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Abstract

Rare semileptonic B meson decays induced by b → dl+l− flavor changing neutral current

transitions hold immense significance in exploring the quark-flavor sector of the Standard

Model and also provide search area to test New Physics. In Standard Model they are not

allowed at tree level, but induced by loops and are governed by GIM mechanism. In this

work I have studied B → a1(1260)(→ ρπ)l+l− decay which proceed via b → d transition

at quark level. I have focused mainly on physical observables such as branching ratio,

forward-backward asymmetry and angular coefficient functions in this decay channel in

Standard Model as well as in family non-universal Z ′ model. Remarkable deviation can

be seen from Standard Model values of these physical observables for this decay. It is a

clear indication for New Physics appearing due to Z ′ gauge boson.
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Chapter 1

Introduction

The Standard Model of particle physics has proven to be remarkably effective in ex-

plaining the fundamental constituents of matter and the fundamental forces that me-

diate their interactions. However, there are certain limitations that suggests that this

theory is not yet complete and needs extension to explain unsolved mysteries of the

universe. These limitations include the incorporation of force of gravity within SM. The

unification of gravity with other fundamental forces is a significant challenge in modern

physics, and it is believed that a more complete theory may be required to address this

challenge.

The Standard Model falls short in providing an explanation for the occurrence of dark

matter and dark energy. Observations indicate that the observed gravitational effects

in the universe cannot be adequately explained by the quantity of visible matter alone.

This led to the proposal of presence of dark matter and dark energy, which are believed

to comprise a significant portion of the universe’s mass-energy.

Neutrinos were originally thought to be massless particles. However, experimental ev-

idence has shown that neutrinos do have a tiny mass, which is not explained by the

original Standard Model.

The universe is composed mainly of matter rather than antimatter. This phenomenon

is known as matter-antimatter asymmetry. Based on the Standard Model, the Big Bang

was expected to generate matter and antimatter in equal proportions, but this is not

observed in the universe today.

SM includes the Higgs boson, which is accountable for endowing fundamental particles

1



Chapter 1: Introduction

with mass. However, the theory also predicts that the Higgs boson’s mass should be

much larger than the experimentally observed value, leading to what is called the hierar-

chy problem. This problem refers to the discrepancy between the predicted and observed

Higgs boson mass and suggests that there may be additional particles or interactions

BSM that help stabilize the Higgs boson mass at a lower value.

These limitations suggest that novel physics surpassing the Standard Model is required to

explain these phenomena. The quest for such novel physics represents a highly dynamic

field of investigation within the realm of particle physics today.

B-meson decays are a critical area of research in particle physics as they offer promising

outcomes for the detection of new physics beyond Standard Model. The deviations of

behaviour of B-mesons from SM predicts the presence of unfamiliar particles or inter-

actions that are not yet describe by SM. The processes involving the decay of B-meson

to other mesons and a pair of leptons are being studied widely to look for evidences for

New Physics. The study of the decay of a B meson to an a1 meson and a pair of leptons

has been found to exhibit discrepancies from the predictions of the SM. The existence

of new particles or interactions, such as a new gauge boson or a scalar particle, could

provide an explanation for these observed deviations.

To explain the limitations of SM, various extensions are known to exist. One such

model that extends the SM is family non-universal Z ′ model. The family non-universal

Z ′ model is a theoretical extension of the Standard Model that proposes the existence

of a new massive gauge boson, known as Z ′, which would mediate a new force between

particles. This model suggests that the Z ′ boson would couple differently to particles

of different generations of fermions, unlike the Standard Model Z boson, which couples

equally to all generations of fermions. The study of the family non-universal Z ′ model

is of great interest to particle physicists as it offers promising results for detecting new

physics beyond the Standard Model, as deviations from the Standard Model predictions

in the production and decay of particles could indicate the presence of the Z ′ boson or

other new particles. Experimental searches for the family non-universal Z ′ boson are

currently in progress at the Large Hadron Collider (LHC) at CERN.

This thesis mainly focuses on the study of decay B → a1(→ ρπ)l+l− in SM and family

non-universal Z ′ model. The goal is to look for deviations from SM values of physical

observables for instance branching ratio and FBA, which would indicate for New Physics

2



Chapter 1: Introduction

and would provide an insight of physics beyond SM. The following presents the specific

organization of this thesis:

The 2nd chapter gives the composition of SM i.e. elementary particles and force carriers.

It concisely discusses the SM Lagrangian. The basics of Feynman diagrams and the

observables studied in particle decays are discussed in brief.

In 3rd chapter, the overview of Flavor physics is given in concise manner. It includes the

outline of flavor sector of SM, CKM matrix and its parameterizations. GIM mechanism

and the SM flavor puzzle is also reviewed.

The Effective Field Theory is the primary focus of Chapter 4. It focuses mainly on

top-down formalism of EFT. Operator Product Expansion and structure of Wilson co-

efficients are shortly discussed. In last, operator basis for FCNC transitions are given.

Chapter 5 discusses in detail the helicity formalism of B → a1(→ ρπ)l+l− decay. It

begins with stating the general Hamiltonian proceeding towards the Hamiltonian for

the decay under consideration. It gives matrix elements, form factors, kinematics, lep-

ton helicity amplitude and hadron helicity amplitude for the B → a1 transition. Then

specifically cascade decay a1 → ρπ is discussed and its kinematics are mentioned. Next

angular decay distribution is given and detailed expressions of angular coefficients com-

puted in SM are mentioned. In the end, the family non-universal Z ′ model is briefly

discussed and complete Hamiltonian i.e. SM and Z ′ model Hamiltonian is specifically

mentioned.

In chapter 6, the analysis of physical observables i.e. branching ratio and FBA along

with the comparison of angular coefficients in SM and Z ′ model are discussed in detail.

The plots of above mentioned observables are also given and analyzed in detail.

Finally, chapter 7 concludes the results of B → a1(→ ρπ)l+l− decay in SM and family

non-universal Z ′ model.

3



Chapter 2

The Standard Model of Particle

Physics

The exploration of elementary particles and their interactions is the key to understand

matter constituents and their properties. Also the major role is played by the forces

that allow interactions among these particles. Therefore the Standard Model holds

special significance as it provides us with the details of these particles and fundamental

forces. This chapter has purpose to give idea about the structure of Standard Model

and first section will fulfill the need to get basics of it. Second section is dedicated

to the Lagrangian of SM and third one will discuss the Feynman diagrams as they

are important to understand particle interactions. Finally in the last section theory of

particle decays is discussed as this thesis is based on the study of one such decay. It will

help to get an idea about calculations and bit about observables associated with these

decays.

2.1 Elements of Standard Model

The understanding of laws on which our universe works is only possible if we know the

fundamental building blocks that make up all the existing matter and the forces that

exist between the fundamental particles. The SM illustrates the properties of these

particles and the forces between them through their exchange. The foundation of the

SM lies in the gauge group G = SU(3)c × SU(2)L × U(1)Y [1].
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2.1.1 The Elementary Particles

Matter comprises electrons with negative charges orbiting around a nucleus composed

of positively charged protons and electrically neutral neutrons. Quarks, elementary

particles, combine to form the composite particles known as protons and neutrons. Each

of proton constitutes two up type quarks and one down type quark and each neutron

constitutes two down type and an up type quark. The up-quark, down-quark, electron

and electron neutrino are the first generation particles of the Standard Model. The other

two generations: second generation and third generation are the exact replicas of the

first generation which differ only in masses of particles. The list of twelve fundamental

particles: six quarks and six leptons along with their masses and charges is given in

Table (2.1) and (2.2).[2]

Quarks

Generations Particle Charge Mass/GeV

First down (d) −1
3 0.003

up (u) +2
3 0.005

Second strange (s) −1
3 0.1

charm (c) +2
3 1.3

Third bottom (b) −1
3 4.5

top (t) +2
3 174

Table 2.1: The six fundamental quarks

Leptons

Generations Particle Charge Mass/GeV

First electron (e−) −1 0.0005

electron neutrino (νe) 0 < 109

Second muon (µ−) −1 0.106

muon neutrino (νµ) 0 < 109

Third tau (τ−) −1 1.78

tau neutrino (ντ ) 0 < 109

Table 2.2: The six fundamental leptons

5



Chapter 2: The Standard Model of Particle Physics

Apart from quarks and leptons, there exist gauge bosons, which are responsible for car-

rying the fundamental forces. In the case of strong interactions, the force is mediated by

gluons, which are massless bosons with a spin of 1. For electromagnetic interactions the

particle responsible for transmitting the force is the photon which is again spin-1 mass-

less boson and the mediation of weak interactions occurs through W and Z bosons.The

forces and their corresponding force-carrying particles along with their relative strengths

are given in Table (2.3)

Force Strength Boson JP Mass/GeV

Strong 1 Gluon (g) 1− 0

Electromagnetism 10−3 Photon (γ) 1− 0

Weak 10−8 W and Z (W± and Z) 1− 80.4 and 91.2

Gravity 10−37 Graviton (hypothetical) 2+ 0

Table 2.3: The four fundamental forces

Another element of the SM is the Higgs Boson. This particle is characterized as a scalar

with a spin of 0. It is accountable for the masses of all particles that exist in nature.

2.1.2 The Elementary Forces

The four primary forces consist of the strong force, electromagnetic force, weak force,

and gravitational force. Particles engage in interactions with one another via these

fundamental forces. Forces experienced by the different particles are given in Table

(2.4).

2.1.3 Standard Model Vertices

The interplay among fermions and gauge bosons are described by SM vertices. Proper-

ties of the interactions are influenced by the properties of the gauge bosons and nature

of the interaction between bosons and fermions.

The three-point vertex involving a gauge boson and an incoming and outgoing fermion

represents their interactions as shown in the figures (2.1 - 2.4). A coupling strength

denoted by g is associated with each type of interaction.
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Chapter 2: The Standard Model of Particle Physics

Particles Strong force Electromagnetic force Weak force

up Yes Yes Yes

down Yes Yes Yes

charm Yes Yes Yes

strange Yes Yes Yes

top Yes Yes Yes

bottom Yes Yes Yes

electron No Yes Yes

muon No Yes Yes

tau No Yes Yes

electron neutrino No No Yes

muon neutrino No No Yes

tau neutrino No No Yes

Table 2.4: The forces encountered by various particles

Strong Force

The strong force acts between all quarks since only quarks contain the color charge

of QCD. Quark flavor does not change in strong interaction as it conserves all flavors.

The strong coupling constant is a dimensionless quantity and the nature of the inter-

action can vary depending on the energy scale at which it occurs. At low energies, the

strong coupling constant exhibits a significant magnitude that means quarks interact

very strongly with each other. At higher energies, the strong coupling constant becomes

smaller, meaning that quarks interact less strongly with each other. The inherent mag-

nitude of the QCD interaction is approximately given by gS ∼ 1 , which is much larger

than the values of the other fundamental forces. This is the reason why the strong force

is acknowledged as the most powerful among the fundamental forces at the energy scales

relevant for nuclear physics.

Electromagnetism

The electromagnetic force applies to every charged particle, exerting an influence be-

tween them. There is no change in flavor in electromagnetic interaction. The fine

structure constant is a parameter that quantifies the magnitude of the electromagnetic

7



Chapter 2: The Standard Model of Particle Physics

Figure 2.1: Strong Force

force, which is a dimensionless quantity. The intrinsic strength of this interaction is

e ∼ 1
137 .

Figure 2.2: Electromagnetism

Weak Charged Current

The weak charged-current interaction connects pairs of fundamental fermions that have

a disparity of one electric charge unit. It is the only interaction which involves change

of flavor. The intrinsic strength of weak charged-current interaction is gW ∼ 1
30 .

Figure 2.3: Weak Charged Current

Weak Neutral Current

The weak neutral-current interaction is between all fundamental fermions. There is no

change of flavor in this interaction as well. The intrinsic strength of weak neutral-current

interaction is gZ ∼ 1
30 .

2.2 Standard Model Lagrangian

The SM Lagrangian density is written as [1]

LSM = Lgauge + Lfermion + LHIggs + LY ukawa (2.2.1)

8
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Figure 2.4: Weak Neutral Current

Lgauge term refers to the kinetic energies pertaining to the gauge fields and are written

as

Lgauge = −1
4G

i
µνG

µνi − 1
4W

i
µνW

µνi − 1
4BµνB

µν (2.2.2)

where

Giµν = ∂µG
i
ν − ∂νG

i
µ − gsfijkG

j
µG

k
ν ; i, j, k = 1...8,

W i
µν = ∂µW

i
ν − ∂νW

i
µ − gϵijkW

j
µW

k
ν ; i, j, k = 1...3,

and

Bµν = ∂µBν − ∂νBµ

represents the field strength tensors for SU(3), SU(2) and U(1) respectively.

Lfermion refers to the fermionic part of the SM. Fermions include three families of quarks

and leptons each consisting L-chiral SU(2) doublets and R-singlets represented as

L− doublets : q0
mL =

u0
m

d0
m


L

, l0mL =

ν0
m

e−0
m


L

and

R− singlets : u0
mR, d0

mR, e−0
mR, ν0

mR.

where superscript 0 refers to having definite gauge transformation properties and m =

1...3 labels the family number.

Lfermion consists of gauge-covariant kinetic energy terms, it can be written as

Lfermion =
3∑

m=1
(q0
mLι��Dq

0
mL+l0mLι��Dl0mL+u0

mRι��Du
0
mR+d0

mRι��Dd
0
mR+e0

mRι��De
0
mR+ν0

mRι��Dν
0
mR)

(2.2.3)

The Higgs part LHiggs of standard model Lagrangian can be expressed as

LHiggs = (Dµϕ)†Dµϕ− V (ϕ) (2.2.4)

where ϕ =

ϕ†

ϕ0

 is a complex Higgs scalar and Dµϕ is the gauge covariant derivative,

represented as

Dµϕ = (∂µ + ιg

2 τ⃗ .W⃗µ + ιg′

2 Bµ)ϕ

9



Chapter 2: The Standard Model of Particle Physics

V (ϕ) is the Higgs potential, it’s mathematical form is

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2

LY ukawa refers to the Yukawa couplings among Higgs doublet and the fermions. It can

be written as

LY ukawa = −
F∑

m,n=1
[Γumnq0

mLϕ̃u
0
nR + Γdmnq0

mLϕd
0
nR + Γemnl

0
mnϕe

0
nR + Γνmnl

0
mLϕ̃ν

0
nR] + h.c.

(2.2.5)

where ϕ =

ϕ†

ϕ0

 and ϕ̃ =

 ϕ0†

−ϕ−

 are the Higgs doublet and its conjugate. F is

the fermion family number. Γu,Γd,Γe,Γν are the F × F matrices which determine the

masses and mixings of fermions.

2.3 Feynman Diagrams

Feynman diagrams let us compute scattering amplitudes of the interactions between

elementary particles. They are a pictorial representation of particle interactions that

are used to visualize and calculate the probability of a particular outcome in a physical

process. They contains the following:

External Lines

External lines denote the particles entering and exiting in a scattering or decay process.

Spin 1
2 particles and anti-particles are represented by straight lines with arrows on them.

Arrows indicate the direction of particle flow along the lines. Arrows on anti-particles

are in negative time direction. Spin 1 particles are represented by wavy lines.

Vertices

Vertices are locations where lines representing particles converge, facilitating their inter-

actions with one another. They represent the point at which a particle emits or absorbs

another particle. A vertex will have three or four lines attached. At each vertex energy,

momentum, angular momentum, charge, lepton number, baryon number, strangeness

and parity (except in weak interactions) are conserved.

Internal Lines

Internal lines represents propagators (virtual particles). Spin 1
2 particles are indicated

10



Chapter 2: The Standard Model of Particle Physics

Figure 2.5: External Lines in Feynman Diagrams

by straight lines and spin 1 particles are indicated by wavy or wiggly lines between two

vertices.

Figure 2.6: Internal Lines in Feynman Diagrams

Loops

Loops represent virtual particles that are created and annihilated immediately, without

ever being directly observed.

Momentum

Momentum of a particle is indicated by the lines and arrows in the diagram. The

direction of the arrow on a line suggests the direction of particle’s momentum, while the

length of the arrow is proportional to the magnitude of momentum.

2.3.1 Feynman Rules for Quantum Electrodynamics

External Lines

Incoming u(p) and outgoing u(p) spin 1
2 particles are represented as:

11
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Figure 2.7: Incoming and outgoing spin 1
2 particle

Incoming v(p) and outgoing v(p) spin 1
2 anti-particles are represented as:

Figure 2.8: Incoming and outgoing spin 1
2 anti-particle

Incoming εµ(p) and outgoing εµ(p)∗ photon is represented as:

Figure 2.9: Incoming and outgoing photon

Internal Lines

Photon − ιgµν

q2 is represented as:

Figure 2.10: Photon Propagator

Spin 1
2 fermion ι(γµqµ+m)

q2−m2 is represented as:

Figure 2.11: Fermion Propagator

Vertex

Spin 1
2 fermion with charge -|e| ιeγµ vertex is represented as:

12
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Figure 2.12: Fermion Vertex

2.3.2 Feynman Rules for Quantum Chromodynamics

External Lines

Incoming u(p) and outgoing u(p) spin 1
2 quarks are represented as:

Figure 2.13: Incoming and outgoing spin 1
2 quark

Incoming v(p) and outgoing v(p) spin 1
2 anti-quarks are represented as:

Figure 2.14: Incoming and outgoing spin 1
2 anti-quark

Incoming εµ(p) and outgoing εµ(p)∗ gluon is represented as:

Figure 2.15: Incoming and outgoing gluon

Internal Lines

Gluon − ιgµν

q2 δab, where a, b = 1, 2, ..., 8 are gluon color indices, is represented as:

Figure 2.16: Gluon Propagator

13



Chapter 2: The Standard Model of Particle Physics

Vertex

Spin 1
2 quark −ιgs 1

2λ
a
jiγ

µ, where i, j = 1, 2, 3 are quark colors and a=1,2,...,8 are the

Gell-Mann SU(3) matrices, vertex is represented as:

Figure 2.17: Quark Vertex

2.4 Study of Particle Decays

2.4.1 Lifetime and Decay Rate

Lifetime is one of the most significant characteristic of a particle and it depends on its

available decay modes. It is a statistical distribution and is specified for a large sample.

The lifetime of an individual particle is the time after which the ensemble is expected

to reduce to 1
e of its original size [3]. It is mathematically represented as

τ = 1
Γ (2.4.1)

where Γ is the decay rate which is the probability of a particular particle decaying per

unit of time.

In the case of an ensemble consisting of a large number of identical particles (N → ∞),

the alteration in the particle count over a time interval dt can be expressed as follows.

dN = −ΓNdt (2.4.2)

After time t, the number of surviving particles is

N(t) = N(0)e−Γt (2.4.3)

A decay rate is associated with each decay mode. All possible final states of a particle

are its decay modes. Each decay mode has its own matrix element. The total decay

rate is obtained by combining the rates of individual decay modes. It is given by

Γtotal =
n∑
i=1

Γi (2.4.4)

14
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The particle’s lifetime in terms of total decay rate is given by

τ = 1
Γtotal

. (2.4.5)

The branching fraction is a measure of the probability that a particular decay mode will

occur for a given particle. It is described as the ratio of the decay rate of a particular

decay mode and the overall decay rate of the particle.

Bi = Γi
Γtotal

. (2.4.6)

2.4.2 Scattering Cross Section

The scattering cross section indicates the probability that two particles will scatter off

each other when they interact. Consider a scenario where a beam of particles a, with

velocity βa, collide with a stationary target of particles b. This collision follows the

reaction formula a + b → c + d. The cross section for a collision between two particles

is defined as follows: [4]

dσ = dωfi
j

(2.4.7)

where dωfi represents the probability of transitioning from an initial state i to a final

state f and j represents incident flux. The cross section for such collision is given by

dσ = 1
2Eaβa2Mb

|M|2dΦ. (2.4.8)

For two body decay, dΦ is calculated as

dΦ =
∫ (2π)4

4(2π)6 δ
4(pa + pb − pc − pd)

d3pc
Ec

d3pd
Ed

(2.4.9)

where pa, pb, pc and pd are the 3-momenta of particles a,b,c and d respectively.

Putting the above expression in equation (2.4.8) gives

dσ = 1
2Eaβa2Mb

|M|2
∫ (2π)4

4(2π)6 δ
4(pa + pb − pc − pd)

d3pc
Ec

d3pd
Ed

. (2.4.10)

The scattering cross section gives information about the nature of the interaction be-

tween particles and can be used to test theoretical models of particle interactions. It is

essential for understanding the behavior of particles and for interpreting experimental

results.
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Flavor Physics

The term "flavor" in particle physics was first used by Murray Gell-Mann and his student,

Harald Fritzsch, in 1971 [5]. In Standard Model, flavor physics addresses the interactions

and properties of matter constituents which are excitations in fermionic (spin = 1/2)

fields. It is the physics of three generations of quarks and leptons that exists in nature.

These three generations have all equal gauge couplings i.e, they all behave equally under

gauge interactions. However they are different in masses and also different in Yukawa

interactions. Flavor physics, in the context of the Standard Model, pertains to Yukawa

interactions that discriminate between various flavors. [6]. Due to these differences there

are flavor violating effects and due to Yukawa interactions there are flavor changing

interactions. From Yukawa couplings we get flavor mixing, therefore, we get flavor

changing couplings and that is why heavier quarks and leptons decay into lighter flavors.

Flavor physics to great extent deals with the ways these decays occur, how likely or

how rare they are, making predictions within Standard Model and looking into what we

measure in actuality agree upon with these predictions.

Flavor Parameters: The term "flavor parameters" indicates parameters that are asso-

ciated with different flavors of elementary particles. In the SM of particle physics, flavor

parameters include harged fermion massses and mixing parameters that depict the in-

teractions between quark-antiquark pairs and the charged weak-force carriers (W±).

Flavor Universal: In the realm of particle physics, the term "flavor universal" charac-

terizes interactions in which the couplings or flavor parameters exhibit correlation with

the unit matrix within the flavor space. This means that the strength of the interaction

does not depend on the specific flavor of the interacting particles. Another term for
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"flavor universal" is "flavor blind." Both terms refer to interactions in which the strength

does not depend on the specific flavor of the particles involved.

Flavor Diagonal: The term "flavor diagonal" indicates interactions in particle physics

where the couplings or flavor parameters are diagonal in the flavor space. This means

that the interaction only occurs between particles of the same flavor, and the strength

of the interaction may vary depending on the specific flavor of the interacting particles.

Flavor Changing: The term "flavor changing" indicates processes where difference

between the initial and final quantities of particles belonging to a specific flavor (taking

into account quantity of corresponding antiparticles) is not equal. In "flavor-changing

charged current" processes, both up-type and down-type flavors, and/or both charged

lepton and neutrino flavors, are present. These processes are transmitted by the W

bosons and takes place at the tree level within the Standard Model. In ‘flavor-changing

neutral current’ (FCNC) processes, either up-type or down-type flavors but not both,

and/or either charged lepton or neutrino flavors but not both, participates. These

processes do not occur at the tree level within the Standard Model and are often highly

suppressed.

Flavor Violation: Flavor violation refers to a phenomenon in particle physics where

the flavor of a particle changes in a way that is not permitted by the SM of particle

physics.

This chapter includes main ideas in study of flavor physics. The first section is about

the flavor sector of SM. Next section deals with CKM matrix and its parameterizations.

Last two sections are about GIM mechanism and the SM flavor puzzle.

3.1 The Flavor Sector of Standard Model

The two main parts of Standard Model are the SM gauge and Higgs sector. The gauge

sector is fully specified by local symmetry as [7]

GSMlocal = SU(3)C × SU(2)L × U(1)Y (3.1.1)

and by fermion content as

LSMgauge =
∑

i=1,...,3

∑
ψ=Qi

L,...,E
i
R

ψι��Dψ − 1
4

∑
a=1,...,8

GaµνG
a
µν − 1

4
∑

a=1,...,3
W a
µνW

a
µν − 1

4BµνBµν

(3.1.2)
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where ��D ≡ Dµγ
µ with Dµ being a covariant derivative.

The fermionic sector of SM contains five distinct fields characterized by different quan-

tum numbers under the gauge group,

QiL(3, 2)+ 1
6
, U iR(3, 1)+ 2

3
, Di

R(3, 1)− 1
3
, LiL(1, 2)− 1

2
, EiR(1, 1)−1,

each with three generations (i=1,2,3). This leads to the global flavor symmetry of LSMgauge.

These global and local symmetries are broken by Higgs field . The local symmetry

undergoes spontaneous symmetry breaking through the vacuum expectation value of

the Higgs field, ⟨ϕ⟩ ≈ 174 GeV whereas the global flavor symmetry undergoes breaking

due to Yukawa interaction between the Higgs field and fermionic fields, as expressed by

the following equation

− LSMY ukawa = Y ij
d Q

i
LϕD

j
R + Y ij

u Q
i
Lϕ̃U

j
R + Y ij

e L
i
LϕE

j
R + h.c. (3.1.3)

where ϕ̃ = ιτ2ϕ
†.

3.2 The Cabibbo-Kobayashi-Maskawa (CKM) Quark-Mixing

Matrix

The masses and mixings of quarks emerge from Yukawa interactions with the Higgs

condensate. To study these Yukawa interactions, the two necessary basis rotations are

mass basis and interaction basis. In mass basis the masses are diagonal and in interaction

basis the weak (W±) interactions are diagonal. The CKM mixing matrix describes the

complex rotation between the mass eigenstates and weak interaction eigenstates. It is

a 3 × 3 unitary matrix [8],[9] parameterized by three mixing angles and quark mixing

phase. It controls the conversion of one quark to another and in this process W boson

is produced. The elements of CKM matrix can be expressed as

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



3.2.1 Standard Parametrization

The standard parameterization of VCKM is given by [10]
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VCKM =


c12c13 s12c13 s13e

−ιδ

−s12c23 − c12s23s13e
ιδ c12c23 − s12s23s13e

ιδ s23c13

s12s23 − c12c23s13e
ιδ −c12s23 − s12c23s13e

ιδ c23c13



where cij ≡ cos θij and sij ≡ sin θij . The sin θij represents three real mixing parameters

whereas δ represents Kobayashi-Maskawa phase.

3.2.2 Wolfenstein Parametrization

Wolfenstein parameterization of CKM matrix contains four mixing parameters i.e, λ, A,

ρ and η where η is CP Violating phase and λ is expansion parameter with value [11]

λ = |Vus| ≈ 0.22

Wolfenstein parameterization to order O(λ4) is as follows

VCKM =


1 − λ2

2 λ Aλ3(ρ− ιη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ− ιη) −Aλ2 1



The matrix elements of VCKM are related to eachother through its unitarity property

as ∑
i

VidV
∗
is = 0 (3.2.1)

For the total of three complex quantities to disappear such as

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (3.2.2)

requires six relations just like the one written in equation (3.3.1). They are geometrically

represented in the form of triangle known as ’The unitarity triangles’ in complex plane.

All unitarity triangles of CKM matrix have similar areas that is equivalent to half of

Jarlskog invariant J [12] defined as

ℑ[VijVklV ∗
ilV

∗
kj ] = J

∑
m,n

ϵikmϵjln (3.2.3)

where i, j, k, l = 1, 2, 3.

The lengths, vertices and angles of unitarity triangle in the wolfenstein parameterization

is shown in figure (3.1)
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Figure 3.1: The unitarity triangle

where lengths of two complex sides are denoted as∣∣∣∣VudVubVcdVcb

∣∣∣∣ =
√
ρ2 + η2,∣∣∣∣VtdVtbVcdVcb

∣∣∣∣ =
√

(1 − ρ)2 + η2.

and three angles are denoted as

α ≡ arg
[

− VtdV
∗
tb

VudV
∗
ub

]
,

β ≡ arg
[

− VcdV
∗
cb

VtdV
∗
tb

]
,

γ ≡ arg
[

− VudV
∗
ub

VcdV
∗
cb

]
.

3.3 GIM Mechanism

The GIM Mechanism was introduced by Sheldon L. Glashow, John Iliopoulos and Lu-

ciano Maiani in 1970, which aims to clarify why ∆S = 1, 2 neutral current processes

are inhibited[13]. In SM, weak interactions involve exchange of W and Z bosons, which

couple to particles with different flavors. However, in the absence of GIM mechanism,

this would lead to the existence of FCNCs, where particles would change flavor without

any apparent reason. GIM mechanism explains the observed suppression of FCNCs in

weak interactions. The mechanism relies on the existence of a family of four quarks,

where each quark has a corresponding weak eigenstate. The mixing of weak eigenstates

of quarks gives rise to observed mass eigenstates, which are states that are actually

observed experimentally.
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3.4 The Standard Model Flavor Puzzle

In SM, there are 13 flavor parameters, including six quark Yukawa couplings, four CKM

parameters, and three charged lepton Yukawa couplings. While top-Yukawa and KM

phase are of order 1, the remaining parameters display characteristics of small size and a

clear hierarchical structure., spanning six orders of magnitude. The orders of magnitudes

of the thirteen dimensionless flavor parameters are given below. [6, 14]

yu ∼ 0.00001, yc ∼ 0.01, yt ∼ 1,

yd ∼ 0.0001, ys ∼ 0.001, yb ∼ 0.01,

ye ∼ 0.000001, yµ ∼ 0.001, yτ ∼ 0.01,

|Vus| ∼ 0.2, |Vcb| ∼ 0.04, |Vub| ∼ 0.004, δKM ∼ 1

The reason for this smallness and hierarchy is still unclear and is known as the Standard

Model flavor puzzle. Finding a solution to this puzzle may provide insights into physics

beyond the Standard Model.
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Effective Field Theory

The physical phenomena in our universe are observed at all scales i.e. we observe

structures that are as large as the universe itself or as small as quarks and leptons that

make up atoms and all of matter. When we study these phenomena we might need to

choose the scale that is best suited depending on what we are observing exactly. In

this regard Effective Field Theory is a tool that is used to pick out the suitable scale

to study our observation as it deals with multi scale problems and allow us to analyze

physical systems at different scales. EFT of any physical system gives us dynamics of

this system at low energies without requiring complete details at much higher energies.

EFT of any physical system is built by applying one of the two following standard

procedures:

i. Top-down, and

ii. Bottom-up.

In top-down approach we know the behaviour of physical system at higher energies and

by integrating out heavier particles or by choosing a cutoff below that higher energy

we match onto a physical system at lower energies via path integral formalism. This

approach gives us new operators and couplings at these lower energies.

In bottom-up approach , since we have no idea about the physical system at higher ener-

gies, therefore the Lagrangian is assembled by considering all possible set of interactions

that are consistent with the symmetries and using fields for the applicable degrees of

freedom.

In this chapter I’ll discuss in bit detail about top-down approach to construct an EFT
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and will get our desired action. Then this non-local action is expanded in terms of local

operators by applying Operator Product Expansion. This will result in Lagrangian

of our interest. This Lagrangian is an infinite sum over local operators multiplied by

coupling constants known as Wilson Coefficients [15].

4.1 Top-Down Formalism

Contemplate a quantum field theory as a system with known behaviour at higher energies

or simply with large and definite underlying scale E . Let we need to deal with such a

system but at some lower scale that is smaller than E . This can be done by choosing

a cutoff scale Λ < E and splitting the fields ϕ of the theory among low-frequency and

high-frequency modes as

ϕ = ϕL + ϕH (4.1.1)

where ϕL carries low-frequency ω < Λ modes , whereas ϕH carries high-frequency ω > Λ

modes. This way physical observables for example decay rates and cross sections etc

can be calculated by using vacuum correlation function of the low-frequency mode fields

ϕL as after dividing the fields the low energy details are inscribed in ϕL part.

The vacuum correlation functions are the vacuum expectation values of time-ordered

products of field operators. These correlation functions can be used to calculate the

physical observables. The correlators can be acquired by using

⟨0|T{ϕL(x1)ϕL(x2)...ϕL(xn)}|0⟩ = 1
Z[0]

(
− ι

δ

δJL(x1)

)(
− ι

δ

δJL(x2)

)
...

...

(
− ι

δ

δJL(xn)

)
Z[JL]

∣∣∣∣
JL=0

(4.1.2)

where

Z[JL] =
∫

DϕLDϕHeιS(ϕL,ϕH)+ι
∫
dDxJL(x)ϕL(x) (4.1.3)

denotes generating functional of the theory,

S(ϕL, ϕH) =
∫
dDxL(x) (4.1.4)

denotes the action, D represents space-time dimension, and JL are sources for low-

frequency mode fields.
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The high-frequency modes pertaining to the fields can be integrated out by performing

path integral formalism over these fields. This alters the generating functional as

Z[JL] =
∫

DϕLeιSΛ(ϕL)+ι
∫
dDxJL(x)ϕL(x) (4.1.5)

where

eιSΛ(ϕL)=
∫

DϕHe
ιS(ϕL,ϕH ) (4.1.6)

is known as the Wilsonian effective action. This process has freed the functional integral

from high-frequency mode fields and due to this removal of high frequency fluctuations

from the integral has caused the effective action SΛ to become non-local on 1
Λ scales.

4.2 Operator Product Expansion

The non-local action functional SΛ derived in the last section can be expanded in terms

of local operators in process called Operator Product Expansion (OPE). This results in

action as

SΛ(ϕL) =
∫
dDxLeffΛ (x) (4.2.1)

where

LeffΛ (x) =
∑
D,i

C(D)
i

ED−dO(D)(ϕL(x)) (4.2.2)

is the local effective Lagrangian.

The Lagrangian in equation (4.3.2) contains an infinite series of operators with mass

dimension D. Coefficients of these operators C(D)
i Ed−D are known as Wilson Coeffients.

4.3 The General Structure of Wilson Coefficients

The general expression for Wilson Coefficients Ci can be written as [16]

C⃗(µ) = Û(µ,MW )C⃗(MW ) (4.3.1)

where C⃗(µ) represents a column vector, and µ is the scale which segregates the physics

contained in short distance (scale > µ) from long distance (scale < µ). C⃗(MW ) are

initial conditions that relies on higher energy scales and Û(µ,MW ) represents evolution

matrix.
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Renormalization-group equation for C⃗ is written as [17]

d

d(lnµ) C⃗(µ) = γT (gs)C⃗(µ) (4.3.2)

where γT (gs) represents anomalous dimension matrix of operator O and it relies on scale

µ running through QCD coupling αs(µ). The same renormalization-group equation as

for C⃗ can also be written for Û(µ,MW ) as

d

d(lnµ) Û(µ,MW ) = γT (gs)Û(µ,MW ) (4.3.3)

General solution for above equation can be written as

Û(µ,MW ) = Tge

[ ∫ g(µ)
g(MW ) dgs

γ̂T (gs)
β(gs)

]
(4.3.4)

where Tg is the g-ordering operator and β(gs) is renormalization group function which

controls evolution of coupling constant αs(µ). Û(µ,MW ) sums large logarithms ln
(MW

µ

)
which emerge for µ << MW .

The expansion of ADM γ(αs) in powers of (αs) and β(gs) in powers of gs can be expressed

as

γ(αs) = γ(0)αs
4π + γ(1)(αs

4π
)2 + ..., (4.3.5)

and

β(gs) = −β0
g3
s

16π2 − β1
g5
s

(16π2)2 − ... (4.3.6)

respectively. Putting equations (4.3.5) and (4.3.6) into equation (4.3.4) results in

Û(µ,MW ) =
[
1 + αs(µ)

4π

][
αs(MW )
αs(µ)

]P [
1 − αs(MW )

4π J

]
(4.3.7)

where J = P
β0
β1 − γ(1)

2β0
and P = γ(0)

2β0
.

At NLO the expression for C(MW ) can be written as [18]

C(MW ) = 1 + αs(MW )
4π B (4.3.8)

Putting equations (4.4.7) and (4.4.8) into equation (4.4.1), we get an equation for C(µ)

in NLO approximation

C(µ) =
[
1 + αs(µ)

4π

][
αs(MW )
αs(µ)

]P [
1 + αs(MW )

4π (B − J)
]
. (4.3.9)
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4.4 Operator Basis for FCNC Transitions

The Standard Model operator basis for FCNC transitions include the following opera-

tors:

Current-Current Operators

O1 = (siuj)V−A(ujdi)V−A,

O2 = (su)V−A(ud)V−A.

The diagrams for Current-Current Operators is given in Figure (4.1).

Figure 4.1: Current-Current Operators

QCD Penguin Operators

O3 = (sd)V−A
∑
q

(qq)V−A,

O4 = (sidj)V−A
∑
q

(qjqi)V−A,

O5 = (sd)V−A
∑
q

(qq)V+A,

O6 = (sidj)V−A
∑
q

(qjqi)V+A.

The diagram for QCD Penguin Operators is given in Figure (4.2).

Figure 4.2: QCD Penguin Operators
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Electroweak Penguin Operators

O7 = 3
2(sd)V−A

∑
q

eq(qq)V+A,

O8 = 3
2(sidj)V−A

∑
q

eq(qjqi)V+A,

O9 = 3
2(sd)V−A

∑
q

eq(qq)V−A,

O10 = 3
2(sidj)V−A

∑
q

eq(qjqi)V−A.

The diagrams for Electroweak Penguin Operators is given in Figure (4.3).

Figure 4.3: Electroweak Penguin Operators

Magnetic Penguin Operators

O7γ = e

8π2mbsiσ
µν(1 + γ5)biFµν ,

O8G = g

8π2mbsiσ
µν(1 + γ5)T a

ij bjGaµν .

where Fµν is the electromagnetic field strength tensor, Gaµν represents gluon field strength

tensor and T a
ij are generators of the SU(3) color group. Operator O7γ represents photo-

magnetic penguin operator and O8G represents chromo-magnetic penguin operator. The

diagram for Magnetic Penguin Operators is given in Figure (4.4).

Figure 4.4: Magnetic Penguin Operators
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∆S=2 and ∆B=2 Operators

O(∆S = 2) = (sd)V−A(sd)V−A,

O(∆B = 2) = (bd)V−A(bd)V−A.

The diagram for ∆S=2 and ∆B=2 Operators is given in Figure (4.5).

Figure 4.5: ∆S=2 and ∆B=2 Operators

Semileptonic Operators

O7V = (sd)V−A(ee)V ,

O7A = (sd)V−A(ee)A,

O9V = (bs)V−A(ee)V ,

O10A = (bs)V−A(ee)A,

O(νν) = (sd)V−A(νν)V−A,

O(µµ) = (sd)V−A(µµ)V−A.

The diagram for Semileptonic Operators is given in Figure (4.6).

Figure 4.6: Semileptonic Operators

In the operators given above i and j refers to the color indices, q is commonly regarded as

representing the up (u), down (d), strange (s), and charm (c) quarks. and V ±A is used

to denote Lorentz structure γµ(1±γ5). Therefore shorthand notation (qq)V±A represents
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qγµ(1 ± γ5)q. In FCNC b → d transition the short-range impacts are attributed to the

electroweak and magnetic penguin operators whereas current-current and QCD penguin

operators incorporate both short distance and long distance effects in b → d transition.
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Chapter 5

The Four-Fold Angular

Distribution in the Cascade

Decay B → a1(1260)(→ ρπ)l+l−

In this chapter the kinematics required to study the decay B → a1(→ ρπ)l+l− is dis-

cussed in detail, starting from the helicity formalism in the first section, next the cascade

decay is discussed. Then the four-fold angular distribution and the angular coefficients

are given. Then the plots for angular coefficients as function of q2 for longitudinally and

transversely polarized ρ computed within SM are also given. In last section the overview

of family non-universal Z ′ Model is reviewed and finally expression of total Hamiltonian

i.e. SM and NP Hamiltonian is given.

5.1 Helicity Formalism of the Decay B → a1(→ ρπ)l+l− in

Standard Model

To derive four-fold angular distribution for rare semileptonic decay B → a1(→ ρπ)l+l−

, the complete kinematics of this decay is discussed in this section. Beginning from the

effective Hamiltonian the amplitude is written. Then matrix elements and form factors

are given. Next in this section the expressions of physical quantities required to study

this decay are given precisely.
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5.1.1 Effective Hamiltonian

The general effective Hamiltonian can be written in a form

H = GF√
2

∑
i

V CKM
i Ci(µ)Oi(µ) (5.1.1)

where, GF is the Fermi coupling constant, V CKM
i is the product of CKM matrix ele-

ments, Ci(µ) are the Wilson Coefficients and Oi(µ) are local operators at energy scale

µ governing the process under consideration i.e,

B → a1J
µ
eff (5.1.2)

where, B is the initial state meson and a1 and Jµeff are the final state meson and leptons

respectively.

This decay’s amplitude can be expressed as

M(B → a1J
µ
eff ) = ⟨a1J

µ
eff |Heff |B⟩ (5.1.3)

Using the expression of Hamiltonian from equation (5.1.1) amplitude becomes

M(B → a1J
µ
eff ) = GF√

2
∑
i

V CKM
i Ci(µ)⟨a1J

µ
eff | Oi(µ)|B⟩ (5.1.4)

The operators Oi are the relevant local operators given explicitly as follows:

O7 ∝ (dσµνPRb)Fµν (5.1.5)

O9 ∝ (dγµPLb)lγµl (5.1.6)

O10 ∝ (dγµPLb)lγµγ5l (5.1.7)

where

σµν = ι

2[γµ, γν ],

PL = 1
2(1 − γ5),

PR = 1
2(1 + γ5),

and Fµν represents photon field strength tensor.

The decay B → a1J
µ
eff takes place at quark level through b → dl+l− FCNC transition.

The short-distance effective Hamiltonian governing the process b → dl+l− in the SM

operator basis can be described as follows:

Heff = −GFα√
2π
VtbV

∗
td[C

eff
7 O7 + Ceff9 O9 + CSM10 O10] (5.1.8)
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where α represents electromagnetic coupling constant.

Putting the values of local operators from equations (5.1.5) - (5.1.7) in the effective

Hamiltonian given in equation (5.1.8) gives

Heff = − GFα

2
√

2π
VtbV

∗
td[C

eff
9 (dγµ(1 − γ5)b)lγµl + CSM10 (dγµ(1 − γ5)b)lγµγ5l

− 2mb

q2 Ceff7 (dισµνqν(1 + γ5)b)lγµl] (5.1.9)

Considering the amplitude from equation (5.1.4) and using the expression of local oper-

ators in this amplitude results in

M(b → dl+l−) = GFα

2
√

2π
VtbV

∗
td[C

eff
9 ⟨a1(k, ϵ)|(dγµ(1 − γ5)b)|B(p)⟩lγµl

+ CSM10 ⟨a1(k, ϵ)|(dγµ(1 − γ5)b)|B(p)⟩lγµγ5l

− 2mb

q2 Ceff7 ⟨a1(k, ϵ)|(dισµνqν(1 + γ5)b)|B(p)⟩lγµl] (5.1.10)

In the above equation k represents momentum vector of the daughter meson a1 and

ϵ represents its polarization vector. Similarly p represents momentum vector of initial

state meson B. The matrix elements appearing in the amplitude (5.1.10) are discussed

in the next section.

5.1.2 Matrix Elements and Form Factors for B → a1l
+l− Transition

For B → a1l
+l− decay, the hadronic matrix elements are parameterized in relation to

Lorentz invariant vector, axial vector and tensor form factors.[19]

The hadronic matrix elements can be written as

⟨a1(k, ϵ)|Vµ|B(p)⟩ = ϵ∗µ(mB +ma1)V1(q2) − (p+ k)µ(ϵ∗.q) V2(q2)
mB +ma1

− qµ(ϵ∗.q)2ma1

q2 [V3(q2) − V0(q2)] (5.1.11)

⟨a1(k, ϵ)|Aµ|B(p)⟩ = 2ιεµναβ
mB +ma1

ϵ∗νpαkβA(q2) (5.1.12)

where V µ = dγµb and Aµ = dγµγ5b are the vector and axial vector currents respectively

and ϵ∗ν is the polarization vector of axial vector meson.

⟨a1(k, ϵ)|(dισµνqνb)|B(p)⟩ = [(m2
B −m2

a1)ϵ∗µ − (ϵ∗.q)(p+ k)µ]T2(q2)

+ (ϵ∗.q)[qµ − q2

m2
B −m2

a1

(p+ k)µ]T3(q2) (5.1.13)
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⟨a1(k, ϵ)|(dισµνqνγ5b)|B(p)⟩ = 2ιεµναβϵ∗νpαkβT1(q2) (5.1.14)

In these matrix elements V0, V1, V2 and V3 are the vector form factors. They are related as

V3(q2) = mB +ma1

2ma+1
V1(q2) − mB −ma1

2ma+1
V2(q2), (5.1.15)

V3(0) = V0(0). (5.1.16)

A(q2) represents the axial vector form factor and T1, T2 and T3 are tensor form factors.

The form factors depend on the square momentum transfer q2 and can be extrapolated

as

Fk(q2) = Fk(0)
1 − αs+ βs2 (5.1.17)

where s = q2 and Fk(q2) are vector Vi(q2) (i = 0, 1, 2), axial vector A(q2) and tensor

form factors Tj(q2) (j = 1, 2, 3). The calculation of form factors is carried out within

framework of Light Cone Sum Rules.[20]

The numerical values of these form factors and parameters α and β can be found in

appendix.

5.1.3 Kinematics

In rest frame of decaying B meson, the 4-momentum of B, a1 and Jeffµ are defined as

pµ = (mB, 0, 0, 0)

kµ = (EV , 0, 0,−k⃗)

qµ = (q0, 0, 0, k⃗)

respectively. The combined 4-momentum of B and a1 can be written as

Pµ = (mB + EV , 0, 0,−k⃗)

where

q0 = m2
B −m2

V + s

2mB
,

EV = m2
B +m2

V − s

2mB
,

k⃗ =
√
E2
V −m2

V .
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Polarization vectors of hadronic current are defined as

ϵµ(0) = 1√
s

(k⃗, 0, 0, q0),

ϵµ(±) = 1√
2

(0,∓1,−ι, 0),

ϵµ(t) = 1√
s

(q0, 0, 0, k⃗).

Polarization vectors of a1 meson in B-rest frame are defined as

ϵµA(0) = 1
mV

(k⃗, 0, 0,−EV ),

ϵµA(±) = 1√
2

(0,±1,−ι, 0).

5.1.4 Hadron Helicity Amplitude

The amplitude for hadronic current produced in decay B → a1l
+l− in helicity basis can

be expressed as

H11(i, j) = H1(i)H†
1(j),

H22(i, j) = H2(i)H†
2(j),

H12(i, j) = H1(i)H†
2(j),

H21(i, j) = H2(i)H†
1(j).

where

H1(i) = −ιF1

3∑
µ=0

3∑
ν=0

3∑
α=0

3∑
β=0

ϵµναβϵ
µ†(i)ϵν†(i)pαkβ − F2(ϵµ†(i).ϵ†µV (i))

+ F3(ϵµ†(i).Pµ)(ϵµ†
V (i).qµ) + F4(ϵµ†(i).qµ)(ϵµ†

V (i).qµ). (5.1.18)

H2(i) = −ιF5

3∑
µ=0

3∑
ν=0

3∑
α=0

3∑
β=0

ϵµναβϵ
µ†(i)ϵν†(i)pαkβ − F6(ϵµ†(i).ϵ†µV (i))

+ F7(ϵµ†(i).Pµ)(ϵµ†
V (i).qµ) + F8(ϵµ†(i).qµ)(ϵµ†

V (i).qµ). (5.1.19)

H†
1(j) and H†

2(j) are complex conjugates of H1(i) and H2(i) respectively.

F1 to F8 are the auxiliary functions. They contain Wilson Coefficients and form factors.
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They are defined as

F1 = 2(Ceff9 + CNP9 − C ′
9) A(q2)
mB +ma1

+ 4mb

q2 (Ceff7 + CNP7 − C ′
7)T1(q2)

F2 = 2(Ceff9 + CNP9 + C ′
9)(mB +ma1)V1(q2) − 2mb

q2 (Ceff7 + CNP7 + C ′
7)(m2

B −m2
a1)T2(q2)

F3 = (Ceff9 + CNP9 + C ′
9)2mb

q2 [V3(q2) − V0(q2)] + 2mb

q2 (Ceff7 + CNP7 + C ′
7)T3(q2)

F4 = (Ceff9 + CNP9 + C ′
9) V2(q2)
mB +ma1

− 2mb

q2 (Ceff7 + CNP7 + C ′
7)T2(q2)

− 2mb

q2 (Ceff7 + CNP7 + C ′
7) q2

m2
B −ma2

1

T3(q2)

F5 = 2(CSM10 + CNP10 − C ′
10) A(q2)

mB +ma1

F6 = 2(CSM10 + CNP10 + C ′
10)(mB +ma1)V1(q2)

F7 = (CSM10 + CNP10 + C ′
10)2ma1

q2 [V3(q2) − V0(q2)]

F8 = (CSM10 + CNP10 + C ′
10) V2(q2)

mB +ma1

In the above equations Ceff7 , Ceff9 and CSM10 are the Standard Model Wilson Coefficients

where as CNP7 , C ′
7, C

NP
9 , C ′

9 and CNP10 , C ′
10 are the New Physics Wilson Coefficients. NP

Wilson Coefficients appear in New Physics amplitude are given in Section (5.4).

5.1.5 Lepton Helicity Amplitude

The amplitude for leptonic part (effective current) produced in decay B → a1l
+l− in

helicity basis can be written as

Lmn(i, j) = −4m2(ϵµl (i).ϵ†µl(j)) − 4(ϵµl (i).ϵ†µl(j))(p
µ
1 .p2µ)

+ 4(pµ1 .ϵµl(i))(p
µ
2 .ϵ

†
µl(j)) + 4(pµ2 .ϵµl(i))(p

µ
1 .ϵ

†
µl(j)) (5.1.20)

with m=n=1,2 and

Lmn(i, j) = 4ι
3∑

µ=0

3∑
ν=0

3∑
α=0

3∑
β=0

ϵµναβϵlµ(i).ϵ†νl(j)p1α.p2β (5.1.21)

with m ̸= n and i, j = 0,±, t correspond to longitudinal, transverse and time-like

polarizations. pµ1 and pµ2 are the 4-momenta of l+ and l− respectively.

In the rest frame of B meson, the energy and momentum vectors of the leptons are
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defined as follows

E1 =
√
s

2

|p⃗1| =
√
s− 4m2

2

The 4-momenta of l+ and l− are defined as

pµ1 = (E1, |p⃗1| sin θ cosχ, |p⃗1| sin θ sinχ, |p⃗1| cos θ),

pµ2 = (E1,−|p⃗1| sin θ cosχ,−|p⃗1| sin θ sinχ,−|p⃗1| cos θ).

The polarization vectors of effective current are given as

ϵµl (0) = (0, 0, 0, 1),

ϵµl (±) = 1√
2

(0,∓1,−ι, 0),

ϵµl (t) = (1, 0, 0, 0).

The polarization vectors satisfy orthonormality and completeness relations:

ϵµ†
l (a)ϵlµ(b) = gab,

ϵµl (a)ϵν†
l (b)δab = gµν .

5.2 Cascade Decay a1 → ρπ

The daughter meson a1 produced in decay B → a1l
+l− subsequently decays to ρπ. The

decay mode a1 → ρπ can be parameterized by matrix element as

A(a1(kµ) → ρ(pµV )π(pµS)) = −2ga1ρπ

ma1mρ

[
(kµ.pV µ)(ϵa1µ(i).ϵµ†

ρ (j)) − (pµV .ϵa1µ(i))(kµ.ϵµ†
ρ (j))

]
(5.2.1)

where i, j = 0,± corresponds to longitudinal and transverse polarizations. k, ϵa1 and

pV , ϵρ are momentum and polarization vectors of a1 and ρ respectively.

In rest frame of a1 meson, energy and momentum vector of ρ meson are defined as

Eρ =
√
m2
ρ + |p⃗3|

|p⃗3| =

√
λ(m2

a1 ,m
2
ρ,m

2
π)

2ma1
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where λ(m2
a1 ,m

2
ρ,m

2
π) is the shallon function. It is defined as

λ(m2
a1 ,m

2
ρ,m

2
π) = m4

a1 +m4
ρ +m4

π − 2ma1mρ − 2ma1mπ − 2mρmπ

The 4-momenta of a1, ρ and π mesons are defined as

kµ = (ma1 , 0⃗),

pµV = (Eρ, |p⃗3| sin θV , 0,−|p⃗3| cos θV ),

pµS = (ES ,−|p⃗3| sin θV , 0, |p⃗3| cos θV ).

respectively. Eρ and ES are the energies of ρ and π mesons respectively.

The polarization vectors of a1 and π mesons in rest frame of a1 are given by

ϵµa1(±) = 1√
2

(0,±1,−ι, 0),

ϵµa1(0) = 1√
2

(0, 0, 0,−1),

ϵµV (±) = 1√
2

(0, cos θV ,∓ι, sin θV ),

ϵµV (0) = 1
mρ

(p⃗3, Eρ sin θV , 0,−Eρ cos θV ).

The relative configuration of (ρπ)− and (l+l−)− planes and definition of decay angles

are shown in Figure (5.1).
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Figure 5.1: Kinematics of decay mode B → a1(→ ρπ)l+l−

5.3 Family Non-Universal Z ′ Model

By adding an extra symmetry gauge group U(1)′ in SM we get a massive, neutral gauge

boson known as Z ′.In the family non-universal Z ′ model, the occurrence of tree-level

flavor-changing neutral current (FCNC) transitions in the b → d process is attributed

to the presence of a non-diagonal chiral coupling matrix. [21, 22]

In the context of the family non-universal Z ′ model, the effective Hamiltonian describing

the rare semileptonic decay b → dl+l− can be formulated as

HZ′
eff = −4GF√

2
VtbV

∗
td[ΛdbCZ

′
9 O9 + ΛdbCZ

′
10 O10] (5.3.1)

where

Λdb = 4πe−ιϕdb

αVtbV
∗
td

CZ′
9 and CZ′

10 are the modified Wilson coefficients in which NP effects arises whereas O9

and O10 are the same SM operators. The modification in Wilson coefficients occur due

to the off-diagonal interactions between quarks and leptons with Z ′ gauge boson. These
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Wilson coefficients are defined as

CZ′
9 = |BL

db||SLR|;

CZ′
10 = |BL

db||DLR|

where

|SLR| = BL
ll +BR

ll

|DLR| = BL
ll −BR

ll

SLR and DLR incorporate the couplings between new Z ′ gauge boson and left and right

handed leptons. Furthermore BL
db = |BL

db|eιϕdb is the left handed coupling between

quarks and Z ′ gauge boson and ϕdb represents the new CP-violating phase which is

absent in the SM.

Finally, the total amplitude for the decay B → a1l
+l− includes both SM as well as Z ′

model amplitude. It can be written as

Mtot = MSM + MZ′ (5.3.2)

Similarly the total Wilson coefficients can be written as

Ctot9 = Ceff9 + ΛdbCZ
′

9 (5.3.3)

Ctot10 = CSM10 + ΛdbCZ
′

10 . (5.3.4)

The total Hamiltonian can be written as

Htot = Heff + HZ′
eff (5.3.5)

where Heff is given in equation (5.1.11) and HZ′
eff can be written as

HZ′
eff = − GFα

2
√

2π
VtbV

∗
td[CNP9 ⟨a1(k, ϵ)|(dγµ(1−γ5)b)|B(p)⟩lγµl+C′

9⟨a1(k, ϵ)|(dγµ(1+γ5)b)|B(p)⟩lγµl

+ CNP10 ⟨a1(k, ϵ)|(dγµ(1 − γ5)b)|B(p)⟩lγµγ5l + C′
10⟨a1(k, ϵ)|(dγµ(1 + γ5)b)|B(p)⟩lγµγ5l

−2mb

q2 CNP7 ⟨a1(k, ϵ)|(dισµνqν(1+γ5)b)|B(p)⟩lγµl−2mb

q2 C′
7⟨a1(k, ϵ)|(dισµνqν(1−γ5)b)|B(p)⟩lγµl]

(5.3.6)

In terms of NP Wilson Coefficients and local operators total Hamiltonian can be written

as
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Heff = − GFα

2
√

2π
VtbV

∗
td[(C

eff
9 + CNP9 )⟨a1(k, ϵ)|(dγµ(1 − γ5)b)|B(p)⟩lγµl

+ C′
9⟨a1(k, ϵ)|(dγµ(1 + γ5)b)|B(p)⟩lγµl

(CSM10 +CNP10 )⟨a1(k, ϵ)|(dγµ(1−γ5)b)|B(p)⟩lγµγ5l+C′
10⟨a1(k, ϵ)|(dγµ(1+γ5)b)|B(p)⟩lγµγ5l

− 2mb

q2 (Ceff7 + CNP7 )⟨a1(k, ϵ)|(dισµνqν(1 + γ5)b)|B(p)⟩lγµl

− 2mb

q2 C′
7⟨a1(k, ϵ)|(dισµνqν(1 − γ5)b)|B(p)⟩lγµl] (5.3.7)

5.4 Angular Decay Distribution

The decay B → a1(→ ρπ)l+l− is mediated at quark level through b → d transition and

therefore account for FCNC process. In SM, FCNC transitions are forbidden at tree

level, however these decays are mediated by higher order penguin diagrams.

The angular configuration of ρπl+l− system is characterized by the decay angles θ, θV
and χ. In this context, θ and θV denote the angles of the ρπ(l+l−) relative to the flight

direction of B meson in the ρπ(l+l−) centre-of-mass frame respectively. The χ denotes

the relative orientation of the ρπ and l+l− decay planes in the centre-of-mass frame of

B meson.

5.4.1 Differential Decay Distribution

One can express the differential decay distribution for a longitudinally polarized ρ in

the following form.
d4Γ∥

dq2dθdθV dχ
= 9

32πN∥I∥(q2, θ, θV , χ) (5.4.1)

where

I∥(q2, θ, θV , χ) = I1s,∥ sin2 θV + I1c,∥ cos2 θV + I2s,∥ sin2 θV cos(2θ) + I2c,∥ cos2 θV cos(2θ)

+ I3,∥ sin2 θV sin2 θ cos(2χ) + I4,∥ sin(2θV ) sin(2θ) cosχ+ I5,∥ sin(2θV ) sin θ cosχ

+ I6s,∥ sin2 θV cos θ + I6c,∥ cos2 θV cos θ + I7,∥ sin(2θV ) sin θ sinχ

+ I8,∥ sin(2θV ) sin(2θ) sinχ+ I9,∥ sin2 θV sin2 θ sin(2χ)
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One can express the differential decay distribution for a transversely polarized ρ in the

following form.
d4Γ⊥

dq2dθdθV dχ
= 9

32πN⊥I⊥(q2, θ, θV , χ) (5.4.2)

where

I⊥(q2, θ, θV , χ) = I1s,⊥ sin2 θV + I1c,⊥ cos2 θV + I2s,⊥ sin2 θV cos(2θ) + I2c,⊥ cos2 θV cos(2θ)

+ I3,⊥ sin2 θV sin2 θ cos(2χ) + I4,⊥ sin(2θV ) sin(2θ) cosχ+ I5,⊥ sin(2θV ) sin θ cosχ

+ I6s,⊥ sin2 θV cos θ + I6c,⊥ cos2 θV cos θ + I7,⊥ sin(2θV ) sin θ sinχ

+ I8,⊥ sin(2θV ) sin(2θ) sinχ+ I9,⊥ sin2 θV sin2 θ sin(2χ)

and N∥ and N⊥ contains the constant terms. They are expressed as

N∥ = VtbV
∗
td

[
G2
Fα

2

3.210π5m3
B

q2√
λβ

] 1
2
B(a1 → ρ∥π) (5.4.3)

and

N⊥ = VtbV
∗
td

[
G2
Fα

2

3.210π5m3
B

q2√
λβ

] 1
2
B(a1 → ρ⊥π) (5.4.4)

with λ ≡ λ(m2
B,m

2
a1 , q

2), β =
√

1 − 4m2

q2 and m represents the mass of lepton.

In above equations I∥ and I⊥ are angular coefficient functions for longitudinally and

transversely polarized ρ respectively. The expressions and plots for these angular coef-

ficients are given in the next section. Since,

Γ = Γ∥ + Γ⊥ (5.4.5)

Hence, the overall decay distribution can be expressed as

d4Γ
dq2dθdθV dχ

=
d4Γ∥

dq2dθdθV dχ
+ d4Γ⊥
dq2dθdθV dχ

(5.4.6)

In terms of I’s it is written as

d4Γ
dq2dθdθV dχ

= 9
32π [N∥I∥(q2, θ, θV , χ) + N⊥I⊥(q2, θ, θV , χ)] (5.4.7)
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Putting the expressions of I∥ and I⊥ in the above equation leads to

d4Γ
dq2dθdθV dχ

= 9
32π [N∥(I1s,∥ sin2 θV + I1c,∥ cos2 θV + I2s,∥ sin2 θV cos(2θ)

+ I2c,∥ cos2 θV cos(2θ) + I3,∥ sin2 θV sin2 θ cos(2χ) + I4,∥ sin(2θV ) sin(2θ) cosχ

+ I5,∥ sin(2θV ) sin θ cosχ+ I6s,∥ sin2 θV cos θ + I6c,∥ cos2 θV cos θ + I7,∥ sin(2θV ) sin θ sinχ

+ I8,∥ sin(2θV ) sin(2θ) sinχ+ I9,∥ sin2 θV sin2 θ sin(2χ)) + N⊥(I1s,⊥ sin2 θV

+ I1c,⊥ cos2 θV + I2s,⊥ sin2 θV cos(2θ) + I2c,⊥ cos2 θV cos(2θ) + I3,⊥ sin2 θV sin2 θ cos(2χ)

+ I4,⊥ sin(2θV ) sin(2θ) cosχ+ I5,⊥ sin(2θV ) sin θ cosχ+ I6s,⊥ sin2 θV cos θ + I6c,⊥ cos2 θV cos θ

+ I7,⊥ sin(2θV ) sin θ sinχ+ I8,⊥ sin(2θV ) sin(2θ) sinχ+ I9,⊥ sin2 θV sin2 θ sin(2χ))]

5.4.2 Angular Coefficients

Angular Coefficients are coefficients of combinations of trigonometric functions that de-

scribe the planes in coordinate system assigned to decay B → a1(→ ρπ)l+l−. These

coefficients are represented using hadronic matrix elements. The parallel and perpen-

dicular angular coefficients corresponds to longitudinally and transversely polarized ρ

respectively. The expressions for these coefficients are given below.

Parallel Angular Coefficients

I1s,∥ = (β2 + 2)
2 (|H1

+|2 + |H1
−|2 + |H2

+|2 + |H2
−|2) + 4m2

s
(|H1

+|2 + |H1
−|2 − |H2

+|2 − |H2
−|2)

I1c,∥ = 8m2

s
(|H1

0 |2 − |H2
0 |2 + 2|H2

t |2) + 2(|H1
0 |2 + |H2

0 |2)

I2s,∥ = β2

2 (|H1
+|2 + |H1

−|2 + |H2
+|2 + |H2

−|2)

I2c,∥ = −2β2(|H1
0 |2 + |H2

0 |2)

I3,∥ = −2β2(H1
+H

1∗
− +H2

+H
2∗
− )

I4,∥ = β2(H1
+H

1∗
0 +H1

−H
1∗
0 +H2

+H
2∗
0 +H2

−H
2∗
0 )

I5,∥ = −2β(H1
+H

2∗
0 −H1

−H
2∗
0 +H2

+H
1∗
0 −H2

−H
1∗
0 )

I6s,∥ = −4β(H1
+H

2∗
+ −H1

−H
2∗
− )

I6c,∥ = 0

I7,∥ = −2ιβ(H1
0H

2∗
+ +H1

0H
2∗
− +H2

0H
1∗
+ +H2

0H
1∗
− )

I8,∥ = ιβ2(H1
0H

1∗
+ −H1

0H
1∗
− +H2

0H
2∗
+ −H2

0H
2∗
− )

I9,∥ = 2ιβ2(H1
+H

1∗
− +H2

+H
2∗
− )
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Perpendicular Angular Coefficients

I1s,⊥ = (β2 + 2)
4 (|H1

+|2 + |H1
−|2 + |H2

+|2 + |H2
−|2) + (|H1

0 |2 + |H2
0 |2)

+ 2m2

s
[(|H1

+|2 + |H1
−|2 − |H2

+|2 − |H2
−|2) + (|H1

0 |2 − |H2
0 |2 + 2|H2

t |2)]

I1c,⊥ = (β2 + 2)
2 (|H1

+|2 + |H1
−|2 + |H2

+|2 + |H2
−|2) + 4m2

s
(|H1

+|2 + |H1
−|2 − |H2

+|2 − |H2
−|2)

I2s,⊥ = −β2[(|H1
0 |2 + |H2

0 |2) − 1
4(|H1

+|2 + |H1
−|2 + |H2

+|2 + |H2
−|2)]

I2c,⊥ = β2

2 (|H1
+|2 + |H1

−|2 + |H2
+|2 + |H2

−|2)

I3,⊥ = β2(H1
+H

1∗
− +H2

+H
2∗
− )

I4,⊥ = −β2

2 (H1
+H

1∗
0 +H1

−H
1∗
0 +H2

+H
2∗
0 +H2

−H
2∗
0 )

I5,⊥ = β(H1
+H

2∗
0 −H1

−H
2∗
0 +H2

+H
1∗
0 −H2

−H
1∗
0 )

I6s,⊥ = −4β(H1
+H

2∗
+ −H1

−H
2∗
− +H2

+H
1∗
+ −H2

−H
1∗
− )

I6c,⊥ = −8β(H1
+H

2∗
+ −H1

−H
2∗
− +H2

+H
1∗
+ −H2

−H
1∗
− )

I7,⊥ = ιβ(H1
0H

2∗
+ +H1

0H
2∗
− +H2

0H
1∗
+ +H2

0H
1∗
− )

I8,⊥ = ιβ2

2 (H1
0H

1∗
+ −H1

0H
1∗
− +H2

0H
2∗
+ −H2

0H
2∗
− )

I9,⊥ = −ιβ2(H1
+H

1∗
− +H2

+H
2∗
− )
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Chapter 6

Angular Analysis of Physicsl

Observables of

B → a1(1260)(→ ρπ)l+l− Decay in

Standard and Family

Non-Universal Z ′ Model

This chapter is dedicated to results and discussion of the physical observables that are

computed for decay B → a1(→ ρπ)l+l− in Standard Model and Scenario 1 and Scenario

2 of family non-universal Z ′ Model. In first section the plots of angular coefficients Ii(q2)

as a function of q2 for longitudinally and transversely polarized ρ are plotted within SM

as well as in family non universal Z ′ model for Scenario 1 and Scenario 2 are given

and analyzed in detail. In next sections the expressions of physical observables such as

branching ratio, FBA computed in terms of angular coefficients, within SM and both

scenarios of Z ′ model are given and discussed. Also these observables are compared

between SM and both scenarios of Z ′ Model. Furthermore the plots of above mentioned

observables are also given and discussed in detail.
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6.1 Comparison of Angular Coefficient Functions in Stan-

dard and Z ′ Model

The coefficient of sin(2θV ) sin θ sinχ in decay distribution represented as I7,(∥,⊥) plotted

in SM and two scenarios of Z ′ has shown significant deviation in Z ′ scenario 2 from SM

and Z ′ scenario 1, can be clearly seen in plots in Figures (6.1) and (6.2) for longitudinal

and transverse polarizations respectively. It is a clear indication and provides confi-

dence that Z ′ model can explain the searches beyond SM. The expressions of angular

coefficients in SM are given in Section (5.3.2).

I1s,∥ is same as I1c,⊥. The SM and Z ′ scenario 1 values almost coincides except for just

a small range of q2 values i.e. q2 = (1 to 3) GeV2 where SM values are greater than Z ′

scenario 1 values. Similarly SM and Z ′ scenario 2 values coincides again except for small

range of q2 values i.e. q2 = (4 to 8) GeV2 where SM values are greater than Z ′ scenario

2 values. While comparing the Z ′ scenarios, it is observed that for smaller values of q2

S2 has higher values than S1 whereas for larger values of q2 S1 has higher values than

S2.

In I1s,⊥, the SM and Z ′ S1 values coincides at almost all range except only for a small

range i.e. q2= (0.5 to 3) GeV2 where SM values are little lower than Z ′ S1 values whereas

the SM and Z ′ S2 coincides at all range of q2. For the range q2= (3 to 15) GeV2, the

values computed in Z ′ S1 are lower than the values computed in Z ′ S2.

In I1c,∥, the SM and Z ′ S1 values almost coincides except for a small range of q2 values

i.e. q2 = (1 − 4) GeV2 where S1 values are higher than SM values. SM and Z ′ S2 values

also coincides except for a small q2 range i.e. q2 = (3 − 7) GeV2 where Z ′ S2 values are

slightly higher than SM values. While comparing the Z ′ scenarios, it is observed that

for smaller values of q2 S1 has higher values than S2 whereas for larger values of q2 S2

has higher values than S1.

I2s,∥ and I2c,⊥ are same. In both cases the SM and Z ′ S1 values deviate in a small range

of q2 values i.e. q2 = (1 − 3) GeV2 where SM values are higher than Z ′ S1 values. The

SM and Z ′ S2 values also deviate slightly in q2 region from q2 = 3 GeV2 to q2 = 7 GeV2.

In Z ′ scenarios, from q2 = 0 GeV2 to q2 = 1 GeV2, S1 values are less than S2 values. In

the range q2 = (1 − 3) GeV2 both S1 and S2 values coincide in the region q2 > 3 GeV2

the S1 values are higher than S2 values.
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In I2s,⊥, the SM and Z ′ S1 values coincides at all range of q2 except for small range i.e.

q2= (1 to 3) GeV2 where SM values are greater than Z ′ S1 values and same is the case

for SM and Z ′ S2 values where the deviation range is q2= (3 to 8) GeV2. For the range

of q2= (3 to 15) GeV2 S1 values are greater than S2 values.

In I2c,∥, SM and Z ′ S1 values coincide at all range of q2 values except for a very small

range i.e. q2 = (1 − 2) GeV2 where SM values are slightly higher than Z ′ S1 values.

Similarly SM and Z ′ S2 values coincides at all range of q2 again except for a small range

i.e. q2 = (3−7) GeV2 where SM values are slightly higher than Z ′ S2 values. Comparing

Z ′ scenarios, for smaller range of q2 values both scenarios coincide and for larger values

of q2 Z ′ S1 has higher values than Z ′ S2.

In I3,(∥,⊥) and I4,(∥,⊥), the SM and Z ′ S1 values coincide at all range of q2 values whereas

Z ′ S2 values deviate from SM values in the range q2 = (3−10) GeV2 where Z ′ S2 values

are higher than SM values for I3,∥ and I4,⊥ and lower than SM values for I3,⊥ and I4,∥.

While comparing Z ′ S1 and S2, for I3,∥ and I4,⊥ the S2 values are higher than S1 values

and for I3,⊥ and I4,∥ the S1 values are higher than S2 values at all range of q2.

In I5,∥ and I6s,∥, the SM values are higher than Z ′ S1 values in the range q2 = (1 − 6)

GeV2 whereas SM and Z ′ S2 values coincide completely at all range of q2. The S1 values

are lower than S2 values in the range q2 = (0−8) GeV2 for I5,∥ and S1 values are higher

than S2 values in the same range of q2 for I6s,∥. For q2 > 8 GeV2 the S1 and S2 values

completely coincides for both I5,∥ and I6s,∥.

In I5,⊥ and I6s,⊥ , values computed in SM and Z ′ S1 show maximum deviation from

each other in the q2 range from 0 to 6 GeV2 where in case of I5,⊥ S1 values are greater

than SM and in case of I6s,⊥ SM values are greater than S1 whereas from q2 > 6 GeV2

both values completely coincides for both cases. While comparing SM and Z ′ S2, values

computed in both cases again coincides completely for all range of q2 for both I5,⊥ and

I6s,⊥. For the range of q2= (0 to 10) GeV2 Z ′ S1 values are greater than Z ′ S2 values for

I5,⊥ and Z ′ S2 values are greater than Z ′ S1 values for I6s,⊥ whereas for q2 >10 GeV2

values in both Z ′ scenarios coincides again for both I5,⊥ and I6s,⊥. I6c,⊥ is twice the

I6s,⊥.

I6c,∥ is zero at all range of q2. I7,(∥,⊥) has negligible values in SM and Z ′ S1 whereas it

shows plot with small values in Z ′ S2. I8,(∥,⊥) and I9,(∥,⊥) has small values of order 103

GeV2 in SM as well as in both scenarios of Z ′.
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Plots for Parallel Angular Coefficients
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Figure 6.1: The angular coefficients Ii(q2) as a function of q2 for longitudinally polarized ρ,

plotted within SM along with family non universal Z ′ model for Scenario 1 and

Scenario 2.The width of each curve is determined from the theoretical uncertainities

associated with the B → a1 from factors.
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Plots for Perpendicular Angular Coefficients

0 5 10 15

0.085

0.090

0.095

0.100

0.105

0.110

q2

〈I
1
s,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

q2

〈I
1
c
,⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15
-0.10

-0.08

-0.06

-0.04

-0.02

0.00

q2

〈I
2
s,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

q2

〈I
2
c
,⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15

0.00

0.01

0.02

0.03

q2

〈I
3,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15

-0.03

-0.02

-0.01

0.00

0.01

q2

〈I
4,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15
-0.02

-0.01

0.00

0.01

q2

〈I
5,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15
-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

q2

〈I
6
s,
⊥
〉

SM

Scenario 1

Scenario 2

0 5 10 15
-0.0006

-0.0005

-0.0004

-0.0003

-0.0002

-0.0001

0.0000

q2

〈I
7,
⊥
〉

SM

Scenario 1

Scenario 2

Figure 6.2: The angular coefficients Ii(q2) as a function of q2 for transversely polarized ρ,

plotted within SM along with family non universal Z ′ model for Scenario 1 and

Scenario 2.The width of each curve is determined from the theoretical uncertainities

associated with the B → a1 from factors.
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6.2 Branching Ratio

The branching ratio refers to the proportion of instances in which a particle undergoes

decay into a specific final state. It is the ratio of partial decay width to total decay

width. In terms of differential decay distribution it is written as

dΓ
dq2 =

∫ 2π

0
dχ

∫ π

0
d(sin θV )

∫ π

0
d(sin θ) d4Γ

dq2dθdθV dχ
(6.2.1)

For B → a1(→ ρπ)l+l− decay in terms of angular coefficients it is computed as

dΓ
dq2 = 1

2(N∥(I1c,∥ +3I1s,∥ −I2s,∥ ) + N⊥(I1c,⊥ +3I1s,⊥ −I2s,⊥ )) (6.2.2)

Figure (6.1) shows plot of branching ratio for the values computed within SM and both

scenarios of Z ′. For all three cases the bands of BR are clearly distinguished. It can be

seen that for small range of q2 the band separation is greater whereas for large values

of q2 the bands become closer yet separated. The trend for all three cases is same for

whole range of q2. The values computed within SM lies in the centre with the Z ′ S1

values higher than SM and Z ′ S2 values lower than SM.
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Figure 6.3: Branching Ratio for the decay B → a1l
+l− as a function of q2, plotted within SM

along with family non universal Z ′ model for Scenario 1 and Scenario 2. In the

figure black band corresponds to SM, the blue and the red band corresponds to

Scenario 1 and Scenario 2 of Z ′ model respectively. The width of each curve is

determined from the theoretical uncertainities associated with the B → a1 from

factors.
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6.3 Forward Backward Asymmetry

FBA in terms of differential decay distribution is defined as

dFBA =
∫ 2π

0
dχ

∫ π

0
d(sin θV )

∫ π
2

0
d(sin θ) d4Γ

dq2dθdθV dχ

−
∫ 2π

0
dχ

∫ π

0
d(sin θV )

∫ π

π
2

d(sin θ) d4Γ
dq2dθdθV dχ

(6.3.1)

FBA for B → a1(→ ρπ)l+l− in terms of angular coefficients is calculated as

dFBA = 3
8(N∥(I6c,∥ +2I6s,∥ ) + N⊥(I6c,⊥ +2I6s,⊥ )) (6.3.2)

Normalized FBA is defined as

< dFBA >= dFBA
dΓ
dq2

(6.3.3)

Normalized FBA for B → a1(→ ρπ)l+l− decay in terms of angular coefficients is calcu-

lated as

< dFBA >=
3(N∥(I6c,∥ +2I6s,∥ ) + N⊥(I6c,⊥ +2I6s,⊥ ))

4(N∥(I1c,∥ +3I1s,∥ −I2s,∥ ) + N⊥(I1c,⊥ +3I1s,⊥ −I2s,⊥ )) (6.3.4)

Figure (6.2) shows plot for the normalized FBA against q2. For small range of q2 the

FBA computed within SM has highest values than both scenarios of Z ′. This shows that

the greatest asymmetry is present within SM. Next to SM the Z ′ S2 shows asymmetry

and S1 has lowest values which means it exhibits the minimum asymmetry. For higher

range of q2 the values within SM and both Z ′ scenarios coincides and shows no notable

difference in forward-backward asymmetry. Also these values are significantly deviated

from 0 as can be seen in the figure below which clearly shows this deviation in the

negative values of FBA.
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Figure 6.4: Normalized Forward Backward Asymmetry for the decay B → a1l
+l− as a function

of q2, plotted within SM along with family non universal Z ′ model for Scenario

1 and Scenario 2. In the figure black band corresponds to SM, the blue and the

red band corresponds to Scenario 1 and Scenario 2 of Z ′ model respectively. The

width of each curve is determined from the theoretical uncertainities associated

with the B → a1 from factors.
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Conclusion

Investigating rare semileptonic decays of B mesons provides an avenue to explore physics

that extends beyond the Standard Model. While there are numerous precise findings

on processes induced by b → sl+l− transitions, there is inadequate data available for

b → dl+l− induced decays. Within the literature, several exclusive semileptonic decays

that involve FCNC transitions and FCCC transitions exhibit notable deviation from SM

predictions.

Using effective Hamiltonian by putting the expressions of operators which resulted in

matrix elements that includes Lorentz invariant vector, axial vector and tensor form

factors, angular decay distribution is derived in terms of angular coefficients. Quantities

of interest, like the branching ratio and forward-backward asymmetry, have been derived

in terms of these angular coefficients. These physical observables along with angular

coefficients are analyzed and plotted within SM and family non-universal Z ′ model.

Based on this research, findings have shown considerable deviations of New Physics

scenarios from SM of the physical observables that are analyzed for the decay B →

a1l
+l−. Despite of large theoretical uncertainities in form factors for B → a1 decay, the

estimates of NP outcomes remain consistent with those of the SM. For the branching

ratio computed within SM and Z ′ S1 and S2, the S1 values have shown an increase

whereas S2 values have shown decrease from SM values for all range of q2. On the other

hand values computed for Normalized FBA have shown deviations of Z ′ scenarios from

SM for lower range of q2 and for higher range values computed in all scenarios coincides

and there is no notable difference observed. Angular coefficients computed within SM

and Z ′ scenarios have shown very less deviation from SM values. These results clearly
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indicate the need for more data to investigate NP through B → a1 channel.

In the time ahead, the measurement of these physical observables is anticipated to

not only aid in the examination of Standard Model parameters but also facilitate the

detection of Z’ boson at the particle colliders.
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Appendix

In this appendix, input parameters utilized in the calculations and the SM along with

NP predictions of physical observables in different q2 bins are given.

A: Numerical Input Parameters

mB ma1 mb md α−1
em GF Vtb Vtd

5.28 GeV 1.260 GeV 4.28 GeV 4.6 MeV 137 1.17 10 5 GeV 2 0.95 8.3 × 10−3

Table 7.1: Input parameter values implemented in numerical analysis.

B: Binned Predictions of Physical Observables

Normalized FBA

q2(GeV 2) Standard Model Z ′ Scenario 1 Z ′ Scenario 2

[0.0 - 2.0] 0.050+0.034
−0.040 0.015+0.018

−0.014 0.045+0.026
−0.036

[2.0 - 4.0] 0.009+0.033
−0.027 −0.028+0.002

−0.001 0.009+0.034
−0.026

[4.0 - 6.0] −0.039+0.013
−0.008 −0.071+0.013

−0.017 −0.041+0.012
−0.006

[15.0 - 16.0] −0.068+0.010
−0.014 −0.067+0.011

−0.016 −0.070+0.011
−0.016

Table 7.2: Estimate of averaged values of normalized forward backward asymmetry , in differ-

ent q2 bins, for the SM as well as the Z ′ scenario 1 and scenario 2. The listed errors

stem from uncertainties associated with the form factors.

54



Chapter 7: Conclusion

q2 = 0.0 − 2.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,∥ 0.088+0.094
−0.066 0.037+0.043

−0.022 0.109+0.118
−0.088

I1c,∥ 0.896+0.130
−0.092 0.975+0.061

−0.031 0.873+0.166
−0.123

I2s,∥ 0.024+0.025
−0.017 0.010+0.011

−0.005 0.029+0.032
−0.023

I2c,∥ −0.830+0.123
−0.085 −0.872+0.055

−0.028 −0.786+0.150
−0.110

I3∥ 0.001+0.003
−0.005 −0.001+0.003

−0.006 0.007+0.005
−0.004

I4∥ 0.008+0.020
−0.055 0.024+0.011

−0.045 −0.038+0.046
−0.003

I5∥ 0.145+0.068
−0.111 0.037+0.036

−0.029 0.129+0.054
−0.098

I6s,∥ 0.052+0.036
−0.042 0.015+0.019

−0.014 0.046+0.030
−0.037

I6c,∥ 0 0 0

Table 7.3: Estimate of averaged values of angular observables for longitudinally polarised ρ ,

in q2 = 0.0 − 2.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.

q2 = 2.0 − 4.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,∥ 0.064+0.015
−0.007 0.057+0.002

−0 0.049+0.012
−0

I1c,∥ 0.918+0.020
−0.010 0.929+0.003

−0 0.940+0.017
−0.001

I2s,∥ 0.021+0.005
−0.002 0.019+0.001

−0 0.016+0.004
0

I2c,∥ −0.905+0.020
−0.010 −0.908+0.003

−0 −0.921+0.017
−0.001

I3∥ −0.032+0.001
−0.002 −0.033+0.001

−0.002 −0.023+0.005
−0.007

I4∥ 0.167+0.009
−0.01 0.174+0.005

−0.004 0.140+0.024
−0.025

I5∥ −0.026+0.028
−0.029 −0.078+0.007

−0.009 −0.026+0.028
−0.027

I6s,∥ 0.009+0.079
−0.003 −0.029+0.002

−0.001 0.009+0.035
−0.009

I6c,∥ 0 0 0

Table 7.4: Estimate of averaged values of angular observables for longitudinally polarised ρ ,

in q2 = 2.0 − 4.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.
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q2 = 4.0 − 6.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,∥ 0.123+0.014
−0.012 0.121+0.008

−0.010 0.105+0.006
−0.002

I1c,∥ 0.838+0.019
−0.016 0.842+0.012

−0.012 0.863+0.009
−0.002

I2s,∥ 0.041+0.005
−0.004 0.040+0.003

−0.003 0.035+0.002
−0.001

I2c,∥ −0.831+0.018
−0.016 −0.831+0.012

−0.012 −0.853+0.009
−0.002

I3∥ −0.070+0.002
−0.003 −0.071+0.002

−0.003 −0.061+0.001
−0.003

I4∥ 0.245+0.001
−0.002 0.248+0.003

−0.005 0.229+0.005
−0.006

I5∥ −0.090+0.003
−0.001 −0.122+0.021

−0.026 −0.093+0.001
−0.005

I6s,∥ −0.041+0.013
−0.007 −0.074+0.014

−0.018 −0.043+0.013
−0.005

I6c,∥ 0 0 0

Table 7.5: Estimate of averaged values of angular observables for longitudinally polarised ρ ,

in q2 = 4.0 − 6.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.

q2 = 15.0 − 16.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,∥ 0.480+0.001
−0.003 0.480+0.001

−0.003 0.479+0.002
−0.002

I1c,∥ 0.360+0.002
−0.004 0.361+0.003

−0.003
0.361+0.002−0.003

I2s,∥ 0.160+0
−0.001 0.159+0.001

−0 0.159+0.001
−0

I2c,∥ −0.360+0.003
−0.003 −0.359+0.002

−0.003 −0.360+0.002
−0.001

I3∥ −0.316+0
−0 −0.316+0

−0 −0.316+0
−0

I4∥ 0.338+0.001
−0.001 0.3370

−0.001 0.338+0.001
−0.001

I5∥ −0.043+0.005
−0.009 −0.041+0.007

−0.009 −0.043+0.007
−0.009

I6s,∥ −0.079+0.011
−0.016 −0.077+0.013

−0.018 −0.018+0.076
−0.045

I6c,∥ 0 0 0

Table 7.6: Estimate of averaged values of angular observables for longitudinally polarised ρ ,

in q2 = 15.0 − 16.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario

2. The listed errors stem from uncertainties associated with the form factors.
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q2 = 0.0 − 2.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,⊥ 0.492+0.018
−0.013 0.506+0.009

−0.005 0.491+0.024
−0.018

I1c,⊥ 0.088+0.094
−0.066 0.037+0.043

−0.022 0.109+0.118
−0.088

I2s,⊥ −0.403+0.074
−0.051 −0.431+0.033

−0.016 −0.378+0.091
−0.067

I2c,⊥ 0.024+0.025
−0.017 0.010+0.011

−0.005 0.029+0.032
−0.023

I3⊥ 0.003+0.001
−0 0.003+0

−0.001 0.003+0
−0.001

I4⊥ −0.004+0.018
−0.027 −0.012+0.018

−0.022 0.019+0.023
−0.040

I5⊥ −0.072+0.035
−0.055 −0.019+0.018

−0.023 −0.065+0.027
−0.050

I6s,⊥ 0.026+0.018
−0.021 0.008+0.009

−0.009 0.023+0.015
−0.018

I6c,⊥ 0.052+0.036
−0.042 0.015+0.019

−0.016 0.046+0.030
−0.037

Table 7.7: Estimate of averaged values of angular observables for transversely polarised ρ , in

q2 = 0.0 − 2.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.

q2 = 2.0 − 4.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,⊥ 0.491+0.003
−0.001 0.493+0

−0 0.494+0.002
−0

I1c,⊥ 0.064+0.015
−0.007 0.057+0.002

−0 0.049+0.012
−0

I2s,⊥ −0.442+0.013
−0.006 −0.445+0.003

−0 −0.452+0.010
−0

I2c,⊥ 0.021+0.005
−0.002 0.019+0.001

−0 -0.016+0.004
−0

I3⊥ 0.012+0.001
−0 0.012+0

−0 0.011+0
−0.001

I4⊥ −0.084+0.005
−0.004 −0.087+0.002

−0.002 −0.070+0.012
−0.013

I5⊥ −0.013+0.012
−0.040 0.039+0.003

−0.005 0.013+0.014
−0.014

I6s,⊥ 0.005+0.016
−0.014 −0.014+0.001

−0 0.005+0.016
−0.003

I6c,⊥ 0.009+0.034
−0.009 −0.029+0.002

−0.001 0.009+0.035
−0.009

Table 7.8: Estimate of averaged values of angular observables for transversely polarised ρ , in

q2 = 2.0 − 4.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.
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q2 = 4.0 − 6.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,⊥ 0.480+0.002
−0.002 0.481+0.001

−0.002 0.484+0.001
−0

I1c,⊥ 0.123+0.014
−0.012 0.121+0.008

−0.010 0.105+0.006
−0.002

I2s,⊥ −0.395+0.011
−0.010 −0.396+0.008

−0.007 −0.409+0.005
−0.001

I2c,⊥ 0.041+0.005
−0.004 0.040+0.003

−0.003 0.035+0.002
−0.001

I3⊥ 0.022+0.001
−0.001 0.022+0.001

−0 0.022+0.001
−0

I4⊥ −0.122+0.001
−0.001 −0.124+0.002

−0.003 −0.115+0.003
−0.003

I5⊥ 0.045+0.001
−0.001 0.061+0.010

−0.013 0.046+0.001
−0.002

I6s,⊥ −0.021+0.007
−0.003 −0.037+0.007

−0.009 −0.021+0.006
−0.003

I6c,⊥ −0.041+0.013
−0.008 −0.074+0.014

−0.018 −0.043+0.013
−0.005

Table 7.9: Estimate of averaged values of angular observables for transversely polarised ρ , in

q2 = 4.0 − 6.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.

q2 = 15.0 − 16.0 GeV 2

Angular Observables Standard Model Z ′ Scenario 1 Z ′ Scenario 2

I1s,⊥ 0.420+0
−0 0.420+0

−0.001 0.420+0
−0.001

I1c,⊥ 0.480+0.001
−0.003 0.480+0.001

−0.003 0.479+0.002
−0.002

I2s,⊥ −0.100+0.001
−0.002 −0.100+0.002

−0.002 −0.100+0.001
−0.002

I2c,⊥ 0.160+0
−0.001 0.159+0.001

−0 0.159+0.001
−0

I3⊥ 0.139+0.003
−0.004 0.138+0.003

−0.004 0.139+0.003
−0.004

I4⊥ −0.169+0
−0 −0.169+0.001

−0 −0.169+0
−0

I5⊥ 0.021+0.003
−0.004 0.021+0.003

−0.005 0.021+0.003
−0.005

I6s,⊥ −0.040+0.005
−0.008 −0.039+0.006

−0.010 −0.041+0.006
−0.010

I6c,⊥ −0.079+0.011
−0.016 −0.078+0.012

−0.019 −0.081+0.0130
−0.018

Table 7.10: Estimate of averaged values of angular observables for transversely polarised ρ , in

q2 = 15.0 − 16.0 GeV 2 bin, for the SM as well as the Z ′ scenario 1 and scenario 2.

The listed errors stem from uncertainties associated with the form factors.
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