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ABSTRACT 

In recent years, deep learning has gained much popularity over traditional machine learning 

techniques in terms of accuracy and precision when trained on substantial amount of data. In this 

research, a state-of-the-art deep learning technique has been employed for classification and 

prediction of cassava leaf diseases. Being the second largest producer of carbohydrates in the 

world, cassava plant has become an important source of calories for people in tropical regions, but 

it is highly susceptible to viral, bacterial, and fungal attacks resulting in stunted plant growth and 

hence the yield. The dataset that is used in this research is taken from a Kaggle competition 

containing 21,397 images of cassava plant leaves belonging to 5 classes: Cassava Bacterial Blight, 

Cassava Brown Streak Disease, Cassava Green Mottle, Cassava Mosaic Disease and Healthy leaf. 

In this research work, EfficientNet models were trained using transfer learning approach. Further, 

to remove background noise, Segmentation was performed using U-Net to extract only the leaves 

from images. Since the dataset was imbalanced, detailed image augmentation was also performed 

to increase the sample size of minority classes. Our model provided reasonable performance with 

balanced dataset giving 89.97% accuracy. However, original (imbalanced) dataset results were 

also comparable to balanced dataset giving mean f1-score of 0.89 and mean accuracy score of 

89.73% plus 0.82 standard deviation on segmented dataset trained on EfficientNet model B0 using 

7-fold cross validation. For comparison purpose, Kaggle 2019 dataset for cassava disease 

classification was used, that gave mean accuracy score of 89.41 ± 1.62 using 7-fold cross validation 

and f1-score of 0.9 leading all state-of-the-art results on same dataset.



 

 

 

Chapter 1  

INTRODUCTION 

 

Cassava, scientific name “Manihot esculenta” also known as manioc, tapioca or yuca is a starchy 

root crop native to North America, However, it is mostly grown in Africa and some parts of Asia 

as well. It is cultivated throughout the tropical world for its tuberous roots [30], from which cassava 

flour, breads, tapioca, a laundry starch, and other beverage are derived [22]. It is the third largest 

producer of carbohydrates after wheat and corn. However, in terms of carbohydrates production, 

its production rate is about 40% higher than rice and 25% more than corn [32]. This is because of 

the plant’s ability to resist severe weather conditions. As a result, it yields more production in low 

cost becoming major source of income for many poor farmers. However, it is highly vulnerable to 

many viral, fungal, and bacterial attacks limiting production of crops and hence the yield. According 

to the Food and Agriculture Organization of the United Nations (FAO), cassava is currently the 

third most substantial supplier of calories in the tropics, after wheat and corn, making it a source of 

livelihood for more than 800 million people and hence, it is also considered as a source of income 

generation in Africa, Asia, and Latin America [34]. 

 

      
 

Figure 1-1- Cassava leaf images 

1.1. CASSAVA ORIGIN: 

Though native to North America, cassava was introduced to Africa by Spanish and Portuguese 

traders back in 16th century [21]. Since then, cassava has grown to become a staple food for most 

https://www.merriam-webster.com/dictionary/cultivated
https://www.britannica.com/topic/tapioca
https://www.britannica.com/science/starch
https://www.britannica.com/topic/alcoholic-beverage
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African countries. Approximatively, half of the world's cassava current production comes from 

Africa where it is cultivated in around 40 countries [33]. It is the major source of carbohydrates, 

being a staple food for over 800 million people around the globe. 

Not only its roots are beneficial, but its leaves are also an important source of proteins, minerals, 

and vitamins [24]. Cassava has many health benefits as well. It can be used to treat mild fever. 

Cassava roots and leaves, when used together, increases the ability to relieve fever. It also improves 

health by boosting immunity and regulating digestion. The root of the plant is rich in vitamin C 

[23], while the leaves contain compounds beneficial to the skin and metabolism [31]. Its leaves are 

also edible and can contain up to 25% protein.  

Figure 1-2 shows the cassava production statistics as given by Food and Organization 2016 [34].  

Figure 1-2-Cassava Production Statistics (FAO STATS 2016 Database) [34] 

CASSAVA PRODUCTION SHARE BY REGION 
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Based on regions, Africa has the largest cassava production share (more than half) whereas Asia 

has only 15% share in total production. Among other commodities in Africa, cassava has the largest 

share of about 32%. Its production yield in Africa is also given in Figure 1-2. 

1.2. BENEFITS OF CASSAVA OVER OTHER CROPS: 

Cassava has many advantages over other crops. A few are given below: 

1. It produces more carbohydrate production than other crops including rice, maize, and wheat 

etc. 

2. It can withstand dry, eroded soils, pests, and severe weather conditions.  

3. This starchy vegetable can give high yield and can be kept in the ground for large period as 

a “reserve food” when other crops are limited [24].  

4. Both cassava leaves and roots have nutritional benefits that help keep the developing world 

fed [37]. 

5. Cassava is important for both small-scale farmers and larger-scale plantations due to its low 

requirement for nutrients, ability to tolerate dry conditions and easy low-cost propagation. 

[10] 

6. Most cassava is produced by smallholder farmers living in marginal and fragile 

environments, and particularly on eroded, acid, and infertile soils. This ability to grow on 

poor soils, where most other crops would fail, has made cassava an important food security 

crop [36].  

Because of all the above-mentioned benefits, Cassava is sometimes referred to as the “drought, war 

and famine crop” of the developing world.  

1.3. DISADVANTAGES: 

Besides many advantages, cassava plant has some disadvantages as well. If taken in raw form or 

consumed in large amount, cassava has devastating effects on health. This is because raw cassava 

contains chemicals called cyanogenic glycosides, which can release cyanide in the body when 

consumed [23]. When eaten frequently, these increase the risk of cyanide poisoning, which may 

impair thyroid and nerve function. It is associated with paralysis and organ damage and can be even 

fatal. 
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1.4. CASSAVA DISEASES: 

Despite of its advantages over other crops, its production can be limited because of many viral, 

bacterial, and fungal attacks on the plant. Most of the diseases caused by such attacks are very 

devastating, and widespread, limiting production and hence the yield [35]. Other disease includes 

Cassava Bacterial Blight (CBB), Cassava Brown Streak Disease (CBSD), Cassava Green Mottle 

(CGM), mite, and pests’ diseases etc. [8]. Such diseases produce a variety of symptoms that include 

mosaic, mottling, deformed and warped leaflets, and an overall reduction in size of leaves and 

plants. Among those diseases, Cassava Mosaic Disease is the most widespread and the leaves 

affected by this produce few or no tubers depending on the severity of the disease and the age of 

the plant at the time of infection. Some of the diseases and their cause is given in Table 1-1. Sample 

images of some diseases are also shown in figure 1-3. 

Table 1-1- Cassava Diseases and their Causes 

Fungal Diseases Bacterial Diseases Viral Diseases 

Black root and stem rot Bacterial Stem rot Cassava Mosaic 

Brown Leaf Spot Bacterial Stem Gall Brown Streak disease 

Blight leaf spot Bacterial Blight Green Mottle 

Cassava Ash Bacterial Wilt Vein Mosaic 

 

Precautionary steps have been taken to control the spread of these diseases, but the two diseases 

Cassava Mosaic Disease and Cassava Brown Streak Disease have become the largest constraints 

to cassava production and food security [7] resulting in losses of over $1 billion every year.  

       
 

Figure 1-3- Sample images of some Cassava Leaf Diseases 
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1.5. REMEDIES: 

To detect such diseases, presently farmers ask for agricultural experts from their government to 

visually inspect and diagnose the plants in person. But unfortunately, this process is very labor-

intensive, slow, and inefficient to use [5]. If not timely detected and treated, farmers could be losing 

a large portion of their harvest. So, such outbreaks can cost farmers a lot. One of the remedies 

followed by farmers is to burn the infected plants to prevent further spread of the disease leading 

to affecting a country’s economy greatly [29]. 

1.6. GOALS AND OBJECTIVES: 

This research focuses on automating the process of detecting and classifying cassava diseases by 

applying transfer learning approach to the dataset to make some efficient and accurate prediction 

of the disease that will help the farmers quickly and accurately classify whether a given plant is 

suffering from some disease or not so that such diseases can be timely detected and treated before 

they cause severe damage. 

1.7. MOTIVATION: 

Among the developing countries, Pakistan has been reported to be greatly suffering from child 

malnutrition [26] because of lack of macronutrients consumption including proteins, fats, and 

carbohydrates. Such malnutrition causes headache, fatigue, weakness, nausea and vitamin and 

mineral deficiencies leading to stunted and underweight growth. According to National Nutrition 

Survey 2018 [27], 4 out of every 10 children under 5 years are stunted and 2 out of every 10 under 

5 years are wasted. The same statistics in terms of percentage is given in Table 1-2. 

The table shows that it is the stunted growth that has majorly effected children under five years. 

This situation is even worse in Sindh where about 50% of children are stunted and the number is 

increasing [25]. Stunting is mainly caused by poor nutrition intake, lack of access to diverse food 

and clean water. Being the third largest producer of carbohydrates, cassava production and its 

utilization in the form of carbohydrates and proteins is of vital importance for Pakistan. Presently 

in Pakistan, cassava plant is grown on coastland from Sindh to Baluchistan at a small scale [28]. 
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Table 1-2-Under Five Children Statistics Table (National Nutrition Survey 2018) [27] 

 
The Three Faces of 

Malnutrition 

Percentage of Affected 

Children 

 

Stunting 

(Too short for their age) 
40% 

 

Wasting 

(Too thin for their height) 
17.5% 

 
Overweight 4.8% 

 

Because of its ability to withstand harsh weather conditions and more yield production in low cost, 

it can be cultivated by local poor farmers that will have the following benefits: 

1. Enhancement in productivity 

2. Aid in poverty reduction  

3. Make up for the lack of carbohydrates deficiency overcoming the above-mentioned health 

issues. 

 

1.8. PROBLEM: 

As already mentioned, cassava plant is highly vulnerable to viral, bacterial, and fungal attacks 

resulting in many diseases that have very devastating effects on a country’s economy. One of the 

remedies mostly followed by farmers is to burn the infected plant to prevent further spread of the 

disease. So, there is a need to early detect these diseases before they cause huge loss. For that one 

of the solutions is to use image processing and deep learning techniques for early prediction and 

better classification of cassava leaf diseases caused by viral and bacterial attacks. 

 

1.9. REPORT ORGANIZATION: 

The report is organized as follows: 

• Chapter 1 gives the introduction about proposed topic, aims, objectives and motivation. 



Chapter 1: Introduction 

20 
 

• Chapter 2 presents the review of state of the art in the context of cassava leaf disease 

classification techniques. 

• Chapter 3 gives the materials, including dataset and tools used for implementation.  

• Chapter 4 discusses the proposed deep learning methodology for reliable classification of 

leaf diseases. 

• Chapter 5 discussed the experimentation including the setup used for implementation, 

results obtained and their discussion 

• Chapter 6 concludes the topic by suggesting some future work that is not under the scope 

of this research but can be implemented in future.  



 

 

 

Chapter 2  

LITERATURE REVIEW 

 

In this section, a thorough but critical attempt is made to review existing state of the art and to 

identify their shortcomings. All the literature discussed below is focused on various machine 

learning and deep learning techniques and their advantages and drawbacks related to cassava leaf 

disease prediction.  The work done in available literature can be divided into two categories based 

on the methodology used by authors. 

1. Traditional Machine Learning Methods 

Decision Tree, Random Forest, K-Nearest Neighbors, Logistic regression, Support Vector 

Machine, Ensemble etc. 

2. Deep Learning based Methods 

Custom Convolutional Neural Networks, Transfer learning models like MobileNet, Plain 

Residual Neural Networks, Inception etc. 

 

2.1. TRADITIONAL METHODS: 

Many authors [5], [6], [7] have utilized various image processing and machine learning methods 

for classification purpose. First the image is preprocessed by applying various techniques to 

remove background noise, handling low contrast and low-resolution images, removing irregular 

and poorly captured images etc. The main drawback of all these traditional methods is that we 

need to extract informative and high-level features prior to giving input to the model for 

classification purpose. Extraction of such features requires extra effort for choosing the best feature 

extraction, selection, and reduction techniques.  

In [5], authors have extracted two types of features from images: 50 Chromatic features by 

applying HSV color transformation and 120 ORB (Oriented fast and Rotated BRIEF) features.  

After passing the features to three different classifiers (Linear Support Vector Classifier, k-nearest 
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neighbors, and Extra trees), the were able to achieve an accuracy of 80% by passing chromatic 

features to linear SVC and 100% for k-NN with ORB features. Image with identified ORB key 

points taken from original paper is given in Figure 2-1. 

 

Figure 2-1-Image with ORB interest key points identified [5] 

10 chromatic, color indices and Hue, Saturation and Intensity features were extracted to perform 

Hierarchical binary classification for detection of Brown leaf spot (BLS) in cassava plant and were 

fed to Artificial Neural Network in [6] that was trained with varying number of hidden neurons 

from 1 to 100 with an increment of 10 each time.  

Table 2-1-Number of hidden neurons and classification accuracy of healthy and diseased cassava leaves [6] 

 

Highest accuracy of 89.92% for health diagnosis was achieved with 20 neurons in hidden layer 

and 79.23% for BLS was achieved with 30 neurons in hidden layer. Table 2-1 shows the 
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classification accuracy for both healthy and diseased leaf detection for various number of hidden 

neurons. 

Bag of features technique has been utilized in [7] to extract 1 million features from cassava leaf 

images including images of healthy leaves as well as leaves with CMD and CBBD. The 

dimensionality of extracted features was then reduced to 500 predictors that were then passed to 6 

classifiers (Discriminant analysis, Logistic Regression, Support Vector machines, Ensemble 

classifier, Decision Tree and k-NN) to train 18,000 images. Hierarchical classification was 

performed by first predicting the leaf as healthy or diseased and then the type of disease as either 

Mosaic or blight. They achieved an accuracy of 83.9% for health diagnosis and 61.6% for disease 

type detection with cubic SVM and Coarse Gaussian SVM respectively whereas ROC value was 

0.85 for healthy leaf and 0.66 for disease detection. System architecture is given in Figure 2-2. 

 

Figure 2-2-System Architecture [7] 

2.2. CONVOLUTIONAL NEURAL NETWORKS: 

Deep learning is a rising trend in data science community for image classification and is a major 

step ahead of traditional machine learning methods in that it tries to learn high level features from 

the image data on its own. It involves the use of Convolutional neural networks (CNN) in which a 

kernel is convolved (mapped) over the whole image pixels to extract highly important features. 

But it has an overhead that it is computationally expensive than traditional methods as it takes a 

lot of time to train and for efficient training, the size of training dataset much be large to capture 
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all the varieties of data. To overcome this issue, transfer learning was utilized that applies pre-

trained models on a new classification problem. Studies have shown that the application of transfer 

learning not only saves a lot of time, but it also improves model performance.  

In [8], authors have applied 3 architectures of inception-v3: 1) with original softmax layer 2) k-

NN and 3) SVM on cassava leaf images belonging to three diseases (Cassava Bacterial Blight, 

Cassava Brown Streak Disease and Cassava Mosaic Disease), 2 pest damages (Red Mite Damage 

and Green Mite Damage) and healthy leaves. They have used a range of splitting data to be used 

for training and testing from 80:10 to 20:70 and found that traditional methods can be applied to 

deep learning methods to improve performance. They were able to achieve a very good accuracy 

results of 91% on original dataset and 93 % on leaflet dataset that was obtained by cropping the 

images in original dataset thereby increasing the sample size. However, this method of cropping 

has a drawback that not all the leaflets in an image will have the disease. So, it will result in 

inaccurate labels if not properly checked. Figure 2-3 shows the classification accuracy results for 

different training testing splits of all the 3 architectures used. 

 

Figure 2-3-Overall accuracy for transfer learning using three machine learning methods [8] 

To aid with low contrast and poor resolution, CLAHE (Contrast Limited Adaptive Histogram 

Equalization) wass used in [9] along with SMOTE (Synthetic Minority Oversampling TEchnique), 
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class-weights and augmentation techniques to increase the size of training data with the assumption 

that more training data results in more accurate results. They have trained a Custom Convolutional 

Neural Network with 3 convolutional layers and 4 fully connected for 124 Epochs with different 

input resolutions and achieved the highest accuracy of 88% on imbalanced and 93% on balanced 

dataset against resolution 448x448x3 concluding that higher resolution improves performance and 

this in intuitive as high-resolution image will have more information and more high-level features 

can be extracted from that. But this method is very time consuming as they have not applied 

transfer learning and building from scratch is computationally very expensive. Also, the model is 

trained for many epochs where each epoch took 3600s. The results are shown in Table 2-2. 

Table 2-2-Effect of different input image dimensions on CNN model accuracy [9] 

 

Similarly, in [10], another Convolutional Neural Network was built from scratch with 9 

convolutional layers and 2 max pooling layers to classify cassava leaves as either healthy or 

diseased (leaves with Cassava Brown Streak). Authors have used Faster R-CNN that is a pre 

trained algorithm for object detection, that detects object of interest from image by removing 

background details and achieved an accuracy as well as f-score of 0.96. However, there input 

image resolution was low and sample size was also very small. Faster R-CNN for object detection 

used in on the original paper is shown in Figure 2-4. 

MobileNet-V2 is applied on cassava dataset containing 2317 images and was trained for 40 epochs 

to classify 4 disease and one healthy leaf in [11]. By using a 70:20:10 data splitting for training, 

validation and testing respectively, authors have achieved an accuracy of 74.5% for training data 

and 67.3% for validation data. 
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Figure 2-4-Process Illustration of Faster R-CNN for Object Detection [10] 

Further, in [12], Distinct Block Processing technique, shown in Figure 2-5 has been employed by 

authors to increased size of each class (4 diseases and 1 healthy leaf) as their dataset was 

imbalanced with 5,656 images. The resulting dataset contained 13,500 images but with low 

resolution of 30x30x3. Plain Convolutional Neural Network (PCNN) and Deep Residual Neural 

Network (DRNN) were trained for 80 epochs giving 52.87% and 46.24% on imbalanced dataset 

and 87.5% and 96.75% on balanced dataset, respectively. However, this block processing 

technique has the same shortcoming as that was in [8]. Different blocks obtained from the same 

image might not have the disease. 

 

Figure 2-5-Application of distinct block Processing o increase sample size of minority classes [12] 

Comparison of all the above-mentioned techniques used in literature is given in tabular form in 

Table 2-3.  
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Table 2-3-Comparison of different Machine Learning and Deep Learning techniques for Cassava Leaf disease 

Classification 

Paper Year Method(s) Features Database Accuracy Classification 

[5] 2016 

Linear SVC, k-

NN, Extra 

Trees 

Color and ORB 

features 

Own 

Database 

80% with 

linear SVC 

Multi class 

with 5 classes 

[6] 2011 ANN 

Chromatic 

coordinates 

and HSI 

Features 

Own 

database 

Healthy: 

89% 

Disease:  

79 % 

Hierarchical 

Binary 

(Healthy & 

BLS) 

[7] 2019 SVM 

Bag of 

Features + 

PCA 

Own 

database 

Healthy: 

83% 

Disease: 

61.6% 

Hierarchical 

(Healthy, 

Mosaic, BLS) 

[8] 2017 

Inception-v3 

with softmax, 

SVM and k-

NN 

Cropping to 

obtain leaflet 

dataset 

Own 

database 

Original: 

91% 

Leaflet: 

93% 

Multi class 

with 6 classes 

[9] 2021 

Custom CNN 

with 3 conv 

layers and 4 

fully connected 

layers 

CLAHE, 

SMOTE and 

Augmentation 

Kaggle 

database 

Imbalanced:

88% 

Balanced: 

93% with 

448x448 

resolution 

Multi class 

with 5 classes 

[10] 2020 

Custom CNN 

with 9 conv 

layers 2 max-

pooling layers 

Faster-RCNN 

for Object 

Detection and 

cropping 

Own 

database 
96 % 

Hierarchical 

Binary 

(Healthy and 

CBSD) 
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and 1 dense 

and flatten later 

[11] 2021 MobileNet-V2 - 
Kaggle 

database 
67.3% 

Multi class 

with 5 classes 

[12] 2021 
P-CNN and 

DRNN 

Distinct Bock 

Processing 

Kaggle 

database 

Imbalanced: 

46.24% 

Balanced: 

96.75% 

Multi class 

with 5 classes 

 

2.3. RESEARCH GAPS: 

In most of the work, binary classification is performed [6], [7], [10] and the size of dataset is small 

[6], [10], [11], [12] but to yield solid and promising results with deep learning, the dataset size 

must be large enough to capture all the possible conditions found in practice irrespective of transfer 

learning and augmentation techniques. Studies have shown that having too few samples in the 

input dataset results in high error rates most of the times [4].  

Although in literature, deep learning techniques have been applied to classify and predict the 

diseases, there are some drawbacks as given below: 

• Block Processing Technique [12] or cropping [8], where authors perform leaf wise analysis 

does not represent real time scenario as it is very time consuming and additional effort is 

required to do this tedious task. 

• Generally, authors have performed just binary classification [6], [7], and [10] to determine 

whether the leaf is healthy or diseased. 

• In most of the cases, dataset size was very small [6], [8], [11] and [12] that may lead to less 

generalized solutions. 

• For natural and more cluttered leaf images, background noise should be removed as 

irrelevant and unnecessary information may create difficulty in improving the overall 

performance. So, such background noise needs to be removed during pre-processing of 

dataset.  
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2.4. CONTRIBUTION: 

Based on the extensive review of literature and to overcome all the above-mentioned shortcomings 

and drawbacks, the aim of this research is to use a dataset containing substantial number of sample 

images with high resolution to capture high level features and to apply transfer learning to classify 

cassava leaf images into 4 diseases including Cassava Mosaic Disease, Cassava Bacterial Blight, 

Cassava Brown Streak Disease and Cassava green Mottle and one healthy leaf. For Transfer 

learning, we have used EfficientNet because it can not only increase the performance as compared 

to other benchmark transfer learning models e.g., VGG, ResNet, DenseNet etc. but also reduces the 

number of parameters required for training. Further to remove background noise, U-Net 

architecture was used to perform semantic segmentation as it focuses more on precisely locating 

the desired object and is much faster as compared to other segmentation techniques. Unlike other 

deep learning models, it does not need a large dataset for training purpose [19]. In addition to 

segmentation, augmentation was also performed on the dataset to increase the  sample size of 

minority classes as studies have shown that augmentation helps in generalizing the model and 

results in improved performance [42].



 

 

 

Chapter 3  

MATERIALS 

 

3.1. CASSAVA IMAGE DATASET 

The dataset for cassava leaf disease classification is taken from Kaggle competition [29] that 

consists of 21,367 labeled images collected during a regular survey in Uganda. These images were 

captured by farmers and were further processed by experts at the National Crops Resources 

Research Institute (NaCRRI) in collaboration with the AI lab at Makerere University, Kampala. 

There were five output categories in the dataset; four being the diseases and one for healthy leaf 

and their label to disease mapping is given below. 

1. 0: "Cassava Bacterial Blight (CBB)" 

2. 1: "Cassava Brown Streak Disease (CBSD)" 

3. 2: "Cassava Green Mottle (CGM)" 

4. 3: "Cassava Mosaic Disease (CMD)" 

5. 4: "Healthy" 

However, the dataset was highly imbalanced with 1,087 images for CBBD, 2,189 images for 

CBSD, 2,386 for CGM, 13,158 for CMD and 2,577 images belonging to healthy leaf class. All the 

images were resized to 512x512 resolution using TensorFlow as it provides a fast and easy way to 

perform image classification. Sample images for each of the 4 diseases and healthy leaf is shown 

in Figure 3-1. Figure 3-2 shows sample distribution among 5 classes. The same has been shown in 

tabular form in Table 3-1.  

A brief description of the above mentioned 4 diseases is given below: 
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Cassava Bacterial Blight (CBB)     Cassava Brown Streak Disease (CBSD)      Cassava Green Mottle (CGM)         Cassava Mosaic Disease (CMD)                Healthy leaves 

 

                

lthy 

 

                 

Figure 3-1-Sample Images from each of the 4 diseases and healthy leaf (from left to right) 

Table 3-1-Frequency of Images in each Output Class 

 

DISEASE 

 

Label 

 

Frequency 

 

Cassava Bacterial Blight 0 

 

1,087 

Cassava Brown Streak Disease 1 2,189 

Cassava Green Mottle 2 2,386 

Cassava Mosaic Disease 3 13,158 

Healthy Leaf 4 2,577 

Total Images  21,397 

 

 

Figure 3-2-Samples Distribution among 5 classes 
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3.1.1. CASSAVA BACTERIAL BLIGHT (CBB): 

This disease is one of the devastating diseases the affects cassava production worldwide and is 

caused by bacteria. This disease is mostly found on cassava plants that are grown in moist places. 

Its main symptoms include black leaf spots, wilting, and blight, drying and shedding of leaves. 

However, these symptoms vary depending upon the location, season and severity of disease. 

Sample images of CBB are given in Figure 3-3. 

 

Figure 3-3-Leaves with Cassava Bacterial Blight Disease 

3.1.2. CASSAVA BROWN STREAK DISEASE (CBSD): 

CBSD is caused by two virus species; Cassava Brown Streak Virus and Cassava Brown Streak 

Uganda Virus that are transmitted by a vector called whitefly. Its chlorotic symptoms include 

yellow patches in leaves that sometimes enlarges based on the severity of disease resulting in 

chlorosis. Its symptoms are also shown on roots that consist of dark brown necrotic areas resulting 

in root size reduction. Figure 3-4 shows images of CBSD leaves. 

 

Figure 3-4-Leaves with Cassava Brown Streak Disease 
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3.1.3. CASSAVA GREEN MOTTLE (CGM): 

This disease is a viral infection caused by cassava green mottle virus. Its main symptoms include 

yellow spots on leaves from small dots to irregular patches depending on the severity of disease, 

twisted and distorted leaf margins and mosaics. Most of the time, cassava plants affected by green 

mottle become severely stunted. CGM diseased leaves images are given in Figure 3-5. 

 

Figure 3-5-Leaves with Cassava Green Mottle Disease 

3.1.4. CASSAVA MOSAIC DISEASE (CMD): 

This is the most severe and widespread disease that limits cassava production greatly. Its foliar 

symptoms include mottling, mosaic, and twisted leaves. Leaf size is also affected that can be easily 

seen on leaves. The disease disturbs the green color of leaves that changes to small yellow and 

white patches affecting the photosynthesis process and thereby reducing plant growth and hence 

the yield. Sample images of CMD leaves are given in Figure 3-6. 

 

Figure 3-6-Leaves with Cassava Mosaic Disease 
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3.2. TOOLS AND LANGUAGES: 

The tool used in this research for implementing proposed algorithm is Google Collaboratory with 

the following specifications: 

• GPU: Google Compute Engine Backend (NVIDIA Tesla k80 accelerator) 

• RAM: 25 GB Available 

• DISK SPACE: 147.72 GB Available 

Because GPU is much faster in processing image data, it is preferred over CPU that takes almost 

10x more time to perform the same task. Google co-lab is used because it provides free GPU 

Support and RAM up to 12 GB. Also, the same virtual machine can be used continuously for at 

most 12 hours. Since the size of dataset that is used in this research was very large i.e., there were 

about 21K leaf images that requires more RAM than 12 GM, so instead of co-lab, co-lab pro was 

used as it provides faster access to GPU, longer runtime, and more Storage space (almost double 

i.e., 25GB RAM). Also, the virtual machine can be used for training up to max 24 hours.  

Further, co-lab also supports Python that is used as a scripting language in this research. Python 

machine learning and deep learning packages can be imported into the co-lab notebook by using 

just a single line of code instead of downloading and installing them separately thereby saving a 

lot of time. The packages used include the following: 

• Keras with TensorFlow backend 

• Numpy and pandas 

• Matplotlib for plotting 

• csv for reading csv file containing images names and their corresponding labels. 

• cv2 for reading, writing, and displaying images. 

• glob etc. 



 

 

 

Chapter 4  

METHODOLOGY 

 

This research focuses on the use of U-Net, a deep learning architecture to perform precise leaves 

segmentation. A novel and efficient transfer learning model, EfficientNet was trained on the 

original as well as segmented dataset to classify leaf diseases quickly and accurately. Since the 

resolution of images was 512x512x3, so EfficientNet models were used to extract the most 

important features. First the input images from under sampled classes were increased by 

performing detailed image augmentation. It increased the size of dataset from 21,397 to 54,902 

images. For evaluation purpose, first the dataset was divided into two sets for training and 

validation in the ratio 85:15 and then 7-fold cross validation was used to be assured about model’s 

performance. 

 

4.1. PROPOSED FRAMEWORK: 

Figure 4-1 shows the flow of proposed framework. First, all the healthy leaves were separated 

from cassava leaves dataset. Then using Color Index Vegetation Extraction, vegetation parts form 

healthy leaves were segmented that gives the ground truth for corresponding healthy leaf image. 

Once all the healthy leaves and their corresponding ground truths were obtained, augmentation 

was performed on original images with the assumption that the trained model would correctly 

segment diseased leaves as well. The data was given to UNet model for training to perform 

semantic segmentation and this process is illustrated by red dotted rectangle in figure 4-1. In the 

second step, the trained model was used to segment other diseased leaves from cassava leaves 

dataset (used in this research) shown by green dotted rectangle in figure 4-1. And in the last step, 

the whole segmented dataset (original as well as balanced) was given input to EfficientNet model 

to perform multi class classification for cassava leaf disease prediction, given by blue dotted 

rectangle in figure 4-1. Each of these activities are further explained in detail in below sections. 
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Figure 4-1-Flowchart of Proposed Framework 

 

4.1.1. IMAGE SEGMENTATION: 

Since the images in the dataset contained background noise like sky, soil, hands etc., so there was 

a need to segment only the leaves from images. Segmentation not only reduces the complexity of 

an image but also helps to analyze the image in a simpler way.  

In this research work, we have used U-Net architecture to train the images for segmentation 

purpose. The model consists of two paths: contracting (down-sampling) path that is like 

convolutional network and an expanding (up-sampling) path to construct a mask of the same size 

as that of input image. U-Net model is much better than other segmentation techniques such as 

Mask R-CNN, SegNet etc. in that it is much faster and works well with small datasets as well. To 

segment images using U-Net, we need to train images along with their corresponding ground 

truths. For that, Color Index for Vegetation Extraction (CIVE) was used.  
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4.1.1.1.  COLOR INDEX VEGETATION EXTRACTION: 

Color Index for Vegetation Extraction (CIVE) [18] extracts vegetation part from image and is 

given by the following equation:  

 

𝑍 =  − 0.441 × R +  0.811 ×  G −  0.385 × B − 18.787                              (4.1) 

 

Where Z in the CIVE band and R, G, and B are the intensity values of each pixel. Since this 

formula only extracts vegetation part from background, augmentation was applied on images 

before training with the assumption that it will correctly segment diseased leaves as well. Based 

on the availability of segmented images, Plant pathology 2021 dataset from Kaggle was also 

combined with the healthy images to increase the diversity of training data. When trained for 20 

Epochs and validated on diseased cassava leaves, the model was able to correctly segment most of 

the diseased leaf images except for Cassava Bacterial Blight disease, since this disease has brown 

patches on leaves that were not learned by the model. So, to segment such leaves, a slight change 

was made to eq. (4.1), giving more weights to red and green colors to extract the leaves along with 

brown patches of disease on them, given by eq. (4.2).  

 

𝑍′ =   0.441 × R +  0.611 ×  G −  1.885 × B − 48.787                              (4.2) 

 

Where Z’ is the changed CIVE band for extraction of leave with brown patches.  

As a result, two segmented datasets were obtained, one from U-Net trained model containing 

images of CBSD, CGM, CMD and healthy leaves and second from changed CIVE formula 

containing images of CBB leaves.  Both the datasets were then combined to obtain a single 

segmented dataset containing the segmented images belonging to 5 classes. 

 

4.1.1.2.  IMAGE AUGMENTATION (FOR SEGMENTATION): 

To accurately segment diseased leaves from background, the healthy leaf dataset was subjected to 

augmentation with the assumption that the trained model will be able to detect diseased leaves as 

well. The augmentation transforms were applied sometimes randomly, and they include the 

following: 
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• Course Dropout – remove some areas that can be larger in size than simple dropout. 

• Gaussian Blur – blur the input image using a random-sized kernel 

• Sigmoid Contrast – adjust the image contrast level 

These three transforms were selected because they represent real time setting. Dropout is added to 

introduce some noise in the image. Blurring is added to remove noise and lower high-level details 

as not all features are sharp, and contrast is used to enhance the features present in image. 

Augmentation results of the above-mentioned transforms along with the original image is shown 

in Figure 4-2. 

 

Figure 4-2-Original Image (Top) and Augmentation results on Healthy Cassava Leaf (bottom) 

4.1.1.3.  UNET ARCHITECTURE: 

UNet architecture [19] was proposed by Olaf Ronneberger, in 2015. It is a symmetric model, and 

its architectural shape resembles the alphabet U, hence the name UNet was given. This architecture 

was first used as a semantic segmentation model for bio medical images, however, with the advent 

of time, it has been used in many other fields as well including agriculture. The model consists of 

a total of 23 convolutional layers and is divided into 2 paths: 

1. Contracting Path also known as Encoder 
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2. Symmetric Expanding Path also known as Decoder 

The first path that is contracting path is the same as normal convolutional network where 

convolution is performed using kernel followed by max pooling layers. This path down-samples 

the image by doubling the number of channels whereas height and width of image gets halved after 

each stage. However, the second path is just the opposite of normal convolution as there the height 

and width of image are doubled, and channels are halved to get the output image with the same 

high resolution as that of the input image because normal contracting path lowers the resolution of 

image. In the Expanding path, up-sampling is performed using transposed convolution, also known 

as deconvolution or fractionally strided convolution. Transposed convolution is mostly used 

instead of other ways of up-sampling like interpolation because of its ability to learn parameters 

on its own. 

For transposed convolution, we need to define convolution matrix of size 𝑚2  ×  𝑛2 where m is 

the input image size and n output image size. The square is taken since the matrix when multiplied 

with the flattened input vector will give a high-resolution output vector that will be rearranged to 

get desired output. Convolution matrix is obtained by rearranging weights from kernels. The low-

resolution input image is flattened to get a vector of size 𝑚2  × 1. The transposed convolution 

matrix 𝑛2  ×  𝑚2  when multiplied with the vector 𝑚2 × 1 will give a vector of size 𝑛2  × 1 that 

when rearranged will give desired up-sampled output image of size 𝑛 × 𝑛. 

 Architectural diagram of UNet along with transposed convolution is shown in Figure 4-3. In the 

original paper, a convolution layer of 3x3 was used with valid padding. However, this doesn’t 

produce the same resolution image as that of input. Hence in the implementation same padding is 

used and the same has been shown in architectural diagram in Figure 4-3. Since, the image size of 

the dataset is 512 x 512, so the same size is used in describing UNet architecture therefore sizes 

may vary from original paper, however basic concept is same. 

The network architecture can be divided into 5 stages based on the number of convolutional layers. 

In the first stage, a normal convolution is applied 2 times with 3x3 filter and same padding to 

extract high level information from the image, followed by a 2x2 max pooling layer that reduces 

the parameters in the network. The same process is repeated for all 5 stages, where each stage has  

  



Chapter 4: Methodology 

40 
 

 

 

 

 

 

 

 

 

 

 

Figure 4-3-UNet Architectural Diagram 

 
 

 

 
 
 

   
 

 
 

 
 
 
 
 

 
 

 

25
6 

x 
2

5
6

 x
 2

5
6

 
 

25
6 

x 
2

5
6

 x
 1

2
8

 
 

25
6 

x 
2

5
6

 x
 1

2
8

 
 

12
8 

x 
1

2
8 

x 
2

56
 

12
8 

x 
1

2
8 

x 
2

56
 

 

64
 x

 6
4

 x
 2

56
 

64
 x

 6
4

 x
 1

02
4

 
 

32
 x

 3
2

 x
 5

12
 

64
 x

 6
4

 x
 5

12
 

64
 x

 6
4

 x
 5

12
 

32
 x

 3
2

 x
 1

02
4

 

32
 x

 3
2

 x
 1

02
4

 

64
 x

 6
4

 x
 5

12
 

64
 x

 6
4

 x
 5

12
 

 

12
8 

x 
1

2
8 

x 
2

56
 

12
8 

x 
1

2
8 

x 
2

56
 

 

25
6 

x 
2

5
6

 x
 1

2
8

 
 

25
6 

x 
2

5
6

 x
 1

2
8

 
 

5
1

2
 x

 5
1

2
 x

 6
4

 

5
1

2
 x

 5
1

2
 x

 6
4

 
+ 

+ 

+ 

+  

25
6 

x 
2

5
6

 x
 6

4
 

 
12

8 
x 

1
2

8 
x 

1
28

 

ST
A

G
E-

1 

12
8 

x 
1

2
8 

x 
5

12
 

5
1

2
 x

 5
1

2
 x

 6
4

 

5
1

2
 x

 5
1

2
 x

 6
4

 

5
1

2
 x

 5
1

2
 x

 1
2

8
 

ST
A

G
E-

2 

ST
A

G
E-

3 

ST
A

G
E-

4 

ST
A

G
E-

5 
512 x 512 x 3 

× × ×   

Input 
32 x 32 x 1024 

Output 
64 x 64 x 512 

1024 x 1 x 1024 
Convolution Matrix 
1024 x 4096 x 512 

512 @ 3 x 3 kernels 

Transposed Convolution Matrix 
4096 x 1024 x 512 

 

4096 x 1 x 512 

Up-sampling using Transposed Convolution 

3x3 Convolution 
Layer + ReLU 
 
Down-sampling 
(Max Pooling Layer) 
 
Up-sampling 
(Transposed 
Convolution) 
 
Skip Connection 
(Addition) 
 
Rearranging matrix 
weights to vector 
 
1x1 Convolution 

5
1

2
 x

 5
1

2
 x

 2
 

 



Chapter 4: Methodology 

41 
 

double number channels whereas resolution gets halved. After that, expanding path begins, where 

image is up-sampled back to its original resolution that has only the extracted mask from original 

image. During each up-sampled stage, a skip connection is also added by concatenating the 

transposed convolution with the corresponding feature maps from the same stage in contracting 

path. Concatenation is followed by the same 2 normal 3x3 convolutional layers with same padding 

as were added in contracting path. This is done to recover the fine-grained features captured during 

contracting path and precisely locate the segmented image. A ReLU activation function is applied 

after each convolution operation. 

 

4.1.2. IMAGE AUGMENTATION: 

To address the class imbalance issue, the cassava leaf dataset obtained from Kaggle was increased 

by applying different transforms on the images. For images in the minority classes, the following 

transforms were applied on images: 

• Cutout – Removes some portions from the image to introduce noise 

• Random Contrast - Randomly changes the contrast of input image 

• Random Brightness - Randomly changes the brightness level of input image 

• Shift Scale Rotate – Collectively performs all the three operations on the input image  

• Gauss Noise - Apply Gaussian Noise to the input image 

• Vertical Flip – Flips the input image vertically around the y-axis 

• Random Rotate – randomly rotates the input image 

• Horizontal Flip – Flips the input image horizontally around the x-axis 

The main purpose of performing augmentation was to avoid overfitting the model by making it 

generalized and robust to improve the performance of deep neural networks and to handle class 

imbalance issue as well. All these transforms were only applied to training dataset. Validation 

dataset had only the original images. Augmentation results of some of the above-mentioned 

transforms along with the original image is shown in Figure 4-4. 

After detailed augmentation on all labels except CMD, the size of dataset increased from 21,397 

images to 54,902 images with almost equal distribution of all 5 output labels as shown in Figure 

4-5 The distribution if labels in the balanced dataset was as follows: 9,520 images for CBB, 9,881 
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images for CBSD, 10,682 images for CGM and 11,661 images for Healthy leaves. The difference 

in distribution of labels is because augmentation was performed on only training data and not on 

validation data. 

 

Figure 4-4-Augmentation Results with Original image (left) and transformed images (right) 

 

 

Figure 4-5- Samples Distribution among 5 classes in Balanced Cassava 2020 Dataset 
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4.1.3. EFFICIENTNET ARCHITECTURE: 

Efficient-Net was developed by Google in 2019 and as the name indicates, it gives promising 

performance not only in terms of accuracy but in terms of efficiency as well. When trained on the 

ImageNet classification problem, it gave 84.3% top-1 accuracy with 66M parameters leading the 

state-of-the-art transfer learning models including ResNet, GoogleNet, MobileNet etc. It is a 

family of 8 models from B0-B7 covering different resolutions of input images as well as varying 

number of depth and width parameters [15].  

Studies have shown that scaling ConvNets gives better accuracies with minimum parameters. The 

most common way of scaling is by image depth i.e., by increasing the number of layers followed 

by image resolution and this is intuitive, as we increase the image resolution, more layers and more 

channels will be required to capture high level and fine-grained patterns from the input image. But 

scaling can only be done up to a certain limit after that model performance tends to decrease. For 

example, Resnet-101 and Resnet-1000 have almost similar accuracy irrespective of the fact that 

Resnet-1000 has much more layers than Renet-101. Similarly, an extremely wide but shallow 

network can have difficulty in capturing the required patterns from input data. So, to caters for 

such issues, EfficientNet was proposed that is a compound scaling method and uses a compound 

coefficient φ that uniformly scale all the three dimensions – network width (No. of channels), 

depth (No. of layers), and resolution (height x width) in a constant ratio given by eq. (4.3). 

𝑑𝑒𝑝𝑡ℎ ∶ 𝑑 =  αφ 

𝑤𝑖𝑑𝑡ℎ ∶ 𝑤 =  βφ 

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∶ 𝑟 =  γφ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  α . β2 . γ2  ≈ 2 and  α , β, γ ≥  1                            (4.3) 

Where α, β and γ are the depth, width, and resolution scaling coefficients and φ is a compound 

coefficient that controls how many more resources are available for model scaling. Based on the 

resource constraint α . β2 . γ2  ≈ 2, if we want to increase depth by αφ, width by βφ and image 

resolution by γφ, we will require 2φ time more computational resources. 

The optimal values of φ, α, β and γ were found by performing a small grid search and it was simple 

and easy as compared to arbitrarily selecting the values for three dimensions that requires manual 
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tuning. First, the values of α, β and γ were found by keeping the resource constraint same (φ = 1) 

and then, baseline scaling coefficient, φ was scaled with different values to get the family of 

models from B0-B7. Table 4-1 shown the baseline Network (EfficientNet B0).  

Table 4-1 - EfficientNet-B0 Baseline Network [15] 

Stage Operator Resolution # Of Channels # Of Layers 

1 Conv 3x3 224x224 32 1 

2 MBConv1, k3x3 112x112 16 1 

3 MBConv6, k3x3 112x112 24 2 

4 MBConv6, k5x5 56x56 40 2 

5 MBConv6, k3x3 28x28 80 3 

6 MBConv6, k5x5 14x14 112 3 

7 MBConv6, k5x5 14x14 192 4 

8 MBConv6, k3x3 7x7 320 1 

9 Conv 1x1 & Pooling & FC 7x7 1280 1 

 

The main building block in EfficientNet model is mobile inverted bottleneck MBConv that is 

similar to MobileNetV2 [16] but with added Squeeze-and-Excitation blocks. As MBConv is an 

inverted bottleneck block, it means the network is first expanded and then narrowed to get the 

same features as from normal convolution but with significant reduction in parameters to achieve 

highly efficient performance. In general, there are three layers. 

1. Expansion Layer is a 1x1 convolution that expands the number of channels by an 

expansion factor t such that the output will have t x k channels where k is the input channel 

size. For example, if we have 16 channels in input to expansion layer and t = 6, there will 

be 16x6 = 96 output channels that will become input to the next layer. 

2. Depth-wise Convolutional Layer performs filtering by applying a single convolutional 

filter with same number of channels as there are in input image producing t x k output 

channels.  

3. Projection Layer is also a 1x1 convolution but with a linear activation function to avoid 

any further information loss. This layer performs point to point mapping and decreases the 

number of channels to the desired ones. 
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In EfficientNet Architecture, Squeeze-and-Excitation block [17] is added before pointwise 

convolution to give more attention/weight to important channels over others that are basically our 

feature maps. A dropout layer and shortcut connection are also added between layers in one stage 

where stride=1 and input and output have same number of channels.  

 

Table 4-2 - EfficientNet-B4 Network Scaled from Baseline Network 

Stage Operator Resolution # Of Channels # Of Layers 

1 Conv 3x3 380x380 48 1 

2 MBConv1, k3x3 190x190 24 2 

3 MBConv6, k3x3 95x95 32 4 

4 MBConv6, k5x5 48x48 56 4 

5 MBConv6, k3x3 24x24 112 6 

6 MBConv6, k5x5 24x24 160 6 

7 MBConv6, k5x5 12x12 272 8 

8 MBConv6, k3x3 12x12 448 2 

9 Conv 1x1 & Pooling & FC 12x12 1792 1 
 

Table 4-3 - EfficientNet-B6 Network Scaled from Baseline Network 

Stage Operator Resolution # Of Channels # Of Layers 

1 Conv 3x3 528x528 56 1 

2 MBConv1, k3x3 264x264 32 3 

3 MBConv6, k3x3 132x132 40 6 

4 MBConv6, k5x5 66x66 72 6 

5 MBConv6, k3x3 33x33 144 8 

6 MBConv6, k5x5 33x33 200 8 

7 MBConv6, k5x5 17x17 344 11 

8 MBConv6, k3x3 17x17 576 3 

9 Conv 1x1 & Pooling & FC 17x17 2304 1 
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Figure 4-6-EfficientNet-B0 Architectural Diagram 

 

Furthermore, instead of using REctified Linear Unit (ReLU) as the activation function, a novel 

Swish activation function is used in EfficientNet that is given by: 

𝑓(𝑥) = 𝑥 . σ (𝑥)                               (4.4) 

Where x is the input value and σ is the sigmoid function that is defined as:  

σ (𝑥) =
1

1 +  𝑒−𝑥
                             (4.5) 
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There are a total of 18 layers in EfficientNet-B0 with input image size 224x224. The optimal values 

of scaling coefficients found for B0 were 1.0, 1.0, 224 and 0.2 for width, depth resolution and 

dropout respectively, and is given in Table 4-1. Since, out dataset has input size 512x512, we have 

first used B4 model of EfficientNet having scaling coefficients 1.4, 1.8, 380 and 0.4 for width, 

depth, resolution, and dropout, respectively. Depth coefficient value suggests that there should be 

a total of 32 layers in the model. However, in the model there are total 34 layers. This is because 

some of these values were handpicked based on highest accuracy. The scaling coefficients of 

EfficientNet-B6 are 1.8, 2.6, 528 and 0.5 for width, depth resolution and dropout respectively. 

Depth coefficient value suggests that there are 47 layers in the model and the maximum allowed 

input image size is 528x528. Table 4-2 and table 4-3 shows the network of EfficientNet model B4 

and B6 respectively derived from baseline Network using the coefficient values mentioned before. 

The architectural diagram of EfficientNet-B0 is shown in Figure 4-6. 

 



 

 

 

Chapter 5  

EXPERIMENTATION & RESULTS 

 

5.1. EXPERIMENTATION: 

The model was implemented in Google Colabaratory utilizing Keras with TensorFlow on Google 

Compute Engine (GPU) Backend having 25 GB RAM and 147.4 GB Disk Space. The code was 

written in Python 3 with many packages including numpy, pandas, csv, scikit learn etc. 

5.1.1. PLANT PATHOLOGY 2021 [38]: 

Plant pathology 2021 challenge is available on Kaggle and has about 23k foliar images of apple 

diseases. The challenge was to detect the right category of foliar leaf images. 18K images were 

from training dataset, that were used as an input to UNet model in this research. Segmented images 

of those 18K training images are also available on Kaggle [39]. Sample image along with 

segmented one is shown in Figure 5-1. 

5.1.2. TRAINING:  

In addition to the train/test image files, the dataset used in this research has 16 training TensorFlow 

Record files having 21,397 images for training and 1 Testing TFRecord containing 1 image for 

testing. TFRecord is a component of TensorFlow that stores the data in binary format either as list 

of bytes or list of float or list of integers. Keeping the resource constraints in mind, we have utilized 

TFRecords for disease classification purpose because storing data in binary file format takes up less 

time to copy, less disk space and can be read efficiently from disk. Furthermore, when there is a 

large dataset, it becomes an overhead to read all the data at one time. TFRecords solves this issue 

by only reading a batch of data from memory that is required thereby efficiently and effectively 

utilizing the resources. 



Chapter 5: Experimentation & Results 

49 
 

     
 

Figure 5-1-Sample Image (left) and segmented image (right) from Plant Pathology 2021 dataset 

First, healthy leaf images were separated from rest of the dataset and their corresponding mask were 

generated using eq. (4.1) to train UNet model. In addition, Plant pathology 2021 dataset as described 

above was also added to increase the diversity of dataset. The model was trained for 20 Epochs 

with default parameters. The rest of the cassava segmented images were predicted based on the 

trained model. All the segmented images were saved in TFRecords format in the same order as that 

of original images. 

Once all the segmented images were saved, 85% of them were used for training and 15% were 

separated for validation to measure model performance then was then followed by 7-fold cross 

validation. 

5.1.3. HYPER-PARAMETERS SETTING: 

We first used EfficientnetB4 model having 17.5M parameters with 9K trainable parameters to train 

the model for segmentation and classification and once final segmented dataset was obtained, it 

was given input to all EfficientNet models to reach at final conclusion. Categorical cross-entropy 

was used as loss function along with Adaptive moment (Adam) optimizer with default learning rate 

(0.001). Using a batch size of 128, the model was trained for 50 Epochs. 

5.1.4. PERFORMANCE METRICS: 

Two performance metrics were used to evaluate the trained model: accuracy and f-score. When 

the output labels are skewed, accuracy becomes an unreliable performance measure. To resolve 

this issue, precision and recall are used [9] where precision means exactness i.e. the percentage of 

positive class labels that the classifier predicted as positive were actually positive whereas recall 
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means completeness i.e. number of positive class labels that are predicted positive. So, f1 score 

was used that is the harmonic mean between precision and recall. These metrics are given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                         (5.1) 

Where: 

• TP (True Positive) is the number of truly predicted samples of positive class 

• TN (True Negative) is the number of truly predicted samples of negative class  

• FP (False Positive) means the number of negative class samples that are predicted positive  

• FN (False Negative) means the number of positive class samples that are predicted negative 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                 (5.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                       (5.3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                    (5.4) 

 

5.2. SEGMENTATION RESULTS: 

Leaves were segmented from background using color index for vegetation extraction given by eq. 

(4.1). UNet model was trained on healthy images and their extracted masks for 20 Epochs 

accompanied with augmentation with the assumption that it will be able to detect diseases leaves 

from background as well. When tested on Cassava Bacterial Blight diseased leaves, the model could 

not accurately segment the diseased leaves. In most of the cases, the diseased part was also masked 

and eliminated with the background as shown in Figure 5-2 part (b)and part (d) whereas as in other 

cases, the model could not do proper segmentation and is clear from part (c) where the trained 

model has not done any kind of segmentation on the input image. There were very few images as 

part (a) that were accurately segmented. 
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Figure 5-2-Cassava bacterial Blight diseased leaves original images (top) and segmented images (bottom) 

 

To cater for this issue, a slight change was made to CIVE formula and is given by eq. (4.2). The 

masked images were directly extracted using formula (4.2). And the resultant images are shown in 

Figure 5-3. It is clear from the figure that by using the changed formula, CBB suffering leaves were 

more accurately segmented along with the diseased part. 

 

Figure 5-3-Segmented Cassava Bacterial Blight Diseased Leaves extracted Using changed CIVE formula 

 

For segmenting rest of the diseases, including brown streak, mosaic and green mottle, Plant 

pathology dataset was also combined with healthy leaves before training. Since it gave much better 

results than just predicting based on healthy leaves with some augmentation as described in the 

previous chapter. Sample images of CBSD are shown in Figure 5-4 along with the segmented 

images. 
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Figure 5-4-Cassava Brown Streak Diseased Leaves Original Images (top) and Segmented Images (bottom) 

Sample images of CGM are also shown in Figure 5-5 along with the segmented images. 

 

 

Figure 5-5-Cassava Green Mottle Diseased Leaves Original Images (top) and Segmented Images (bottom) 
 

Original mosaic images and their corresponding segmented images using combined dataset are 

shown in Figure 5-6. 
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Figure 5-6 -Cassava Mosaic Diseased Leaves Original Images (top) and Segmented Images (bottom) 

Moving on to healthy leaves, their segmented images were extracted in the same way as CBB 

diseased leaves were segmented but with original CIVE formula since healthy leaves contain only 

the vegetation part, so they were accurately segmented using eq. (4.1). Based on these images and 

their corresponding masked image, UNet model was trained to predict the rest of diseased leaves. 

Healthy leaves images and their corresponding segmented images are shown in Figure 5-7. 

 

 

Figure 5-7- Healthy Cassava Leaves Original Images (top) and Segmented Images (bottom) 
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5.3. CLASSIFICATION RESULTS: 

Confusion Matrix is the most commonly used technique for measuring the performance of a 

classification model. So, it is used in this research as it presents the results in a tabular form that is 

very easy to understand. It is a matrix made up of rows and columns. The rows in the table give 

the actual labels whereas columns give the labels that are predicted by trained model.  

For example, for a binary classification problem having only 2 class labels, the confusion matrix 

can be made as follows: 

   

 POSITIVE NEGATIVE 

 

 

True Positive 

 

False Negative 

 

 

False Positive 

 

True Negative 

 

Figure 5-8-Confusion Matrix for binary classification 

Where True Positive mean the number of truly predicted samples of positive class, True Negative 

mean the number of truly predicted samples of negative class, False Positive means the number of 

negative class samples that are predicted positive, and False Negative means the number of 

positive class samples that are predicted negative. False negative is also known as type-II error 

and False Positive is known as Type-I error. The aim of a classification problem is to increase true 

positives and true negatives and reduce false positives and false negatives and most specifically 

false positives in the context of health-related classification problems, thereby increasing 

classification accuracy and hence the performance.  

Predicted Labels 

P
O

SI
TI

V
E 

A
ct

u
al

 L
ab

e
ls

 

N
EG

A
TI

V
E 



Chapter 5: Experimentation & Results 

55 
 

The same confusion matrix can be used to evaluate model performance of multi class classification 

problem. In the case, where there are more than 2 classes, class-wise accuracy is the best metric to 

evaluate performance. Accuracy, precision, recall and f-score can be calculated from confusion 

matrix using eq. (5.1), (5.2), (5.3) and (5.4), respectively.  

Six different experiments were conducted to reach a conclusion. Starting from original dataset, 

followed by segmentation and then augmentation using original CIVE formula (eq. 4.1) and 

changed one (eq. 4.2). The following table more clearly and precisely depicts the experimentation 

parameters. 

Table 5-1-Experimentation Details 

Experiment 
Dataset for UNet 

Training 

Segmentation 
Augmentation 

Original Equation Changed Equation 

1 - × × 

2 Cassava Healthy leaves ✓ - × 

3 

Cassava Healthy leaves 

✓ - ✓ 

4 - ✓ ✓ 

5 Plant Pathology + 

Healthy Leaves 

✓ - ✓ 

6 - ✓ ✓ 

 

The class-wise normalized results of confusion matrix for original and segmented datasets trained 

on EfficientNet-B4 on all above-mentioned 6 experiments are given in tabular form Table 5-2 – 

Table 5-7. For classification purpose, among the family of EfficientNet models, B4 model was 

first used but with high resolution of 512 x 512. Table 5-2 shows that the model has correctly 

classified 96% of CMD on leaves with original dataset, followed by Healthy, CBSD, CGM and 

CBB giving 63%, 59%, 57% and 47% respectively.  
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Table 5-2- Normalized Confusion Matrix of Original Dataset 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.47 0.16 0.03 0.11 0.23 

CBSD 0.06 0.59 0.04 0.16 0.15 

CGM 0.01 0.04 0.57 0.28 0.1 

CMD 0.01 0.01 0.01 0.96 0.01 

Healthy 0.08 0.11 0.07 0.11 0.63 

 

Table 5-3 shows the normalized confusion matrix of segmentation without augmentation using 

original CIVE formula (eq. 1) on cassava healthy leaves dataset. The table indicates that the model 

has correctly classified 95% of CMD on leaves, followed by Healthy, CBSD, CGM and CBB giving 

66%, 56%, 56% and 52% respectively. The overall accuracy scores as given by table 5-9 shows 

that the results of segmentation are almost the same on original and segmented dataset. This can be 

argued as we have not done any kind of augmentation to mimic the diseases. So, most of the 

diseased leaves are predicted either as healthy leaves or CMD. Healthy leaves prediction is because 

segmentation has also masked the diseased part in leaves leaving only the vegetation part, so the 

model got confused in predicting such diseased leaves (CBB, CBSD and CGM) as healthy leaves. 

Table 5-3- Normalized Confusion Matrix of Segmented dataset Using Original Formula (eq. 4.1) on Cassava 

Healthy Leaves Dataset without Augmentation 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.52 0.11 0.01 0.09 0.27 

CBSD 0.06 0.56 0.02 0.16 0.2 

CGM 0.01 0.03 0.56 0.27 0.13 

CMD 0.0 0.01 0.01 0.95 0.02 

Healthy 0.11 0.09 0.03 0.11 0.66 
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The overall accuracy score of segmentation with augmentation was a little bit higher (81.46 %) 

than segmentation without augmentation (81.39 %). So, for the next experiments augmented 

dataset was used. However, the model has wrongly predicted 29% of CBB as Healthy whereas 

only 19% of CBSD were predicted as healthy leaves. This was because CBB leaves were not 

properly segmented. Leaves suffering from CBB show brown patches on them while other diseases 

are mostly characterized by yellow patches. So changed CIVE formula (eq. 4.2) was used to 

segment CBB leaves and original formula (eq. 4.1) with augmentation was used to segment rest 

of the leaves. 

Table 5-4- Normalized Confusion Matrix of Segmented dataset Using Original Formula (eq. 4.1) on Cassava 

Healthy Leaves Dataset with Augmentation 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.46 0.16 0.01 0.08 0.29 

CBSD 0.05 0.6 0.02 0.14 0.19 

CGM 0.01 0.05 0.55 0.26 0.13 

CMD 0.01 0.01 0.01 0.96 0.01 

Healthy 0.1 0.1 0.04 0.11 0.65 

 

Table 5-5 shows the normalized confusion matrix of segmented dataset using changed CIVE 

formula (eq. 4.2) on cassava healthy leaves dataset with augmentation and the results were 

surprising. The overall accuracy score jumped from 81% to 88% with highest class-wise accuracy 

achieved was 90% for CMD, followed by Healthy, CBB, CBSD and CGM with accuracy scores of 

90%, 88%, 74% and 61% respectively. Now, the model has correctly predicted most of the diseased 

leaves and wrongly predicted 31% CGM as CMD. 
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Table 5-5- Normalized Confusion Matrix of Segmented dataset Using Changed Formula (eq. 4.2) on Cassava 

Healthy Leaves Dataset with Augmentation 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.88 0.0 0.01 0.01 0.1 

CBSD 0.02 0.74 0.02 0.19 0.03 

CGM 0.01 0.07 0.61 0.31 0.01 

CMD 0.0 0.01 0.01 0.96 0.02 

Healthy 0.04 0.02 0.01 0.02 0.9 

 

To make further improvement for reliable classification, plant pathology dataset 2021 was also 

added to healthy leaves dataset for UNet training to perform semantic segmentation of leaves using 

original as well as changed CIVE formula. Table 5-6 shows the normalized confusion matrix of 

segmented dataset using original CIVE formula (eq. 4.1) on combine dataset (cassava healthy 

leaves + plant pathology 2021 dataset) with augmentation. The results show that adding more 

images for training model for segmentation increased the accuracy a little from 81.46% to 81.65%. 

However, it is still not a good accuracy score because a better score was achieved from previous 

experiment. 

Table 5-6- Normalized Confusion Matrix of Segmented Dataset Using Original Formula (eq. 4.1) on Combined 

Dataset (Cassava Healthy Leaves + Plant Pathology Dataset) with Augmentation 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.57 0.13 0.03 0.07 0.2 

CBSD 0.07 0.57 0.02 0.14 0.2 

CGM 0.01 0.04 0.56 0.26 0.13 

CMD 0.01 0.01 0.01 0.96 0.01 

Healthy 0.14 0.1 0.04 0.1 0.62 
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So, in the final experiment, combined dataset was used but with changed CIVE formula (eq. 4.2) 

for CBB segmentation and the results are given in Table 5-7. 

The results indicate that when segmented dataset was used with changed CIVE equation and 

combined dataset, the model was able to correctly classify 97% of CMD on leaves, giving us the 

highest accuracy among other classes, followed by Healthy, CBB, CBSD and CGM giving 91%, 

86%, 70% and 62% respectively giving the highest overall validation accuracy of 88.94% compared 

to all the previous experiments. 

Table 5-7- Normalized Confusion Matrix of Segmented Dataset Using Changed Formula (eq. 4.2) on Combined 

Dataset (Cassava Healthy Leaves + Plant Pathology Dataset) with Augmentation obtained from EfficientNet-B4 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.86 0.01 0.01 0.01 0.11 

CBSD 0.03 0.7 0.04 0.22 0.02 

CGM 0.01 0.07 0.62 0.3 0.01 

CMD 0.0 0.01 0.02 0.97 0.0 

Healthy 0.05 0.02 0.01 0.01 0.91 

 

In almost all the experiments, the highest percentage of wrong predictions made by the model was 

the prediction of CGM leaves as CMD leaves. This can be argued as both the diseases are 

characterized by yellow patches, so, model got confused in predicting the disease correctly. In 

addition, our dataset was also biased towards CMD having about 60% images. As a result, model 

wrongly predicted CGM as CMD. 

A comparison of the class wise accuracy results achieved form all 6 experiments is given in Table 

5-8. Whereas Table 5-9 gives the overall accuracy (recall), loss, precision, and f-score of all the 

experiments. It can be seen that accuracy and f-score are the same for all experiments. Comparison 

shows that the best classification results with minimum loss is achieved by using combined dataset 

accompanied with augmentation for UNet training to segment CBSD, CGM, and CMD leaves and 

changed CIVE formula to segment CBB leaves. 
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Table 5-8- Class-Wise Accuracy Results of all Experiments 

OUTPUT CLASSES 
Class-wise Accuracy Score (%) of Experiment No. 

1 2 3 4 5 6 

Cassava Bacterial Blight 46.96 52.3 46.12 87.47 56.99 85.98 

Cassava Brown Streak Disease 59.28 55.58 59.6 74.41 56.63 70.00 

Cassava Green Mottle 56.86 55.87 55.5 60.64 55.5 61.69 

Cassava Mosaic Disease 95.77 95.48 95.71 96.19 96.19 97.05 

Healthy Leaf 62.76 66.46 64.8 90.39 62.13 90.75 

Overall Accuracy 81.43 81.39 81.46 88.83 81.65 88.94 

 

Table 5-9- Overall Validation Accuracy and Loss of all Experiments 

OUTPUT CLASSES 
Overall Accuracy Score (%) and Loss of Experiment No. 

1 2 3 4 5 6 

Validation Accuracy 81.43 81.39 81.46 88.83 81.65 88.94 

Validation Loss 0.52 0.53 0.54 0.32 0.53 0.31 

Precision 0.81 0.81 0.81 0.89 0.82 0.89 

F-Score 0.81 0.81 0.81 0.88 0.81 0.88 

 

Comparing the class-wise results of both original and final segmented dataset, the accuracy rate 

was increased by 39% for CBB suggesting that most of the CBB leaves were segmented correctly, 

followed by 28% for healthy leaves, 11% for CBSD, 5% for CGM and 2% for CMD. The same 

has been shown in Table 5-10. Figure 5-9 shows class-wise increase in accuracy of all 5 output 

classes. 
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Figure 5-9 - A comparison of class-wise accuracies obtained from EfficientNet-B4 on original data and final 

segmented data  

Table 5-10 – Class wise result of original and segmented datasets in descending order of increase in accuracy 

Output classes 
Original 

Accuracy (%) 

Segmented 

Accuracy (%) 

Increase in 

Accuracy (%) 

Cassava Bacterial Blight 46.96 85.98 39.02 

Healthy Leaf 62.76 90.75 27.99 

Cassava Brown Streak Disease 59.28 70.00 10.72 

Cassava Green Mottle 56.86 61.69 4.83 

Cassava Mosaic Disease 95.77 97.05 1.28 

Overall Accuracy 81.43 88.94 7.51 

 

Once final segmented dataset was obtained, it was given as input to all the models of EfficientNet 

family for training from B0-B6 using the same image size of 512 x 512 x 3 without resizing the 

image to lower dimensions. The normalized confusion matrices obtained from all the 6 models on 

final segmented dataset are given in Table 5-11 – Table 5-16. 
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Table 5-11- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B0 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.89 0.01 0.0 0.02 0.08 

CBSD 0.02 0.71 0.03 0.24 0.0 

CGM 0.0 0.1 0.58 0.31 0.01 

CMD 0.0 0.01 0.02 0.97 0.0 

Healthy 0.04 0.0 0.0 0.01 0.95 

 

Table 5-12- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B1 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.90 0.0 0.0 0.01 0.09 

CBSD 0.02 0.73 0.03 0.22 0.0 

CGM 0.0 0.09 0.54 0.37 0.0 

CMD 0.0 0.02 0.01 0.97 0.0 

Healthy 0.01 0.0 0.0 0.0 0.95 

 

Table 5-13- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B2 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.86 0.02 0.02 0.02 0.08 

CBSD 0.02 0.69 0.02 0.26 0.01 

CGM 0.0 0.1 0.51 0.39 0.0 

CMD 0.0 0.01 0.01 0.98 0.0 

Healthy 0.04 0.0 0.01 0.02 0.93 
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Table 5-14- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B3 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.82 0.01 0.01 0.02 0.13 

CBSD 0.01 0.72 0.03 0.22 0.03 

CGM 0.0 0.08 0.54 0.37 0.01 

CMD 0.0 0.02 0.01 0.97 0.0 

Healthy 0.03 0.01 0.01 0.01 0.94 

Table 5-15- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B5 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.87 0.01 0.0 0.01 0.11 

CBSD 0.02 0.77 0.03 0.16 0.02 

CGM 0.01 0.11 0.54 0.33 0.01 

CMD 0.0 0.02 0.02 0.96 0.0 

Healthy 0.04 0.0 0.0 0.01 0.95 

Table 5-16- Normalized Confusion Matrix of Final Segmented Dataset obtained from EfficientNet-B6 

 

 

 CBB CBSD CGM CMD Healthy 

CBB 0.85 0.01 0.01 0.01 0.12 

CBSD 0.03 0.70 0.04 0.21 0.02 

CGM 0.0 0.11 0.55 0.33 0.01 

CMD 0.0 0.02 0.02 0.96 0.0 

Healthy 0.03 0.01 0.0 0.01 0.95 
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Overall validation accuracy, loss, precision, and f-score for all the above mentioned 7 models is 

given in Table 5-17. Again, f-score and accuracy are same. Table 5-18 shows the class-wise 

accuracy results of 5 output classes for 7 models on final segmented dataset to reach a conclusion.  

Table 5-17- Overall Validation Accuracy and Loss from EfficientNet Models Family 

OUTPUT CLASSES 
Overall Accuracy Score (%) and Loss of EfficientNet 

B0 B1 B2 B3 B4 B5 B6 

Validation Accuracy 89.31 89.13 88.34 88.71 88.94 88.79 88.23 

Validation Loss 0.29 0.29 0.31 0.31 0.31 0.32 0.32 

Precision 0.89 0.89 0.88 0.88 0.89 0.88 0.88 

F-Score 0.89 0.89 0.88 0.88 0.88 0.88 0.88 

 

Table 5-18- Class-Wise Accuracy Results obtained from EfficientNet Models Family 

OUTPUT CLASSES 
Class-wise Accuracy Score (%) of EfficientNet 

B0 B1 B2 B3 B4 B5 B6 

Cassava Bacterial Blight 89.12 89.77 86.16 82.01 85.98 86.82 84.7 

Cassava Brown Streak Disease 71.35 73.00 68.71 71.71 70.00 76.83 70.42 

Cassava Green Mottle 58.2 54.23 51.01 54.13 61.69 54.13 55.13 

Cassava Mosaic Disease 96.98 96.98 97.71 97.34 97.05 96.14 96.38 

Healthy Leaf 95.02 95.29 93.33 94.4 90.75 94.92 95.11 

Overall Accuracy 89.31 89.13 88.34 88.71 88.94 88.79 88.23 

 

Based on the results shown in Table 5-17 and Table 5-18, where accuracies and losses obtained 

from all models are given, it is clear that EfficientNet-B0 outperformed all the other models giving 

an accuracy score of 89.31% with minimum loss (0.29). Comparing the confusion matrices of all 

models, the lowest percentage of wrong predictions (predicting CGM as CMD leaves) made by 

model is 30% by B4 followed by 31% by B0. Apart from CGM, B0 has correctly predicted all 

other classes comparing to B4.  
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The model has correctly predicted 97% of CMD, followed by Healthy leaves, CBB, CBSD and 

CGM with accuracy scores of 95%, 89%, 71% and 58%.  CGM has the lowest accuracy score and 

most of the CGM leaves are predicted as CMD and as explained earlier, this can be because both 

the diseases are characterized by yellow patches, so, model got confused in predicting the disease 

correctly and the dataset was also heavily biased towards CMD having about 61% images given by 

Figure 3-2. As a result, model wrongly predicted CGM as CMD. Figure 5-10 shows the final class-

wise results obtained from EfficientNet-B0 on final segmented dataset. 

 

Figure 5-10- Class-wise Accuracy Score obtained from EfficientNet-B0 on final Segmented Dataset 

Since the results obtained from one-time data splitting (in any ratio) can be biased or they may a 

best case among all the samples, so cross validation was used to be confident about our algorithm’s 

performance. A 7-Fold cross validation was performed to determine if the model performs well on 

all the folds or not. The accuracy results obtained from all the folds are given in Table 5-19 along 

with the mean accuracy and standard deviation. 

The standard deviation value less than 1 for accuracy score from Table 5-19 indicates that the results 

of each fold are mostly similar with a very little variance. It can be seen from the same table that 

the highest score achieved is 90.55% with minimum loss of 0.26 and lowest score is 88.39% with 

loss of 0.3 giving an average accuracy score of 89.73% plus a standard deviation of 0.82. 
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Table 5-19- 7-Fold Cross Validation Results obtained from EfficientNet-B0 on Cassava 2020 dataset 

Fold Accuracy (%) Loss F-Score 

1 88.39 0.3046 0.88 

2 90.21 0.2779 0.9 

3 88.83 0.3010 0.88 

4 89.84 0.2814 0.89 

5 90.47 0.2815 0.9 

6 89.79 0.2866 0.89 

7 90.55 0.2698 0.9 

Mean ± S.D. 89.73 ± 0.82 0.29 ± 0.01 0.89 ± 0.01 

 

As the dataset was imbalanced, so detailed augmentation was applied on minority classes to 

increase the diversity of data. Segmented balanced dataset when trained on EfiicientNet-B0 for 50 

epochs gave an overall increase in accuracy by about 0.25% compared to the original dataset, 

making it clear that augmentation increases the performance of a deep learning model. The accuracy 

results for balanced dataset obtained from all the folds are given in Table 5-20 along with the mean 

accuracy and standard deviation. 

Table 5-20- 7-Fold Cross Validation Results obtained from EfficientNet-B0 on Balanced Cassava 2020 dataset 

Fold Accuracy (%) Loss F-Score 

1 88.42 0.3089 0.88 

2 90.32 0.2762 0.9 

3 90.04 0.2812 0.9 

4 89.95 0.2802 0.89 

5 90.21 0.2878 0.9 

6 90.32 0.2782 0.9 

7 90.55 0.2704 0.9 

Mean ± S.D. 89.97 ± 0.71 0.28 ± 0.01 0.9 ± 0.01 
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Comparing the results of all folds of both original and balanced dataset, it can be seen that accuracy 

increased in almost all the folds when balanced dataset was used giving a means accuracy score of 

89.97% with a loss of 0.28. The standard deviation is also less as compared to original data i.e.  

0.71. This low value indicates that the results of each fold are mostly similar with a very little 

variance. The increase in accuracy with balanced dataset using augmentation suggests that 

validation accuracy increases with the increase in dataset size as given in [4] opposed to the critic 

that large sized and heavy augmentation results in overfitting. It in fact, increases the generalizing 

capability of a deep learning model [42]. However, the training time was also increased as the size 

of dataset was almost 2.5 times more than the original data and is given in Table 5-21. 

Table 5-21- Training time and the dataset size for classification using EfficientNet-B0 

Dataset Dataset size Time per Epoch (s) Accuracy (%) 

Original 21,397 213 89.73 ± 0.82 

Balanced 54,902 568 89.97 ± 0.71 

 

The results obtained indicate that augmentation technique along with segmentation provides fast 

and easiest way to improve the performance of a model by removing irrelevant features such as 

background noise. Further, the application of transfer learning also provides a convenient way to 

produce quality results in limited resources irrespective of dataset size.  

Since no other article has used Kaggle 2020 dataset for cassava leaf disease classification, for 

comparison purpose, the same methodology was used to train Kaggle 2019 dataset for cassava 

disease classification [40][41]. Cassava 2019 dataset has the same 5 output labels for CBB, CBSD, 

CGM, CMD and Healthy Leaves but their distribution in the dataset is different with CBSD and 

CMD having the highest percentage and is given by Figure 5-11. Also, the dataset size is small as 

compared to 2020 dataset containing 5,656 training images belonging to 5 output classes. 

Same segmentation technique was used to segment CBB leaves using eq (4.2) and rest of the leaves 

using UNet trained model on cassava healthy leaves and Plant Pathology dataset. Using all the 

default parameters, efficientNet-B0 was trained for 100 epochs. For evaluation purpose, 7-fold 

cross validation was used. The result obtained from cross validation are given in Table 5-22 along 
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with overall accuracy and loss. Comparison of all the articles that have used 2019 dataset for 

classification is given in Table 5-23. 

 

Figure 5-11-Samples Distribution among 5 classes (Cassava 2019 Dataset) 

 

Table 5-22- 7-Fold Cross Validation Results obtained from EfficientNet-B0 on Cassava 2019 dataset 

Fold Accuracy (%) Loss 

1 87.99 0.3401 

2 89.98 0.3238 

3 86.51 0.3566 

4 91.21 0.2850 

5 89.23 0.3358 

6 90.72 0.2696 

7 90.22 0.3137 

Mean ± S.D. 89.41 ± 1.65  0.31 ± 0.03  
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Table 5-23 shows the model used in the literature along with the preprocessing technique used (if 

any), training epochs to train the model, input image resolution, data splitting used to evaluate the 

model and the accuracy score value.  

Based on the results from Table 5-23, it is clear that our proposed work gave highest score as 

compared to previous work on the same dataset in less resources i.e., 100 epochs where each epoch 

took only 1 minute, giving 89.41% validation accuracy with a standard deviation of 1.65 using 7-

fold cross validation. 

Table 5-23- Comparison of Proposed Work with Previous Work on Cassava 2019 Dataset 

Paper Model 
No. of 

Epochs 

Time per 

Epoch (s) 

Input Image 

Resolution 

Data 

Splitting 

Accuracy 

(%) 

[9] 
Custom CNN 

(CLAHE) 
124 3600 448 x 448 x 3 

3-Fold 

CV 
88 

[11] MobileNet-V2 40 - 224 x 224 x 3 70:30 67.5 

[12] 

PCNN 

80 - 224 x 224 x 3 - 

52.87 

DRNN 

(Gamma 

Correction) 

46.24 

Proposed 

Work 

EfficientNet-B0 

(Segmentation) 
100 54 512 x 512 x 3 

7-Fold 

CV 
89.41 ± 1.65 

 

Although, in [9] and [12] authors have used various techniques to increase the size of dataset for 

handling class imbalance issue and they have achieved a very high accuracy score concluding that 

accuracy increases with the increase in dataset size, we have used only imbalanced dataset results 

from these articles for comparison purpose. As, 2019 dataset was also imbalanced, so accuracy 

alone cannot be used to reach at reliable results. For this purpose, precision, recall and f-score were 

also measured and compared, and the results are given in Table 5-24. 

Referring to f-score values from Table 5-24, Bacterial Blight, Green Mottle, and healthy leaves 

have a much better score giving 0.95, 0.82 and 0.96 respectively compared to previous work. 

However, the rest of classes i.e., Brown streak Disease and Mosaic disease results are also better 
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then [12] but are comparable to [9] with a difference of 0.02 for CBSD and 0.04 for CMD giving 

f-score of 0.90 and 0.93, respectively. 

Table 5-24- Class wise comparison of Proposed work with literature using Kaggle 2019 Cassava Disease Dataset 

Paper 
Evaluation 

Measures 
CBB CBSD CGM CMD Healthy 

Weighted 

Average 

[1] 

Precision 0.81 0.92 0.8 0.97 0.7 0.9 

Recall 0.83 0.91 0.72 0.96 0.67 0.88 

F-Score 0.82 0.92 0.76 0.97 0.69 0.89 

[2] 

Precision 0.27 0.5 0.25 0.55 0.33 0.46 

Recall 0.03 0.48 0.03 0.86 0.02 0.52 

F-Score 0.05 0.49 0.05 0.67 0.04 0.49 

Proposed 

Work 

Precision 0.93 0.89 0.87 0.9 0.98 0.9 

Recall 0.95 0.90 0.72 0.94 0.94 0.9 

F-Score 0.94 0.89 0.79 0.92 0.96 0.9 

 

The comparison of state-of-the-art techniques to classify cassava leaves with this research work 

shows that our proposed work outperformed all the previous work giving 89.41% accuracy and f-

score value of 0.9. Among other classes, the lowest accuracy and f-score is for CGM because its 

symptoms are like CMD in appearance and the dataset was also biased towards CMD shown in 

figure 5-11. The rest of the classes have a very good recall and f-score indicating that segmentation 

module (UNet model along with the modified equation) has accurately segmented the diseased as 

well as healthy leaves. Based on the above results and keeping in mind that there is still some noise 

in the form of few poorly segmented images for 2 classes: CBSD and mostly CGM (with lowest 

f-score among other labels), it can be argued that by using segmentation data, our model was able 

to successfully classify most of the leaves correctly. 



 

 

 

Chapter 6  

CONCLUSION & FUTURE WORK 

 

This work presented the use of a novel deep learning architecture, EfficientNet to classify cassava 

leaf disease images quickly and accurately. Cassava plant is one of the most widely grown food 

crop not only because it is cost-efficient, producing more yield in low budget but it can also 

withstand harsh environmental conditions. However, it is highly vulnerable to many viral and 

bacterial attacks resulting in various diseases. Some of those diseases are widespread and have 

severe devastating effects if not timely detected and treated. In this research, cassava leaf disease 

classification dataset, taken from Kaggle competition was used that contained about 21K images. 

As our input image has 512x512 resolution, so instead of resizing the images to some lower 

resolution, we used EfficientNet models for classification purpose to avoid any information loss 

and to capture more fine-grained patterns from images. Further, to improve performance, we have 

used U-Net, a semantic segmentation model, to precisely segment the leaves from images. Our 

results showed reasonable performance giving a mean accuracy rate of 89.73% on original dataset 

and 89.97% on balanced dataset with EfficientNet-B0 using 7-fold cross validation. For 

comparison purpose, Kaggle 2019 dataset for cassava disease classification was used, that gave 

mean accuracy score of 89.41 ± 1.62 using 7-fold cross validation and f1-score of 0.9 leading all 

previous work on same dataset. Based on the obtained results, it can be concluded that: 

• Segmentation technique provides fast and easiest way to improve the performance of a 

model by removing irrelevant and unnecessary details from background.  

• Combined method of segmentation using UNet along with the modified Color Index 

Vegetation Extraction equation gave promising scores leading all state-of-the-art results, 

concluding that original CIVE equation can be modified accordingly to accurately segment 

vegetation as well as diseased part in leaves. 



Chapter 6: Conclusion & Future Work 

72 
 

• Augmentation can be used along with CIVE to extract diseased leaves from background. 

For that, UNet architecture is best to use as it precisely locates the desired object of interest 

from background and gets perfectly trained even on very few samples.  

• Further, augmentation can not only handle class imbalance issue by increasing the sample 

size of minority classes, but it also aids in generalizing the model that results in improved 

performance. 

• For classification purpose, transfer learning provides fast, effortless, and convenient way 

to produce quality results in limited resources. 

Despite we have used combined method along with the modified CIVE equation and augmentation 

to segment healthy as well as diseased leaf images, there is still a room to improve segmentation 

module so that it can handle cluttered background in a more efficient manner. Figure 6-1 shows 

poorly segmented images where some of the leaf parts are also masked along with the background 

during segmentation because of some natural image capturing conditions. To cater for this issue, 

object localization technique can be explored further to reduce unwanted background region 

without excluding any part of leaf (either diseased or healthy). 

 

Figure 6-1-Poorly Segmented Diseased Leaf Image
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