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Abstract 
 

Mobile robots are becoming increasingly popular in modern-day robotics. Mobile 

robots are being used in many fields like exploration, defence, agriculture, cleaning, lawn 

mowing, and warehouse management to name a few. The operation of a mobile robot requires 

accurate data for mapping, path planning, and navigation. Each subsequent operation is 

dependent on the previous operation so the margin for error is very little. In this work, we 

develop a complete framework for mapping, complete coverage path planning (CCPP), and 

navigation along with local planning for handling the complexities of dynamic environments. 

Some improvements in already existing literature have been proposed like the most popular 

Boustrophedon Cellular Decomposition (BCD) to decrease cost and increase efficiency in 

terms of time and energy of the system. This work also proposes a memory-efficient approach 

for solving local planning problems through the velocity obstacle (VO) method. 

Experimental work was carried out in simulated environment of Robot Operating 

System (ROS). Global path planning results showed significant improvement in terms of 

minimizing overlapping issues when compared with the original BCD algorithm. Navigation 

results showed that all waypoints generated by global planner were visited with 94% accuracy. 

The velocity obstacle approach was implemented as local path planner to handle moving 

obstacles. To further improve the performance, a two-level approach was used to handle 

moving obstacles. 

 

 

Keywords: Complete Coverage Path Planning, Boustrophedon Cellular Decomposition, 

Velocity Obstacles, Local Path Planning, Mobile Robot 
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CHAPTER 1: INTRODUCTION 
 

Path planning is generally categorized into two sub-domains – point to point path 

planning and coverage path planning. Main aim in former is to move robot from point A to 

point B irrespective of the area it passes through – as long as it’s optimal. However, in some 

cases like agriculture, moving from one place to the other may not be the only requirement. 

Such applications require the robot to cover complete available space in order to perform 

certain task. 

In this research we will primarily focus on planning a coverage path for a given map (global 

plan) and navigate the robot accordingly. In order to avoid moving objects we introduce a two-

level approach in order to simplify computational complexity while guaranteeing system 

efficiency.  

1.1 Mapping 

First part of this research is to use LiDAR sensor data and odometry to map the 

environment. This step is very important as it effects our next steps of local and global path 

planning. Mapped environment is represented in a binary graphical form where objects are 

represented as “ones” and open spaces as “zeros”.  

1.2 Global Path Planning 

The data from map is used to plan global path – meaning environment is considered as 

static till this point. Different approaches were considered to determine the global path which 

will be discussed in later sections. 

1.3 Navigation 

Once global path is determined, the next step is to navigate the robot according to the 

points as identified by the global path. The global path is a set of coordinates – each 

corresponding to a point that the robot must visit in order to cover the entire available area. 

The robot makes use of the LiDAR sensor and odometry to determine its current location. Once 

the LiDAR sensor encounters an “un-reported” object, it calls the local path planning function. 
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This part is very important for dynamic environments. Such situations can arise due to moving 

objects or static objects that were not in place at the time of mapping. Conditions like these 

must be handled in a systematic way in order for a mobile robot to work properly.   

1.4 Local Path Planning 

A local path planner is a function which handles the dynamic perspective of a mapped 

environment. The global path planner generates a set of points that the robot can visit as per 

Euclidean path. However, due to the dynamic nature of the environment, the path between two 

points or the point itself can be occupied. Such situations are handled using an intelligent 

algorithm that lets the robot decide the course of action on-the-run. The major part of this 

research is focused on the dynamic element of the environment and will be discussed in later 

sections.  

1.5 Robot Operating System (ROS) 

The experimental work of this thesis was carried out in Robot Operating System (ROS). 

ROS is a set of software and libraries and tools that helps in building robotic applications. It 

comes with powerful developer tools to be used as robot core operating system. It also comes 

with powerful simulation tools with realistic physical conditions to mimic the real-world 

scenarios. The programming language used to carry out the experimental work of this thesis is 

Python. Some external libraries based on C++ were also used. 

1.6 Problem Statement 

During robot navigation we often encounter situations where an object moving in certain 

direction with certain velocity is likely to collide with the robot. Such collisions can be avoided 

by early prediction of positions based on positional and velocity vectors. This research is aimed 

to suggest optimized path based on early prediction of the moving objects using combination 

of conventional and velocity obstacle approach. Furthermore, we suggest improvements in 

already existing popular cell decomposition method for global path planning. 
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1.7 Objectives 

The objectives of this research work are as below: 

i. To map an unknown environment. 

ii. Generate a collision-free path that covers the whole environment with 

minimum possible overlaps. 

iii. Navigate the robot in the environment according to the generated path. 

iv. Generate local path in case any obstacle (moving or static) is encountered that 

was not present in the global map – and navigate the robot accordingly. 
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CHAPTER 2: LITERATURE REVIEW 
 

In this chapter, we discuss coverage path planning studies found in the literature. 

We first focus on different kind of approaches used in past studies for coverage 

planning problem. In the next section we will take a look at methods used in 

previous studies to avoid moving objects. Last, we discuss the surveyed methods in 

Section 2.4. 

Coverage path planning is an integral part of several robotic applications, such as vacuum 

cleaning robots [1], agricultural robots [2], painter robots [3], demining robots [4], lawn 

mowers [5], disinfecting robots [6], and window cleaners [7]. The research interest in 

mobile robotics (indoors and outdoors) has clearly motivated the research of coverage path 

planning. According to Zuo Llang Cao et al. [8] a mobile robot should fulfil following 

criteria for complete coverage operation: 

1. Robot needs to cover complete given area. 

2. Robot must not overlap previously visited paths and should fill the region 

in a smooth manner. 

3. Sequential operation is required which should not be repetitive. 

4. Obstacles must be avoided.  

5. Complicated motions should be disintegrated into simpler sub-paths. 

6. An “optimal” path is desired under available conditions. 

It was further noted that it is not possible to fulfil all mentioned criteria for an 

environment that is complicated in nature. 

Coverage path planning problem is related to the covering salesman problem, which 

itself is a variant of the traveling salesman problem. An agent is supposed to visit a 

neighborhood of each city instead of visiting each city. This minimizes the travelling 

distance for the agent [9]. With increasing dimension, the complexity of the problem 

increases resulting in drastic increase of computation time.  

Depending upon the completeness of coverage, algorithms can be classified as 

complete or heuristic. Furthermore, these algorithms can be classified into Offline or 

Online coverage algorithms. An offline algorithm makes use of prior environment 

knowledge like basic map and stationary objects. In real world, an offline algorithm 
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works well only until everything goes according to the prior information. However, 

small changes in the environment and moving objects require to have a more 

intelligent algorithm which is termed as an “Online Algorithm”. Online algorithms 

make use of sensors in real-time. Therefore, such algorithms can also be called 

sensor-based coverage algorithms. 

Many studies on coverage path planning can be found in the literature. Also, some 

authors have surveyed those studies in the past. In his survey, Choset [10] concluded 

that most complete coverage algorithms used an exact cellular decomposition, either 

explicitly or implicitly, to achieve coverage. Thus, he organized the coverage algorithms 

into four categories: heuristic and approximate, partial-approximate and exact cellular 

decompositions. 

C. S. Tan et al. [11] discussed many approaches used until recent years. These cover 

classical approaches like Random Walk, Artificial Potential Field, Sampling based 

and search-based methods like A star, D star and other such variants. The review 

article also discusses modern methods like Genetic Evolution, Swarm Intelligence, 

Neural Networks and Reinforcement Learning and Deep Learning. 

Closely reviewing different methods used in the past, the analyzed methods classified as: 

heuristic and randomized approaches (section 2.1), cellular decompositions (2.2), other 

approaches (2.3). Finally, we focus on online path planning techniques for avoiding 

obstacles (2.4) as primary focus of this thesis is on novel approach based on proportional 

navigation-based method for avoidance of moving objects. 

2.1 Heuristic and randomized approaches 

In order to solve coverage problem, randomized approaches are among the few ap-

proaches that provide almost complete coverage. Though such approaches are poor in 

optimization but they are largely used in applications like vacuum cleaning. Figure 2.1 

shows a sample random coverage path. 
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Figure 2.1: Randomized approach to coverage path planning. 

 

Randomized approach has some advantages [10]. Such approach does not require 

expensive sensors like cameras RGB-D or others. Only sensor required is to detect edges 

in order to avoid obstacles. Additionally, random approach is based on a very basic 

algorithm that does not require computational complexity. However, randomized approach 

is very much in-efficient in terms of energy and time consumption. Moreover, when 

coverage area is large enough, time required to solve complete coverage problem tends 

to infinity making system practically useless. 

2.2 Cellular decompositions 

In cellular decomposition, the area to be covered is ‘decomposed’ into smaller and 

simpler sub-divisions that can be covered using simple motions like back-and-forth or 

spiral. This guarantees complete coverage as the robot covers each sub-divided region 

one after the other. A common boundary between two cells means they are adjacent. When 

cells are represented in a hierarchical form in terms of adjacency, it is called as adjacency 

graph. 

Cellular decomposition algorithms have been classified into: approximate, semi-

approximate, and exact cellular decompositions [12]. See figure 2.2. 
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(a) Free space with four obstacles (b) Approximate cellular decomposition 

(c) Semi-approximate cellular 

decomposition 

(d) Exact cellular decomposition 

Figure 2.2: (a) Free space with obstacles, (b) ACD of free space defined in (a), (c) SCD and 

(d) Exact cellular decomposition 

 

2.2.1 Approximate cellular decomposition (ACD) 

In approximate cellular decomposition (ACD), the map is sub-divided into same-

sized approximated occupancy grids. Algorithm is then applied to each grid. Since the 

cells are of same size and shape, and each grid is an approximated depiction of the actual 

space the resultant is prone to errors [13]. 

The first ACD model was proposed by Hans P. Moravec and Alberto Elfes [14]. In this 

model cells were decomposed into grids of same size and shape. 

Zielinsky [15] came up with a different approach where a specific number was assigned to 

each grid of the space using a distance transform algorithm. Gradient descent rule was 

then applied to achieve complete coverage of the path. 

Gabriely and Rimon [16]  proposed the Spiral-STC algorithm. In Spiral-STC algorithm, 

workspace is subdivided into cells. The robot starts moving in an arbitrary direction 
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and checks for unvisited free cells in 4-neighborhood cells. The preference is set in 

anticlockwise direction. However, this approach did not cater for the partially 

occupied cells. A similar approach was used by E. Gonzalez et al. [17] in BSA 

algorithm. This approach adds a ‘back-tracking’ mechanism to the previously 

proposed Spiral-STC algorithm. Backtracking occurs when all other 3 cells in the 

neighborhood are either visited or occupied. The algorithm chooses previously 

visited cell as least preferred cell. The algorithm continues to append path until 

start position is reached – guaranteeing complete coverage. 

 

2.2.2 Semi-Approximate Cellular Decomposition (SCD) 

In semi-approximate cellular decomposition (SCD), the cells are partially 

discretized with fixed width but they can have different shapes from top and bottom. 

Figure 2.2 (c) shows how cells discretization generally works in SCD model.  

Each discretized cell is covered using regular zigzag movements. As cell discretization is 

a randomized approach, in a way, it does not guarantee cell coverage in a single pass. 

Therefore, in order to visit regions that are left unvisited, the robot may require to visit 

some parts of the cell twice or even more. 

 

2.2.3 Exact cellular decomposition 

 

The exact cellular decomposition method is the most advanced method among 

other decomposition techniques. This method guarantees complete coverage with lesser 

revisits to the same points. In this method the target space is divided into a set of cells 

which are unique in size and shape. These cells are non-intersecting, and therefore, their 

union accounts for the environment that needs to be visited by the robot. Since the cells 

do not contain obstacles within, navigation controller model for the robot is much simpler 

in comparison to the methods discussed above. 

Exact cellular decomposition can be achieved through different techniques, some of 

which have been discussed below: 
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2.2.3.1 Trapezoidal decomposition 

 

Trapezoidal decomposition is a popular exact cellular decomposition technique, 

which can guarantee complete coverage [12]. The robot’s free space is decomposed into 

trapezoidal cells. Coverage can easily be achieved with back-and-forth motions due to 

trapezoidal shape of the decomposed cells. Since this technique generates trapezoidal 

cells, the obstacles are required to be polygonal. Additionally, this technique requires 

prior knowledge of the environment so it can only be applied offline. 

 

Consider a polygonal work area as shown in Figure 2.4. As per trapezoidal decomposition 

algorithm, the work area and its adjacency graph are shown in figure 2.5. Two cells are 

said to be adjacent if they share the same boundary. Each decomposed space (d1 to d15) 

in adjacency graph can be covered using back-and-forth motion to achieve complete 

coverage. However, it is worth noticing that for each parent node with two (or more) child 

nodes, a decision needs to be made in order to prioritize the visiting order. This order can 

be manipulated in order to optimize the coverage problem. 

 

Figure 2.3: Given polygonal work area. 

 

Figure 2.4: Trapezoidal decomposition for the work area above. 
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Figure 2.5: Adjacency graph for the work area in Figure 2.3. 

 

2.2.3.2 Boustrophedon Cell Decomposition (BCD) 

 

Trapezoidal decomposition gives complete coverage solution but it has one major 

drawback that the decomposed cells are in large number. Some of the cells can be 

aggregated into a single larger cell to achieve more efficient coverage. For example, in 

the left side of Figure 2.6 the robot needs to make one additional lengthwise motion to 

achieve complete coverage. 

 

Two cells Aggregated (single cell) 

 

  

 

 

 

 

 

Figure 2.6: With fewer cells shorter paths are obtained. 

 
To address this issue, Choset and Pignon [18] introduced the boustrophedon cell 

decomposition approach, where back-and-forth motions are used. In boustrophedon 

decomposition, regions are “decomposed” into sub-regions if there is allowance for 

extension of vertical line both upward and downward in free space (Figure 2.8). These 

vertices are termed as critical points. 

 
 

 

 

 

Figure 2.7: A boustrophedon path is composed of back-and-forth motions. 
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Figure 2.8: Trapezoidal decomposition (left) and boustrophedon decomposition (right) 

for the same space. Each cell can be covered with simple back-and-forth motions in both 

cases. Path is shorter in BCD. [18] 

It is an offline method i.e. it can only be applied to environment with prior knowledge. 

2.3 Other approaches 

Other than decomposition techniques, researchers have proposed many other interesting ideas, 

some of which are discussed below. 

2.3.1 Artificial potential fields 

Some approaches to coverage path planning use Artificial Potential Fields (APF). 

Pirzadeh and Snyder [19] proposed an indirect control strategy to achieve complete 

coverage using APF. The algorithm discretizes the environment and robot motion. The 

robot motion is only restricted to left, right, up and down motions. Diagonal neighbors 

are not considered. Most APF-based approaches encounter local-minima problems so 

they are not complete.  

 

2.3.2 Neural networks and fuzzy logic 

Recently researchers have been working on solutions based on modern approaches 

like neural networks and Fuzzy Logic. Yasutomi et al. [20] presented a learning based 

CCPP approach. The robot using this approach could operate in an unknown environment 

to map it and avoid obstacles. However computational complexity of this model makes 

it un-suitable for complicated environments and it can only be used for structured indoor 

environments. 
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Tse et al. [21] proposed a neural network model that generates path through back 

propagation. The robot memorizes the previously used path during cleaning process. If 

new map is detected the path memory is cleared. 

Lang et al. [22] proposed a Fuzzy Logic based model. However, definition of fuzzy 

rules for such model was a challenge due to which the system saw problems in path as it 

was not smooth at turning and traversing. Fu and Lang [23] later came up with the motion 

error solution but un-structured complex environments remained a challenge even for 

that model. 

2.4 Summary 

Several methods discussed above guarantee complete coverage online, that is, they 

can be used to cover all points on the free space of unknown environments. Furthermore, 

some of those methods account for kinematic constraints on the vehicle and also efforts 

have gone in optimization of the coverage path. However, a universal algorithm that 

guarantees an optimal path has not yet been developed. 

Different aspects of studied algorithms and approaches are briefly explained in the 

tables given below.
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Table 2.1: Summary of the analyzed CCPP methods with Approximate cellular decomposition (ACD) and SCD.  

 Article Algorithm Completeness On/Offline 
Prior knowledge 

required 
Remarks Intended application 

A

C

D 

[24] N.A PC Online Yes 

kinematic 

constraints are not 

accounted for 
Mobile robotics 

[25] N.A PC Online No  Mobile robotics 

[17] N.A Full Online No 
Partially occupied cells 

are also filled Mobile robotics 

[26] N.A Full Online No  Mobile robotics 

S

C

D 

[27] N.A Not complete Online No  
Underwater 

environment 

Table 2.2: Summary of the analyzed CCPP methods with exact cellular decomposition (ECD).  

Article Algorithm Completeness On/Offline Prior knowledge required Remarks Intended 

application 

[12] TCD Full Offline Yes 
Probably the most popular 

ECD. 2D spaces 

[18] BCD Full Offline Yes Relatively easy to implement 2D spaces 

[28] MCD Full Offline Yes  Generic 

[29] 

 

 

[30] 

MCD 

 

 

N.A 

Full 

 

 

Full 

Online 

 

 

Online 

No 

 

 

No 

First online (sensor-based) 

ECD proposed. 

Alternative critical point 

detection method to [28] 

Generic 

 

 

Generic 

[31] N.A 
 

Full 

 

Online 

 

No 

Improves sensor-based 

Morse decomposition by 

detecting critical points also 

on non-convex obstacles 

 

Mobile 

robotics 
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[32] MCD + GVD Full Online No 2-technique combination Generic 

[8] N.A Full Online Yes 

Requires the boundary of 

obstacles and walls in 

advance 

Lawn 

mowers 

[33] CC RM Full Online No  Mobile 

robotics 

[34] N.A Not complete Offline No  
Mobile 

robotics 

[35] N.A Not complete Online No  
Mobile 

robotics 

 

 

 

Table 2.3: Summary of the analyzed CCPP methods which don’t use cellular decomposition, NN or Fuzzy Logic. 

 Article Algorithm/ 

method 
Completeness On/Offline 

Prior knowledge 

required 
Remarks Intended application 

A

P

F 

[19] N.A Not complete Offline Yes Local minima issues exist n/a 

T

B

M 

[36] N.A Not complete Offline Yes 
Not complete. Unable to 

handle environmental 

changes. 

Generic 

[37] N.A Full Offline Yes  Generic 
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Table 2.4: Summary of the analyzed CCPP methods which use neural networks and fuzzy logic approaches 

 

Article Algorithm/ 

method 
Completeness On/Offline 

Prior 

knowledge 

required 

Handles non 

polygonal obstacles 
Remarks Intended 

application 

[20] NN 
Not 

complete 
Online No Yes  

Mobile 

robotics 

[21] NN 
Not 

complete 
Online No Yes  

Mobile 

robotics 

[22] Fuzzy logic 
Not 

complete 
Online No Yes  

Mobile 

robotics 

[23] Fuzzy logic 
Not 

complete 
Online No Yes  

Mobile 

robotics 

[38] NN Full Online No Yes 
Parameter setting 

dependent model 

Mobile 

robotics 

[39] NN Full Online No Yes 
Parameter setting 

dependent model 

Mobile 

robotics 
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Table 2.5: Summary of the analyzed CCPP methods which use miscellaneous approaches 

Article 
Algorithm/ 

method Completeness On/Offline 

Prior 

knowledge 

required 

Handles non 

polygonal 

obstacles 

Remarks Intended 

application 

[40] SSA Full Online Yes Yes 
Prior knowledge of the 

environment required. Generic 

[41] Heat trail Full Online No Yes 

Requires heater effectors to 

mark the path and a 

temperature sensor to 

determine previously 

marked areas. 

Mobile 

robotics 

[42] 

3-

component 

model 

Not 

complete 
Online No Yes  

Cleaning 

robots 

[43] GA Full Offline Yes No  Generic 

[44] 
2-level path 

planning 
Not 

complete 
Online No Yes Interesting 2-level approach 

Lawn 

mowing 

[45] SMA Full Offline Yes Yes Agricultural field 
Agricultural 

field 

[45] PRA Full Online Yes Yes Agricultural field 
Agricultural 

field 
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CHAPTER 3: METHODOLOGY AND EXPERIMENTAL SETUP 
 

The experimental setup consists of a two-wheeled differential drive robot modelled and 

simulated in Robot Operating System (ROS) in Linux (Ubuntu) environment. The robot also 

has a caster wheel for balancing purpose. A LiDAR sensor has been installed on the robot 

chassis that is able to measure distance in all directions (360 degrees). The environment 

consists of boundary walls and objects. The following flowchart summarizes the steps that are 

performed in this setup: 

 

 

Figure 3.1: Experimental Setup Process 

3.1 Navigation of Robot for Unmapped Environment 

When the robot is first introduced in an unknown environment, it is required to map the 

area in order to plan path. The robot moves in the environment either by manual control using 

keyboard or automatically through programmed script written in Python that makes use of the 

LiDAR sensor in order to avoid obstacles. The script is based on random walk technique.  

Unknown 
Environment

Navigation of 
Robot in 

unmapped area

Mapping the 
environment

Global Path 
Planning

Navigation of 
robot in Mapped 

Environment

Local Path 
Planning

Navigation based 
on Altered Path
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3.2 Mapping of the Environment 

When the robot is moving in the environment, the values from LiDAR sensor and 

odometry frame in ROS are translated into a graphical representation that contains information 

about the environment in terms of occupied and free spaces. This is done by running ROS’s 

Gmapping package in the background while the robot is navigating. Once the whole 

environment is covered the Gmapping package is closed which generates the map as an image. 

This image is processed using Python code and converted to a binary image as a representation 

of occupied and free spaces. 

 

 

Figure 3.2: Mapped environment in ROS RViz 

3.3 Global Path Planning 

Once the robot completes its lap in the unknown environment, the Gmapping package 

generates the occupancy map in form of an image. Each pixel in the image represents a certain 

distance. The occupied spaces are represented in black whereas the free space is represented 

in white color. However, there are certain distortions in the image and some of the boundaries 

have gaps which need to be catered before any further operations are done. For this reason, the 

image is first treated using morphological operations like dilation or erosion. Since our main 

concern is closing of boundaries – which are represented in black color, we applied erosion 
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technique – as a result of which the map output came out to be well described. Another 

advantage of enhancing the boundaries is that the robot can now have a safe distance in order 

to avoid colliding with the walls and objects due to different navigational errors. 

The global planner function generates a set of points that need to be visited in order to 

complete coverage problem. The detailed explanation of global planner function is given in 

the next chapter. 

3.4 Navigation of Robot for Mapped Environment 

As mentioned earlier, the global planner function outputs a set of points in actual order. 

The navigation function receives the input in form of a point array. The robot continues to 

move in the direction of the immediate next unvisited point until it reaches its final goal. In 

other words, each visited point in the array acts as local start point for a local goal point. Once 

visited, the previous goal point becomes start point for the next goal point. Between start and 

goal point, the function keeps looking for any obstacles that may disturb the normal trajectory 

of the sequence. If obstacles are detected, the trajectory that needs to be followed is determined 

by the local path planning function. 

3.5 Local Path Planning 

The global path planner generates points as waypoints. This ensures that the robot visits 

each point in order to cover the complete map. However, in certain cases the shortest distance 

between two waypoints may be blocked by obstacle or it can be “unsafe” due to dynamic 

factors like moving obstacles. For this reason, we need a local planner that takes into account, 

the dynamic factors, and generates waypoints between two global points. We propose a two-

level approach for generating local path that will be discussed in detail in Chapter 5. 
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CHAPTER 4: MAPPING AND GLOBAL PATH PLANNING 
 

In order to plan path, we need to have a map initially. Whether the map is of complete 

environment or a small portion within the coverage environment, it is necessary in order to 

have some knowledge for decision. However, if the robot explores new map areas while 

navigating, it is said to be online path planning. Any path planned due to prior information is 

known as offline path planning as already discussed in Chapter 2. 

 

4.1 Mapping and Image Processing 
 

Our model is based on priorly mapped environment. But in order to compare results for 

an actual or simulated environment we need to have an environment with traceable and known 

features. Therefore, we create a simulated environment in ROS Gazebo and use built-in SLAM 

Gmapping package to map the environment. The robot is navigated in the simulated 

environment by user input or through random walk process using on-board LiDAR sensor. 

During robot motion, readings from LiDAR sensor and wheel odometry data are used to build 

map of the environment. Once the environment is fully mapped the map is saved as image in 

local disk. 

 

Figure 4.1: Map of environment generated by the SLAM Gmapping package 
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The map generated by SLAM Gmapping package generally contains three colors. Gray 

color shows unexplored areas, black means the area is occupied by objects and white shows 

explored free spaces. The SLAM Gmapping package generates another file containing some 

important data that explains the pixel density and the map origin information. In order to 

perform path planning we first need the image to be cropped according to our needs such that 

unrequired areas are discarded. This also reduces processing power required for the next step. 

In order to crop image, the first thing we need to do is to convert the image from 

grayscale to binary image. The threshold was set such that the gray area was also treated as 

occupied space. In the next step we used line sweep approach to ‘scan’ the image from one 

side to the other in order to detect occupied cells. This simple approach was enough to detect 

farthest boundary pixels the locations of these cells helped us crop the useful part of our map. 

 

Figure 4.2: Cropped image after processing the useful map area 

 

Since we will require the image to be scaled smaller in next steps the boundaries needed 

to be enhanced such that we do not get boundary details missed. Another advantage of thicker 

boundaries would be the safety factor for the robot. Boundaries were enhanced using 

morphological operators of dilation and erosion using OpenCV library. First erosion operator 

was applied to remove noise near boundaries and then dilation for having smooth, uniform 

boundaries. 
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Figure 4.3: Enhanced boundaries of given map after applying morphological operators 

 

4.2 Global Path Planning 
 

The map was first decomposed into sub-parts using Boustrophedon Cellular 

Decomposition (BCD) technique [18]. For illustration purposes, consider Figure 4.4 where 

each decomposed cell has been shaded and named differently for referencing later. 

 

Figure 4.4: Decomposed cells after applying BCD algorithm 
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The robot starts from cell A so the normal order, according to BCD algorithm, by which 

these cells should be visited comes out as A-B-C-D. We continue with this convention for 

generating the global path, however within the path planning function, we define a cost 

function which will decide whether or not this sequence is to be followed exactly or partially. 

The map is then divided into square sized grids with size of grid matching to that of the 

robot. This size can be altered according to the size of the robot or if any overlapping or gap is 

desired. The global path planner function starts from start point of cell A. From there the 

planner function checks state of four neighbors (left, right, front, back). The states are stored 

in a n x m sized array where n is the number of column grids and m is the number of row grids. 

There are 3 possible states: free, occupied and visited. Unvisited states that are free are also 

categorized as free. At every fixed obstacle the path must be such that it makes a u-turn. The 

path is generated in form of a 2d point list (Figure 4.5). Therefore, each item in list is actually 

the location of grid in the map. 

 

Figure 4.5: Route list containing index of each grid in ascending order 

 

4.3 Removal of redundant points from Route array 
 

Figure 4.5 shows the path generated by global planner function. However, strictly 

following a route that consists of so many coordinates can greatly affect the navigation function 

of robot. Moreover, a navigation function that keeps record of visited and unvisited nodes of 
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this many closely spaced grids may consume a lot of memory. For this reason, critical points 

were identified that would best define the path. Figure 4.6 shows the updated list of members 

of route array for global path.  

 

Figure 4.6: Route list after removing unnecessary members 

 

 Two options were considered for removing redundant points. The first used method 

was from the equation of line. As equation of line is given by: 

(𝑦 − 𝑦1) =  
𝑦2 − 𝑦1

𝑥2 − 𝑥1
(𝑥 − 𝑥1) 

 Considering scenario where the robot is at P2 (Figure 4.5), 𝑦1 is the y-coordinate of P1, 

𝑥1 is the x-coordinate of P1, 𝑦2 is the y-coordinate of P3, 𝑥2 is the x-coordinate of P3, and 𝑥 and 𝑦 

are the x and y coordinates of P2. If the equation above satisfies, it means P2 lies within line 

P1 – P3 therefore we can remove P2.  

 Similarly, we iterate through all the sequence to remove unnecessary points in our path. 

As a result, route list is updated as seen in Figure 4.6. 

 Another approach that we used for reducing the number of waypoints was simpler. 

Considering the same example we used previously, if the point is consideration is P2, it is said 

to be in the same line as P1 – P3 if it follows this condition: 

dist(P1P2) + dist(P2P3) = dist(P1P3) 
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 The above condition is only true if P2 lies in the Euclidean path of P1 and P2. Otherwise, 

it will form a triangular shape in which sum of two sides is always greater than the third side. 

Therefore, the condition to retain P2 is as follows: 

dist(P1P2) + dist(P2P3) > dist(P1P3) … (1) 

 In our experimental work we used both methods. It was seen that the first method took 

longer processing time than the latter, therefore, we used the distance method instead of point 

on line. 

 It is also important to mention here that due to some assumptions and possible errors in 

image processing techniques used – it is often not possible for such conditions to be perfectly 

met. Therefore, a certain safety factor must be used. Therefore equation (1) can be written as: 

dist(P1P2) + dist(P2P3) > dist(P1P3) + µ 

  Where µ is the factor by which a certain grid may appear deviated even though it may 

be practically be considered to be in line with the adjacent grids. 

 

4.4 Modified BCD Approach for Global Planner 
 

The flowchart diagram of the global planner function is given in Figure 4.7. The global 

path planner function generates path in similar way as explained previously. However, when 

the path planner function is generating paths at the boundary of two different (decomposed) 

cells the function checks the cost for end points of both cells from current location. This cost 

function is simply the Manhattan distance between current point to the end point. In example 

quoted above, the cost function for global path planner function at boundary CD while the 

robot is covering cell C, is calculated as:  

𝐶𝑜𝑠𝑡𝐶𝐷 = 𝑥𝐷 +  𝑦𝐷 −  𝑥𝑐𝑢𝑟𝑟 −  𝑦𝑐𝑢𝑟𝑟 

𝐶𝑜𝑠𝑡𝐶𝐶 = 𝑥𝐷 +  𝑦𝐷 − 𝑥𝑐𝑢𝑟𝑟 −  𝑦𝑐𝑢𝑟𝑟 

𝜎 = 𝐶𝑜𝑠𝑡𝐶𝐷 −  𝐶𝑜𝑠𝑡𝐶𝐶 

 

If σ >= 0 the path planner function will continue to cover cell C before moving on to 

cell D. Otherwise the path planner will jump to cell D before covering remaining part of cell 

C. After covering cell D completely, the path planner function will continue covering cell C 

from the point where it left. 
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a. Normal BCD Approach b. Modified BCD Approach 

Figure 4.8: Cost of Modified BCD is lesser as compared to normal BCD 

 

Figure 4.8 shows how modified Boustrophedon Cellular Decomposition approach reduces the 

distance that needs to be covered by the robot in order to cover the same area that normal BCD 

approach covers in travelling greater distance. This result is further discussed in Chapter 6. 
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CHAPTER 5: NAVIGATION AND LOCAL PATH PLANNING 

 

As discussed in previous chapter, route generated by global path planner is an array con-

taining points which need to be visited by the robot in a proper sequence. The navigation func-

tion receives this array as an input. In Section 4.3 we discussed how we reduced the number 

of points in route array. In the next section we will discuss how reducing the number of way-

points improve our navigation while also improving efficiency in terms of computational com-

plexity. 

 

5.1 Navigation 

The navigation function navigates the robot to the waypoints defined in route array. 

This handles the robot poses and velocity by which the robot must move in order to achieve 

its goal. Each recently visited point acts as the start point for the next-in-sequence point 

referred to as local goal. In theory, large number of waypoints should not affect the robot 

motion. However, in real world scenario, over-defined path can cause many problems for the 

navigation function. When a large number of waypoints are defined, it causes the navigation 

function to strictly follow each waypoint. This causes robot to satisfy conditions for a very big 

number of local goals. Small deviations from local goal may result in robot missing the target. 

In order to fulfil requirement of visiting the local goal, the robot may need to make big turns - 

unnecessarily wasting energy and time. 

We used the route array with reduced waypoints as discussed in Section 4.3 for the 

purpose of navigation. The first element in route array is the start point of our planned path. 

When any point is passed to the navigation function, it instructs the robot to position itself 

towards that point. Once the pose conditions are met, the navigation function then instructs the 

robot to start moving in the front direction. Any moving obstacles or static obstacles that were 

not part of the global map are handled by local planner and will be discussed in next section. 

Once the robot reaches its local goal, the said waypoint is marked as visited. This point 

then acts as start point for the next-in-sequence waypoint which is the new local goal. The 

previously explained process of pose setting for local goal is repeated for this point and the 

robot continues navigation until the last point in global path is visited. Figure 5.1 shows how 

reduced waypoint approach saves unnecessary moves, time and energy. 
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a. Robot deviates from local goal b. Robot sets pose to rectify error 

  

c. Robot follows remaining route d. Smooth navigation with reduced 

waypoints 

Figure 5.1: Navigation with all waypoints (a, b, c) and reduced waypoints (d) 

 

5.2 Local Path Planning 
 

While robot is passing through the waypoints, it may encounter obstacles that were not 

defined in global map. This could be due to change in configuration of the obstacles or addition 

of moving or static obstacles in the environment. Local path planner is a function that runs 

along the navigation function and keeps check on the obstacles. If an obstacle is encountered 

within a set radius, this function directs the robot to change its path in order to avoid collision. 

It is pertinent to mention here that static obstacle is a special case of moving obstacle where 

velocity of obstacle is zero. 

A two-level approach was used for avoiding obstacles. Level 1 check ensures whether 

or not the obstacle may hinder the regular path of the robot. Basic reason for using two-level 

approach is the computational simplicity of level 1. The second level is computationally 

expensive velocity obstacle approach and is only triggered if level 1 signals possible collision. 

Moreover, level 1 only triggers if single obstacle is detected. In case of multiple obstacles, the 
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local planner directly calls for the velocity obstacle approach bypassing level 1. Figure 5.2 

shows a typical scenario where an obstacle is detected within a set radius around the robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Positional and velocity vectors of Robot (R) and moving object (O) 

 

5.2.1 Intersection of Lines Approach (Level 1) 

 

The first level approach is based on the principles of intersection of lines. Positions of 

robot and obstacle are obtained at two time intervals t1 and t2. With the help of these four 

points, we can calculate the intersection point of the robot and the moving obstacle. Figure 5.3 

explains the simple approach using two-point form of equation of line. 

 Since all non-parallel lines intersect at some point, this data is not enough to assume 

whether or not the robot and the obstacle will collide. In order to be able to come to the 

conclusion, we found the time required for the robot and the obstacle to reach the point of 

intersection. If the time difference is in safe range, we continue with the normal motion of 

robot, otherwise we generate local path using Velocity Obstacle (VO) approach herewith 

referenced to as level 2 approach. 
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Figure 5.3: Calculation of intersection point of robot and moving obstacle 

 

5.2.1.1 Calculating Point of Intersection 

 

The calculations done in order to find point of intersection are explained below: 

 

Suppose L1 and L2 represent the lines of motion of the robot and moving obstacle respectively. 

 

L1:  a1x + b1y + c1 =0  … (1) 

L2:  a2x + b2y + c2 =0  … (2) 

 

Suppose lines L1 and L2 intersect at xo and yo. Equation (1) and (2) can be written as: 

 

L1:  a1xo + b1yo + c1 =0 

L2:  a2xo + b2yo + c2 =0 

 

Point of intersection 

a1x + b1y c1 =0 

Line 1 (Robot) 
a2x + b2y c2 =0 

Line 2 (Obstacle) 

(xo , yo) 
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By Cramer’s Rule: 

 

𝑥0

𝑏1𝑐2 − 𝑏2𝑐1
=

−𝑦0

𝑎1𝑐2 − 𝑎2𝑐1
=

1

𝑎1𝑏2 − 𝑏1𝑎2
 

 

Where, 

𝐿1:   𝑎1 =  𝑦1 −  𝑦2 ,  𝑏1 =  𝑥2 −  𝑥1 ,  𝑐1 =  𝑦1𝑥2 −   𝑦2𝑥1 

𝐿2:   𝑎2 =  𝑦1 − 𝑦2 ,  𝑏2 =  𝑥2 − 𝑥1 ,  𝑐2 =  𝑦1𝑥2 −   𝑦2𝑥1 

 

𝐷 = 𝑎1𝑏2 − 𝑎2𝑏1 

𝐷𝑥 = 𝑐1𝑏2 − 𝑐2𝑏1 

𝐷𝑦 = 𝑎1𝑐2 − 𝑎2𝑐1 

 

Lines L1 and L2 will only intersect if D ≠ 0 

 

𝑥0 = 𝐷𝑥
𝐷⁄  

𝑦0 =
𝐷𝑦

𝐷⁄  

 

If L1 and L2 are parallel D=0, resulting in (inf, inf) value for point of intersection which suggest 

that parallel lines can not intersect. 

 

5.2.1.2 Predicting collision between Robot and Obstacle  

Till this point we have obtained the line of intersection of the robot and the obstacle. The 

next step is to use the velocities and current locations of robot and the obstacle to obtain the 

time required to get to the point of intersection for each the robot and the moving obstacle. This 

is done by dividing distance from current location to the point of intersection by the magnitude 

of velocity. 
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𝑡𝑜𝑏𝑠 =  
𝑑𝑖𝑠𝑡(𝑃𝑜𝑏𝑠 𝑃𝑖𝑛𝑡)

|𝑣𝑜𝑏𝑠|
 …. (3) 

𝑡𝑟𝑜𝑏 =  
𝑑𝑖𝑠𝑡(𝑃𝑟𝑜𝑏 𝑃𝑖𝑛𝑡)

|𝑣𝑟𝑜𝑏|
 …. (4) 

𝛼 =  
1

|𝑡𝑟𝑜𝑏−𝑡𝑜𝑏𝑠|
 …. (5) 

Where 𝑡𝑟𝑜𝑏 and 𝑡𝑜𝑏𝑠 is the time taken by the robot and obstacle, respectively, to reach the 

point of intersection., 𝑃𝑜𝑏𝑠 is the location of obstacle at sampling instant, 𝑃𝑟𝑜𝑏 and 𝑃𝑖𝑛𝑡 are the 

positions of robot and point of intersection. 𝑣𝑟𝑜𝑏 and 𝑣𝑜𝑏𝑠 are the velocities of robot and the 

moving obstacle. 

Based on the time difference we calculate the collision factor (𝛼). For safety purpose the 

value of collision factor must be less than 
1

4
 which essentially means that there must be a 

difference of at least 4 seconds between 𝑡𝑟𝑜𝑏 and 𝑡𝑜𝑏𝑠. Values greater than 
1

4
 mean there is a 

possible chance of collision, and therefore, the said case is referred to the second level approach 

– the velocity obstacle approach, which will be discussed in the next section. 

It must also be noted that the collision factor of 
1

4
 is derived mathematically and 

experimentally for the experimental setup used in this study where robot radius is 16 cm and 

the velocities of the robot and obstacles are between 20 – 30 cm/s. Special cases where angle 

between the two objects is less than 15 degrees are also dealt with smaller values of collision 

factor because in such scenario the obstacle and robot may collide even before reaching the 

point of intersection (collision). 
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5.2.2 Velocity Obstacle Approach (Level 2) 

The intersection of lines approach, discussed previously, acts as a filter for referring 

complicated scenarios to level 2 approach known as the Velocity Obstacle Approach [46]. The 

velocity obstacle (VO) approach addresses the problem of path and motion planning in 

changing environments. Path planning becomes very difficult in dynamic environments, 

because it requires simultaneous solving of path while the robot is navigating. 

The VO approach restricts analysis to circular obstacles and robots. However, this 

essentially cannot be termed as limitation because all polygons can be represented by a number 

of circles [47].  

Consider robot A and obstacle B, shown in Figure 5.4 at time to moving with velocities 

vA and vB respectively. In order to proceed further, and to make visualizations simpler, let us 

consider our robot as a point mass. We do it by squeezing the robot A to a point and growing 

all other obstacles (in this case obstacle B) by the size of robot diameter. New radii or A is �̂� 

and that of B is �̂� . We define the set of colliding relative velocities between �̂� and �̂�  as 

collision cone (CCAB). 

𝐶𝐶𝐴𝐵 = {𝒗𝐴𝐵 | 𝜆𝐴𝐵 ∩ �̂�  ≠  ∅} … (1) 

Where 𝒗𝐴𝐵 is the relative velocity of robot �̂� with respect to �̂� (𝒗𝐴𝐵 =  𝒗𝐴 − 𝒗𝐵), and 

𝜆𝐴𝐵 is the line in direction of 𝑣𝐴𝐵. 

 

 

Figure 5.4: Robot A and Obstacle B moving with velocities vA and vB respectively [46] 
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Figure 5.5: Relative Velocity 𝒗𝐴𝐵 and collision cone 𝐶𝐶𝐴𝐵 [46] 

 

The collision cone is the planer area bounded by two tangents to �̂� from �̂� as shown in 

Figure 5.5. Any relative velocity lying within the collision cone i.e 𝜆𝑟 and 𝜆𝑓 will result in 

collision between the robot A and the obstacle B. If the relative velocity lies outside the velocity 

cone it is guaranteed to avoid the collision provided the robot and obstacle continue to move 

with the same velocities. 

5.2.2.1 Handling multiple obstacles 

The collision cone approach only handles single obstacle. In order to handle multiple 

obstacles, we need to develop relationship based on absolute velocities of robot A. This is done 

by adding velocity of obstacle B (𝒗𝐵) to each element of the collision cone 𝐶𝐶𝐴𝐵. In other 

words, we translate the collision cone by 𝒗𝐵 (Figure 5.6). 

𝑉𝑂𝐵 =  𝐶𝐶𝐴𝐵 ⊕ 𝒗𝐵 … (2) 

 Where ⊕ is the Minkowski vector sum operator as the velocity cannot be directly 

added to a group of elements. Here Minkowski operator means that we need to add the velocity 

𝒗𝐵 to each element of the collision cone 𝐶𝐶𝐴𝐵 individually. 
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Figure 5.6: 𝐶𝐶𝐴𝐵 is translated by 𝒗𝐵 to obtain 𝑉𝑂𝐵 [46] 

 

The velocity of the robot 𝒗𝐴  should be selected such that it is outside the velocity 

obstacle. This guarantees that the robot will not collide with the moving object B. 

𝐴(𝑡) ∩ 𝐵(𝑡) =  ∅ 𝑖𝑓 𝒗𝐴(𝑡) ∉ 𝑉𝑂(𝑡) … (3) 

As explained earlier, static object is a special case of moving object where velocity is 

zero. Therefore, in this case, if the obstacle is static, 𝒗𝐵 = 0 returns velocity obstacle identical 

to that of the collision cone. For multiple moving objects we take union of all the individual 

velocity obstacles: 

𝑉𝑂 = ∪𝑖=1
𝑛  𝑉𝑂𝐵𝑖

 … (4) 

 Where n is the number of obstacles and 𝑉𝑂𝐵𝑖
 denotes each individual velocity obstacle. 

The velocities that make the robot avoid collision then consists of the set of velocities that lies 

outside the velocity obstacles as given in Figure 5.7. 

In case of many obstacles, it is better to take prioritized entities into account for a certain 

time based on their distance from the robot and velocities. Velocity Obstacle calculates 

obstacle’s trajectory based on linear approximation, therefore using it to predict remote 

collisions may be inaccurate if the obstacle does not move along a straight line. That is also 

why approximation of farther obstacles is discouraged. Therefore, we separate possible 

collisions that take place before time t and after time t. This time t is defined as suitable time 
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horizon Th. All possible collisions that occur in time less than Th are termed as imminent 

collisions. To account for imminent collisions, we modify set VO such that set VOH is subtracted 

from it. 

𝑉𝑂𝐻 = {𝒗𝐴 | 𝒗𝐴  ∈  𝑉𝑂  ||𝑣𝐴𝐵|| ≤  
𝑑𝑚

𝑇ℎ
} … (5) 

Where 𝑑𝑚 is the shortest relative distance between A and B.  

 

Figure 5.7: Velocity obstacles 𝑉𝑂𝐵1
and 𝑉𝑂𝐵2

 

 

Figure 5.8: Velocity obstacle 𝑉𝑂𝐵 for short time horizon 



38 
 

The set VOH represents velocities resulting in possible collision after the time horizon. 

Figure 5.8 shows VOH removed for specific time interval in order to only consider velocity 

obstacles representing possible collisions within time horizon. 

 

5.2.2.2 Generating waypoints for local path 

The Velocity Obstacle VO helps us avoid velocities which result in possible collision. 

This helps us generate trajectory that does not fall in prohibited region. In order to find 

trajectory from start to goal position, random search method is used. In random search method, 

we start from the initial position of the robot and test with n number of positional vectors along 

360º search space. The magnitude of positional vector must be such that the robot can reach 

the end point from start point in time ∆𝑡 with velocity less than or equal to the maximum 

velocity the robot may attain. We used 20 number of samples for the search space, each at an 

angle of 18º from the adjacent vector. Our next maneuver needs to fulfil two conditions: the 

selected vector must not pe projecting inside the VO and the selected vector must result in 

position such that it is closest to the goal.  

 

 

Figure 5.9: Trajectory calculation for robot to reach goal avoiding moving obstacle 

 

Once a vector among search space is selected, we continue with the search method by 

search space method from the last vector until we reach our goal.  
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Figure 5.10: Trajectory calculated for single robot velocity obstacle 

 

The result seen in Figure 5.10 is the trajectory as seen in multiple frames considering 

obstacle velocity into account. The timestamp at each vector interval is calculated using the 

velocity and distance parameters. It is important to mention here that the velocity obstacle is 

time varying, therefore we also need to take the obstacle’s velocity, 𝒗𝐵 into account.  

𝑡𝑚 =  ∑ ∆𝑡𝑖

𝑚

𝑖=1

 

  

𝑑𝑚 =  ∑ |𝑝𝐴𝑖
|

𝑚

𝑖=1

 

 

Where 𝑡𝑚 is the calculated total time taken by robot from start position to 𝑝𝐴𝑚
, ∆𝑡 is 

the time robot will take to cover each positional vector, 𝑑𝑚 is the total distance covered by 

robot from start position to 𝑝𝐴𝑚
.  
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Figure 5.11: Velocity obstacle in multi obstacle scenario 

 

For multiple obstacle scenario the trajectory is calculated in the same way as for the 

single obstacle. However, the velocity obstacle in this case is simply the union of all velocity 

obstacles. The process of trajectory calculation is instantaneous, therefore any errors in 

previous calculations can be rectified in the next iteration.  

 

5.3 Integrating Local Path Planning with Navigation and Global Path 

Recalling Section 4.4 and Section 5.1, we identified critical points for our global path. 

The critical points define our path in the minimum possible waypoints. For n number of 

waypoints, the navigation function visits each point one by one, starting from first till nth. 

Between two global waypoints, the trajectory is handled by the local path planner. Depending 

on the obstacles, local path may either be handled by level 1 (Section 5.2.1) or level 2 (Section 

5.2.2) approach. The local planner outputs the next move waypoint to the navigation function 

which navigates the robot to that point. This process continues until local goal (next global 

waypoint) is reached. Figure 5.12 shows the flowchart diagram of the local path planner 

function and its linkage with global path planner and navigation function.   
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CHAPTER 6: RESULTS AND DISCUSSION 
 

 The experimental work was carried out in simulated environment of ROS Gazebo. The 

environment was mapped using onboard 2D LiDAR sensor under ROS RViz. For global 

planning the map was decomposed using Boustrophedon Cell Decomposition Approach and a 

set of global waypoints were generated. These waypoints were passed to the local planner 

where path between each global waypoint was handled by the local path planner. The local 

planner intelligently detects any obstacles in the environment – moving or static and generates 

trajectory for the navigation function to drive robot as per dynamic constraints. A two-level 

approach was used for local path planner in order to minimize computational complexity. The 

local planner communicates with the navigation function in order to move the robot towards 

the next waypoint.  

6.1 Simulation Environment 

The experiment was conducted in simulated environment of Robotics Operating System 

(ROS) Gazebo. The operating system used is Linux Ubuntu 20.04. The real-time simulation 

environment is shown in Figure 6.1. The robot is a two-wheeled differential drive robot with 

onboard 2D LiDAR sensor. ROS’s inbuilt odometry package is used for localization. The 

environment consists of walls and moving obstacles. 

 

Figure 6.1: Simulation environment in ROS Gazebo 
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6.2 Environment Mapping Results 

The SLAM gmapping package in ROS provides a good framework to build maps of the 

environment. It uses LiDAR and pose data from the odometry frame to generate 2D map of the 

coverage area. Pose data was gathered using two different methods, using inertial measurement 

unit (IMU) sensor package, and robot odometry frame. Since gmapping package does not 

support IMU, Hector SLAM package was used to generate map. However, hector SLAM 

consumes too much memory in comparison to the gmapping package. The main reason for that 

is the computational complexity involved in IMU. Results showed that gmapping technique 

generated map with 97% accuracy in comparison to hector SLAM’s 85% and with 5 times as 

much speed as IMU-based hector SLAM. The reason for such high accuracy of gmapping is 

that it uses data from the odometry frame which is the actual data pose data so any possible 

errors are only caused due to LiDAR data. Whereas in case of hector SLAM, the robot pose 

data is acquired from IMU which is not free from errors due to the computational complexity 

involved. 

 

Table 6.1: Comparison of Mapping techniques 

Desc SLAM Gmapping Hector SLAM 

 

Result 

  

Accuracy 97% 85% 

Computational 

Complexity 

Normal Very high 
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6.3 Global Path Planning Results 

The global path planning was based on Boustrophedon Cellular Decomposition approach 

for coverage area. In this work we proposed a modified BCD approach which allows the 

algorithm to jump to adjacent cells before it completes covering current cell if an optimized 

solution exists. Experimental results showed up to 25% performance improvement in terms of 

total distance covered by the robot covering same environment. Moreover, unlike other modern 

approaches, this method is not based on AI or neural networks so it is computationally 

inexpensive.  

  

a. Normal BCD Approach b. Modified BCD Approach 

Figure 6.2: Total distance covered reduced by modified BCD approach 

Example shown in Figure 6.2 shows reduction of about 3.25 meters of distance covered 

by the robot in about 6 square meter area. The total distance covered by the robot within these 

cells using normal BCD approach was 32.25m whereas the robot covered same area by 

travelling 29m using modified BCD approach. 

 

6.4 Local Path Planning and Navigation 

In this work we proposed a unique two-level approach in order to generate trajectory to 

counter moving or unexpected obstacles. Velocity obstacle approach is a popular method in 

mobile robotics to deal with moving obstacles. However, this approach is computationally 

expensive. We used a simpler intersection of lines approach as a filter to refer only complicated 

cases to the VO approach. Using this approach significantly improved the performance. As a 

performance indicator we ran two instances of the program on same PC - with the same moving 

obstacles and environment. First, we ran the code with velocity obstacle as the only approach 
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for local planner for our test map. Next, we completed navigation for the same environment 

using proposed two-level approach. Results seen in Figure 6.3 show real-time factor of latter 

increase by almost 15% as compared to the method where first approach was not used. This 

proves that our proposed method reduces stress on the processor.  

  

Velocity Obstacle Approach 

Real-time Factor 0.38 (Slower) 

Two-level Approach 

Real-time Factor 0.44 (Faster) 

Figure 6.3: Performance comparison between two-level and single level VO approach 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

 

In this work we discussed and analyzed different methods for coverage problem found 

in literature. Among those methods, Boustrophedon Cellular Decomposition was found to be 

the most popular cellular decomposition technique among researchers. Most modern coverage 

path planning methods that make use of Artificial Intelligence or Neural Networks are also 

based on BCD approach. However, all these methods suggest improvements in Boustrophedon 

Cellular Decomposition in their own way. We suggested an effective and computationally 

inexpensive technique that can reduce the distance that needs to be travelled by the robot in 

order to cover the environment. The number of waypoints generated by global planner were 

reduced to only critical waypoints in order for the navigation function to act smoothly and 

reduce the number of local goals.  

We also suggested a two-level approach in order to avoid moving obstacles. The first 

level is a memory efficient algorithm that refers only complicated cases to the level two based 

on Velocity Obstacles approach. This reduces stress on the processor and improves 

performance.   

Results obtained showed significant improvements in terms of performance and 

memory. Mapping, global path planning, navigation and local path planning - all modules were 

successfully tested in simulated environment of ROS. The environment was mapped prior to 

applying path planning technique.  

Some suggestions for future work are as under: 

1. Implementation in real world environment. 

2. Online path planning with no prior mapped environment. 

3. Integration of other sensors like RGB-D or Inertial Measurement Unit (IMU) 

for localization. 

4. Handling dynamic obstacles with non-zero acceleration. 
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