

Path Planning and Navigation of Robot with 2D Lidar Feedback

Author

MUHAMMAD AWAIS KHAN NIAZI

Regn Number

00000276308

Supervisor:

DR. KUNWAR FARAZ AHMED KHAN

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July, 2022

Path Planning and Navigation of Robot with 2D Lidar Feedback

Author

MUHAMMAD AWAIS KHAN NIAZI

Regn Number

00000276308

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Mechatronics Engineering

Thesis Supervisor:

DR. KUNWAR FARAZ AHMED KHAN

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF MECHATRONICS ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July, 2022

i

Declaration

I certify that this research work titled “Path Planning and Navigation of Robot with 2D

Lidar Feedback” is my own work. The work has not been presented elsewhere for assessment.

I have properly acknowledged / referred the material that has been used from other sources.

Signature of Student

MUHAMMAD AWAIS KHAN NIAZI

00000276308

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

MUHAMMAD AWAIS KHAN NIAZI

00000276308

Signature of Supervisor

iii

Copyright Statement

Copyright in text of this thesis rests with the student author. Copies (by any process) either in

full, or of extracts, may be made only in accordance with instructions given by the author and

lodged in the Library of NUST College of E&ME. Details may be obtained by the Librarian.

This page must form part of any such copies made. Further copies (by any process) may not

be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College of

E&ME, which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place

is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgments

I am thankful to ALLAH ALMIGHTY for showing me the right direction throughout this

thesis. I also thank NUST, for financial support for my MS degree.

I would also like to express special thanks to my supervisor Dr. Kunwar Faraz Ahmed Khan

for his help throughout my thesis. It was a wonderful experience to work under his guidance. His

absolute grip on the subject helped me a lot during the research.

I would also like to pay special thanks to my GEC members Dr. Umar Shahbaz Khan and Dr.

Uzair Khaleeq uz Zaman for their tremendous support and cooperation. I appreciate their patience and

guidance throughout the whole thesis.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

v

I dedicate this work to my adored parents for nursing me throughout

my life with affections and love, my beloved siblings who always

inspired me to perform better, and my wife and my kids Manahil and

Usman for showing immense patience as it would not have been

possible to do this research work without their support.

vi

Abstract

Mobile robots are becoming increasingly popular in modern-day robotics. Mobile

robots are being used in many fields like exploration, defence, agriculture, cleaning, lawn

mowing, and warehouse management to name a few. The operation of a mobile robot requires

accurate data for mapping, path planning, and navigation. Each subsequent operation is

dependent on the previous operation so the margin for error is very little. In this work, we

develop a complete framework for mapping, complete coverage path planning (CCPP), and

navigation along with local planning for handling the complexities of dynamic environments.

Some improvements in already existing literature have been proposed like the most popular

Boustrophedon Cellular Decomposition (BCD) to decrease cost and increase efficiency in

terms of time and energy of the system. This work also proposes a memory-efficient approach

for solving local planning problems through the velocity obstacle (VO) method.

Experimental work was carried out in simulated environment of Robot Operating

System (ROS). Global path planning results showed significant improvement in terms of

minimizing overlapping issues when compared with the original BCD algorithm. Navigation

results showed that all waypoints generated by global planner were visited with 94% accuracy.

The velocity obstacle approach was implemented as local path planner to handle moving

obstacles. To further improve the performance, a two-level approach was used to handle

moving obstacles.

Keywords: Complete Coverage Path Planning, Boustrophedon Cellular Decomposition,

Velocity Obstacles, Local Path Planning, Mobile Robot

vii

Table of Contents

Declaration i

Language Correctness Certificate ii

Copyright Statement iii

Acknowledgments iv

Abstract vi

Table of Contents vii

List of Figure ix

List of Table x

Acronyms xi

CHAPTER 1: INTRODUCTION 1

1.1 Mapping ... 1

1.2 Global Path Planning .. 1

1.3 Navigation .. 1

1.4 Local Path Planning .. 2

1.5 Robot Operating System (ROS) ... 2

1.6 Problem Statement .. 2

1.7 Objectives ... 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 Heuristic and randomized approaches .. 5

2.2 Cellular decompositions .. 6

2.2.1 Approximate cellular decomposition (ACD) 7

2.2.2 Semi-Approximate Cellular Decomposition (SCD) 8

2.2.3 Exact cellular decomposition 8

2.3 Other approaches .. 11

2.3.1 Artificial potential fields 11

2.3.2 Neural networks and fuzzy logic 11

2.4 Summary .. 12

CHAPTER 3: METHODOLOGY AND EXPERIMENTAL SETUP 17

3.1 Navigation of Robot for Unmapped Environment ... 17

3.2 Mapping of the Environment ... 18

3.3 Global Path Planning .. 18

3.4 Navigation of Robot for Mapped Environment .. 19

3.5 Local Path Planning .. 19

CHAPTER 4: MAPPING AND GLOBAL PATH PLANNING 20

4.1 Mapping and Image Processing ... 20

4.2 Global Path Planning .. 22

4.3 Removal of redundant points from Route array .. 23

viii

4.4 Modified BCD Approach for Global Planner ... 25

CHAPTER 5: NAVIGATION AND LOCAL PATH PLANNING 28

5.1 Navigation .. 28

5.2 Local Path Planning .. 29

5.2.1 Intersection of Lines Approach (Level 1) 30

5.2.2 Velocity Obstacle Approach (Level 2) 34

5.3 Integrating Local Path Planning with Navigation and Global Path ... 40

CHAPTER 6: RESULTS AND DISCUSSION 42

6.1 Simulation Environment .. 42

6.2 Environment Mapping Results .. 43

6.3 Global Path Planning Results ... 44

6.4 Local Path Planning and Navigation ... 44

CHAPTER 7: CONCLUSION AND FUTURE WORK 46

References 47

ix

List of Figure

Figure 2.1: Randomized approach to coverage path planning. ... 6

Figure 2.2: (a) Free space with obstacles, (b) ACD of free space defined in (a), (c) SCD and

(d) Exact cellular decomposition ... 7

Figure 2.3: Given polygonal work area. ... 9

Figure 2.4: Trapezoidal decomposition for the work area above. .. 9

Figure 2.5: Adjacency graph for the work area in Figure 2.3. .. 10

Figure 2.5: With fewer cells shorter paths are obtained. ... 10

Figure 2.6: A boustrophedon path is composed of back-and-forth motions. 10

Figure 2.7: Trapezoidal decomposition (left) and boustrophedon decomposition (right)

for the same space. Each cell can be covered with simple back-and-forth motions in both

cases. Path is shorter in BCD. [18]... 11

Figure 3.1: Experimental Setup Process ... 17

Figure 3.2: Mapped environment in ROS RViz ... 18

Figure 4.1: Map of environment generated by the SLAM Gmapping package 20

Figure 4.2: Cropped image after processing the useful map area ... 21

Figure 4.3: Enhanced boundaries of given map after applying morphological operators 22

Figure 4.4: Decomposed cells after applying BCD algorithm.. 22

Figure 4.5: Route list containing index of each grid in ascending order 23

Figure 4.6: Route list after removing unnecessary members.. 24

Figure 4.7: Flow Chart Diagram of global path planner ... 26

Figure 4.8: Cost of Modified BCD is lesser as compared to normal BCD............................. 27

Figure 5.1: Navigation with all waypoints (a, b, c) and reduced waypoints (d) 29

Figure 5.2: Positional and velocity vectors of Robot (R) and moving object (O) 30

Figure 5.3: Calculation of intersection point of robot and moving obstacle 31

Figure 5.4: Robot A and Obstacle B moving with velocities vA and vB respectively [46] 34

Figure 5.5: Relative Velocity vAB and collision cone CCAB [46] .. 35

Figure 5.6: CCAB is translated by vB to obtain VOB [46] .. 36

Figure 5.7: Velocity obstacles VOB1and VOB2 ... 37

Figure 5.8: Velocity obstacle VOB for short time horizon ... 37

Figure 5.9: Trajectory calculation for robot to reach goal avoiding moving obstacle............ 38

Figure 5.10: Trajectory calculated for single robot velocity obstacle 39

Figure 5.11: Velocity obstacle in multi obstacle scenario .. 40

Figure 5.12: Flowchart of Local Path Planner .. 41

Figure 6.1: Simulation environment in ROS Gazebo ... 42

Figure 6.2: Total distance covered reduced by modified BCD approach 44

Figure 6.3: Performance comparison between two-level and single level VO approach 45

x

List of Table

Table 2.1: Summary of the analyzed CCPP methods with Approximate cellular

decomposition (ACD) and SCD. ... 13
Table 2.2: Summary of the analyzed CCPP methods with exact cellular decomposition

(ECD). ... 13
Table 2.3: Summary of the analyzed CCPP methods which don’t use cellular

decomposition, NN or Fuzzy Logic. .. 14
Table 2.4: Summary of the analyzed CCPP methods which use neural networks and

fuzzy logic approaches ... 15
Table 2.5: Summary of the analyzed CCPP methods which use miscellaneous

approaches .. 16

Table 6.1: Comparison of Mapping techniques .. 43

xi

Acronyms

ACD Approximate Cellular Decomposition

APF Artificial Potential Fields

BCD Boustrophedon Cellular Decomposition

CC Collision Cone

CCPP Complete Coverage Path Planning

ECD Exact Cellular Decomposition

GA Genetic algorithm

GPP Global Path Planning

GPS Global Positioning System

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

LPP Local Path Planning

MCD Morse cell decomposition

NN Neural network

N.A Not Available

PC Partially Complete

PRA Predictive Recursive Algorithm

ROS Robot Operating System

SCD Semi-Approximate Cellular Decomposition

SLAM Simultaneous localization and mapping

SMA Split-and-Merge algorithm

SSA Seed Spreader Algorithm

TBM Template-Based Models.

TCD Trapezoidal Cellular Decomposition

VO Velocity Obstacles

xii

1

CHAPTER 1: INTRODUCTION

Path planning is generally categorized into two sub-domains – point to point path

planning and coverage path planning. Main aim in former is to move robot from point A to

point B irrespective of the area it passes through – as long as it’s optimal. However, in some

cases like agriculture, moving from one place to the other may not be the only requirement.

Such applications require the robot to cover complete available space in order to perform

certain task.

In this research we will primarily focus on planning a coverage path for a given map (global

plan) and navigate the robot accordingly. In order to avoid moving objects we introduce a two-

level approach in order to simplify computational complexity while guaranteeing system

efficiency.

1.1 Mapping

First part of this research is to use LiDAR sensor data and odometry to map the

environment. This step is very important as it effects our next steps of local and global path

planning. Mapped environment is represented in a binary graphical form where objects are

represented as “ones” and open spaces as “zeros”.

1.2 Global Path Planning

The data from map is used to plan global path – meaning environment is considered as

static till this point. Different approaches were considered to determine the global path which

will be discussed in later sections.

1.3 Navigation

Once global path is determined, the next step is to navigate the robot according to the

points as identified by the global path. The global path is a set of coordinates – each

corresponding to a point that the robot must visit in order to cover the entire available area.

The robot makes use of the LiDAR sensor and odometry to determine its current location. Once

the LiDAR sensor encounters an “un-reported” object, it calls the local path planning function.

2

This part is very important for dynamic environments. Such situations can arise due to moving

objects or static objects that were not in place at the time of mapping. Conditions like these

must be handled in a systematic way in order for a mobile robot to work properly.

1.4 Local Path Planning

A local path planner is a function which handles the dynamic perspective of a mapped

environment. The global path planner generates a set of points that the robot can visit as per

Euclidean path. However, due to the dynamic nature of the environment, the path between two

points or the point itself can be occupied. Such situations are handled using an intelligent

algorithm that lets the robot decide the course of action on-the-run. The major part of this

research is focused on the dynamic element of the environment and will be discussed in later

sections.

1.5 Robot Operating System (ROS)

The experimental work of this thesis was carried out in Robot Operating System (ROS).

ROS is a set of software and libraries and tools that helps in building robotic applications. It

comes with powerful developer tools to be used as robot core operating system. It also comes

with powerful simulation tools with realistic physical conditions to mimic the real-world

scenarios. The programming language used to carry out the experimental work of this thesis is

Python. Some external libraries based on C++ were also used.

1.6 Problem Statement

During robot navigation we often encounter situations where an object moving in certain

direction with certain velocity is likely to collide with the robot. Such collisions can be avoided

by early prediction of positions based on positional and velocity vectors. This research is aimed

to suggest optimized path based on early prediction of the moving objects using combination

of conventional and velocity obstacle approach. Furthermore, we suggest improvements in

already existing popular cell decomposition method for global path planning.

3

1.7 Objectives

The objectives of this research work are as below:

i. To map an unknown environment.

ii. Generate a collision-free path that covers the whole environment with

minimum possible overlaps.

iii. Navigate the robot in the environment according to the generated path.

iv. Generate local path in case any obstacle (moving or static) is encountered that

was not present in the global map – and navigate the robot accordingly.

4

CHAPTER 2: LITERATURE REVIEW

In this chapter, we discuss coverage path planning studies found in the literature.

We first focus on different kind of approaches used in past studies for coverage

planning problem. In the next section we will take a look at methods used in

previous studies to avoid moving objects. Last, we discuss the surveyed methods in

Section 2.4.

Coverage path planning is an integral part of several robotic applications, such as vacuum

cleaning robots [1], agricultural robots [2], painter robots [3], demining robots [4], lawn

mowers [5], disinfecting robots [6], and window cleaners [7]. The research interest in

mobile robotics (indoors and outdoors) has clearly motivated the research of coverage path

planning. According to Zuo Llang Cao et al. [8] a mobile robot should fulfil following

criteria for complete coverage operation:

1. Robot needs to cover complete given area.

2. Robot must not overlap previously visited paths and should fill the region

in a smooth manner.

3. Sequential operation is required which should not be repetitive.

4. Obstacles must be avoided.

5. Complicated motions should be disintegrated into simpler sub-paths.

6. An “optimal” path is desired under available conditions.

It was further noted that it is not possible to fulfil all mentioned criteria for an

environment that is complicated in nature.

Coverage path planning problem is related to the covering salesman problem, which

itself is a variant of the traveling salesman problem. An agent is supposed to visit a

neighborhood of each city instead of visiting each city. This minimizes the travelling

distance for the agent [9]. With increasing dimension, the complexity of the problem

increases resulting in drastic increase of computation time.

Depending upon the completeness of coverage, algorithms can be classified as

complete or heuristic. Furthermore, these algorithms can be classified into Offline or

Online coverage algorithms. An offline algorithm makes use of prior environment

knowledge like basic map and stationary objects. In real world, an offline algorithm

5

works well only until everything goes according to the prior information. However,

small changes in the environment and moving objects require to have a more

intelligent algorithm which is termed as an “Online Algorithm”. Online algorithms

make use of sensors in real-time. Therefore, such algorithms can also be called

sensor-based coverage algorithms.

Many studies on coverage path planning can be found in the literature. Also, some

authors have surveyed those studies in the past. In his survey, Choset [10] concluded

that most complete coverage algorithms used an exact cellular decomposition, either

explicitly or implicitly, to achieve coverage. Thus, he organized the coverage algorithms

into four categories: heuristic and approximate, partial-approximate and exact cellular

decompositions.

C. S. Tan et al. [11] discussed many approaches used until recent years. These cover

classical approaches like Random Walk, Artificial Potential Field, Sampling based

and search-based methods like A star, D star and other such variants. The review

article also discusses modern methods like Genetic Evolution, Swarm Intelligence,

Neural Networks and Reinforcement Learning and Deep Learning.

Closely reviewing different methods used in the past, the analyzed methods classified as:

heuristic and randomized approaches (section 2.1), cellular decompositions (2.2), other

approaches (2.3). Finally, we focus on online path planning techniques for avoiding

obstacles (2.4) as primary focus of this thesis is on novel approach based on proportional

navigation-based method for avoidance of moving objects.

2.1 Heuristic and randomized approaches

In order to solve coverage problem, randomized approaches are among the few ap-

proaches that provide almost complete coverage. Though such approaches are poor in

optimization but they are largely used in applications like vacuum cleaning. Figure 2.1

shows a sample random coverage path.

6

Figure 2.1: Randomized approach to coverage path planning.

Randomized approach has some advantages [10]. Such approach does not require

expensive sensors like cameras RGB-D or others. Only sensor required is to detect edges

in order to avoid obstacles. Additionally, random approach is based on a very basic

algorithm that does not require computational complexity. However, randomized approach

is very much in-efficient in terms of energy and time consumption. Moreover, when

coverage area is large enough, time required to solve complete coverage problem tends

to infinity making system practically useless.

2.2 Cellular decompositions

In cellular decomposition, the area to be covered is ‘decomposed’ into smaller and

simpler sub-divisions that can be covered using simple motions like back-and-forth or

spiral. This guarantees complete coverage as the robot covers each sub-divided region

one after the other. A common boundary between two cells means they are adjacent. When

cells are represented in a hierarchical form in terms of adjacency, it is called as adjacency

graph.

Cellular decomposition algorithms have been classified into: approximate, semi-

approximate, and exact cellular decompositions [12]. See figure 2.2.

7

(a) Free space with four obstacles (b) Approximate cellular decomposition

(c) Semi-approximate cellular

decomposition

(d) Exact cellular decomposition

Figure 2.2: (a) Free space with obstacles, (b) ACD of free space defined in (a), (c) SCD and

(d) Exact cellular decomposition

2.2.1 Approximate cellular decomposition (ACD)

In approximate cellular decomposition (ACD), the map is sub-divided into same-

sized approximated occupancy grids. Algorithm is then applied to each grid. Since the

cells are of same size and shape, and each grid is an approximated depiction of the actual

space the resultant is prone to errors [13].

The first ACD model was proposed by Hans P. Moravec and Alberto Elfes [14]. In this

model cells were decomposed into grids of same size and shape.

Zielinsky [15] came up with a different approach where a specific number was assigned to

each grid of the space using a distance transform algorithm. Gradient descent rule was

then applied to achieve complete coverage of the path.

Gabriely and Rimon [16] proposed the Spiral-STC algorithm. In Spiral-STC algorithm,

workspace is subdivided into cells. The robot starts moving in an arbitrary direction

8

and checks for unvisited free cells in 4-neighborhood cells. The preference is set in

anticlockwise direction. However, this approach did not cater for the partially

occupied cells. A similar approach was used by E. Gonzalez et al. [17] in BSA

algorithm. This approach adds a ‘back-tracking’ mechanism to the previously

proposed Spiral-STC algorithm. Backtracking occurs when all other 3 cells in the

neighborhood are either visited or occupied. The algorithm chooses previously

visited cell as least preferred cell. The algorithm continues to append path until

start position is reached – guaranteeing complete coverage.

2.2.2 Semi-Approximate Cellular Decomposition (SCD)

In semi-approximate cellular decomposition (SCD), the cells are partially

discretized with fixed width but they can have different shapes from top and bottom.

Figure 2.2 (c) shows how cells discretization generally works in SCD model.

Each discretized cell is covered using regular zigzag movements. As cell discretization is

a randomized approach, in a way, it does not guarantee cell coverage in a single pass.

Therefore, in order to visit regions that are left unvisited, the robot may require to visit

some parts of the cell twice or even more.

2.2.3 Exact cellular decomposition

The exact cellular decomposition method is the most advanced method among

other decomposition techniques. This method guarantees complete coverage with lesser

revisits to the same points. In this method the target space is divided into a set of cells

which are unique in size and shape. These cells are non-intersecting, and therefore, their

union accounts for the environment that needs to be visited by the robot. Since the cells

do not contain obstacles within, navigation controller model for the robot is much simpler

in comparison to the methods discussed above.

Exact cellular decomposition can be achieved through different techniques, some of

which have been discussed below:

9

2.2.3.1 Trapezoidal decomposition

Trapezoidal decomposition is a popular exact cellular decomposition technique,

which can guarantee complete coverage [12]. The robot’s free space is decomposed into

trapezoidal cells. Coverage can easily be achieved with back-and-forth motions due to

trapezoidal shape of the decomposed cells. Since this technique generates trapezoidal

cells, the obstacles are required to be polygonal. Additionally, this technique requires

prior knowledge of the environment so it can only be applied offline.

Consider a polygonal work area as shown in Figure 2.4. As per trapezoidal decomposition

algorithm, the work area and its adjacency graph are shown in figure 2.5. Two cells are

said to be adjacent if they share the same boundary. Each decomposed space (d1 to d15)

in adjacency graph can be covered using back-and-forth motion to achieve complete

coverage. However, it is worth noticing that for each parent node with two (or more) child

nodes, a decision needs to be made in order to prioritize the visiting order. This order can

be manipulated in order to optimize the coverage problem.

Figure 2.3: Given polygonal work area.

Figure 2.4: Trapezoidal decomposition for the work area above.

10

Figure 2.5: Adjacency graph for the work area in Figure 2.3.

2.2.3.2 Boustrophedon Cell Decomposition (BCD)

Trapezoidal decomposition gives complete coverage solution but it has one major

drawback that the decomposed cells are in large number. Some of the cells can be

aggregated into a single larger cell to achieve more efficient coverage. For example, in

the left side of Figure 2.6 the robot needs to make one additional lengthwise motion to

achieve complete coverage.

Two cells Aggregated (single cell)

Figure 2.6: With fewer cells shorter paths are obtained.

To address this issue, Choset and Pignon [18] introduced the boustrophedon cell

decomposition approach, where back-and-forth motions are used. In boustrophedon

decomposition, regions are “decomposed” into sub-regions if there is allowance for

extension of vertical line both upward and downward in free space (Figure 2.8). These

vertices are termed as critical points.

Figure 2.7: A boustrophedon path is composed of back-and-forth motions.

11

Figure 2.8: Trapezoidal decomposition (left) and boustrophedon decomposition (right)

for the same space. Each cell can be covered with simple back-and-forth motions in both

cases. Path is shorter in BCD. [18]

It is an offline method i.e. it can only be applied to environment with prior knowledge.

2.3 Other approaches

Other than decomposition techniques, researchers have proposed many other interesting ideas,

some of which are discussed below.

2.3.1 Artificial potential fields

Some approaches to coverage path planning use Artificial Potential Fields (APF).

Pirzadeh and Snyder [19] proposed an indirect control strategy to achieve complete

coverage using APF. The algorithm discretizes the environment and robot motion. The

robot motion is only restricted to left, right, up and down motions. Diagonal neighbors

are not considered. Most APF-based approaches encounter local-minima problems so

they are not complete.

2.3.2 Neural networks and fuzzy logic

Recently researchers have been working on solutions based on modern approaches

like neural networks and Fuzzy Logic. Yasutomi et al. [20] presented a learning based

CCPP approach. The robot using this approach could operate in an unknown environment

to map it and avoid obstacles. However computational complexity of this model makes

it un-suitable for complicated environments and it can only be used for structured indoor

environments.

12

Tse et al. [21] proposed a neural network model that generates path through back

propagation. The robot memorizes the previously used path during cleaning process. If

new map is detected the path memory is cleared.

Lang et al. [22] proposed a Fuzzy Logic based model. However, definition of fuzzy

rules for such model was a challenge due to which the system saw problems in path as it

was not smooth at turning and traversing. Fu and Lang [23] later came up with the motion

error solution but un-structured complex environments remained a challenge even for

that model.

2.4 Summary

Several methods discussed above guarantee complete coverage online, that is, they

can be used to cover all points on the free space of unknown environments. Furthermore,

some of those methods account for kinematic constraints on the vehicle and also efforts

have gone in optimization of the coverage path. However, a universal algorithm that

guarantees an optimal path has not yet been developed.

Different aspects of studied algorithms and approaches are briefly explained in the

tables given below.

13

Table 2.1: Summary of the analyzed CCPP methods with Approximate cellular decomposition (ACD) and SCD.

 Article Algorithm Completeness On/Offline
Prior knowledge

required
Remarks Intended application

A

C

D

[24] N.A PC Online Yes

kinematic

constraints are not

accounted for
Mobile robotics

[25] N.A PC Online No Mobile robotics

[17] N.A Full Online No
Partially occupied cells

are also filled Mobile robotics

[26] N.A Full Online No Mobile robotics

S

C

D

[27] N.A Not complete Online No
Underwater

environment

Table 2.2: Summary of the analyzed CCPP methods with exact cellular decomposition (ECD).

Article Algorithm Completeness On/Offline Prior knowledge required Remarks Intended

application

[12] TCD Full Offline Yes
Probably the most popular

ECD. 2D spaces

[18] BCD Full Offline Yes Relatively easy to implement 2D spaces

[28] MCD Full Offline Yes Generic

[29]

[30]

MCD

N.A

Full

Full

Online

Online

No

No

First online (sensor-based)

ECD proposed.

Alternative critical point

detection method to [28]

Generic

Generic

[31] N.A

Full

Online

No

Improves sensor-based

Morse decomposition by

detecting critical points also

on non-convex obstacles

Mobile

robotics

14

[32] MCD + GVD Full Online No 2-technique combination Generic

[8] N.A Full Online Yes

Requires the boundary of

obstacles and walls in

advance

Lawn

mowers

[33] CC RM Full Online No Mobile

robotics

[34] N.A Not complete Offline No
Mobile

robotics

[35] N.A Not complete Online No
Mobile

robotics

Table 2.3: Summary of the analyzed CCPP methods which don’t use cellular decomposition, NN or Fuzzy Logic.

 Article Algorithm/

method
Completeness On/Offline

Prior knowledge

required
Remarks Intended application

A

P

F

[19] N.A Not complete Offline Yes Local minima issues exist n/a

T

B

M

[36] N.A Not complete Offline Yes
Not complete. Unable to

handle environmental

changes.

Generic

[37] N.A Full Offline Yes Generic

15

Table 2.4: Summary of the analyzed CCPP methods which use neural networks and fuzzy logic approaches

Article Algorithm/

method
Completeness On/Offline

Prior

knowledge

required

Handles non

polygonal obstacles
Remarks Intended

application

[20] NN
Not

complete
Online No Yes

Mobile

robotics

[21] NN
Not

complete
Online No Yes

Mobile

robotics

[22] Fuzzy logic
Not

complete
Online No Yes

Mobile

robotics

[23] Fuzzy logic
Not

complete
Online No Yes

Mobile

robotics

[38] NN Full Online No Yes
Parameter setting

dependent model

Mobile

robotics

[39] NN Full Online No Yes
Parameter setting

dependent model

Mobile

robotics

16

Table 2.5: Summary of the analyzed CCPP methods which use miscellaneous approaches

Article
Algorithm/

method Completeness On/Offline

Prior

knowledge

required

Handles non

polygonal

obstacles

Remarks Intended

application

[40] SSA Full Online Yes Yes
Prior knowledge of the

environment required. Generic

[41] Heat trail Full Online No Yes

Requires heater effectors to

mark the path and a

temperature sensor to

determine previously

marked areas.

Mobile

robotics

[42]

3-

component

model

Not

complete
Online No Yes

Cleaning

robots

[43] GA Full Offline Yes No Generic

[44]
2-level path

planning
Not

complete
Online No Yes Interesting 2-level approach

Lawn

mowing

[45] SMA Full Offline Yes Yes Agricultural field
Agricultural

field

[45] PRA Full Online Yes Yes Agricultural field
Agricultural

field

17

CHAPTER 3: METHODOLOGY AND EXPERIMENTAL SETUP

The experimental setup consists of a two-wheeled differential drive robot modelled and

simulated in Robot Operating System (ROS) in Linux (Ubuntu) environment. The robot also

has a caster wheel for balancing purpose. A LiDAR sensor has been installed on the robot

chassis that is able to measure distance in all directions (360 degrees). The environment

consists of boundary walls and objects. The following flowchart summarizes the steps that are

performed in this setup:

Figure 3.1: Experimental Setup Process

3.1 Navigation of Robot for Unmapped Environment

When the robot is first introduced in an unknown environment, it is required to map the

area in order to plan path. The robot moves in the environment either by manual control using

keyboard or automatically through programmed script written in Python that makes use of the

LiDAR sensor in order to avoid obstacles. The script is based on random walk technique.

Unknown
Environment

Navigation of
Robot in

unmapped area

Mapping the
environment

Global Path
Planning

Navigation of
robot in Mapped

Environment

Local Path
Planning

Navigation based
on Altered Path

18

3.2 Mapping of the Environment

When the robot is moving in the environment, the values from LiDAR sensor and

odometry frame in ROS are translated into a graphical representation that contains information

about the environment in terms of occupied and free spaces. This is done by running ROS’s

Gmapping package in the background while the robot is navigating. Once the whole

environment is covered the Gmapping package is closed which generates the map as an image.

This image is processed using Python code and converted to a binary image as a representation

of occupied and free spaces.

Figure 3.2: Mapped environment in ROS RViz

3.3 Global Path Planning

Once the robot completes its lap in the unknown environment, the Gmapping package

generates the occupancy map in form of an image. Each pixel in the image represents a certain

distance. The occupied spaces are represented in black whereas the free space is represented

in white color. However, there are certain distortions in the image and some of the boundaries

have gaps which need to be catered before any further operations are done. For this reason, the

image is first treated using morphological operations like dilation or erosion. Since our main

concern is closing of boundaries – which are represented in black color, we applied erosion

19

technique – as a result of which the map output came out to be well described. Another

advantage of enhancing the boundaries is that the robot can now have a safe distance in order

to avoid colliding with the walls and objects due to different navigational errors.

The global planner function generates a set of points that need to be visited in order to

complete coverage problem. The detailed explanation of global planner function is given in

the next chapter.

3.4 Navigation of Robot for Mapped Environment

As mentioned earlier, the global planner function outputs a set of points in actual order.

The navigation function receives the input in form of a point array. The robot continues to

move in the direction of the immediate next unvisited point until it reaches its final goal. In

other words, each visited point in the array acts as local start point for a local goal point. Once

visited, the previous goal point becomes start point for the next goal point. Between start and

goal point, the function keeps looking for any obstacles that may disturb the normal trajectory

of the sequence. If obstacles are detected, the trajectory that needs to be followed is determined

by the local path planning function.

3.5 Local Path Planning

The global path planner generates points as waypoints. This ensures that the robot visits

each point in order to cover the complete map. However, in certain cases the shortest distance

between two waypoints may be blocked by obstacle or it can be “unsafe” due to dynamic

factors like moving obstacles. For this reason, we need a local planner that takes into account,

the dynamic factors, and generates waypoints between two global points. We propose a two-

level approach for generating local path that will be discussed in detail in Chapter 5.

20

CHAPTER 4: MAPPING AND GLOBAL PATH PLANNING

In order to plan path, we need to have a map initially. Whether the map is of complete

environment or a small portion within the coverage environment, it is necessary in order to

have some knowledge for decision. However, if the robot explores new map areas while

navigating, it is said to be online path planning. Any path planned due to prior information is

known as offline path planning as already discussed in Chapter 2.

4.1 Mapping and Image Processing

Our model is based on priorly mapped environment. But in order to compare results for

an actual or simulated environment we need to have an environment with traceable and known

features. Therefore, we create a simulated environment in ROS Gazebo and use built-in SLAM

Gmapping package to map the environment. The robot is navigated in the simulated

environment by user input or through random walk process using on-board LiDAR sensor.

During robot motion, readings from LiDAR sensor and wheel odometry data are used to build

map of the environment. Once the environment is fully mapped the map is saved as image in

local disk.

Figure 4.1: Map of environment generated by the SLAM Gmapping package

21

The map generated by SLAM Gmapping package generally contains three colors. Gray

color shows unexplored areas, black means the area is occupied by objects and white shows

explored free spaces. The SLAM Gmapping package generates another file containing some

important data that explains the pixel density and the map origin information. In order to

perform path planning we first need the image to be cropped according to our needs such that

unrequired areas are discarded. This also reduces processing power required for the next step.

In order to crop image, the first thing we need to do is to convert the image from

grayscale to binary image. The threshold was set such that the gray area was also treated as

occupied space. In the next step we used line sweep approach to ‘scan’ the image from one

side to the other in order to detect occupied cells. This simple approach was enough to detect

farthest boundary pixels the locations of these cells helped us crop the useful part of our map.

Figure 4.2: Cropped image after processing the useful map area

Since we will require the image to be scaled smaller in next steps the boundaries needed

to be enhanced such that we do not get boundary details missed. Another advantage of thicker

boundaries would be the safety factor for the robot. Boundaries were enhanced using

morphological operators of dilation and erosion using OpenCV library. First erosion operator

was applied to remove noise near boundaries and then dilation for having smooth, uniform

boundaries.

22

Figure 4.3: Enhanced boundaries of given map after applying morphological operators

4.2 Global Path Planning

The map was first decomposed into sub-parts using Boustrophedon Cellular

Decomposition (BCD) technique [18]. For illustration purposes, consider Figure 4.4 where

each decomposed cell has been shaded and named differently for referencing later.

Figure 4.4: Decomposed cells after applying BCD algorithm

23

The robot starts from cell A so the normal order, according to BCD algorithm, by which

these cells should be visited comes out as A-B-C-D. We continue with this convention for

generating the global path, however within the path planning function, we define a cost

function which will decide whether or not this sequence is to be followed exactly or partially.

The map is then divided into square sized grids with size of grid matching to that of the

robot. This size can be altered according to the size of the robot or if any overlapping or gap is

desired. The global path planner function starts from start point of cell A. From there the

planner function checks state of four neighbors (left, right, front, back). The states are stored

in a n x m sized array where n is the number of column grids and m is the number of row grids.

There are 3 possible states: free, occupied and visited. Unvisited states that are free are also

categorized as free. At every fixed obstacle the path must be such that it makes a u-turn. The

path is generated in form of a 2d point list (Figure 4.5). Therefore, each item in list is actually

the location of grid in the map.

Figure 4.5: Route list containing index of each grid in ascending order

4.3 Removal of redundant points from Route array

Figure 4.5 shows the path generated by global planner function. However, strictly

following a route that consists of so many coordinates can greatly affect the navigation function

of robot. Moreover, a navigation function that keeps record of visited and unvisited nodes of

24

this many closely spaced grids may consume a lot of memory. For this reason, critical points

were identified that would best define the path. Figure 4.6 shows the updated list of members

of route array for global path.

Figure 4.6: Route list after removing unnecessary members

 Two options were considered for removing redundant points. The first used method

was from the equation of line. As equation of line is given by:

(𝑦 − 𝑦1) =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1)

 Considering scenario where the robot is at P2 (Figure 4.5), 𝑦1 is the y-coordinate of P1,

𝑥1 is the x-coordinate of P1, 𝑦2 is the y-coordinate of P3, 𝑥2 is the x-coordinate of P3, and 𝑥 and 𝑦

are the x and y coordinates of P2. If the equation above satisfies, it means P2 lies within line

P1 – P3 therefore we can remove P2.

 Similarly, we iterate through all the sequence to remove unnecessary points in our path.

As a result, route list is updated as seen in Figure 4.6.

 Another approach that we used for reducing the number of waypoints was simpler.

Considering the same example we used previously, if the point is consideration is P2, it is said

to be in the same line as P1 – P3 if it follows this condition:

dist(P1P2) + dist(P2P3) = dist(P1P3)

25

 The above condition is only true if P2 lies in the Euclidean path of P1 and P2. Otherwise,

it will form a triangular shape in which sum of two sides is always greater than the third side.

Therefore, the condition to retain P2 is as follows:

dist(P1P2) + dist(P2P3) > dist(P1P3) … (1)

 In our experimental work we used both methods. It was seen that the first method took

longer processing time than the latter, therefore, we used the distance method instead of point

on line.

 It is also important to mention here that due to some assumptions and possible errors in

image processing techniques used – it is often not possible for such conditions to be perfectly

met. Therefore, a certain safety factor must be used. Therefore equation (1) can be written as:

dist(P1P2) + dist(P2P3) > dist(P1P3) + µ

 Where µ is the factor by which a certain grid may appear deviated even though it may

be practically be considered to be in line with the adjacent grids.

4.4 Modified BCD Approach for Global Planner

The flowchart diagram of the global planner function is given in Figure 4.7. The global

path planner function generates path in similar way as explained previously. However, when

the path planner function is generating paths at the boundary of two different (decomposed)

cells the function checks the cost for end points of both cells from current location. This cost

function is simply the Manhattan distance between current point to the end point. In example

quoted above, the cost function for global path planner function at boundary CD while the

robot is covering cell C, is calculated as:

𝐶𝑜𝑠𝑡𝐶𝐷 = 𝑥𝐷 + 𝑦𝐷 − 𝑥𝑐𝑢𝑟𝑟 − 𝑦𝑐𝑢𝑟𝑟

𝐶𝑜𝑠𝑡𝐶𝐶 = 𝑥𝐷 + 𝑦𝐷 − 𝑥𝑐𝑢𝑟𝑟 − 𝑦𝑐𝑢𝑟𝑟

𝜎 = 𝐶𝑜𝑠𝑡𝐶𝐷 − 𝐶𝑜𝑠𝑡𝐶𝐶

If σ >= 0 the path planner function will continue to cover cell C before moving on to

cell D. Otherwise the path planner will jump to cell D before covering remaining part of cell

C. After covering cell D completely, the path planner function will continue covering cell C

from the point where it left.

26

Is b
o

u
n

d
ary

clo
sed

?

P
erfo

rm
 M

o
rp

h
o

lo
gical

O
p

eratio
n

 (Ero
sio

n
)

Sto
p

 / En
d

N
O

YES

Perfo
rm

 B
C

D

A
ssign

 O
rd

er b
y

A
d

j. G
rap

h

C
h

eck co
st at

Ed
ges

C
o

st(go
al(a)) >

C
o

st(go
al(b

))

YES

In
sert “b

” b
/w

w
ayp

o
in

t(x) &

w
ayp

o
in

t(x+1
)

R
em

o
ve “b

” fro
m

p
revio

u
s in

d
ex

Start

Is “a”

last cell?

N
O

YES

a=cu
rren

t_cell+1

lo
cal_p

lan
n

er

(w
ayp

o
in

ts)

N
O

F
ig

u
re 4

.7
: F

lo
w

 C
h
art D

iag
ram

 o
f g

lo
b
al p

ath
 p

lan
n
er

27

a. Normal BCD Approach b. Modified BCD Approach

Figure 4.8: Cost of Modified BCD is lesser as compared to normal BCD

Figure 4.8 shows how modified Boustrophedon Cellular Decomposition approach reduces the

distance that needs to be covered by the robot in order to cover the same area that normal BCD

approach covers in travelling greater distance. This result is further discussed in Chapter 6.

28

CHAPTER 5: NAVIGATION AND LOCAL PATH PLANNING

As discussed in previous chapter, route generated by global path planner is an array con-

taining points which need to be visited by the robot in a proper sequence. The navigation func-

tion receives this array as an input. In Section 4.3 we discussed how we reduced the number

of points in route array. In the next section we will discuss how reducing the number of way-

points improve our navigation while also improving efficiency in terms of computational com-

plexity.

5.1 Navigation

The navigation function navigates the robot to the waypoints defined in route array.

This handles the robot poses and velocity by which the robot must move in order to achieve

its goal. Each recently visited point acts as the start point for the next-in-sequence point

referred to as local goal. In theory, large number of waypoints should not affect the robot

motion. However, in real world scenario, over-defined path can cause many problems for the

navigation function. When a large number of waypoints are defined, it causes the navigation

function to strictly follow each waypoint. This causes robot to satisfy conditions for a very big

number of local goals. Small deviations from local goal may result in robot missing the target.

In order to fulfil requirement of visiting the local goal, the robot may need to make big turns -

unnecessarily wasting energy and time.

We used the route array with reduced waypoints as discussed in Section 4.3 for the

purpose of navigation. The first element in route array is the start point of our planned path.

When any point is passed to the navigation function, it instructs the robot to position itself

towards that point. Once the pose conditions are met, the navigation function then instructs the

robot to start moving in the front direction. Any moving obstacles or static obstacles that were

not part of the global map are handled by local planner and will be discussed in next section.

Once the robot reaches its local goal, the said waypoint is marked as visited. This point

then acts as start point for the next-in-sequence waypoint which is the new local goal. The

previously explained process of pose setting for local goal is repeated for this point and the

robot continues navigation until the last point in global path is visited. Figure 5.1 shows how

reduced waypoint approach saves unnecessary moves, time and energy.

29

a. Robot deviates from local goal b. Robot sets pose to rectify error

c. Robot follows remaining route d. Smooth navigation with reduced

waypoints

Figure 5.1: Navigation with all waypoints (a, b, c) and reduced waypoints (d)

5.2 Local Path Planning

While robot is passing through the waypoints, it may encounter obstacles that were not

defined in global map. This could be due to change in configuration of the obstacles or addition

of moving or static obstacles in the environment. Local path planner is a function that runs

along the navigation function and keeps check on the obstacles. If an obstacle is encountered

within a set radius, this function directs the robot to change its path in order to avoid collision.

It is pertinent to mention here that static obstacle is a special case of moving obstacle where

velocity of obstacle is zero.

A two-level approach was used for avoiding obstacles. Level 1 check ensures whether

or not the obstacle may hinder the regular path of the robot. Basic reason for using two-level

approach is the computational simplicity of level 1. The second level is computationally

expensive velocity obstacle approach and is only triggered if level 1 signals possible collision.

Moreover, level 1 only triggers if single obstacle is detected. In case of multiple obstacles, the

30

local planner directly calls for the velocity obstacle approach bypassing level 1. Figure 5.2

shows a typical scenario where an obstacle is detected within a set radius around the robot.

Figure 5.2: Positional and velocity vectors of Robot (R) and moving object (O)

5.2.1 Intersection of Lines Approach (Level 1)

The first level approach is based on the principles of intersection of lines. Positions of

robot and obstacle are obtained at two time intervals t1 and t2. With the help of these four

points, we can calculate the intersection point of the robot and the moving obstacle. Figure 5.3

explains the simple approach using two-point form of equation of line.

 Since all non-parallel lines intersect at some point, this data is not enough to assume

whether or not the robot and the obstacle will collide. In order to be able to come to the

conclusion, we found the time required for the robot and the obstacle to reach the point of

intersection. If the time difference is in safe range, we continue with the normal motion of

robot, otherwise we generate local path using Velocity Obstacle (VO) approach herewith

referenced to as level 2 approach.

Ro

R

Rr

Vr

Vo

yo

yr

xo xr

Y

X

θr

σ

θo

σo

σr

31

Figure 5.3: Calculation of intersection point of robot and moving obstacle

5.2.1.1 Calculating Point of Intersection

The calculations done in order to find point of intersection are explained below:

Suppose L1 and L2 represent the lines of motion of the robot and moving obstacle respectively.

L1: a1x + b1y + c1 =0 … (1)

L2: a2x + b2y + c2 =0 … (2)

Suppose lines L1 and L2 intersect at xo and yo. Equation (1) and (2) can be written as:

L1: a1xo + b1yo + c1 =0

L2: a2xo + b2yo + c2 =0

Point of intersection

a1x + b1y c1 =0

Line 1 (Robot)
a2x + b2y c2 =0

Line 2 (Obstacle)

(xo , yo)

32

By Cramer’s Rule:

𝑥0

𝑏1𝑐2 − 𝑏2𝑐1
=

−𝑦0

𝑎1𝑐2 − 𝑎2𝑐1
=

1

𝑎1𝑏2 − 𝑏1𝑎2

Where,

𝐿1: 𝑎1 = 𝑦1 − 𝑦2 , 𝑏1 = 𝑥2 − 𝑥1 , 𝑐1 = 𝑦1𝑥2 − 𝑦2𝑥1

𝐿2: 𝑎2 = 𝑦1 − 𝑦2 , 𝑏2 = 𝑥2 − 𝑥1 , 𝑐2 = 𝑦1𝑥2 − 𝑦2𝑥1

𝐷 = 𝑎1𝑏2 − 𝑎2𝑏1

𝐷𝑥 = 𝑐1𝑏2 − 𝑐2𝑏1

𝐷𝑦 = 𝑎1𝑐2 − 𝑎2𝑐1

Lines L1 and L2 will only intersect if D ≠ 0

𝑥0 = 𝐷𝑥
𝐷⁄

𝑦0 =
𝐷𝑦

𝐷⁄

If L1 and L2 are parallel D=0, resulting in (inf, inf) value for point of intersection which suggest

that parallel lines can not intersect.

5.2.1.2 Predicting collision between Robot and Obstacle

Till this point we have obtained the line of intersection of the robot and the obstacle. The

next step is to use the velocities and current locations of robot and the obstacle to obtain the

time required to get to the point of intersection for each the robot and the moving obstacle. This

is done by dividing distance from current location to the point of intersection by the magnitude

of velocity.

33

𝑡𝑜𝑏𝑠 =
𝑑𝑖𝑠𝑡(𝑃𝑜𝑏𝑠 𝑃𝑖𝑛𝑡)

|𝑣𝑜𝑏𝑠|
 …. (3)

𝑡𝑟𝑜𝑏 =
𝑑𝑖𝑠𝑡(𝑃𝑟𝑜𝑏 𝑃𝑖𝑛𝑡)

|𝑣𝑟𝑜𝑏|
 …. (4)

𝛼 =
1

|𝑡𝑟𝑜𝑏−𝑡𝑜𝑏𝑠|
 …. (5)

Where 𝑡𝑟𝑜𝑏 and 𝑡𝑜𝑏𝑠 is the time taken by the robot and obstacle, respectively, to reach the

point of intersection., 𝑃𝑜𝑏𝑠 is the location of obstacle at sampling instant, 𝑃𝑟𝑜𝑏 and 𝑃𝑖𝑛𝑡 are the

positions of robot and point of intersection. 𝑣𝑟𝑜𝑏 and 𝑣𝑜𝑏𝑠 are the velocities of robot and the

moving obstacle.

Based on the time difference we calculate the collision factor (𝛼). For safety purpose the

value of collision factor must be less than
1

4
 which essentially means that there must be a

difference of at least 4 seconds between 𝑡𝑟𝑜𝑏 and 𝑡𝑜𝑏𝑠. Values greater than
1

4
 mean there is a

possible chance of collision, and therefore, the said case is referred to the second level approach

– the velocity obstacle approach, which will be discussed in the next section.

It must also be noted that the collision factor of
1

4
 is derived mathematically and

experimentally for the experimental setup used in this study where robot radius is 16 cm and

the velocities of the robot and obstacles are between 20 – 30 cm/s. Special cases where angle

between the two objects is less than 15 degrees are also dealt with smaller values of collision

factor because in such scenario the obstacle and robot may collide even before reaching the

point of intersection (collision).

34

5.2.2 Velocity Obstacle Approach (Level 2)

The intersection of lines approach, discussed previously, acts as a filter for referring

complicated scenarios to level 2 approach known as the Velocity Obstacle Approach [46]. The

velocity obstacle (VO) approach addresses the problem of path and motion planning in

changing environments. Path planning becomes very difficult in dynamic environments,

because it requires simultaneous solving of path while the robot is navigating.

The VO approach restricts analysis to circular obstacles and robots. However, this

essentially cannot be termed as limitation because all polygons can be represented by a number

of circles [47].

Consider robot A and obstacle B, shown in Figure 5.4 at time to moving with velocities

vA and vB respectively. In order to proceed further, and to make visualizations simpler, let us

consider our robot as a point mass. We do it by squeezing the robot A to a point and growing

all other obstacles (in this case obstacle B) by the size of robot diameter. New radii or A is 𝐴̂

and that of B is 𝐵̂ . We define the set of colliding relative velocities between 𝐴̂ and 𝐵̂ as

collision cone (CCAB).

𝐶𝐶𝐴𝐵 = {𝒗𝐴𝐵 | 𝜆𝐴𝐵 ∩ 𝐵̂ ≠ ∅} … (1)

Where 𝒗𝐴𝐵 is the relative velocity of robot 𝐴̂ with respect to 𝐵̂ (𝒗𝐴𝐵 = 𝒗𝐴 − 𝒗𝐵), and

𝜆𝐴𝐵 is the line in direction of 𝑣𝐴𝐵.

Figure 5.4: Robot A and Obstacle B moving with velocities vA and vB respectively [46]

35

Figure 5.5: Relative Velocity 𝒗𝐴𝐵 and collision cone 𝐶𝐶𝐴𝐵 [46]

The collision cone is the planer area bounded by two tangents to 𝐵̂ from 𝐴̂ as shown in

Figure 5.5. Any relative velocity lying within the collision cone i.e 𝜆𝑟 and 𝜆𝑓 will result in

collision between the robot A and the obstacle B. If the relative velocity lies outside the velocity

cone it is guaranteed to avoid the collision provided the robot and obstacle continue to move

with the same velocities.

5.2.2.1 Handling multiple obstacles

The collision cone approach only handles single obstacle. In order to handle multiple

obstacles, we need to develop relationship based on absolute velocities of robot A. This is done

by adding velocity of obstacle B (𝒗𝐵) to each element of the collision cone 𝐶𝐶𝐴𝐵. In other

words, we translate the collision cone by 𝒗𝐵 (Figure 5.6).

𝑉𝑂𝐵 = 𝐶𝐶𝐴𝐵 ⊕ 𝒗𝐵 … (2)

 Where ⊕ is the Minkowski vector sum operator as the velocity cannot be directly

added to a group of elements. Here Minkowski operator means that we need to add the velocity

𝒗𝐵 to each element of the collision cone 𝐶𝐶𝐴𝐵 individually.

36

Figure 5.6: 𝐶𝐶𝐴𝐵 is translated by 𝒗𝐵 to obtain 𝑉𝑂𝐵 [46]

The velocity of the robot 𝒗𝐴 should be selected such that it is outside the velocity

obstacle. This guarantees that the robot will not collide with the moving object B.

𝐴(𝑡) ∩ 𝐵(𝑡) = ∅ 𝑖𝑓 𝒗𝐴(𝑡) ∉ 𝑉𝑂(𝑡) … (3)

As explained earlier, static object is a special case of moving object where velocity is

zero. Therefore, in this case, if the obstacle is static, 𝒗𝐵 = 0 returns velocity obstacle identical

to that of the collision cone. For multiple moving objects we take union of all the individual

velocity obstacles:

𝑉𝑂 = ∪𝑖=1
𝑛 𝑉𝑂𝐵𝑖

 … (4)

 Where n is the number of obstacles and 𝑉𝑂𝐵𝑖
 denotes each individual velocity obstacle.

The velocities that make the robot avoid collision then consists of the set of velocities that lies

outside the velocity obstacles as given in Figure 5.7.

In case of many obstacles, it is better to take prioritized entities into account for a certain

time based on their distance from the robot and velocities. Velocity Obstacle calculates

obstacle’s trajectory based on linear approximation, therefore using it to predict remote

collisions may be inaccurate if the obstacle does not move along a straight line. That is also

why approximation of farther obstacles is discouraged. Therefore, we separate possible

collisions that take place before time t and after time t. This time t is defined as suitable time

37

horizon Th. All possible collisions that occur in time less than Th are termed as imminent

collisions. To account for imminent collisions, we modify set VO such that set VOH is subtracted

from it.

𝑉𝑂𝐻 = {𝒗𝐴 | 𝒗𝐴 ∈ 𝑉𝑂 ||𝑣𝐴𝐵|| ≤
𝑑𝑚

𝑇ℎ
} … (5)

Where 𝑑𝑚 is the shortest relative distance between A and B.

Figure 5.7: Velocity obstacles 𝑉𝑂𝐵1
and 𝑉𝑂𝐵2

Figure 5.8: Velocity obstacle 𝑉𝑂𝐵 for short time horizon

38

The set VOH represents velocities resulting in possible collision after the time horizon.

Figure 5.8 shows VOH removed for specific time interval in order to only consider velocity

obstacles representing possible collisions within time horizon.

5.2.2.2 Generating waypoints for local path

The Velocity Obstacle VO helps us avoid velocities which result in possible collision.

This helps us generate trajectory that does not fall in prohibited region. In order to find

trajectory from start to goal position, random search method is used. In random search method,

we start from the initial position of the robot and test with n number of positional vectors along

360º search space. The magnitude of positional vector must be such that the robot can reach

the end point from start point in time ∆𝑡 with velocity less than or equal to the maximum

velocity the robot may attain. We used 20 number of samples for the search space, each at an

angle of 18º from the adjacent vector. Our next maneuver needs to fulfil two conditions: the

selected vector must not pe projecting inside the VO and the selected vector must result in

position such that it is closest to the goal.

Figure 5.9: Trajectory calculation for robot to reach goal avoiding moving obstacle

Once a vector among search space is selected, we continue with the search method by

search space method from the last vector until we reach our goal.

39

Figure 5.10: Trajectory calculated for single robot velocity obstacle

The result seen in Figure 5.10 is the trajectory as seen in multiple frames considering

obstacle velocity into account. The timestamp at each vector interval is calculated using the

velocity and distance parameters. It is important to mention here that the velocity obstacle is

time varying, therefore we also need to take the obstacle’s velocity, 𝒗𝐵 into account.

𝑡𝑚 = ∑ ∆𝑡𝑖

𝑚

𝑖=1

𝑑𝑚 = ∑ |𝑝𝐴𝑖
|

𝑚

𝑖=1

Where 𝑡𝑚 is the calculated total time taken by robot from start position to 𝑝𝐴𝑚
, ∆𝑡 is

the time robot will take to cover each positional vector, 𝑑𝑚 is the total distance covered by

robot from start position to 𝑝𝐴𝑚
.

40

Figure 5.11: Velocity obstacle in multi obstacle scenario

For multiple obstacle scenario the trajectory is calculated in the same way as for the

single obstacle. However, the velocity obstacle in this case is simply the union of all velocity

obstacles. The process of trajectory calculation is instantaneous, therefore any errors in

previous calculations can be rectified in the next iteration.

5.3 Integrating Local Path Planning with Navigation and Global Path

Recalling Section 4.4 and Section 5.1, we identified critical points for our global path.

The critical points define our path in the minimum possible waypoints. For n number of

waypoints, the navigation function visits each point one by one, starting from first till nth.

Between two global waypoints, the trajectory is handled by the local path planner. Depending

on the obstacles, local path may either be handled by level 1 (Section 5.2.1) or level 2 (Section

5.2.2) approach. The local planner outputs the next move waypoint to the navigation function

which navigates the robot to that point. This process continues until local goal (next global

waypoint) is reached. Figure 5.12 shows the flowchart diagram of the local path planner

function and its linkage with global path planner and navigation function.

41

F
ig

u
re 5

.1
2
: F

lo
w

ch
art o

f L
o
cal P

ath
 P

lan
n
er

42

CHAPTER 6: RESULTS AND DISCUSSION

 The experimental work was carried out in simulated environment of ROS Gazebo. The

environment was mapped using onboard 2D LiDAR sensor under ROS RViz. For global

planning the map was decomposed using Boustrophedon Cell Decomposition Approach and a

set of global waypoints were generated. These waypoints were passed to the local planner

where path between each global waypoint was handled by the local path planner. The local

planner intelligently detects any obstacles in the environment – moving or static and generates

trajectory for the navigation function to drive robot as per dynamic constraints. A two-level

approach was used for local path planner in order to minimize computational complexity. The

local planner communicates with the navigation function in order to move the robot towards

the next waypoint.

6.1 Simulation Environment

The experiment was conducted in simulated environment of Robotics Operating System

(ROS) Gazebo. The operating system used is Linux Ubuntu 20.04. The real-time simulation

environment is shown in Figure 6.1. The robot is a two-wheeled differential drive robot with

onboard 2D LiDAR sensor. ROS’s inbuilt odometry package is used for localization. The

environment consists of walls and moving obstacles.

Figure 6.1: Simulation environment in ROS Gazebo

43

6.2 Environment Mapping Results

The SLAM gmapping package in ROS provides a good framework to build maps of the

environment. It uses LiDAR and pose data from the odometry frame to generate 2D map of the

coverage area. Pose data was gathered using two different methods, using inertial measurement

unit (IMU) sensor package, and robot odometry frame. Since gmapping package does not

support IMU, Hector SLAM package was used to generate map. However, hector SLAM

consumes too much memory in comparison to the gmapping package. The main reason for that

is the computational complexity involved in IMU. Results showed that gmapping technique

generated map with 97% accuracy in comparison to hector SLAM’s 85% and with 5 times as

much speed as IMU-based hector SLAM. The reason for such high accuracy of gmapping is

that it uses data from the odometry frame which is the actual data pose data so any possible

errors are only caused due to LiDAR data. Whereas in case of hector SLAM, the robot pose

data is acquired from IMU which is not free from errors due to the computational complexity

involved.

Table 6.1: Comparison of Mapping techniques

Desc SLAM Gmapping Hector SLAM

Result

Accuracy 97% 85%

Computational

Complexity

Normal Very high

44

6.3 Global Path Planning Results

The global path planning was based on Boustrophedon Cellular Decomposition approach

for coverage area. In this work we proposed a modified BCD approach which allows the

algorithm to jump to adjacent cells before it completes covering current cell if an optimized

solution exists. Experimental results showed up to 25% performance improvement in terms of

total distance covered by the robot covering same environment. Moreover, unlike other modern

approaches, this method is not based on AI or neural networks so it is computationally

inexpensive.

a. Normal BCD Approach b. Modified BCD Approach

Figure 6.2: Total distance covered reduced by modified BCD approach

Example shown in Figure 6.2 shows reduction of about 3.25 meters of distance covered

by the robot in about 6 square meter area. The total distance covered by the robot within these

cells using normal BCD approach was 32.25m whereas the robot covered same area by

travelling 29m using modified BCD approach.

6.4 Local Path Planning and Navigation

In this work we proposed a unique two-level approach in order to generate trajectory to

counter moving or unexpected obstacles. Velocity obstacle approach is a popular method in

mobile robotics to deal with moving obstacles. However, this approach is computationally

expensive. We used a simpler intersection of lines approach as a filter to refer only complicated

cases to the VO approach. Using this approach significantly improved the performance. As a

performance indicator we ran two instances of the program on same PC - with the same moving

obstacles and environment. First, we ran the code with velocity obstacle as the only approach

45

for local planner for our test map. Next, we completed navigation for the same environment

using proposed two-level approach. Results seen in Figure 6.3 show real-time factor of latter

increase by almost 15% as compared to the method where first approach was not used. This

proves that our proposed method reduces stress on the processor.

Velocity Obstacle Approach

Real-time Factor 0.38 (Slower)

Two-level Approach

Real-time Factor 0.44 (Faster)

Figure 6.3: Performance comparison between two-level and single level VO approach

46

CHAPTER 7: CONCLUSION AND FUTURE WORK

In this work we discussed and analyzed different methods for coverage problem found

in literature. Among those methods, Boustrophedon Cellular Decomposition was found to be

the most popular cellular decomposition technique among researchers. Most modern coverage

path planning methods that make use of Artificial Intelligence or Neural Networks are also

based on BCD approach. However, all these methods suggest improvements in Boustrophedon

Cellular Decomposition in their own way. We suggested an effective and computationally

inexpensive technique that can reduce the distance that needs to be travelled by the robot in

order to cover the environment. The number of waypoints generated by global planner were

reduced to only critical waypoints in order for the navigation function to act smoothly and

reduce the number of local goals.

We also suggested a two-level approach in order to avoid moving obstacles. The first

level is a memory efficient algorithm that refers only complicated cases to the level two based

on Velocity Obstacles approach. This reduces stress on the processor and improves

performance.

Results obtained showed significant improvements in terms of performance and

memory. Mapping, global path planning, navigation and local path planning - all modules were

successfully tested in simulated environment of ROS. The environment was mapped prior to

applying path planning technique.

Some suggestions for future work are as under:

1. Implementation in real world environment.

2. Online path planning with no prior mapped environment.

3. Integration of other sensors like RGB-D or Inertial Measurement Unit (IMU)

for localization.

4. Handling dynamic obstacles with non-zero acceleration.

47

References

[1] Iwan Ulrich, Francesco Mondada, and J. D. Nicoud, "Autonomous Vacuum Cleaner," Robotics

and Autonomous Systems, vol. 19, no. 3, 1997.

[2] X. T. Yan, A. Bianco, C. Niu, R. Palazzetti, G. Henry, Y. Li, W. Tubby, A. Kisdi, R. Irshad, S.

Sanders, R. Scott, "The AgriRover: A Reinvented Mechatronic Platform from Space Robotics for

Precision Farming," in Reinventing Mechatronics: Developing Future Directions for

Mechatronics, Cham, Springer International Publishing, 2020, pp. 55-73.

[3] Jörg Marvin Gülzow et al., "Recent Developments Regarding Painting Robots for Research in

Automatic Painting, Artificial Creativity, and Machine Learning," Applied Sciences 10(10):3396,

2020.

[4] P. Gonzalez de Santos, J.A. Cobano, E. Garcia, J. Estremera, M.A. Armada, "A six-legged robot-

based system for humanitarian demining missions," Mechatronics, vol. 17, no. 8, pp. 417-430,

2007.

[5] Ernest L. Hall, S. J. Oh, E. Kattan, Z. L. Cao and Y. Y. Huang, "Experience With a Robot Lawn

Mower," Robots 10, 1986.

[6] B. Nasirian, M. Mehrandezh, F. Janabi-Sharifi, "Efficient Coverage Path Planning for Mobile

Disinfecting Robots Using Graph-Based Representation of Environment," Frontiers in Robotics

and AI, vol. 8, 2021.

[7] M. Farsi, K. Ratcliff, J.P. Johnson, C. Allen, K. Z. Karam, R. Pawson, "Robot control system for

window cleaning," Proceedings of 1994 American Control Conference, 1994.

[8] Z. L. Cao, Y. Huang and E. L. Hall, "Region Filling Operations with Random Obstacle Avoidance

for Mobile Robots," Journal of Robotic Systems, 5 (2), 87-102, 1988.

[9] Esther M. Arkin and Refael Hassin, "Approximation algorithms for the Geometric Covering

Salesman Problem," Discrete Applied Mathematics, vol. 55, no. 3, pp. 197-218, 1994.

[10] H. Choset, "Coverage for robotics – A survey of recent results," Annals of Mathematics and

Artificial Intelligence, vol. 31, no. 1, 2001.

[11] C. S. Tan, R. Mohd-Mokhtar and M. R. Arshad, "A Comprehensive Review of Coverage Path

Planning in Robotics Using Classical and Heuristic Algorithms," IEEE Access, vol. 9, pp. 119310-

119342, 2021.

[12] J. Barraquand, J. C. Latombe, "Robot Motion Planning: A Distributed Representation

Approach," The International Journal of Robotics Research, p. 628–649, 1991.

[13] Shannon V. Spires, Steven Y. Goldsmith, "Exhaustive Geographic Search with Mobile Robots

along Space-Filling Curves," 1st International Workshop in Collective Robotics, 1998.

48

[14] Hans P. Moravec, Alberto Elfes, "High resolution maps from wide angle sonar," IEEE

International Conference on Robotics and Automation, vol. 2, 1985.

[15] Przemyslaw A. Zielinski, "An Approximation Technique for Stochastic Environmental

Modeling," Water Resources Research, vol. 29, pp. 3379-3387, 1993.

[16] Y. Gabriely, E. Rimon, "Spiral-STC: An on-line coverage algorithm of grid environments by a

mobile robot," IEEE International Conference on Robotics and Automation, vol. 1, 2002.

[17] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, C. Bustacara, "BSA: A Complete Coverage Algorithm,"

IEEE International Conference on Robotics and Automation, 2005.

[18] H. Choset and P. Pignon, "Coverage Path Planning: The Boustrophedon Cellular

Decomposition," Zelinsky, A. (eds) Field and Service Robotics. Springer, London, 1998.

[19] A. Pirzadeh and W. Snyder, "A unified solution to coverage and search in explored and

unexplored terrains using indirect control," Proc. Conf. IEEE Int Robotics and Automation, pp.

2113-2119, 1990.

[20] Fumio Yasutomi, Daizo Takaoka, Makoto Yamada, and Kazuyoshi Tsukamoto, "Cleaning Robot

Control," Proceedings of IEEE International Conference on Robotics and Automation, 1988.

[21] P. W. Tse, S. Lang, K. C. Leung and H. C. Sze, "Design of a navigation system for a household

mobile robot using neural networks," 1998 IEEE International Joint Conference on Neural

Networks Proceedings. IEEE World Congress on Computational Intelligence, vol. 3, pp. 2151-

2156, 1998.

[22] B. Chee, S. Lang and P. Tse, "Fuzzy Mobile Robot Navigation and Sensor Integration,"

Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, vol. 1, pp. 7-12, 1996.

[23] Yili Fu and S. Y. T. Lang, "Fuzzy logic based mobile robot area filling with vision system for

indoor environments," Proceedings 1999 IEEE International Symposium on Computational

Intelligence in Robotics and Automation. CIRA'99, pp. 326-331, 1999.

[24] A. Zelinsky, R.A. Jarvis, J. C. Byrne, S. Yuta, "Planning Paths of Complete Coverage of an

Unstructured Environment by a Mobile Robot," In Proceedings of International Conference on

Advanced Robotics, pp. 533-538, 1993.

[25] Y. Gabriely, E. Rimon, "Spanning-tree based coverage of continuous areas by a mobile robot,"

Annals of Mathematics and Artificial Intelligence, vol. 31, p. 77–98, 2001.

[26] Young-Ho Choi, Tae-Kyeong Lee, Sang-Hoon Baek, Se-Young Oh, "Online complete coverage

path planning for mobile robots based on linked spiral paths using constrained inverse distance

transform," IEEE International Conference on Intelligent Robots and Systems, p. 5788–5793,

2009.

[27] Susan Hert, Sanjay Tiwari, Vladimir Lumelsky, "A terrain-covering algorithm for an AUV,"

Autonomous Robots, vol. 3, pp. 91-119, 1996.

49

[28] E.U Acar, H. Choset, "Critical point sensing in unknown environments," Proceedings of the 2000

IEEE International Conference on Robotics & Automation, 2000.

[29] E. Acar, H. Choset, "Sensor-based coverage of unknown environments: Incremental

construction of morse decompositions," International Journal of Robotics Research 21 (4), p.

345–366, 2002.

[30] P. N. Atkar, H. Choset, A. A. Rizzi, E. U. Acar, "Exact cellular decomposition of closed orientable

surfaces embedded in R3," Proceedings of ICRA Robotics and Automation IEEE International

Conference, vol. 1, p. 699–704, 2001.

[31] E. Garcia, P. G. de Santos, "Mobile-robot navigation with complete coverage of unstructured

environments," Robotics and Autonomous Systems, vol. 46, p. 195–204, 2004.

[32] E. U. Acar, H. Choset and J. Y. Lee, "Sensor-based coverage with extended range detectors,"

IEEE Transactions on Robotics, vol. 22, pp. 189-198, 2006.

[33] Z. J. Butler, A. A. Rizzi and R. L. Hollis, "Contact sensor-based coverage of rectilinear

environments," Proc. IEEE Int Intelligent Control/Intelligent Systems and Semiotics Symposium,

pp. 266-271, 1999.

[34] W. H. Huang, "Optimal line-sweep-based decompositions for coverage algorithms," Proc. ICRA

Robotics and Automation IEEE Int. Conf, vol. 1, pp. 27-32, 2001.

[35] S. C. Wong and B. A. MacDonald, "A topological coverage algorithm for mobile robots," Proc.

IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 2, pp. 1685-1690, 2003.

[36] C. Hofner and G. Schmidt, "Path planning and guidance techniques for an autonomous mobile

cleaning robot," Robotics and Autonomous Systems, vol. 14, p. 199 – 212, 1995.

[37] R. N. De Carvalho, H. A. Vidal, P. Vieira and M. I. Ribeiro, "Complete coverage path planning

and guidance for cleaning robots," Proceedings IEEE Int Industrial Electronics, vol. 2, pp. 677-

682, 1997.

[38] Simon X. Yang and Chaomin Luo, "A neural network approach to complete coverage path

planning," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , vol. 34,

no. 1, pp. 718-724, 2004.

[39] X. Qiu, J. Song, X. Zhang and S. Liu, "A complete coverage path planning method for mobile

robot in uncertain environments," Proc. Sixth World Congress Intelligent Control and

Automation WCICA, vol. 2, p. 8892–8896, 2006.

[40] V. J. Lumelsky, S. Mukhopadhyay and K. Sun, "Dynamic path planning in sensor-based terrain

acquisition," IEEE Transactions on Robotics and Automation, vol. 6, no. 4, p. 462–472, 1990.

[41] R. A. Russel, "Heat trails as short-lived navigational markers for mobile robots," Proc. Conf. IEEE

Int Robotics and Automation, vol. 4, pp. 3534-3539, 1997.

50

[42] J. Y. Park and K. D. Lee, "Study on the cleaning algorithm for autonomous mobile robot under

the unknown environment," Proceedings 6th IEEE International Workshop on Robot and

Human Communication. RO-MAN'97, pp. 70-75, 1997.

[43] P. A. Jimenez, B. Shirinzadeh, A. Nicholson and G. Alici, "Optimal area covering using genetic

algorithms," IEEE/ASME international conference on advanced intelligent mechatronics, pp. 1-

5, 2007.

[44] M. Bosse, N. Nourani-Vatani and J. Roberts, "Coverage Algorithms for an Under-actuated Car-

Like Vehicle in an Uncertain Environment," Proceedings 2007 IEEE International Conference on

Robotics and Automation, pp. 698-703, 2007.

[45] T. Oksanen and A. Visala, "Coverage path planning algorithms for agricultural field machines,"

Journal of Field Robotics, vol. 26, no. 8, pp. 651-668, 2009.

[46] P. Fiorini, Z. Shiller, "Motion Planning in Dynamic Environments Using Velocity Obstacles," The

International Journal of Robotics Research, vol. 17, no. 7, pp. 760-772, 1998.

[47] N. Badler, J. O'Rourke, H. Toltzis, "A spherical representation of a human body for visualizing

movement," Proceedings of the IEEE, vol. 67, pp. 1397-1403, 1979.

[48] J. J. Kuffner and S. M. LaValle, "RRT-connect: An efficient approach to single-query path

planning," Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on

Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995-1001,

2000.

[49] J. Borenstein, Y. Koren, "Real-Time Obstacle Avoidance for Fast Mobile Robots," IEEE

Transactions on Systems Man and Cybernetics, pp. 1179 - 1187, 1989.

[50] Hadi Gaderi, Meysam Yadegar, Nader Meskin, Mohammad Noorizadeh, "A Novel Proportional

Navigation based Method for Robotic Interception Planning with Final Velocity Control," IEEE

Access, vol. 9, pp. 106428-106440, 2021.

[51] J. Barraquand, J. C. Latombe, "Robot Motion Planning: A Distributed Representation

Approach," The International Journal of Robotics Research, vol. 10, no. 6, pp. 628-649, 1991.

51

Completion Certificate

It is certified that the thesis titled “Path Planning and Navigation of Robot with 2D Lidar

Feedback” submitted by CMS ID. 00000276308, NS Muhammad Awais Khan Niazi of

MS-2018 Mechatronics Engineering is completed in all respects as per the requirements of

Main Office, NUST (Exam branch).

Supervisor: ________________

Dr. Kunwar Faraz Ahmed Khan

Date: ____ July 2022

