

Automatic Labeling of Security Bug Reports

Author

Mohammad Umer Sadiq

FALL 2017 - MS-17 (CSE) 00000205473

Supervisor

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

NOV 2020

Automatic Labeling of Security Bug Reports

Author

Mohammad Umer Sadiq

FALL 2017 - MS-17 (CSE) 00000205473

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature: -__________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

NOV 2020

i

DECLARATION

I authorize that this research work titled “Automatic Labeling of Security Bug Reports” is my

own work under the supervision of Dr. Wasi Haider Butt. The work has not been presented

elsewhere for assessment. The material that has been used from other sources it has been

properly acknowledged / referred.

Signature of Student

Mohammad Umer Sadiq

FALL 2017 - MS-17 (CSE) 00000205473

ii

PLAGIARISM CERTIFICATE (TURNITIN REPORT)

The plagiarism of this thesis has been checked. Turnitin report approved by the supervisor is

attached.

Signature of Student

Mohammad Umer Sadiq

FALL 2017 - MS-17 (CSE) 00000205473

Signature of Supervisor

Dr. Wasi Haider Butt

iii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of semantic, typing, grammatical,

spelling and syntax mistakes. Thesis is also conferring to the format provided by the university.

Signature of Student

Mohammad Umer Sadiq

FALL 2017 - MS-17 (CSE) 00000205473

Signature of Supervisor

Dr. Wasi Haider Butt

iv

COPYRIGHT-STATEMENT

▪ Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

▪ The ownership of any intellectual property rights which may be described in this thesis

is vested in NUST College of E&ME, subject to any prior agreement to the contrary,

and may not be made available for use by third parties without the written permission

of the College of E&ME, which will prescribe the terms and conditions of any such

agreement.

▪ Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

v

ACKNOWLEDGEMENTS

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout

this work. Indeed, this would not have been possible without his substantial guidance through

every step, and for putting me across people who could drive me though this work in a

superlative manner. Indeed, none be worthy of praise but the Almighty. In addition, my

admirations be upon Prophet Hazrat Muhammad (PBUH) and his Holy Household for being

source of guidance for people.

I like to show my special thanks to my supervisor Dr. Wasi Haider Butt for his

generous help during my thesis, and for being available even for the minor issues. My thanks

for a cautious evaluation of the thesis, and direction on how to correct it in the best way

possible.

I am profusely thankful to Dr. Arslan Shaukat and Dr. Urooj Fatima for an excellent

guidance throughout this journey and for being part of my evaluation committee.

It is indeed a privilege to thank my Mother, my father Mohammad Sadiq and my elder

brother Ahmed Hassan Sadiq for their constant encouragement throughout my degree and

research period. The sense of belief that they instilled in me has helped me sail through this

journey. I would like to thank my family & friends, who have rendered valuable assistance to

my study.

Finally, I would like to show my thanks to all the-individuals who have rendered

valuable assistance in this period.

vi

Dedicated to my extraordinary parents, excellent siblings and my best

friend whose amazing support and assistance led me to this

astonishing accomplishment. I am truly indebted to you all.

vii

ABSTRACT

There are many stages in software development life cycle and each stage is associated

with different kind of artifacts. Bug reports used for many software development activities like

severity and priority assignment and triaging of bugs. It’s difficult for the developers to resolve

all bug reports due to the limited resources. Developers usually need to prioritize bug-reports

to resolved bugs of various software projects hurriedly. There are various-types-of bug reports

such as-security, -performance, regression, -usability and crash. Among these, security bug

reports are highly crucial. These types of bug reports can express security debt that could

abused by the hackers-if they disclosed before they resolved. A security-bug can-becomes the

reason of-an-unauthorized-access-to the software applications. These bugs are great threat to-

the-privacy and-security of users. Therefore, these bugs are needed to be resolved as early as

possible. A bug reports contains many different fields, showing information about bugs.

Certain fields are optional, and some are mandatory. JIRA consists a column named “type”,

which may be a-bug, an advanced-feature, an-improvement or a-support-request. In

BUGZILLA, key-word field is tagged with category of bug such as ‘perf’ for performance bug.

Label or Type field describe the type of a bug report. Label can give an understanding about

the bug reports and also be used for the priority of bug reports. Previous Studies show that

many bug reports are not labeled, if some are label, they may be not accurate. In this research,

we purposed an-approach for automatic labeling of security bug reports. At first, we conducted

the systematic literature review (SLR), this SLR consists distribution of papers according to

approaches used by authors. Identify different NLP techniques, libraries and technologies used

to develop tools. Then we identified thirteen (13) tools that are purposed or developed by

different researchers and a comparison is performed. After performing SLR, we purposed a-

novel-approach for the automatic labelling of security-bug-reports by using natural language

processing’s (NLP) techniques and machine learning (ML) algorithms. Our approach named

ALSBR is-implemented-in-Python using Natural language Toolkit (NLTK), Sklearn and

Imblearn libraries. In our purposed methodology, first of all preprocessing of bug reports is

performed. After the preprocessing, features are selected by TF-IDF values. Top hundred terms

according to TF-IDF values are selected as features. After feature selections, a random-under-

sampling-technique is applied to balance the majority and minority classes. Three machine

learning algorithms named Logistic-Regression, Decision-Tree and Naïve-Bayes is utilized as

classification model. A voting strategy is also applied to get the more accuracy. For the

validation of our approach, 10-Fold cross-validation is applied. We used bug reports of five

projects for the evaluation of our approach. Among these projects, four are from Ohira and one

is a-subset-of-bug reports that is selected from-Chromium-project. At the end, we compared

purposed-approach-with state-of-the-art approach-named FARSEC model and achieved

improved results in terms of Precision, Probability of detection (Recall), Probability of false

alarm, F-measure and G-measure.

Keywords: Security Bug Reports, Machine Learning, Natural Language Processing

viii

 Table of Contents
DECLARATION.. i

PLAGIARISM CERTIFICATE (TURNITIN REPORT) ... ii

LANGUAGE CORRECTNESS CERTIFICATE ... iii

COPYRIGHT-STATEMENT... iv

ACKNOWLEDGEMENTS ... v

Table of Contents ... viii

List of Figures ... xi

CHAPTER 1: INTRODUCTION .. 2

1.1 Background, Scope and Motivation .. 3

1.2 Aims & Objectives .. 5

1.3 Structure of Thesis .. 5

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW .. 8

2.1. Introduction .. 8

2.2 Review Methodology ... 11

2.2.1. Categories Definition .. 11

2.2.2 Selection-and-Rejection-Criteria .. 12

2.2.3 Searching Process ... 13

2.2.4 Quality Assessment .. 15

2.2.5 Data-Extraction-and-Synthesis ... 16

2.3 Results and Analysis ... 17

2.3.1 Classification with respect to Approaches ... 17

2.3.2. Classification with respect to library/ technology used ... 21

2.3.3. Classification with respect to NLP Techniques .. 22

2.3.4. Identification of Purposed/developed tools ... 23

2.3.5. Comparisons of purposed/developed Tools .. 24

2.4 Answers of Research Questions ... 25

2.5 SLR Conclusion ... 26

CHAPTER 3: PROPOSED METHODOLOGY & IMPLEMENTATION 28

3.1 Core Concepts Explanation.. 28

3.1.1 Natural Language Processing ... 28

3.1.2 Tokenization ... 28

3.1.3 Stop Words Removal ... 29

3.1.4-Stemming .. 29

3.1.5 Machine Learning .. 30

ix

3.1.6 Training & Prediction Phases ... 31

3.2 Purposed Solution ... 31

3.2.1 Preprocessing .. 32

3.2.2 Feature Selection .. 33

3.2.3 Random Sampling .. 34

3.2.4 Classifier Construction .. 34

3.3 Implementation ... 36

3.3.1 Data Set ... 36

3.3.2 Experimentation ... 38

CHAPTER 4: RESULTS AND EVALUATION .. 46

4.1 Evaluation-Metric ... 46

4.1.1 Confusion-Metrix ... 46

4.1.2 Precision .. 46

4.1.3 Probability of Detection ... 47

4.1.4 Probability of False Alarm .. 47

4.1.5 F-measure ... 47

4.1.6 G-measure ... 47

4.1.7 K Fold Cross Validation .. 47

4.2 Results Evaluation and Comparison ... 47

CHAPTER 5: DISCUSSION & LIMITATIONS... 56

5.1 Discussion... 56

5.2 Limitations ... 56

CHAPTER 6: CONCLUSION AND FUTURE WORK.. 58

6.1 Conclusion ... 58

6.2 Future Work .. 59

References .. 60

x

List of Tables

Table 2.1: Search Terms with Results

Table 2.2: Selected research papers w.r.t to publication type and databases

Table 2.3: Data extraction and Synthesis

Table 2.4: Categorization with respect to techniques

Table 2.5: Research studies using Supervised Machine Learning Algorithms

Table 2.6: Research studies using Unsupervised Machine Learning Algorithms

Table 2.7: Research studies using Knowledge Based Algorithms

Table 2.8: Research studies using Rule Based Algorithms

Table 2.9: Research studies using Meta-Algorithms

Table 2.10: Research studies using General

Table 2.11: Libraries/technologies used for labeling

Table 2.12: NLP Techniques used for Labeling

Table 2.13: Tools purposed/developed by different researchers

Table 2.14: Comparisons of Tools

Table 3.1: Word level tokenization

Table 3.2: Sentence level tokenization

Table 3.3: Stop words removal

Table 3.4: Stemming of words

Table 3.5: Details of data sets

Table 4.1: Confusion Matric

Table 4.2: Results for each project

Table 4.3: Comparison of results

xi

List of Figures

Figure 1.1: Bug Report

Figure 1.2: Thesis Outline

Figure 2.1: Overview of SLR

Figure 2.2: Search Process

Figure 2.3: Distribution of selected researches w.r.t year of publication

Figure 3.1: Purposed approach

Figure 3.2: Preprocessing of bug reports

Figure 3.3: Ohira’s data set

Figure 3.4: Chromium’s subset of data

Figure 3.5: Textual data of bug reports

Figure 3.6: Preprocessed Data

Figure 3.7: TF-IDF Values

Figure 3.8: Selected features for Ambari project

Figure 3.9: Samples before Random Under Sampling

Figure 3.10: Samples after Random Under Sampling

Figure 3.11: Classifier

Figure 4.1: Results for each project

Figure 4.2: Chart for results

Figure 4.3: Comparison 1 of results with respect to G-measure

Figure 4.4: Comparison 2 of results with respect to G-measure

1

Chapter 1

Introduction

2

CHAPTER 1: INTRODUCTION

There are many stages in software development life cycle and each stage is associated

with different kind of artifacts. One of those artifacts is bug report. These are essential for

development of any kind of software. We can define a software-bug-as [1].

“A software bug is an error, flaw, failure, or fault in a computer program or system that causes

it to produce an incorrect or unexpected result or to behave in unintended ways.”

 These bugs are documented in a report called bug reports. These reports permit users

to notify-the developers about-problems they faced when-using any software. These reports

consist of details of a failure and they usually give information about the location of a failure

in the-code. A bug reports contains many different fields, showing information about bugs.

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a

bug report. Therefore, these reports are utilized for many software-development-activities like

severity, priority assignment and triaging of bugs [1,2].

There are various categories of bug-reports-such as security, performance, usability,

crash and regression [31]. Among these, security bug reports are highly crucial [9]. These-

reports can express security debt that-could abused by the-hackers-if they disclosed ahead-they

resolved. It can cause an unauthorized access to software [8]. These bugs are great threat to the

privacy and security of users [13]. Therefore, these bugs are needed to be fixed as early as

possible. It can be defined [9] as

“A security bug is a security vulnerability that allows a user to have inappropriate

access to the system and thus cause harm or damage to the software or to persons using the

software.”

Software projects used bug tracking system to document and follow-the progress of

every bug which is identified by developers, testers and user of software system [8]. Bug-

tracking system (BTS) is a software tool which saves the record of reported bug reports during

software developments projects. Many BTS grant permission to end users to report bug directly

and few are only used-within the organization during software developments. These tracking

systems are combined with the other- tools of project management. A BTS is a significant

element of many software development companies and use of these tracking systems are-

considered “hallmarks of a good software team". Bugzilla, Jira, Trac and GitHub are mostly

used bug tracking systems.

Machine learning (ML) is a “study of statistical models and algorithms which computer

used to operate specific tasks without using explicit instructions”. It is an Artificial-

Intelligence (AI)’s application that allows computers to learn-accordingly-and improved from

the experience without any programming. ML algorithms are usually categorized into two type.

One is supervised machine learning and other one is unsupervised machine learning. In first

type, class labels of some data are known, this data is called training data. New data is classified

depend on the training data; this new data is called testing data. There are one-or many inputs

and-liked-output for each training example. In unsupervised machine learning algorithms, class

labels of training data are unknown.[10].

3

Natural language processing (NLP) is the field-of artificial intelligence which is basically

concerned with automatic analysis of plain natural language [62]. There are several techniques

in the natural-language-processing e.g. tokenization, POS tagging, sentence splitting [62].

Tokenization is an NLP Technique which is used to split the natural language paragraph

into sentences, then these sentences are broken into tokens [61]. POS Tagging technique is

used to designate part of speech to each-word in a-sentence like noun, verb, adverb etc. [61].

Parsing is used to build a syntax tree of the sentences, stemming returns the words to its base

form and TF-IDF is used to identify the value of-a-word in a paragraph [62].

1.1 Background, Scope and Motivation

Bug reports used for many software development activities like severity and priority

assignment and triaging of bugs[1]. The reliability and quality of these tasks highly depend on

information available in bug reports. Previous study[2] show that bug reports usually contain

incorrect and incomplete information. Therefore, developers spend more time and effort on the

inspection of errors [2]. Over 45% of development time of IT companies spend in repairing

various bugs during software development [3][4]. As the complexity and scale of projects

increase, large no of bug-reports obtained everyday by BTS. They allow the reporters to report

any kind of bugs they faced while using various software products. A bug report is shown in

figure 1.1.

It’s difficult for the developers to resolve all bug reports due to the limited resources.

Developers usually need to prioritize bug reports to resolved bugs of various software projects

hurriedly. A bug reports contains many different fields, showing information about bugs.

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a

bug report. JIRA (a bug tracking system) consists a column named “type”, which may be a

bug, an advanced feature, a support request or an improvement. In BUGZILLA, key-word field

is tagged with category of bug such as ‘perf’ for performance bug. Label can give an

understanding about the bug reports and also be used for the priority of bug reports. Previous

Studies show that many bug reports are not labeled, if some are label, they may be not accurate

[5].

Among these, security bug-reports-are of greater-importance to the-developers-and the-

users [9]. A BTS contains many bug reports, only a few are security related bug reports. A BTS

does not give any-procedure-to separate these from lot of reports. Our research aimed to create

a model for the automatic labeling of security bug reports. For the labeling of these reports, we

used natural-language-processing (NLP) facility with ML techniques.

4

Figure 1.1: Bug Report

5

1.2 Aims & Objectives
Main-aims and objectives-of this research are shown below:

• We have performed a complete systematic literature review (SLR) of the current

research relevant to automatic labeling or classifications of bug reports

• We have identified and analyzed different techniques used for automatic

labeling/classifications of bug reports

• We have identified and compared the different tools built for automatic labeling or

classifications of bug reports

• We have formalized a practical approach which used different ML algorithms and

techniques offered by NLP

• We have implemented defined methodology to a data set and compared the results with

previous systems to validate the improvements

• We have used Python for the implementation of our approach

1.3 Structure of Thesis
Chapter 1: Consists-introduction,=background, scope,-motivation, aim and objectives. It

also includes thesis’s structure. Chapter 2: Comprises detailed SLR that contains different

research questions, review-protocols, classifications of studies which are selected w.r.t

different techniques used, identification and comparison of different tools in the domain of

labeling or classifications of bug reports and the answers to the research questions.

Chapter 3: Includes the purposed methodology for the automatic labeling of security bug

reports. It also includes detailed implementation of our approach. This chapter also contains

information about the different algorithms used. Chapter 4: Includes the results and evaluation

of our purposed methodology using standard data sets. This chapter also includes the

comparison of our approach to previously purposed approach.

Chapter 5: Consists a discussion on whole work done with the drawbacks of our research.

Chapter 6: Includes the conclusion of research and suggests a work for the future. The thesis’s

outline is shown in figure 1.1.

6

Figure 1.1: Thesis-Outline

7

Chapter 2

 Systematic Literature Review

8

CHAPTER 2: SYSTEMATIC LITERATURE REVIEW

This-chapter contains the systematic literature review performed for our research.

Section 2.1 consists introduction to the SLR. Research methodology of literature review is

explained in Section 2.2. The results and analysis are interpreted in Section 2. 3. Answers to

the-research-questions are explained in the Section 2.4. Conclusion of SLR is discussed in

Section 2.5.

2.1. Introduction
The bug-reports-used for many-software-development activities like severity, priority

assignment and triaging of bugs [1]. The reliability and quality of these tasks highly depend on

information available in bug reports. Previous study [2] show that bug reports usually contain

incorrect and incomplete information. Therefore, developers spend more time and effort on the

inspection of errors. Over 45% of development time of IT companies spend in repairing various

bugs during software development [3][4]. As the complexity and scale of projects increase,

large no of bug reports obtained everyday by bug-tracking-systems. Bug-tracking systems

allow the reporters to report any kind of bugs they faced while using various software products.

It’s difficult for the developers to resolve all bug reports due to the limited resources.

Developers usually need to prioritize bug reports to resolved bugs of various software projects

hurriedly. A bug reports contains many different fields, showing information about bugs.

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a

report. JIRA (a BTS) consists a column named “type”, which may be a bug, an advanced

feature, a support request or an improvement. In BUGZILLA, key-word field is tagged with

category of bug such as ‘perf’ for performance bug. Label is an optional field in google-chrome

bug repository.

 Label can give an understanding about the bug reports and also be used for the priority

of bug reports. Previous Studies show that many bug reports are not labeled, if some are label,

they may be not accurate [5]. To resolve the issue of labeling of bug reports, many tools and

techniques has been developed by different researchers. But a few works is performed for

systematic analysis of different tools -and techniques developed for the labelling of bug reports.

Hence, there is a strong need to perform a SLR of state of the art literatures related to

labeling/classification of bugs. So, in this paper we performed a SLR from 2012 to 2020 and

broadly examine the latest techniques and tools related to domain. We defined five (5) research

questions (RQ) for SLR.

RQ1: What are the primary approaches used for the labeling/classifications of bug

reports during 2012-2020?

RQ2: What are the tools purposed/developed for the labeling/classifications of bug

reports during 2012-2020 and what is the difference between these tools?

RQ3: What are the primary NLP techniques used for the labeling/classifications of bug

reports during 2012-2020?

RQ4: What are the libraries/technologies used for the labeling/classifications of bug

reports during 2012-2020?

9

RQ5: How did these modern tools and techniques helped in fixing of bugs during 2012-

2020?

We conducted a systematic review on 54 research studies which include both journals and

conference papers, published between 2012-2020. The overview of SLR is shown in figure 2.1.

The main-contribution-of this study is following

• At first, this study selects 54 research papers published between 2012-2020 related to

labeling/classification of bug reports.

• Secondly, this study analyzes the five categories of approaches, NLP techniques,

libraries/technologies and purposed/developed tools.

• At end, this study shows that how it will help the developers in bug fixing process

10

Figure 2.1: Overview of SLR

11

2.2 Review Methodology
We have followed the Kitchenham[6]’s pattern for SLR in our study to get more precise

and accurate answers to our questions. Kitchenham’s methodology to conduct systematic

literature (SLR) consists following five steps.

1) Defining Categories

2) Defining-Selection-and the-Rejection-Criteria

3) Searching Process

4) Quality-Assessments

5) Data=Extraction-and=Synthesis

2.2.1. Categories Definition

For the organization of selected researches, we have defined five categories. This will

improve the efficiency of answers-of the-research-questions. The explanation for each category

is given below.

2.2.1.1 Machine Learning Algorithms

Machine learning (ML) is a “study of statistical models and algorithms which computer

used to operate specific tasks without using explicit instructions”. It is an Artificial-

Intelligence (AI)’s application that allows computers to learn-accordingly-and improved from

the experience without any programming. ML algorithms are usually categorized into two type

explained below.

2.2.1.1.1 Supervised Machine Learning Algorithms

In this type class labels of some data are known; this data is called-training-data. The-

training data is used to classify new data, this new data-is-called testing data. There are one or

many inputs and desired output for each training example.

2.2.1.1.2 Unsupervised Machine Learning Algorithms

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of

the-data-points. Therefore, these approaches learned from the data which is not-labeled,

categorized-or classified.

2.2.1.2 Knowledge Based Algorithms

Some researchers used knowledge-based approaches to label the bug reports.

Knowledge based systems that is used to label the bug reports, consists a large amount of data

as knowledge based. These knowledge bases are like dictionary that contain information, facts

and meaning of various words that used in real word. This knowledge and information can

have applied for the labelling of bug reports.

2.2.1.3 Rule Based Algorithms

Many researchers have used rule-based approaches for the labelling of bug reports. In

this approach, rules are defined to find the required content from natural language. Researchers

have defined many rules for the labelling of bug reports. In this approach, NLP prcesses-such-

as stop words-removal, -stemming and POS Tagging are Enforced on the sentences then

outcomes are matched with the pre-defined rules to categorize the bug reports.

12

2.2.1.4 Meta Algorithms

In meta algorithms, an algorithm is applied on many other algorithms to get the highest

accuracy. In this, many other algorithms are combined to get more accurate results like in

machine learning, Naïve Bayesian, KNN and SVM’s results are combined to get more

accuracy. Some of the researchers used these techniques for the labelling of bug reports.

2.2.1.3 General

In general category, those techniques are included which are not belong to any specific

category. Some of the researchers used techniques which can’t belong to any categories

mentioned above like latent-semantic-indexing (LSI) is an indexing-technique which can’t

belongs to any categories.

2.2.2 Selection-and-Rejection-Criteria

We used a well-defined selection and rejection criteria for conformation of the

correctness of our research questions. We have used following five parameters to get accurate

and precise answers to our research questions.

2.2.2.1 Subject Relevant

We have selected only those research papers which really answer our research

questions. All these research papers are most-relevant to our-research-questions. The research

papers which are not relevant are excluded.

2.2.2.2 2012-2020

We have selected only those research papers which published from 2012 to 2020. We

have rejected all those research papers which are published before 2012.

2.2.2.3 Publisher

We have selected only those research papers that are published from well-known

scientific databases named IEEE, Elsevier, Springer and ACM.

2.2.2.4 Result Oriented

We have focused on a point that each research paper should be able to generate better

and precise result. We have ensured that laws, experimentation and concrete facts that used in

selected papers must be strong to produce a good Systematic Literature Review (SLR).

2.2.2.5 Repetition

We have ensured that selected research papers should have different context and

content to produce unbiased results. Therefore, reject those researches that are

undistinguishable in a specific context and select only one of them.

13

Table 2.1: Search Terms with Results

Sr. # Search terms Operators Number of Search Results

IEEE Elsevier Springer ACM

1 Bug Reports N/A 881 12,089 20,981 118,158

2 Bug Reports

Labeling

AND 43 3,478 6,260 38,356

OR 25,149 753,889 23,355 140,702

3 Automated

labeling

Bug Reports

AND 12 1,186 2,306 12,645

OR 61,812 936,328 551,625 158,439

4 Security

Bug reports

AND 127 2,969 6,925 30,125

OR 118,005 245,848 259,929 139,580

5 Label Security

Bug reports

AND 7 990 2,121 9,341

OR 141,024 945,363 634,662 158,260

6 Bug reports

labeling Tools

AND 11 2,377 4,685 23,839

OR 364 1,743,908 27,494 182,282

7 Bug reports

labeling Natural

language

processing

AND 7 851 2,086 37,243

OR 39,566 822,862 12,594 218,304

2.2.3 Searching Process

Selection-and-rejection-criteria for the research papers is already discussed in above

section. We used a state-of-the-art search-process-for the-selection-of quality researches

according to the mentioned selection and rejection’s standard. We have utilized four databases

(IEEE, ACM, Elsevier, Springer) to select the Journals of high impact factor and conference

papers to generate a quality systematic literature review (SLR). We have utilized many search

terms and keywords like “Bug Reports”, “Labeling bug reports”, “Security bug reports” etc.

for the search process. The search terms with the number of results against each term and along

databases name are shown in table.

We have utilized advanced search options for each database to carry out better search

process. We utilized time span filter to select research papers which are between “2012-2020”.

We also utilized two Boolean operators such as AND & OR to get better results. ‘AND’

14

operator is used to get more exact and precise results while ‘OR’ operator is used to large

amount of results, which can help us for SLR. After the inspection of primary results, we have

selected only those researches which are most relevant to our topic. We got 54 research papers

by following some steps shown in figure 2.2.

• We selected 5,422 research studies from four well known scientific databases by putting

different keywords.

• Then 2,186 research papers are selected and 3236 are rejected on basis of their titles.

• After this, we have selected 726 research papers rejected the 1460 studies after reading

the abstract of these studies.

• After general study of remaining 726 studies, we have removed another 300 studies and

after detailed analysis finally selected 54 research studies. These 54 research studies

fully satisfied the previously mentioned inclusion and exclusion criteria.

Figure 2.2: Search Process

15

Table 2.2: Selected research papers w.r.t to publication type and databases

Database Type Number-

of studies

References Total

IEEE Journal 7 [9][23][24][34][37][40][43] 33

Conference 26 [7][8][10][11][12][13][14][15][16][21][22

][25][27][28][29]

[30][31][32][33][34][35][38][39][44][46][

54]

Elsevier Journal 3 [17][56][53] 4

Conference 1 [18]

Springer Journal 8 [47][48][49][50][51][52][53][60] 10

Conference 2 [20][55]

ACM Journal 0 7

Conference 7 [19][26][41][42][45][58][59]

2.2.4 Quality Assessment

Only high impact research studies are selected from highly recognized databases to

assure the reliable results of this systematic literature review. Thirty-three (33) studies are

selected from IEEE database, ten (10) from Springer, seven (7) from ACM and four (4) from

Elsevier, making a total 54 selected studies. The results shown in Table indicate that we have

tried our best to select latest and high impact studies. The summary of selected research papers

w.r.t publication type and database is shown in Table 2.2. Database show the name of different

research papers repositories; type field represents whether research studies are Journal or

conference papers. References for the given studies are given. Total field represents the total

no of journal and conference papers selected for each database to perform this SLR.

Table show that seven (7) journals and 26 conference papers selected from IEEE

repository, three (3) journals and one (1) conference paper selected from Elsevier repository,

eight (8) journals and two (2) conference papers selected from Springer link and seven (7)

conference papers selected from ACM database. We have selected research studies from 2012

to onward. We have selected all the most relevant journals and conference papers from 2013

to onward which included four (4) studies from 2012, five (5) from 2013, seven (7) from 2014,

five (5) from 2015, four (4) from 2016, eight each from 2017 & 2018 and thirteen (13) from

2019 as shown in figure 2.3.

16

Figure 2.3: Distribution of selected researches w.r.t year of publication

2.2.5 Data-Extraction-and-Synthesis

Table 2.3 shows this process. The mining process for bibliographic information of

selected research studies are performed. We have defined overview, results, assumptions and

validation in data extraction process-to-ensure-the preciseness of research questions. For the

data synthesis process, we have defined four points such as “Identification and categorization

w.r.t techniques used”, “Identification of NLP techniques used”, “Identification and

classifications of used/purposed tools” and “Comparison of the tools”. In first point, all the

techniques used for the labeling of bug reports are identified and classified shown in Table 2.4.

Secondly, all the NLP techniques used for the labeling of bug reports are identified, shown in

table 2.12. All the purposed/developed tools also found and classified, shown in table 2.13.

Tool comparison-is-shown in table 2.14.

Table 2.3: Data extraction and Synthesis

Data Extraction

Sr. # Description Details

1 Bibliographic-

Information

Title, authors, year of publication and research study

types are analyzed

2 Overview The goal and idea of the selected studies

3 Results Obtained Results-from-the selected studies

4 Assumption Assumptions to validate the outcomes

5 Validation Validation-Techniques used

17

Data Synthesis

Sr. # Description Details

1 Identification and

categorization w.r.t

techniques used

Identification and categorization of the papers with

respect to the techniques author used

2 Identification of NLP

techniques used

Identifications of NLP techniques used

3 Identification and

classifications of

used/purposed tools

All the purposed/used tools identified and classified

4 Comparison of the tools Tools are compared

2.3 Results and Analysis
Basic goal-of-this research is to-examine-the related literatures conforming to the

research questions. Out of 54 researches, 36 are published in conferences and 18 are published

in journals. It is also noticed that journals such as “information and software technology”, “the

journal of systems and software”, “automated software engineering”, “journal of computer

science and technology”, “empirical software engineering”, “IEEE transaction on software

engineering”, “IEEE transaction on fuzzy system”, “IEEE transaction on reliability” and “IEEE

access are really contributing to study”. Also many conferences such as “International

Conference on Reliability”, “Optimization and Information Technology”, “Conference on

Informatics”, “Electronics & Vision”, “IEEE International Conference on Smart Computing”,

“IEEE International Conference on Software Quality, Reliability and Security”, “IEEE Recent

Advances in Intelligent Computational Systems” and “Asia-Pacific Software Engineering

Conference” are highly contributing to our study.

2.3.1 Classification with respect to Approaches

All these studies are divided into five categories according to approaches used, shown

in table 2.4.

Table 2.4: Categorization with respect to techniques

Sr. # Category References Total

1 Machine

Learning

[7][9][10][11][12][14][17][18][19][20][21][22][23]

[24][25][26][27][29][33][34][35][36][37][39][41][42]

[43][44][46][55][56][57][58][48][49][50][51][52][54]

[53]

40

2 Knowledge

Based

[9][11][17][20][28][30][32][35][38][40][43][45][56][59]

[47][49][52][54][53]

19

3 Rule Based [13][17][19][23][27][34][37][45][56][50] 10

4 Meta

Algorithms

[9][28][23][56] 3

5 General [8][13][14][16][17][19][20][22][24][29][37][39][41][43]

[56][48][50][54]

18

18

2.3.1.1. Machine Learning Algorithms

ML is a “study of statistical models and algorithms which computer used to operate

specific tasks without using explicit instructions”. It is an Artificial-Intelligence (AI)’s

application that allows computers to learn-accordingly-and improved from the experience

without any programming. ML algorithms are usually categorized into two type explained

below.

2.3.1.1.1. Supervised Machine Learning Algorithms

In this type class labels of some data are known; this data is called-training-data. The-

training data is used to classify new data, this new data-is-called testing data. There are one or

many inputs and desired output for each training example. It’s techniques with references

shown in table 2.5.

Table 2.5: Research studies using Supervised Machine Learning Algorithms

Sr.

No

Algorithms References Objective

1 Naïve

Bayesian

[7][9][10][11][14][17][18][19][21][22][23][24][25][33][34]

[35][36][37][41][43] [55][58][48][49][50][51][52][54] [53]

For text

categorization

Tasks

2 Decision

Tree

[10][22] [23] [24][25][36][41] [43] [46] [50][52] Used for

classification

3 Logistic

Regression

[9][10][12][17][22][29][37][46] [55][56] [54] Binary

classification

4 K Nearest

Neighbor

[9][11][18][19][21] [23][24][34][43][49][50][52] classification

and

regression

5 Random

Forest

[9][11][17][19][26][29][36][50][52] classification

and

regression

7 Support

Vector

Machine

(SVM)

[11][17] [19][20] [21][22] [23] [24][37] [39] [41]

 [55][58] [49][50][51][52] [53] [54]

Classify the

data points

using

hyperplane

8 Artificial

Neural

Network

[9][12][19][21][22][24][27] [56][50] [60] Used for

classification

19

2.3.1.1.2. Unsupervised Machine Learning Algorithms

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of

the-data-points. Therefore, these approaches learned from the data which is not-labeled,

categorized-or classified. It’s techniques with references shown in table 2.6.

Table 2.6: Research studies using Unsupervised Machine Learning Algorithms

Sr. # Techniques References Objective

1 Clustering [17] [44] Classification purpose

2 Hierarchical Dirichlet

Process (HDP)

[44] Grouped the data

3 Latent Dirichlet Allocation

(LDA)

[26][33][41][42][46] Grouping of textual data

4 Markov model [55][57] Model the Probabilities of

different states an transitions

2.3.1.2. Knowledge Based Algorithms

Some researchers used knowledge-based approaches to label the bug reports.

Knowledge based systems that is used to label the bug reports, consists a large amount of data

as knowledge based. This knowledge base is like dictionary that contain information, facts and

meaning of various words that used in real word. This knowledge and information can have

applied for the labelling of bug reports. Knowledge based techniques with references shown in

table 2.7.

Table 2.7: Research studies using Knowledge Based Algorithms

Sr.

Techniques References Objective

1 Knowledge

Based

[9][11][17][20][28][30][32][35][38][40][43][45][56

][59][47]

[49][52][54][53]

Use

knowledge

For

categorization

2.3.1.3. Rule Based Algorithms

Many researchers have used rule-based approaches for the labelling of bug reports. In

this approach, rules are defined to find the required content from natural language. Researchers

have defined many rules for the labelling of bug reports. In this approach,

NLP techniques like stop words removal, stemming and POS Tagging are enforced on

the sentences then outcomes are matched with the pre-defined rules to categorize the bug

reports. Rule based techniques with references shown in table 2.8.

20

Table 2.8: Research studies using Rule Based Algorithms

Sr.

Techniques References Objective

1 Rule Based [13][17][19][23][27][34][37][45][56][50] Define rules

For categorization

2.3.1.4. Meta Algorithms

In meta algorithms, an algorithm is applied on many other algorithms to get the highest

accuracy. In this, many other algorithms are combined to build a predictive model to get more

accurate results like in machine learning, Naïve Bayesian, KNN and SVM’s results are

combined to get more accuracy. Some of the researchers used these techniques for the labelling

of bug reports. Meta algorithms with references shown in table 2.9.

Table 2.9: Research studies using Meta-Algorithms

Sr. # Techniques References Objective

1 Boosting [19][23] To improve

accuracy

2 Bagging [23] For the

improvement of

accuracy

3 Voting [23][56] Improve accuracy

9 Stacking [19] Improve accuracy

2.3.1.5. General

In general category, those techniques are included which are not belong to any specific

category. Some of the researchers used techniques which can’t belong to any categories

mentioned above like latent-semantic-indexing (LSI) is an indexing-technique which can’t

belongs to any categories shown in table 2.10.

Table 2.10: Research studies using General

Sr.

Techniques References Objective

1 Latent

semantic indexing (LSI)

[14] Identify patterns in the

relationship between

terms and concepts

2 Grid Search [17][20] Used for objective

function with no

parameters

3 Abstract Syntax Tree

(AST)

[13][54] For the static analysis of

code

21

4 Spearman’s Rank

Correlation Coefficient

[16] Describe relationship

between two variables

5 Wilcoxon Rank Sum Test [16] Calculate difference

between set of pairs

6 MATHEW Correlation

Cofficient

[17][29] Measure the quality of

binary classifications

7 Kullbach Leibler

Divergence (lda-kl)

[8][23][24][39][41][48][50] Use for recommendations

8 Relief-F attribute

selection(RFS)

[23] Attribute Selection

9 Chi Squared attribute

selection (CHI)

[8][23][24][29] Attribute selection

10 particle swarm

optimization (PSO)

[24] Trying to improve a

candidate solution

11 Hamming-loss [37] calculate the error

12 TSVD approach [43] For solving the linear

discrete ill-posed

problem

2.3.2. Classification with respect to library/ technology used

All the researches also analyzed for technology and library used for the labeling of bug

reports. Different kinds of technology or library used by different studies are shown in table.

Natural language toolkit (NLKT) is used by seven (7) researches which is most used library,

Scikit-learn library is used by five (5) researches, Porter stemmer is used by five (5) studies,

Word2vec is used by four (4) researches and all the remaining libraries is used by one or two

studies shown in table 2.11.

Table 2.11: Libraries/technologies used for labeling

Sr. # Technologies/libraries References Total

1 Scikit-learn [8][20][24][50][56] 5

2 Natural language

toolkit (NLKT)

[8][11][20][24][27][37][54] 7

3 Word2Vec [12][17][19][20] 4

4 Doc2Vec [17][25] 2

5 Wordnet [37][53] 2

6 lingPipe [14][41] 2

7 LibSVM

[20]

1

8 Stanford Topic Model-

ing Toolbox (TMT)

[26] 1

22

9 Mulan [34] 1

10 JOERN [39] 1

11 CodeSonar [40] 1

12 Coverity [40] 1

13 oTranscribe [40] 1

14 Indo-european

tokenization factory

[41] 1

15 Porter Stemmer [8][21][34][46][58] 5

16 Lovins Stemmer [21][49] 2

17 NumPy [50] 1

18 SciPy [50] 1

19 Mahout [54] 1

20 Lucene [54] 1

21 Stanford Natural

Language Inference

corpus (SNLI)

[55] 1

22 Paice Husk Stemmer

[21] 1

23 Weka [22][23][29][39][44][58][54] 7

24 LLVM [13] 1

2.3.3. Classification with respect to NLP Techniques

A number-of-NLP techniques are-used by researches for the processing of textual data.

We have reviewed all selected studies and identify five (5) NLP techniques used for the

labeling of bug reports. We have categorized the selected literatures into five (5) categories

with respect to NLP techniques, shown in table 2.12.

Table 2.12: NLP Techniques used for Labeling

Sr. # NLP

Techniques

References Total

1 Tokenization [8][9][10][14][18][20][22][23][25][27][29][34][36][37][41]

[42][43][44][55][58][48][53][54]

23

2 POS

Tagging

[10][11][27][29][37][44][55] 7

3 Parsing [10][29][43][44][46][52] 5

4 Stemming [8][11][14][17][18][21][22][23][25][34]

[43][46][58][49][51][52][53][54]

18

23

5 TF-IDF [7][9][10][11][14][17][18][24][35][41][48][49][50][55] 14

Tokenization is an NLP Technique which is used to split the natural language paragraph

into sentences, then these sentences are broken into tokens. POS Tagging technique is used to

designate part of speech to each-word-in-a-sentence like noun, verb, adverb etc. Parsing is used

to build a syntax tree of the sentences, stemming returns the words to its base form and TF-

IDF used to identify the-value of a word in a paragraph.

Tokenization is most used NLP technique in the selected literatures which is used in

twenty-three (23) studies. Stemming used in eighteen (18) researches, TF-IDF used in fourteen

(14) studies, POS Tagging used in seven (7) studies and parsing is used in five (5) research

papers.

2.3.4. Identification of Purposed/developed tools

We identified thirteen (13) purposed or developed tools, shown in table 2.13. These

tools have been used by different researchers for labeling of bug reports. Bug mining system

(BMS) used ML techniques for the identification of security-bug-reports. FARSEC is used for

the filtering and ranking of security bug reports. CTES used-rule-based-technique-for the

classification of-the-bug reports. AVIS used-ML techniques to detect the vulnerability. USES

utilized ML techniques to identify the Mandel and Bohr bugs. Im-ML.KNN is multi label

learning tool used to achieve better performance. [17] purposed a tool by using ML and rule-

based techniques to classify the bug reports. Flower is a tool that help the developers to navigate

the flow of program. [42] developed a tool by using ML techniques-for classification of the

bug reports. DRONE, BUGBAND and Auto ODC developed by different researchers for the

classifications of bug reports.

Table 2.13: Tools purposed/developed by different researchers

Sr. # Tool Name References Purpose

1 BMS [7] Identify Security and Non-Security

Bug Reports

2 FARSEC [9] A tool to reduce the mislabeling of

Security bug reports

3 CTES [13] To automatically classify the

security bugs

4 AVIS [19] To detect vulnerability using ML

techniques

5 USES [22] To distinguish Mandel bugs from

Bohr bugs.

6 (Im-ML.KNN) [34] Multi label learning Tool, to

achieve better performance.

7 TOOL BY [17] [17] Classify bug reports according to

taxonomy

8 Flower [40] A tool that help developers to

navigate program flow

9 Tool by [42] [42] To classify bug reports

24

10 DRONE [48] To assign priority labels to bug

reports

11 BUGBANG [52] To classify bug reports

12 Auto ODC [53] A tool to automate ODC

classification

13 Tool by [56] [56] Classify the bug reports

2.3.5. Comparisons of purposed/developed Tools

We performed state of the art comparison of all identified tools based on some

parameters, shown in table 2.14. The parameters used for the comparison are approaches used,

NLP techniques, programming language and open source. Used approaches are machine

learning, knowledge based, rule based, meta algorithms and general, these categories of

approaches are already defined in section. These identified tools used different NLP techniques

for the labeling of bug reports, we also used these techniques for the comparison of tools.

Programming language used to develop the tools is also a parameter for comparison and open

source field contain Yes or No values based on the source.

Table 2.14: Comparisons of Tools

Sr.

Tool Name Approaches

Used

NLP

Techniques

used

Programming

Language

used

Open

Source

1 BMS [7] ML TF-IDF -/- No

2 FARSEC [9] ML, KB Tokenization,

TF-IDF

Python Yes

3 CTES [13] RB, G - C++ No

4 AVIS [19] ML, MA, RB - N0

5 USES [22] ML Tokenization,

Stemming

JAVA No

6 (Im-ML.KNN) [34] ML, RB Tokenization,

Stemming

JAVA NO

7 TOOL BY [17] ML, RB, MA Stemming,

TF-IDF

Python No

8 Flower [40] KB - Java Yes

9 Tool by [42] ML, MA Tokenization -/- No

10 DRONE [48] ML, G Tokenization,

TF-IDF

Java No

11 BUGBANG [52] ML, KB, RB Stemming,

Parsing

R Yes

12 Auto ODC [53] ML KB Tokenization,

Stemming

-/- No

13 Tool by [56] KB, RB, G - Python Yes

25

2.4 Answers of Research Questions
RQ1: What are the primary techniques used for the labeling/classifications of bug

reports?

Answer: To answer the research questions, 54 research studies published between 2012

and 2020 have selected as per the selection-and the-rejection-criteria (Section 2.2). These

studies are grouped in five categories with respect to approaches used by different researchers.

• Forty (40) research studies have used machine learning algorithms, discussed in section

3.1.1.

• Nineteen (19) research studies have used knowledge-based techniques mentioned in

section 3.1.2.

• Rule based approaches have founded in ten (10) research papers mentioned in section

2.3.1.3.

• Some studies have used meta algorithms, discussed in section 2.3.1.4.

There are some techniques which can’t belong to previously discussed four categories,

these approaches have categorized as general, eighteen (18) studies have used these approaches

mentioned in section 2.3.1.5

RQ2: What are the tools purposed/developed for labeling/classifications of bug reports and

what is the difference between these tools?

Answer: After conducting the systematic review of the selected studies, we have found

thirteen (13) tools which are purposed or developed by different researchers, these tools shown

in table 2.13. The difference between these identified tools is also analyzed shown in table

2.14.

RQ3: What are the primary NLP techniques used for the labeling/classifications of the bug

reports?

Answer: After the analysis of selected literatures, we have identified five (5) primary NLP

techniques, researchers used for the labeling/classification of bug reports

Tokenization Have used by twenty-three (23) researches, POS Tagging have been used by

seven (7) studies, Parsing have been performed in five (5) literatures, stemming performed by

eighteen (18) researchers and TF-IDF have been used by fourteen (14) studies, mentioned in

section 2.3.3.

RQ4: What are the libraries/technologies used for the labeling/classifications of bug

reports?

Answer: After conducting the systematic review of the studies, we have found twenty-four

(24) different libraries and technologies used by different researchers for the

labeling/classification of bug reports, these libraries/technologies are shown in table 2.11.

RQ5: How did these modern tools and techniques help in fixing of bugs?

Answer: Due to the limited time and the human-resources, it’s very problematic for the

developers to resolve all bug-reports. Developers usually require to arrange the reports to

resolve the bugs quickly. Label-or-type field-in bug reports describes the type-of-bug reports.

26

Label can give an insight about the bug reports and also be used for the priority of bug reports.

Some bug reports like security bug reports needs to be fixed as early as possible. In this SLR,

many tools and techniques are identified that can help in the process of labeling/classifications

of bug reports. These labels on bug reports helps developers understating the type of bugs.

Developers used these labels for the fixing of bug of high priority bug reports.

2.5 SLR Conclusion
This research identifies the latest techniques and the tools utilized for the automatic

labeling or classification of bug reports. To achieve this aim, firstly five research questions are

identified. Then done a detailed SLR of 54 literatures which were selected conferring selection

and rejection criterion. All the chosen studies were categorized into five categories conferring

to the approaches used.

Then we have found thirteen (13) tools that are purposed or developed by different

researchers. We have also found different NLP techniques used by different researchers and

categorized all selected studies according to these NLP techniques. We have also identified the

twenty-four libraries/technologies used for the labeling/classifications of bug reports by

different literatures. Then we have performed a comparison of identified or developed tools.

27

Chapter 3

 Proposed Methodology & Implementation

28

CHAPTER 3: PROPOSED METHODOLOGY & IMPLEMENTATION

This-chapter includes details of-methodology and the-implementation. Section 3.1

provides the core concepts which used in our purposed methodology. Section 3.2 contains

details of purposed methodology. Section 3.3 includes the implementation of our purposed

methodology.

3.1 Core Concepts Explanation
For our purposed methodology, we have utilized many core concepts from text mining and

machine learning. The details of core concepts used in our methodology are explained bellow.

3.1.1 Natural Language Processing

Natural-language-processing (NLP) is a potential of a program to interpret language of

human, understand it and can manipulate it. It is a branch of artificial intelligence (AI).

Basically, it draws from many fields such as-computational linguistics and computer science,

try to fill the disparity-between computer understanding and human-communication. NLP

concerns with automatic analysis of plain natural language [62]. NLP is not a new filed, it is

growing rapidly because of increased in interest in-human-machine-communications.

This field is also growing because of-availability of the-big-data and-powerful-

computing-algorithms. It can teach computers that how to understand and process the natural

language. NLP is utilized to-help-the-programmers to govern and organize the work

knowledge to perform their tasks like summarization, named entity relationship, translation,

information retrieval or relationship extraction, speech recognition and topic segmentation etc.

[63]. This field helps computers and create automated systems that can understand and analyze

a human language like Arabic, Latin or English etc.

3.1.2 Tokenization

Tokenization is a technique of-splitting or tokenizing a string or text into lists of tokens.

It is a commonly used text-mining technique that involves splitting the text into-sentences or

words [64]. The basic function of tokenization is-to find and split-the-tokens-found-in a text

that-each-word and punctuations will become a-distant-token [65]. Tokenization is divided into

two submodules named word tokenization and sentence tokenization explained below.

3.1.2.1 Word Tokenization

Word tokenization is used for the splitting of a sentence into words. The word

tokenization’s output is transformed into-data frame for the more understanding of text in

machine-learning algorithms. Machine learning algorithms need a numeric data for the training

and prediction. Word tokenization can convert a text string to numeric data. Word tokenization

is explained with example in table 3.1.

Table 3.1: Word level tokenization

Sentences Word Tokenization

It is a simple sentence ‘It’ ‘is’ ‘a’ ‘simple’ ‘sentence’
That is exactly what we want to learn ‘That’ ‘is’ ‘exactly’ ‘what’ ‘we’ ‘want’ ‘to’ ‘learn’

That is not a pencil ‘That’ ‘is’ ‘not’ ‘a’ ‘pencil’

29

3.1.2.2 Sentence-Tokenization

It is a technique of-dividing a paragraph into many sentences. Sentence-tokenization is

used when we want to count average words per sentence. It performed less well in for electronic

health records that includes abbreviations, medical terms measurements and other forms not

found in standard written English. Sentence tokenization is explained with examples in-table

3.2.

Table 3.2: Sentence level tokenization

Paragraph Sentence Tokenization

It is a technique of-dividing a paragraph into

many sentences. Sentence-tokenization is

used when we want to count average words

per sentence. It performed less well in for

electronic health records that includes

abbreviations, medical terms measurements

and other forms not found in standard written

English.

“It is a technique of-dividing a paragraph into

many sentences”. “Sentence-tokenization is

used when we want to count average words

per sentence”. “It performed less well in for

electronic health records that includes

abbreviations, medical terms measurements

and other forms not found in standard written

English”.

3.1.3 Stop Words Removal

In NLP, idle words-are-considered-as stop-words. A stop-word is a commonly used

word that is overlooked by search engines, we would not-want these idle words to take a space

in our datasets. Most commonly used stop words are “the”, “a”, “an”, “in”, “a”. we don’t need

these words during the processing or training because these words are not going to help in

building the training model and will cost useless processing/computing power. Processing time

and memory is very valuable in case of language processing, so we cannot let this useless data

to increase the processing time and taking up extra memory. We can remove stop words easily

by storing a list of words which are unnecessary. We have used Python’s tool NLTK for-the-

removal of these-stop-words. Examples of stop words are given in-table 3.3

Table 3.3: Stop-words removal

Text with stop words Text without stop words

It’s difficult for the developers to resolve all

bug-reports

Difficult, Developers, Resolve, Bug, Reports

That is exactly what we want to learn Exactly, Want, Learn

I like reading, so I read Like, Reading, Read

3.1.4-Stemming

Stemming-is a technique used for the normalization of words [63]. Basically, it is a

process of removing the suffix from a word and reduce to-its base form. It-is utilized for the

reduction of dimensionality of data, that is good for machine learning algorithms. A stemming

algorithm can reduce the words to their base forms. Simply we can say that, if there are words

like ‘work’, ‘works’, ‘worked’, ‘working,’ all these words are contextually same but different

words. We can remove the suffixes of these words, ‘work’ will be the stemmed word. We have

used porter stemmer [66] library of NLP for the stemming process in our purposed

methodology. Stemming example show in-table 3.4.

30

Table 3.4: -Stemming-of-words

Words Stemmed Words

Sleeping, Slept, Sleeps Sleep

Reading, Read, Reads Read

Add, Adding, Added, Adds Add

Eating, Eats, Eaten Eat

3.1.5 Machine Learning

ML is a “study of statistical models and algorithms which computer used to operate

specific tasks without using explicit instructions”. It is an Artificial-Intelligence (AI)’s

application that allows computers to learn-accordingly-and improved from the experience

without any programming. ML algorithms are usually categorized into two type. One is

supervised machine learning and other one is unsupervised machine learning. In first type, class

labels of some data are known, this data is called training data. New data is classified depend

on the training data; this new data is called testing data.

There are one-or many inputs and-liked-output for each training example. In

unsupervised machine learning algorithms, class labels of training data are unknown.[10]. We

have chosen Logistic-regression(LR), Naïve-Bayes (NB), and-Decision-Tree (DT) algorithms

from supervised ML for our approach because they performed very well for the labeling of bug

reports.

3.1.5.1 Supervised Machine-Learning

In this learning there are some input-variables (a) and an=output-variable (b). The

mapping function is learned from input to put by using an algorithm

b = f(a)

The objective is to estimate the mapping function so accurate when an unseen-input

data (a) which can forecast-the-output variables (b).

In this learning, it is considered that a teacher is supervising the whole learning process of a

model from training data. When the technique accomplishes a sufficient level-of efficiency

learning will be stopped.

Supervised learning further branched into the regression-and-classification-problems.

Classification

 In this problem-the-output-variables are categories, like “black” or “white” and

“disease” or “not a disease”.

Regression

In this problem-the-output-variables are real values, like “dollars” or “weight”.

31

3.1.5.2 Unsupervised Machine Learning

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of

the-data-points. Therefore, these approaches learned from the data which is not-labeled,

categorized-or classified. This learning is further divided-into the-clustering-and-association-

problems.

Clustering

In this problem objective is to disclose the internal-groupings presents in-the-data, like

grouping the customers-according to their behavior of purchasing. K-means is a popular ML

approach for the clustering-problem.

Association

In association-learning problem objective is to identify the-rules which show maximum

parts-of-the data, like people whose buy-X also-used-to-buy Y.

3.1.6 Training & Prediction Phases

In training phase ML algorithms are providing with the-training-data-in-order to learn

from it. The training data will contain the true answers, that are known as “target” or “target

attributes”. These learning algorithms identify patterns in the training-data which-map the

input-data features to the target (An answer which we want to predict), and ML model is

obtained as output which captured these-patterns.

In prediction phase, a prediction or testing is utilized for the evaluation of a machine

learning model. In this phase a machine learning model is validated on a testing data, whose

target attributes are missing.

ML model is used for the predictions on new data about which you do not know the outputs.

In our approach we want to train multiple ML models for the predictions of SBRs and NSBRs.

We provided our approach with the training-data which contains bug reports for which target

is known. In our approach models are trained by this data to predict whether new bug reports

are SBRs or NSBRs.

3.2 Purposed Solution
Our objective here is to purpose an-approach-for the-automatic-labeling of SBRs. Our

purposed approach performed better than previous approaches. This approach-builds a

classification model-from-historically-labeled-bug-report for the identification-of SBRs.

Firstly, preprocessing is performed on bug reports.

Then we performed-feature selection using a TF-IDF values. After feature selection, a class

imbalance sampling technique is applied on the training data. We have applied three-ML

algorithms, named Logistic-Regression and Decision-Tree and Naïve-Bayes. At the end a

voting technique is applied on the results of these machine learning algorithms to get a better-

results. Our purposed approach is shown in figure 3.1

32

Figure 3.1: Purposed approach

3.2.1 Preprocessing

Preprocessing of bug-reports is the first step in our purposed technique. We only

considered the description and-summary column of bug-reports as a textual data. Summary

provide us an overview of bug reports in one sentence and description mostly encompasses

more information. These fields are commonly available when a bug-report is submitted.

Preprocessing is applied on this textual information of both training and testing bug reports. A

textual information is transformed into a set of features by using Python’s-NLTK [70] standard-

preprocessing techniques.

First step of preprocessing is tokenization of words. Tokenization of-description-and

summary-fields of bug reports are performed. As result of tokenization, terms are extracted

from bug-reports. These extracted terms are converted to lowercase forms. Punctuation

removal is also performed. These terms also include stop words. In NLP, idle words are

considered as stop words. These are mostly used words that are overlooked by search-engines,

we would-not want these-words to take a space in our-datasets. Most commonly used stop

words are “the”, “a”, “an”, “in”, “a”. These stop words are removed using NLTK’s stop words

list. During stop words removal, unwanted terms are also removed.

After the removal of stop words stemming is applied on the terms. Stemming is a

process used for the normalization of words [63]. Basically, it is a process of removing the

suffix from a word and reduce to its base form. Porter Stemmer is applied for the process of

stemming. After the stemming, all terms are return to their base forms. These terms are

considered as extracted features. Preprocessing steps are shown in figure 3.2,

33

Figure 3.2: Preprocessing of bug reports

3.2.2 Feature Selection

Security bug-reports identification is thought-as a-text-categorization problem. After

the preprocessing, extracted terms are considered as features. The feature space’s dimension is

very high for text categorization. The performance of a classification models will degrade

because of high this dimension [71]. We have selected those features which are more important

than others by applying TF-IDF. In our purposed methodology, we selected the top 50 terms

each from both categories of bug-reports (SBRs and NSBRs) with the maximum TF-IDF values

as our feature set [14]. We contracted the feature-set-to hundred because hundred features

covered the feature-families [72].

3.2.2.1 TF-IDF

The abbreviation of TF-IDF is “term frequency–inverse document frequency”. TF-IDF

is commonly utilized to measure the usefulness of words to-a document in-a-corpus [66]. TF-

IDF weight is commonly utilized in text mining.

In this, words which are-frequent-in every-document, such as “it”, “who”,

and “so”, rank less even still these are present many times, after all they are not important that

document. But, if a word “Bug” presents many-times in a document and not presenting many-

times in other documents, it doubtlessly means-that it is most-relevant.

By multiplying two different terms TF-IDF-for-a-word in a-document is computed:

The Term Frequency (TF)

There are many methods to compute Term frequency. The simplest and easiest method

is a rough count of word occurs in a document. There are ways to accommodate-the-frequency,

one is by the raw frequency of the most common-word in a document and other is by length-

of a document.

The Inverse Document Frequency (IDF)

IDF computes that how much a word is-common or-rare to whole document set. If its

value is near to 0, the word will be more common. It is computed by counting-the total-number

34

of documents and dividing-it by the-number of-documents which contain this word, and at the

end calculate-the-logarithm.

Therefore, this number will be about “0”, if-the word-is most common and occurs in

more-documents. Or else, it will be about “1”.

By multiplication of these two numbers, TF-IDF values will obtained. The maximum

value, the more relevant this word in that specific document.

TF (term, doc) = count-of-term in doc / number of words-in-doc

IDF (term) = log (n/(df + 1))

TF-IDF = (TF * IDF)

“Term”-stands for word (term), “doc” stands for-document, “n” stands for-count-of

corpus. Corpus-are the total-documents.

3.2.3 Random Sampling

Class-unbalancing is consistently a major issue in ML. It-may-cause a-classifier to

perform badly. Imbalanced learning-strategies will be utilized for the balancing of the

preliminary unbalanced dataset and assisting the trained model to-not-to be-biased to-the

majority magnificence. Hence, in maximum cases, it is able to improve the efficiency of the

classifier [73].

Three famous sampling strategies are under-sampling, oversampling and the SMOTE. We

utilized random-under-sampling, as the performance of this method is- better in maximum

cases [74].

3.2.3.1 Rando-Under-Sampling (RUS)

RUS involves randomly selecting samples-from the maximum-class to eliminate these

from the training-dataset. This has the impact of reducing the quantity of samples in the

maximum class in the converted version of the training-dataset. This procedure can be

replicated until the preferred class distribution is obtained, such as an identical number of

samples for each class.

Under sampling reruns, the below mentioned 2-steps-until a preferred-ratio of

maximum samples-to all the-samples reaches-to-“r”:

Step1: Sample Selection

Step2: Sample Deletion

Because of outstanding performance, we used RUS [74]. We set the value of r as .5

declaring that the-variety of samples of both classes is identical within the training-data.

3.2.4 Classifier Construction

We have used three machine learning algorithms named-Decision-Tree, Logistic-

Regression and Naïve-Bayes in our approach. A voting strategy is also used to get the better

result. Details of these algorithms are explained below.

35

3.2.4.1 Naïve Bayes (NB)

Naïve Bayes is one-of the-most effective and efficient algorithms in machine learning

[67]. Study shows that it performed very well as compare to other algorithms in defect

prediction [68][69]. The NB is-based-on the Bayes’ law that used-independence assumptions

between the predictors. A NB model can easily build. Even with its easiness, the NB model

frequently does noticeably excellent and is extensively used because-it mostly surpasses more

known classification techniques. We have used Gaussian NB, which is the variant of NB.

3.2.4.2 Decision-Tree (DT)

A decision tree is a supporting tool for making decision that utilizes a graph that is a

tree. This tree is like a model of-decisions and its potential effects, along with likelihood event

results, costs of resources, and the utility. A DT displays an algorithm which only consists

statements about conditional controls. A DT is like a flowchart who’s each internal-node

presents a “test” on-an attribute (e.g. if a bug report is SBR or NSBR), each branch shows the

outcome of-a test, and at the end each leaf node-indicates a label of the class. The rules of

classification are indicated by the roof to leaf paths.

Tree-based algorithms grant easy interpretation and stability with high accuracy to

predictive models. They map-nonlinear relationships-quite well unlike linear-models. These

algorithms are flexible at solving all types of problem such as, classification-or-regression.

A DT algorithm is also known as CART (Classification-and Regression-Trees).

3.2.4.3 Logistic-Regression (LR)

Logistic-regression is performs well when the-dependent variables are binary. A LR

performs predictive analysis like all other regression analysis. It is utilized to define the data

and for explanation of the relationship among one dependent binary-variable and one or more

independent-variables.

In the early-twentieth century, it was mostly utilized in the biological-sciences. It was

also utilized in many different social science’s applications. LR is suitable when the resultant

variable is a categorical.

As an example,

• To forecast if a bug report is SBR (1) or NSBR (0)

• If the email is spam (1) or not (0)

In our case where we want to classify a bug report as SBR or NSBR. Threshold value is

necessary for classification in when linear regression is used.

Say-if the real-class is SBR and 0.4 is the forecasted value and -0.5 is the threshold value,

bug report will be categorized as NSBR that can cause a consequence for the software. Linear

regression is not appropriative for the classifications problem as seen from this example. LR is

un-bounded, and logistic-regression comes into-picture. Their value-are from zero to 1.

3.2.4.4 Voting

A Voting-Classifier which trains-on-an ensemble of many different models and-

forecasts-an output which based on the maximum probability-of selected-class as an output.

http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/data-analysis-plan-templates/data-analysis-plan-logistic-regression/

36

It combines-the outcomes of every classifier and processed these into a-voting classifier. This

classifier will forecast the outcome class which based on the maximum majority voting.

The concept is that rather creating individual devoted models and calculating the

efficiency for each model, it-creates one model that trains-by these devoted models and

forecasts the outcomes that based on their joined majorities voting for every output class.

There are two types of voting supported by Voting Classifier.

1. Hard Voting

In hard-voting, the forecasted output-class is a class with the maximum majority-of-votes.

For example, the class which has the highest probability of being-predicted by each of

the-classifiers. Consider three-classifiers forecasted the output-class (X, X, Y), so the

majority-predicted X as output class. So, X will be the-final forecast.

2. Soft Voting

In-soft-voting, the prediction is based on the probabilities’ average given to that a specific

class. Consider some input is given to three-models, the forecast probability for-class X

= (0.40, 0.37, 0.63) and Y = (0.30, 0.22, 0.50). the average-for class X is 0.4666 and Y is

0.34, So the winner is class X because it has the maximum probability-averaged by-each

classifier.

We have used soft voting for our approach.

3.3 Implementation
This section discussed the details of standard data set we used for our research and also

elaborates the implementation details of our purposed approach.

3.3.1 Data Set

For the implementation of our purposed approach, we required labeled bug reports, that

are labeled as-SBRs or-NSBRs. We utilized total 5 projects. Among these 5 projects, 4 are

from-Ohira et al. [75]. A portion of reports-is-selected from-the-project of chromium. The

details of these projects are presents in-table 3.5. This table shows-the name of projects, total

number bug-reports for-every-project-and the percentage and the number of SBRs for each

project. These are arranged in ascending-order of security bug-reports percentage.

Table 3.5: Details of data sets

Projects Total Bug-Reports Security-Bug-

Reports

Security-Bug-

Reports (%)

Chromium 41,940 192 0.5

Wicket 1000 10 1.0

Ambari 1000 29 3.0

Camel 1000 32 3.0

Derby 1000 88 9.0

37

In Ohira’s [75] data set, six kinds of bug reports are there. These includes dormant,

security, blocking, performance, surprise and breakage. JIRA is used as their bug-tracking-

system for these four projects and the application-domain of every project is different. As Ohira

et al. [75] only concentrated on-high-impact-bug-reports, they only chose-one-thousand-

reports-for-each project randomly whose label are BUG or IMPROVEMENT. These bug

reports are labelled-by-faculty-members-and-graduate-students.

The Chromium data set came from “mining-challenge of the mining-software-

repositories conference-2011”. When these reports are submitted to the system, (SBRs) are

labeled-as Bug-Security. As our purposed methodology only focus on SBRs predictions, we

consider all other type of-bug-reports as NSBRs.

The bug-reports form Ohira et al. [75] are in-comma-separated-value (CSV) files. Each-

row-of these CSV files indicates a bug-report-and-columns shows the attributes of bug-reports.

These attributes are issue_id, type, status, description, summary, and date & time of report

submission and resolved. CSV file for Ohira project is shown in figure 3.3. For prediction of

security bug reports, we only select summary, description and security fields for each project.

Security fields with label ‘0’ for NSBRs and ‘1’ for SBRs for each project.

Figure 3.3: Ohira’s data set

38

Chromium bug reports are also in CSV file whose column name are id, date, reports

and security. Each row of CSV files represents a bug report. CSV file for Chromium project is

shown in figure 3.4. We only selected summary and description fields from Ohira’s bug reports

for prediction of security bug reports. From chromium subset, we selected reports field for

prediction. All the preprocessing is applied on these fields of bug reports.

Figure 3.4: Chromium’s subset of data

3.3.2 Experimentation

For the implementation of our purposed approach, we used PyCharm as IDE. Python is

used as a programming language for the implantation of our approach. It is simple and its

sentences are easy to learn. We have used different libraries of Pythons for the implementation.

NLTK is used for the preprocessing of bug reports, Sklearn is utilized for the implementation

of ML algorithms and Imblearn is utilized for RUS of bug reports. We have run our approach

on Core i5-5200U CPU @ 2.20GHz with RAM of 12GB.

39

There are two phases in our approach, one is training phase and other one is prediction phase.

In training phase, labelled bug reports are utilized for the training of ML classifiers. In prediction phase,

new or unlabeled bug reports are given to classifiers, these classifiers will predict these bug reports

either SBRs or NSBRs. All the data of bug reports are in CSV files. We select only description and

summary fields for the Ohira’s [75] four projects shown in figure 3.5. For chromium projects,

only report filed is selected. For training phase, label from bug reports is also selected.

Figure 3.5: Textual data of bug reports

40

First step of our approach is preprocessing of bug reports. In preprocessing, we

tokenized the summary and description fields of bug reports, convert them into lowercase, then

removed stop

words, punctuations, unwanted terms and at the end stemming is applied. As a result, many terms

for each report are extracted as displayed in figure 3.6.

Figure 3.6: Preprocessed Data

41

These extracted terms are considered as features. As these features are to many, we

reduced it by applying TF-IDF. TF-IDF calculates the value of a term in a-document. TF-IDF

of terms are shown in figure 3.7.

Figure 3.7: TF-IDF Values

We have selected Top 50 terms according to top TF-IDF from each bug reports category

(SBRs and NSBRs) for each project as feature sets. The 100 selected features of Derby project

shown in figure 3.8

42

Figure 3.8: Selected features for Ambari project

After feature selection, we have applied a sampling technique named random under

sampling to reduce the majority class for better performance of our purposed approach. Before

random under sampling and after random under sampling training data shown in figure 3.9 and

3.10 respectively. Before random sampling, training data has 900 samples.

43

Figure 3.9: Samples before Random Under Sampling

After applying random under sampling technique, it reduces to 148 samples as it selects

and delete the samples belonging to majority class and equals to minority class.

Figure 3.10: Samples after Random Under Sampling

We have used three ML algorithms which are decision-Tree, Logistic-Regression and

Naïve-Bayes in our purposed approach. Voting is used as ensemble to get better result. These

ML models are trained and tested on data sets for each project. Then voting is applied on the

results of these three machine learning algorithms to get better-results shown in figure 3.11.

44

Figure 3.11: Classifier

At the end, for the validation of our-approach, K-Fold cross validation is applied. Our

approach is evaluated through confusion matrix. Performance measures used for our approach

are Precision, PD, PF, F-measure and G-measure.

45

Chapter 4

 Results and Evaluation

46

CHAPTER 4: RESULTS AND EVALUATION

This chapter deals with the results and evaluation of purposed approach. Section 5.1

discussed the evaluation metrics to be used for the evaluation of our approach. Section 5.2

discussed the results and comparison with the previously used techniques.

4.1 Evaluation-Metric
For the evaluation of our purposed approach, we used precision, probability of detection

or recall, F-measure and G-measure as evaluation-matrix’s. These are commonly-used-metrics

for performance evaluation which are derived from confusion metric. These concepts are

explained below.

4.1.1 Confusion-Metrix

Confusion matrix is a table which is commonly utilized to measure the efficiency of a-

classification model. It is mostly used for measuring precision, recall, F-measure, accuracy. It

grants easy recognition of confusion-between the classes for example 1 class is mostly

misclassified as-the other. It’s an overview of the predicted outcomes on a problem of

classification. The true and false prediction’s numbers are overviewed with the numeric values.

It shows the-means in which a-classification model is confused-during prediction. A confusion

matric displayed in table 4.1.

Table 4.1: Confusion Matric

 Predicted Values

SBRs Non-SBRs

Actual

Values

SBRs TP FN

Non-SBRs FP TN

Definition-of-Terms

• Positive-(P): Perception-is true (It’s a SBR).

• Negative-(N): Perception -is not-true (It’s a Non-SBR).

• True-Positive (TP): W have predicted it’s a SBR and actually it’s a SBR

• False-Negative (FN): We have predicted it’s a SBR and actually it’s a NSBR

• True Negative (TN): We have predicted it is a NSBR and actually it is a NSBR

• False-Positive (FP): We have predicted it is a NSBR and actually it is a SBR.

4.1.2 Precision

It is defined as out-of-all the positive-classes we forecasted correctly, how-many are-

actually positive. Its value should-be-high.

Precision = TP/(TP+FP)

47

4.1.3 Probability of Detection

It is defined as out-of-all the positive classes, how-much we forecasted correctly. Its

value should-be-high as possible. It is also called recall.

PD = TP/(TP+FN)

4.1.4 Probability of False Alarm

It calculates the fraction of-the-Non-SBRs which are-inaccurately forecasted as-

SBRs.

PF = FP/(FP+TN)

4.1.5 F-measure

It is very problematic to compare two-models which have precision’s value high and

have recall’s value low or vice-versa. So, in order to make them-comparable, we utilize F-

measure. F-measure helps-to-calculate recall and precision at-same time. Harmonic-Mean is

utilized instead of arithmetic-mean by grueling the-higher-values more.

F-measure = (2*Precision*PD)/(Precision + PD)

4.1.6 G-measure

The g-measure is the defined as “the harmonic-mean of-PD and-(100-PF)”[76]. PF is

the probability of false alarm.

G-measure = (2*PD*(100-PF))/(PD+(100-PF))

4.1.7 K Fold Cross Validation

Cross-validation is a shuffling process utilized for the evaluation of machine learning

models on a data sample. This process has only one parameter which is K that indicates the

number-of bunches for a given data is divide into. This process is commonly called k-fold-

cross-validation.

It is mostly used in ML to measure the accomplishment of a ML model on unseen data.

it is very easy understand. It is a popular method because it is less biased model than other

methods.

We set the value of K = 10. The idea-behind 10-fold-cross-validation is that-whole-data

is divided randomly-into ten subsets. One subset is-used as testing data and nine subsets are

used for training of model from these ten subsets of data. These steps are repeated ten times,

with all-of the-subsets are used-as-testing-data for once in order to-evaluate the-performance

of-our approach. The end result is the-average of all ten iterations.

4.2 Results Evaluation and Comparison
After the implementation of our purposed approach, we evaluated our experimentation

by using Precision, PD, PF, F-measure and G-measure. For these evaluation matrixes, we used

confusion matrix. TN, TP, FN and FP values are utilized for the evaluation from confusion

matrix. For the validation of data, we used K-Fold cross validation method. We set the value

of K = 10.

48

The python code and output for results are given below

Python Code

“Import-numpy-as-np

import pandas-as-pd

from-sklearn.linear_model-import LogisticRegression

from-sklearn.ensemble-import VotingClassifier

from-sklearn.naive_bayes-import GaussianNB

from-sklearn.metrics-import confusion_matrix

from-sklearn.tree-import DecisionTreeClassifier

from-sklearn.model_selection-import KFold

from-imblearn.under_sampling-import RandomUnderSampler

df = pd.read_csv('Features.csv')

target = 'label'

G_measure = 0

Recall = 0

Precision = 0

F_measure = 0

X = df.loc[:, df.columns!=target]

Y = df.loc[:, df.columns==target]

skf = KFold(n_splits=10, random_state=0,shuffle=True)

skf.get_n_splits(X,Y)

nr = RandomUnderSampler(random_state=0)

G_measure = 0

Recall = 0

Precision = 0

F_measure = 0

PFF = 0

for train_index, test_index in skf.split(X, Y):

 #print("TRAIN:", train_index, "TEST:", test_index)

 X_train, X_test = X.loc[train_index], X.loc[test_index]

49

 y_train, y_test = Y.loc[train_index], Y.loc[test_index]

 X_train_S, y_train_S = nr.fit_sample(X_train, y_train)

 clf1 = LogisticRegression()

 clf2 = DecisionTreeClassifier()

 clf3 = GaussianNB()

 evc = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2), ('nb', clf3)], voting='soft')

 result = evc.fit(X_train_S, np.ravel(y_train_S))

 Y_Test_Pred = result.predict(X_test)

 tn, fp, fn, tp = confusion_matrix(y_test, Y_Test_Pred).ravel()

 PD = (tp / (tp + fn)) * 100

 Recall += PD

 PF = (fp / (fp + tn)) * 100

 PFF += PF

 PREC = (tp / (tp + fp)) * 100

 Precision += PREC

 f_measure = (2 * PD * PREC) / (PD + PREC)

 F_measure += f_measure

 g_measure = (2 * PD * (100 - PF)) / (PD + (100 - PF))

 G_measure += g_measure

print('Precision', Precision/10)

print('PD', Recall/10)

print('PF', PFF/10)

print('F_Measure', F_measure/10)

print('G_MEASURE', G_measure/10)”

Results are shown in figure 4.1

50

Figure 4.1: Results for each project

The average values of Precision, PD, PF, F-measure and G measure for each project

are given in table 4.2.

51

Table 4.2: Results for each project

Project Precision PD PF F-measure G-measure

Camel 11.54 % 50.51 % 13.28 % 16.42 % 57.71 %

Ambari 16.0 % 73.36 % 12.72 % 25.48 % 77.31 %

Wicket 34.45 % 92.28 % 31.75 % 45.61 % 67.85 %

Derby 27.90 % 54.47 % 12.47 % 34.34 % 64.70 %

Chromium 3.42 % 18.055 % 2.24 % 5.52 % 28.48 %

These results are also shown in figure 4.2

Figure 4.2: Chart for results

52

We have performed comparison of our approach with the FARSEC [9] approach. They

[9] purposed a filtering and ranking method for prediction of security bug reports [FARSEC].
They also used two filters, one is FARSECSQ in which applying support function to the word’s

frequency found in SBRs and in FARSECTWO multiplying the frequency by two. We

compared results of our purposed approach with FARSEC, FARSECSQ and FARSECTWO’s

results. Our purposed approached better than these three approaches according to G-measure

in all five projects. Comparison is shown in table 4.3.

Table 4.3: Comparison of results

Project Approach Precision PD PF F-

measure

G-

measure

Camel ALSBR 11.54 % 50.51 % 13.28 % 16.42 % 57.71 %

FARSEC 8.3 % 16.7 % 6.9 % 11.1 % 28.3 %

FARSECSQ 5.2 % 16.7 % 11.4 % 7.9 % 28.1 %

FARSECTWO 4.3 % 50 % 41.8 % 7.9 % 53.8 %

Ambari ALSBR 16.0 % 73.36 % 12.72 25.48 % 77.31 %

FARSEC 4.0 % 14.3 % 4.9 % 6.3 % 24.8 %

FARSECSQ 4.1 % 42.9 % 14.4% 7.4 % 57.1 %

FARSECTWO 21.1 % 57.1 % 3.0 % 30.8 % 71.9 %

Wicket ALSBR 34.45 % 92.28 % 31.75 % 45.61 % 67.85 %

FARSEC 4.8 % 33.3 % 8.1 % 8.3 % 48.9 %

FARSECSQ 2.1 % 66.7 % 38.3 % 4.0 % 64.1 %

FARSECTWO 2.2 % 66.7 % 36.6 % 4.2 % 65.0 %

Derby ALSBR 27.90 % 54.47 % 12.47 % 34.34 % 64.70 %

FARSEC 35.6 % 38.1 % 6.3 % 36.8 % 54.2 %

FARSECSQ 14.4 % 54.8 % 29.9 % 22.8 % 61.5 %

FARSECTWO 26.0 % 47.6 % 12.4 % 33.6 % 61.7 %

Chromium ALSBR 3.42 % 18.055% 2.24 % 5.52 % 28.48 %

FARSEC 31.0 % 15.7 % 0.2 % 20.8 % 27.1 %

FARSECSQ 23.9 % 14.8 % 0.3 % 18.3 % 25.7 %

FARSECTWO 31.0 % 15.7 % 0.2 % 20.8 % 27.1 %

Comparison of ALSBR, FARSEC, FARSECSQ and FARSECTWO with respect to G-

measure shown graphically in figure 4.3 and 4.4.

53

Figure 4.3: Comparison 1 of results with respect to G-measure

54

Figure 4.4: Comparison 2 of results with respect to G-measure

55

Chapter 5

Discussion & Limitations

56

CHAPTER 5: DISCUSSION & LIMITATIONS

This chapter presents discussion in Section 6.1. Limitations to our work is shown in

section 6.2.

5.1 Discussion
Automation has changed the today processes by introducing a great accuracy and

reducing the time delays. NLP proved helpful in software development processes and it helped

the software developers in many fields. On such field is the resolving the bugs found in many

different software. In all kinds of bugs, security bugs are most important because these bugs

are great threat to the privacy-and-security of-end users. Therefore, these bugs are needed to

be fixed as early as possible.

Therefore, we purposed an approach-for-the automatic identifications of security bug

reports. We compared purposed approach with FARSEC model that is the state of the art

technique and achieved improved results in terms of Precision, PD, PF, F-measure and G-

measure.

5.2 Limitations
As our technique is a unique step towards the automatic labeling of security bug reports

but few limitations are also present in our work. The-accuracy of Python’s libraries such as

NLTK, Sklearn and Imblearn is questionable as it is not 100%.

57

Chapter 6

 Conclusion and Future Work

58

CHAPTER 6: CONCLUSION AND FUTURE WORK

This chapter includes research conclusion in Section 7.1 and future work is described

in Section 7.2.

6.1 Conclusion
This research shows a-unique technique for-the automatic labelling of security-bug-

reports by using NLP’s techniques and ML algorithms. The following milestones are achieved

from this research.

At first, a detailed SLR of most related research is conducted. For SLR, first we defined

some research questions mentioned in chapter 2. Then done a detailed SLR of 54 literatures

which were selected conferring selection and rejection criterion. All the chosen studies were

categorized into five categories conferring to the approaches used. Then we have found thirteen

(13) tools that are purposed or developed by different researchers. We have also found different

NLP techniques used by different researchers and categorized all selected studies according to

these NLP techniques. We have also identified the twenty-four libraries/technologies used for

the labeling/classifications of bug reports by different literatures. Then we have performed a

comparison of identified or developed tools. After performing this analysis, we have answered

all five questions.

After conducting SLR, we purposed a novel approach for the automatic labelling of

security bug reports by using NLP’s techniques and ML algorithms mentioned in chapter 3.

Our approach named ALSBR is implemented in Python using Natural language Toolkit

(NLTK), Sklearn and Imblearn.

In our purposed methodology, first of all preprocessing of bug reports is performed.

After the preprocessing, features are selected by TF-IDF values. Top 100 terms according to

TF-IDF values are selected as features. After feature selections, a random under sampling

technique is applied to balance the majority and minority classes. Three ML algorithms named

Logistic-Regression, Decision-Tree and Naïve-Bayes is used as classification model. A voting

strategy is also applied to get the more accuracy. For the validation of our approach, 10-Fold

cross validation is applied.

For the validation of our purposed technique we used bug reports of five projects.

Among these 5 projects, four-are from Ohira et al. [75] and a-part-of-bug-reports is selected

from Chromium-project. At the end, we compared our approach with state-of-the-art approach

named FARSEC model and achieved improved results in terms of Precision, PD, PF, F-

measure and G-measure.

59

6.2 Future Work
Future work includes improving and extending this approach in order to support the bug

resolution in better way. It includes followings

• In future we can add more information presents in bug-reports-like-who-were-assigned

reports and time-duration-presenting-how-much-time is spent on fixing a bug.

• Feedback and comments on-bug reports can also include on future.

• A proper GUI tool can be generated and provided for the public access to use this tool.

• In future, our work can be-extend for the labelling of other types of bugs-such as

performance, usability etc.

60

References

[1] Murphy, G., and D. Cubranic. "Automatic bug triage using text

categorization." Proceedings of the Sixteenth International Conference on Software

Engineering & Knowledge Engineering. 2004.

[2] Bettenburg, Nicolas, et al. "What makes a good bug report?." Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering. ACM, 2008.

[3] Xuan, Jifeng, et al. "Towards effective bug triage with software data reduction

techniques." IEEE transactions on knowledge and data engineering 27.1 (2014): 264-280.

[4] Pressman, Roger S. Software engineering: a practitioner's approach. Palgrave Macmillan,

2005.

[5] Gegick, Michael, Pete Rotella, and Tao Xie. "Identifying security bug reports via text

mining: An industrial case study." 2010 7th IEEE Working Conference on Mining Software

Repositories (MSR 2010). IEEE, 2010.

[6] Kitchenham, Barbara, et al. "Systematic literature reviews in software engineering–a

systematic literature review." Information and software technology 51.1 (2009): 7-15.

[7] Behl, Diksha, Sahil Handa, and Anuja Arora. "A bug mining tool to identify and analyze

security bugs using naive bayes and tf-idf." 2014 International Conference on Reliability

Optimization and Information Technology (ICROIT). IEEE, 2014.

[8] Das, Dipok Chandra, and Md Rayhanur Rahman. "Security and Performance Bug Reports

Identification with Class-Imbalance Sampling and Feature Selection." 2018 Joint 7th

International Conference on Informatics, Electronics & Vision (ICIEV) and 2018 2nd

International Conference on Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 2018.

[9] Peters, Fayola, et al. "Text filtering and ranking for security bug report prediction." IEEE

Transactions on Software Engineering (2017).

[10] Pereira, Mayana, Alok Kumar, and Scott Cristiansen. "Identifying Security Bug Reports

Based Solely on Report Titles and Noisy Data." 2019 IEEE International Conference on Smart

Computing (SMARTCOMP). IEEE, 2019.

[11] Goseva-Popstojanova, Katerina, and Jacob Tyo. "Identification of Security Related Bug

Reports via Text Mining Using Supervised and Unsupervised Classification." 2018 IEEE

International Conference on Software Quality, Reliability and Security (QRS). IEEE, 2018.

[12] Peeples, Cody R., Pete Rotella, and Mark-David McLaughlin. "Textual analysis of

security bug reports." 2017 IEEE International Symposium on Technologies for Homeland

Security (HST). IEEE, 2017.

[13] Du, Tie, et al. "Automatic Security Bug Classification: A Compile-Time Approach." 2016

IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS). IEEE,

2016.

61

[14] Chawla, Indu, and Sandeep K. Singh. "Automatic bug labeling using semantic information

from LSI." 2014 Seventh International Conference on Contemporary Computing (IC3). IEEE,

2014.

[15] Rawal, Bharat S., and Anthony K. Tsetse. "Analysis of bugs in Google security research

project database." 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS).

IEEE, 2015.

[16] Alves, Henrique, Baldoino Fonseca, and Nuno Antunes. "Software metrics and security

vulnerabilities: Dataset and exploratory study." 2016 12th European Dependable Computing

Conference (EDCC). IEEE, 2016.

[17] Catolino, Gemma, et al. "Not all bugs are the same: Understanding, characterizing, and

classifying bug types." Journal of Systems and Software 152 (2019): 165-181.

[18] Kukkar, Ashima, and Rajni Mohana. "A Supervised Bug Report Classification with

Incorporate and Textual field Knowledge." Procedia computer science 132 (2018): 352-361.

[19] Zhou, Yaqin, and Asankhaya Sharma. "Automated identification of security issues from

commit messages and bug reports." Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering. ACM, 2017.

[20] Zou, Deqing, et al. "Automatically Identifying Security Bug Reports via Multitype

Features Analysis." Australasian Conference on Information Security and Privacy. Springer,

Cham, 2018.

[21] Sohrawardi, Saniat Javid, Iftekhar Azam, and Shazzad Hosain. "A comparative study of

text classification algorithms on user submitted bug reports." Ninth International Conference

on Digital Information Management (ICDIM 2014). IEEE, 2014.

[22] Xia, Xin, et al. "Automatic defect categorization based on fault triggering

conditions." 2014 19th International Conference on Engineering of Complex Computer

Systems. IEEE, 2014.

[23] Guo, Shikai, et al. "Ensemble data reduction techniques and multi-RSMOTE via fuzzy

integral for bug report classification." IEEE Access 6 (2018): 45934-45950.

[24] Jain, Deepak Kumar, et al. "A particle swarm optimized learning model of fault

classification in Web-Apps." IEEE Access 7 (2019): 18480-18489.

[25] Wijayasekara, Dumidu, Milos Manic, and Miles McQueen. "Vulnerability identification

and classification via text mining bug databases." IECON 2014-40th Annual Conference of the

IEEE Industrial Electronics Society. IEEE, 2014.

[26] Zibran, Minhaz F. "On the effectiveness of labeled latent dirichlet allocation in automatic

bug-report categorization." 2016 IEEE/ACM 38th International Conference on Software

Engineering Companion (ICSE-C). IEEE, 2016.

[27] Chen, Dingshan, et al. "Automatically Identifying Bug Entities and Relations for Bug

Analysis." 2019 IEEE 1st International Workshop on Intelligent Bug Fixing (IBF). IEEE, 2019.

62

[28] Karim, Md Rejaul, et al. "Understanding key features of high-impact bug reports." 2017

8th International Workshop on Empirical Software Engineering in Practice (IWESEP). IEEE,

2017.

[29] Terdchanakul, Pannavat, et al. "Bug or not? bug report classification using n-gram

idf." 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME).

IEEE, 2017.

[30] Wright, Jason L., Jason W. Larsen, and Miles McQueen. "Estimating software

vulnerabilities: A case study based on the misclassification of bugs in MySQL server." 2013

International Conference on Availability, Reliability and Security. IEEE, 2013.

[31] Lal, Sangeeta, and Ashish Sureka. "Comparison of seven bug report types: A case-study

of google chrome browser project." 2012 19th Asia-Pacific Software Engineering Conference.

Vol. 1. IEEE, 2012.

[32] Ohira, Masao, et al. "A dataset of high impact bugs: Manually-classified issue

reports." 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,

2015.

[33] Jonsson, Leif, et al. "Automatic localization of bugs to faulty components in large scale

software systems using Bayesian classification." 2016 IEEE International Conference on

Software Quality, Reliability and Security (QRS). IEEE, 2016.

[34] Xia, Xin, et al. "Automated bug report field reassignment and refinement

prediction." IEEE Transactions on Reliability 65.3 (2015): 1094-1113.

[35] Bhattacharya, Pamela, et al. "An empirical analysis of bug reports and bug fixing in open

source android apps." 2013 17th European Conference on Software Maintenance and

Reengineering. IEEE, 2013.

[36] Alenezi, Mamdouh, and Shadi Banitaan. "Bug reports prioritization: Which features and

classifier to use?." 2013 12th International Conference on Machine Learning and Applications.

Vol. 2. IEEE, 2013.

[37] Umer, Qasim, Hui Liu, and Yasir Sultan. "Emotion based automated priority prediction

for bug reports." IEEE Access 6 (2018): 35743-35752.

[38] Li, Xiaodan, et al. "A novel approach for software vulnerability classification." 2017

Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2017.

[39] Jimenez, Matthieu, Mike Papadakis, and Yves Le Traon. "Vulnerability prediction

models: A case study on the linux kernel." 2016 IEEE 16th International Working Conference

on Source Code Analysis and Manipulation (SCAM). IEEE, 2016.

[40] Smith, Justin, et al. "How developers diagnose potential security vulnerabilities with a

static analysis tool." IEEE Transactions on Software Engineering (2018).

 [41] Somasundaram, Kalyanasundaram, and Gail C. Murphy. "Automatic categorization of

bug reports using latent dirichlet allocation." Proceedings of the 5th India software engineering

conference. ACM, 2012.

63

[42] Chawla, Indu, and Sandeep K. Singh. "An automated approach for bug categorization

using fuzzy logic." Proceedings of the 8th India Software Engineering Conference. ACM,

2015.

[43] Chen, Rong, et al. "Fusion of multi-RSMOTE with fuzzy integral to classify bug reports

with an imbalanced distribution." IEEE Transactions on Fuzzy Systems (2019).

[44] Limsettho, Nachai, et al. "Automatic unsupervised bug report categorization." 2014 6th

International Workshop on Empirical Software Engineering in Practice. IEEE, 2014.

[45] Herzig, Kim, Sascha Just, and Andreas Zeller. "It's not a bug, it's a feature: how

misclassification impacts bug prediction." Proceedings of the 2013 international conference

on software engineering. IEEE Press, 2013.

[46] Pingclasai, Natthakul, Hideaki Hata, and Ken-ichi Matsumoto. "Classifying bug reports

to bugs and other requests using topic modeling." 2013 20th Asia-Pacific Software Engineering

Conference (APSEC). Vol. 2. IEEE, 2013.

[47] Neysiani, Behzad Soleimani, and Seyed Morteza Babamir. "New labeled dataset of

interconnected lexical typos for automatic correction in the bug reports." SN Applied

Sciences 1.11 (2019): 1385.

[48] Tian, Yuan, et al. "Automated prediction of bug report priority using multi-factor

analysis." Empirical Software Engineering 20.5 (2015): 1354-1383.

[49] Yang, Xin-Li, et al. "High-impact bug report identification with imbalanced learning

strategies." Journal of Computer Science and Technology 32.1 (2017): 181-198.

[50] Tran, Ha Manh, et al. "An Analysis of Software Bug Reports Using Machine Learning

Techniques." SN Computer Science 1.1 (2020): 4.

[51] Kanwal, Jaweria, and Onaiza Maqbool. "Bug prioritization to facilitate bug report

triage." Journal of Computer Science and Technology 27.2 (2012): 397-412.

[52] Pandey, Nitish, et al. "Automated classification of software issue reports using machine

learning techniques: an empirical study." Innovations in Systems and Software

Engineering 13.4 (2017): 279-297.

[53] Huang, LiGuo, et al. "AutoODC: Automated generation of orthogonal defect

classifications." Automated Software Engineering 22.1 (2015): 3-46.

[54] Thung, Ferdian, David Lo, and Lingxiao Jiang. "Automatic defect categorization." 2012

19th Working Conference on Reverse Engineering. IEEE, 2012.

[55] Luaphol, Bancha, et al. "Feature Comparison for Automatic Bug Report

Classification." International Conference on Computing and Information Technology.

Springer, Cham, 2019.

[56] Wu, Xiaoxue, et al. "CVE-assisted large-scale security bug report dataset construction

method." Journal of Systems and Software 160 (2020): 110456.

64

[57] Ebrahimi, Neda, et al. "An HMM-based approach for automatic detection and

classification of duplicate bug reports." Information and Software Technology 113 (2019): 98-

109.

[58] Otoom, Ahmed Fawzi, Sara Al-jdaeh, and Maen Hammad. "Automated Classification of

Software Bug Reports." Proceedings of the 9th International Conference on Information

Communication and Management. 2019.

[59] Qin, Hanmin, and Xin Sun. "Classifying bug reports into bugs and non-bugs using

LSTM." Proceedings of the Tenth Asia-Pacific Symposium on Internetware. ACM, 2018.

[60] Zhang, Tian-Lun, et al. "An uncertainty based incremental learning for identifying the

severity of bug report." International Journal of Machine Learning and Cybernetics (2019): 1-

14.

[61] Feldman, Ronen, and James Sanger. The text mining handbook: advanced approaches in

analyzing unstructured data. Cambridge university press, 2007.

[62] Jurafsky andJamesH, Daniel. "Martin. Speech and Language Processing." (2009).

 [63] Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of

machine learning research 12.Aug (2011): 2493-2537.

[64] Feldman, Ronen, and James Sanger. The text mining handbook: advanced approaches in

analyzing unstructured data. Cambridge university press, 2007.

[65] Barcala, Francisco-Mario, et al. "Tokenization and proper noun recognition for

information retrieval." Proceedings. 13th International Workshop on Database and Expert

Systems Applications. IEEE, 2002.

[66] Willett, Peter. "The Porter stemming algorithm: then and now." Program (2006).

[67] Zhang, Harry. "The optimality of naive Bayes." AA 1.2 (2004): 3.

[68] Menzies, Tim, Jeremy Greenwald, and Art Frank. "Data mining static code attributes to

learn defect predictors." IEEE transactions on software engineering 33.1 (2006): 2-13.

[69] Lessmann, Stefan, et al. "Benchmarking classification models for software defect

prediction: A proposed framework and novel findings." IEEE Transactions on Software

Engineering 34.4 (2008): 485-496.

[70] Loper, Edward, and Steven Bird. "NLTK: the natural language toolkit." arXiv preprint

cs/0205028 (2002).

[71] Yang, Yiming, and Jan O. Pedersen. "A comparative study on feature selection in text

categorization." Icml. Vol. 97. No. 412-420. 1997.

[72] Bozorgi, Mehran, et al. "Beyond heuristics: learning to classify vulnerabilities and

predict exploits." Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining. 2010.

[73] Wang, Shuo, and Xin Yao. "Using class imbalance learning for software defect

prediction." IEEE Transactions on Reliability 62.2 (2013): 434-443.

[74] Yang, Xinli, et al. "Automated identification of high impact bug reports leveraging

imbalanced learning strategies." 2016 IEEE 40th Annual Computer Software and

Applications Conference (COMPSAC). Vol. 1. IEEE, 2016.

65

[75] Ohira, Masao, et al. "A dataset of high impact bugs: Manually-classified issue

reports." 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE,

2015.

[76] Jiang, Yue, Bojan Cukic, and Yan Ma. "Techniques for evaluating fault prediction

models." Empirical Software Engineering 13.5 (2008): 561-595.

