage stamps. The sole motivation of this paper is to 

bring our mother language Urdu on competitive level with all the latest research. 
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