

 Java Code Analysis Framework for Mission Critical Systems

Author

Rimsha Khan

FALL 2018-MS-18(CSE) 00000278160

MS-18 (CSE)

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUG, 2021

Java Code Analysis Framework for Mission Critical Systems

Author

Rimsha Khan

 FALL 2018-MS-18(CSE) 00000278160

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

Thesis Supervisor’s Signature:___________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

AUG, 2021

i

DECLARATION

I certify that this research work titled “Java Code Analysis Framework for Mission Critical

Systems” is my own work under the supervision of Dr. Farooque Azam. This work has not been

presented elsewhere for assessment. The material that has been used from other sources has been

properly acknowledged / referred.

Signature of Student

Rimsha Khan

FALL 2018-MS-18(CSE) 00000278160

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the University for MS thesis work.

Signature of Student

Rimsha Khan

FALL 2018-MS-18(CSE) 00000278160

Signature of Supervisor

iii

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may

not be made available for use by third parties without the written permission of the College

of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi

iv

ACKNOWLEDGEMENTS

I am extremely thankful to Allah Almighty for his bountiful blessings throughout this work. Indeed

this would not have been possible without his substantial guidance through each and every step, and

for putting me across people who could drive me though this work in a superlative manner. Indeed

none be worthy of praise but the Almighty.

I am profusely grateful to my beloved parents for their love, prayers, support and sacrifices for

educating and preparing me for my future. I also thank my siblings who encouraged me and prayed

for me throughout the time of my research.

 I would also like to express my gratitude to my supervisor Dr. Farooque Azam and my co-

supervisor, Dr. Muhammad Abbas, for their constant motivation, patience, enthusiasm, and

immense knowledge. Their guidance helped me throughout my research and writing of this thesis.

I could not have imagined having a better advisor and mentor for my MS study.

I would like to pay special thanks to Muhammad Waseem Anwar for his incredible cooperation

and providing help at every phase of this thesis. He has guided me and encouraged me to carry on

and has contributed to this thesis with a major impact.

I would also like to thank my Guidance Committee Members Dr. Wasi Haider Butt and Dr.

Arsalan Shaukat for being on my thesis guidance and evaluation committee. Their

recommendations are very valued for improvement of the work.

Last but not the least, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

Thanks for all your encouragement!

v

Dedicated to my beloved parents whose tremendous support and

cooperation led me to this wonderful accomplishment.

vi

ABSTRACT

Sometimes a single bug can cause loss of millions of dollars as in the case of Ariane or a small

glitch in the software can cause loss of life as in the Therac 25 case where 7 people died due to

overdose of radiation. Such problems in software proves the importance of correctness of software

code and use of quality assurance practices specially for mission critical software where a fault in

the software can lead to high financial loss or even loss of life. Since Mission Critical Systems are

real time in nature, therefore mostly run time errors in these systems occur due to Concurrency

and Logical Errors. A detailed literature review of 51 research papers on Code Analysis indicates

the lack of framework for automated code analysis of Java Code regarding Concurrency and

Logical errors. Furthermore, the framework proposed and the industrial tools do not check

compliance to NASA’s coding standards which is a very important standard guide for MCS. Hence

there is a sheer need of developing a Java Code Analysis framework for MCS that checks code

adherence to NASA’s Coding Standards related to concurrency and logical errors.

Keeping this in view, an open source framework for Java Code Analysis of MCS has been

proposed that ensures improved software reliability and early detection and correction of code

which is very costly at later stages of SDLC. Our analyzer checks Java code compliance to Coding

Standards by automating twelve of NASA’s coding standards related to Concurrency and Logical

Errors. Concurrency includes API Misuse, Synchronization, Thread Safety and Waiting related

rules. The framework uses a hybrid code analysis technique made up of Syntactic Code Analysis

and Flow Analysis, making use of the benefits of both i.e. imposing rules based on a context free

grammar (CFG) and assessing control flow of the test code. Our framework not only detects the

violation of a rule but also pin points the location of the rule violation and suggests a fix for each

of problem. We analyzed twelve open source Standard Java Projects using our framework to check

the validity of our framework. Furthermore, we also induced 7 projects with rule violation and our

framework successfully detects those violations. Based on our results we have created a dataset of

Logical and Concurrency errors in MCS

Keywords: Code Analysis, Static Code Analysis, Java, Syntactic Analysis, Flow Analysis,

Software Quality, Software Reliability.

vii

TABLE OF CONTENTS

DECLARATION.. i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT ... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT .. vi

TABLE OF CONTENTS ... vii

TABLE OF FIGURES ... ix

CHAPTER 1: INTRODUCTION ... 14

1.1. Background Study ... 14

1.1.1. Mission Critical System .. 14

1.1.2. Code Analysis ... 16

1.1.3. Code Analysis Standards .. 19

1.2. Problem Statement .. 20

1.3. Proposed Methodology ... 20

1.4. Research Contribution... 21

1.5. Thesis Organization .. 22

CHAPTER 2: LITERATURE REVIEW ... 25

2.1. Systematic Literature Review ... 25

2.1.1. Review Protocol .. 25

2.1.2. Classification and Analysis ... 32

2.1.3. Analysis Results .. 45

2.2. Industrial Perspective .. 49

2.3. Research Gap .. 51

CHAPTER 3: PROPOSED METHODOLOGY ... 54

3.1. Solution Idea ... 54

3.2. Proposed System Workflow.. 55

3.3. NASA’s JPL Selected Rules ... 56

3.4. Example Rule .. 58

3.5. Hybrid Analysis Technique .. 59

3.5.1. Syntactic Analysis ... 60

3.5.2. Flow Analysis ... 63

viii

CHAPTER 4: IMPLEMENTATION .. 68

4.1. MCS Code Analyzer Architecture .. 68

4.2. JavaCC .. 69

4.3. Embedding NASA’s Rules in EBNF Rules .. 70

4.4. Tool Interface .. 71

CHAPTER 5: VALIDATION ... 76

5.1. Validation Process .. 76

5.2. Test Projects Details ... 77

1.5.1. Test Project 1: Elevator Control System ... 77

1.5.2. Test Project 2: Bank Customer Multi-Threading Project.. 79

1.5.3. Test Project 3: Multithreaded Client/Server Chat System .. 81

5.3. Standard Projects Result ... 83

5.4. Projects with Error Induced Result ... 85

5.5. Threat to Validity .. 87

CHAPTER 6: DISCUSSION AND LIMITATIONS .. 89

6.1. Discussion .. 89

6.2. Limitations ... 90

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 92

REFERENCES ... 93

ix

TABLE OF FIGURES

Figure 1.1: Problem Statement Summary .. 20

Figure 1.2: Research Flow ... 21

Figure 1.3: Thesis Outline ... 23

Figure 2.1: Overview of review process .. 26

Figure 2.2: Search Process Flow .. 28

Figure 3.1: Proposed System Workflow .. 55

Figure 3.2: Classification of selected NASA's Rules .. 57

Figure 3.3: Example Code ... 59

Figure 3.4: Hybrid Analysis... 60

Figure 3.5: Parse Tree of Example Code ... 61

Figure 3.6: Parse Tree of Example Code Method Block ... 62

Figure 3.7: Parse Tree of Example Code if Block ... 62

Figure 3.8: CFG of Simple Flow, If-Else Conditional Flow and Case Condition Flow 63

Figure 3.9: Extended CFG of Simple Flow, If-Else Conditional Flow and Case Condition Flow

... 64

Figure 3.10: Warning path in CFG of Simple Flow, If-Else Conditional Flow and Case

Conditional Flow .. 64

Figure 3.11: Extended Parse Tree .. 66

Figure 4.1: Architecture Diagram for Tools and Techniques .. 68

Figure 4.2: JavaCC Design .. 69

Figure 4.3: JavaCC files... 70

Figure 4.4: Embedding NASA's rules in Java Rules ... 71

Figure 4.5: Tool Main Interface ... 72

Figure 4.6: Saved XML results .. 72

Figure 4.7: Syntax Checking Result .. 73

Figure 4.8: Example Rule Warning Results .. 74

Figure 5.1: Super Class Constructor calling a non-final method ... 78

Figure 5.2: Sub Class ElevatorSimulation ... 78

Figure 5.3: Elevator Control System Results... 79

x

Figure 5.4: Thread sleep while a lock is held .. 80

Figure 5.5: Detection result of calling thread sleep with a lock held .. 81

Figure 5.6: Calling object.wait while two locks are held example. ... 82

Figure 5.7: SetText Method ... 82

Figure 5.8: Warning result of calling object.wait while two locks are held 83

Figure 5.9: Mean Time Between Failure (MTBF) .. 84

xi

LIST OF TABLES

Table 1.1: Java Coding Standards .. 19

Table 2.1: Summary of Search Terms and Corresponding Results. .. 29

Table 2.2: Summary of research papers based on scientific database and publication type 30

Table 2.3: Summary of selected publication per year .. 30

Table 2.4: Data Extraction and Synthesis template ... 31

Table 2.5: Summary Classification result of selected studies .. 32

Table 2.6: Summary Classification result of selected studies. ... 33

Table 2.7: Summary of studies using taint analysis approach to perform Static Code Analysis. 34

Table 2.8: Summary of studies using syntactic/symbolic analysis approach to perform Static

Code Analysis ... 35

Table 2.9: Summary of studies using Flow Analysis approach to perform Static Code Analysis

... 36

Table 2.10: Summary of studies using Machine Learning approach to perform Static Code

Analysis... 37

Table 2.11: Summary of studies using textual analysis approach to perform Static Code Analysis

... 38

Table 2.12 Summary of studies using a combination of two or more approaches to perform

Static Code Analysis ... 39

Table 2.13: Classification result of studies using Dynamic Code Analysis 40

Table 2.14: Summary of studies using Code Coverage approach to perform Dynamic Code

Analysis... 41

Table 2.15: Summary of studies using Memory Error Detection approach to perform Dynamic

Code Analysis ... 42

Table 2.16: Summary of studies using Fault Localization approach to perform Dynamic Code

Analysis... 43

Table 2.17: Summary of studies using Program Slicing approach to perform Dynamic Code

Analysis... 44

Table 2.18: Summary of studies on Dynamic Code Analysis ... 45

Table 2.19: Analysis result of selected studies w.r.t Programming/Scripting/Query Language . 46

xii

Table 2.20: Classification of studies w.r.t. System Type ... 47

Table 2.21: Summary of Mission Critical Systems ... 48

Table 2.22: Analysis result of selected studies w.r.t compliance to a standard 49

Table 2.23: Summary of Industrial Tools for Code Analysis of Java .. 50

Table 5.1: Standard Project Details.. 76

Table 5.2: Details of Projects with Error Induced. .. 76

Table 5.3: Result of Standard Project .. 83

Table 5.4: Reliability Results for Standard Projects .. 85

Table 5.5: Analysis Results of Projects with error induced. .. 85

Table 5.6: Reliability Results of Projects with errors induced .. 86

xiii

 Chapter 1

Introduction

14

CHAPTER 1: INTRODUCTION

This section provides a detail introduction about the important concepts related to our research,

the current problem and an overview of our solution. It is organized into five sub sections. Section

1.1 describes the background study, Section 1.2 provides the problem statement of research,

Section 1.3 discusses the proposed methodology, Section 1.4 gives the detail about research

contribution, and thesis organization is presented in Section 1.5

1.1. Background Study

The purpose of this section is to introduce the background study of multiple important concepts

which has been used in this research. These concepts include:

 Mission Critical Systems

 Types of Critical Systems

 Importance of Critical Systems

 Examples of Real Time System

 Real Time and Mission Critical Systems

 Code Analysis

 Types of Code Analysis

 Importance of Code Analysis

 Important Code Analysis Techniques

 Code Analysis Standards

1.1.1. Mission Critical System

Mission Critical System (MCS) is any systems which is critical for an organization to the point

that a failure in the system can cause serious damage to the organization. These systems are usually

all-encompassing or very deep because of integration with core elements of the business. Examples

of Mission Critical System include electricity grid system, online banking system and aircraft

control system.

15

Types of Critical Systems

Following are the three types of critical systems:

1. Mission Critical System

If this type of system fails it will lead to failure of one or more goal directed activity. A

specific example of such a system would be a spacecraft navigation sys.

2. Safety Critical System

If this type of system fails it may lead to injury to the living, serious damage to the

environment or even death. For example a chemical manufacturing plant control system.

3. Business Critical System

When this type of system fails it may result in very high financial damage to a business.

For example a bank’s customer accounting system.

Examples of MCS

MCS are endorsed and used by all business companies and organizations if these systems are

functioning properly. A malfunctioning filtration system can lead to closure of water Filtration

Company. Similarly, if a gas critical system malfunctions a number of restaurants and bakeries

would shut down and wait for system to function again. Thus, many other examples can be found

around the world where if a critical system fails it has serious implications on industries and

organizations.

Aircraft Navigation System

All Airline Companies are highly dependent on its navigation system. Aircrafts require navigation

system to aid pilots calculate time and distance utilizing Dead Reckoning. Radio-navigation is

especially useful in conditions such as low visibility. GPS can also be utilized to provide precise

data on location that is inclusive of speed, position and track.

Nuclear reactor safety system

Nuclear Stations use controlled fission chain reaction to produce energy in order to make

electricity. Here medical isotopes can also be generated and various researches can be done. The

control system for nuclear reactors is of critical importance as a system failure in this case will be

devastating not only for the industry but for the community and country at large. Hence, such a

16

system is of international concern. Sensitive detectors are employed in the reactors to monitor and

control any deviations of temperature, power generation, pressure levels at various points and input

and output of water.

Importance of Mission Critical Systems

Mission critical systems in today’s world have no doubt gained popularity and are being employed

in most aspects of human life. From medical to business corporates, factories to marketing, power

generation to transport, all employ critical systems one way or the other. Its importance can not

only be seen in its widespread usage and dependency of people on it rather its value is ascertained

by the fact that it is not affordable, financially and otherwise, to interrupt a system because system

failure at any point can lead to severe disruption of services, disruption of production, heavy

financial losses and can even endanger human life.

Since there is a high cost of malfunctioning of critical systems, to develop critical systems trusted

methods and previously tried techniques are preferably used instead of developing new methods

that have not been subjected to practical trials. Hence, when employing a critical system an older

system is naturally chosen as its merits and demerits are well understood rather than choosing a

system new in the market which appear appealing on the outside but its long term problems are

yet to be known.

Real Time and Mission Critical Systems

Mission Critical software are mostly real time in nature. Real Time System is a system which

fails if a timing deadline is not met. It can be:

 Hard Real Time System – These are systems which fail for any missed deadline

 Soft Real Time System – These systems are tolerant of missed deadline

1.1.2. Code Analysis

Code Analysis is used to find potential defects in the code such as logical errors, deadlocks, useless

code, code clone etc. It is normally done early on in the software development life cycle which

helps detect and correct flaws in the software which can become very expensive to maintain in the

later stages.

17

Types of Code Analysis

There are essentially three main types of Code Analysis:

1) Static Code Analysis: This is the analysis type in which code analysis is performed without

executing the code. It is usually done manually but recently some automation of static code

analysis techniques has also been observed in literature. In this technique code is checked at

compile time and not during the runtime. It examines code at early stages of development and

testing, therefore it is more of a precautionary measure. Inferences are made about what the

problems might arise in code before the execution of code based on the results of static code

analysis. Besides this it can also be used to improve the readability and maintainability of the

source code

2) Dynamic Code Analysis: This is the code analysis type in which code analysis is done by

actually executing the code. Dynamic analysis can be as simple as fixing a bug in code and then

running it to see if the error still exists. Performing unit test is also dynamic code analysis.

Additionally, it can be used to analyze security related bugs because a code interaction with other

system components can also be checked by executing the code.

3) Hybrid Code Analysis: In this type of code analysis one or more of static and dynamic analysis

techniques are combined to give form of a hybrid of Static and Dynamic Testing. It has proved to

be more effective method of code analysis in many cases [9], [11], and [27].

Static code analysis can prove to be better than dynamic code analysis when it comes to locating

a problem identified by analysis. Static analysis pin points the location of fault in the code and

hence offers quicker fixes. But its high rate of false negatives gives developers a false sense of

accomplishment that all security and quality concerns are being tackled. Dynamic code analysis

can help developers detect faults in software that might have been a false negative in case of static

code analysis. To tackle all the different types of bugs in a software static analysis should be

combined with dynamic analysis i.e. Hybrid Analysis.

Importance of Code Analysis

Sometimes a single bug can cause loss of millions of dollars as in the case of Ariane [52] or a small

glitch in the software can cause loss of life as in the Therac 25 [53] case where 7 people died due

18

to overdose of radiation. Such problems in software proves the importance of correctness of

software code and quality assurance practices. Source code analysis not only helps in reverse

engineering and reengineering of software applications but it also helps in maintenance and

optimization of the software by making the software more readable. The software sizes are

increasing with the advancement in software development. By the year 2025 the software size will

increase up to 1 trillion line of code [54]. This alarming increase in the size of a software and the

problems it causes shows the importance of automated ways of code analysis to prevent defects in

software and specially Mission Critical Systems.

Important Code Analysis Techniques

The techniques employed for static code analysis range from elementary approaches like pattern

based approaches to more complex ones like Syntactic Analysis, Flow Analysis, Taint Analysis

and Machine Learning. One or more techniques can be combined to form a hybrid which has

proven to be more effective [2], [18],[37]. Most widely used technique is the Syntactic Analysis.

It is based on imposing rules, implied by a context-free grammar, on syntax tree or program. It

can be:

 Top down: In this approach the parse tree starts creating from the top i.e. the root and

proceeds towards the bottom i.e. the leaves.

 Bottom- down: In this approach the parse tree is constructed from the leaf and proceeds

towards the roots.

Using top-down parsing has advantages over Bottom down approach such as use of more general

grammar, easier to debug, and passing values (attributes) both up and down the parse tree.

Flow analysis is yet another technique is commonly used for analysis. It ensures analysis of control

or data flow around the system using graphs. In Flow analysis, code is checked for defects by first

making a graph structure from the code e.g. data flow graph or control flow graph, which is then

traversed to root out problems in a program. A call graph starts from the main method and forwards

to all methods recursively through method calls, representing global dependencies in a program.

This straight forward approach can be used for analysis in procedural languages where there are

no dynamically bound method calls and instances as in object oriented languages. Other techniques

19

include taint analysis i.e. Analysis of variables which can be modified by user and techniques

based on Machine learning and formal methods.

1.1.3. Code Analysis Standards

Due to the importance of Code Analysis in system development, several standards have been

proposed. A coding standard is a set of best practices for developing software of better quality

Standards such as ISO, IEC, MISRA makes software safer. Code analysis makes checking of

compliance to coding standards easier.

Java is renowned language for the development of MCS’s [62] and few Industry wide accepted

Java Coding Standards are given in Table 1.

Table 1.1: Java Coding Standards

Coding Standards Publisher Primary Focus

Google Style Guide Google Hard-and-fast Coding Style rules

Sun Java Coding Standards Oracle Maintainability

JPL Coding Standards NASA Run Time Errors for Mission Critical

Systems

NASA’s JPL Coding Standards

When it comes to mission and safety critical software in Java the best and most practical standards

are the JPL Coding standards proposed by NASA. These coding standards addresses potential risk

in a software related to multi-threaded software. It is specially designed for ground mission critical

systems to improve code quality by minimizing the possibility of run time errors in the code. The

standards are based on the MISRA and “Power of Ren” coding rules.

NASA’s JPL Coding standards are divided into three main categories based on their criticality

level which are:

1) Critical

2) Important

3) Advisory

20

1.2. Problem Statement

Currently most of the papers have used Code Analysis to target issues related to security,

duplication, complexity, readability, memory use, unnecessary code, missing code, etc. Static,

Dynamic, or Hybrid Code Analysis techniques are being used to detect problems in the code.

Research shows that concurrency and Logical Errors are most important reasons for failure of Real

Time Mission Critical Systems. NASA’s JPL Standard has rules related to these two areas but they

have not been automated by any tool. State-of-the-art indicates the lack of framework for

automated Java code analysis regarding logical errors in MCSs. In addition, the industrial code

analysis tools do not target Java based MCSs particularly for logical and runtime errors. Code

Sonar is a very important tool that checks code compliance to many important standards but it does

not check code conformance to NASA’s JPL Standards for Java coding language. Enforcing these

rules on Mission Critical Systems can greatly mitigate rate of system failure. Hence, there is a dire

need for a framework that can analyze Mission critical Systems by automating JPL rules related

MCS. Figure 1 shows a summary of problem statement.

Figure 1.1: Problem Statement Summary

1.3. Proposed Methodology

Entire research is done in a very systematic way. Figure 1.2 represents the flow of research

step by step. In first step we identify the problem. Then proposed the ideal solution for the problem

identified in first step. We carried out a detailed and comprehensive literature review which helps

us to identify the optimal solution for the problem. We reviewed the researches carried out related

21

to our proposed solution, analyzed and compared it. Then we implemented our framework using

some tools and techniques. Our proposed framework is then validated using some RTMCS.

Figure 1.2: Research Flow

1.4. Research Contribution

The contribution of our research is a complete, open source framework for Code Analysis of

Mission Critical System by checking code compliance to coding standards proposed by NASA’S

JPL Laboratory. Detailed set of contributions of the proposed approach are as follows:

 Improve reliability of Software and Mission Critical Software in particular because of the high

criticality factor.

 Automation of NASA’s Rules related to logical errors and concurrency as it an important rule

set specially designed for Mission Critical Systems.

22

 Detection of potential errors points and deadlocks in the code that can cause run time errors

 Location of the cause of errors in the code by displaying line number of the problematic code.

 Suggestion on how the run time error can be avoided or fixed based on Standards

 Early detection and correction of code which is very costly at later stages because maintenance

cost increases in the later stages of Software Development Lifecycle (SDLC)

 The proposed work has been validated using Mission Critical case studies including Elevator

Control System, Autonomous Driving and Aircraft Control System.

1.5. Thesis Organization

Organization of the thesis is represented in Figure 1.3. CHAPTER 1: offers a brief

introduction containing the background study, problem statement, research contribution and thesis

organization. CHAPTER 2: provides the detailed literature review highlighting the work done in

the domain of Code Analysis on general and Code Analysis of Mission Critical Systems in

specifuc. Section one presents a systematic literature review on Code Analysis techniques and

tools. Section 2 describes the code analysis review from industrial perspective by presenting a

review of all the different code analysis tools available in Market for JAVA Language. CHAPTER

3: covers the details of proposed methodology used for identification and solving of the problem

inhand. 0 presents the detailed implementation of our framework, architecture along with its

interface.Error! Reference source not found. CHAPTER 5: provides the validation performed for

ur proposed methodology using two important case studies, including Elevator Control system and

Bank System. CHAPTER 6: contains a brief discussion on the work done and also contains the

limitations to our research. CHAPTER 7: concludes the research and recommends a future work

for the research.

23

Figure 1.3: Thesis Outline

24

Chapter 2

Literature Review

25

CHAPTER 2: LITERATURE REVIEW

Code analysis has been an active field of research for many years. Hence there are a number of

review papers related to code analysis and its sub fields i.e. static, dynamic and hybrid code

analysis. A survey on static code analysis [59] provides the comparison of 4 best algorithms for

static code analysis against mathematical logic language for model checking. Another review

paper [60] only focuses on vulnerability detection using static analysis of C/C++ code by

comparing the results of 11 different open source tools. Our review is different from existing

review papers because it provides a bigger picture of code analysis by presenting static, dynamic

and Hybrid code analysis approaches in one place so as to provide an easier way of comparing the

three approaches. To the best of our knowledge no other paper provides a latest review of code

analysis techniques and tools proposed or implemented between the year 2014 and 2020 that

provides an overall comparison between the different approaches of code analysis i.e. static,

dynamic and hybrid code analysis. The scope of our study is restricted only to the research studies

published between the year 2014 and 2020 that implement, propose or improve a technique or tool

of code analysis in the area of static, dynamic and hybrid code analysis. We have further restricted

our scope by not including studies related to code analysis that targets code clone detection because

a recent review paper on code clone detection [61] covers all its aspects comprehensively.

We analyzed Code Analysis developments from the following perspective:

 The different studies reported in literature for Code analysis in general and MCS’s in

particular.

 Industrial tools proposed by researchers for Code Analysis

 We have carried out a Systematic Literature Review (SLR) on 51 research articles, comprising

both conference and journal papers selected from the year 2014- 2020 after a detailed search

process.

2.1. Systematic Literature Review

2.1.1. Review Protocol

Two components of the review protocol i.e. Research questions and background of the study have

been discussed in the last section i.e. Introduction. This section presents the remaining five

important components of the total seven basic components of review protocol.

26

Figure 2.1: Overview of review process

27

A. Categories of Code Analysis:

For the simplification, we have define three major categories of code analysis. The description of

these categories is given below.

1) Static Code Analysis: It is a code analysis technique that checks code at compile time and not

during the runtime. It examines code at early stages of development and testing, therefore it is

more of a precautionary measure. Inferences are made about what the problems might arise in code

before the execution of code based on the results of static code analysis. Besides this it can also be

used to improve the readability and maintainability of the source code.

2) Dynamic Code Analysis: It is an analysis technique that checks code by executing it. Dynamic

analysis can be as simple as fixing a bug in code and then running it to see if the error still exists.

Performing unit test is also dynamic code analysis. Additionally, it can be used to detect security

related bugs because a code interaction with other system components can also be checked by

executing the code.

3) Hybrid Code Analysis: It is a code analysis technique that formed by the combination of both

Static and Dynamic techniques.

B. Selection Rejection Criteria

To achieve the required goals of SLR and effectively answer our research questions some rules

were pre-defined based on which research studies were filtered out. Hence a selection and rejection

criteria was clearly defined which is given below.

 Only publications that propose a tool or technique for code analysis techniques i.e. Static,

Dynamic or Hybrid Code Analysis are included in the study.

 Only the publications from 2014 to 2020 are included in review process and the rest are

rejected to ensure a latest study of research available on code analysis.

 The papers were only selected from four well-accepted scientific databases i.e. Springer,

Elsevier, ACM and IEEE. Studies published on other repositories are not considered for

review.

 In case of two papers with almost similar content were found then only one of them was

included in review and the other is discarded.

28

 The research paper that comprised of 2 to 3 pages and were not full length papers were

discarded from the study.

 Research that was published in any language other than English were not included in the

study.

 Only the papers published in conference proceedings or journals were included in the

study.

 Research papers that perform code analysis to perform code clone detection are excluded

from the study because it is thoroughly covered in a recent SLR on code clone detection

[61].

C. Search Process

In search process firstly we searched the four databases we have selected (IEEE, ACM, Elsevier

and Springer) as described in the criteria for selection and rejection. A summary of the search

process is presented in FIGURE. As the paper presents a review on the advancement code analysis

techniques in the recent years therefore only the papers that proposed some new technique or tool

for static, dynamic or hybrid code analysis were selected.

Figure 2.2: Search Process Flow

29

We followed the steps presented in the figure to select the studies that are most relevant to code

analysis and our focus. In first step all the databases are searched for using a variety of keywords

along with operators (AND, OR) are used to perform the search process. Using advanced search

in the selected databases certain constraints including time frame were imposed on search to get

controlled number of results. In the next phase 230 papers are shortlisted from 2223 studies based

on other criteria of selection and rejection which are discussed in the previous section i.e. Section

II (C). In the third and fourth phase more papers are excluded on the basis of title and abstract

leaving 171 and 92 studies respectively. In the 5th phase overall analysis of studies was done by

skimming through the papers which further narrowed down the selection to 51studies and rejected

12 studies. The remaining 51 studies at the end of search process completely comply with our

selection and rejection criteria.

Table 2.1: Summary of Search Terms and Corresponding Results.

Sr.# Search Terms Operato

r

IEEE ACM Springer Elsevier

1. Code, Analysis AND 27000 10021 19221 9238

2. Static, Code, Analysis AND 1653 753 547 7543

3. Dynamic, Code, Analysis AND 6123 432 234 323

4. Hybrid, Code, Analysis AND 3212 121 87 65

5. Dynamic, Code, Analysis, Code,

Coverage

AND 343 5 3 6

OR 932 327 343 398

6. Dynamic, Code, Analysis, Fault

Localization

AND 237 15 6 12

OR 1023 276 198 182

7. Dynamic, Code, Analysis,

Memory, Error, Detection

AND 134 5 3 1

OR 1294 65 323 176

8. Dynamic, Code, Analysis,

Program, Slicing

AND 91 12 11 5

OR 2311 654 297 132

D. Quality Assessment

To achieve more reliable results, we narrowed our sources of SLR to only the most reliable and

popular databases i.e. IEEE, ACM, Elsevier, and Springer. A total of 31 studies are selected from

IEEE including 6 journal papers and 25 conference papers. From ACM a total of 8 papers are

selected from which 5 are conference papers and 3 are Journals. From Elsevier 5 journal papers

30

and 1 conference paper is selected. From Springer a total of 5 papers are selected which are all

conference papers. Table 3 presents a summary of publications selected from each database and

the publication type. Database table heading represents the scientific repositories name from

which the papers are selected. For each paper the citation of the papers is written against the

database from which it is taken and under their respective publication type i.e. Journal or

Conference. Total represents the aggregate of the conferences and journal papers in each scientific

repository.

Table 2.2: Summary of research papers based on scientific database and publication type

Database Journal papers Conference papers Total

IEEE [1][2][3][4][5][7] [8][10][11][12][15][16][17][19][20][21][22][23][24][25][26][27]

[28][29][31][32][39][40][41][44][46][51]

32

Elsevier [33][34][36][37][3

8]

[45] 6

ACM [6][9][13] [42][43][47][48][49] 8

Springer Nill [14][18][30][35][50] 5

The overall number of publication w.r.t database and publication type is presented in the form of

graph in figure no. Yellow bars in the graph represents the number of journal papers, Blue bars

represents conference papers and yellow bar represents journals and conference papers combined.

To assess the most recent advancement in code analysis we have selected the publications only

between the year 2014 and 2019. We also found a paper from the year 2020. From year 2019 we

selected 5 publications. 9 publications from the year 2018, 11 publications from the year 2017, 13

publications from the year 2016, 5 publications from the year 2015 and 6 publications from the

year 2014 are selected for the study. A summary of the publication selected per year is presented

in Table 4. The Year represents the year of paper that is selected for the review. Reference

represents the citation number of the reference number of the selected paper in the reference

section of this paper. Total presents the total number of publications selected in each year.

Table 2.3: Summary of selected publication per year

Year References Total

2014 [3][5][6][18][27][48] 6

31

2015 [8][29][39][40][50] 5

2016 [2][4][12][14][15][17][31][35][36][38][43][45][46] 13

2017 [1][15][19][22][23][24][30][40][44][47][49] 11

2018 [7][10][11][24][26][28][32][33][42] 9

2019 [9][13][20][21][37] 5

2020 [34][51] 1

E. Data Extraction and Synthesis

We extracted data and perform synthesis using a template presented in Table 5. Bibliographic

Information of the studies are observed for each selected study. The methodology proposed,

implementation details, outcomes nag categorization proposed by each study is observed.

Furthermore programming languages, target platform, target uses, Tools used and proposed, and

Standards in each study are identified. Finally, a comparative analysis of the major categories of

Code analysis i.e. Static Code Analysis, Dynamic Code Analysis and Hybrid Code is presented

Table 2.4: Data Extraction and Synthesis template

Sr# Description Detail

1. Bibliographic

Information

The title, authors, publication year and type of publication i.e. conference or journal is

observed for each of the selected studies.

2. Proposed

Methodology

The methodology proposed by each of the selected research is observed.

3. Implementation

Details

Technique used to implement each methodology is analyzed

4. Outcomes Outcomes of each study is analyzed.

5. Grouping The selected studies are grouped into categories and subcategories, the result of which

are summarized in Table 9 and Table 10

6. Investigation of

categories

Analysis and further classification of each of the major categories i.e. Static Code

Analysis, Dynamic Code Analysis and Hybrid Code Analysis, to find answer to RQ1

are discussed in Section II A, B and C respectively. The analysis results for sub

categories i.e. Taint Analysis, Syntactic Analysis, Flow Analysis, Learning, Textual

Analysis and General Category of Static Code Analysis are summarized in Table 6-11

respectively. Whereas the analysis results for subcategories of Dynamic Code Analysis

i.e. Code Coverage, Memory Error Detection, Fault Localization and Program Slicing

is summarized in Table 13-17 respectively

7. Programming

Languages

Programming Languages being analyzed in each of the selected studies are presented

in Table 19

32

8. Target Platform Target platform in each of the selected studies are presented in Table 20

9. Uses Target Use of Analysis method in each of the studies is presented in Table

10. Tools Tools used and proposed in each of the studies are presented in Table 21

11. Standards A summary of Standards to which the analysis method is checking compliance to in

each of the selected studies is presented in Table 22

12. Comparative

Analysis

A comparative analysis of the major categories of Code analysis i.e. Static Code

Analysis, Dynamic Code Analysis and Hybrid Code is presented in Table 23

2.1.2. Classification and Analysis

To answer the research questions mentioned before, a total of 51 papers in static code analysis

have been examined out of which 15 are journals and 36 are conferences proceedings. Figure

presents the conference journal ratio in the form of a Donot chart. Almost 28% are published as

journals and 73% are printed in international conferences. These studies are published in different

journals including IEEE Transactions on Information Forensics and Security, IEEE transaction on

Reliability, ACM Transactions on Programming Languages and Systems (TOPLAS) etc. Similarly

a very wide range of conferences are included for study. All these studies have been divided into

two major categories Static Code Analysis and Dynamic Code Analysis which are then further

categorized into its subcategories.

Table 2.5: Summary Classification result of selected studies

Technique Definition References Total

Static Code Analysis Technique that checks code

without executing it.

[1][2][3][5][7][8][10][12][14][15][16][18][1

9][20][21][22][24][25][26][29][30][31][32][

33][34][36][37][38][51]

29

Dynamic Code Analysis Technique that checks code

by executing it.

[13][35][39][40][41][42][43][45][46][47][4

8][49][50]

13

Hybrid Combination of both Static and Dynamic

techniques.

[4][6][9][11][17][23][27][28][44] 9

A. Static Code Analysis Classification:

First category of code analysis is the static code analysis which has been discussed in detail in

Section 2 of this article. Static code analysis has been further divided into subcategories based on

approach of Static Analysis, for ease and clarity in study. The categories are Taint Analysis,

Syntactic Analysis, Flow Analysis, Machine Learning, Textual Analysis and a General Category.

33

Table 7 presents a definition and related papers of each categories. Category shows the name of

category. Definition presents a brief description of that category. Reference shows the citation

number of the related paper in references of this paper. Total presents the total number of papers

in each category.

Table 2.6: Summary Classification result of selected studies.

Categories Definition References Total

Taint Analysis Analysis of variables which can be modified by

user.

[14][19][25][33] 4

Syntactic Analysis Analysis based imposing rules on syntax tree or

parsing.

[16][21][22][24][26][29]

[31]

7

Flow Analysis Analysis of control or data flow around the

system using graphs.

[1][7][8][12][30][36] 6

Machine Learning Automatically learning Analysis from

experience and data.

[10][32][34] 3

Textual Analysis Analyzing code using textual properties like

stemming, lemmatization, and spell checking

[3][5][15][20][38] 5

General A combination of one or more of the above

approaches.

[2] [18][37][51] 4

a) Taint Analysis

Taint Analysis focuses on any vulnerabilities in code specially caused by injection of some

untrustworthy code. It checks the complete flow of information from input to the possible areas

that can be affected by malicious inputs to a software. It helps in identification as well as location

of vulnerable parts in a source code. Owing to its numerous applications in vulnerability detection

it widely used for software security. Table 8 presents a summary of analysis on the research work

done on taint analysis, against certain parameters such as technique, case study and accuracy.

These terms are predefined below: 1) Scope is whether the scope of paper under study is limited

to detection only or correction or both. Another possible value of scope can be Aiding static

analysis if the proposed technique improves static analysis in some way 2) Technique is the

specific methodology or algorithm used in the paper for the analysis of code using textual analysis

approach. 3) Case Study is the dataset using which the referenced paper has been validated

through experiments. 4) Accuracy is the results of software after validation experiments. Case

34

Study is further divided in two parts i.e. Name is the name of dataset mentioned in the study and

Availability is whether the dataset is public or private.

Z. Chengyu et al. [14] presents GreatEalton, an extended form of FlowDroid, to detect

ransomeware in android. It detects malicious inputs by tracking information between InputStream,

its related classes and Cipher objects that encrypts them. Another more common way to perform

taint analysis is to first parse the code and form a tree like structure like Abstract Syntax tree (AST)

[33] or concrete syntax tree (CST) [19], then perform taint propagation and analysis on the tree.

A. Costin et al. [19] performs taint analysis on Lua code by using a summarized list of tainted

inputs and sensitive sinks related to Lua code. The SAST tool presented by the study targets web

vulnerabilities. Kurniawan et al [33] uses a PHP parser having 140 grammar combinations in the

form of AST. These combinations are traversed to detect a tainted flow pattern. X. Yan et al. [25]

also detects taint style vulnerabilities in code but it also introduces detection of a new type of taint

style vulnerability i.e. function calling control vulnerability.

Table 2.7: Summary of studies using taint analysis approach to perform Static Code Analysis

Refere

nce
Scope Technique

Dataset Accur

acy
Name Availability

[14] Detection API misuse detection Contagio Mobile, Virus Total Public 99%

[19] Detection Concrete Syntax Tree (CST). N/A Private N/A

[25] Detection Sink Analysis N/A N/A N/A

[33] Detection Pattern Recognition Stivalet Public N/A

b) Syntactic / Symbolic Execution Analysis

Static analysis includes inspecting a program elements, its structure and/or by estimating its

possible states. Examining the elements of a program can help identify many important issues in

a source code. The analysis includes traversing the Abstract Syntax tree AST and checking the

nodes that are visited against some predefined rules. Paper [29] presents compliance to rules by

mapping between patches to perform code reviews. Most commercially available tools for static

analysis e.g. PMD[55] and Findbugs [56] also follow the same procedure. R. Ramler et al [31], in

their work extend the ruleset of PMD by implementing 43 more rules. These rules are mostly

35

related to improper use of xUnit framework and maintenance issues. G. Horváth [24], extends

Clang compiler, which is an open source compiler that performs static analysis using symbolic

execution, to include Cross Translation Unit (CTU) Analysis. This method is used to detect many

different errors in a program that span across translation units. T. T. Nguyen et al [21] combines

two tools, Rosecheckers and Frama-C/WP, improves code analysis C source code verification and

reduce false positives in static analysis results.

 The study [16] presents a tool for detecting code smells by extracting SQL queries in Java code,

converting it to AST and then running Antipatterns based smell detectors on it. Uninitialized

vulnerability more commonly exist in C, C++ and are sometimes difficult to detect. Z. Xu [26]

proposes STACKEEPER that detects such vulnerabilities in code at byte-level. The validity of the

model is checked on XNU source code. . LibLoader [22] detects missing libraries using

Understand, which uses code analysis by comparing code with REST-API of Maven 2. B Shastry

[30] presents Orthrus which detects vulnerabilities by constructing an input dictionary based on

program and data flow. Table 9 presents a summary of analysis on the research work done on taint

analysis, against certain parameters such as technique, case study and accuracy.

Table 2.8: Summary of studies using syntactic/symbolic analysis approach to perform Static

Code Analysis

Refere

nce
Scope Technique

Case Study

Name Availability

[16] Detection Query Anti-patterns N/A N/A

[21] Detection Hybrid System ISOBUS protocol library Private

[22] Both Dependency resolution Public Public

[24] Detection Exploded graph and inline analysis Large Industrial projects Public

[26] Detection AST, Uninitialized memory use XNU public

[29] Aid Analysis Mapping between patches Eclipse CDT, Eclipse JDT Public

[31] Detection Mapping with Rules JFreeChart Public

36

c) Flow Analysis

Flow analysis are intra procedural techniques having its origins in compiler construction context.

In Flow analysis, code is checked for defects by first making a graph structure from the code e.g.

data flow graph or control flow graph, which is then traversed to root out problems in a program..

This straight forward approach can be used for analysis in procedural languages where there are

no dynamically bound method calls and instances as in object oriented languages. Study [1] makes

use of the aforementioned benefits of CFG for procedural languages and combines it with Pattern

matching to perform analysis on large scale industrial applications. Author proposes flow analysis

based static analysis specifically for android platform by exploiting implicit method invocation

processing. The proposed framework finds loopholes in android source code using information

flow analysis.

Generally flow analysis is done against a set of rules. Y. Takhma [8] proposes code analysis based

on code compliance to standards. In this case an abstract model of source code is first created

which is then traversed against a set of XML rules, defined by MyIC phone platform coding

standards, to find potential non-compliances to the standards. In study [7] the author proposes a

model in which the source code is reduced before mining task by reducing the CFG created and

extracting only the relevant portion for analysis, as a result reducing the mining effort and

computation time. In another study [36] wide approximations done at joints in a flow, where two

control paths meet, is addressed by presenting a generic abstract based precision framework. This

methodology improves the precision of analysis done at joint points in a flow analysis.

Table 2.9: Summary of studies using Flow Analysis approach to perform Static Code Analysis

Refe

renc

e

Scope Technique

Case Study

Graph
Name

Availabilit

y

[1] Both Pattern-matching
CFG, DFG

Injection moulding machines Private

[7] Detection
Pre-Condition Mining, CFG

Reduction

CFG Boa datasets, DaCapo and

SourceForge
Public

[8] Detection Rules Matching
CFG

MyIC Phone Application Private

[12] Detection
Method Invocation, privilege

analysis

DFG IMDeveloper,android_auto_s

endsms, myAppWeixin
Public

[30] Detection Flow Graph, Extended Fuz CFG nDPI and tcpdump Public

[36] Detection Predicate Analysis
CFG, DFG

Scade Private

37

d) Machine Learning

ML is essentially utilized to examine source code by performing better pattern recognition and

identification of violation of some rules. The present paper [10] presents a novel approach of Code

Analysis in which Machine Learning is used to recognize patterns in more complex and large

software that becomes increasingly difficult to be comprehended by humans. Study [32] uses a

new methodology called Software Assurance Personal Identifier (SAPI) to classify results of static

code analysis as true or false positive vulnerabilities. It uses probability method and assigns a

personal identifier, which is an additional feature and contains information like author name, base

on which the results are classified. A. Muhammad [34] propose a malware detector which uses

customized learning models concluding that Bidirectional long short-term memory (BiLSTMs) is

used to identify the static behavior of Android malware beating the state-of-the-art models without

using handcrafted features. Table 11 presents a summary of analysis on the research work done on

taint analysis, against certain parameters such as technique, case study and accuracy.

Table 2.10: Summary of studies using Machine Learning approach to perform Static Code

Analysis

Refere

nce
Scope Technique

Case Study
Accuracy

Name Privacy

[10] Both Pattern Recognition ALLEGRO
Private +

Public
N/A

[32]
Aid Static

Analysis

Probability using

personal identifier
N/A Private 89.00%

[34] Detection
Deep Neural

Networks

DREBIN, Android

Malware Dataset (AMD),

VirusShare

Public 99.90%

e) Textual Analysis

Static textual analysis techniques treats code as raw text to perform code Analysis. In this context

a tool called STAC [15] is proposed. STAC is a code analysis tool for Java, C++, and C#

programming langauges that provides solution for code indexing and process textual patterns

inside the code.. S. A. Musavi [3] uses a simple technique of code analysis to detect malicious

38

drivers in the system. A. Bartel [5] and his co-authors have designed a framework as Soot Plugin.

It uses String analysis to analyze permission checks in Android. In the study [38] a static code

analysis framework is presented, which uses a four layered architecture to check malicious

permissions and other dangerous intensions. R. Haas [20] uses code analysis to detect unnecessary

code. Table 12 presents a summary of analysis on the research work done on taint analysis, against

certain parameters such as technique, case study and accuracy.

Table 2.11: Summary of studies using textual analysis approach to perform Static Code Analysis

Referen

ce
Scope Technique Dataset Accuracy

[3] Detection Feature based analysis Public 98.15%

[5] Detection Class-hierarchy and field-sensitive permission check Public N/A

[15] Detection Text Extraction, Splitting, and Processing N/A 98%

[20] Detection Stability and centrality of code N/A 64%-100%

[38] Detection Threat-degree threshold model Private 98.80%

General:

General is the category of static code analysis that combines two more static analysis techniques

to devise a hybrid technique and give better results. I. Medeiros [2] presents static analysis

technique by combining two apparently orthogonal approaches: taint analysis which includes

human coding knowledge about vulnerabilities and datamining which is automatically obtains that

knowledge with machine. This type of detection also offers automatic code correction. W Niu [37]

presents a method in which static taint analysis id used to find taint propagation paths Bidirectional

Long Term Short Term Memory (BLTSM) is applied over it to find vulnerabilities. The proposed

system is validated on Code Gadget and NIST dataset achieving an accuracy of 97%. S. A.

Mokhov [18] uses classical NLP techniques for detection and classification of vulnerabilities in

the code as well as bad coding practices. Authors in [51] modify Java compiler and in included the

functionality of computing seven syntactic and semantic representation in for of different graphs

like Abstract Syntax Tree (AST), Control Flow Graph (CFG), Call Graph, Type Graph, Program

Dependency Graph (PDG), Control Dependency Graph (CDG) and Package Graph using their

ProgQuery platform.

39

Table 13 presents a summary of analysis on the research work done on taint analysis, against

certain parameters such as technique, case study and accuracy. These terms are predefined below:

1) Scope is whether the scope of paper under study is limited to detection only or correction or

both. Another possible value of scope can be Aiding static analysis if the proposed technique

improves static analysis in some way 2) Technique is the specific methodology or algorithm used

in the paper for the analysis of code using textual analysis approach. 3) Case Study is the dataset

using which the referenced paper has been validated through experiments. 4) Accuracy is the

results of software after validation experiments. Case Study is further divided in two parts i.e.

Name is the name of dataset mentioned in the study and Availability is whether the dataset is

public or private.

Table 2.12: Summary of studies using a combination of two or more approaches to perform

Static Code Analysis

Refer

ence
Scope Hybrid Technique

Dataset
Accurac

y Name
Availa

bility

[2] Both ML and taint SVM Tikiwik, PhpMyAdmin, etc. Public 92.60%

[18]
Detectio

n

ML and Textual

Analysis

n-grams, NLP

and statistical

smoothening

NIST Public N/A

 [37]
Detectio

n

ML & taint
Deep Learning Code Gadget, (NVD),NIST Public 97.00%

[51]
Detectio

n

Syntactic,

Semantic and

Flow Analysis

AST, CFG, Call

Graph, Type

Graph, PDG,

CDG, Package

Graph

CUP research group Public N/A

B. Dynamic Code Analysis Classification

Next major category of code analysis is the Dynamic code analysis. In this technique, the code is

analyzed without running the code. This type of code analysis has been discussed in detail in

Section I of this article. For clarity and ease in study Dynamic Code Analysis has also been

categorized into further four sub categories based on the type of Dynamic Code Analysis being

40

performed. The categories are, Code Coverage, Memory Error Detection, Fault Localization and

Program Slicing. Table 14 presents a definition and related papers of each categories. Category

shows the name of category. Definition presents a brief description of that category. Reference

shows the citation number of the related paper in references of this paper. Total presents the total

number of papers in each category.

Table 2.13: Classification result of studies using Dynamic Code Analysis

Type Definition References Total

Code Coverage Computing the code coverage according to a test suite or a

workload.

[13][35][39][40][

41][50]

6

Memory Error

Detection

Detection of bugs that may cause memory errors such as

memory leaks

[42][43] 2

Fault Localization Locating the buggy code according to failing and passing test

cases.

[47][48][49] 3

Program Slicing The technique of reducing a program to its minimum form

such that it still performs its required behavior.

[45][46] 2

a) Code Coverage

Commonly high code coverage can be achieved random testing. In random testing a stream on

random inputs are generated against which a system is checked. Property based Random testing

techniques analyzes the behavior of a system by testing executable predicates on multiple

randomly generated inputs. Property based random testing has some drawbacks which are covered

by coverage guided property based testing as proposed by [13]. This technique is based on

coverage guided fuzzing. A. Sakti et al [40] propose a novel test data generation technique based

on searching, which works well in achieving high code coverage in unit class testing. M. K.

Alzaylaee [41] proposes a new hybrid system is implemented by combining a random based tool

with a state based tool (DroidBot) to increase code coverage and uncover more malicious

behaviors.

Traditionally HTML based URL crawlers fails to analyze large parts of novel application which

have JavaScript at its core. G. Pellegrino [50] proposes dynamic analysis based way of exploring

and analyzing web applications which is implemented in the tool j¨Ak, a web application scanner.

https://en.wikipedia.org/wiki/Code_coverage

41

Various runtime verification tools for JVM depend on AspectJ and other aspect oriented

programming languages. AspectJ, however enforces some limitations on verification tools e.g.

inability to weave Java and Android class libraries. O. Javed [35] proposes a domain specific

language DiSL that overcomes the above limitation by featuring an extensible joint point model

to avoid restricted joint point model in AspectJ. Another approach for analysis of android

application developed in Java language is given by C. Huang [39]. In this approach apk files are

decompiled to assembly language to which they insert measurement code, recompile it, repackage

it and use the patched binary file to check the rate of code coverage.

Table 15 presents a summary of analysis on the research work done on Code Coverage approach

of dynamic code analysis against certain parameters such as scope technique and case study. These

terms are predefined below: 1) Scope is whether the scope of paper under study is limited to

detection only or correction or both. Another possible value of scope can be Aiding static analysis

if the proposed technique improves static analysis in some way 2) Technique is the specific

methodology or algorithm used in the paper for the analysis of code using textual analysis

approach. 3) Case Study is the dataset using which the referenced paper has been validated

through experiments. Case Study is further divided in two parts i.e. Name is the name of dataset

mentioned in the study and Availability is whether the dataset is public or private.

Table 2.14: Summary of studies using Code Coverage approach to perform Dynamic Code

Analysis

Referen

ce
Scope Technique

Case Study

Name
Availabilit

y

[13] Detection property based testing two Coq developments Private

[35] Detection Compiler Construction
DaCapo10 and Scala benchmark

suites
Public

[39] Detection Instrumentation Code 90 Applications from Google Play Public

[40] Detection Unit testing
Joda-Time, Barbecue, Commons-

lang, Lucene
Public

[41] Detection Hybrid input generation McAfee Labs Public

[50] Detection navigation graph WP, Gallery, Joomla etc. Public

42

b) Memory Error Detection

Programming languages such as C and C++ have weak/static type systems and are therefore more

vulnerable to bugs related to memory misuse at runtime, e.g. type confusion, user-after-free and

object bound overflow. These errors causes many security and behavior errors in programs which

are developed using these languages. G. Duck et al. [42] presents the use of dynamically typed

C/C++, which aims to detect such errors by dynamically checking the “effective type” of each

object before use at runtime. This concept is implemented in the form of a tool named EffectiveSan

or EffectiveType Sanitizer. Because of this vulnerability an attacker can corrupt programmer

intended pointer semantics of a downcasted pointer in a way that is type-unsafe. It is called type

confusions and is addressed by both the papers in this category. Study [43] presents TypeSan which

ensures efficient performance and minimum memory overhead by using a technique called

compact memory shadowing for optimum meta data storage service. Table 16 presents a summary

of analysis on the research work done on Memory Error Detection approach of dynamic code

analysis against certain parameters such as scope technique and case study.

Table 3.15: Summary of studies using Memory Error Detection approach to perform Dynamic

Code Analysis

Referen

ce
Scope Technique

Case Study

Name Availability

[42] Detection Dynamic type checking Annotated LLVM Public

[43] Detection
Metadata and type

management
TypeSan Test Suite Public

c) Fault Localization

Given a set of tests results, the localization of software faults or the identification of erroneous

parts of a program is called fault localization. Most fault localization methods depend on

identifying suspicious code chunks by detecting a series of the test case execution pass/fail results.

The paper [48] proposes mutation-based fault localization technique. To overcome the deficiencies

resulting from relying purely on SBDFL formulae, Genetic Programming (GP) and linear rank

Support Vector Machines (SVMs) used for ordering coding chunks based on their chances of

43

having fault. [47]and [49]. FLUCCS is the implementation of approach proposed in [49] which is

extended in FLUCCite [47] by including a ternary conditional operator. Table 17 presents a

summary of analysis on the research work done on Fault Localization approach of dynamic code

analysis against certain parameters such as scope technique and case study.

Table 2.16: Summary of studies using Fault Localization approach to perform Dynamic Code

Analysis

Refer

ence
Scope Technique

Case Study

Name Availability

[47] Detection Emperical Eualvation
Defects4j 0.2.0 repository,

Defects Repository
Public

[48] Detection Mutaion Testing Siemens suite Public

[49] Detection GP, SVMs Defects4J repository Public

d) Program Slicing

The technique of reducing a program to its minimum form such that it still performs its required

behavior. Dynamic slicing is used during debugging and testing as it can be used for test data

generation [45]. M Y Hong et al. introduces program slicing to improve the efficiency of automatic

test data generation. The algorithm includes slicing of interest point variables and get the current

value from it, then in the branch function, using method of minimization, guide the adjustment of

program input. Dynamic slicing is also used for debugging. A. Treffer [46] presents Slice

Navigator which makes use of dynamic slicing along with back in time debugging to debug Java

Code. It provides features such as summary of relevant program state to assist developers, alternate

breakpoints to track last-change and direct reconfiguration of slices.

Table 18 presents a summary of analysis on the research work done on Program Slicing approach

of dynamic code analysis against certain parameters such as scope technique and case study.

44

Table 2.17: Summary of studies using Program Slicing approach to perform Dynamic Code

Analysis

Refer

ence
Scope Technique

Case Study

Name Availability

[45] Detection Test data generation N/A N/A

[46] Detection Breakpoints Open Source business process Engine Public

C. Hybrid Code Analysis:

Hybrid Analysis is the combination of both static and dynamic analysis techniques. Both methods

individually have their advantages and disadvantage. For instance static analysis comes with

scalability at the expense of low precision. On the other hand, dynamic analysis has scalability

issues while giving high precision. The combination of both these methods can allow side-stepping

the shortcomings and multiplying advantages of the individual approaches. Table 19 presents the

specific approach of static and dynamic analysis which combine to form hybrid code analysis for

each paper that falls in the category of hybrid code analysis. Reference is the citation of the paper

under study. For static code analysis the categories are Taint Analysis, Syntactic Analysis, Flow

Analysis, Machine Learning and Textual Analysis which are discussed in detail in the previous

sections. Similarly the categories for Dynamic code Analysis are Code Coverage, Memory Error

Detection, Fault Localization and Program Slicing.

B. M. Padmanabhuni et.al [4] combines static analysis with dynamic analysis to audit Binary

Overflows (BOFs). First using test data generated using some simple rules and dynamic analysis

some of the vulnerabilities are confirmed. Then dynamic code analysis done by mining static code

attributes. O. Tripp et al. [6] present a hybrid security analysis approach for JavaScript program

analysis in which the static component performs static string analysis on partially evaluated

programs of JavaScript and its frequently accessed DOM functions while the dynamic component

performs concretization in dynamic way to maximize coverage. M. Thakur [9] presents a two-step

analysis framework called the Precise Yet Efficient (PYE) which includes static analysis and

dynamic compilation. The framework helps generate low cost precise results at runtime.

K. P. Subedi et al. [11] propose a tool the CRSTATIC (Crypt-Ransomware STATIC) to identify

ransomware families using datamining technique (static analysis) and run time analysis. C. Zhang

et al. [17] proposes JD slicer is a dynamic slicer which integrates static analysis with dynamic

45

analysis to assist debugging process of JavaScript code by precisely capturing different types of

dependencies including data dependencies, DOM dependencies and control dependencies. A.

Gerasimov et al. [23] presents an approach for confirmation of reachability of source-sink defects

that are found by static analysis with help of directed dynamic analysis. S. Zhao et al. [27] presents

malware detection approach based on extended attack tree (static) and force execution according

to runtime behaviors for high coverage (dynamic). DexLego is presented in the study [28] which

aids static analysis process by reassembling bytecode data and performing just in time collection.

Dead code is detected in [44] using dynamic program slicing for which the input test cases are

generated using symbolic execution (static).

Table 2.18: Summary of studies on Dynamic Code Analysis

Referen

ce

Static Code Analysis Dynamic Code Analysis

Taint Textual ML Syntactic Flow Coverage Memory PS FL

[4] x x x x x x x

[6] x x x x x x x

[9] x x x x x x

[11] x x x x x x x

[17] x x x x x x x

[23] x x x x x x x

[27] x x x x x x x

[28] x x x x x x x

[44] x x x x x x x

2.1.3. Analysis Results

The selected papers were analyzed w.r.t its programming languages, Target Platform, Target Use,

Tools, Standards and Finally a comparative Analysis of the three major code analysis categories,

i.e. Static Code Analysis, Dynamic Code Analysis and Hybrid Code Analysis. The result of

analysis of each of the given aspect is discussed in detail in the subsequent sub-sections.

A. Programming Languages

A multitude of programming languages have been analyzed in different papers under study. A

summary of Programming/Scripting/Query Languages and the papers that are targeting it is

presented in table 20. This table can be beneficial to researcher and programmers targeting code

46

analysis tool development to see which programming language have been targeted by researchers

more frequently and which languages have need of further research. According to our study, most

of the researchers working on code analysis have targeted Java Programming Language

[5][7][9][10][12][14][16][18][22][27][29][31][32][40][41][46][47][49][51]. One major reason for

this is its widespread use in different types of developments domains including Web, Desktop and

most commonly Android application development. C and C++ are the second and third,

respectively, most frequently targeted programming languages for code analysis which researchers

are working on recently. C is important because of its worldwide use in a multitude of applications;

most commonly operating systems and advanced scientific systems. C remains particularly

popular in the world of operating systems for example Linux Kernel. Therefore it is targeted by

many researchers [4][18][21][23][24][26][36][37][42][44][48]. C is a procedural language, which

means that the programmers has to give step wise instruction to the CPU. A straight forward

approach such as call graphs can be used for analysis in procedural languages where there are no

dynamically bound method calls and instances but it becomes a little more challenging in object

oriented languages, such as C++ and Java. Different researchers come with different solutions for

it [33][40] etc. C++ and is the main language for enterprise-class, networked applications,

therefore various different tools and techniques have been proposed for its analysis

[4][15][18][24][26][37][42][43]. C# is another important language from the C family and is quite

similar to Java. Analysis of C# code has been studied in [15][24]. JavaScript [6][17][50] and PHP

[2][25][33] are two important web development programming languages for client and server side

programming and are vulnerable to many security attacks. Markup Languages like XML and

HTML are used for front end structuring of android and websites respectively. Sequential Function

Chart (SFC) is a procedural language and is analyzed using Flow Analysis approach [1]. Many

researchers have also worked on code analysis of domain specific languages such as Lua [19], Boa

[7] and DiSL [35]. In some studies [20] and [30] some researchers have only proposed a general

technique or tool for code analysis without mentioning any specific programming language.

Table 2.19: Analysis result of selected studies w.r.t Programming/Scripting/Query Language

Programming/Scripting/Query

Language

Reference

Java [5][7][9][10][12][14][16][18][22][27][29][31][32][40][41][46][47][

49][51]

http://www.linfo.org/network.html

47

C [4][18][21][23][24][26][36][37][42][44][48]

C++ [4][15][18][24][26][37][42][43]

C# [15][24]

Bytecode [11][28][34]

JavaScript [6][17][50]

PHP [2][25][33]

XML [8][39]

HTML [50]

SQL [16]

Functional Programming Language [13]

Sequential Function Chart (SFC) [1]

Assembly [11]

Lua [19]

Boa [7]

DiSL [35]

General [20][30]

B. Type of System

The selected papers were analyzed based on the type of system. Based on our focus of our study

we classified target systems into three main categories. Mission Critical, Traditional and Other

Systems. Mission Critical Systems are systems whose failure can be fatal for an organization. 14

papers proposed a code analysis technique for mission critical including [7], [9], [10], [14],[18],

[26], [28], [30] [31], [35],[37],[38], [45] and [50]. Traditional system are system that are not critical

to organization. The studies [1], [2], [4], [8], [11], [13], [15], [16], [19], [20], [25], [32], [33], [34],

[36], [40], [41], [42], [49], [51] focused on such systems. Whereas the studies, [3], [5], [6], [12],

[17], [21], [22], [23], [24], [27], [29], [39], [43], [44], [46], [47], [48] proposed code analysis

framework for multi-purpose systems.

Table 2.20. Classification of studies w.r.t. System Type

System Type Definition References Total

48

Mission Critical Code Analysis Technique Particularly for

MCS

[7], [9], [10], [14],[18], [26], [28], [30]

[31], [35],[37],[38], [45], [50]

14

Traditional Code Analysis Technique for traditional [1], [2], [4], [8], [11], [13], [15], [16],

[19], [20], [25], [32], [33], [34], [36],

[40], [41], [42], [49], [51]

20

Other Multi-purpose [3], [5], [6], [12], [17], [21], [22], [23],

[24], [27], [29], [39], [43], [44], [46],

[47], [48]

17

C. Mission Critical Systems

14 out of 50 studies were identified to be targeting MCS and only 5 tools out of these 14 tools

perform code analysis of Java language. Since our research is focused on Mission Critical in Java,

we further analyzed studies related to MCS in Java. The summary of analysis is presented in table

22. Reference represents the citation number of the references provided in the reference section of

this thesis. Technique means the code analysis technique used. Tool means the name of tool or

framework proposed in the study. Some studies have not given their framework a name so we have

written N/A in place of it. Standard represent the name of Coding standards the the framework

check compliance to if any. Error means the type of target error type of the framework/tool.

Table 2.21: Summary of Mission Critical Systems

References Technique Tool Standard Error

[14] Data Flow Analysis GreatEatlon N/A API misuse detection

[15] Textual Analysis STAC N/A Indexing, Spell Check

[22] Dependency

resolution

LibLoader

Application

N/A Missing Code

[31] Mapping with Rules N/A Google Coding

Standards

Assert, Naming Conventions,

Setup Teardown routines

[49] Empirical Evaluation FLUCCS N/A Fault Localization

C. Standards

Some studies [2][9] are guided by the OWASP (Open Web Application Security Project). It is a

non-profit organization that assists companies to create, purchase, and maintain trustworthy

software applications by educating its employees related to software, about common Web

49

Application security vulnerabilities and its risks. The popular Top Ten Web Application Security

List is also published by OWASP. The Cheat Sheet evidently spreads out the key prerequisites to

anticipating every defenselessness top to bottom, and over that incorporates testing agendas and

advisers to a guarantee your code's veracity. CERT is a secure coding standard available for C and

C++ [21], [30]. CERT also has coding standards for Java which includes 83 recommendations out

of which 13 are implemented as static analysis. It was designed specifically to be enforced by

software code analyzers using static analysis techniques. What's more, ISO/IEC TS 17961 helps

to ensure fewer false positives are identified when a static code analyzer is used. Google provides

some style guidelines that can be used as conventions for naming etc. to improve code readability

and maintainability. SQL Antipatterns is a book by Bill Karwin, discussed in [16], shows all the

common mistakes of database programming, how to avoid those pitfalls and what the best fixes

for those problems are. Table 23 presents analysis results of selected papers with respect to

compliance to a standard.

Table 2.22. Analysis result of selected studies w.r.t compliance to a standard

Standards Reference

CERT [21][30][51]

ISO-IEC [1][42]

Google Coding Standards [29][31]

OWASP Top 10 [2][19]

Unix ACL [5]

MyIC phone platform coding standards [8]

SQL Antipattern by Bill Karwin [16]

Standard template library (STL), [43]

WIVET [50]

2.2. Industrial Perspective

Reading code to find defects can be very difficult or even impossible with the ever increasing size

of code. Therefore several tools are available in the market that can help analyzer detect problems

in the code early in the SDLC. These tools can be used to detect different types of problems in the

code like improper naming conventions and code clones. Some of these errors can be fetal for

systems and MCS in particular. We analyzed different code analysis tools and selected 8 best tools

for Analysis of code in Java language. Table 24 presents a summary of tools for Java language.

Tools represent the name of code analysis tool for Java. Availability is whether the tool is

50

available open source or not. Standard represents the Coding standard the tool checks compliance

to. Input is the type of input the tools accepts. It is normally in the form of source code or byte

code. Error is the type of errors that are detected by the tool e.g. concurrency errors, code clone

etc. Output is the form in which output is presented by the tool. MCS means whether the tool is

built for Mission Critical System or not. Extensibility means whether the tool can be extended or

not.

Table 2.23: Summary of Industrial Tools for Code Analysis of Java

Sr

Tool Refer

ences

Availability Standard Input Errors Output Extensibi

lity

1 Checkstyle [79] Open source Google

Java Style

Source

code

Style

conventions.

List,

XML,

HTML

Possible

2 DCD

(Dead

Code

Detector)

[80] Not Open

Source

N/A Bytecode Detect dead code List Not

Possible

3 Dependenc

y Finder

[81] Open source N/A Bytecode Dependency

check

Graph Possible

4 FindBugs [56] Open Source Sun

Standards

Source

code,

byte code

Potential bugs

and performance

issues

List,

XML

Possible

5 JLint [82] Open source N/A Byte

code

Deadlocks,

redundancy

Graphic

al

Not

possible

6 SonarQube [83] Not Open

Source

CWE Source +

bytecode

Duplicates,

, bugs complexity

errors etc.

Lists,

charts

Possible

7 PMD

[56] Open source Sun

Standards

Source

code

Potential

problems, Dead

code, duplicate

code and

overcomplicated

expressions,

List Possible

8 Facebook

Infer

[84] Open Source N/A Source

code

Null pointer,

resource leaks,

exceptions,

annotation

reachability,

List Possible

51

2.3. Research Gap

This section deals with the research gap and gap in the proposed solution in industry automation

domain. Code Analysis has been an active field of research for many years now. A lot tools have

been proposed which can be seen in research and the market. After a detailed analysis of literature

on Code Analysis we have identified 14 research papers in which Code analysis was done for

Mission Critical Systems. Table 21 in Section 2.1.3 shows a summary of code analysis tools for

different target systems, i.e. Mission Critical, Traditional Systems and General Systems. We further

analyzed the tools targeted for Mission Critical Systems in Java only and a summary of our analysis

is presented in Table 22. The frameworks proposed in these studies performed detection of errors

including indexing, spell check, API misuse detection, Missing code, Assert, naming conventions,

Fault Localization etc. However, it is evident from the analysis results that none of these

frameworks is intended for the analysis of logical errors which can be fetal for mission critical

systems. Furthermore, detection of concurrency related errors were also missed by these

frameworks. These studies were further analyzed based on the standards that the frameworks are

checking code compliance to. This help us identify another important gap in the literature i.e. none

of the studies done so far has proposed a technique or framework for the analysis of code

compliance to NASA JPL Java coding standards which are industry wide accepted standards,

designed specifically for ground MCS.

Analysis from industrial perspective has been presented in Section 2.2 and a summary of industrial

tools for code analysis of Java Language is presented in table 23. As per analysis results none of

the tools checked errors related to logical errors and concurrency errors. These tools focused more

on improving the maintainability of software rather than reliability of the software. Similarly, none

of the industrial tools check code compliance to NASA’s JPL standards. Only one tool Code Sonar

was found to be detecting errors related to concurrency but it too does not checked code compliance

to NASA’s coding standards. Code Sonar implements a small set of JPL rules only for C language

but not Java language.

 The gap identified can be summarized in the following three major points:

1. Existing tools in the Industry focus on conformance to coding style and maintainability of

System as compared to reliability of the software.

52

2. No tool available in literature or Industry that checks NASA’s JPL rules which are very

important standards for Mission Critical Systems

3. No open source tool support in Literature and Industry for rules related to concurrency and

logical errors in the code which are of major essence to real time systems

Hence, there is a need for open source tool that checks code compliance to NASA Standards related

to Concurrency and Logical Errors, to improve software reliability of Mission Critical Real Time

Systems.

53

Chapter 3

Proposed Methodology

54

CHAPTER 3: PROPOSED METHODOLOGY

As discussed earlier code analysis can greatly mitigate errors in the code at early stages of

SDLC avoiding high maintenance cost at later stages. These errors can also sometimes prove to

be fetal from safety or financial aspect. As MCS are mostly real time in nature therefor the main

cause of its failure is concurrency and logical errors. NASA has provided coding standards for

mission critical systems implemented in Java language but the implementation and checking of

these standards has not been automated. A tool that checks code compliance to NASA’s coding

standards can greatly mitigate run time errors in the code and improve overall software reliability.

Therefore we have proposed an open source tool that will detect concurrency and logical errors in

the Java code by checking code compliance to NASA’s Java coding standards.

The purpose of this chapter is to give a detailed description of the concepts used in the proposed

solution. Sub section 3.1 presents our solution idea for the problem discussed in previous section.

Sub-section 3.2 discusses our proposed system Workflow. Then NASA’s selected rules and an

example rules are presented in Sub-section 3.3 and 3.4 respectively. The Hybrid Code Analysis

technique that our framework is based on is discussed in detail in Sub-section 3.5.

3.1. Solution Idea

Our Solution idea is to create a Framework for Code Analysis of Real Time Mission Critical

Systems that:

 Ensure Software Reliability of RTMCS

 Automate JPL Standards by NASA

 Implement Concurrency and Logical errors related rules

 Extend language grammar with rules implementation

 Detect and locate potential causes of failure in code

 Suggest Solutions based on JPL Standards

55

3.2. Proposed System Workflow

A workflow diagram of the proposed system is presented in Figure 6. The workflow is explained

in the following major steps.

Figure 3.1: Proposed System Workflow

1. Analysis of NASA Rules:

Firstly, NASA’s JPL Standards are analyzed to select rules that are to be implemented. First

Critical Rules Category is selected. Then among the critical rules, the standards related to

concurrency and logical errors are selected because these are the major cause of run time errors in

real time systems. Concurrency rules are further divided into API Misuse, Synchronization, Thread

Safety and Safety. We implemented four, one, two and three rules respectively from each

subcategory. This makes a total of ten rules in concurrency category and two rules from logical

error category. These rules are then implemented in Java Language based on the rule syntax and

semantics.

2. Analysis of Standard Java EBNF:

In this step the standard Java EBNF in JavaCC format is analyzed. EBNF in JavaCC format has

the lexical and semantic information together in one file with .jj extension.

3. Extension of Standard Java EBNF with implementation of NASA Rule:

56

In this step the standard Java EBNF resulting from step 2 is extended with the implementation of

rules resulting from step 1. The output is an Extended Grammar .jj file.

4. Parsing using the JavaCC:

In this step the JavaCC parser takes in the extended grammar and creates a parser and lexer to

parse input test code.

5. Analysis of the test Code

The input test code is first given as input to the Lexical Analyzer, generated by JavaCC. The lexer

performs lexical analysis and breaks down the code into tokens or lexemes. The lexemes are then

fed into the parser which performs syntactic analysis based on the extended grammar on the

generated Extended Abstract Syntax Tree (AST). The extended tree is then given as input for Flow

Analysis and all possible paths through the code are checked by creating Control Flow Graph

(CFG). If according to analysis the code has any syntax error then the syntax error is displayed

otherwise if the test code has rule violation the result writer displays the name of warning, location

of warning and suggestion to fix the cause of possible error.

3.3. NASA’s JPL Selected Rules

NASA’s JPL have presented a set of coding standards for Ground Mission Critical Software

implemented in Java language [63]. Major purpose providing the coding standards is to help

programmer developing software in java language to mitigate run time errors in the code. This can

highly increase software reliability of systems. Another, less focused purpose of these standards is

to improve overall software quality factors such as maintainability and readability of code. These

standards has been designed as a joint collaboration between the Semmle Limited and the

57

Laboratory of Reliable Software (LaRS) at the JPL, NASA. The rule set of Java Coding Standards

has been divided into three main categories.

1) Critical: These rules are critical in nature i.e. following these rules is a must and violation of

these standards must be fixed according to given suggestion at the highest priority.

2) Important: These rules are less critical in nature as compared to the critical rules and more

critical than the advisory ones. Hence, these rules should be followed and any violation should be

amended.

3) Advisory: Rules in this category include software conventions and good practices. Non-

compliance to these rules are allowed but it is recommended to be avoided.

Figure 3.2: Classification of selected NASA's Rules

Since Mission Critical Software are mostly Real Time in nature, therefore, concurrency deadlocks

and logical errors are the most common causes of failure in such system. Due to this reason we

have selected rules related to concurrency and logical errors for automation in our framework.

Secondly, these rules improved the reliability of software, rather than maintainability of software,

which is the aim of this research. Furthermore, we have selected rules only from the critical

category for a start, since those are more important. Selected rules are given below:

1. Critical Rules

1.1. Concurrency

1.1.1. API Misuse

1.1.1.1. Avoid setting thread priorities

1.1.1.2. Avoid using 'notify'

58

1.1.1.3. Do not call 'Thread.yield'

1.1.1.4. Do not start a thread in a constructor

1.1.2. Synchronization

1.1.2.1. Avoid empty synchronized blocks

1.1.3. Thread Safety

1.1.3.1. Avoid static fields of type 'DateFormat' (or its descendants)

1.1.3.2. Ensure that a method releases locks on exit

1.1.4. Waiting

1.1.4.1. Avoid calling 'Object.wait' while two locks are held

1.1.4.2. Avoid calling 'Thread.sleep' with a lock held

1.1.4.3. Avoid calling 'wait' on a 'Condition' interface

1.2. Logic Errors

1.2.1. Avoid array downcasts

1.2.2. Do not call a non-final method from a constructor

3.4. Example Rule

Rule:

Ensure that a method releases locks on exit.

Rule Category:

Critical Concurrency Thread Safety

Description of Rule:

Methods that acquire a lock and do not release the lock in some of the exiting path from the method

can result in a deadlock

Recommendation/ Suggestion

Ensure that all exit paths of the method release the lock.

Example

In the given example a lock is acquired at line 5 in run method. The lock is released inside the if

condition. However of the condition is not met then the lock is never released. This can cause a

deadlock if any other method acquires the same lock.

59

Figure 3.3: Example Code

To avoid this problems there should be a thread unlock in each of the exiting paths,

3.5. Hybrid Analysis Technique

Code Analysis ensures early corrections of code by finding potential trouble spots such:

 Logical Errors

 Unused code

 Code clones

 Concurrency errors

 Security Vulnerabilities

 Deadlocks etc.

It is normally done early on in the software development life cycle which helps detect and correct

flaws in the software which can become very expensive to maintain in the later stages. The

techniques employed for static code analysis range from elementary approaches like pattern based

approaches to more complex ones like Syntactic Analysis, Flow Analysis, Taint Analysis and

Machine Learning. One or more techniques can be combined to form a hybrid which has proven

to be more effective. As discussed before in Chapter 1, Syntactic Analysis and Flow Analysis are

two most common methods used for Code Analysis. Besides these techniques also give the best

detection results. Therefore, we have used a combination of the two techniques, i.e. Syntactic and

Flow Analysis and formed a hybrid techniques for better detection results.

60

Figure 3.4: Hybrid Analysis

3.5.1.Syntactic Analysis

Syntactic Analysis is based on imposing rules, implied by a context-free grammar, on syntax tree

or program. It can be:

 Top down: In this approach the parse tree starts creating from the top i.e. the root and

proceeds towards the bottom i.e. the leaves.

 Bottom- down: In this approach the parse tree is constructed from the leaf and proceeds

towards the roots.

Using top-down parsing has advantages over Bottom down approach such as use of more general

grammar, easier to debug, and passing values (attributes) both up and down the parse tree. To

make use of Top down parsing we have used the JavaCC parser, which parses code according to

grammar in a top down manner. Our framework parses our extended version of Java Grammar to

detect anomalies in the code. A parse tree is created as a result of parsing the code. The parse tree

is a rooted tree like structure that represents the syntactic structure of the input code. Considering

the example given in Section 3.4. The input code is first converted to lexemes by JavaCC lexical

Analyzer. These lexemes are then converted into a parse tree based on grammar file. Figure 10

presents the parse tree of first line of the example code i.e.

Line no 1: public void run();

61

Figure 3.5: Parse Tree of Example Code

The non-terminal nodes are the non-leaf nodes of the parse tree whereas terminals are presented

by leaf nodes. Terminals are the token of the input code. The method body comes under ‘Block’

node of the Method Declaration node’s children. The method ‘Block’ node and its children are

presented in Figure 11. This figure represents parse generated for second and third line of code

i.e.

Line no 2:

{ l.lock();

Line no 3:

if (i<=5)

The body of ‘if’ statement comes under the ‘Block’ node which is the child node of ‘Statement’

node which in turn is the child node of ‘IfStatement’ node. This block and its children is

presented in Figure 12. The figure shows parse tree for ‘if’ body i.e:

Line no 4:

{ unlock();}

62

Figure 3.6: Parse Tree of Example Code Method Block

Figure 3.7: Parse Tree of Example Code if Block

63

3.5.2.Flow Analysis

Flow analysis ensures analysis of control or data flow around the system using graphs such as

Control Flow Graph (CFG), Data Flow Graph (DFG) and Call Graph. Our framework uses Flow

Analysis technique by checking CFG of the input code in combination with Syntactic analysis for

embedding flaw checks in Grammar of the code.

Flow Analysis of Example Rule

Flow analysis is important so that all possible paths through the code are checked during code

analysis. If we consider the example given in sub section 3.4, the problem occurs mainly because

flow through the program i.e. if ‘if; statement is true’ is correct while other flow through the

program may give a logical error. Figure 13 shows three possible flows of a program having i.e.

Simple Flow: In this flow there is no alternate path. The program starts, thread is locked, thread

is unlocked and finally program exits.

If Else Conditional Flow: In this scenario program starts then there is a thread lock, then there

are two possible paths through a program based on Condition node and a thread unlock is present

in both conditions. Finally the program exits.

Case Condition: In this scenario the program starts, then there is a thread lock, followed by a Case

Condition. Based on this condition there can be two or more paths exiting from the case condition.

A thread unlock is present in each of the case condition. Finally the program exits.

Figure 3.8: CFG of Simple Flow, If-Else Conditional Flow and Case Condition Flow

64

Figure 3.9: Extended CFG of Simple Flow, If-Else Conditional Flow and Case Condition Flow

Extended Control Flow Graph

To detect warning in the given three scenarios mentioned above, there is a need to check if the

thread is unlocked before exit point of the program. Therefore we have extended our CFGs which

a check point (shown in green) right before the exit point (Figure 14). The purpose of this check

point is to check if the thread that was locked is unlocked or not.

Flow Analysis of Extended CFG

With the extended CFGs the flow of program in three different scenarios is given below and also

presented diagrammatically in Figure 15.

Figure 3.10: Warning path in CFG of Simple Flow, If-Else Conditional Flow and Case

Conditional Flow

65

Simple Flow: In this flow there is only one path i.e. A-B-C-D. If there is a thread unlock after a

thread lock then the path will be safe. However, if the thread unlock node is missing, as in figure

16, the check point node ‘C’ will call a warning.

If Else Conditional Flow: In this scenario suppose there are two paths in the program based on

whether the Condition (node ‘C’) is true or false.

 Path 1 (A-B-C-D-E-F): This path is safe because the thread is unlocked inside the

condition at node ‘D’ after being locked at node ‘B’.

 Path 1 (A-B-C-E-F): In this path there is a thread lock at Node ‘B’ but no thread unlock

before the checkpoint at Node ‘E’. Therefore checkpoint will call a warning.

Case Condition: In this scenario the program starts, then there is a thread lock, followed by a Case

Condition. Based on this condition there can be two or more paths exiting from the case condition.

Based on Condition there are three paths.

 Path 1 (A-B-C-D-F and 2 (A-B-C-E-F): This path is safe because the thread is unlocked

inside the condition at node ‘D’ after being locked at node ‘B’.

 Path 3 (A-B-C-F): In this path there is a thread lock at Node ‘B’ but no thread unlock

before the checkpoint at Node ‘E’. Therefore checkpoint will call a warning.

Based on flow analysis the checkpoint in extended EBNF based parsed tree checks if a locked

thread is unlocked before Exit point or not. While traversing the parse tree a lock flag is raised

when the thread is locked. Similarly a condition or thread unlock flag is raised when it reaches

respective nodes in the parse tree. If the thread unlock flag is not raised before the exit point it

will prevent any other thread from starting. Therefore, the checkpoint will call a warning. This

example is shown diagrammatically in Figure 16.

66

Figure 3.11: Extended Parse Tree

67

Chapter 4

Implementation

68

CHAPTER 4: IMPLEMENTATION

This chapter provides the implementation details of our proposed framework. Section 4.1

describes the Architecture of our framework. Section 4.2 presents a description of the parser we

have used i.e. JavaCC. How Java Grammar is extended to embed NASA’s rules is described in

Section 4.3. Finally, the tool interface along with description is presented in Section 4.4. Our tool

is open source and can be found here [78]

4.1. MCS Code Analyzer Architecture

Tool support is an important factor to increase the productivity of software development. A tool

support architecture to support the framework is shown Figure 17. The architecture comprise of

two main components i.e. Eclipse Integrated Development Environment (IDE) with its Plugins

and the Analyzer having different analysis Applications. Latest Version of Eclipse i.e.2020-6 is

used for the development of the framework. Eclipse IDE is usually used to develop application in

Java Language but it can also be used to develop application in other languages such as JavaScript,

C#, PHP etc. JavaCC, the primary tool used in our framework, is installed as a plugin in Eclipse

IDE. Windows Builder plugin is installed to build the front end of the application. XML (Wide

Web Dev) plugin is used by the framework for generating XML results. The Analyzer component

comprises of three basic techniques i.e. the Lexical Analysis, Syntax checking and Hybrid

Analysis. Lexical Analyzer and the Syntax checker are generated by the JavaCC based on a set of

Grammar rules. Hybrid Analysis is further comprised of two techniques .i.e. Syntactic Analysis

and Flow Analysis. These two techniques are discussed in detail in Sub-Section 3.5.

Figure 4.1: Architecture Diagram for Tools and Techniques

69

4.2. JavaCC

Java Compiler Compiler (JavaCC) is the most popular parser generator. Its design is shown in

Figure 18. Firstly, a sequence of character is given as input into the Token Manager. The Token

Manager creates tokens based on some grammar rules. The next component is the parser which

takes the generated tokens as input, analyses its structure, and creates a parse tree or other user

defined structure based on some grammar.

Figure 4.2: JavaCC Design

Some major features of JavaCC are:

Top-Down approach: The parser created by JavaCC uses top-down (Recursive descent) as

compared to YACC which uses bottom up parsing. The benefit of top down parsing is that more

general grammar can be used, it is easier to debug and it has the ability to parse down to any non-

terminal in the grammar and pass values both up and down the parse tree.

Tool Support. Being the most popular parser, JavaCC has by far the largest user community and

tool support.

Flexible: The tool is highly customizable.

70

Lexical Specifications: The tool has the BNF grammar rules and lexical rules such as regular

expression in the same file.

JavaCC project has a .jj file. This file contains the Context Free Grammar. Based on this grammar

the JavaCC generates the parser implemented in files including Token manager, Simple Character

Stream, Token, Token Manager Error, Constants, Character Stream, Parser Exception and the

parser file itself. Figure 19 shows these automatically generated files along with the the front end

file and .jj grammar file which has our extended grammar.

Figure 4.3: JavaCC files

4.3. Embedding NASA’s Rules in EBNF Rules

We have extended the rules of Java Language grammar with rules of NASA. JavaCC parser creates

implements the grammar and creates parser files that analyzes the test code. For ease in

understanding, consider example rule discussed before in sub section 3.4 again. The example code

shows that a thread that is locked is unlocked in if statement but not in the else statement due to

which the next thread cannot be started. Therefore in the grammar we have added flags where a

lock, unlock, if statement, else statement, case statement is detected. Within the limits of ‘if

statement’ the ‘ifFlag’ is raised similarly flags for else statement and case statement is raised inside

71

the scope of else statement and case statements respectively. The algorithm for simple if condition

check is given below:

Algorithm:

If unlockFlag then
 If ifFlag then UnlockInIf=true
If elsefalg is raised then
 If unlockinif is true then unlocked=false
 Else unlocked = true
If unlocked is false then generate warning

The flags and checks are embedded in the grammar .jj file shown in Figure 20.

Figure 4.4: Embedding NASA's rules in Java Rules

4.4. Tool Interface

The main Tool Interface is given in Figure 21. The input Test code can be entered in the upper text

area under the ‘Enter Code’ and the analysis results are shown in the lower text area under the

‘warning’. The ‘Check’ button is used start analysis of the text given in input text area. The ‘Reset’

button clears everything in the input text area and the result area. The ‘Save Result’ button saves

the result displayed in warning text area, in user system in xml format. The result file saved in xml

format is shown in figure 22.

72

Figure 4.5: Tool Main Interface

Figure 4.6: Saved XML results

73

Syntax Checking Results

As discussed in the Methodology chapter, before checking input code compliance to rules, our

framework first checks if the input code is in Java and has correct syntax. To check if the code is

syntactically as per Java Language, the code is analyzed against Java Language EBNF. If input

code is in Natural Language or any other language, then the message “Input not parsed according

to Java EBNF. Please Enter Java Code or remove the following Syntax Error” is displayed. In

Figure 19, there is a syntax error in the input Test code. A bracket ‘{‘ is missing in the code.

Therefore, warning is generated that the input is not successfully parsed according to Java EBNF.

Furthermore, it also tells where the syntax error lies and what is expected at the location. This can

give user an idea as to what could possibly be wrong with the input code.

Figure 4.7: Syntax Checking Result

Code Analysis Results

If the input code is in Java and has no syntax errors then the message “Expression Parsed ok

According to Java BNF” is displayed. In this case following information is displayed.

74

1) Total No of Warnings: Is the total number of warning in the input code. It can be 0 in case no

warning is detected.

2) List of warning(s): If there is in warning in the code this list is shown empty otherwise a list

of warnings is shown here. The list contains the following information about each warning.

 Warning Name: It is the name of warning.

 Warning Location: It is the line number and column number of where the warning is

located in the input code.

 Warning Description: It is a small description of the warning.

 Suggestion(s): It is a possible fix to avoid the warning as per NASA’s Standards.

Figure 24 presents the result of analysis of input code discussed in Example Rule discussed in Sub-

Section 3.4. The tool correctly identifies the unlocked lock at Line 4 and Column 4 of the input

code.

Figure 4.8: Example Rule Warning Results

75

Chapter 5

Validation

76

CHAPTER 5: VALIDATION

This section presents the validation of our proposed framework with the help of some open

source projects. Section 5.1 discusses the validation procedure and results. Section 5.2 and its

subsection discusses the in detail validation in three of the test projects in its subsections

5.1. Validation Process

The framework is validated by analyzing 12 mission critical open source projects. Firstly, five

Standard Java MCS projects are analyzed using our framework. Standards projects details are

presented in Table 25. Reference means the link to the source of the project. Files means the

number of Java Files in the project. SLOC means the Java source line of code in the project.

Table 5.1: Standard Project Details

To further validate our framework we have analyzed 7 projects after inducing errors in it. Details

of projects with errors induced are given in Table 26.

Table 5.2: Details of Projects with Error Induced.

SR# Project Link Files SLOC

1 Flight Control System: [74] 11 651

2 Bank Customer Multi-Threaded Project [65] 4 268

3 Chat server [66] 3 602

4 Parent monitor [75] 17 1098

5 Elastic Cloud Computing using Multi-threading [77] 4 430

6 Hadoop distributed processing Project [78] 1 112

7 Elevator Control System [64] 7 501

SR# Standard Project Name Reference Files SLOC

1 Tele Health Care System [74] 24 2877

2 Autonomous Driving [67] 5 355

3 Flight Navigation [68] 11 622

4 Online Analytical Processing (OLAP) Server [70] 32 2231

5 Automobile Cruise Control System [69] 17 3860

77

5.2. Test Projects Details

Mission Critical Systems in which multi-threading is used is selected to test the validity of our

framework. The projects are downloaded from GitHub and Source forge.

1.5.1. Test Project 1: Elevator Control System

Description of Project:

The Elevator Control System [64] simulates an elevator system in a building with five floors. For

each floor a separate elevator thread is executed. A BuildingManager has access to each elevator

and keep information about elevator state and floor. Each elevator can detect if a passenger is

waiting at any given time for every floor in the building through the BuildingManager. In order to

avoid race conditions while accessing the BuildingManager object by the Elevator of different

floors, Java Synchronized method is used in Elevator threads.

Description of Warning Induced:

We have induced three different warnings in this project based on the semantics of the code. The

violations are:

1) Call to a non-final method from a constructor

2) Creating static field of DateTime type

3) Creating Empty Synchronized block

This sub section briefly discusses the first violation and how it is effecting the project flow. In the

project there is an ElevatorSimulation Class that extends a Super Class. In the super class there is

a constructor which has a call to a non-final method (Figure 26).

78

Figure 5.1: Super Class Constructor calling a non-final method

In the subclass ElevatorSimulation, there is a constructor in which values are being initiated and

an overridden init class. Creating an object of ElevatorSimulation Class to initiate values of BM,

simTime and simRate, will cause a NullPointException. This is because the sub class i.e.

ElevatorSimulation will implicitly call the constructor of the super class i.e. Super. This will in

return call the overridden init method in the sub Class. This overridden method is using the the

value of simTime without initializing its value in the subclass constructor. Hence a null pointer

Exception is generated.

Figure 5.2: Sub Class ElevatorSimulation

Detection Results

79

 Our framework detects all three induced warning in the project. It also displays the location of

warning and possible suggestion to fix the warning. The example warning discusses in previous

sub-section is shown in figure 28.

Figure 5.3: Elevator Control System Results.

1.5.2. Test Project 2: Bank Customer Multi-Threading Project

Description of Project:

The Bank Customer Project allows customers to contact multiple banks and apply for loan. The

bank can approve or reject these applications based on the rules set by the bank. Once all the

customers get the required loan the program execution stops. However if the banks are out of

funds, customers cannot get their required loan. All information regarding bank transaction, the

remaining amount and the amount given to each user is displayed on the Application.

Description of Warnings Induced:

We have induced four warnings in this project based on the semantics of the code. Two of the

violations are distinct and one is repeated twice. The violations are:

1) Call to thread.sleep while a lock is held

2) Setting thread priority

3) Calling wait on a Condition interface

80

This sub section briefly discusses the first violation and how it is effecting the program. The rest

of the violations can be looked up at [63]. In this problem the thread locks object and goes to sleep.

This prevents other thread from locking object. Any other thread will have to wait till this thread

wakes up and unlock the object before it can continue.

Figure 5.4: Thread sleep while a lock is held

Detection Results

All four violations are successfully detected by the framework. The detection result of the violation

discussed in previous sub section is shown figure 30. The result shows the detection of warning at

line 25 and column 20. It also shows how to fix the problem A possible fix is to call thread.sleep

outside the synchronized block.

81

Figure 5.5: Detection result of calling thread sleep with a lock held

1.5.3. Test Project 3: Multithreaded Client/Server Chat System

Description of Project:

It is a console based chat Server which uses multi-threading concepts and Java Socket

Programing. The Server is open for connection with clients across the Network as well as the

same Machine. Using an IP Address or Port Number the Clients can connect to the Server. Once

the client is connected to the server, it can choose a unique username, join chat room, broadcast

message or send/receive private messages. Java object serialization is used to transfer the

messages.

Description of Error Induced:

In this project we have induced four warnings in this project based on the semantics of the code.

Two of the violations are distinct and one is repeated twice. The violations are:

1) Calling object.wait while tow locks are held.

2) Using notify.

3) Calling Thread.yield

82

This sub section briefly discusses the first violation and how it is effecting the program. The rest

of the violations can be looked up at [63]. In this problems, both idLock and textLock are locked

before the value of text is read. It then calls textLock.wait, which releases the lock on textLock.

Figure 5.6: Calling object.wait while two locks are held example.

setText mothid shown in figure 32 needs to lock idLock but it cannot because idLock is still

locked by run. This causes a deadlock.

Figure 5.7: SetText Method

Detection Results

All four violations are successfully detected by the framework. The detection result of the violation

discussed in previous sub section is shown figure 33. The result shows the detection of warning at

line 204 and column 35. It also shows how to fix the problem A possible fix is to release one of

the locks before calling object.wait.

83

Figure 5.8: Warning result of calling object.wait while two locks are held

5.3. Standard Projects Result

We have created a dataset of Concurrency and Logical Errors in Mission Critical Systems using

the analysis results from our framework. The results are given in Table 27. The term Rule no in

table header represents the serial number of our selected rule in Sub Section 3.3. Rule Name

represents the name of the Rule that is being violated in the standard project. Our tool detects the

same rule “Do not call a non-final method from a constructor” in two projects.

Table 5.3: Result of Standard Project

SR# Standard Project Name Rule no Rule Name

1 Tele Health Care System Null No Violation detected

2 Autonomous Driving 2.2 Do not call a non-final method from a

constructor

3 Flight Navigation 2.2 Do not call a non-final method from a

constructor

4 Online Analytical Processing (OLAP)

Server

Null No Violation detected

5 Automobile Cruise Control System Null No Violation detected

To validate our claim that, our tool improves overall reliability of the software, we have calculated

the reliability of the test projects before and after it is analyzed by our tool. Results show that

analyzing the test projects using our framework and using the suggested fixes significantly

84

improves the reliability of each of the projects. Software reliability can be measures in terms of

Mean Time between Failures (MTBF), Availability and Failure Rate of a Software.

Figure 5.9: Mean Time Between Failure (MTBF)

Table 28 presents the reliability results of Standard projects. MTBF is the average time between

consecutive failures. It is calculated using: MTBF= MTTF+MMTR. Where Mean Time to Failure

(MTTF) is the average time between two consecutive failures in a software whereas Mean Time

to Repair (MTTR) is the average to repair failure in a software.

MTTF is calculates using the following formula:

MTTF =
∑(𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑑𝑜𝑤𝑛𝑡𝑖𝑚𝑒−𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑢𝑝𝑡𝑖𝑚𝑒)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑠

Software Availability measures the degree of software to be in operable or available state. It is

calculated using the following formula:

Availability =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇𝑅
 Or, Availability =

𝑀𝑇𝑇𝐹

𝑀𝑇𝐵𝐹

Failure Rate (λ) is the frequency with which a software fails. It is calculated using the following

formula.

λ =
1

𝑀𝑇𝑇𝐹

B represent the results before the test project is analyzed using our framework and A represents

the results after the test project is analyzed using our framework. Delta (Δ) represents the difference

between A and B. Negative delta values of MTBF and availability show an increase in these

85

parameters which implies that the test project is giving failure after more time and is more available

after Code Analysis using our framework. The positive delta values in Failure Rate indicates that

the failure rate has decreased after code analysis of the projects using our framework.

Table 5.4: Reliability Results for Standard Projects

SR

Error Induced Project MTBF
(MTTF+MTTR)

Availability
(MTTF/MTBR)

Failure Rate
λ = 1/MTTF

B A Δ B A Δ B A Δ

1 Tele Health Care System 206 205.5 0.0 0.91 0.91 0.00 0.0053 0.0053 0.00

2 Autonomous Driving 153.5 192.6 -39.1 0.83 0.89 -0.06 0.0077 0.0058 0.0019

3 Flight Navigation 250.3 365.5 -115.2 0.90 0.93 -0.03 0.0044 0.0029 0.0015

4 OLAP Server 166 166 0.00 0.85 0.85 0.00 0.0070 0.0070 0.00

5 Automobile Cruise Control
System

207.9 207.9 0.00 0.90 0.90 0.00 0.0053 0.0053 0.00

5.4. Projects with Error Induced Result

To further validate the system we have taken 7 projects and intelligently induced some errors in it

to check if our framework detects those errors. The analysis results are shown in Table 29. Our

tool successfully detects all the induced errors.

Table 5.5: Analysis Results of Projects with error induced.

SR# Project Rule # Rule Name Result

1 Flight Control

System

2.1

2.2

Avoid Array downcast,

Do not call non-final method from

constructor

Successfully

detected 2 warnings

2 Bank Customer

Multi-Threaded

Project

1.1.1

1.4.2

1.4.3

Avoid setting thread priorities

Avoid calling thread.sleep with a lock held

Avoid calling wait on condition interface

Successfully

detected 3 warnings

3 Chat server 1.1.2

1.1.3

1.4.1

Avoid using notify

Do not call thread.Yeield

Avoid calling object.wait with two locks

Successfully

detected 3 warnings

4 Parent monitor 1.1.4

1.3.2

1.3.1

Do not start a thread in a constructor

Ensure that a method releases lock on exit

Avoid static fields of type ‘DateFormat’

Successfully

detected 3 warnings

86

5 Elastic Cloud

Computing

1.1.4

1.2.1

Do not start a thread in a constructor

Avoid empty synchronized blocks

Successfully

detected 2 warnings

6 Hadoop

distributed

processing

Project

2.1

2.2

Avoid Array downcast

Do not call non-final method from

constructor

Successfully

detected 2 warnings

7 Elevator Control

System

2.2

1.3.1

Do not call non-final method from

constructor

Avoid Static field of type dateFormat

Successfully

detected 2 warnings

We have calculated the reliability of the test projects before and after it is analyzed by our tool.

Results show that analyzing the test projects using our framework and using the suggested fixes

significantly improves the reliability of each of the projects (Figure 30). Software reliability can

be measured in terms of Mean Time between Failures (MTBF), Availability and Failure Rate of a

Software. Each of the term is explained in the previous sub section. B represent the results before

the test project is analyzed using our framework and A represents the results after the test project

is analyzed using our framework. Delta (Δ) represents the difference between A and B. Negative

delta values of MTBF and availability show an increase in these parameters which implies that the

test project is giving failure after more time and is more available after Code Analysis using our

framework. The positive delta values in Failure Rate indicates that the failure rate has decreased

after code analysis of the projects using our framework.

Table 5.6: Reliability Results of Projects with errors induced

SR

Error Induced
Project

MTBF
(MTTF+MTTR)

Availability
(MTTF/MTBR)

Failure Rate
λ = 1/MTTF

B A Δ B A Δ B A Δ

1 Flight Control
System

290 553.5 -263.5 0.89 0.93 -0.04 0.0038 0.0019 0.0019

2 Bank Customer
Multi-Threaded
Project

266 979 -713 0.88 0.95 -0.07 0.0043 0.0011 0.0032

3 Chat server 381.4 757.5 -376.1 0.93 0.97 -0.04 0.0028 0.0013 0.0015

4 Parent monitor 178.4 400 -222.6 0.84 0.94 -0.10 0.0066 0.0026 0.0040

5 Elastic Cloud
Computing

238.3 652 -414 0.87 0.95 -0.07 0.0048 0.0016 0.0032

6 Hadoop distributed
processing Project

186.3 357 -170.7 0.88 0.90 -0.02 0.0061 0.0030 0.0031

7 Elevator Control
System

218 413 -195 0.86 0.91 -0.05 0.0052 0.0026 0.0026

87

5.5. Threat to Validity

Since software is intangible, measuring software parameters is very difficult. To find reliability of

our proposed framework, we have not done exhaustive testing and considered only a few types of

failures other than the known failures that we have induced because we are only interested in

finding the difference of reliability before and after analysis using our framework. Therefore

detecting all the failures types present in the test projects has no effect on our area of interest i.e.

difference in reliability. Some of the parameters that do have an effect on the validity of our

reliability results are given below:

 Reliability is a customer oriented software measurement and is ideally done by getting

failure reports from customer over a long period of time. For predicting reliability before

release, failures can be estimated during software testing. Due to time constraint we have

done the intensified stress testing and overall feature testing of each project for around an

hour and reported failures after minutes.

 Not all failures are equally critical and have equal impact on reliability.

 Operation of the same project on computer with different speed can have different results.

88

Chapter 6

Discussion and Limitation

89

CHAPTER 6: DISCUSSION AND LIMITATIONS

The sub Section 0 contains a detail discussion on proposed research work and sub Section 0

deals with the limitation of the research.

6.1. Discussion

From this research it has been analyzed that Today’s real-time systems are vastly different from

traditional application programs such as Microsoft Office or AutoCAD. Modern systems such as

a Nuclear Reactor Safety System is highly critical for public safety worldwide because the

malfunction of a nuclear reactor can cause a serious disaster. Proper Code Analysis for Mission

Critical System is very important but most of the research found on lack a framework for detecting

concurrency and logical errors in MCS. Furthermore, there is no tool available in literature or

Industry that checks NASA’s JPL rules which are very important standards for Mission Critical

Systems in Java language.

Our proposed system ensures software reliability of MCS by analyzing code against NASA JPL

coding standards related to concurrency and Logical Errors since most of the errors in real time

MCS occurs due to these causes. Concurrency rules are further divided into API Misuse,

Synchronization, Thread Safety and Safety. We have implemented four, one, two and three rules

respectively, from each subcategory. This makes a total of ten rules in concurrency category and

two rules from logical error category.

Our framework extends Standard Java EBNF with our NASA’s rules implementation. Based on

this extended grammar a parser is generated using the JavaCC Tool. The parser we have used for

parsing the code is JavaCC because not is it the most popular Java Parser but it has benefits over

other important parsers such as the YACC. The benefits include top down parsing due to which

more general grammar can be used, it is easier to debug and it has the ability to parse down to any

non-terminal in the grammar and pass values both up and down the parse tree. Besides, it is easily

90

customizable and has by far the largest user community and tool support. Our framework performs

Hybrid Code Analysis by combining two most important code analysis techniques, the syntactic

analysis and Control Flow analysis. In order to validate our proposed framework we have selected

12 open source projects for analysis of code. Out of the 12 projects we have induced violation of

rules in 7 projects. Our framework successfully detects those violation and also pinpoints the

location of those violations.

6.2. Limitations

This approach improves software reliability of Mission Critical System by ensuring code

compliance to NASA’s standards. We have implemented a small set of important rules for Mission

Critical Systems. To further improve the software reliability of MCS, more of NASA’s rules can

be selected and implemented. Furthermore language support for languages other than java, for

which standards are provided but not implemented so far, can be added into this framework. Our

framework is flexible and can easily be extended with more rules and languages.

Currently, the framework is validated with some open source MCS found on Github and Source

Forge. Mostly MCS, such as the systems implemented in NASA and other critical organizations,

tend to keep their source code private. If our framework is validated with one or more of these

systems, it can further give insights into the strength sand weaknesses of our framework.

91

Chapter 7

Conclusion and Future Work

92

CHAPTER 7: CONCLUSION AND FUTURE WORK

Our proposed framework provides a solution to improve software reliability of MCS and detect

potential problems in the code early in the SDLC which can save high maintenance cost at later

stages. It implements JPL Coding standards proposed by NASA to reduce chances of failure in

Mission Critical Systems. To achieve this, our framework uses a hybrid technique of code analysis,

combining syntactic analysis and flow analysis to detect potential problems in the code. JavaCC

tool is used for parsing of code checking code conformance to our extended grammar rules.

Our approach supports detection of violation of Java Coding rules related to Concurrency and

Logical errors in the code. Not only does our framework successfully detects the violations but

also pin points the location of the possible cause of error in the code. It also gives a suggestion to

fix the cause of failure or error as per NASA’s suggestion list for each violation. The framework

is successfully validated using 12 open source java MCS code.

Future work includes implementing other NASA’s standards e.g. standards related to

Arithmetic, Extensibility, Inefficient code etc. The framework can be extended to add support for

other that have a set of coding standards which are not implemented so far, can be added into this

framework.

93

REFERENCES

1. H. Prähofer, F. Angerer, R. Ramler and F. Grillenberger, "Static Code Analysis of IEC

61131-3 Programs: Comprehensive Tool Support and Experiences from Large-Scale

Industrial Application," in IEEE Transactions on Industrial Informatics, vol. 13, no. 1, pp.

37-47, Feb. 2017.

doi: 10.1109/TII.2016.2604760

2. I. Medeiros, N. Neves and M. Correia, "Detecting and Removing Web Application

Vulnerabilities with Static Analysis and Data Mining," in IEEE Transactions on

Reliability, vol. 65, no. 1, pp. 54-69, March 2016.

doi: 10.1109/TR.2015.2457411

3. S. A. Musavi and M. Kharrazi, "Back to Static Analysis for Kernel-Level Rootkit

Detection," in IEEE Transactions on Information Forensics and Security, vol. 9, no. 9, pp.

1465-1476, Sept. 2014.

doi: 10.1109/TIFS.2014.2337256

4. B. M. Padmanabhuni and H. B. K. Tan, "Auditing buffer overflow vulnerabilities using

hybrid static–dynamic analysis," in IET Software, vol. 10, no. 2, pp. 54-61, 4 2016.

doi: 10.1049/iet-sen.2014.0185

5. A. Bartel, J. Klein, M. Monperrus and Y. Le Traon, "Static Analysis for Extracting

Permission Checks of a Large Scale Framework: The Challenges and Solutions for

Analyzing Android," in IEEE Transactions on Software Engineering, vol. 40, no. 6, pp.

617-632, 1 June 2014.

doi: 10.1109/TSE.2014.2322867

6. O. Tripp , Pietro Ferrara, and Marco Pistoia. "Hybrid security analysis of web javascript

code via dynamic partial evaluation." In Proceedings of the 2014 International Symposium

on Software Testing and Analysis, pp. 49-59. 2014

7. G. Upadhyaya and H. Rajan, "On Accelerating Source Code Analysis at Massive Scale,"

in IEEE Transactions on Software Engineering, vol. 44, no. 7, pp. 669-688, 1 July 2018.

doi: 10.1109/TSE.2018.2828848

8. Y. Takhma, T. Rachid, H. Harroud, M. R. Abid and N. Assem, "Third-party source code

compliance using early static code analysis," 2015 International Conference on

Collaboration Technologies and Systems (CTS), Atlanta, GA, 2015, pp. 132-139.

doi: 10.1109/CTS.2015.7210413

9. M. Thakur, and N. V. Krishna. "PYE: A Framework for Precise-Yet-Efficient Just-In-Time

Analyses for Java Programs." ACM Transactions on Programming Languages and

Systems (TOPLAS) 41, no. 3, pp 1-37, 2019.

10. E. Sultanow, A. Ullrich, S. Konopik and G. Vladova, "Machine Learning based Static Code

Analysis for Software Quality Assurance," 2018 Thirteenth International Conference on

Digital Information Management (ICDIM), Berlin, Germany, 2018, pp. 156-161.

doi: 10.1109/ICDIM.2018.8847079

94

11. K. P. Subedi, D. R. Budhathoki and D. Dasgupta, "Forensic Analysis of Ransomware

Families Using Static and Dynamic Analysis," 2018 IEEE Security and Privacy Workshops

(SPW), San Francisco, CA, 2018, pp. 180-185.

doi: 10.1109/SPW.2018.00033

12. Y. Guo, L. Yang, X. Gao and K. Wu, "The static detection analysis technology of Android

source codes," 2016 IEEE International Conference on Network Infrastructure and Digital

Content (IC-NIDC), Beijing, 2016, pp. 288-292.

doi: 10.1109/ICNIDC.2016.7974582

13. L. Lampropoulos, H. Michael, and C. Benjamin. "Coverage guided, property based

testing." Proceedings of the ACM on Programming Languages 3, pp 1-29, 2019.

14. Z. Chengyu, N. Dellarocca, N. Andronio, S. Zanero, and F. Maggi. "Greateatlon: Fast,

static detection of mobile ransomware." In International Conference on Security and

Privacy in Communication Systems, pp. 617-636. Springer, Cham, 2016.

15. S. Khatiwada, M. Kelly and A. Mahmoud, "STAC: A tool for Static Textual Analysis of

Code," 2016 IEEE 24th International Conference on Program Comprehension (ICPC),

Austin, TX, 2016, pp. 1-3.

doi: 10.1109/ICPC.2016.7503746

16. C. Nagy and A. Cleve, "A Static Code Smell Detector for SQL Queries Embedded in Java

Code," 2017 IEEE 17th International Working Conference on Source Code Analysis and

Manipulation (SCAM), Shanghai, 2017, pp. 147-152.

doi: 10.1109/SCAM.2017.19

17. J. Ye, C. Zhang, L. Ma, H. Yu and J. Zhao, "Efficient and Precise Dynamic Slicing for

Client-Side JavaScript Programs," 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), Suita, 2016, pp. 449-459.

18. S. A. Mokhov, J. Paquet, and M. Debbabi. "The use of NLP techniques in static code

analysis to detect weaknesses and vulnerabilities." In Canadian Conference on Artificial

Intelligence, pp. 326-332. Springer, Cham, 2014.

19. A. Costin, "Lua Code: Security Overview and Practical Approaches to Static

Analysis," 2017 IEEE Security and Privacy Workshops (SPW), San Jose, CA, 2017, pp.

132-142.

doi: 10.1109/SPW.2017.38

20. R. Haas, R. Niedermayr, T. Röhm and S. Apel, "Recommending Unnecessary Source Code

Based on Static Analysis," 2019 IEEE/ACM 41st International Conference on Software

Engineering: Companion Proceedings (ICSE-Companion), Montreal, QC, Canada, 2019,

pp. 274-275.

doi: 10.1109/ICSE-Companion.2019.00111

21. T. T. Nguyen, P. Maleehuan, T. Aoki, T. Tomita and I. Yamada, "Reducing False Positives

of Static Analysis for SEI CERT C Coding Standard," 2019 IEEE/ACM Joint 7th

International Workshop on Conducting Empirical Studies in Industry (CESI) and 6th

International Workshop on Software Engineering Research and Industrial Practice

95

(SER&IP), Montreal, QC, Canada, 2019, pp. 41-48.

doi: 10.1109/CESSER-IP.2019.00015

22. T. Atzenhofer and R. Plösch, "Automatically Adding Missing Libraries to Java Projects to

Foster Better Results from Static Analysis," 2017 IEEE 17th International Working

Conference on Source Code Analysis and Manipulation (SCAM), Shanghai, 2017, pp. 141-

146.

doi: 10.1109/SCAM.2017.10

23. A. Gerasimov and L. Kruglov, "Reachability confirmation of statically detected defects

using dynamic analysis," 2017 Computer Science and Information Technologies (CSIT),

Yerevan, 2017, pp. 60-64.

doi: 10.1109/CSITechnol.2017.8312141

24. G. Horváth, P. Szécsi, Z. Gera, D. Krupp and N. Pataki, "[Engineering Paper] Challenges

of Implementing Cross Translation Unit Analysis in Clang Static Analyzer," 2018 IEEE

18th International Working Conference on Source Code Analysis and Manipulation

(SCAM), Madrid, 2018, pp. 171-176.

doi: 10.1109/SCAM.2018.00027

25. X. Yan and H. Ma, "A New Static Vulnerabilities Analysis Algorithm for PHP

Codes," 2017 International Conference on Network and Information Systems for

Computers (ICNISC), Shanghai, China, 2017, pp. 122-125.

doi: 10.1109/ICNISC.2017.00034

26. Z. Xu and G. Liu, "STACKEEPER: A Static Source Code Analyzer to Detect Stack-based

Uninitialized Use Vulnerabilities," 2018 IEEE 4th International Conference on Computer

and Communications (ICCC), Chengdu, China, 2018, pp. 2180-2184.

doi: 10.1109/CompComm.2018.8780675

27. S. Zhao, L. Xiaohong, X. Guangquan, Z. Lei, and F. Zhiyong. "Attack tree based android

malware detection with hybrid analysis." In 2014 IEEE 13th International Conference on

Trust, Security and Privacy in Computing and Communications, pp. 380-387. IEEE, 2014.

28. Z. Ning and F. Zhang, "DexLego: Reassembleable Bytecode Extraction for Aiding Static

Analysis," 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN), Luxembourg City, 2018, pp. 690-701.

doi: 10.1109/DSN.2018.00075

29. S. Panichella, V. Arnaoudova, M. Di Penta and G. Antoniol, "Would static analysis tools

help developers with code reviews?," 2015 IEEE 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), Montreal, QC, 2015, pp. 161-

170.

doi: 10.1109/SANER.2015.7081826

30. B. Shastry, L. MarkuS, F. Tobias, T. Kashyap, Y. Fabian, R. Konrad, S. Stefan, S. Jean-

Pierre, and F. Anja. "Static program analysis as a fuzzing aid." In International Symposium

on Research in Attacks, Intrusions, and Defenses, pp. 26-47. Springer, Cham, 2017.

96

31. R. Ramler, M. Moser and J. Pichler, "Automated Static Analysis of Unit Test Code," 2016

IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering

(SANER), Suita, 2016, pp. 25-28.

doi: 10.1109/SANER.2016.102

32. F. Cheirdari and G. Karabatis, "Analyzing False Positive Source Code Vulnerabilities

Using Static Analysis Tools," 2018 IEEE International Conference on Big Data (Big

Data), Seattle, WA, USA, 2018, pp. 4782-4788.

doi: 10.1109/BigData.2018.8622456

33. Kurniawan, A., Abbas, B.S., Trisetyarso, A. and Isa, S.M. "Static Taint Analysis Traversal

with Object Oriented Component for Web File Injection Vulnerability Pattern

Detection." Procedia Computer Science 135, 2018, pp 596-605.

34. A. Muhammad, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar. "Static

malware detection and attribution in android byte-code through an end-to-end deep

system." Future Generation Computer Systems, 2020, pp 112-126.

35. O. Javed, Z. Yudi, R. Andrea, S. Haiyang and B. Walter. "Extended code coverage for

AspectJ-based runtime verification tools." In International Conference on Runtime

Verification, pp. 219-234. Springer, Cham, 2016.

36. S Blazy, D Bühler, B Yakobowski "Improving static analyses of C programs with

conditional predicates." Science of Computer Programming 2016 pp 77-95

37. W Niu, X Zhang, X Du, L Zhao, R Cao, M Guizani "A Deep Learning Based Static Taint

Analysis Approach for IoT Software Vulnerability Location." Measurement, 2019.

38. J Song, C Han, K Wang, J Zhao, R Ranjan, "An integrated static detection and analysis

framework for android." Pervasive and Mobile Computing 32, 2016, pp 15-25.

39. C. Huang, C. Chiu, C. Lin and H. Tzeng, "Code Coverage Measurement for Android

Dynamic Analysis Tools," 2015 IEEE International Conference on Mobile Services, New

York, NY, 2015, pp. 209-216.

doi: 10.1109/MobServ.2015.38

40. A. Sakti, G. Pesant and Y. Guéhéneuc, "Instance Generator and Problem Representation

to Improve Object Oriented Code Coverage," in IEEE Transactions on Software

Engineering, vol. 41, no. 3, pp. 294-313, 1 March 2015.

doi: 10.1109/TSE.2014.2363479

41. M. K. Alzaylaee, S. Y. Yerima and S. Sezer, "Improving dynamic analysis of android apps

using hybrid test input generation," 2017 International Conference on Cyber Security And

Protection Of Digital Services (Cyber Security), London, 2017, pp. 1-8.

doi: 10.1109/CyberSecPODS.2017.8074845

42. Duck, G. J., & Yap, R. H. C. “EffectiveSan: type and memory error detection using

dynamically typed C/C++”. Proceedings of the 39th ACM SIGPLAN Conference on

Programming Language Design and Implementation, 2018

https://scholar.google.com/citations?user=R9WFeS4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=9K9BlyYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=RigrYkcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=2lQgud4AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=t45VH3MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=Y_Y3fVEAAAAJ&hl=en&oi=sra

97

43. Haller, I., Jeon, Y., Peng, H., Payer, M., Giuffrida, C., Bos, H., & van der Kouwe, E.

“TypeSan, Practical Type Confusion Detection”. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security - CCS’16, 2016.

44. X. Wang, Y. Zhang, L. Zhao and X. Chen, "Dead Code Detection Method Based on

Program Slicing," 2017 International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery (CyberC), Nanjing, 2017, pp. 155-158.

doi: 10.1109/CyberC.2017.69

45. M. Y Hong, L. R. Qin, “Application of dynamic program slicing technique in test data

generation”, 8th International Conference on Advances in Information Technology,

IAIT2016, China, December 2016, pp 19-22.

46. A. Treffer and M. Uflacker, "The Slice Navigator: Focused Debugging with Interactive

Dynamic Slicing," 2016 IEEE International Symposium on Software Reliability

Engineering Workshops (ISSREW), Ottawa, ON, 2016, pp. 175-180.

47. D. Kang, J. Sohn, and S. Yoo. “Empirical evaluation of conditional operators in GP based

fault localization”. Genetic and Evolutionary Computation Conference (GECCO '17).

ACM, New York, NY, USA, 1295-1302

48. M. Papadakis and Y. L. Traon. “Effective fault localization via mutation analysis: a

selective mutation approach”. 29th Annual ACM Symposium on Applied Computing (SAC

'14). ACM, New York, NY, USA, 2014, pp 1293-1300

49. J. Sohn and S. Yoo. “FLUCCS: using code and change metrics to improve fault

localization”. 26th ACM SIGSOFT International Symposium on Software Testing and

Analysis (ISSTA 2017), ACM, New York, NY, USA, 2017. pp 273-283.

50. G. Pellegrino, C. Tschürtz, E. Bodden and Rossow, “Using dynamic analysis to crawl and

test modern web applications." International Symposium on Recent Advances in Intrusion

Detection. Springer, Cham, 2015.

51. O. Rodriguez-Prieto, A. Mycroft and F. Ortin, "An Efficient and Scalable Platform for Java

Source Code Analysis Using Overlaid Graph Representations," in IEEE Access, vol. 8, pp.

72239-72260, 2020,

52. S. Charters and B. Kitchenham, ‘‘Guidelines for performing systematic literature reviews

in software engineering,’’ Keele Univ. Durham Univ. Joint Rep., Newcastle, U.K., Tech.

Rep. EBSE-2007-01, Version 2.3, 2007.

53. J. -. Jazequel and B. Meyer, "Design by contract: the lessons of Ariane," in Computer, vol.

30, no. 1, pp. 129-130, Jan. 1997, doi: 10.1109/2.562936.

54. T. Taylor, G. VanDyk, L. W. Funk, R. M. Hutcheon and S. O. Schriber, "Therac 25: A

New Medical Accelerator Concept," in IEEE Transactions on Nuclear Science, vol. 30,

no. 2, pp. 1768-1771, April 1983, doi: 10.1109/TNS.1983.4332638.

55. B. David. "Source code analysis: A road map." In Future of Software Engineering

(FOSE'07), pp. 104-119. IEEE, 2007.

56. PMD.[Online], https://pmd.github.io, accessed on May 2021.

57. Findbugs.[Online], http://findbugs.sourceforge.net, accessed on May 2021.

https://pmd.github.io/

98

58. A. A. Kulkarni, and J. Aghav. "Automated techniques and tools for program analysis:

Survey." In 2013 Fourth International Conference on Computing, Communications and

Networking Technologies (ICCCNT), pp. 1-7. IEEE, 2013.

59. I. García-Ferreira, C. Laorden, I. Santos and P. Garcia Bringas, "Static analysis: a brief

survey," in Logic Journal of the IGPL, vol. 24, no. 6, pp. 871-882, Dec. 2016.

doi: 10.1093/jigpal/jzw042

60. A. Andrei, S. Ciobâca, V Craciun, D.Gavrilut, and D. Lucanu. "A comparison of open-

source static analysis tools for vulnerability detection in c/c++ code." In 2017 19th

International Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC), pp. 161-168. IEEE, 2017.

61. Q. A. Ain, W. H. Butt, M.W. Anwar, F.Azam, and B. Maqbool. "A systematic review on

code clone detection." IEEE Access 7 (2019): 86121-86144.

62. Plsek, A., Zhao, L., Sahin, V.H., Tang, D., Kalibera, T. and Vitek, J., 2010, August.

Developing safety critical Java applications with oSCJ/L0. In Proceedings of the 8th

International Workshop on Java Technologies for Real-Time and Embedded Systems (pp.

95-101).

63. Java Coding Standards.[Online],

https://www.havelund.com/Publications/JavaCodingStandard.pdf, accessed on March

2021.

64. Elevator Multithread-Java.[Online], https://github.com/jzeng5/Elevator-multithread-Java,

accessed on May 2021.

65. Bank-Customer Multithreading-Project.[Online],

https://github.com/Chetanpaliwal22/Bank-Customer-Multithreading-Project, accessed on

May 2021.

66. Chat-Server.[Online], https://github.com/abhi195/Chat-Server, accessed on May 2021.

67. Autonomous Driving.[Online], https://github.com/klevis/AutonomousDriving, accessed

on May 2021.

68. Flight-Control-System.[Online], https://github.com/SHRMu/Flight-Control-System-Java-

RMI, accessed on May 2021.

69. Autonomous Driving.[Online], https://github.com/klevis/AutonomousDriving, accessed

on May 2021.

70. Flight Control System.[Online], https://github.com/SHRMu/Flight-Control-System-Java-

RMI, accessed on May 2021.

71. Mondarian.[Online], https://github.com/SHRMu/Flight-Control-System-Java-RMI,

accessed on May 2021.

https://www.havelund.com/Publications/JavaCodingStandard.pdf
https://github.com/jzeng5/Elevator-multithread-Java
https://github.com/Chetanpaliwal22/Bank-Customer-Multithreading-Project
https://github.com/abhi195/Chat-Server
https://github.com/klevis/AutonomousDriving
https://github.com/SHRMu/Flight-Control-System-Java-RMI
https://github.com/SHRMu/Flight-Control-System-Java-RMI
https://github.com/klevis/AutonomousDriving
https://github.com/SHRMu/Flight-Control-System-Java-RMI
https://github.com/SHRMu/Flight-Control-System-Java-RMI
https://github.com/SHRMu/Flight-Control-System-Java-RMI

99

72. PRV.[Online]. https://github.com/srfunksensei/PRV, accessed on May 2021.

73. Tele Health Care.[Online], https://github.com/neeleshsaxena/Tele-HealthCare, accessed

on May 2021.

74. Flight Conrol.[Online], https://github.com/SHRMu/Flight-Control-System-Java-RMI,

accessed on May 2021.

75. Parent Monitor.[Online], https://github.com/VisionZ/Parent-Monitor, accessed on May

2021.

76. Cloud Computing Elasticity.[Online], https://github.com/Deivakumaran/Elasticity-in-

Cloud-Computing-using-Multithreaded-Programming, accessed on May 2021.

77. Cloud Computing.[Online],

https://github.com/absnaik810/CloudComputing/blob/master/Project%201/ahnaik_projec

t1, accessed on May 2021.

78. Java Analyzer.[Online], https://github.com/rkaydivergent/JavaAnalyzer, accessed on May

2021.

79. Checkstyle.[Online], https://checkstyle.sourceforge.io/, accessed on May 2021.

80. Dead Code Detector.[Online], https://www.softpedia.com/get/Programming/Other-

Programming-Files/DCD-Dead-Code-Detector.shtml, accessed on May 2021.

81. DepFinfder.[Online], https://depfind.sourceforge.io/, accessed on May 2021.

82. JLint.[Online], https://sourceforge.net/projects/jlint/, accessed on May 2021.

83. Sonarqube.[Online], https://www.sonarqube.org/, accessed on May 2021.

84. Facebook Infer.[Online], https://www.facebookInferorg/, accessed on May 2021.

https://github.com/srfunksensei/PRV
https://github.com/neeleshsaxena/Tele-HealthCare
https://github.com/SHRMu/Flight-Control-System-Java-RMI
https://github.com/VisionZ/Parent-Monitor
https://github.com/Deivakumaran/Elasticity-in-Cloud-Computing-using-Multithreaded-Programming
https://github.com/Deivakumaran/Elasticity-in-Cloud-Computing-using-Multithreaded-Programming
https://github.com/absnaik810/CloudComputing/blob/master/Project%201/ahnaik_project1
https://github.com/absnaik810/CloudComputing/blob/master/Project%201/ahnaik_project1
https://github.com/rkaydivergent/JavaAnalyzer
https://checkstyle.sourceforge.io/
https://www.softpedia.com/get/Programming/Other-Programming-Files/DCD-Dead-Code-Detector.shtml
https://www.softpedia.com/get/Programming/Other-Programming-Files/DCD-Dead-Code-Detector.shtml
https://depfind.sourceforge.io/
https://sourceforge.net/projects/jlint/
https://www.sonarqube.org/
https://www.facebookinferorg/

