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Abstract 

Android has become a predominant mobile operating system lately. Google with the help of 

Open Handset Alliance setting out to create open standards for smart phones have prompted a 

gigantic development in the digital world. Given the growth and development of smartphone 

devices and their related application stores, Malware detection is a developing issue. Volume 

of new applications is excessively enormous to physically analyze every application for 

malicious activity. Keeping this in view this research presents a method to detect android 

malware and further classify it to four malware categories and thirty nine malware families. 

The classification model has been built around reduction of redundant features and employing 

three machine learning algorithms (Random Forest, KNN and SVM algorithms) in binary 

classification and Random forest algorithm for category and family classification. The 

proposed methodology performs reasonably well for most of the classes achieving around an 

accuracy of 95% on binary classification. Proposed method provides the accuracy of 84% on 

malware category classification and accuracy of 66% for Malware family classification.  

Key Words Android malware, Random Forest, KNN, SVM, Feature reduction, Machine 

Learning, Malware category, Malware family 
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CHAPTER 1:  INTRODUCTION 

Android has become a predominant mobile operating system lately. Google with the help of 

Open Handset Alliance setting out to create open standards for smart phones have prompted a 

gigantic development in the digital world. Smart phones have picked up admiration in the 

presence of different types of applications which provide services like online shopping, 

business and educational apps, traveling and location based apps, online gaming, banking and 

other utilities other than conventional services like calls and Texting.   

In 2012, there were 1.06 billion smartphone users, which grew to 2.5 billion by 2016, and 3.6 

billion by 2020. In 2023, smart phone users are predicted to reach 4.6 billion [1]. 

The ongoing growth of Google's android OS's multiple versions, with each new one adding 

greater features, quicker internet access, and better video and audio, is one of the reasons for 

its success. Android 1.0, the initial commercial version, was released in September 2008, 

followed by Android 1.1 in February 2009 [2].  

1.1 Recent Statistics on Android Malware Threats 

In 2010, android devices accounted for only around 20% of global smartphone sales [3]. The 

Android operating system's development and open-source nature have aided its rapid growth. 

A report by Gartner Statistics [4] shows rapid growth in smart phones sales and android 

occupies most of the share in it with 82%. In year 2020 out of 3.6 billion smartphones users’ 

android occupies 74 % of users [5]. 

Rapid growth in development of android operating system has exposed it to malware attacks. 

Forbes Report in 2014 [6] showed that 97% of malware attacks in 2013 were targeted towards 

android. Android cell phones are immensely vulnerable to malware outspread as it permits 

applications to use the resources when the user allows permissions purposely or unconsciously. 

Figure 1.1 shows in the year 2015, 8.2 billion malware attacks were recorded. In 2017 total 

number of malware attacks were 8.6 billion and increased by 22 percent in a year to reach 10.5 

billion in 2018. In 2019 malware attacks were reduced by almost 6 percent (9.9 billion) [7]. 
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Figure 1. 1 Malware attacks statistics from 2015 to 2020 [7] 

 

Data privacy and security is the biggest challenge these days, ransomware is a type of malware 

that encrypts files. Attacker then asks money from user in exchange for data access. In 2018, 

ransomware attacks grew by 350 percent around the world. 

Ransomware attacks are predicted to cost $6 trillion per year by 2021. 75 percent of 

ransomware-infected businesses had up to date end-point security. Each year, ransomware 

costs companies around $75 billion. FedEx lost $300 million in the first quarter of 2017 due to 

the NotPetya ransomware outbreak. After being attacked by the ransomware attack in March 

2018, Atlanta, Georgia has invested more than $5 million to repair its computer network [8]. 

According to Forbes [9], ransomware was the most widespread type of malware in 2016.  

Ransomware was responsible for 18 percent of all malware payloads distributed through spam 

and exploit kits in first month of 2016. After 10 months with an increase of 267%, it had 

bloomed to represent 66% of malware payloads.  

Figure 1.2 shows in 2016, 638 million ransomware attacks were recorded. In year 2018, total 

number of ransomware attacks were 204.24 million. According to a global cyber security 

yearly report, 304 million ransomware attacks were registered in 2020, up 62% from the 

previous year (187.9 million in year 2019) [10]. 
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Figure 1. 2 Number of ransomware attacks from 2016 to 2020 [10] 

 

Thailand experienced the highest percentage of users affected by ransomware (9.57%) from 

2017 to 2018. UAE and Iran are second and third with 8.67 percent and 8.47 percent 

respectively [11].  

 

Figure 1. 3 Adware attacks per month in year 2020 [12] 

 

Adware shared the 14.62 % of total android malware attacks in 2020. Only in month of 

January, 820000 adware attacks were recorded which increased to 870000 in April and reached 

the peak in October with 960000 adware attacks [12]. Figure 1.3 shows the adware attacks per 

month in year 2020. 
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1.2 Threats 

Mobile malware threats are part of a complex ecosystem, but some of the most frequent mobile 

Malware are often used to deliver highly targeted attacks. For instance, DroidDream, the fifth-

most-common mobile virus, generates a unique identity for the phone and waits for more 

instructions from its operator, all while working in the background even without user's 

permission. Another case [13] is AndroidExploit Masterkey, the third-most-common mobile 

malware, which alters APKs, which is used to install apps on Operating system. A hacker can 

essentially transform any genuine application into a malware and because of that consumer 

perception of security threats continues to fall behind the fact. Consumers who may never use 

unknown sources for installing apps on their device could unconsciously download malware 

from unverified sites/sources on their smart phones when they click on links in SMS. 

Therefore, SMS phishing campaigns aim to spread android malware are more successful, 

especially when it's customized to a particular company's client base. Customers are also 

known for being reluctant to upgrade their smartphones' operating systems. Therefore, it's no 

wonder that malware generally seen in user attacks, like the Basebridge Trojan, takes 

advantage of flaws in outdated mobile systems. Worse still, a sizable percentage of smartphone 

users actually attempt to root their smartphones to gain access to illegal application stores or 

to get free content.  

1.2 Mobile Banking 

In 2020, 1.9 billion people throughout the world utilized online banking services. By 2024, 

this number is anticipated to reach 2.5 billion [70]. Mobile payments have totaled $503 billion 

in 2020. Figure 1.4 shows the growth of active Online Banking Users Worldwide. 



5 
 

  

Figure 1. 4 Active Online Banking Users Worldwide [70] 

Since 2015, the number of mobile application fraud transactions has risen by approximately 

600%. According to US mobile banking statistics, 89 percent of US bank account holders 

utilize mobile banking to manage their accounts. In 2019, 14,392 breaches generated more 

than $40 million in mobile fraud damages.  

 

 Figure 1. 5 Growth of Mobile Banking in India [71] 
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Mobile banking has grown in India from INR 53.3 billion in 2012-13 to reach INR 4017.8 

billion in 2015-16 [71]. Figure 1.5 shows the graph of growth from year 2012 to 2016 in mobile 

banking in India. By the end of March 2018, there were 3.1 million mobile phone banking 

customers in Pakistan. In 2018, these customers used mobile phone banking applications to 

complete 5.9 million transactions valued PKR 112.8 billion. There has been an increased 

uptake of M-wallets within customer oriented mobile money transactions in Pakistan since 

2015 [72]. Figure 1.5 shows the growth of mobile money transactions in Pakistan from year 

2015 to 2020. 

 

Figure 1. 6 Growth of Mobile Money Transactions in Pakistan [72]  

 

1.4 Android Platform 

The Android OS is depicted in Figure 1.4. Android is a Linux-based open source software. It 

creates an environment in which many applications can run at the same time. All of these apps 

are signed and placed in application sandboxes that are linked to their signatures. The apps 

sandboxes are the permissions available to the application. The rights open to the application 

are known as application sandboxes. The Android Runtime is a framework for designing apps 
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that interface with the operating system, providing system services, platform APIs, and 

message formats. Apps with an application sandbox are used to deploy system services. There 

really is no super user who has full access to smart phone above the kernel. The Dalvik virtual 

machine runs Android apps, which are written in Java. They are assisted by the app framework 

which provides a single interface for widely used features. A number of libraries exist that 

make it simple for apps to include graphics, secure and protected communication, and 

databases. The Bionic Standard Library is a libc for embedded devices based on BSD. For the 

Android updates, kernels from Linux 2.6 versions are cut down [13]. 

1.5 Motivation 

Given the growth and development of smartphone devices and their related application stores, 

Malware detection is a developing issue. Volume of new applications is excessively enormous 

to physically analyze every application for malicious activity. With so many app stores 

including Google app store, malware applications have begun to spread. Therefore, Android 

attracts malicious attacks. 

When user allows the permissions purposely or unconsciously, applications has access to 

android user’s private and sensitive data. It is critical to be able to identify malware apps and 

the characteristics that they utilize to access sensitive information in order to keep Android 

users safe from malware attacks and threats. 

1.6 Problem Statement 

Our goal is to analyze and systematically classify the android malware into categories and 

families. Android security depends on a permission based system that limits access to critical 

resources for android apps. Before proceeding with the installation, the Android client should 

recognize the set of permissions that an application requires. This is to inform Android users 

about the application's resource needs as well as the risks associated with its installation and 

use. It has two issues. The first is that usually user don't know enough of existing risks and 

threats. The subsequent one is that Android doesn't show the particular permissions and 

resources an application required making it tougher to detect malware applications and laying 

the groundwork for additional malware attacks. Canadian Institute for cybersecurity has 

released the publicly available dataset CICInvesAndMal2019 [14] which comprises of intents 

and permissions as static features and API calls and generated log files as dynamic features. 



8 
 

Although second part of dataset has improved the results but still there is a room for 

improvement. 

The purpose of this research is feature reduction and accurate prediction of this dataset into 

malware and benign apps and further classification of this dataset into categories and families 

of malware. 

1.7 Aims and Objectives 

The following are the research's main goals: 

 Explore the dataset to be used for classification   

 To reduce the dimensionality and features of dataset to be used for classification   

 Develop an algorithm for classification of malware and benign apps 

 Develop an algorithm for classification of the malware apps into categories and families 

of malware. 

1.8 Structure of Thesis 

The thesis is organized as follows: 

Chapter 2 It consists of literature review as well as key work done by researchers in past 

few years for malware classification 

Chapter 3 Includes discussion on machine learning algorithms and feature reduction 

techniques 

Chapter 4 Provides the insight of dataset in detail with discussion about layers and 

features. It is also comprised of proposed methodology thoroughly.  

Chapter 5 Provides all the experimental results along with relevant figures. 

Chapter 6 Concludes the thesis and reveals future scope of this research. 
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CHAPTER 2: LITERATURE REVIEW 

With the development and rapid growth of smartphone devices and their related application 

stores, Malware detection is a developing issue. Volume of new applications is excessively 

enormous to physically analyze every application for malicious activity. With so many app 

stores including Google app store, malware applications have started to grow. Therefore, 

Android attracts malicious attacks. 

2.1 File Structure 

2.1.1 AndroidManifest.xml 

Manifest file of android application describes all the important information in APK file, 

Important parts of APK file are: 

1. Package Name: In both smart phone and the Play Store, a package name is a unique 

identifier for an application. 

2. App Components: The behaviour of an application is defined by its services, activities, 

and capacity to interface with the OS, Content Providers, and Broadcast Receivers. 

3.  Manifest Permissions: It describes what an application requires to access important 

information of system or applications 

2.1.2 Android SDK 

SDK is a collection of tools that makes it possible to create APKs. Developers have access to 

a wide range of APIs that provide them access to numerous functionalities provided by local 

libraries and components. 

APIs in general change after the release of each version of Android, hence make loop holes in 

framework. To recognize APIs between every update, Google marks them as per their level 

[15]. 

There are many datasets and several methods in literature for detection of malware and analysis 

by use of different machine learning techniques for classification and detection. This chapter 

will cover all those important researches in this field. 
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2.2 Literature Review 

There are two primary ways to android malware detection: static and dynamic analysis. Static 

analysis, APKs are decompiled before installation, Static analysis can result in a quick and 

secure android malware detection. To identify malicious apps, researchers often employ data 

flow tracking as well as associated attribute information as well from APK files to identify 

malicious apps.  Qin [16] examines risky permissions and saves them in a database, then 

extracts permissions from an unknown Android app and compares them to the harmful 

permissions to arrive at a judgement. 

Several studies [17] [18], have looked into malicious static signature based on the analysis of 

Android permissions. Indeed, the permissions granted to a certain application can provide a 

basic indication of harmful behavior's possible consequences. It is possible to detect the 

presence of possible malware before it is executed by examining these permissions in 

combination with a semantic analysis of the application code. However, this method cannot be 

used over the phone and is wasteful in terms of resources. 

Another technique for static malware detection is studying API calls from mobile applications. 

This technique is present in various works such as (Fan et al., 2015) [19], (Wu et al., 2012) 

[21] and (Zou et al., 2015) [20]. In the work of Fan et al. (2015) [19], API calls are being used 

to help detect malicious applications that have code embedded in normal applications. They 

therefore study API calls for non-malicious applications and train a model of normal behavior 

reflected by the lists of API calls. 

 

Figure 2. 1 Detection model used in Fan et al. (2015) [19] 
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Any deviation from this pattern is considered malicious behavior. An illustration of the 

detection model is shown in Figure 2.1. In (Zou et al., 2015), the authors propose a malware 

detection tool on Android systems called DroidMat. This tool is also based on the static 

analysis of mobile applications through the study of API calls. Indeed, the authors claim that 

these calls provide information about the types of operations that are likely to be performed by 

a given application. For example, some malicious applications tend to extract sensitive 

information from the smart phone like the serial number through the background call to the 

API. For normal applications, this call is not made in the background and is displayed on the 

phone screen 

The Genome project is one of the earliest openly accessible endeavors in 2012 [22]. They 

presented the very first comprehensive collection of dataset containing android malware 

samples with 1260 samples of malware from year 2010 to year 2011 in 49 different malware 

families. In Genome project they utilize static analysis strategies to classify and characterize 

behavior of malware by assessing the installation, activation and data payload samples. The 

techniques were focused on studied permission, static test and on statically examined parts of 

malicious source code and on tracked API calls. They likewise utilized their suggested dataset 

on genuine smartphones to analyze the adequacy of the current antivirus software. For this 

dataset they checked the detection results with four mobile antivirus software including AVG, 

Trend Micro, Lookout and Norton. Out of 1260 samples AVG detected 689 Samples (54.7%), 

Lookout detected 1003 (79.6%) samples, Norton detected 254 samples (20.2%) and Trend 

Micro detected 966 (76.7%) samples. 

Aung et al. [23] built up an ML based model to detect malware which screens different 

permission features and event to detect malware applications from benign ware applications. 

For clustering they used K-means algorithm. In Classification between malware applications 

and benign ware applications they used Random Forest (RF) and Decision Tree (DT) 

algorithms. The experiments on two distinctive datasets showed detection rate of 90% on 

average 

In 2014 Drebin [24] dataset was introduced which gave 123,453 benign and 5560 malicious 

samples covering total of 20 families. They prepared their Classification framework on the 

static features include App components, hardware components, network addresses, requested 
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permissions and filtered intents to assess their dataset. Figure 2.2 shows the schematic 

representation of drebin methodology. Drebin methodology involves a comprehensive static 

analysis to obtain feature sets from various sources and analyze them in an expressive vector 

space. 

 

Figure 2. 2 Schematic representation of analysis steps performed by drebin [24] 

 

This process involves 

a. Broad static analysis.  At first step, DREBIN examines an Android app 

statically and extracts various feature sets from manifest and dex code. 

b. Embedding in vector space. The derived set of feature are then mapped to a 

joint vector space, which allows geometric analysis of patterns and 

combinations of features. 

c. Learning-based detection. Use of Machine learning techniques to identify 

malware by using embedding of feature sets. 

d. Explanation. The final step identifies features which contribute to the 

identification of a malware app and presents them to the user to describe the 

detection process.  

In spite of the fact that DREBIN adequately recognize malicious data, it presents the inherent 

limitations of static analysis. 

SAPIMMDS Dataset [25] from KISA (Korea Internet Security Agency) has 1776 benign 

samples and 906 samples of 13 malware families. In this dataset with the help of byte code 

memory dump techniques they traced the doubtful sequences of API calls to take out API call 

patterns for specific malicious functionality through this data. 
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Figure 2. 3 System architecture for SAPIMMDS Dataset [25] 

 

Figure 2.3 show an analyzer and a repository comprise the system. On the server, which runs 

Ubuntu 12.04 LTS (64-bit), the analyzer and repository are installed. Analyzer is built with an 

Android emulator running on Android 4.1.2 and the Python programming language. Confusion 

matrix for malware detection for SAPIMMDS Dataset shows the performance of the detection 

algorithm. 8 benign samples were identified as malware, while 147 malware samples were 

identified as benign, accounting for 16.23% of all malware samples. Precision recall and 

accuracy, in summary, are 0.990, 0.838, 0.942, and 0.907, respectively. 

Table 2. 1 Confusion matrix for malware detection for SAPIMMDS dataset [25] 

Category 

Actual class 

Malware 

Applications 

Benign 

Applications 

Estimated class 

Malware Applications 759 8 

Benign Applications 147 1,768 



14 
 

Andro-Dumpsys (2016) [26] involves comparing malware creator centric and malware centric 

data for similarity. By exploiting malware samples' footprints that are basically equivalent to 

unique behavior characteristics, authors use Andro-Dumpsys to classify malicious samples 

into similar behavior groups. Test results reveal that Andro-Dumpsys is indeed scalable and 

capable of classifying malware families with less false positives and negatives.  

Andro Dumpsys dataset incorporates 1776 benign samples and 906 malware samples. This 

dataset contains malware attributes with intent-based features to classify malicious data. For 

Andro Dumpsys dataset they have adopted the permission distributions, intents, API call 

sequences, use of commands for executing fabricate files and serial number of a certificates 

and as feature vectors.  

On the basis of above mentioned features they led profiling systems as indicated by the 

connections among the op-code and byte-code for all malicious families. In the classification 

engines and the detection on server side, authors determined the similarity score between every 

client-side APK request and their profiling patterns. 

 

Figure 2. 4 Hierarchical signatures approach used by wang and wu (2015) [27] 
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A method of detecting malware on Android systems has been proposed by Wang and Wu 

(2015) [27]. In this work they used hierarchical signatures which combine both the signatures 

of API calls, the hash signatures of malicious applications, as well as those of the classes and 

methods of these applications. A description of this approach is shown in the figure 2.4. 

Combination of the two detection techniques (permission and API calls) is also exploited by 

several works [28], [29], [30], [31] and [32]. In this work, the robustness of the two detection 

tools is combined in order to improve the detecting system's overall performance. In order to 

classify the analyzed apps, this work use machine learning methods. 

 

Figure 2. 5 Structure and logic of malicious code function calls [33] 

 

The malicious behavior of malware on mobile phones can also be reflected in the static analysis 

of malicious code and the extraction of function call graphs. This graph illustrates the structure 

and logic of malicious code function calls and organizes them in the form of a graph. An 

example of function call graphs of the "Android: RuFraud-C" malware belonging to the 

malicious "FakeInstaller" family is illustrated in figure 2.5 taken from Gascon et al. (2013) 

[33]. Dark nodes indicate the call structures of malicious functions detected by this tool. As 

for the other nodes, they represent the normal call structures. 

Behavioral signature detection is done at runtime of applications and looks at malicious 

behavior. One of the most widely used tools for behavioral detection of mobile malware is 
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interception and analysis of system calls between applications and the Android system kernel. 

In Isohara et al. (2011) [34], a study by behavior of Android applications through the analysis 

of log files containing the list of system calls made at the kernel level of the Android system. 

These files are analyzed with pattern matching algorithms to detect the presence of previously 

determined system call signatures. These signatures are in regular expression format whose 

construction has not been detailed. 

In (Lin et al., 2013b) [35], a detailed study for the construction of behavioral signatures of 

system calls was carried out with the aim of detecting malware on Android systems. This 

technique consists of taking two types of applications: normal applications and malicious 

applications grouped by malware family. For each family, it extract the system call sequences 

and only keep the sequences that are common. A sequence filtering step must then be done by 

additionally considering the system call sequences of normal applications. According to Lin et 

al. (2013b), a detection accuracy of up to 95.97% could be obtained with this type of signatures. 

However the performance of detection always depends on the signature construction phase and 

the ability to find applications belonging to the same malware families. 

 

 Figure 2. 6 Methodology for kharon dataset [36] 

 

In Kharon dataset (2016) [36] they have created the dataset by running the malware samples 

on actual mobile phones. By reversing the code of each malware, the authors were able to 

dissect them. Figure 2.6 shows the methodology for Kharon dataset. 
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In order to obtain their precise behavior, malware was used in a controlled and supervised real 

mobile device. 7 malware samples were used and for tracking the flow of information between 

the system objects like files, sockets at system level they used AndroBlare tool. Mainly they 

have used two analysis methods: static analysis and dynamic analysis. The authors also used 

graph models of flow of information produced by an execution to summarize their behavior. 

In light of the findings, it was also discussed that the majority of malware includes triggering 

methods which delay and disguise their malware behavior 

Lashkari et al. 2017  [37], introduced the AAGM dataset which has 1900 samples from 2008 

to 2016 out of which 400 are malware and 1500 are benign samples. Dataset contains twelve 

families of benign, general malware and adware categories. Samples were introduced on 

genuine cell phones and started performing usual user interaction cases for capturing network 

traffic. Machine learning algorithms were used for analysis. 

 

Figure 2. 7 Steps for acquiring AAGM dataset [37] 
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Figure 2.7 shows the steps for acquiring the AAGM dataset. In first step they have gathered 

apps and introduced all of gathered apps in real cellphones capture the generated traffic, to 

identify and labeling to create dataset. In second step feature extraction and selection of 

suitable features, after that, the data is split into training data and testing data, in ratio of 80 

percent and 20 percent respectively. 

Last step involves training and testing of data using different machine learning algorithms 

(Random forest, Random Tree, Decision Tree J48, Regression and K-Nearest Neighbors). 

 

Figure 2. 8 Scenario A for AAGM dataset [37] 

 

Three Scenarios are used in testing and analysis phase: 

 Scenario A 

For this scenario there are two classes benign and malware (general malware and adware both 

labeled as malware). Figure 2.8 shows that all the classification algorithms (Random forest, 

Random Tree, Decision Tree J48, Regression and K-Nearest Neighbors).tree) gave more than 

90% precision and accuracy. 
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Figure 2. 9 Scenario B1 for AAGM dataset [37] 

 

• Scenario B 

Scenario B involves B1 and B2, B1 includes classification between benign and general 

malware apps using five machine learning algorithms (Random forest, K-Nearest Neighbors, 

Decision Tree J48, Regression and Random Tree).  

 

Figure 2. 10 Scenario B2 for AAGM dataset [37] 

All the classification algorithms in case of B1 provided around 95 % precision and accuracy. 

Figure 2.9 shows the scenario B1 for AAGM dataset. Scenario B2 for AAGM dataset is shown 
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in figure 2.10 which includes the classification of benign and adware apps using above 

mentioned machine learning algorithms.  

 

Figure 2. 11 Scenario C for AAGM dataset [37] 

The results in case of B2 are nearly matching the results situation B1 and shows the precision 

of more than 90%. 

• Scenario C 

Last scenario shows detection and classification results for all categories (general malware, 

adware and benign apps). For last case in this model we can see that the all the algorithms can 

classify the malware categories with more than 90% accuracy which is shown in figure 2.11. 
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Figure 2. 12 Overview of hybrid detecting scheme [38] 

 

Another paper in 2018 [38] introduced an efficient way to detect android malware by utilizing 

hybrid technique using several dynamic and static analysis. Hybrid detecting scheme can pick 

the suitable technique as per the properties of the application with the goal to balance can be 

accomplished between precision and complexity. Figure 2.12 shows the overview of this 

scheme. Naïve Bayes, KNN and SVM are used for Classification. Results of older dataset 

(before 2012) with static analysis using different feature sets for permission features SVM 

showed the best accuracy with 96.65% followed by KNN and Naïve Bayes with 95.76% and 

93.37% respectively. For API features SVM showed highest almost 99% accuracy and KNN 

and naïve bayes gave 98.42% accuracy and 94.13% accuracy respectively. Combining the 



22 
 

Permission and API features improved the results in for older dataset (before 2012) with KNN, 

SVM and Naive Bayes providing accuracy of 98.61% 99.21% and 94.41% respectively. 

Table 2. 2 Results using strace analysis [38] 

Analysis approach KNN SVM 
Naive 

Bayes 

Results on older dataset (before 2012) 

using Strace analysis 
87.82% 85.41% 90.31% 

Results on newer dataset using 

function call graph analysis 
86.56% 86.11% 86.51% 

Results of Droid Box analysis on 

newer dataset 
74.23% 66.33% 71.54% 

 

CICAndMal2017 dataset 2017 [39] they have gathered more than 6,000 applications from 

Google-play in years 2015, 2016, 2017 based on popularity There are 10,854 total samples in 

this dataset, with 4,354 being malware and 6500 being benign. 

Figure 2.13 shows the network architecture for CICAndMal2017 dataset. Authors defined in 

dynamic analysis, there are 3 phases of data capture that can cause malware behavior during 

run time. 

 Installation: This state occurs after the installation of malware (between one to three 

minutes)  

 Before restart: This state occurs 15 min before restarting phones. 

 After restart: This state occurs 15 min after restarting phones. 

Dynamic feature execution was achieved by extracting network traffic, permissions, logs, API 

calls, memory dump and phone statistics from .apk files of applications. On 60% of the training 

data, the model is trained using 10-fold cross validation, and 40% of the testing data is 

evaluated using three common classifiers: KNN, Random forest and decision tree. Results for 

binary classification (between malware and benign) indicate that random forest shows 85.80% 

precision with 88.30 recall for testing set. KNN shows 85. 40% precision with 88.10 recall for 

testing set. DT shows 85. 10% precision with 88.0 recall. 
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Figure 2. 13 Network architecture for CICAndMal2017 [39] 

 

Malware category classification results show for all three algorithms, precision and recall for 

testing and training set is between 45 to 50%. In family classification for all three algorithms, 

precision and recall for testing and training set is between 20% to 27%. 

Table 2. 3 Accuracies for CICAndMal2017 dataset 2017 [39] 

Dataset Training Evaluation (Testing set) 

Algorithm RF KNN DT RF KNN DT 

Binary 

classification 
84 83.6 85.1 85.8 85.4 85.1 

Malware 

Category 
46.5 45.7 46.5 49.9 49.5 47.8 

Malware 

Families 

22 21.5 21 27.5 27.24 26.6 
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Researchers structured the accumulated sequence of API method calls of an application gained 

from DEX assembly and then passed it to a deep learning model for categorization in a study 

[40] published in 2018. Figure 2.14 shows the approach overview for Maldozer dataset 

 

Figure 2. 14 Approach overview for maldozer dataset [40] 

 

They built a dictionary to map every API method call to its unique unified identifier. In pre-

processing they created a matrix of unique unified identifier before the training model. The 

NLP model was used to develop the approach, as many common definitions between NLP 

model and Android API method calls. 

Authors expressed that while in the NLP model we should manage a huge vocabularies and 

combinations, and we should manage the API method calls sequence and combinations.  

They asserted that their model for detection of Android malware is versatile against the over 

the long haul advancement of API technique calls and their orders. It can be executed on 

various deployment architectures going from small IoT devices to servers with up to the mark 

performance. 
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Table 2. 4 Detection results on datasets [40] 

Datasets 
F1  

(10 folds) 

Precision 

(10 folds) 

Recall 

(10 folds) 

FPR 

(10 folds) 

Detection Results on 

malgenome dataset 
99.85% 99.85% 99.85% 0.04% 

Detection Results on 

Drebin dataset 
99.22 99.22% 99.22% 0.45% 

Detection Results on 

MalDozer dataset 
98.19% 98.19% 98.19 1.15 

Detection Results on 

all dataset 
96.3% 96.3% 96.3% 3.19% 

 

In a paper published in 2019 [41] authors used CICAndMal2017 dataset generated by Canadian 

Institute for Cybersecurity (CIC) [16]. Authors used two layers framework: SBC and DMC  

SBC (Static Binary Classification): Static binary classification shown in figure 2.15, is a binary 

classification model that uses static features to differentiate between benign data and malicious 

data. The permissions and intent actions are static features retrieved from the App's APK files' 

ManifestFile.xml and used to build this model. The number of times each extracted permission 

and intent feature appears in each APK is counted by the model. The Random Forest Learning 

algorithm is fed these vector data. Vector records are then passed to the Random Forest 

algorithm. 

 

Figure 2. 15 Static binary classification (SBC) [41] 
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DMC (Dynamic Malware Classification component) : Dynamic Malware Classification layer 

shown in figure 2.16, authors used network traffic features and API calls to classify the 

malware into categories (Scareware , Adware, SMSMalware and Ransomware) and then into 

39 malware families (AvForAndroid, virusshield , koler, fakeapp, lockerpin, mazarbot, jisut, 

simplocker, android.spy.277, charger, pletor, , penetho , porndroid, plankton ,mobidash, 

selfmite, gooligan, svpeng, wannalocker, kemoge, fakejoboffer, dowgin, ewind, avpass, feiwo, 

AndroidDefender, fakeinst, biige, fakeav, FakeTaoBao, , RansomBO, youmi, 

shuanetfakemart, , nandrobox, beanbot, jifake, zsone, smssniffer). API calls, according to 

former researchers, work together to fulfill action tasks on android devices.  

In this research, the authors look at the 2-gram sequential linkages in API call collaborations. 

The diagram depicts an inside look at the DMC component of suggested analytical system. For 

each instance, the 2-gram sequences of API calls are transformed into a word document. As a 

consequence, every API call signature is a phrase in a word document made up of multiple 

phrases separated by a space character. They combine the Before Restart data capturing state 

and After Restart data capturing state connected to dataset to enhance behavioral data 

monitoring. 

 

Figure 2. 16 Dynamic malware classification component [41] 
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The second half of the CICAndMal2017 (CICAndMal2019) includes new feature sets like 

permissions and intents in the static area and extended API calls in the dynamic section. 

Authors compared the results for two dataset CICAndMal2017 and CICAndMal2019. Binary 

classification results between benign applications and malware applications shows almost 10 

% increase in accuracy which increased from 85.8 % to 95 %. By merging the dynamic features 

with 2-gram sequential relations of API requests, increased malware category and family 

classification performance. In addition, these features were investigated in the two layer 

malware analysis methodology that was given. Malware category classification between four 

categories (ransomware, adware, scareware and SMSware) showed the great enhancement in 

accuracy which jumped to 83.3 % from 49.9%. Malware family classification also showed 

improvement in accuracy which increased from 27.5 to 59.7%. 

Table 2. 5 Results for first and second part of CICAndMal2017 [41] 

Scenario: Binary 
Malware 

Category 

Malware 

Family 

Algorithm 
Random 

Forest 
Random Forest 

Random 

forest 

Precision for 

CICAndMal2017 
85.8% 49.9% 27.5% 

Precision for 

CICAndMal2019 
95% 83.3% 59.7% 
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CHAPTER 3:  SURVEY OF MACHINE LEARNING ALGORITHMS 

Linear Classifiers, Naive Bayes, K means Clustering, Logistic Regression, Support Vector 

Machine, , Neural networks, Perceptron, Quadratic Classifiers, Boosting, Random Forest, 

Bayesian Networks, Decision Tree and so on are among the machine learning algorithms that 

deal with classification, according to [42]. 

3.1 Logistic Regression 

This algorithm employs a single multinomial logistic regression model using a single estimator 

and builds on class. In a specific approach, logistic regression generally states where the limit 

between the classes is, just as how the class probabilities depend on separation from the limit 

(boundary). When the dataset is greater, this swings nearer to the limits 0 and 1 all the more 

rapidly. Probabilistic claims like these differentiate logistic regression from other different 

classifiers. Logistic regression makes more precise, detailed forecasts and can be fitted in a 

variety of ways; nevertheless, such precise forecasts may be incorrect. There are two 

approaches to predication ordinary Least Squares regression and logistic regression. Logistic 

regression prediction yields a binary result [43]. It is one of the most widely utilized technique 

for applied statistics and discrete data analysis. Linear interpolation is the method used in 

logistic regression. 

3.2 Linear Classifiers 

 Linear classification methods split input vectors into classes using linear decision boundaries 

[44]. With linear classifiers, the goal of classification in machine learning is to arrange items 

with similar feature values into groups. This algorithm accomplishes this purpose, according 

to [45], by generating a result based on linear combination of features. A linear classifier is 

commonly used in instances where speed is a priority since it is the quickest classifier. [42]. 

Linear classifiers also perform well when, if there are enormous dimensions, like in text 

classification, in which each sample is frequently the number of times a word appears in a 

document. The degree of convergence of dataset variables, on the other hand, is determined by 

the margin. The margin, in a nutshell, measures how separable a data is linearly, and thus how 

simple a classification task is to solve [46]. 
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3.3 Naive Bayesian Networks 

 Naive Bayesian Networks are made up of directed acyclic graphs with one parent which 

represents the unobserved node and multiple children which represent observed nodes with a 

significant assumption of child node independence in the context of the parent node. As a 

result, this model is dependent on estimating [47]. Even if it was less effective than other more 

advanced learning algorithms. A large-scale comparison of this classifier with advance and 

modern algorithms for decision tree induction, instance-based learning, and rule induction on 

standard datasets found it to be often better to the other learning methods. The attribute 

independence issue in bayes classifiers was solved using averaged one dependence estimators 

[48]. 

3.4 Support Vector Machines 

 It is similar to multilayer perceptron neural networks. Concept of a margin which separates 

the classes on either side of a hyperplane is central to SVMs. Increasing the margin and 

generating the biggest possible distance between the separating hyperplane and the examples 

on either side of it reduces the predicted generalization error [49]. 

SVM are based on discovering an optimal hyper plane separating the data of two classes. 

Figure 3.1 shows the hyperplane separating classes. There are also other methods of selecting 

the hyper plane which will separate the two classes deprived of any error. In other words, the 

SVM algorithm produces an output optimum hyperplane that divides or classifies new samples 

or test data based on the input labelled training data. [50]. 

The hyperplane is a line in two-dimensional space that divides the plane into two sections. On 

each side of the hyperplane, we have a separate class. We can say that optimal separating hyper 

plane is that which is capable of separating the data of two classes and also maximizes the 

boundary of the hyper plane [69]. The separating hyper plane has the form 

(W, xi) + b = 0 

Here b is offset and W is normal to the hyper plane. 
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Figure 3. 1 SVM classifier [57] 

3.5 Multi-layer Perceptron 

Instead of addressing a nonconvex, unconstrained minimization problem as in traditional 

neural network training [42], the weights of the network are obtained by using linear 

constraints to solve a quadratic programming problem. The perceptron concept is also used in 

other well-known algorithms. The perceptron algorithm is utilized to train from a batch of 

training examples by iterating through the training set till it discovers a correct prediction 

vector across the board. The test set's labels are then predicted using this prediction rule [49]. 

3.6 K-Means 

K means has been one of the simplest methods for solving the clustering problem, according 

to [51]. When labelled data is not available, the approach follows a basic and straightforward 

method for classifying the dataset through predetermined number of clusters fixed a prioriK-

Means technique is used. A general strategy for converting sloppy guesses into extremely 

precise prediction rules. With enough data, a boosting algorithm can provably construct a 

single classifier with very high accuracy, say, 99 percent, given a weak learning algorithm that 

can regularly find classifiers at least slightly better than random, say, accuracy Of 55 percent. 

Neural Networks: According to [51] Neural Networks that can execute many regression or 
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classification tasks at once, despite the fact that most networks only do one. In the majority of 

cases, the network would have one output variable, however this may equate to a number of 

output units in the case of many-state classification issues.  

Network architecture, weight and input and activation functions of the unit are all important 

features of an Artificial Neural Network (ANN). Given that the first two features are constant, 

the ANN's behavior is determined by the weights' present values 

Net training weights are assigned to random values at start, and then samples of the training 

set are introduced to the net on a regular basis. On input units, the values for an instance's input 

are set, and the net's output is matched to the instance's desired output. Weights in the net are 

then modified marginally in the direction of bringing the net's output values up to the desired 

output values. A number of algorithms can be used to train a network [52]. 

3.7 Decision Trees  

Decision Trees use feature values to rank instances. Every branch refers to the value that node 

can adopt, and every node indicates a feature in an instance to be categorized. Instances are 

categorized and arranged based on their feature values, starting at the root node. [49]. A 

decision tree is a prediction model that translates information about an object decisions about 

the item's target value in decision tree learning, that which are used in machine learning and in 

data mining. Classification trees or regression trees are more precise names for such tree 

models [53]. Post-pruning approaches are commonly used in decision tree classifiers to assess 

the efficiency of decision trees after they have been reduced by used of validation set. Every 

node can be removed, and it can be assigned to the highest common class of the sorted training 

instances. [49]. 

3.8 Bayesian Network 

 It depicts the probabilities of a set of variables. Most well example of statistical learning 

algorithms is Bayesian networks. When compared to neural networks or decision trees, The 

ability to take into account prior information on a given issue in terms of structural correlations 

between its features is without a doubt the most intriguing part of Bayesian Network. [9]. 

However, for datasets with a large number of features, Bayesian Network classifiers are 
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ineffective. [52]. Prior knowledge on the architecture of a Bayesian network, also known as 

domain knowledge. It can be expressed in the following ways: 

 Declare a node as the root node, implying that it has no children. 

 Declare a node as a leaf node, which means it has no children. 

 Designating one node as the principal cause or effect of another. 

 Declare that a node is not directly connected to any other node. 

 Determining the independence of two nodes based on a set of criteria. 

 

3.9 Random Forest 

It is intended to form a combination of weak unbiased classifiers which unite their outcomes 

during the final decision of each item. Classification trees are built with individual classifiers. 

Collaboration of many supplementing decision trees provides better performance by improving 

accuracy and gives better generalization [52]. Figure 3.2 shows the working of random forest 

algorithm. 

Distinctive bootstrap sample of training set is used in each tree. Every bootstrap sample is an 

outcome of drawing with replacing the identical number of samples as in the actual training 

set. Therefore, approximately 1/3 of items isn't utilized for making a tree and rather is utilized 

for an out of bag (OOB) estimation of error, and for significance measurement. 

An alternate subset of attributes is selected randomly at the each progression of the tree 

development. While performing a split attribute is used which can made the best distribution 

of data between the nodes of the tree. 
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Figure 3. 2 Random forest working [55] 

This method is performed until the entire tree is constructed. Developed tree is utilized to 

classify its OOB objects, and the outcome is utilized for computation of confusion matrices 

and in acquiring the approximations of the error. New subjects are classified by all the trees in 

forest, and an ultimate decision is made by vote [56]. 

The significance of every variable is assessed in the following manner. Initially all subjects are 

classified. Every tree uses its votes just to the classification of subjects, which were definitely 

not utilized for its development.  

Number of votes in favor of a right class are recorded for each tree. At that point the values of 

given variable are randomly permuted across subjects, and then the classification process is 

repeated. Then again for each tree, number of votes are counted for correct class. At that point 

significance of the variable for the single tree can be characterized as a disparity between the 

quantity of correct votes cast in favor of original and permuted system divided by number of 

subjects. Then the significance of the variable is calculated by averaging significance measures  
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3.10 K-Nearest Neighbors (KNN) 

KNN can be used to tackle classification and regression forecasting issues.  In industry, 

however, it is mostly used to tackle classification and prediction problems. KNN uses feature 

similarity to predict the class of new samples that means new sample will be allocated a 

category depending on how it resembles the training set [52]. 

With the help of the steps below, we can grasp how it works. 

1) We'll need a dataset to load at the first stage of KNN. 

2) Next, we have to choose the k value, i.e. the points closest to it. K can be any integer. 

3) Perform the following process for every data point in the test data: 
 

 Using Euclidean, Manhattan, or Hamming distance methods, compute the distance 

between every row of training set and test samples.  The Euclidean method is the 

most widely used method for calculating distance. 

 Depending upon the distance, arrange all of them in ascending order. 

 The top K rows of the sorted array will then be chosen. 

 The most common class of these rows will be used to allocate a class to each 

sample.  

Equation below is the formula for calculating Euclidean distance 

𝑑 = √(𝑤 − 𝑤1)2 + (ℎ − ℎ1)2 

3.11 Features of Machine Learning Algorithms  

Machine learning algorithms could be used in a range of fields. When working with 

multidimensional and continuous features, SVMs and neural networks function substantially 

better. While working with discrete features, logic based algorithms perform much better. 

Neural network models and SVMs require a large data set to achieve optimal accuracy, 

whereas NB may only require a small dataset. KNN is very sensitive to useless features:  The 

way the algorithm operates explains why k-NN is so sensitive to irrelevant features. 

Furthermore, the existence of non-essential features might make neural network training 

ineffective, if not impossible. The majority of decision tree algorithms struggle with cases that 

necessitate diagonal division [52]. 
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The instance space is divided orthogonally to one variable's axis and parallel to the other axes. 

As a result, after splitting, the resulting regions are all hyperrectangles. When there is multi 

collinearity and a nonlinear relationship between the input and output features, ANNs and 

SVMs work well. During the training and classification phases, Naive Bayes uses very little 

space: The memory required to hold the prior and conditional probabilities is the absolute 

minimum. The training stage of the basic KNN takes up a lot of space, and the implementation 

space is as vast as the training space. Contrary to that, because the final classifier is typically a 

significantly condensed summary of the dataset, execution space for all non-lazy learners is 

commonly substantially less than training space. Furthermore, whereas rule algorithms cannot 

be used as incremental learners, Naive Bayes and KNN can. Missing values are usually ignored 

in determining probabilities, therefore they have no impact on the final choice in Naive Bayes. 

On the other hand, KNN and neural networks require entire data to function. Decision Trees 

and Naive Bayes frequently have different operational profiles; while one is extremely 

accurate, the other is not, and vice versa. The operational profiles of SVM and ANN are 

comparable. Decision trees and rule classifiers, also have a fairly similar operational profile. 

Over all datasets, no single learning system can consistently outperform others. Different 

datasets with varied types of variables and the number of instances influence the sort of method 

that will function well. 

3.12 Feature Reduction 

Feature reduction is viable in eliminating insignificant and repetitive information, expanding 

learning precision, and improving result conceivability. Nonetheless, current rise of 

dimensionality of information and data poses a challenges feature reduction and selection 

techniques concerning accuracy and effectiveness [57].  

Feature reduction gives a compelling way to resolve this issue by eliminating repetitive and 

irrelevant information, which can decrease calculation time, improve learning precision, and 

encourage improved knowledge and understanding for the data or learning model. Figure 3.3 

provides a hierarchical structure of approaches used for dimensionality reduction 

Dataset with a high dimensions is difficult to classify due to the high computational cost and 

memory utilization of algorithms. Two approaches are used for reducing dimensionality 
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One of the most straightforward approaches in feature reduction is through Feature selection; 

choosing just that information or features that contain the useful data to resolve the specific 

issue. The benefit of feature selection is that no data regarding the relevance of one feature is 

destroyed. However, if just a limited number of features is needed and the original set of 

features is quite diversified, data may be lost since some features need to be excluded during 

the process of feature subset selection process. 

It is a broader method in to map a set of input data onto low-dimensional data that contains a 

considerable amount of information [58]. The feature space size can be reduced in feature 

extraction without eliminating a large amount of data from the feature space. The decision 

between these two methods is influenced by the type of data and application domain. 

 

Figure 3. 3 Hierarchical structure of dimensionality reduction approaches [48] 

 

Typically, features are classified as redundant, irrelevant, or useful. During the feature 

selection process, a subset of data available is picked for the learning algorithm. The best subset 

is the one with the fewest features that aid precision learning the most [58]. 
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3.12.1 Feature Selection 

High dimensional data contains features that may be useless, deceptive, or duplicated, resulting 

in a larger search space, making it more difficult to interpret data and obstructing the learning 

process. Choosing the best features which can be used to distinguish classes is known as feature 

subset selection. It is a computational model that is triggered by a set of relevant criteria. L. 

Ladha et al [58] conducted an empirical analysis of several feature selection approaches. 

Wrappers, filters, and hybrid procedures are the three categories of feature selection 

techniques. Wrappers approaches outperform filter approaches because the feature selection 

procedure is customized for the classifier to be used. Wrapper approaches, on the other hand, 

are too expensive to utilize for vast feature spaces due to their high computational costs, and 

every feature set should be validated using the trained classifier, which slows down the feature 

selection process. When comparing to wrapper approaches, filter methods have a lower 

computing cost and are speedier, but they have inferior classification accuracy and suits for 

high dimensional dataset. Hybrid techniques combines the benefits of filters and wrappers 

approaches, have recently been developed. It uses a feature subset performance evaluation 

algorithm as well as an independent test [59]. Feature weighting algorithms and subset search 

algorithms are the two types of filtering algorithms. It entails some alteration of the original 

features in order to create more important features. The following is how Brian Ripley [60] 

described feature extraction: "Feature extraction is generally used to mean the construction of 

linear combinations of continuous features which have good discriminatory power between 

classes".  

3.12.2 Feature Extraction 

It's critical for further data analysis; whether it's data compression, de-noising, visualization, 

pattern recognition etc., the data must be represented in a way that makes analysis easier. To 

discover a suitable transformation, several basic approaches have been devised. 

3.12.3 Filter Based Feature Selection Methods 

These methods normally use the following process. The technique, which is based on a specific 

searching procedure, begins by searching from a subset that has been provided, which could 
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be a full, empty, or randomly chosen subset. At that moment, each produced subset is evaluated 

using a specific metric and compared to the previous best. 

This cycle is repeated till the pre-defined criterion is achieved. Subsequently, it yields the most 

recent best subset. Precisely, Depending on the algorithms used, Evaluation measure and 

search technique can be different. Few examples of filter based methods are T-testing, 

regression and principal component analysis (PCA) [61] [62]. 

3.12.4 Principal Component Analysis 

It is an unsupervised approach to minimize the dimensionality of a dataset while maintaining 

as much data as possible. This is accomplished by identifying a new set of features known as 

components, which are uncorrelated composites of the original features [63]. It is a frequently 

used feature extraction technique in pattern recognition and computer vision applications. 

PCA isn't ideal in a lot of situations: For example, if all of the PCA components have a high 

variance, there really is no universal stopping criteria that allows you to remove a specific 'k' 

Principal Components while ensuring that no significant data loss occurs during compression. 

Second, it isn't appropriate for some classification issues. If the data is divided into two classes, 

but the variance within-class is much higher than the between-class variance, PCA may results 

in deleting the data that distinguishes your two classes. In other terms, if the data is noisy and 

the variance between the means of the two groups is greater than the variance between the 

noise components, PCA will retain the noise components while discarding the distinguishing 

component (As PCA is unsupervised it is expected). Data in the bottom space becomes 

indistinguishable as a result of this. Some of the cases in which PCA does not work properly 

are  

 When there is an imbalance in the data. 

 When there is a lot of noise in the data it does not gives good results. 

 When the significance of certain of the independent variables is high 

 When the variance inside a class is greater than the variance across classes. 

 When there are numerous independent variables with a given number of classes, PCA 

ignores the classes and instead looks for an axis with a high variance, resulting in data 

loss. 
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3.12.5 T-Test 

The t-test technique is used to check if there is a critical variation between two class's or group's 

means. It assists in determining if the two groups or classes are from same pool and only 

different due to some error or the groups really have some significant difference [64]. 

Three fundamental factors help in determining if the groups really have true difference 

1. There is a very less chance that difference is because of sampling error or by chance if 

the sample group is large,  

2. There is a very less chance that difference is because of sampling error if there is a big 

difference between the means of two groups.  

3. There is a very less chance that difference is because of sampling error if the variance 

among participants is very small. 

𝑡 = (𝑥 − 𝜇)/(𝑠/√𝑛) 

Here S is standard deviation, x is sample mean, μ is hypothesized mean and deviation n is 

sample size. 

P value tells how likely we might have gotten these outcomes by some chance, if indeed the 

null hypothesis were valid. Usually, if there is under 5% (P < 0.05) possibility of getting the 

observed differences by some chance, we reject the null hypothesis and state we found a 

significant variation between two sample groups. 
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CHAPTER 4: METHODOLOGY 

4.1 Data Set Description 

CICInvesAndMal2019 [14] dataset is generated by Canadian Institute for Cybersecurity (CIC) 

they have gathered 10,854 samples out of which 4,354 were malware and 6,500 were 

genuine benign apps from a variety of places, including the previous researchers [65], [37], 

[66], VirusTotal service [67], the Contagio security blog [68]. But due to the following two 

factors, only been able to install 5,000 of them (malware 429 and benign 5,065): 

1) Sample Error: Most of the samples were of poor quality, with Dex issues, unsigned, 

and corrupt apps among them. All apps must be signed in order to be installed on an 

emulator or a genuine smartphone. 

2) Inconsistent malware labelling: Inconsistent labelling among anti-virus companies and 

researchers causes uncertainty and makes re-organization time-consuming. To solve 

this   issue they compared malware labelling from many anti-virus companies and then 

adopt the majority numbers among the most common label of the malware family in 

question. 

4.1.1 Configuration Architecture 

Figure 4.1 shows three laptops are connected to three smartphones in the following architecture  

1) Laptop 1 with android phone-1: a NEXUS 5 mobile device connected to a 64-bit 

Ubuntu 16.04 laptop with an Intel CPU and 8GB RAM. 

2) Laptop 2 with android phone-2: a NEXUS 4 mobile device connected to a 64-bit 

Ubuntu 16.04 laptop with an Intel CPU and 8GB RAM. 

3) Laptop 3 with android phone-3: a NEXUS 5 mobile device connected to a 64-bit 

Ubuntu 16.04 laptop with an Intel CPU and 8GB RAM. 

In dynamic analysis, three phases of data gathering was developed that potentially activate 

malware activity at run time during execution [39]. 
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Figure 4. 1 Configuration architecture [39] 

 Installation: Occurs after the installation of malware (between one to three minutes)  

 Before restart: This situation lasts for 15 minutes before the phones are restarted.. 

 After restart: Occurs 15 min after restarting phones. 

4.1.2 Malware Activation Scenario 

To better identify malware activity and features, Taxonomy was designed to establish a 

complete data capture scenario. There are 20 types of attacks (A1-A20) and four forms of 

command and control communications (C&C) in the taxonomy (C1-C4) which is shown in 

figure 4.2. 

 User Profile: For each smart phone, three user profiles were used. Each user has a valid 

email address and phone number for Gmail, Facebook, Skype, and Whatsapp. 

 User interaction scenarios: Specific scenarios were generated for each malware 

category in order to provide a consistent data output. 

1) Benign: “Browse Internet, Send Message, Enable GPS, Make Call”. 

2) Adware: “Browse Internet, Send Message, Enable GPS, Make Call”. 
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3) Scareware: “Browse Internet, Send Message, Enable GPS, Make Call, 

Click/follow popup”. 

4) Ransomware: “Browse the Web, Send text Messages, Enable GPS (Global 

positioning system), Make Calls, Click/Follow Popups, Established the 4 digit PIN and 

lock the mobile, select and Interact with any pop - up Text, Save contacts (more than 

10) in the contact List, Save the following documents for both internal and external 

storage: doc, txt, jpeg, docx, jpg, mkv, gif, png, bmp, gif, pdf, avi”. [39] 

 

Figure 4. 2 Categories of attacks (A1-A20) and four types of command and control communications 
(C&C) (C1-C4) [39] 

5) SMSware: Browse Internet, Send Message, Enable GPS, Make Call, Install AV(AVG, 

Avast, BitDefender), Save more than 10 contacts in the contact list. 

4.2 Dataset 

Dataset contains two layers  

First layer: For classification between malware and benign ware apps.  



43 
 

Second layer: For classification of malware into categories and families.  

4.2.1 First Layer 

First Layer dataset has samples of benign ware and malware apps each sample have 8114 

features. First layer contains intent actions and requested permissions as static features which 

are obtained from ManifestFile.xml of Application’s APK files.  

4.2.2 Second Layer 

Second layer dataset has 919 samples of 4 malware categories and 39 families including:  

1. Ransomware 

2. Adware 

3. Scareware 

4. Smsware. 

Table 4. 1 Description of Dataset [39] 

Category Family Year 
Total 

Collected 

Total 

Captured 

Adware 

Dosvgin 2016 50 10 

Mond 2017 50 10 

Fens 2016 100 15 

Goohgan 2016 43 14 

Kemoge 2015 35 11 

Koodom 2017 50 10 

Mobidash 2015 32 10 

SeItmrte 2014 6 4 

Shuanet 2015 24 10 

Younn 2015 50 10 

Ransomeware 

Charger 2017 150 10 

Bsut 2017 150 10 

Koler 2015 135 10 

LockerPm 2015 150 10 
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Smplooker 2015 146 10 

Mawr 2014 112 10 

Ponillrold 2016 113 10 

RansomB0 2017 100 10 

Svpeng 2014 120 11 

Wannalocker 2017 18 10 

Scareware 

AndroidDefender 2013 150 17 

AndroldSpy.277 2016 150 6 

AV for Android 2015 83 10 

AVpass 2013 150 10 

FakeApp 2015 150 10 

FakeApp.AL 2015 150 11 

FakeAV 2013 150 10 

FakebabOffer 2013 9 9 

FakeTaoBao 2013 150 9 

Penetho 2012 150 10 

WrusSbield 2014 150 10 

SMSware 

BemBot 2011 85 10 

Biige 2012 147 11 

Fakelnst 2013 150 11 

FakeMart 2012 63 10 

FakeNotify 2012 150 10 

Make 2012 149 10 

Mmarbot 2016 22 10 

Nandrobox 2012 150 11 

Plankton 2011 150 10 

SMSsniffer 2011 53 9 

Zsone 2011 150 10 

Total 4354 429 
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Figure 4. 3 Inside view of first layer methodology 

 

4.3 First Layer Methodology (Malware and Benign) 

Originally there were 8114 features in first layer which were to classify between malware and 

benignware apps. We have reduced the features in first layer and used T-testing for feature 

selection. Figure 4.3 provides the inside view of first layer methodology 

For better look in to features we have took variances for all features. Figure 4.4 shows the 

Variance plot. Feature reduction in first layer really helped in reduced computation time and 

improved the results. To get the best features after applying t-testing we have only picked the 

features which have P values less than 0.05. In this case feature were reduced to 398 (with p 

values less for classification we used we used three machine learning algorithms 

 KNN 

 SVM 

 Random Forest 
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Figure 4. 4 Histogram of variance for first layer 

 

4.4 Second Layer Methodology  

4.4.1 Category Classification 

 

Figure 4. 5 Inside view of malware category classification methodology 

 

There were 919 features for category classification which we had to classify between 4 

malware categories (Ransomware, Adware scareware and Smsware). We have reduced the 

features in second layer and used T-testing for feature selection and then applied Random 
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Forest algorithm for classification. Figure 4.5 provides the inside view of category 

classification methodology 

For better look in to features we have took variances for all features. Figure 4.6 shows the 

Variance plot. 

 

 

 

 

 

 

 

 

Figure 4. 6 Histogram of variance for second layer 

 

As it was not a binary class problem so we applied the T-testing stepwise. Figure 4.7 shows 

the feature reduction scheme. First we took P values as follows 

 T-test was applied on Ransomware vs all categories (Adware, scareware and smsware) 

and  features with p value less than 0.05 are saved Which are 45 features 

 At second stage after removing all samples of Ransomware (already used in stage one) 

again t-test was applied on Adware vs Rest categories (scareware and smsware). 

 P values for Adware vs rest (scareware and smsware) are obtained and features with p 

value less than 0.05 are saved, which are 69 features  

 In third stage after removing samples of Ransomware and Adware again T test was 

applied on scareware vs smsware. 

 Features with p value less than 0.05 were saved, which were 158 features 

 In next stage we took union of all those features (45, 69 and 158 from above) which 

gave us the total of 205 features.   
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Figure 4. 7 Feature reduction scheme 

 

4.4.2 Family Classification 

There were 919 features for family classification, we had to classify 39 malware families. We 

have reduced the features and used T-testing for feature selection and then applied Random 

Forest algorithm for classification. Figure 4.5 provides the inside view of second layer 

methodology. 

 

Figure 4. 8 Inside view of Malware Family Classification 
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4.5 Category Classification with Nested Feature Selection within Random Forest 

Algorithm 

In this algorithm we have updated the conventional random forest by incorporating feature 

selection into the classification algorithm. At each step it will first use the t-testing for feature 

selection and then will classify the subjects with Random Forest algorithm. Figure 4.8 shows 

the structure of algorithm for category classification with nested feature Selection within 

Random Forest. 

To classify the malware into categories first we have applied feature selection, only selected 

the features with p values less than threshold and saved those features for training and testing 

files. 

4.5.1 Feature Selection 

 At first stage p values for Ransomware vs all categories are obtained and best features 

with p value < 0.4 are saved for training and testing files. 

 At second stage after removing all samples of Ransomware (already used in stage one) 

p values for Adware vs rest (scareware and smsware) are obtained and features with p 

value < 0.4 are saved for training and testing files. 

 In third stage after removing samples of Ransomware and Adware again applied feature 

selection by obtaining p values between scareware vs smsware. Features with p value 

< 0.4 are saved for training and testing files. 

So, after three phases of feature selection, random forest uses three sets of features in tree-

based random forest classification. 

4.5.2 Training 

At training stage the data was trained separately for three sets of features 

 First for ransomware vs all (first stage features) 

 Adware vs rest (2nd stage features) 

 Sacreware vs smsware (3rd stage features ) 
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Figure 4. 9 Structure of algorithm for category classification with nested feature selection within 
random forest 

4.5.3 Testing 

At testing stage a tree based random forest algorithm is applied on testing data. There were 

116 samples of testing data and at each time the algorithm takes only one sample from the 

testing data. Each sample passes through tree based algorithm in following way: 

Whenever testing sample comes the algorithm passes it to stage one of algorithm which 

classifies the sample between Ransomware Vs All categories (Adware, Scareware vs smsware) 

if the algorithm predicts the sample as Ransomware it saves the prediction in the prediction 

array and bypasses the other two stages and next sample comes. If the algorithm predicts that 

sample is not Ransomware it does not save the prediction and passes that sample to stage two 

of algorithm which classifies the sample between Adware vs rest (Scareware vs Smsware)  

If the algorithm predicts at stage two that sample is adware it saves the prediction in the 

prediction array and bypasses the 3rd stage. 

If in second stage algorithm predicts that sample is not adware it does not save the prediction 

and passes the sample to last stage which classifies the sample between Scareware vs Smsware 

and saves the prediction in the prediction array.  

So 116 samples of testing data passes through three stages of tree based random forest 

algorithm one by one and accuracy is calculated with comparing the prediction array with 

testing labels in the end.  
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CHAPTER 5: EXPERIMENTATION AND RESULTS 

5.1 First Layer (Malware and Benign) 

We got good results with Random Forest, KNN and SVM algorithms in binary classification 

(First layer). Random forest showed the best accuracy with 95.1% for binary classification. 

Table below shows the Results for different algorithms we used. 

Table 5. 1 Models and accuracy results for first layer 

Malware binary classification with feature selection 

Method Accuracy Precision Recall 

SVM 92.1% 88.7% 78% 

KNN 93.5% - - 

Random forest 93.8% 92.3 82.5% 

Random forest Built in 95.3% 96.4 83.75 

Neural Network 93.1% - - 

 

5.2 Second layer (Malware Category) 

We got the best accuracy of 84.48 for Malware category classification using Random forest 

algorithm table below shows the classification results. 

Table 5. 2 Models and accuracy results for category classification 

Malware category classification 

Method Accuracy Recall/Sensitivity Precision 

Random Forest 

built in 
83.62% 83.62% 83..62% 

Random Forest 84.5% 84.5% 84.5% 

Neural Network 54.3% - - 
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5.3 Category Classification with Nested Feature Selection within Random Forest 

Algorithm 

For this algorithm of category classification with nested feature selection within random forest 

algorithm we got fairly good results for category classification with accuracy of 82 %. 

Table 5. 3 Malware category classification with feature selection within Random Forest Algorithm 

Malware category classification with feature selection 

Accuracy Recall/Sensitivity Precision 

81.9 % 81.9% 81.9% 

 

5.4 Family Classification 

There are 39 families of malware and  we have 189 samples of training and 116 samples of 

testing data in this part. So very few samples are there of each family for training and testing.  

There were 919 features, we have used random forest classifier to classify with full 919 

features. We Also used those 205 reduced features which we reduced during category 

classification, as for 39 families it was difficult to take p values for each. 

Table 5. 4 Family classification with feature selection nested tree 

Family classification with feature selection Nested tree 

Method Accuracy Error rate 

Random Forest built 66.38% 0.336 

Random Forest built 62.07% 0.379 

Neural Network 34.5% 0.65 
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5.5 Impact of Feature Reduction and T-Testing 

CICInvesAndMal2019 dataset has 8114 features for malware detection more number of 

features means more complexity and more calculations for the classification algorithm. As we 

look closely into the dataset there is a lot of redundant and ineffective information which can 

add complexity and can effect results as well. Many of the features does not have values and 

have very little variance. T-test assumes that: 

1. Data is quantitative. 

2. The differences are unrelated to one another. 

3. They're evenly distributed. 

4. Each group being compared has a same level of variance 

T-test is used when the sample parameters (standard deviation and mean) are unknown. 

CICInvesAndMal2019 dataset is quantitative with features independent of each other so to 

remove the redundant and ineffective features (with low variance) we used T-testing to reduce 

the features. We have successfully reduced the features and after reduction the classification 

models gave fairly good results with less computations and in less time. 

Table 5. 5 Impact of Feature Reduction 

Type 
Before Feature 

Reduction 

After Feature 

Reduction 

Binary Classification 8114 398 

Category 

Classification 
919 192 

Family 

Classification 
919 192 

 

PCA isn't ideal in this situation like if all of the PCA components have a high variance, there 

really is no universal stopping criteria that allows you to remove a specific 'k' Principal 

Components while ensuring that no significant data loss occurs during compression. If the data 
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is divided into two classes, but the variance within-class is much higher than the between-class 

variance, PCA may results in deleting the data that distinguishes your two classes. In other 

terms, if the data is noisy and the variance between the means of the two groups is greater than 

the variance between the noise components, PCA will retain the noise components while 

discarding the distinguishing component (as PCA is unsupervised it is expected). 

5.6 Results Using Random Forest Model 

In this scenario, the random forest classification model worked best for us. A single pass on 

the dataset, like a decision tree, is unlikely to yield the best forecast. If we ran various decision 

tree algorithms using different subsets of training data and then compared the results to 

discover which was most frequently given decision in each case. 

We can do many runs on the dataset with different subsets incorporating all of the training 

dataset using the decision tree method in this manner. Finally, we trained a number of decision 

trees, each of which returned a prediction for each observation in the dataset. The forecasts 

provided by each model may not be accurate on their own, but when combined, they will be 

closer to the mark on average.  
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CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1 Conclusion  

In the age of smartphones and latest technology it is very important to work on security of 

common users. There are many datasets available publicly. On latest dataset of 

CICInvesAndMal2019 generated by Canadian Institute for Cybersecurity (CIC) results we got 

here are encouraging. 

 Sometimes more features or curse of dimensionality create problems in getting good results, 

reducing features using t-testing has worked in this case which solves the problem of 

computation as well. In addition, the random forest has shown fairly good results with modified 

algorithm.  

PCA isn't ideal in a lot of situations. When the significance of certain of the independent 

variables is high or when the variance inside a class is greater than the variance across classes, 

it does not gives best results. When there are numerous independent variables with a given 

number of classes, PCA ignores the classes and instead looks for an axis with a high variance, 

resulting in data loss. 

In binary classification the use of t-testing with random forest classifier provides promising 

results as the algorithm could classify the benign and malware apps with good accuracy. There 

were total of 8114 features in the dataset which we have reduced with the help of t-testing and 

after feature reduction the features are reduced to 398 features. We have also used the K nearest 

neighbor and SVM for classification for binary classification.  

Our model can classify the malware categories after feature reduction with good precision and 

recall value. In Category Classification with nested feature Selection within Random Forest 

Algorithm, we have modified the conventional random forest algorithm by using feature 

selection inside the classification algorithm. At each step it uses the t-testing for feature 

selection and then will classify the subjects with Random Forest algorithm. This model shows 

the precision of 82 %. 
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In family classification our model shows improved results after feature reduction but due to 

less samples for training and testing we could not achieve the best results as there are 39 

families and for each family there are very few samples to train and test.  

Overall the model provides the considerable results for binary, category and family 

classification which can be improved further using deep neural network  

6.2 Contribution 

 Reduction of features from 8114 to 398 features in binary classification with 

improved results. 

 Reduction of features for category classification from 919 to 192 features with 

improved results. 

 Modified the conventional random forest algorithm which used nested feature 

selection within random forest Algorithm. 

 Featured reduction in family classification with improvement of accuracy 

6.3 Future Work 

We have used random forest which gives the encouraging results in all classification problems 

(binary classification, category classification and family classification). There are few samples 

for family classification for each family which effects the results with increase in the number 

of samples in family classification the results can improve considerably.  

We can work with nested feature reduction in combination with deep neural network so that 

the features which are important for each category or family can be used and the redundancy 

or useless features can be removed in process of classification.  
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