

A MODEL-DRIVEN FRAMEWORK FOR DESIGN AND

ANALYSIS OF FOG BASED EHEALTH SYSTEM

Author

Rubia Anjum

Regn Number

274637

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

JULY 2022

A Model-Driven Framework for Design and Analysis of Fog based

EHealth System

Author

Rubia Anjum

Regn Number

274637

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature:_____________________________________

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

JULY 2022

i

DECLARATION

I certify that this research work titled “A Model-Driven Framework for Design and Analysis of

Fog based EHealth System” is my work. The work has not been presented elsewhere for

assessment. The material that has been used from other sources has been properly

acknowledged/referred.

Signature of Student

Rubia Anjum

FALL 2018-MS18(CSE)00000274637

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical, and spelling mistakes. The thesis is also according to the format given by the

university.

Signature of Student

Rubia Anjum

FALL 2018-MS-18(CSE)00000274637

Signature of Supervisor

iii

COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You set up in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

my thesis, whether my parents or any other individual was Your will, so indeed none be worthy

of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout every department of my life.

I would also like to express special thanks to my supervisor Dr. Farooque Azam and my co-

supervisor, Dr. Wasi Haider Butt, for their constant motivation, patience, enthusiasm, and

immense knowledge. Their guidance helped me throughout my research and writing of this

thesis. I could not have imagined having a better advisor and mentor for my MS study.

I would also like to pay special thanks to Muhammad Waseem Anwar for his tremendous

support and cooperation. Each time I got stuck in something, he came up with the solution.

Without his help, I wouldn’t have been able to complete my thesis. I appreciate his patience and

guidance throughout the whole thesis.

I would also like to thank Dr. Arslan Shaukat and Dr. Umar Farooq for being on my thesis

guidance and evaluation committee. Their recommendations are very valued for improvement of

the work.

I would like to pay special thanks to Anam Amjad for always providing me with continuous

help and support throughout this thesis work.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

Thanks for all your encouragement!

v

Dedicated to my beloved parents and adored siblings whose tremendous

support and cooperation led me to this wonderful accomplishment

vi

ABSTRACT

The ehealth intervention is being used on a daily basis as the increase in the disease data such as

diabetes, heart disease, lungs, neurological disorders, malignancies, and others. As a result, the

volume of patient data is consuming a lot of storage space. However, advances in the field of fog

computing are assisting in the storage of the massive amounts of data generated on a daily basis.

Because the eHealth system is mission-critical, it is expected to be flawless. There is no room for

error in the system. Furthermore, an early design and analysis of an ehealth system is required.

State-of-the-art fog based ehealth techniques, on the other hand, are hard to come across in the

literature. In the area of fog computing, there exist some tools (e.g., iFogSim), which provide

simulation and analysis, however, it does not support modeling, which limits user’s ability to

design and analyze the system at early stages of SDLC. No code generation facility from the

high-level model is available in fog computing tools. As a result, Model-Driven Fog based

eHealth System Framework, an open-source framework for the construction and analysis of fog

based ehealth systems, is proposed in this paper (MFeHF). Unified Modelling Language Profile

for Fog based eHealth system (UMLPFeH) is proposed in the proposed framework for

modelling the requirements of health and fog, where the concepts of ehealth and fog are divided

into four components that deal with ehealth data and data processing through fog computing. The

MFeHF has created an open-source transformation engine that uses the Acceleo tool to convert

UML models to JAVA language. Two case studies, (i) EEG tractor beam and (ii) smart glove,

are used to validate the feasibility, cost-effectiveness, and scalability of the MFeHF for eHealth

system analysis. The experimental results show that the suggested framework is a simple and

reusable method for developing fog based ehealth systems.

Key Words: Fog Computing, eHealth, Model-driven engineering, UML profile, model to text

transformation/Acceleo.

vii

TABLE OF CONTENTS

DECLARATION.. i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT .. vi

TABLE OF CONTENTS ... vii

List of Figures ... ix

List of Tables ... x

CHAPTER 1: INTRODUCTION .. 12

1.1 Background Study ... 12

1.1.1 Fog Computing: .. 12

1.1.2 eHealth System:... 16

1.1.3 Fog based eHealth System: ... 18

1.1.4 Model-Driven Engineering ... 20

1.2 Problem Statement ... 21

1.3 Proposed Methodology .. 22

1.4 Research Contribution .. 23

1.5 Thesis Organization.. 23

CHAPTER 2: LITERATURE REVIEW ... 26

2.1 Category Definition: .. 27

2.2 Review Protocol: ... 29

2.2.1 Research Questions: .. 29

2.2.2 Selection and Rejection Criteria:... 29

2.2.3 Search Process: .. 30

2.2.4 Quality Assessment: .. 31

2.2.5 Data Extraction:... 32

2.3 Results: .. 33

2.4 Research Gap: .. 38

Chapter 3: Proposed Methodology.. 41

3.1 Architecture for Tools and Technique ... 42

viii

3.2 UML Profile for Fog based eHealth System .. 42

3.2.1 eHealth based Sensor Sub Profile Concepts ... 44

3.2.2 Data Processing Sub Profile Concepts ... 48

3.2.3 Application Sub Profile Concepts .. 52

3.2.4 Enum Sub Profile Concepts .. 54

Chapter 4: Implementation .. 58

4.1 Transformation Engine Architecture ... 58

4.1.1 Tool User Interface: .. 58

4.1.2 Code Generator: .. 60

4.2. Transformation Rules ... 60

4.2.1. Transformation Rules for Code Generation: .. 61

Chapter 5: Validation ... 67

5.1 EEG Beam Tractor Case Study ... 67

5.1.1 Requirement Specification .. 68

5.1.2 Modelling .. 68

5.1.3 Transformation .. 72

5.1.4 Early Resource Analysis ... 74

5.2 Smart Glove Case Study .. 77

5.2.1 Requirement Specification .. 78

5.2.2 Modeling ... 79

5.2.3 Transformation: ... 80

Chapter 6: Discussion and Limitations ... 83

6.1 Discussion .. 83

6.2 Limitations ... 84

Chapter 7: Conclusion and Future Work ... 86

ix

List of Figures

Figure 1: Benefits of Fog Computing .. 15
Figure 2: Areas of eHealth ... 17
Figure 3: Fog based eHealth System Architecture .. 19
Figure 4: Model-Driven Engineering .. 21
Figure 5: Research Flow ... 23
Figure 6: Thesis Outline ... 24
Figure 7: Research Overview ... 27
Figure 8: Research Process .. 31
Figure 9: Model-Driven Framework for Fog based EHealth System 41
Figure 10: Tools and Techniques Architecture .. 42
Figure 11: UML Profile for Fog based eHealth System (UMLPFeH) 43
Figure 12: Sensor Sub-profile .. 45
Figure 13: Data Processing Sub-profile .. 49
Figure 14: Application Sub-profile.. 53
Figure 15: Enumerations .. 55
Figure 16: Architecture of Model-Driven Fog based eHealth Transformation Engine 58
Figure 17: Main Screen of MFeHTE .. 59
Figure 18: Input Interface of MFeHTE .. 60
Figure 19: Flow towards validation... 67
Figure 20: Application model of EEG Tractor Beam Case Study ... 69
Figure 21: Design Model of Fog based eHealth System .. 70
Figure 22: Assigning tagged values in Domain Model .. 72
Figure 23: Model Transformation of Case Study .. 73
Figure 24: Input Screen with transformation status ... 73
Figure 25: Generated files in the target folder ... 74
Figure 26: iFogSim Interface ... 75
Figure 27: Importing java file in iFogSim .. 75
Figure 28: Executing java file in iFogSim... 76
Figure 29: Fog based ehealth Framework (console) Results in iFogSim 77
Figure 30: Design model of Smart Glove .. 79
Figure 31: Assigning Tagged Values ... 80
Figure 32: Model Transformation of Case study ... 81
Figure 33: Model Transformation of Case Study .. 81

file:///D:/My%20Data/Study/Masters/Thesis/Fog%20Computing/New%20folder/Thesis%20V5.docx%23_Toc106911565

x

List of Tables

Table 1: Search Process after applying filters .. 30
Table 2: Selected Studies yearly .. 31
Table 3: Selected studies distribution ... 32
Table 4: Data Extraction Template ... 32
Table 5:Classification of study based on health issues .. 33
Table 6: Classification of Research Studies on the basis of application type 33
Table 7: Proposed Technique/ framework ... 34
Table 8: Available Tools/Simulators ... 35
Table 9: ML techniques utilized in studies. .. 36
Table 10: Datasets utilized for ehealth. ... 37
Table 11: Tools/Simulators .. 37
Table 12: Transformation rules for standard modeling elements.. 61

11 | P a g e

Chapter 1

Introduction

12 | P a g e

CHAPTER 1: INTRODUCTION

This section provides a detailed introduction to the research-related concepts. It's broken

down into five components. The background study is described in Section 1.1, the research

problem statement is presented in Section 1.2, the proposed methodology discusses in

Section 1.3, the details about the research contribution are given in Section 1.4, and the

thesis organization is presented in Section 1.5.

1.1 Background Study

This section's goal is to introduce the background study of several topics that were employed

in this study. These ideas include the following.

1.1.1 Fog Computing:

Fog Computing is an arising standard that broadens calculation, correspondence, and

storerooms toward the edge of an organization. Fog computing can uphold the delay-sensitive

request for services from clients with lessened energy utilization and low blockage in

comparison to traditional cloud computing [1]. Fog Computation bridges the gap between the

cloud and end devices (e.g., IoT nodes) by enabling computing, systems administration,

storage, and data management on network hubs within IoT gadgets' immediate vicinity.

Cloud computing should be gained through the organization center, while fog computing can

be obtained by related gadgets from the organization's edge to the organization's center.

Furthermore, fog-based administrations do not require a constant Internet connection to

function. [2]. Fog computing is not a replacement for cloud computing; although, it does

lessen the requirement for data center connectivity. Regardless, both of them are employed in

various applications [3] like Municipal Service [4], Smart Citizen [5], Smart Education [6],

Ehealth [7], Smart Building [8], Smart Energy [9] and Smart Governance [10].

Municipal Service:

Smart cities combine advanced technologies into many municipal services, such as waste and

water management (sewer and refuse), transit, parking, lighting, and so on, to improve living

standards. Smart city infrastructure is used to develop municipal services. Even though each

of these services is controlled by a separate municipality, they now operate independently.

These services are incorporated into the smart municipal system to deliver increased services

based on comprehensive knowledge.

13 | P a g e

Smart Citizen:

One of the fundamental criteria of a smart city is a smart citizen. A smart citizen is someone

who uses information technology to prepare and think in order to save time and boost

productivity. He is able to evaluate and improve his daily routines. Consider someone who is

seeking instructions from others. Traditional methods are used to locate a location. As a

result, questioning people and conducting trials will lead to the target, but it will not be

optimum. When we talk about a smart citizen, we're talking about someone that uses

information technology infrastructures to find their way of utilizing routing apps in an

efficient and timely manner.

The smart citizen, on the other hand, does not have to be a technologist. In addition, smart

citizen has a virtual identity that allows them to use smart city resources to exercise all of

their citizenship rights. Furthermore, he can be a democratic participant, co-creator, or ICT

user in a smart city. As a result, the smart citizen is a crucial idea in smart cities.

Smart Education:

One of the areas where technological advancements have a huge influence is education.

Learning and teaching based on technology developments allow for lower costs, greater

quality, and distant learning, allowing for simple access to high-quality education at any time

and from any location. As a result, smart education initiatives have gotten a lot of coverage in

recent years all around the world.

A precise definition of smart education is extremely difficult to obtain. Smart learners and a

smart environment are two fundamental components that constitute this notion. For example,

to enhance a smart education system, [11] discusses the smart environment, smart educational

technologies, smart educational materials, a new generation of students, professional

interconnected communities, and quick knowledge delivery to students. The role of

technology in educational institutions is, nevertheless, emphasized in all of the associated

publications.

eHealth:

Improving the healthcare system is a critical component of raising people's quality of life.

The Internet of Things (IoT) provides the necessary infrastructure for this purpose, paving the

way for smart healthcare. Remote patient monitoring, home care, emergency healthcare, and

rehabilitation are all possible with today's healthcare systems. The benefits of smart

healthcare include improving humanity's health and well-being by speeding diagnosis and

14 | P a g e

personalized treatments, boosting efficiency, lowering management and treatment costs, and

so on.

Smart Building:

The advent of a new concept known as the smart building is the result of changing lifestyles

and rising comfort levels. Humans are predicted to be able to regulate their lives and work in

an automated and efficient manner in the future. People are spending more time indoors [12].

A smart building includes features such as smart lighting, smart dimmers, intelligent cooling

and heating systems, smart parking, intelligent surveillance and security systems, smart audio

and video systems, electronic curtains, smart engine rooms, smart irrigation, intelligent fire

systems, and more. Depending on the style of construction, all or some of these alternatives

may be used. The intelligent building prototype in [13] is based on fog and cloud

architecture, which allows for real-time local control. The energy consumption improves as

well, even though the human effort to control and monitor is reduced.

Smart Energy:

One of the major issues in cities, particularly smart cities, is effective energy management.

As a result, one of the most critical criteria of a smart city is the presence of an energy

management system. An energy management system is an automated system that monitors,

manages, and optimizes energy production, distribution, and consumption. Smart technology

is used to create a smart energy management system that strives to achieve a low carbon,

efficient distribution, and optimal usage. It caters to both home and business applications.

The benefits of smart energy management systems include discovering energy-saving

opportunities, analyzing upgrading alternatives, and locating financial incentives for future

energy ecosystems [14].

Smart Governance:

Smart government has become a must for smart cities, and it aims to better serve inhabitants

by utilizing information and communication technologies. Online services, electronic

payments, the use of open data to enhance government transparency, online contact with

local governments, and other aspects of government service delivery improve accountability

and citizen participation. It also gives them the knowledge to help them plan and make better

decisions [15].

15 | P a g e

Figure 1: Benefits of Fog Computing

Computation Offloading One option for speeding up applications is to move the most

computationally intensive areas (also known as hotspots or crucial regions) to more powerful

processing devices, such as servers, and hardware accelerators (e.g., GPUs, FPGAs),

supercomputing assets, or distributed computing frameworks. Computation offloading is the

term for this type of computation transfer. [16].

Latency incorporates the over-the-air transmission delay, lining delay, preparing/figuring

deferral, and retransmissions when required. Guaranteeing a full circle dormancy of 1 ms and

inferable from the speed of light requirements (300 km/ms), the most extreme distance at

which a collector can be found is around 150 km [17]. Latency is the deferral between a

client's activity and a web application's reaction to that activity, regularly alluded to in

systems administration terms as the absolute full circle time it takes for an information bundle

to travel.

Network Bandwidth The benefit of delivering information between workers and customers

at a specific moment in bits per second is known as bandwidth (bps). A large recurrence of

the signal used in the transmission media is also known as bandwidth. In computer networks,

bandwidth is commonly used as an equivalent for delivering data, which is the amount of

data that can be transported from one place to the next in a certain time frame, usually

16 | P a g e

measured in seconds. [18]. Fog computing can reduce both propagational latency and

bandwidth use by placing fog nodes close to IoT devices and end-users. [19].

Security In the perception layer of IoT, sensor hubs have restricted computational force and

low database limit, which make the recurrence bouncing transmission application and public-

key encryption to guard the IoT gadgets inaccessible. Lightweight encryption innovation,

which incorporates lightweight cryptographic calculation, is utilized for IoT gadgets. In the

network layer, the IoT network has security issues, like man-in-the-center and fake assaults.

The two assaults can catch and send counterfeit data to transmitting nodes in the network

[18].

1.1.2 eHealth System:

eHealth is a widely used phrase in the healthcare industry, and it refers to the use of

information and communication technology. In terms of standard procedure, eHealth can be

reached through any sort of automated device or health monitoring system. That is utilized by

practitioners in the healthcare discipline or by individuals to control or enhance their health

[20]. The use and effectiveness of third-party servers for the storage and evaluation of health

data raises security and privacy concerns that, if not addressed, could limit the adoption of the

collaborative health standard [21]. In the following, we discuss the domains of eHealth that

play an instrumental role.

Electronic Health Record (EHR) are computerized adaptations of each patient's healthcare

records, these records are maintained by healthcare suppliers for a long period, that carries

data associated with a patient's consideration, including socioeconomics, examination,

operation, prescriptions, indispensable signs, vaccination, research facility results, and images

of radiology [22]. EHRs contain comprehensive knowledge associated with disease diagnosis

for extensive patient communities. Although the essential objective of the EHR is to record

patients' consideration for repayment, a secondary purpose for the obtained data is to be used

as a research platform [23].

Electronic Medical Records (EMR) guide people on how to avert diseases and enhance the

healing rate. It gives a huge premise to healthcare organizations and pharmaceutical

corporations and gives legitimate proof for healthcare carelessness and disputes [24].

17 | P a g e

Figure 2: Areas of eHealth

Telehealth and Telemedicine Telehealth frameworks provide remote care for older people

and people with less physical strength furthermore it provides remote medical procedures,

therapies, and examinations [25]. Telemedicine is the theoretical term used to characterize

clinical benefits conveyed through Information Technology and Telecommunications [26].

Telemedicine can conceivably change medical services conveyance in low-asset conditions

by empowering the augmentation of clinical information to remote areas, in this way

improving the productivity and adequacy of the bigger medical care framework [27].

Mobile Health (mHealth) Progressions in cell phones are significantly changing the

universe of medical services. The accessibility of individual clinical or health gadgets is

recommended as a potential way to minimize medical care costs in a developing world. For

example, clients/patients can undertake at-home recovery with these devices, which allows

them to recover in a familiar environment without the need for a professional [28].

Hospitals are growing larger with assets to handle, admit, control, or observe a developing

amount of patients. They rely on technological advancements to complete their tasks

efficiently. Smart ambulances, for example, would achieve quick analysis to the point where

clinical professionals might formulate prospective plans before the patient arrived. With the

18 | P a g e

integration of IoT, a situation like this can be created [29]. Smart ambulances will need a

variety of dependable health sensors for detection, a secure communication link with the

hospital, and innovative work management tools for emergency clinic arrangements, which

might include a working space where a specialist knows the patient's condition ahead of time.

Medical operations could become more context-aware and efficient as a result of IoT when

data exchange between specialists, clinical staff, and clinical devices in the operating room is

seamless. Also, one may foresee the use of IoT in various medical departments, such as

specialized units, intensive care units, and care units [30].

Mobile Clinics All over the world there is growing interest in mobile health clinics[31].

Portable health centers, for example, have been shown in African countries to provide high-

quality, low-cost care to unprotected communities in remote areas where residents lack

access to basic clinical facilities. Portable medical centers, on the other hand, are vehicles

with limited clinical capabilities. IoT could have a significant impact on the architecture of

mobile clinics, which could collaborate with large emergency clinics to provide analysis and

selection assistance to remote medical centers. As a result, mobile medical facilities may be

able to expand their capacity to provide care [30].

Smart Homes are a cyber-physical framework where houses are furnished with

interconnected sensors and smart devices which are managed across the Internet to keep track

of the atmosphere and guarantee house and personal security and safety [32].

1.1.3 Fog based eHealth System:

A vast number of applications such as smart wearables, smart homes, smart mobility, and

smart cities. Healthcare is becoming increasingly difficult to manage due to insufficient and

less effective healthcare services to meet the increasing demands of the rising aging

population with chronic diseases. e-Health applications often need to manage streaming-

based transmissions where real-time requirements need to be considered. Consequently,

considerable energy is dissipated during the transmission process. Reliability in e-Health

applications is of utmost importance and even short system unavailability often cannot be

tolerated [30]. healthcare applications are mission-critical so they must have energy

efficiency, performance, reliability, interoperability, and security.

To address these difficulties, the Fog computing paradigm is recommended; It focuses on the

integration of edge layer storage, data processing, data handling, management, and

administration equipment, such that calculations previously performed in clouds are now

19 | P a g e

partially offloaded to network edges. As a result, network latency between end-users and the

cloud can be reduced greatly, and data processing results can be obtained more efficiently.

Better service quality and data evaluation can be obtained with such a computing unit at the

network's edge.

Fog is an intermediate computing layer between the cloud and end devices that complement

the advantages of cloud computing by providing additional services for the emerging

requirements. This intermediate layer is discussed in different terms in various articles, such

as Mobile Edge computing [33], Micro-clouds [34], or simply just Edge Computing [35]. fog

layer requires continuously handling a large amount of sensory data in a short time and

responding appropriately concerning various conditions. This task becomes more important

in medical cases by enabling the system to react as fast as possible in medical emergencies

[36].

Fog based eHealth System Architecture

The layered architecture of fog-based eHealth systems is presented in Figure 3. It is an

organization of operational elements all over the network from sensors to the cloud.

Figure 3: Fog based eHealth System Architecture

20 | P a g e

Sensors exist at the lowest level of the architecture and are mounted in different sites,

detecting the surroundings, and releasing detected data to upper levels through gateways for

further operations and refinement. Likewise, Actuators also exist at the lowest level and are

in charge of regulatory an operation or the structure. The actuators are commonly intended to

react to deviations in surroundings that are caught by sensors. Data Values are defined as the

series of continuous values produced by sensors. Access network has different deployment

settings based on the deployment budget. (a) The wired network functions as the access

network when the infrastructure is somewhat extensive. (b) When a wired network is not

fully covered, wireless network communication is the superior option due to its lower cost of

implementation and system configurability. Any component in the fog network capable of

hosting a portion of the application units is referred to as a Fog Device. Cloud resources

made available on-demand from numerous data centers are likewise included in fog devices

[37]. Fog Devices are connected to the cloud with Gateway. The Cloud Layer provides

facilities like storage, forming a knowledge base to aid future decisions, perform analysis,

and support GUI activities.

1.1.4 Model-Driven Engineering

Model-Driven Engineering (MDE) [38] or Model-Driven Development (MDD) [39] is a

software development paradigm that emphasizes the creation of complex, dependable, and

reusable systems. MDE uses a set of tools to design abstract-level domain models that depict

concepts of a specific complex problem and then automatically transform these models into

required platform-specific code. With the MDE approach, individuals need to focus on

modeling software instead of handwriting and continuous debugging of low-level code.

Domain models are created by a substantial collaboration between product managers,

developers, designers, and application end users. Abstraction and automation are its key

concepts. MDE helps to write and implement software applications quickly, effectively, and

with little cost. MDE is already successfully practiced across a wide range of applications

such as controller design, integrated circuit design, and other complex software systems.

MDD uses different languages to develop conceptual and metamodels of a complex problem

of a specific domain. Among these languages, The Unified Modeling Language (UML) is

commonly used. UML defines the modeling architecture as well as the design of a system by

providing language constructs for system components, interfaces, objects, interactions, etc.

UML conceptual models can be extended and customized by using UML Profile. UML

21 | P a g e

Profile allows adapting UML language according to the system requirements or customer

needs. Another important aspect of MDD is Model Transformation which performs automatic

transformation of source models into target models. Transformation is based on mapping

rules that define how each source element needs to be transformed into the respective target

element. Thus, for a given source model along with metamodels of both source and target

models, applying transformation rules can automatically generate deployable target domain

applications. This transformation can be from a platform-independent model to a platform-

specific model (Model to Model) or from a platform-independent model to code (Model to

Text) as described in Figure 4.

Figure 4: Model-Driven Engineering

1.2 Problem Statement

Producing immense volumes of information can devastate data-storing systems and

intelligent applications. For these applications to work efficiently they need low latency

communication, but the delay produced by conveying information to the cloud and then

returning to the application back can affect their effectiveness. Therefore, fog-based

architecture is required with seamless communication and minimal latency.

Moreover, In the area of fog computing, there exist some tools (e.g., iFogSim), which provide

simulation and analysis, however, it does not support modeling, which limits the user’s

ability to design & analyze the system at the early stages of SDLC.

Although there exist some studies that work on model-driven approaches but there is no code

generation facility from the high-level model is available in fog computing tools.

Therefore, there is a strong need to develop a fog based framework that provides an easy and

reusable solution for an eHealth system. We Provide a model-driven approach based on

MDA standards using UML Profile. From a high-level model, we generate low-level

complex code.

22 | P a g e

In this context, Model-Driven Engineering provides the ability to create models to represent

fog based eHealth system requirements in early phases which can later be converted into low-

level java code with minimum effort, hence aiding the implementation process.

Hence, by providing a modeling approach we achieve the following objectives for the

designers/developer community: -

Early Analysis: They can analyze the system at the early stages of SDLC.

Reusability: They can reuse the design because it developed as a platform-independent

model (PIM).

Low Complexity: They can generate the code through the high-level model, hence, most of

the complex code will be generated.

1.3 Proposed Methodology

The entire research is done in a systematic way Figure 5 represents the flow of research step

by step. In the first step, we identified the problem. Then proposed the ideal solution for the

problem identified in the first step. We carried out a detailed and comprehensive literature

review that helped us to identify the optimal solution for the problem. We reviewed the

research carried out related to the proposed solution, analyzed it, and compared it. We also

performed a comparative analysis of tools and techniques discussed for fog based eHealth

systems earlier.

The Model-driven Fog based eHealth Framework (MFeHF) is introduced for the design and

analysis of fog-based ehealth systems. MFeHF involves a Unified Modelling Language

Profile for Fog-based eHealth system (UMLPFeH) for modeling the requirements of ehealth

and fog. The concepts of ehealth and fog are divided into four components that deal with the

data of health and processing of data through fog computing. An open-source transformation

engine is included in the MFeHF. The transformation engine is implemented using the JAVA

programming language and the Acceleo tool, using a model-to-text transformation strategy. It

automatically transforms models into target java file implementations. The MFeHF is

demonstrated through two case studies that prove that the MFeHF is feasible, and scalable for

the analysis of the eHealth system.

23 | P a g e

Figure 5: Research Flow

1.4 Research Contribution

A complete, open-source, and automated Fog-based eHealth System is proposed in this work.

A detailed set of contributions of the proposed approach are as follows:

1. To create a fog based ehealth system, a model-driven framework is offered. It

contributes to a greater level of system abstraction and decreases design complexity.

2. UML Profile for Fog based eHealth System (UMLFeH) is developed to design or

develop an eHealth system for critical analysis.

3. A transformation tool is developed for transforming the input UML model into

complete Health java code by using defined transformation rules.

4. The automatically generated development artifacts are deployable java code for the

eHealth system (.java files).

1.5 Thesis Organization

The organization of the thesis is represented in. CHAPTER 1: offers a brief introduction

containing the background study, problem statement, research contribution, and thesis

24 | P a g e

organization. CHAPTER 2: gives a thorough assessment of the literature, highlighting the

work that has been done in the domain of Fog Computing and eHealth. CHAPTER 3: covers

the details of the proposed methodology used for the identification of the problem.

CHAPTER 4: shows the architecture as well as the detailed implementation of the suggested

method, profile, tool, and transformation engine. CHAPTER 5: provides two essential case

studies for the validation of our suggested technique. The two case studies chosen for

validation are from different domains and sizes to ensure that our proposed approach works

in every situation. CHAPTER 6: contains a quick explanation of the study done as well as

the research's limitations. CHAPTER 7: summarizes the study and makes recommendations

for the future.

Figure 6: Thesis Outline

25 | P a g e

Chapter 2

Literature Review

26 | P a g e

CHAPTER 2: LITERATURE REVIEW

The literature review on fog computing and eHealth studies is undertaken in this chapter.

This research includes a systematic evaluation of the literature on the subject of ehealth and

an analysis of past fog computing projects. Motivation, limits faced by researchers, and ideas

provided to analysts for developing this crucial study field were the criteria and attributes that

were studied for enhancing understanding of different relevant parts of this topic in literature.

This study's key contribution is the categorization of studies and the identification of

proposed approaches and tools. The datasets that are utilized to get the results.

Fog computing is a computing architecture that makes use of the collaborative aggregation of

end-user clients or close customer end devices to eliminate a large amount of storage,

management, control, communication, and configuration [40]. It is developing as an alluring

solution to the issue of information handling in IoT. It is dependent on the devices at the

system's edge, which have higher processing power than end devices and is closer to them

than the more prominent cloud resources, resulting in lower application latency[41]. Fog

computing permits the provisioning of sources and services outside the cloud, at the network

edge, closer to end devices, or ultimately, at ranges designated by Service Level Agreement.

Fog computing certifiably isn’t a replacement for cloud computing yet a strong complement.

It facilitates processing at the endpoint while still allowing the opportunity to cooperate with

the cloud [42].

With the developing utilization of innovation and digital instruments, it is clear that the

healthcare area is likewise grasping this from multiple points of view incorporating eHealth.

In terms of common practice, eHealth can be reached through any sort of automated device or

health monitoring system. That is utilized by practitioners in the healthcare discipline or by

individuals to control or enhance their health [43]. The use and effectiveness of third-party

servers for the storage and evaluation of health data raises security and privacy concerns that,

if not addressed, could limit the adoption of the collaborative health standard. This

considerably increases the issue of whether the patient is certainly in care of his/her health

reports [44].

Fog computing and eHealth can be a powerful combination for society. Because it can

provide mobile patients with remote real-time monitoring, instruction, and supervision, it can

improve their autonomy, and self-confidence, and save onsite expenditures. Patients will be

able to maintain their normal daily activities [45] through customized healthcare solutions for

example [46] wherever they are; low-cost cell phones and sensors can provide a low-cost

27 | P a g e

foundation to exchange data with the environment and remote servers and accumulate

valuable information from the usual circumstances of the patient or her/his surroundings such

as climatic conditions, city information on traffic [47], pollution, routes, etc.

Figure 7: Research Overview

2.1 Category Definition:

Health:

We have classified the selected research into three categories based on health-related issues.

• Cardiac Disease: It affects the structure or function of health. Arrhythmias, aorta

disease, coronary artery disease, heart attack, heart failure, heart muscle disease, heart

valve disease, and vascular disease are some of the conditions involved.

28 | P a g e

• Neurodegenerative Disease: The nervous system, which includes the brain and spinal

cord, is made up of neurons. Neurons do not ordinarily multiply or replace

themselves, so when they are injured or die, the body is unable to replace them.

Parkinson's disease, Alzheimer's disease, Huntington's disease, Dementia, Epilepsy,

Mental Illness, Movement Disorder, and Stroke are all included.

• Chronic disease: This category involves chronic diseases like Diabetes, Cancer,

Asthma, Respiratory, and Lung disease.

Applications:

The selected research is classified into four categories based upon their usage of platforms.

Hardware/ Desktop Application:

In the investigated studies, the health-related data collection was done by utilizing different

hardware devices requiring desktop applications for the stimulation of fog devices. Due to

this hardware requirement of desktop applications, both are being discussed under the same

heading.

Mobile Application:

The investigated research consisted of some case studies which were validated by the usage

of mobile applications gathering an individual’s health-related data and identifying the

potential health issues. Based on the issues identified, these applications also provided some

precautionary measures along with the recommendation of the concerned health specialist to

seek medical care.

Web Application:

The validation of the case studies presented by the investigated research was being done

through the utilization of web applications.

Other:

This category consists of applications that are either web desktop or mobile desktop or none

among both.

ML Techniques:

29 | P a g e

There are several types of techniques. These techniques include many other techniques. For

example, linear SVM. We are considering the main ML technique in this paper the other sub-

categories fall under the major category. Some of the techniques identified are as follows.

• Artificial Neural Network (ANN)

• Support Vector Machine (SVM)

• Convolutional Neural Network (CNN)

• Naïve Bayes (NB)

• Flow Clustering and Analysis (FCA)

• K-means

This section will offer a systematic literature assessment of fog computing technologies in

healthcare systems, following and examining the previous work.

 2.2 Review Protocol:

The review protocol demonstrates the overview of our study, research questions, criteria of

selection and rejection, the method of the search process, assessment of quality, extraction of

data, and the mechanism used for data synthesis. The details of these elements are given in

the following sub-sections.

2.2.1 Research Questions:

RQ1: What are the proposed fog computing techniques/frameworks in the area of ehealth?

RQ2: What fog computing tools are accessible in the area of ehealth?

RQ3: What are the key benefits and limitations of utilizing fog computing in ehealth?

2.2.2 Selection and Rejection Criteria:

The SLR is managed through the selection and rejection criteria mentioned below.

1. Only those studies are selected in which ehealth uses fog computing.

2. The papers that were chosen should be published in one of the five scientific

repositories, which include: IEEE, Springer, ACM, Elsevier, and Wiley are some of

the most well-known publishers.

3. The studies chosen should be published between 2017 and 2021.

30 | P a g e

The studies that can be selected must follow all the above-mentioned rules. If any of the

above-mentioned rules are not followed it would lead to the rejection of the study. e.g. The

studies that follow the first two rules but were published before 2017 should be rejected.

2.2.3 Search Process:

The search process is conducted on a well-defined selection rule. We only consider five

recognized repositories IEEE, ACM, Springer, Elsevier, and Wiley. We apply various search

terms in each repository and the “AND”, and “OR” operators to get corresponding results as

shown in Table 1. The year filter is applied (i.e. 2017–2021) to enforce the third selection

rule during the search process.

Table 1: Search Process after applying filters

Search Term Results

 IEEE ACM Springer Elsevier Wiley

“fog” and “ehealth” 4 1631 63 80 0

Fog ehealth 4 1629 63 80 22

Fog computing ehealth 4 132993 55 76 20

"fog computing" OR "ehealth" OR

"Model Driven"

3393 1975 8854 5515 1859

“fog computing” AND “Model Driven” 96 12 1977 57 8

“fog computing” OR “ehealth” 2029 813 4506 2671 1018

“fog computing” OR “health” 29106 16341 7097 753135 328759

“fog computing” OR “health” AND

“model driven”

2056 649 2869 1878 614

(“fog computing” OR “health”) AND

“model driven”

29 143 2869 770 255

Through sequential steps, the search process is conducted. For example, by reading the title

we reject multiple search results. Similarly, many research studies are rejected after reading

the abstract. Some studies are rejected after reviewing the entire content. Finally, we choose

twenty-six (26) papers that strictly adhere to our selection and rejection criteria, as shown in

Fig 8.

31 | P a g e

Figure 8: Research Process

2.2.4 Quality Assessment:

To enhance the relevance or to decrease the irrelevance and biasness towards the studies

under review, the proposed SLR ensures reliability along with the quality of the results

acquired. We apply the year filter between 2017-2020 so that we can get the latest research

and analyze the latest trends of the study. We have selected 1 study from the year 2020, 9

studies from 2019, 11 studies from 2018, and 5 studies from 2017. The results are given in

Table 2.

We ensure that high-impact studies are chosen to ensure that the SLR's results are credible.

The databases chosen, for example, are authentic and widely recognized. Six studies from

IEEE, six studies from ACM, five studies from Springer, eight studies from Elsevier, and one

study from Wiley were chosen. The outcomes are presented in Table 3.

Table 2: Selected Studies yearly

Sr No. Publication Year Selected Studies Total

1 2020 [53] 1

2 2019 [51] [54] [59] [60] [61] [62] [66] [69] [73] 9

32 | P a g e

Table 3: Selected studies distribution

Database Type Studies Total

IEEE Journal [55] [56] [61] [71] [72] 6

Conference [57]

ACM Journal [59] [60] [64] 6

Conference [58] [67] [70]

Springer Journal [66] [69] 5

Conference [62] [65] [67]

Elsevier Journal [48] [49] [50] [51] [52] [53] [63] 8

Conference [54]

Wiley Journal [73] 1

Conference Nil

2.2.5 Data Extraction:

For data extraction, a formal template, presented in Table 4 is followed to collect all relevant

and authentic information from selected studies.

Table 4: Data Extraction Template

Section Details

Information Title, Publication Year, Author

Data Extraction

Summary Objective, impact of the study

Assumption Study Limitations

Validation Experimental evaluation or other

Data Synthesis

Health issues Health issues are classified into 3 categories (Table 5)

Research studies Research studies are classified into 4 categories (Table 6)

Proposed technique/

framework

The techniques/ frameworks proposed by researchers

(Table 7)

Tools/ Simulators Tools utilized (Table 8) (Table 11)

3 2018 [48] [49] [50] [52] [55] [56] [57] [68] [69] [70] [71] 11

4 2017 [58] [63] [64] [65] [67] 5

33 | P a g e

Machine Learning The researchers utilized the ML Techniques (Table 9)

Data Set Different types of datasets are identified (Table 10)

2.3 Results:

We analyze 26 studies and classify health-related issues into 3 categories and research studies

into 4 categories. We discover the 17 techniques/ framework proposed by the researchers and

14 tools/simulators utilized. Some of the researchers used ML techniques in their research

studies. 7 studies are identified that utilize ML techniques. 8 datasets are used in different

studies.

Table 5:Classification of study based on health issues

Sr

No

Health issues Studies Total

1 Cardiac disease [48] [52] [53] [58] [65] [71] 6

2 Neurodegenerative

(brain)

[49] [57] [72] 3

3 Chronic [51] [54] [55] [56] [59] [60] [61] [64] [66] [67]

[68] [69] [70]

13

The selected studies are classified into 2 different categories. These are classified based on

health issues and application type. The health issues are further classified into 3 types. There

are 6 studies related to cardiac disease, 3 studies related to neurodegenerative disease, and 13

studies related to the chronic category as given in Table 5.

The application types are further classified into 4 types. There are 15 studies related to

hardware/desktop, 5 studies related to the mobile application, 3 studies related to web

application, and 3 related to the other category as given in Table 6.

The categorization of studies given in Table 5 and Table 6 simplifies the analysis and

synthesis process.

Table 6: Classification of Research Studies on the basis of application type

Sr

No

Category Studies Total

1 Hardware/ Desktop [48] [49] [50] [51] [53] [54] [57] [58] [65] [66] [68] 15

34 | P a g e

[69] [70] [71] [72]

2 Mobile Application [52] [59] [60] [61] [67] 5

3 Web Application [55] [62] [63] 3

4 Other [56] [64] [73] 3

Table 7: Proposed Technique/ framework

Sr

No

Proposed Technique /

Framework

Purpose

Techniques

1 UTGate Data compression, data fusion, Web socket server. [48]

2 DTW Android-based smart

watch Healthcare 4.0

Used for the deployment and design of a patient-centric

medical data analysis system. [52]

3 BBN Classifier Classify an event's appearance into normal and

abnormal and calculate their probabilities. [55]

4 UbeHealth Dynamically manage the QoS and increase the network

performance. [56]

5 Hierarchical computing

architecture

Remote IoT-based patient monitoring system. [58]

6 PFHDS Obtain data secrecy and fine-grained access control.

[59]

7 Three-party AKA protocol

with bilinear pairings

Security, Performance. [62]

8 Measurement methodology

holistic approach

Selection of user equipment to fulfill communication

requirements [63]

9 Taxonomy of SHM

technique

Obtain awareness into a cyber-physical system design.

[64]

10 Body Edge Guarantee high flexibility, robustness, and adaptive

service level. Reduce transmitted data and processing

time. [72]

Framework

11 multi-device HAR

framework

Fog computing is used to conduct sophisticated

computations from the sensing layer to intermediary

35 | P a g e

devices, and eventually to the cloud. [60]

12 e-healthcare framework

LINDDUN

Deals with privacy issues. [61]

13 F2CDM Low delay, distributed storage [65]

14 TIMON Cloud Providing a cooperative framework for all users of the

transportation ecosystem. [67]

15 IoT Fog Framework To achieve good QoS, fog nodes must work together

and manage resources and jobs optimally. [68]

16 Framework for cloud

healthcare recommender

service

Ensures privacy [69]

17 REDPFramework RCA

(algo)

Improve the reliability of data transportation and

processing speed. [71]

In Table 7 we analyze different techniques and frameworks proposed by the researchers. In

the context of fog computing, they were used for various ehealth objectives. This will help in

data security, privacy, and transfer of data. These techniques/frameworks deal with both

ehealth and fog computing.

Table 8: Available Tools/Simulators

Sr

No

Tools/Simulators Purpose Study

1 Mongo DB Database [49] [65]

2 Ubuntu OS for cloud computing to support Open Stack [50] [65]

3 Raspberry Pi Platform used for IoT developments [51] [72]

4 Arduino Easy to use hardware that designs single-board

microcontrollers.

[54]

5 Amazon EC2 Member of Amazon’s Cloud Computing. Enable

users to borrow virtual computers to drive their

applications.

[55] [66]

6 Weka Contains ML algorithms, and contain tools for

data processing, distribution, regression,

clustering, association rules, and visualization.

[55]

7 Icancloud Model and simulate cloud computing systems. [56]

36 | P a g e

simulator

8 iFogSim simulator Modelling and simulation of resource

management.

[57] [70]

9 Barreto-naehrig A system to produce pairing-friendly elliptic

curves over a prime field. Compute the

performance of PFHDS.

[59]

10 SQL Database [61] [69]

11 Cloud Platform Simulate cloud server and fog node [62]

12 Open Air Interface Support Mobile telecommunication systems.

Develop access solutions for network, radio, and

core networks.

[63]

13 AALHP Combine current and cooperative smart house

institutions into homecare items, study data, and

then take action based on the findings.

[67]

In Table 8 the tools given are available online and are easy to use. These tools ensure the

quality of the results. The SLR is conducted to identify the best-used tools. The tools used for

database purposes like Mongo DB and SQL are reliable for storing a large amount of data.

Our analysis shows that some tools most frequently use for ehealth and fog computing

include Ubuntu, Raspberry pi, and iFogSim.

Table 9: ML techniques utilized in studies.

Study ML Technique

 ANN SVM CNN NB FCA K-means

[53] × × ×

[55] × × × × ×

[56] × × × ×

[58] × × × × ×

[59] × × × × ×

[60] × × × ×

[66] × × × × ×

37 | P a g e

In Table 9 Machine Learning techniques are given. Some researchers employ Machine

Learning approaches to attain high data accuracy. The patient's information must be

accurately predicted to identify the actual health issue with the patient.

Table 10: Datasets utilized for ehealth.

Sr

No

Dataset Open

source

Studies Feature

1 MIT-BIH Arrhythmia Yes [48] [54] 110000 beats

2 Beth Israel Hospital

Arrhythmia

No [52] Nil

3 UCI Yes [56] [66]

[71]

19908 data instances

4 ISPDSL-II and Waikato-

VIII

Yes [57] 93 million and 183 million

packets

5 Long-Term St database Yes [58] 86 records

6 CSP No [61] [62] Nil

7 Al-Nahrain University No [65] Nil

8 Sporty Pal No [69] 36 activities

In Table 10 different databases are given that are utilized by different researchers in different

studies. In the given table UCI repository is mostly used. It deals with 19908 instances and

helps the researchers in the correct identification of the disease.

Table 11: Tools/Simulators

Ref Tool/ Simulator Open Source Language Purpose

Modelling Simulation Analysis

[55] Weka Java ×

[56] Icancloud C++ ×

[57][70] iFogSim Java ×

[60] Eclipse C, Java × ×

[69] CloudSim Java ×

38 | P a g e

In Table 11 different tools and simulators are given. They are differentiated through

modelling, simulation, and analysis. Most of the tools/simulators support simulation and

analysis. They do not support modeling, which limits the user’s ability to design & analyze

the system at the early stages of SDLC.

2.4 Research Gap:

This section deals with the research gap and proposed solutions in fog-based ehealth systems.

Fog Computing is spread widely, and it has a variety of devices. These devices are coupled to

supply transmission, computation, and storage services. Many studies have been conducted

about the techniques, architecture, and tools in the domain of fog computing and ehealth.

However, to the best of our knowledge, no work has been done that analyses and summarizes

eHealth methodologies and technologies in the context of fog computing.

The Intervention in ehealth has been applied on a various day-to-day basis increasing disease

data such as diabetes, heart disease, lungs, neurodegenerative, cancers, and others.

Accordingly, the amount of patients’ information is obtaining huge storage space. However,

advancements in the field of Fog computing are playing an effective role in storing the

excessive amount of generated data on daily basis. Though the eHealth system is mission-

critical that's why it is supposed to be perfect there is no chance of a mistake in the system.

Furthermore, the healthcare systems are analyzed at the time of implementation to whether

they are working perfectly or not. The state-of-the-art methodologies for fog based eHealth

systems, on the other hand, are hard to come by in the literature. As a result, an easy-to-use,

open-source framework for the creation and study of fog based eHealth systems is urgently

needed. Following a thorough review of existing research on fog based eHealth systems, we

concluded that the present solutions had the following issues:

• Healthcare systems are tested at the time of implementation.

• There is a lack of a high-level solution to lessen the difficulties of developing a

healthcare system.

• There is a lack of open-source tools for developing healthcare systems.

• Lack of native java-based complete solution for fog based ehealth system.

• lacks the amount of work done in the fields comprising of model-driven approach,

ehealth, and fog computing.

39 | P a g e

We suggested a solution based on a comprehensive, open-source java code to fill the gaps

revealed following a thorough literature assessment of fog based ehealth development

methodologies. We've integrated a model-driven approach into a fog based ehealth system,

which reduces the complexity of the development process, provides a higher-level abstraction

with fully automated end-to-end implementation, controlled development during early stages,

and an open-source generic and real-time solution that can provide highly usable java code

for ehealth systems. The advantages of the proposed method are as follows:

• A high-level solution that makes the development process easier.

• Java code that is ready to use.

• The developed fog-based ehealth models are reusable.

• Development time is cut in half.

40 | P a g e

Chapter 3

Proposed Methodology

41 | P a g e

Chapter 3: Proposed Methodology

This chapter contains a detailed description of the concepts involved in the proposed

methodology. The recommended solution is derived using model-driven engineering that

includes UML meta-model extension to impose the meta-level notations in modeling the

necessities of Fog based eHealth Systems. The proposed UML Profile adds up to existing

meta-models to draw new domain-specific concepts. Then M2T Transformation (Model-to-

text) is performed on the domain model to generate resource utilization in java language for

simulation of Fog based eHealth Systems. All the generated files are required to deploy in an

actual environment for being fully operational i.e. we have simulated the generated artifacts

in the iFogSim simulation tool. The required tools and techniques for this purpose can be

seen in Section 3.1 and Figure 10. The proposed framework i.e. MFeHTE (Model-Driven

Fog-based eHealth System Transformation Engine), enables the domain experts to assess

resource utilization for simulating the design and verification properties at the early

development phase. The overview of the proposed framework is graphically presented in

Figure 9. According to Object Management Group (OMG) [74], there are two UML-

extension mechanisms i.e. meta-model extension and profiling, and both concepts are termed

as Profile. We have extended the UML meta-model [75] to develop a profile that models Fog

based eHealth system components. The description of concepts involved in fog based ehealth

systems is presented with the help of UML-profile in Section 3.2.

Figure 9: Model-Driven Framework for Fog based EHealth System

42 | P a g e

3.1 Architecture for Tools and Technique

Tool support is an essential aspect of increasing software development productivity. To

support the framework, there is a tool support architecture. To speed up the software

development process, good tool assistance is required, which is also very beneficial in terms

of results. The tools and techniques utilized in the development of MFeHTE are shown in

Figure 10. It is based on four layers i.e. Meta-modeling IDE, Modeling Editor, Model to Text

Transformation (M2T) plugin, and Simulator. For meta-modeling, Eclipse-2018-12 is used,

which is an open-source tool [76]. It acts as a framework with different variety of plugins for

different intentions. Papyrus - Eclipse plugin for modeling is utilized to design the domain

model and UML Profile [77]. Meanwhile, for M2T transformation, the Acceleo tool and

Acceleo in Eclipse language are used [78]. The fourth layer contains a tool needed to debug

and deploy the transformed or generated code. iFogSim [79] is a simulator designed for Fog

and IoT environments to accomplish IoT amenities in a Fog Network. iFogSim is selected for

validating the generated code from the transformation engine “MFeHTE”.

Figure 10: Tools and Techniques Architecture

3.2 UML Profile for Fog based eHealth System

The UML Profile for Fog-based eHealth System (UMLPFeH) is divided into four sub-

profiles. These profiles are further classified into Fog and ehealth Concepts. Purple-colored

43 | P a g e

stereotypes show the ehealth based concepts and green-colored stereotypes show the fog-

based concepts.

Figure 11: UML Profile for Fog based eHealth System (UMLPFeH)

In the realm of software engineering, the Unified Modeling Language (UML) is a general-

purpose modeling language that provides a common approach to depicting the design of

complex systems. The profiling technique can be used to enhance UML and turn it into a

domain-specific language. UML Profile is a framework for extending and customizing UML

by adding additional concepts, attributes, and semantics to make it fitter for a specific area

(e.g. health, finance, wireless technology, etc.). It does not allow you to change existing

metamodels; instead, it allows you to customize them.

The keyword <<profile>> is inserted before the name of the package in the profile notation.

Stereotypes, constraints, and tagged values make up the majority of a UML Profile. The

stereotype is the basic extension component of the profile. The stereotype is a profile class

that outlines how a metaclass can be extended as part of the profile. The stereotype is written

in class notation, with the keyword <<stereotype>> written before the name of the stereotype.

Because stereotype is a class, it can have characteristics known as tag definitions. The values

44 | P a g e

of the properties are referred to as tagged values when a stereotype is applied to a model

element. We've created a UML profile that supports eHealth systems built on Fog.

By introducing domain-specific notions of Fog-based eHealth System, our proposed

framework, UMLPFeH, provides a general extension mechanism that allows to adapt or alter

metamodel (i.e. UML) utilizing stereotypes. The stereotype extends meta-classes of Class,

Instance Specification, Property, and Slot, and is the fundamental extension construct of

UMLPFeH. UMLPFeH is depicted in detail in Figure 11. UMLPFeH was created using the

Papyrus modeling editor. It is a Java-based eclipse plug-in. Multiple stereotypes are included

in the proposed profile to aid in the introduction of Fog Computing and eHealth-related

domain ideas into UML modeling. These ideas are further broken down into sub-categories.

• eHealth based Sensor Sub profile

• Fog based Data Processing Sub profile

• Fog and eHealth based Application Sub profile

• Enumerations

These sub-profiles are based on the layered architecture of IoT.

3.2.1 eHealth based Sensor Sub Profile Concepts

This section represents the components of ehealth. This section of the UML profile contains

11 stereotypes i.e. Sensor, ECG, EEG, Glucometer, Thermometer, Hygrometer, Pulse

Oximeter, Entities, Actuator Broker and Proxy Server. These stereotypes are used to provide

the functionality of sensing, identification, actuation, and communication, and also

scheduling the execution of tasks on appropriate fog nodes. With minimal human interaction,

it includes technologies for sensing (gathering data from the environment and sending it to

databases, data warehouses, or the Cloud), identification (identifying objects based on a

unique identifier assigned to them), actuation (taking mechanical action based on sensed

data), and communication (establishing connectivity among heterogeneous smart devices). It

is defined by its ability to capture information from the real world and represent it digitally

[80].

Description of Stereotypes

Sensor Stereotype

45 | P a g e

Description: sensing the environment and emitting observed values to upper layers via

gateways for further processing and filtering. The Sensor stereotype represents the “sensing

module” of the Sensor in ehealth system. It is being generalized from the super-class of

Entities and utilizes the same properties as of superclass. It strictly depends on the type of

system-to-be, different sensing mechanisms are associated with different sensors and

consequently affect the cost, architecture, and outcomes of the system. A thorough literature

review reveals different sensors in practice for the ehealth system that will be discussed in the

Enumeration sub-profile.

Figure 12: Sensor Sub-profile

 Meta-Class: Class

 Tagged Values: Senor Meta class has the following tag value:

 sensorType: SensorType[1] which is known by fog device.

Actuator Stereotype

Description: designed to respond to changes in environments that are captured by

sensors. The Actuator stereotype represents the “Display module” of the ehealth system.

46 | P a g e

An actuator is a component of a machine that is responsible for moving and controlling;

that may be a result of some mechanism or process.

 Meta-Class: Class

 Tagged Values: Actuator Meta class has the following tag value:

 actuatorType: String[1] which is known as a fog device.

Entities Stereotype

Description: This represents the data distribution between the “Nodes” concept of the

ehealth system. The entities need to be initiated and their configurations are initialized.

Sensors, gateways, and cloud virtual machines, as well as the linkages that specify how these

entities are linked, fall into this category. This can be done via GUI or by java programming

using iFogSim supporting classes. In our case, it would be based on a programmatic

approach. However, there is only the need to define these in entities, iFogSim libraries will

take care of the execution. It generalizes the stereotypes of devices/nodes like display, Proxy

Server, Broker, Actuator, and Sensor and shares their common attributes of it.

Meta-Class: Class

Tagged Values:

nodeName: String[1] name of the device used in the simulation.

mips: ELong[1] million instructions per second

ram: Integer[1] main memory of the fog node.

upBw: ELong[1] uplink bandwidth.

downDw: ELong[1] downlink bandwidth.

level: Integer[1] hierarchy level of the device.

ratePerMips: EDouble[1] cost rate Per Mips used.

busyPower: EDouble[1] the amount of power consumed when the fog node is in busy

state.

idlePower: EDouble[1] the amount of power consumed when the fog node is in an idle

state.

 Proxy Server Stereotype

Description: A proxy server is a computer system or router that works as a relay

between the client and the server, preventing an attacker from accessing a private

network and enabling the installation of a firewall. “A proxy server is a server

application or appliance that acts as an intermediary for requests from clients seeking

resources from servers that provide those resources.”

47 | P a g e

 Meta-Class: Class

Broker Stereotype

Description: This stereotype is based on the “Class” meta-class in the UML model. By

processing data streams, the fog reduces network traffic and lowers the latency of time-

sensitive applications (tuples). The fog broker is the most important part of the

architecture, as it is responsible for scheduling task execution on appropriate fog nodes

utilizing iFogSim's numerous scheduling policies.

 Meta-Class: Class

ECG Stereotype

Description: This stereotype is based on an electrocardiogram (ECG or EKG) that

records the electrical signal from your heart to check for different heart conditions.

 Meta-Class: Class

 Tagged Values: ECG Meta class has the following tag value:

 heartRate: HeartRate[1] which is known as the fog device

EEG Stereotype

Description: This stereotype is based on an electroencephalogram (EEG) that detects

abnormalities in your brain waves or the electrical activity of your brain.

 Meta-Class: Class

 Tagged Values: EEG Meta class has the following tag value:

 elec_signal: ElectricSignal[1] which is known as a fog device.

Glucometer Stereotype

Description: a medical device for determining the approximate concentration of glucose

in the blood.

 Meta-Class: Class

 Tagged Values: The glucometer Meta class has the following tag value:

 glu_level: sug_level[1] which is known by the fog device.

Pulse Oximeter Stereotype

Description: estimates the amount of oxygen in your blood.

 Meta-Class: Class

 Tagged Values: Pulse Oximeter Meta class has the following tag value:

 oxy_level: String[1] which is known as a fog device.

48 | P a g e

Hygrometer Stereotype

Description: measure the amount of water vapor in the air, in soil, or in confined spaces.

 Meta-Class: Class

 Tagged Values: The hygrometer Meta class has the following tag value:

 humidity: hum_level[1] which is known by the fog device.

Thermometer Stereotype

Description: measuring the temperature of body and room.

 Meta-Class: Class

 Tagged Values: Thermometer Meta class has the following tag value:

 temp: TempScale[1] which is known as a fog device.

3.2.2 Data Processing Sub Profile Concepts

This section represents the components of Fog computing. This section of the UML profile

contains 8 stereotypes i.e. Data Distribution, Scheduler, Host, Network Latency, CloudSim,

Data Management, Input Output Model, and Module. Its objective is to convey data collected

by perception nodes to the information processing unit (or high-level decision-making units)

for analysis, data mining, and data aggregation using wired or wireless communication

channels [80].

49 | P a g e

Figure 13: Data Processing Sub-profile

Description of Stereotypes

 DataProcessing Stereotype

Description: This stereotype represents the vertices concept of the application network

hierarchy (directed graph) and characterizes by name and the memory it occupied or

consumes.

 Meta-Class: Class, Interface

 Tagged Values: Data Processing Meta class has the following tag value:

 ram: Integer[1] main memory of the module.

 nodename: String[1] name of the modules used in the simulation

DataDistribution Stereotype

Description: This stereotype adds a periodic edge to the application model following these

attributes:

 Meta-Class: Class, Interface

 Tagged Values: Data Distribution Meta class has following tag value:

 source: String[1] source node of the edge

 destination: String[1] destination node of the edge

50 | P a g e

 tupleCpuLength: EDouble[1] size of the info they carry for computation

 tupleNwLength: EDouble[1] size of the info they carry for transmission

 tupleType: String[1]

• inputTupleType (Type of tuples carried by the incoming edge)

• outputTupleType (Type of tuples carried by the output edge)

 direction: String[1] upward, downward

 edgeType: String[1] periodic, non-periodic

InputOutputModel Stereotype

Description: This stereotype represents the input-output relationship of the application

modules for a given input tuple type. It is important to note that Tuple is “ the

fundamental unit of communication between entities in the Fog, and it is defined by its

type as well as the source and destination application modules”. Three different input-

output models are provided by iFogSim to check whether an incoming tuple can generate

an output tuple and are listed below as:

Fractional Selectivity: Generates an output tuple for an incoming input tuple with a fixed

probability. In other words, the fixed probability of output tuple creation per incoming

input tuple.

Bursty Selectivity: Generates an output tuple for every input tuple according to a bursty

model. During the high burst period, all input tuples result in an output tuple. During a

low burst period, no input tuples result in an output tuple.

Selectivity Model: It has specific methods to check whether the incoming tuple can

generate an output tuple. (True/False)

 Meta-Class: Class

DataManagement Stereotype

Description: respond to changes in environments that are captured by sensors.

 Meta-Class: Class

 Tagged Value: Data Management Meta class has the following tag value.

 value: String[1]

CloudSim Stereotype

Description: iFogSim operates on the underlying architecture of CloudSim but utilizes

its unique algorithms/policies for resource management, scheduling, and power

51 | P a g e

monitoring. Its purpose is to make network simulation possible in CloudSim.

Furthermore, CloudSim's network models are deactivated.

 Meta-Class: Class

 Tagged Values: CloudSim Meta class has the following tag value:

 num_user: Integer[1] number of users.

 trace_flag: Boolean[1] trace events.

NetworkLatency Stereotype

Description: This stereotype indicates uplink latency for the hierarchical network

design. The latency of the proxy server's connection to the cloud, the latency of the

router's connection to the proxy server, and the latency of the router sensors are all

routinely set in ms (milliseconds).

 Meta-Class: Class

 Tagged Values: Network Latency Meta class has the following tag value:

 upLinkLatency: Integer[1] to measure the end-to-end latency.

Host Stereotype

Description: The Host stereotype performs tasks relating to virtual machine

management (e.g., creation and destruction). The host has a defined memory and

bandwidth provisioning approach, as well as a Pe (Processing Elements) allocation

mechanism for virtual machines. A virtual machine can be hosted on a host that is

connected to a data center.

 Meta-Class: Class

 Tagged Values: The Host meta class has the following tag value:

hostId: Integer[1] Id of the host.

storage: ELong[1] Data to be stored.

Bw: Integer[1] Bandwidth.

Scheduler Stereotype

Description: Manage Time.

 Meta-Class: Class

 Tagged Values: Scheduler Meta class has the following tag value:

 SimstartTime: [1] Simulation start time.

 count: Integer[1] Count the time.

 instance: Scheduler[1] Instance of timekeeper.

52 | P a g e

3.2.3 Application Sub Profile Concepts

This section represents the components of Fog computing and ehealth. This section of the

UML profile contains 5 stereotypes i.e. User, Application, eHealthSystem, Features, and

Device. This sub profile’s goal is to manage and deploy applications on a global scale using

data collected by the perception layer and processed by the data processing unit. It allows

end-users across the network to obtain personalized services tailored to their specific

requirements via a variety of mobile devices and terminal equipment [80].

Description of Stereotypes

 User Stereotype

Description: sensing the environment and emitting observed values to upper layers via

gateways for further processing and filtering.

 Meta-Class: Class

 Tagged Values: The user Meta class has the following tag value:

name: String[1] Name of the user.

age: Integer[1] Age of the user.

gender: String[1] Gender of the user.

address: String[1] Address of the user.

userId: Integer[1] Id of the user.

activity_Type: Activity[1] The type of activity in which the user is.

Application Stereotype

Description: This stereotype enables an application in the Distributed Dataflow Model.

The data processing aspects of an application are represented as a collection of units.

Data from one component may be utilized as input by another, creating data dependence.

As a consequence, we may describe an application as a directed graph, with vertices

representing modules and directed edges showing data flow between components. The

architecture supports two models used for IoT applications.

1. Sense-Process-Actuate Model

2. Stream Processing Model

 Meta-Class: Class

 Tagged Values: Actuator Meta class has the following tag value:

 actuatorType: String[1] which is known as a fog device.

53 | P a g e

Figure 14: Application Sub-profile

eHealthSystem Stereotype

Description: The stereotype holds key significance in the proposed UML profile. It defines

elementary components like numofdepts, numofmobilesPerDept, and Transmission Time.

Variables like numofdepts and numofmobilePerdept are self explanatory, it is assumed that

there would be four fog devices for every single department.

 Meta-Class: Class

 Tagged Values:

 numofDepts: Integer[1] Number of departments.

 numofMobilesPerDept: Integer[1] Number of Mobile per department.

 Transmission_Time: EDouble[1] Time to transmit signals from the sensor.

Device Stereotype

Description:

 Meta-Class: Class, Device

 Tagged Values: The device Meta class has the following tag value:

 mips: EDouble[1] which is known as a fog device.

 storage_size: String[1] Size of the storage.

 type: DeviceType[1] Type of the device.

 UpLinkBw: ELong[1] uplink bandwidth.

54 | P a g e

 downLinkBw: ELong[1] downlink bandwidth.

 parentId: Integer[1] Id of the parent node.

 connectivity: ConnectivityMode[1] Wifi or Bluetooth.

Features Stereotype

Description: This stereotype is also extended from the UML meta-class named Class and

it is defined in the profile to specify the application module’s characteristics described as

follows:

arch: ArchType[1] the architecture of a resource

os: OSType[1] the operating system used

vmm: String[1] the virtual machine monitor used.

time_zone: EDouble[1] time zone this resource located, should be of range [GMT-12 ...

GMT+13].

cost: EDouble[1]the cost per sec of using processing in this resource.

costPerMem: EDouble[1] the cost of using memory in this resource.

costPerStorage: EDouble[1] the cost of using storage in this resource.

costPerBw: EDouble[1] the cost of using bw in this resource.

3.2.4 Enum Sub Profile Concepts

A thorough literature review is done before this project starts; got various notable practices

and find them important to be listed here as enumerations, defined below and shown in

Figure 15.

Description of Enumerations

 TempScale Enumeration

Description: represents the types of temperature in which it is measured.

 Enumeration Literal: TempScale has Celsius, Kelvin, and Fahrenheit enumeration

literals.

DeviceType Enumeration

Description: represents the types of devices.

 Enumeration Literal: DeviceType has Cellular, Desktop enumeration literals.

55 | P a g e

Figure 15: Enumerations

SensorType Enumeration

Description: represents the types of temperature in which it is measured.

 Enumeration Literal: SensorType has Thermometer, Glucometer, PulseOximeter,

Hygrometer, EEG, and ECG enumeration literals.

hum_level Enumeration

Description: represents the level of humidity in which it is measured.

 Enumeration Literal: hum_level has g_per_kg enumeration literal.

Activity Enumeration

Description: represents the state of the Person in which it is.

 Enumeration Literal: Activity has Walking, Relaxing, and Working on enumeration

literals.

Heart_rate Enumeration

Description: represents the rate of heart in which it is measured.

 Enumeration Literal: Heart_rate has beats_per_min enumeration literal.

B_level Enumeration

Description: represents the blood level in which it is measured.

 Enumeration Literal: B_level has mmHg enumeration literal.

56 | P a g e

sug_level Enumeration

Description: represents the sugar level in which it is measured.

 Enumeration Literal: sug_level has mmol_per_L, enumeration literals.

ElectricSignal Enumeration

Description: represents the electric signal in which it is measured.

 Enumeration Literal: ElectricSignal has mv, Hz enumeration literals.

ConnectivityMode Enumeration

Description: represents the Mode of connection.

 Enumeration Literal: ConnectivityMode has Wifi, Bluetooth, and WLAN enumeration

literal.

ArchType Enumeration

Description: represents the type of Architecture that is used.

 Enumeration Literal: ArchType has x86, x64 enumeration literals.

OSType Enumeration

Description: represents the type of Operating System.

 Enumeration Literal: OSType has Linux, Windows, Ubunto, and macOS enumeration

literals.

57 | P a g e

Chapter 4

 Implementation

58 | P a g e

Chapter 4: Implementation

This chapter explains the development of our proposed transformation engine, Model-Driven

Fog based eHealth System (MDFeH), which converts a UML Class Diagram (.uml)

represented by UMLPFeH into java code for simulation. Section 4.1 describes the

architecture of our proposed transformation engine, while Section 4.2 describes how to apply

transformation rules to an input model to convert it to java code.

4.1 Transformation Engine Architecture

Figure 16 depicts the design of our transformation engine. MDFeH accepts input models and

uses transformation rules to convert them to java code. It is written in the Java and Acceleo

programming languages (for writing transformation rules). Model to Text Language (MTL) is

the foundation of MDFeH. The MDFeH transformation engine is made up of two primary

parts: the Tool User Interface and the Code Generator. Below is a detailed description of

these components.

Figure 16: Architecture of Model-Driven Fog based eHealth Transformation Engine

4.1.1 Tool User Interface:

Figure 17 depicts the main interface of our tool MDFeH. It has two key features: a System

Modeler and a Transformation Engine.

• System Modeler allows users to utilize the Papyrus tool to model java code.

• Transformation Engine option allows the user to supply an input model and have it

transformed into java code using the Transformation Engine interface (see Figure

59 | P a g e

18). The options for this interface are Input Model, Destination Folder, Generate,

Status, Reset, and Open Folder.

▪ Input Model allows the user to explore and select (.uml) files on his system.

The Destination Folder option allows the user to specify the location of the

created output files.

▪ Generate button generates java code files automatically based on the provided

model.

▪ Status displays the tool's current state, such as whether files were successfully

generated or if an error occurred.

▪ Reset users can utilize the Reset button to enter a new input model and

destination folder.

▪ Open folder takes you to the location where the output files were created.

The Launcher, MainScreen, TextRefiner, and WinMain java classes are used to create

MDFeH's user interface. The transformation engine's main executor is MainScreen. It

includes a list of accessible functions as well as a graphical user interface (GUI) with buttons

and input fields. The java-based controller classes that implement these features are Launch

and WinMain. Text Refiner performs string processing in a format that can be used later.

Figure 17: Main Screen of MFeHTE

60 | P a g e

Figure 18: Input Interface of MFeHTE

4.1.2 Code Generator:

The user-specified input models are loaded into a code generator, which uses transformation

rules to turn them into deployable java code. The code generator is made up of two primary

parts.

1. Generate (Generate.java)

2. Template (generate.mtl)

The Template file is the main file in this module, and it provides references to sub-template

files for implementing transformation rules. The Template file is the major component, and it

is made up of several sub-templates. It gets the input models and sends them to the

appropriate sub-templates. To generate the result, each sub-template applies its

transformation rules to each UML model element. The output artifacts are based on java code

that may be deployed.

4.2. Transformation Rules

This section contains a full description of the transformation rules required for the Fog-based

eHealth System's transformation process to yield desirable outputs. Model transformation is

the process of creating output artifacts (models, code, text, documentation, and so on) from

61 | P a g e

an input source model using transformation rules. The set of formal definitions that explain

how one or more constructs in the source model language map to one or more constructs in

the target model language is known as transformation rules [81]. The fundamental goal when

creating transformation rules is to minimize total effort and information loss during the

transformation process. This segment, as illustrated in Figure 16, describes the mapping rules

that are used to convert UML models into required artifacts. A set of established rules that

changes an input model into another needed model or textual artifacts is referred to as model

transformation. Transformation rules are the names given to these predetermined rules. The

basic elements for transforming UML models into appropriate java code are transformation

rules. These rules ensure that the model remains consistent and that information is not lost.

4.2.1. Transformation Rules for Code Generation:

Our Code Generation transformation engine handles the process of generating code or text

artifacts via Model to Text (M2T) transformation. The necessary transformation rules for

M2T transformation are presented and discussed in Table 12.

Table 12: Transformation rules for standard modeling elements

Model Artifacts Code Artifacts Mapping

Package

Package

Name

Folder

Package — Name →

Folder Name

Model Class

Class

Name

Model Class — Name

→ Class Name

62 | P a g e

Visibility

Class

Model Class —

Visibility → Access

Specifiers Class

Attribute

Model Class —

Attribute → Owned

Attributes

Attribute

Visibility

Model Class —

Attribute Visibility →

Owned Attributes

Access Specifiers

Applied

Stereotype

Model Class —

Applied Stereotype —

Property → Owned

Attributes

Association

Member

Ends

Class Instance Association —

Member Ends →

Owning Class/ Owned

Class

63 | P a g e

Member

Ends

Visibility

Public/ Private/

Protected

Association —

Member Ends

Visibility → Owned

Instance Access

Specifier

Member

Ends

Multiplicity

List<Type>Instance

Name OR Single

Instance

Association —

Member Ends

Multiplicity/

Cardinality →

List<Type> or Single

Instance

Operation

Operation

Name

Method Operation — Name →

Method Name

Owned

Parameter

Method Definition

Operation — Owned

Parameter → Method

Parameter (in, out),

Return Type of

Method(return)

Opaque Behaviour Opaque Behaviour —

Description → Body

of Method

Enumeration

64 | P a g e

Enumeration Name

enum Enumeration Enumeration — Name

→ enum Name

Owned Literal

Enumeration

Literal

Enumeration —

Owned Literal →

Enum Values

For modeling fog-based ehealth systems, Model Artifacts are based on parts of the Unified

Modelling Language (UML). Code Artifacts are Android code elements that are used to

translate UML model elements into text. Mapping connects UML model elements to their

code counterparts. A package is a UML element that puts together other packageable items

and gives the model a hierarchical view. The name of a package is mapped to the name of a

folder containing code files throughout the transformation process.

In UML, a Model Class specifies a system's static structure. The prefix keyword class is used

to transfer the name of a Model Class to the name of a class in code. By enabling four sorts of

accessibility options, such as public, private, protected, and package, visibility restricts the

use of a named element. By prefixing it to the class keyword, the visibility of a Model Class

is transferred to the access specifier of a coding class. In code, model class attributes,

attribute visibility, and applied stereotypes property is mapped to class-owned attributes and

attribute visibility. The Member Ends of the Owned Class are translated to the instances of

the Owned Class as properties of an Owning Class in code artifact, providing a semantic

relationship between classifiers in UML. The access specifiers and cardinality of the

instances of the Owned Class are mapped to Member Ends Visibility and Multiplicity,

respectively. The cardinality '1' corresponds to a single instance, while the cardinality '0..*'

corresponds to a List instance. In UML, operations define a Model Class's behavioral

features, and its name is transferred to a class's method name in code. The name of Owned

Parameters is mapped to the name of class parameters, and the direction of Owned

Parameters is mapped to the type of method parameters, such as in, out, in-out, and return.

65 | P a g e

Like a block of code, opaque behavior is dependent on the implementation of particular

semantics in UML. The body of the method or the method declaration in code is mapped to

the description of opaque behavior. In UML, an enumeration is a user-defined set of named

elements. By prefixing the name with the enum keyword, the Name of Enumeration is

mapped to the name of Enum in code. In code, Enumeration Literals are mapped to named

Enum values.

66 | P a g e

 Chapter 5

 Validation

67 | P a g e

Chapter 5: Validation

With the use of two case studies, this part discusses the application and validity of our

suggested framework. The flow of the validation procedure is depicted in Figure 19. It also

serves as a summary of our findings. UMLPFeH is built on three sorts of ideas: fog

computing, health, and hybrid ideas. Following profile modeling, our suggested

transformation engine MFeHTE transforms the domain model (Class Diagram) into java

code. Finally, the proposed framework is evaluated and verified using two case studies,

namely the eHealth System and case studies, which demonstrate the framework's

applicability and utility. The eHealth System case study is discussed and validated in Section

5.1, and the case study is discussed and validated in Section 5.2.

Figure 19: Flow towards validation

5.1 EEG Beam Tractor Case Study

This case study is explained and validated by dividing it into four sections. Section 5.1.1

describes the Requirement Specification for the Home Automation System. Section 5.1.2

demonstrates UML domain modeling with applied Profile UMLPMH of this case study in

Eclipse plugin Papyrus. Section 5.1.3 presents the transformation of the domain model into

android code as result. Finally, verification of the case study is performed in Section 5.1.4

68 | P a g e

5.1.1 Requirement Specification

A large number of IoT-based medical devices, such as wearables, sensors, and smartphones,

enable patient-driven healthcare systems to track patients' health in real-time. Any personal

computer or cell phone can gather real-time health information and securely link it with the

cloud eHealth platform. The patient's data is collected via a variety of wearables or sensors,

such as a smartwatch or smart eyewear. All they needed was a fog gateway connection with

an appropriate communication protocol. For proper connection in this scenario, a large

number of personal area network (PAN) and wireless sensor network (WSN) protocols are

employed, including WIFI for remote connections and Bluetooth low energy (BLE) for short-

distance connections.

In the case study, there is a latency-critical application called EEG Beam Tractor, which

involves a lot of brain-computer contacts. The patient must wear a Patient Concentration

Device (PCD) remote EEG headset that is connected to the Fog Device to play the EEG

Beam Tractor. On a mobile, the game runs as an Android application. The program handles

the EEG signals detected by the EEG headset in real-time and determines the patient's brain

status.

The game displays all of the patients on a ring encircling an objective article on the app's

showcase. Following his level of concentration, the patient might apply an appealing power

to the target. To win the game, a patient should try to pull the goal toward himself by

practicing attention and denying other players the opportunity to snatch the goal.

5.1.2 Modelling

The application EEG Beam Tractor comprises three significant modules which perform

preparing Patient, Concentration Calculator, and Coordinator.

1. Patient: The sensor communicates with the patient module, which receives raw EEG

signals. It looks for any discrepancies in the received signal values and discards any that

appear to be inconsistent. If the observed signal value is constant, it is sent to the

Concentration Calculator module, which uses it to calculate the user's concentration level

from the signal. It displays the concentration level after receiving it by transmitting the value

to the DISPLAY actuator.

2. Concentration Calculator: The concentration calculator module is in charge of

calculating the concentration level and determining the patient's brain state based on the

69 | P a g e

sensed EEG signal values. This module updates the game status of the patient on the display

by informing the Patient module about the measured concentration level.

3. Coordinator: The coordinator operates at a global level, coordinating the game amongst

numerous patients who may be located in different parts of the world. The Coordinator

distributes the current state of the game to all linked patients' Patient modules regularly.

Figure 20: Application model of EEG Tractor Beam Case Study

The application model of the eHealth system is shown in Figure 20. The developed model

constitutes numerous classes with the obligatory applied stereotypes, attributes, and methods

for accurate execution as shown in Figure 21. This model contains thirty classes that are

defined as below:

The major operations of the system are handled by the application class in the Distributed

Dataflow Model or graphically in the form of a directed acyclic graph (DAG). Based on

obtained data, it is used to define various modules, edges, and the tuples generated by these.

The AppLoop class is used to define the process-control loops that the operator is interested

in. The iFogSim calculates the control loops' end-to-end latency. An AppLoop instance is just

a list of components starting at the loop's origin and ending at the loop's finish. The

AppModule class represents an application module, which contains the processing parts of the

iFogSim application model. AppEdge is a class that represents application edges, which

connect modules and represent data dependencies. Conceptual components include Patient,

Concentration Calculator, and Coordinator.

70 | P a g e

Figure 21: Design Model of Fog based eHealth System

eHealth System is the main class in which certain functions initiate the number of cloud users,

application devices, and the number of departments for EEG patients. Initializing controller

and module mapping as well. FogDevice all the devices involved in building fog-based

ehealth systems are termed fog devices. Sensor, Actuator, Fog Broker, Proxy, and Cloud are

the same as discussed in section 3.2.1. SimEntity class represents a Simulation Entity that

manages different actions and can communicate these actions to other entities by pre-defined

methods.

Deterministic Distribution is the same as discussed in section 3.2.2. In a Data Cloud, storage

represents the expected capabilities of a storage system. By setting the storage capability and

the maximum transfer rate, the classes that implement this storage mechanism should imitate

the properties of various storage systems. The transfer rate is defined as “ the time required to

perform a few typical actions on the storage, e.g. storing a file, retrieving a file, and erasing a

file”. Features same as discussed in section 3.2.3. Controller deals with output mechanisms

either in console or in graphical results. Module Mapping deals with mapping from one node

to the other instances to be launched.

71 | P a g e

Processing Elements class represents the CPU component, which is expressed in MIPS

(Millions of Instructions Per Second). The host is in charge of all actions related to virtual

machine management (e.g., creation and destruction). A host has a defined memory and

bandwidth provisioning approach, as well as a Pe allocation method for virtual machines. A

data center is linked to a host.

It can host virtual computers.PowerHost class permits the simulation of power-aware hosts.

CloudSim enhances CloudSim Core's capabilities to make network simulation easier in

CloudSim. Furthermore, it disables all of CloudSim's network algorithms to provide a

networking simulation. The Log class is used to run the simulation procedure's logging. It

provides the ability to change the output stream. Calendar class is a java utility class that

offers approaches for transforming among a particular instant of time and calendar fields such

as Year, Month, Day_of_Month, Hour, and so on, and for operating the calendar fields, such

as attaining the date of the next week. TimeKeeper is the iFogSim utility class that computes

and provides time in milliseconds. Also, this class have functions like

setSimulationStartTime() to set simulation start time.

It is important to note that the UML profile requires the assignment of tagged values as

defined in UMLPFeH. It is important to define the entities' characteristics (i.e. nodes)

represented by nodeName, mips, ram, upbw, downbw, level, ratePerMips, busyPower, and

IdlePower. as shown in Figure 22. Moreover, Connection Edges are defined as the

information that flows between nodes represented by source, destination, tupleCpuLength,

tupleNwLength, tupleType, direction, and edgeType as demonstrated in Figure 22.

72 | P a g e

Figure 22: Assigning tagged values in Domain Model

5.1.3 Transformation

In the Transformation engine “MFeHTE” the domain model (.uml file) of fog based ehealth

is fed as an input and then execute the transformation set of rules to convert the input domain

model (.uml file) into java code, as shown in Figure 23. Initially, the UML model and

destination folder are specified in GUI. Transformation status can be seen on the screen in

73 | P a g e

Figures 23 and 24. Once the transformation is done, generated java files can be seen in the

destination folder in Figure 25.

Figure 23: Model Transformation of Case Study

Figure 24: Input Screen with transformation status

The generated output can be seen in the Target Folder in Figure.

74 | P a g e

Figure 25: Generated files in the target folder

5.1.4 Early Resource Analysis

The generated code from MFeHTE needs to be verified. Therefore, we have used the

iFogSim tool to perform simulation. Once the transformation process is completed, java files

are selected and imported into the iFogSim tool as shown in Figure 26. After the import is

completed, java code needs to be compiled in iFogSim as shown in Figure 27. After

successful execution as shown in Figure 28. simulation results are presented. Figure 29

provides the simulation results in the console. It demonstrates the calculated values of:

• Execution Time:

• Application Loops Delay:

• CPU Execution Delay:

• Patient_Game_State, EEG, Concentration, Sensor and Global_Game_State.

• Energy Consumed: cloud, proxy-server, department, and mobile sensors

• Cost of execution in the cloud: Total network usage:

75 | P a g e

Figure 26: iFogSim Interface

Figure 27: Importing java file in iFogSim

76 | P a g e

Figure 28: Executing java file in iFogSim

77 | P a g e

Figure 29: Fog based ehealth Framework (console) Results in iFogSim

5.2 Smart Glove Case Study

This case study is explained and validated by dividing it into four sections. Section 5.2.1

describes the Requirement Specification for the Smart Glove case study. Section 5.2.2

demonstrates UML domain modeling with applied Profile UMLPFeH of this case study in

Eclipse plugin Papyrus and presents the transformation of the domain model into android

code as result.

78 | P a g e

5.2.1 Requirement Specification

A smart glove is employed in this case study to meet the telemedicine requirements for

Parkinson's disease [82]. The pointing finger and thumb of the smart glove are sewn with flex

sensors to detect motor symptoms in the hand such as tremors, rigidity, and slowness of

movement. The Arduino 101 Smart Glove has an Intel Curie processor for onboard

processing and Bluetooth low-energy connection with the local network. The voltage across

the flex sensors is read by the Curie Chip, which then converts it to resistance. We used the

finger-tapping motor task from the Unified Parkinson's Disease Rating Scale (UPDRS) [83],

which is one of the examinations. The frequency of tapping is one of the major aspects

evaluated by neurologists. Neurologists, for example, track the rate of fluctuation in tapping

speed and provide a clinical score for the job. The finger tapping activity was chosen because

it has a higher clinical value and is simple for patients to complete at home.

The patients must tap their pointing fingers and thumb 10 times to complete the job. As a

result, we included a healthy person in our study who did five rounds of finger-tapping. In

each round, the individual was asked to alter the rate of finger tapping frequency. To

determine the intensity of the tapping on each occasion. The patient must wear a Smart Glove

that is connected to the Fog Device to tap their pointing fingers and thumb, we used a signal

calculator.

We consider a signal to be a peak if its amplitude exceeds a threshold and is greater than both

previous and subsequent samples. We also added a temporal threshold because each pinch

has a few micro motions or minor variations that cause multiple peaks to appear at once. As a

result, we do temporal filtration to ensure that if the time interval between two peaks is too

short, we do not treat them as different peaks for different pinches.

79 | P a g e

Figure 30: Design model of Smart Glove

5.2.2 Modeling

As previously stated, the MFeH provides a generic approach for writing Java code. As a

result, the domain model mentioned in the preceding case study can be applied here as well.

80 | P a g e

Figure 31: Assigning Tagged Values

5.2.3 Transformation:

In the Transformation engine “MFeHTE” the domain model (.uml file) of Smart Glove is fed

as an input and then execute the transformation set of rules to convert the input domain model

(.uml file) into java code. Initially, the UML model and destination folder are specified in

GUI. Transformation status can be seen on the screen in Figures 32 and 33.

81 | P a g e

Figure 32: Model Transformation of Case study

Figure 33: Model Transformation of Case Study

82 | P a g e

 Chapter 6

Discussion and Limitations

83 | P a g e

Chapter 6: Discussion and Limitations

Section 6.1 contains a detailed discussion of the proposed research work and Section 6.2

deals with the limitation of the research.

6.1 Discussion

IoT-based services are growing increasingly popular. The number of linked devices reached 9

billion in 2020, and this figure is anticipated to rise to 24 billion by 2025. With such a rapid

rise in the number of different devices and the data created as a result, efficiently managing

the data generated, power used, and bandwidth consumed is not difficult. In this case, a

localized micro data center would be located near the local nodes to delegate duties and filter

the raw data. Fog or Edge is the name given to the tiny data center.

By including better receptiveness, the fog paradigm helps to reduce delays and improve

service quality, making multimedia streaming and other delay-sensitive applications possible.

When the cloud and IoT are combined, multimedia data is generated.

The cost of latency is too high for eHealth, which is one of the most basic IoT applications. It

is unquestionably necessary to be able to analyze and follow up on time-sensitive data and

conditions. As a result, relying on the traditional cloud architecture and design to collect and

evaluate patient-important clinical information, vital signs, and bio-signals across a large

geographical region in the face of varying environmental conditions is not practical. Using

fog or edge computing to take cloud computing and administrations to a higher level is the

most efficient approach to deal with this issue. A fog node is a device that has computational,

storage, and networking capabilities. We analyze time-sensitive data in the eHealth platform

and make extremely time-sensitive decisions on fog nodes. These nodes are the ones that are

closest to the medical equipment that generates the data. The rest of the data, on the other

hand, is sent to the cloud as the primary storage and computational resource. Another

significant difficulty with IoT eHealth is the need to conserve network capacity. An EEG

device, for example, can create many GBs of raw time-series data in a single day. However,

sending these massive amounts of data from thousands of patients to the cloud is neither

possible nor necessary. As a result, fog nodes are a viable option for processing, filtering, and

compressing data sent between medical equipment and the cloud.

84 | P a g e

Model-driven engineering (MDE) enables the creation of UML models to express fog based

ehealth system needs as stereotypes. With minimal effort, these models can be translated into

low-level code. Because of its independence from the platform, the MDE method makes our

suggested system less susceptible to technological changes. The model of the proposed work

can easily be transformed into any of the languages like Java, C#.Net, C++, etc.

In this research, an MFeHSTE (Model-Driven Fog-based eHealth System Transformation

Engine) is presented. Particularly, a Unified Modeling Language (UML) Profile (i.e. UML

Profile for Fog-based eHealth System - UPFeHS) is developed by extending UML-meta-

model to adapt to the concepts of fog based ehealth system framework. This allows modeling

of fog based ehealth system functions along with resources and their characteristics.

Furthermore, a transformation engine MFeHSTE (Model-Driven Fog-based eHealth System

Transformation Engine) is developed, that converts the high-level UPFeHS models into low-

level java code for eHealth Systems. The transformation engine is developed by following the

model-to-text approach by using the Acceleo tool. The generated code from the

transformation engine not only supports eHealth system development but also provides early

resource assessment capabilities. Particularly, the generated code can be integrated into the

iFogSim tool to perform resource analysis. Lastly, the framework is validated by two

benchmark case studies i.e., EEG Tractor Beam and Smart Glove. In addition, the

experimental results indicate that the offered framework delivers an easy and reusable

solution for a fog-based eHealth system where major functions along with resource

estimation characteristics can be managed simultaneously at a higher level of abstraction with

reduced complexity and cost.

6.2 Limitations

This approach leads to the automated code generation for Fog based eHealth Systems in an

automated way, but there exist some limitations as well. We have validated our proposed

framework using two benchmark case studies but the implementation of this system in the

real world has not yet been carried out. We have provided a very basic type of components of

the eHealth system with a limited number of their properties. The data is not real-time for

EEG Monitoring. The current method involves modeling complexity as an operator has to

apply stereotypes by himself to define each artifact. Therefore, a proper editor is required to

develop this system.

85 | P a g e

Chapter 7

Conclusion and Future Work

86 | P a g e

Chapter 7: Conclusion and Future Work

The proposed framework provides a solution for a Fog-based eHealth System where resource

assessment characteristics can be generated simultaneously at a higher level of abstraction

with reduced complexity and cost. It is based on a model-driven approach to provide simple,

open-source, and reusable solutions for early design analysis.

Particularly, a Unified Modeling Language (UML) Profile (i.e. UML Profile for Fog-based

eHealth System - UPFeHS) is developed by extending UML-meta-model to adapt to the

concepts of fog based ehealth system framework. This allows to model fog based ehealth

system functions along with resources and their characteristics. Furthermore, a transformation

engine, named Model-Driven Fog-based eHealth System Transformation Engine

(MFeHSTE), is developed to convert high-level UPFeHS models into low-level java code

for ehealth systems. The transformation engine is based on the model-to-text (M2T) approach

and developed using the Acceleo tool. The generated code from the transformation engine not

only supports ehealth system development but also provides early resource assessment

capabilities. Particularly, the generated code can be integrated into the iFogSim tool to

perform resource analysis. Lastly, the framework is validated by two benchmark case studies

i.e. EEG beam tractor and smart glove. The experimental outcomes indicate that the offered

framework provides an easy and reusable solution for fog based ehealth systems where major

functions along with resource estimation characteristics can be managed simultaneously at a

higher level of abstraction with reduced complexity and cost.

In the future, we are intended to extend UPFeH to add concepts that may help to compute

real-time data. In addition, this research may be extended to deal with the confidentiality and

security concerns in the eHealth system and emphasize data dissemination among different

nodes and at different levels of the network. We also are concerned about enhancing the real-

time data/information.

87 | P a g e

References

[1] M. Mukherjee, L. Shu and D. Wang, "Survey of Fog Computing: Fundamental, Network

Applications, and Research Challenges," in IEEE Communications Surveys & Tutorials, vol.

20, no. 3, pp. 1826-1857, thirdquarter 2018, doi: 10.1109/COMST.2018.2814571.

[2] Yousefpour, Ashkan, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,

Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. "All one needs to know about fog

computing and related edge computing paradigms: A complete survey." Journal of Systems

Architecture 98 (2019): 289-330.

[3] Javadzadeh, Ghazaleh, and Amir Masoud Rahmani. "Fog computing applications in smart

cities: A systematic survey." Wireless Networks 26, no. 2 (2020): 1433-1457.

[4] Shivashankar, Karthik, and Venkat Bakthavatchaalam. "Smart Municipal Governance

System Using Confluence of Technologies in a Developing Country Scenario." In 14th

International Conference on Theory and Practice of Electronic Governance, pp. 535-537.

2021.

[5] Cardullo, Paolo, and Rob Kitchin. "Being a ‘citizen’in the smart city: Up and down the

scaffold of smart citizen participation in Dublin, Ireland." GeoJournal 84, no. 1 (2019): 1-13.

[6] Singh, Harpreet, and Shah J. Miah. "Smart education literature: A theoretical

analysis." Education and Information Technologies 25, no. 4 (2020): 3299-3328.

[7] Granja, Conceição, Wouter Janssen, and Monika Alise Johansen. "Factors determining

the success and failure of eHealth interventions: systematic review of the literature." Journal

of medical Internet research 20, no. 5 (2018): e10235.

[8] Dong, Bing, Vishnu Prakash, Fan Feng, and Zheng O'Neill. "A review of smart building

sensing system for better indoor environment control." Energy and Buildings 199 (2019): 29-

46.

[9] Thellufsen, Jakob Zinck, Henrik Lund, P. Sorknæs, P. A. Østergaard, M. Chang, D.

Drysdale, Steen Nielsen, S. R. Djørup, and K. Sperling. "Smart energy cities in a 100%

renewable energy context." Renewable and Sustainable Energy Reviews 129 (2020): 109922.

[10] Tomor, Zsuzsanna, Erico Przeybilovicz, and Charles Leleux. "Smart governance in

institutional context: An in-depth analysis of Glasgow, Utrecht, and Curitiba." Cities 114

(2021): 103195.

[11] Tikhomirov, Vladimir, Natalia Dneprovskaya, and Ekaterina Yankovskaya. "Three

dimensions of smart education." In Smart Education and Smart e-Learning, pp. 47-56.

Springer, Cham, 2015.

88 | P a g e

[12] H. Kazmi, F. Mehmood and M. Amayri, "Smart Home Futures: Algorithmic Challenges

and Opportunities," 2017 14th International Symposium on Pervasive Systems, Algorithms

and Networks & 2017 11th International Conference on Frontier of Computer Science and

Technology & 2017 Third International Symposium of Creative Computing (ISPAN-FCST-

ISCC), 2017, pp. 441-448, doi: 10.1109/ISPAN-FCST-ISCC.2017.60.

[13] J. Dutta and S. Roy, "IoT-fog-cloud based architecture for smart city: Prototype of a

smart building," 2017 7th International Conference on Cloud Computing, Data Science &

Engineering - Confluence, 2017, pp. 237-242, doi: 10.1109/CONFLUENCE.2017.7943156.

[14] P. Dongbaare, S. O. Osuri and S. P. Daniel Chowdhury, "A smart energy management

system for residential use," 2017 IEEE PES PowerAfrica, 2017, pp. 612-616, doi:

10.1109/PowerAfrica.2017.7991296.

[15] N. V. Lopes, "Smart governance: A key factor for smart cities implementation," 2017

IEEE International Conference on Smart Grid and Smart Cities (ICSGSC), 2017, pp. 277-

282, doi: 10.1109/ICSGSC.2017.8038591.

[16] Cardoso, João MP, José Gabriel F. Coutinho, and Pedro C. Diniz. "Chapter 5-Source

code transformations and optimizations." by João MP Cardoso, José Gabriel F. Coutinho,

and Pedro C. Diniz. Boston: Morgan Kaufmann (2017): 137-183.

[17] M. Bennis, M. Debbah and H. V. Poor, "Ultrareliable and Low-Latency Wireless

Communication: Tail, Risk, and Scale," in Proceedings of the IEEE, vol. 106, no. 10, pp.

1834-1853, Oct. 2018, doi: 10.1109/JPROC.2018.2867029.

[18] P. Putra, S. Wijaya, Z. A. Wirahaditenaya, R. Jayadi and T. Mauritsius, "Predicting

Network Bandwidth Usage: Case Study at PT. Bank ABC," 2020 IEEE International

Conference on Communication, Networks and Satellite (Comnetsat), 2020, pp. 227-233, doi:

10.1109/Comnetsat50391.2020.9328970.

[19] R. Yu, G. Xue and X. Zhang, "Application Provisioning in FOG Computing-enabled

Internet-of-Things: A Network Perspective," IEEE INFOCOM 2018 - IEEE Conference on

Computer Communications, 2018, pp. 783-791, doi: 10.1109/INFOCOM.2018.8486269.

[20] A. Konda, "An Analysis of eHealth Modes, Usage Levels, Enablers, and

Obstacles," 2018 IEEE 20th International Conference on e-Health Networking, Applications

and Services (Healthcom), 2018, pp. 1-4, doi: 10.1109/HealthCom.2018.8531087.

[21] K. Edemacu, B. Jang and J. W. Kim, "Collaborative Ehealth Privacy and Security: An

Access Control With Attribute Revocation Based on OBDD Access Structure," in IEEE

Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2960-2972, Oct. 2020,

doi: 10.1109/JBHI.2020.2973713.

89 | P a g e

[22] Xiong, Haoyi, Jinghe Zhang, Yu Huang, Kevin Leach, and Laura E. Barnes. "Daehr: A

discriminant analysis framework for electronic health record data and an application to early

detection of mental health disorders." ACM Transactions on Intelligent Systems and

Technology (TIST) 8, no. 3 (2017): 1-21.

[23] Yadav, Pranjul, Michael Steinbach, Vipin Kumar, and Gyorgy Simon. "Mining

electronic health records (EHRs) A survey." ACM Computing Surveys (CSUR) 50, no. 6

(2018): 1-40.

[24] Sun, Jin, Xiaomin Yao, Shangping Wang, and Ying Wu. "Blockchain-based secure

storage and access scheme for electronic medical records in IPFS." IEEE Access 8 (2020):

59389-59401.

[25] G. Márquez, H. Astudillo and C. Taramasco, "Security in Telehealth Systems From a

Software Engineering Viewpoint: A Systematic Mapping Study," in IEEE Access, vol. 8, pp.

10933-10950, 2020, doi: 10.1109/ACCESS.2020.2964988.

[26] Mohamed, Walaa, and Mohammad M. Abdellatif. "Telemedicine: An IoT Application

For Healthcare systems." In Proceedings of the 2019 8th International Conference on

Software and Information Engineering, pp. 173-177. 2019.

[27] Chandwani, Rajesh, and Neha Kumar. "Stitching Infrastructures to Facilitate

Telemedicine for Low-Resource Environments." In Proceedings of the 2018 CHI Conference

on Human Factors in Computing Systems, pp. 1-12. 2018.

[28] C. Crema, A. Depari, A. Flammini, E. Sisinni, A. Vezzoli and P. Bellagente, "Virtual

Respiratory Rate Sensors: An Example of A Smartphone-Based Integrated and

Multiparametric mHealth Gateway," in IEEE Transactions on Instrumentation and

Measurement, vol. 66, no. 9, pp. 2456-2463, Sept. 2017, doi: 10.1109/TIM.2017.2707838.

[29] Ruiz-Zafra, Angel, Kawtar Benghazi, Constandinos Mavromoustakis, and Manuel

Noguera. "An iot-aware architectural model for smart habitats." In 2018 IEEE 16th

International Conference on Embedded and Ubiquitous Computing (EUC), pp. 103-110.

IEEE, 2018.

[30] Farahani, Bahar, Farshad Firouzi, Victor Chang, Mustafa Badaroglu, Nicholas Constant,

and Kunal Mankodiya. "Towards fog-driven IoT eHealth: Promises and challenges of IoT in

medicine and healthcare." Future Generation Computer Systems 78 (2018): 659-676.

[31] Attipoe-Dorcoo, Sharon, Rigoberto Delgado, Aditi Gupta, Jennifer Bennet, Nancy E.

Oriol, and Sachin H. Jain. "Mobile health clinic model in the COVID-19 pandemic: lessons

learned and opportunities for policy changes and innovation." International Journal for

Equity in Health 19, no. 1 (2020): 1-5.

90 | P a g e

[32] Shuhaiber, Ahmed, and Ibrahim Mashal. "Understanding users’ acceptance of smart

homes." Technology in Society 58 (2019): 101110.

[33] N. Abbas, Y. Zhang, A. Taherkordi and T. Skeie, "Mobile Edge Computing: A Survey,"

in IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450-465, Feb. 2018, doi:

10.1109/JIOT.2017.2750180.

[34] Y. Elkhatib, B. Porter, H. B. Ribeiro, M. F. Zhani, J. Qadir and E. Rivière, "On Using

Micro-Clouds to Deliver the Fog," in IEEE Internet Computing, vol. 21, no. 2, pp. 8-15,

Mar.-Apr. 2017, doi: 10.1109/MIC.2017.35.

[35] Satyanarayanan, Mahadev. "The emergence of edge computing." Computer 50, no. 1

(2017): 30-39.

[36] J. Granados, A. Rahmani, P. Nikander, P. Liljeberg and H. Tenhunen, "Towards energy-

efficient HealthCare: An Internet-of-Things architecture using intelligent gateways," 2014

4th International Conference on Wireless Mobile Communication and Healthcare -

Transforming Healthcare Through Innovations in Mobile and Wireless Technologies

(MOBIHEALTH), 2014, pp. 279-282, doi: 10.1109/MOBIHEALTH.2014.7015965.

[37] H. Hong, "From Cloud Computing to Fog Computing: Unleash the Power of Edge and

End Devices," 2017 IEEE International Conference on Cloud Computing Technology and

Science (CloudCom), 2017, pp. 331-334, doi: 10.1109/CloudCom.2017.53.

[38] D. C. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering," in Computer,

vol. 39, no. 2, pp. 25-31, Feb. 2006, doi: 10.1109/MC.2006.58.

[39] Pastor, Oscar, Sergio España, José Ignacio Panach, and Nathalie Aquino. "Model-driven

development." Informatik-Spektrum 31, no. 5 (2008): 394-407.

[40] Huang, Dijiang, and Huijun Wu. Mobile cloud computing: Foundations and service

models. Morgan Kaufmann, 2017.

[41] Dastjerdi, A., Harshit Gupta, R. Calheiros, and S. Ghosh. "Chapter 4—fog computing:

Principles, architectures, and applications. InInternet of Things: Principles and Paradigms, ed.

R. Buyya, and AV Dastjerdi, 61–75." (2016).

[42] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow and P. A. Polakos,

"A Comprehensive Survey on Fog Computing: State-of-the-Art and Research Challenges,"

in IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416-464, Firstquarter 2018,

doi: 10.1109/COMST.2017.2771153.

[43] Konda, Anuja. "An Analysis of eHealth Modes, Usage Levels, Enablers, and Obstacles."

In 2018 IEEE 20th International Conference on e-Health Networking, Applications and

Services (Healthcom), pp. 1-4. IEEE, 2018.

91 | P a g e

[44] K. Edemacu, B. Jang and J. W. Kim, "Collaborative Ehealth Privacy and Security: An

Access Control With Attribute Revocation Based on OBDD Access Structure," in IEEE

Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2960-2972, Oct. 2020,

doi: 10.1109/JBHI.2020.2973713.

[45] García-Valls, Marisol, Christian Calva-Urrego, and Ana García-Fornes. "Accelerating

smart eHealth services execution at the fog computing infrastructure." Future Generation

Computer Systems (2018).

[46] Qi, Jun, Po Yang, Geyong Min, Oliver Amft, Feng Dong, and Lida Xu. "Advanced

internet of things for personalised healthcare systems: A survey." Pervasive and Mobile

Computing 41 (2017): 132-149.

[47] Ahmed, Syed Hassan, and Shalli Rani. "A hybrid approach, Smart Street use case and

future aspects for Internet of Things in smart cities." Future Generation Computer

Systems 79 (2018): 941-951.

[48] Rahmani, Amir M., Tuan Nguyen Gia, Behailu Negash, Arman Anzanpour, Iman Azimi,

Mingzhe Jiang, and Pasi Liljeberg. "Exploiting smart e-Health gateways at the edge of

healthcare Internet-of-Things: A fog computing approach." Future Generation Computer

Systems 78 (2018): 641-658.

[49] Farahani, Bahar, Farshad Firouzi, Victor Chang, Mustafa Badaroglu, Nicholas Constant,

and Kunal Mankodiya. "Towards fog-driven IoT eHealth: Promises and challenges of IoT in

medicine and healthcare." Future Generation Computer Systems 78 (2018): 659-676.

[50] García-Valls, Marisol, Christian Calva-Urrego, and Ana García-Fornes. "Accelerating

smart eHealth services execution at the fog computing infrastructure." Future Generation

Computer Systems (2018).

[51] Vilela, Pedro H., Joel JPC Rodrigues, Petar Solic, Kashif Saleem, and Vasco Furtado.

"Performance evaluation of a Fog-assisted IoT solution for e-Health applications." Future

Generation Computer Systems 97 (2019): 379-386.

[52] Kumari, Aparna, Sudeep Tanwar, Sudhanshu Tyagi, and Neeraj Kumar. "Fog computing

for Healthcare 4.0 environment: Opportunities and challenges." Computers & Electrical

Engineering 72 (2018): 1-13.

[53] Farahani, Bahar, Mojtaba Barzegari, Fereidoon Shams Aliee, and Khaja Ahmad Shaik.

"Towards collaborative intelligent IoT eHealth: From device to fog, and

cloud." Microprocessors and Microsystems 72 (2020): 102938.

92 | P a g e

[54] Debauche, Olivier, Saïd Mahmoudi, Pierre Manneback, and Abdessamad Assila. "Fog

IoT for Health: A new Architecture for Patients and Elderly Monitoring." Procedia Computer

Science 160 (2019): 289-297.

[55] Verma, Prabal, and Sandeep K. Sood. "Fog assisted-IoT enabled patient health

monitoring in smart homes." IEEE Internet of Things Journal 5, no. 3 (2018): 1789-1796.

[56] T. Muhammed, R. Mehmood, A. Albeshri and I. Katib, "UbeHealth: A Personalized

Ubiquitous Cloud and Edge-Enabled Networked Healthcare System for Smart Cities," in

IEEE Access, vol. 6, pp. 32258-32285, 2018, doi: 10.1109/ACCESS.2018.2846609.

[57] P. H. Vilela, J. J. P. C. Rodrigues, L. R. Vilela, M. M. E. Mahmoud and P. Solic, "A

Critical Analysis of Healthcare Applications Over Fog Computing Infrastructures," 2018 3rd

International Conference on Smart and Sustainable Technologies (SpliTech), 2018, pp. 1-5.

[58] Azimi, Iman, Arman Anzanpour, Amir M. Rahmani, Tapio Pahikkala, Marco Levorato,

Pasi Liljeberg, and Nikil Dutt. "HiCH: Hierarchical fog-assisted computing architecture for

healthcare IoT." ACM Transactions on Embedded Computing Systems (TECS) 16, no. 5s

(2017): 1-20.

[59] Tang, Wenjuan, Ju Ren, Kuan Zhang, Deyu Zhang, Yaoxue Zhang, and Xuemin Shen.

"Efficient and Privacy-preserving Fog-assisted Health Data Sharing Scheme." ACM

Transactions on Intelligent Systems and Technology (TIST) 10, no. 6 (2019): 1-23.

[60] Concone, Federico, Giuseppe Lo Re, and Marco Morana. "A fog-based application for

human activity recognition using personal smart devices." ACM Transactions on Internet

Technology (TOIT) 19, no. 2 (2019): 1-20.

[61] R. Saha, G. Kumar, M. K. Rai, R. Thomas and S. -J. Lim, "Privacy Ensured e{e} -

Healthcare for Fog-Enhanced IoT Based Applications," in IEEE Access, vol. 7, pp. 44536-

44543, 2019, doi: 10.1109/ACCESS.2019.2908664.

[62] Jia, Xiaoying, Debiao He, Neeraj Kumar, and Kim-Kwang Raymond Choo.

"Authenticated key agreement scheme for fog-driven IoT healthcare system." Wireless

Networks 25, no. 8 (2019): 4737-4750.

[63] Garcia-Perez, Cesar, Almudena Diaz-Zayas, Alvaro Rios, Pedro Merino, Kostas

Katsalis, Chia-Yu Chang, Shahab Shariat, Navid Nikaein, Pilar Rodriguez, and Donal Morris.

"Improving the efficiency and reliability of wearable based mobile eHealth

applications." Pervasive and Mobile Computing 40 (2017): 674-691.

[64] Bhuiyan, Md Zakirul Alam, Jie Wu, Guojun Wang, Jiannong Cao, Wenjun Jiang, and

Mohammed Atiquzzaman. "Towards cyber-physical systems design for structural health

93 | P a g e

monitoring: Hurdles and opportunities." ACM Transactions on Cyber-Physical Systems 1, no.

4 (2017): 1-26.

[65] Al-Joboury, Istabraq M., and Emad H. Al-Hemiary. "F2CDM: Internet of Things for

Healthcare Network Based Fog-to-Cloud and Data-in-Motion Using MQTT Protocol."

In International Symposium on Ubiquitous Networking, pp. 368-379. Springer, Cham, 2017.

[66] Bhatia, Munish, and Sandeep K. Sood. "Exploring temporal analytics in fog-cloud

architecture for Smart Office HealthCare." Mobile Networks and Applications 24, no. 4

(2019): 1392-1410.

[67] Cankar, Matija, Eneko Olivares Gorriti, Matevž Markovič, and Flavio Fuart. "Fog and

Cloud in the Transportation, Marine and eHealth Domains." In European Conference on

Parallel Processing, pp. 292-303. Springer, Cham, 2017.

[68] Al-Khafajiy, Mohammed, Lee Webster, Thar Baker, and Atif Waraich. "Towards fog

driven IoT healthcare: challenges and framework of fog computing in healthcare."

In Proceedings of the 2nd International Conference on Future Networks and Distributed

Systems, pp. 1-7. 2018.

[69] Elmisery, Ahmed M., Seungmin Rho, and Mohamed Aborizka. "A new computing

environment for collective privacy protection from constrained healthcare devices to IoT

cloud services." Cluster Computing 22, no. 1 (2019): 1611-1638.

[70] Mahmud, Redowan, Fernando Luiz Koch, and Rajkumar Buyya. "Cloud-fog

interoperability in IoT-enabled healthcare solutions." In Proceedings of the 19th international

conference on distributed computing and networking, pp. 1-10. 2018.

[71] K. Wang, Y. Shao, L. Xie, J. Wu and S. Guo, "Adaptive and Fault-Tolerant Data

Processing in Healthcare IoT Based on Fog Computing," in IEEE Transactions on Network

Science and Engineering, vol. 7, no. 1, pp. 263-273, 1 Jan.-March 2020, doi:

10.1109/TNSE.2018.2859307.

[72] P. Pace, G. Aloi, R. Gravina, G. Caliciuri, G. Fortino and A. Liotta, "An Edge-Based

Architecture to Support Efficient Applications for Healthcare Industry 4.0," in IEEE

Transactions on Industrial Informatics, vol. 15, no. 1, pp. 481-489, Jan. 2019, doi:

10.1109/TII.2018.2843169.

[73] Hartmann, Morghan, Umair Sajid Hashmi, and Ali Imran. "Edge computing in smart

health care systems: Review, challenges, and research directions." Transactions on Emerging

Telecommunications Technologies (2019): e3710.

[74] https://www.omg.org/

[75] https://www.uml-diagrams.org/uml-meta-models.html

94 | P a g e

[76] https://www.eclipse.org/

[77] https://www.eclipse.org/papyrus/

[78] https://www.eclipse.org/acceleo/

[79] https://github.com/Cloudslab/iFogSim

[80] Gupta, Brij B., and Megha Quamara. "An overview of Internet of Things (IoT):

Architectural aspects, challenges, and protocols." Concurrency and Computation: Practice

and Experience 32, no. 21 (2020): e4946.

[81] Aziz, K. M. "Evaluating Model Transformation Technologies-An exploratory case

study." (2011).

[82] L. Plant, B. Noriega, A. Sonti, N. Constant and K. Mankodiya, "Smart E-textile gloves

for quantified measurements in movement disorders," 2016 IEEE MIT Undergraduate

Research Technology Conference (URTC), 2016, pp. 1-4, doi:

10.1109/URTC.2016.8284077.

[83] Martínez-Martín, Pablo, Carmen Rodríguez-Blázquez, Mario Alvarez, Tomoko Arakaki,

Víctor Campos Arillo, Pedro Chaná, William Fernández et al. "Parkinson's disease severity

levels and MDS-Unified Parkinson's Disease Rating Scale." Parkinsonism & related

disorders 21, no. 1 (2015): 50-54.

