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ABSTRACT 

There are many stages in software development life cycle and each stage is associated 

with different kind of artifacts. Bug reports used for many software development activities like 

severity and priority assignment and triaging of bugs. It’s difficult for the developers to resolve 

all bug reports due to the limited resources. Developers usually need to prioritize bug-reports 

to resolved bugs of various software projects hurriedly. There are various-types-of bug reports 

such as-security, -performance, regression, -usability and crash. Among these, security bug 

reports are highly crucial. These types of bug reports can express security debt that could 

abused by the hackers-if they disclosed before they resolved. A security-bug can-becomes the 

reason of-an-unauthorized-access-to the software applications. These bugs are great threat to-

the-privacy and-security of users. Therefore, these bugs are needed to be resolved as early as 

possible. A bug reports contains many different fields, showing information about bugs. 

Certain fields are optional, and some are mandatory. JIRA consists a column named “type”, 

which may be a-bug, an advanced-feature, an-improvement or a-support-request. In 

BUGZILLA, key-word field is tagged with category of bug such as ‘perf’ for performance bug. 

Label or Type field describe the type of a bug report.  Label can give an understanding about 

the bug reports and also be used for the priority of bug reports. Previous Studies show that 

many bug reports are not labeled, if some are label, they may be not accurate. In this research, 

we purposed an-approach for automatic labeling of security bug reports. At first, we conducted 

the systematic literature review (SLR), this SLR consists distribution of papers according to 

approaches used by authors. Identify different NLP techniques, libraries and technologies used 

to develop tools. Then we identified thirteen (13) tools that are purposed or developed by 

different researchers and a comparison is performed. After performing SLR, we purposed a-

novel-approach for the automatic labelling of security-bug-reports by using natural language 

processing’s (NLP) techniques and machine learning (ML) algorithms. Our approach named 

ALSBR is-implemented-in-Python using Natural language Toolkit (NLTK), Sklearn and 

Imblearn libraries. In our purposed methodology, first of all preprocessing of bug reports is 

performed. After the preprocessing, features are selected by TF-IDF values. Top hundred terms 

according to TF-IDF values are selected as features. After feature selections, a random-under-

sampling-technique is applied to balance the majority and minority classes. Three machine 

learning algorithms named Logistic-Regression, Decision-Tree and Naïve-Bayes is utilized as 

classification model. A voting strategy is also applied to get the more accuracy. For the 

validation of our approach, 10-Fold cross-validation is applied. We used bug reports of five 

projects for the evaluation of our approach. Among these projects, four are from Ohira and one 

is a-subset-of-bug reports that is selected from-Chromium-project. At the end, we compared 

purposed-approach-with state-of-the-art approach-named FARSEC model and achieved 

improved results in terms of Precision, Probability of detection (Recall), Probability of false 

alarm, F-measure and G-measure. 

Keywords: Security Bug Reports, Machine Learning, Natural Language Processing 
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CHAPTER 1: INTRODUCTION 
 

There are many stages in software development life cycle and each stage is associated 

with different kind of artifacts. One of those artifacts is bug report. These are essential for 

development of any kind of software. We can define a software-bug-as [1]. 

“A software bug is an error, flaw, failure, or fault in a computer program or system that causes 

it to produce an incorrect or unexpected result or to behave in unintended ways.” 

  These bugs are documented in a report called bug reports. These reports permit users 

to notify-the developers about-problems they faced when-using any software. These reports 

consist of details of a failure and they usually give information about the location of a failure 

in the-code. A bug reports contains many different fields, showing information about bugs. 

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a 

bug report. Therefore, these reports are utilized for many software-development-activities like 

severity, priority assignment and triaging of bugs [1,2].  

There are various categories of bug-reports-such as security, performance, usability, 

crash and regression [31]. Among these, security bug reports are highly crucial [9]. These-

reports can express security debt that-could abused by the-hackers-if they disclosed ahead-they 

resolved. It can cause an unauthorized access to software [8]. These bugs are great threat to the 

privacy and security of users [13]. Therefore, these bugs are needed to be fixed as early as 

possible. It can be defined [9] as 

“A security bug is a security vulnerability that allows a user to have inappropriate 

access to the system and thus cause harm or damage to the software or to persons using the 

software.” 

Software projects used bug tracking system to document and follow-the progress of 

every bug which is identified by developers, testers and user of software system [8]. Bug-

tracking system (BTS) is a software tool which saves the record of reported bug reports during 

software developments projects. Many BTS grant permission to end users to report bug directly 

and few are only used-within the organization during software developments. These tracking 

systems are combined with the other- tools  of project management. A BTS is a significant 

element of many software development companies and use of these tracking systems are-

considered “hallmarks of a good software team". Bugzilla, Jira, Trac and GitHub are mostly 

used bug tracking systems.  

Machine learning (ML) is a “study of statistical models and algorithms which computer 

used to operate specific tasks without using explicit instructions”. It is an  Artificial-

Intelligence (AI)’s application that allows computers to learn-accordingly-and improved from 

the experience without any programming. ML algorithms are usually categorized into two type. 

One is supervised machine learning and other one is unsupervised machine learning. In first 

type, class labels of some data are known, this data is called training data. New data is classified 

depend on the training data; this new data is called testing data. There are one-or many inputs 

and-liked-output for each training example. In unsupervised machine learning algorithms, class 

labels of training data are unknown.[10]. 
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Natural language processing (NLP) is the field-of artificial intelligence which is basically 

concerned with automatic analysis of plain natural language [62]. There are several techniques 

in the natural-language-processing e.g. tokenization, POS tagging, sentence splitting [62].  

Tokenization is an NLP Technique which is used to split the natural language paragraph 

into sentences, then these sentences are broken into tokens [61]. POS Tagging technique is 

used to designate part of speech to each-word in a-sentence like noun, verb, adverb etc. [61]. 

Parsing is used to build a syntax tree of the sentences, stemming returns the words to its base 

form and TF-IDF is used to identify the value of-a-word in a paragraph [62]. 

1.1 Background, Scope and Motivation  

Bug reports used for many software development activities like severity and priority 

assignment and triaging of bugs[1]. The reliability and quality of these tasks highly depend on 

information available in bug reports. Previous study[2] show that bug reports usually contain 

incorrect and incomplete information. Therefore, developers spend more time and effort on the 

inspection of errors [2]. Over 45% of development time of IT companies spend in repairing 

various bugs during software development [3][4]. As the complexity and scale of projects 

increase, large no of bug-reports obtained everyday by BTS. They allow the reporters to report 

any kind of bugs they faced while using various software products. A bug report is shown in 

figure 1.1. 

It’s difficult for the developers to resolve all bug reports due to the limited resources. 

Developers usually need to prioritize bug reports to resolved bugs of various software projects 

hurriedly. A bug reports contains many different fields, showing information about bugs. 

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a 

bug report. JIRA (a bug tracking system) consists a column named “type”, which may be a 

bug, an advanced feature, a support request or an improvement. In BUGZILLA, key-word field 

is tagged with category of bug such as ‘perf’ for performance bug. Label can give an 

understanding about the bug reports and also be used for the priority of bug reports. Previous 

Studies show that many bug reports are not labeled, if some are label, they may be not accurate 

[5]. 

Among these, security bug-reports-are of greater-importance to the-developers-and the-

users [9]. A BTS contains many bug reports, only a few are security related bug reports. A BTS 

does not give any-procedure-to separate these from lot of reports. Our research aimed to create 

a model for the automatic labeling of security bug reports. For the labeling of these reports, we 

used natural-language-processing (NLP) facility with ML techniques. 



 

4 

 

 

Figure 1.1: Bug Report 

 



 

5 

 

1.2 Aims & Objectives 
Main-aims and objectives-of this research are shown below: 

• We have performed a complete systematic literature review (SLR) of  the current 

research relevant to automatic labeling or classifications of bug reports 

 

• We have identified and analyzed different techniques used for automatic 

labeling/classifications of bug reports 

 

• We have identified and compared the different tools built for automatic labeling or 

classifications of bug reports 

 

• We have formalized a practical approach which used different ML algorithms and 

techniques offered by NLP 

 

• We have implemented defined methodology to a data set and compared the results with 

previous systems to validate the improvements 

 

• We have used Python for the implementation of our approach 

 

 

1.3  Structure of Thesis 
Chapter 1: Consists-introduction,=background, scope,-motivation, aim and objectives. It 

also includes thesis’s structure. Chapter 2: Comprises detailed SLR that contains different 

research questions, review-protocols, classifications of studies which are selected w.r.t 

different techniques used, identification and comparison of different tools in the domain of 

labeling or classifications of bug reports and the answers to the research questions. 

Chapter 3: Includes the purposed methodology for the automatic labeling of security bug 

reports. It also includes detailed implementation of our approach. This chapter also contains 

information about the different algorithms used. Chapter 4: Includes the results and evaluation 

of our purposed methodology using standard data sets.  This chapter also includes the 

comparison of our approach to previously purposed approach.  

Chapter 5: Consists a discussion on whole work done with the drawbacks of our research. 

Chapter 6: Includes the conclusion of research and suggests a work for the future. The thesis’s 

outline is shown in figure 1.1. 
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Figure 1.1: Thesis-Outline 
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Chapter 2 

 Systematic Literature Review 
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CHAPTER 2: SYSTEMATIC LITERATURE REVIEW 
 

This-chapter contains the systematic literature review performed for our research. 

Section 2.1 consists introduction to the SLR. Research methodology of literature review is 

explained in Section 2.2. The results and analysis are interpreted in Section 2. 3. Answers to 

the-research-questions are explained in the Section 2.4. Conclusion of SLR is discussed in 

Section 2.5. 

2.1. Introduction 
The bug-reports-used for many-software-development activities like severity, priority 

assignment and triaging of bugs [1]. The reliability and quality of these tasks highly depend on 

information available in bug reports. Previous study [2] show that bug reports usually contain 

incorrect and incomplete information. Therefore, developers spend more time and effort on the 

inspection of errors. Over 45% of development time of IT companies spend in repairing various 

bugs during software development [3][4]. As the complexity and scale of projects increase, 

large no of bug reports obtained everyday by bug-tracking-systems. Bug-tracking systems 

allow the reporters to report any kind of bugs they faced while using various software products. 

It’s difficult for the developers to resolve all bug reports due to the limited resources. 

Developers usually need to prioritize bug reports to resolved bugs of various software projects 

hurriedly. A bug reports contains many different fields, showing information about bugs. 

Certain fields are optional, and some are mandatory. Label or Type field describe the type of a 

report. JIRA (a BTS) consists a column named “type”, which may be a bug, an advanced 

feature, a support request or an improvement. In BUGZILLA, key-word field is tagged with 

category of bug such as ‘perf’ for performance bug. Label is an optional field in google-chrome 

bug repository. 

  Label can give an understanding about the bug reports and also be used for the priority 

of bug reports. Previous Studies show that many bug reports are not labeled, if some are label, 

they may be not accurate [5]. To resolve the issue of labeling of bug reports, many tools and 

techniques has been developed by different researchers. But a few works is performed for 

systematic analysis of different tools -and techniques developed for the labelling of bug reports.  

Hence, there is a strong need to perform a SLR of state of the art literatures related to 

labeling/classification of bugs. So, in this paper we performed a SLR from 2012 to 2020 and 

broadly examine the latest techniques and tools related to domain. We defined five (5) research 

questions (RQ) for SLR. 

RQ1: What are the primary approaches used for the labeling/classifications of bug 

reports during 2012-2020? 

RQ2: What are the tools purposed/developed for the labeling/classifications of bug 

reports during 2012-2020 and what is the difference between these tools? 

RQ3: What are the primary NLP techniques used for the labeling/classifications of bug 

reports during 2012-2020? 

RQ4: What are the libraries/technologies used for the labeling/classifications of bug 

reports during 2012-2020? 
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RQ5: How did these modern tools and techniques helped in fixing of bugs during 2012-

2020? 

We conducted a systematic review on 54 research studies which include both journals and 

conference papers, published between 2012-2020. The overview of SLR is shown in figure 2.1. 

The main-contribution-of this study is following 

• At first, this study selects 54 research papers published between 2012-2020 related to 

labeling/classification of bug reports. 

• Secondly, this study analyzes the five categories of approaches, NLP techniques, 

libraries/technologies and purposed/developed tools. 

• At end, this study shows that how it will help the developers in bug fixing process 
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Figure 2.1: Overview of SLR 
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2.2 Review Methodology 
We have followed the Kitchenham[6]’s pattern for SLR in our study to get more precise 

and accurate answers to our questions. Kitchenham’s methodology to conduct systematic 

literature (SLR) consists following five steps. 

1) Defining Categories 

2) Defining-Selection-and the-Rejection-Criteria  

3) Searching Process 

4) Quality-Assessments 

5) Data=Extraction-and=Synthesis 

2.2.1. Categories Definition 

For the organization of selected researches, we have defined five categories. This will 

improve the efficiency of answers-of the-research-questions. The explanation for each category 

is given below. 

2.2.1.1 Machine Learning Algorithms 

Machine learning (ML) is a “study of statistical models and algorithms which computer 

used to operate specific tasks without using explicit instructions”. It is an  Artificial-

Intelligence (AI)’s application that allows computers to learn-accordingly-and improved from 

the experience without any programming. ML algorithms are usually categorized into two type 

explained below. 

2.2.1.1.1 Supervised Machine Learning Algorithms 

In this type class labels of some data are known; this data is called-training-data. The-

training data is used to classify new data, this new data-is-called testing data. There are one or 

many inputs and desired output for each training example. 

2.2.1.1.2 Unsupervised Machine Learning Algorithms  

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of 

the-data-points. Therefore, these approaches learned from the data which is not-labeled, 

categorized-or classified. 

2.2.1.2 Knowledge Based Algorithms 

Some researchers used knowledge-based approaches to label the bug reports. 

Knowledge based systems that is used to label the bug reports, consists a large amount of data 

as knowledge based. These knowledge bases are like dictionary that contain information, facts 

and meaning of various words that used in real word. This knowledge and information can 

have applied for the labelling of bug reports. 

2.2.1.3 Rule Based Algorithms 

Many researchers have used rule-based approaches for the labelling of bug reports. In 

this approach, rules are defined to find the required content from natural language. Researchers 

have defined many rules for the labelling of bug reports. In this approach, NLP prcesses-such-

as stop words-removal, -stemming and POS Tagging are Enforced on the sentences then 

outcomes are matched with the pre-defined rules to categorize the bug reports. 
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2.2.1.4 Meta Algorithms 

In meta algorithms, an algorithm is applied on many other algorithms to get the highest 

accuracy. In this, many other algorithms are combined to get more accurate results like in 

machine learning, Naïve Bayesian, KNN and SVM’s results are combined to get more 

accuracy. Some of the researchers used these techniques for the labelling of bug reports. 

2.2.1.3 General 

In general category, those techniques are included which are not belong to any specific 

category. Some of the researchers used techniques which can’t belong to any categories 

mentioned above like latent-semantic-indexing (LSI) is an indexing-technique which can’t 

belongs to any categories. 

2.2.2 Selection-and-Rejection-Criteria 

We used a well-defined selection and rejection criteria for conformation of the 

correctness of our research questions. We have used following five parameters to get accurate 

and precise answers to our research questions. 

2.2.2.1 Subject Relevant 

We have selected only those research papers which really answer our research 

questions. All these research papers are most-relevant to our-research-questions. The research 

papers which are not relevant are excluded. 

2.2.2.2 2012-2020 

We have selected only those research papers which published from 2012 to 2020. We 

have rejected all those research papers which are published before 2012. 

2.2.2.3 Publisher 

We have selected only those research papers that are published from well-known 

scientific databases named IEEE, Elsevier, Springer and ACM. 

2.2.2.4 Result Oriented 

We have focused on a point that each research paper should be able to generate better 

and precise result. We have ensured that laws, experimentation and concrete facts that used in 

selected papers must be strong to produce a good Systematic Literature Review (SLR). 

2.2.2.5 Repetition 

We have ensured that selected research papers should have different context and 

content to produce unbiased results. Therefore, reject those researches that are 

undistinguishable in a specific context and select only one of them. 
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Table 2.1:  Search Terms with Results 

Sr. # Search terms  Operators              Number of Search Results 

IEEE Elsevier Springer ACM 

1 Bug Reports N/A 881 12,089 20,981 118,158 

2 Bug Reports 

Labeling 

AND 43 3,478 6,260 38,356 

OR 25,149 753,889 23,355 140,702 

3 Automated 

labeling 

Bug Reports 

AND 12 1,186 2,306 12,645 

OR 61,812 936,328 551,625 158,439 

4 Security 

Bug reports 

 

AND 127 2,969 6,925 30,125 

OR 118,005 245,848 259,929 139,580 

5 Label Security 

Bug reports 

AND 7 990 2,121 9,341 

OR 141,024 945,363 634,662 158,260 

6 Bug reports 

labeling Tools 

AND 11 2,377 4,685 23,839 

OR 364 1,743,908 27,494 182,282 

7 Bug reports 

labeling Natural 

language 

processing 

AND 7 851 2,086 37,243 

OR 39,566 822,862 12,594 218,304 

 

2.2.3 Searching Process 

Selection-and-rejection-criteria for the research papers is already discussed in above 

section. We used a state-of-the-art search-process-for the-selection-of quality researches 

according to the mentioned selection and rejection’s standard. We have utilized four databases 

(IEEE, ACM, Elsevier, Springer) to select the Journals of high impact factor and conference 

papers to generate a quality systematic literature review (SLR). We have utilized many search 

terms and keywords like “Bug Reports”, “Labeling bug reports”, “Security bug reports” etc. 

for the search process. The search terms with the number of results against each term and along 

databases name are shown in table. 

We have utilized advanced search options for each database to carry out better search 

process. We utilized time span filter to select research papers which are between “2012-2020”. 

We also utilized two Boolean operators such as AND & OR to get better results. ‘AND’ 
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operator is used to get more exact and precise results while ‘OR’ operator is used to large 

amount of results, which can help us for SLR. After the inspection of primary results, we have 

selected only those researches which are most relevant to our topic. We got 54 research papers 

by following some steps shown in figure 2.2. 

 

• We selected 5,422 research studies from four well known scientific databases by putting 

different keywords. 

• Then 2,186 research papers are selected and 3236 are rejected on basis of their titles. 

• After this, we have selected 726 research papers rejected the 1460 studies after reading 

the abstract of these studies. 

• After general study of remaining 726 studies, we have removed another 300 studies and 

after detailed analysis finally selected 54 research studies. These 54 research studies 

fully satisfied the previously mentioned inclusion and exclusion criteria. 

 

 

Figure 2.2: Search Process 
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Table 2.2: Selected research papers w.r.t to publication type and databases 

Database Type Number-

of studies 

References Total 

IEEE Journal 7 [9][23][24][34][37][40][43] 33 

Conference 26 [7][8][10][11][12][13][14][15][16][21][22

][25][27][28][29] 

[30][31][32][33][34][35][38][39][44][46][

54] 

Elsevier Journal 3 [17][56][53] 4 

Conference 1 [18] 

Springer Journal 8 [47][48][49][50][51][52][53][60] 10 

Conference 2 [20][55] 

ACM Journal 0  7 

Conference 7 [19][26][41][42][45][58][59] 

 

2.2.4 Quality Assessment 

Only high impact research studies are selected from highly recognized databases to 

assure the reliable results of this systematic literature review. Thirty-three (33) studies are 

selected from IEEE database, ten (10) from Springer, seven (7) from ACM and four (4) from 

Elsevier, making a total 54 selected studies. The results shown in Table indicate that we have 

tried our best to select latest and high impact studies.  The summary of selected research papers 

w.r.t publication type and database is shown in Table 2.2. Database show the name of different 

research papers repositories; type field represents whether research studies are Journal or 

conference papers. References for the given studies are given. Total field represents the total 

no of journal and conference papers selected for each database to perform this SLR. 

Table show that seven (7) journals and 26 conference papers selected from IEEE 

repository, three (3) journals and one (1) conference paper selected from Elsevier repository, 

eight (8) journals and two (2) conference papers selected from Springer link and seven (7) 

conference papers selected from ACM database. We have selected research studies from 2012 

to onward. We have selected all the most relevant journals and conference papers from 2013 

to onward which included four (4) studies from 2012, five (5) from 2013, seven (7) from 2014, 

five (5) from 2015, four (4) from 2016, eight each from 2017 & 2018 and thirteen (13) from 

2019 as shown in figure 2.3. 
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Figure 2.3: Distribution of selected researches w.r.t year of publication 

2.2.5 Data-Extraction-and-Synthesis  

Table 2.3 shows this process. The mining process for bibliographic information of 

selected research studies are performed. We have defined overview, results, assumptions and 

validation in data extraction process-to-ensure-the preciseness of research questions. For the 

data synthesis process, we have defined four points such as “Identification and categorization 

w.r.t techniques used”, “Identification of NLP techniques used”, “Identification and 

classifications of used/purposed tools” and “Comparison of the tools”. In first point, all the 

techniques used for the labeling of bug reports are identified and classified shown in Table 2.4. 

Secondly, all the NLP techniques used for the labeling of bug reports are identified, shown in 

table 2.12. All the purposed/developed tools also found and classified, shown in table 2.13. 

Tool comparison-is-shown in table 2.14.    

Table 2.3: Data extraction and Synthesis 

Data Extraction 

Sr. # Description Details 

1 Bibliographic-

Information  

Title, authors, year of publication and research study 

types are analyzed 

2 Overview The goal and idea of the selected studies 

3 Results Obtained Results-from-the selected studies 

4 Assumption Assumptions to validate the outcomes 

5 Validation Validation-Techniques used 
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Data Synthesis 

Sr. # Description Details 

1 Identification and 

categorization w.r.t 

techniques used 

Identification and categorization of the papers with 

respect to the techniques author used  

2 Identification of NLP 

techniques used 

Identifications of NLP techniques used 

3 Identification and 

classifications of 

used/purposed tools 

All the purposed/used tools identified and classified 

4 Comparison of the tools Tools are compared 

 

2.3 Results and Analysis 
Basic goal-of-this research is to-examine-the related literatures conforming to the 

research questions. Out of 54 researches, 36 are published in conferences and 18 are published 

in journals. It is also noticed that journals such as “information and software technology”, “the 

journal of systems and software”, “automated software engineering”, “journal of computer 

science and technology”, “empirical software engineering”, “IEEE transaction on software 

engineering”, “IEEE transaction on fuzzy system”, “IEEE transaction on reliability” and “IEEE 

access are really contributing to study”. Also many conferences such as “International 

Conference on Reliability”, “Optimization and Information Technology”, “Conference on 

Informatics”, “Electronics & Vision”, “IEEE International Conference on Smart Computing”, 

“IEEE International Conference on Software Quality, Reliability and Security”, “IEEE Recent 

Advances in Intelligent Computational Systems” and “Asia-Pacific Software Engineering 

Conference” are highly contributing to our study.  

2.3.1 Classification with respect to Approaches 

All these studies are divided into five categories according to approaches used, shown 

in table 2.4. 

Table 2.4: Categorization with respect to techniques 

Sr. # Category References Total 

1 Machine 

Learning  

[7][9][10][11][12][14][17][18][19][20][21][22][23] 

[24][25][26][27][29][33][34][35][36][37][39][41][42] 

[43][44][46][55][56][57][58][48][49][50][51][52][54] 

[53] 

40 

2 Knowledge 

Based 

[9][11][17][20][28][30][32][35][38][40][43][45][56][59] 

[47][49][52][54][53] 

19 

3 Rule Based [13][17][19][23][27][34][37][45][56][50] 10 

4 Meta 

Algorithms 

[9][28][23][56] 3 

5 General [8][13][14][16][17][19][20][22][24][29][37][39][41][43] 

[56][48][50][54] 

18 
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2.3.1.1. Machine Learning Algorithms 

ML is a “study of statistical models and algorithms which computer used to operate 

specific tasks without using explicit instructions”. It is an  Artificial-Intelligence (AI)’s 

application that allows computers to learn-accordingly-and improved from the experience 

without any programming. ML algorithms are usually categorized into two type explained 

below. 

2.3.1.1.1. Supervised Machine Learning Algorithms 

In this type class labels of some data are known; this data is called-training-data. The-

training data is used to classify new data, this new data-is-called testing data. There are one or 

many inputs and desired output for each training example. It’s techniques with references 

shown in table 2.5. 

 

Table 2.5: Research studies using Supervised Machine Learning Algorithms 

 

Sr. 

No 

Algorithms References Objective 

1 Naïve 

Bayesian 

[7][9][10][11][14][17][18][19][21][22][23][24][25][33][34] 

[35][36][37][41][43] [55][58][48][49][50][51][52][54] [53] 

For text 

categorization 

Tasks 

2 Decision 

Tree 

[10][22] [23] [24][25][36][41] [43] [46] [50][52] Used for 

classification 

3 Logistic 

Regression 

[9][10][12][17][22][29][37][46] [55][56] [54] Binary 

classification  

4 K Nearest 

Neighbor 

[9][11][18][19][21] [23][24][34][43][49][50][52] classification 

and 

regression 

5 Random 

Forest 

[9][11][17][19][26][29][36][50][52] classification 

and 

regression 

7 Support 

Vector 

Machine 

(SVM) 

[11][17] [19][20] [21][22] [23] [24][37] [39] [41] 

 [55][58] [49][50][51][52] [53] [54]  

 

Classify the 

data points 

using 

hyperplane 

8 Artificial 

Neural 

Network 

[9][12][19][21][22][24][27] [56][50] [60] Used for 

classification 
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2.3.1.1.2. Unsupervised Machine Learning Algorithms  

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of 

the-data-points. Therefore, these approaches learned from the data which is not-labeled, 

categorized-or classified. It’s techniques with references shown in table 2.6. 

Table 2.6: Research studies using Unsupervised Machine Learning Algorithms 

Sr. #  Techniques References Objective 

1 Clustering [17] [44] Classification purpose 

2 Hierarchical Dirichlet 

Process (HDP) 

[44] Grouped the data 

3 Latent Dirichlet Allocation 

(LDA) 

[26][33][41][42][46] Grouping of textual data 

4 Markov model [55][57] Model the Probabilities of 

different states an transitions 

 

2.3.1.2.  Knowledge Based Algorithms 

Some researchers used knowledge-based approaches to label the bug reports. 

Knowledge based systems that is used to label the bug reports, consists a large amount of data 

as knowledge based. This knowledge base is like dictionary that contain information, facts and 

meaning of various words that used in real word. This knowledge and information can have 

applied for the labelling of bug reports. Knowledge based techniques with references shown in 

table 2.7. 

Table 2.7: Research studies using Knowledge Based Algorithms 

Sr. 

# 

Techniques References Objective 

1 Knowledge 

Based 

[9][11][17][20][28][30][32][35][38][40][43][45][56

][59][47] 

[49][52][54][53] 

Use 

knowledge  

For 

categorization 

 

2.3.1.3. Rule Based Algorithms 

Many researchers have used rule-based approaches for the labelling of bug reports. In 

this approach, rules are defined to find the required content from natural language. Researchers 

have defined many rules for the labelling of bug reports. In this approach,  

NLP techniques like stop words removal, stemming and POS Tagging are enforced on 

the sentences then outcomes are matched with the pre-defined rules to categorize the bug 

reports. Rule based techniques with references shown in table 2.8. 
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Table 2.8: Research studies using Rule Based Algorithms 

Sr. 

# 

Techniques References Objective 

1 Rule Based [13][17][19][23][27][34][37][45][56][50] Define rules  

For categorization 

 

2.3.1.4. Meta Algorithms 

In meta algorithms, an algorithm is applied on many other algorithms to get the highest 

accuracy. In this, many other algorithms are combined to build a predictive model to get more 

accurate results like in machine learning, Naïve Bayesian, KNN and SVM’s results are 

combined to get more accuracy. Some of the researchers used these techniques for the labelling 

of bug reports. Meta algorithms with references shown in table 2.9. 

 

Table 2.9: Research studies using Meta-Algorithms 

Sr. # Techniques References Objective 

1 Boosting [19][23] To improve 

accuracy 

2 Bagging [23] For the 

improvement of 

accuracy 

3 Voting [23][56] Improve accuracy 

9 Stacking [19] Improve accuracy 

 

2.3.1.5. General 

In general category, those techniques are included which are not belong to any specific 

category. Some of the researchers used techniques which can’t belong to any categories 

mentioned above like latent-semantic-indexing (LSI) is an indexing-technique which can’t 

belongs to any categories shown in table 2.10. 

Table 2.10: Research studies using General 

Sr. 

# 

Techniques References Objective 

1 Latent 

semantic indexing (LSI) 

[14] Identify patterns in the 

relationship between 

terms and concepts 

2 Grid Search [17][20] Used for objective 

function with no 

parameters 

3 Abstract Syntax Tree 

(AST) 

[13][54] For the static analysis of 

code 
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4 Spearman’s Rank 

Correlation Coefficient 

 

[16] Describe relationship 

between two variables 

5 Wilcoxon Rank Sum Test [16] Calculate difference 

between set of pairs 

6 MATHEW Correlation 

Cofficient 

[17][29] Measure the quality of 

binary classifications 

7 Kullbach Leibler 

Divergence (lda-kl) 

[8][23][24][39][41][48][50] Use for recommendations 

8 Relief-F attribute 

selection(RFS) 

[23] Attribute Selection 

9 Chi Squared attribute 

selection (CHI) 

[8][23][24][29] Attribute selection 

10 particle swarm 

optimization (PSO) 

[24] Trying to improve a 

candidate solution 

11 Hamming-loss [37] calculate the error 

12 TSVD approach [43] For solving the linear 

discrete ill-posed 

problem 

 

2.3.2. Classification with respect to library/ technology used 

All the researches also analyzed for technology and library used for the labeling of bug 

reports. Different kinds of technology or library used by different studies are shown in table. 

Natural language toolkit (NLKT) is used by seven (7) researches which is most used library, 

Scikit-learn library is used by five (5) researches, Porter stemmer is used by five (5) studies, 

Word2vec is used by four (4) researches and all the remaining libraries is used by one or two 

studies shown in table 2.11. 

 

Table 2.11: Libraries/technologies used for labeling 

Sr. # Technologies/libraries References Total 

1 Scikit-learn [8][20][24][50][56] 5 

2 Natural language 

toolkit (NLKT) 

[8][11][20][24][27][37][54] 7 

3 Word2Vec [12][17][19][20] 4 

4 Doc2Vec [17][25] 2 

5 Wordnet [37][53] 2 

6 lingPipe [14][41] 2 

7 LibSVM 

 

[20] 

 

1 

8 Stanford Topic Model- 

ing Toolbox (TMT) 

[26] 1 
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9 Mulan [34] 1 

10 JOERN [39] 1 

11 CodeSonar [40] 1 

12 Coverity [40] 1 

13 oTranscribe [40] 1 

14 Indo-european 

tokenization factory 

[41] 1 

15 Porter Stemmer [8][21][34][46][58] 5 

16 Lovins Stemmer [21][49] 2 

17 NumPy [50] 1 

18 SciPy [50] 1 

19 Mahout [54] 1 

20 Lucene [54] 1 

21 Stanford Natural 

Language Inference 

corpus (SNLI) 

[55] 1 

22 Paice Husk Stemmer 

 

[21] 1 

23 Weka [22][23][29][39][44][58][54] 7 

24 LLVM [13] 1 

 

2.3.3. Classification with respect to NLP Techniques 

A number-of-NLP techniques are-used by researches for the processing of textual data. 

We have reviewed all selected studies and identify five (5) NLP techniques used for the 

labeling of bug reports. We have categorized the selected literatures into five (5) categories 

with respect to NLP techniques, shown in table 2.12. 

Table 2.12: NLP Techniques used for Labeling 

Sr. # NLP 

Techniques 

References Total 

1 Tokenization [8][9][10][14][18][20][22][23][25][27][29][34][36][37][41] 

[42][43][44][55][58][48][53][54] 

23 

2 POS 

Tagging 

[10][11][27][29][37][44][55] 7 

3 Parsing [10][29][43][44][46][52] 5 

4 Stemming [8][11][14][17][18][21][22][23][25][34] 

[43][46][58][49][51][52][53][54] 

18 
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5 TF-IDF [7][9][10][11][14][17][18][24][35][41][48][49][50][55] 14 

 

Tokenization is an NLP Technique which is used to split the natural language paragraph 

into sentences, then these sentences are broken into tokens. POS Tagging technique is used to 

designate part of speech to each-word-in-a-sentence like noun, verb, adverb etc. Parsing is used 

to build a syntax tree of the sentences, stemming returns the words to its base form and TF-

IDF used to identify the-value of a word in a paragraph.  

Tokenization is most used NLP technique in the selected literatures which is used in 

twenty-three (23) studies. Stemming used in eighteen (18) researches, TF-IDF used in fourteen 

(14) studies, POS Tagging used in seven (7) studies and parsing is used in five (5) research 

papers. 

2.3.4. Identification of Purposed/developed tools 

We identified thirteen (13) purposed or developed tools, shown in table 2.13. These 

tools have been used by different researchers for labeling of bug reports. Bug mining system 

(BMS) used ML techniques for the identification of security-bug-reports. FARSEC is used for 

the filtering and ranking of security bug reports. CTES used-rule-based-technique-for the 

classification of-the-bug reports. AVIS used-ML techniques to detect the vulnerability. USES 

utilized ML techniques to identify the Mandel and Bohr bugs. Im-ML.KNN is multi label 

learning tool used to achieve better performance. [17] purposed a tool by using ML and rule-

based techniques to classify the bug reports. Flower is a tool that help the developers to navigate 

the flow of program. [42] developed a tool by using ML techniques-for classification of the 

bug reports. DRONE, BUGBAND and Auto ODC developed by different researchers for the 

classifications of bug reports. 

Table 2.13: Tools purposed/developed by different researchers 

Sr. # Tool Name References Purpose 

1 BMS  [7] Identify Security and Non-Security 

Bug Reports 

2 FARSEC [9] A tool to reduce the mislabeling of 

Security bug reports 

3 CTES [13] To automatically classify the 

security bugs 

4 AVIS [19] To detect vulnerability using ML 

techniques 

5 USES [22] To distinguish Mandel bugs from 

Bohr bugs. 

6 (Im-ML.KNN) [34] Multi label learning Tool, to 

achieve better performance. 

7 TOOL BY [17] [17] Classify bug reports according to 

taxonomy 

8 Flower [40] A tool that help developers to 

navigate program flow 

9 Tool by [42] [42] To classify bug reports 
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10 DRONE [48] To assign priority labels to bug 

reports 

11 BUGBANG [52] To classify bug reports 

12 Auto ODC [53] A tool to automate ODC 

classification  

13 Tool by [56] [56] Classify the bug reports 

 

2.3.5. Comparisons of purposed/developed Tools 

We performed state of the art comparison of all identified tools based on some 

parameters, shown in table 2.14. The parameters used for the comparison are approaches used, 

NLP techniques, programming language and open source. Used approaches are machine 

learning, knowledge based, rule based, meta algorithms and general, these categories of 

approaches are already defined in section. These identified tools used different NLP techniques 

for the labeling of bug reports, we also used these techniques for the comparison of tools. 

Programming language used to develop the tools is also a parameter for comparison and open 

source field contain Yes or No values based on the source.  

Table 2.14: Comparisons of Tools 

Sr. 

# 

Tool Name Approaches 

Used 

NLP 

Techniques 

used 

Programming 

Language 

used 

Open 

Source 

1 BMS [7] ML TF-IDF -/- No 

2 FARSEC [9] ML, KB Tokenization, 

TF-IDF 

Python Yes 

3 CTES [13] RB, G - C++ No 

4 AVIS [19] ML, MA, RB -  N0 

5 USES [22] ML Tokenization, 

Stemming 

JAVA No 

6 (Im-ML.KNN) [34] ML, RB Tokenization, 

Stemming 

JAVA NO 

7 TOOL BY [17] ML, RB, MA Stemming, 

TF-IDF 

Python No 

8 Flower [40] KB - Java Yes 

9 Tool by [42] ML, MA Tokenization -/- No 

10 DRONE [48] ML, G Tokenization, 

TF-IDF 

Java No 

11 BUGBANG [52] ML, KB, RB Stemming, 

Parsing 

R Yes 

12 Auto ODC [53] ML KB Tokenization, 

Stemming 

-/- No 

13 Tool by [56] KB, RB, G - Python Yes 
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2.4 Answers of Research Questions 
RQ1: What are the primary techniques used for the labeling/classifications of bug 

reports? 

Answer: To answer the research questions, 54 research studies published between 2012 

and 2020 have selected as per the selection-and the-rejection-criteria (Section 2.2). These 

studies are grouped in five categories with respect to approaches used by different researchers. 

• Forty (40) research studies have used machine learning algorithms, discussed in section 

3.1.1. 

• Nineteen (19) research studies have used knowledge-based techniques mentioned in 

section 3.1.2. 

• Rule based approaches have founded in ten (10) research papers mentioned in section 

2.3.1.3. 

• Some studies have used meta algorithms, discussed in section 2.3.1.4. 

There are some techniques which can’t belong to previously discussed four categories, 

these approaches have categorized as general, eighteen (18) studies have used these approaches 

mentioned in section 2.3.1.5 

RQ2: What are the tools purposed/developed for labeling/classifications of bug reports and 

what is the difference between these tools? 

Answer: After conducting the systematic review of the selected studies, we have found 

thirteen (13) tools which are purposed or developed by different researchers, these tools shown 

in table 2.13. The difference between these identified tools is also analyzed shown in table 

2.14. 

RQ3: What are the primary NLP techniques used for the labeling/classifications of the bug 

reports? 

Answer: After the analysis of selected literatures, we have identified five (5) primary NLP 

techniques, researchers used for the labeling/classification of bug reports 

Tokenization Have used by twenty-three (23) researches, POS Tagging have been used by 

seven (7) studies, Parsing have been performed in five (5) literatures, stemming performed by 

eighteen (18) researchers and TF-IDF have been used by fourteen (14) studies, mentioned in 

section 2.3.3.  

RQ4: What are the libraries/technologies used for the labeling/classifications of bug 

reports? 

Answer: After conducting the systematic review of the studies, we have found twenty-four 

(24) different libraries and technologies used by different researchers for the 

labeling/classification of bug reports, these libraries/technologies are shown in table 2.11.  

RQ5: How did these modern tools and techniques help in fixing of bugs? 

Answer: Due to the limited time and the human-resources, it’s very problematic for the 

developers to resolve all bug-reports. Developers usually require to arrange the reports to 

resolve the bugs quickly. Label-or-type field-in bug reports describes the type-of-bug reports. 
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Label can give an insight about the bug reports and also be used for the priority of bug reports. 

Some bug reports like security bug reports needs to be fixed as early as possible. In this SLR, 

many tools and techniques are identified that can help in the process of labeling/classifications 

of bug reports. These labels on bug reports helps developers understating the type of bugs. 

Developers used these labels for the fixing of bug of high priority bug reports. 

2.5 SLR Conclusion 
This research identifies the latest techniques and the tools utilized for the automatic 

labeling or classification of bug reports. To achieve this aim, firstly five research questions are 

identified. Then done a detailed SLR of 54 literatures which were selected conferring selection 

and rejection criterion. All the chosen studies were categorized into five categories conferring 

to the approaches used.  

Then we have found thirteen (13) tools that are purposed or developed by different 

researchers. We have also found different NLP techniques used by different researchers and 

categorized all selected studies according to these NLP techniques. We have also identified the 

twenty-four libraries/technologies used for the labeling/classifications of bug reports by 

different literatures. Then we have performed a comparison of identified or developed tools.  
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CHAPTER 3: PROPOSED METHODOLOGY & IMPLEMENTATION 
 

This-chapter includes details of-methodology and the-implementation. Section 3.1 

provides the core concepts which used in our purposed methodology. Section 3.2 contains 

details of purposed methodology. Section 3.3 includes the implementation of our purposed 

methodology. 

3.1  Core Concepts Explanation 
For our purposed methodology, we have utilized many core concepts from text mining and 

machine learning. The details of core concepts used in our methodology are explained bellow. 

3.1.1 Natural Language Processing 

Natural-language-processing (NLP) is a potential of a program to interpret language  of 

human, understand it and can manipulate it. It is a branch of artificial intelligence (AI). 

Basically, it draws from many fields such as-computational linguistics and computer science, 

try to fill the disparity-between computer understanding and human-communication. NLP 

concerns with automatic analysis of plain natural language [62]. NLP is not a new filed, it is 

growing rapidly because of   increased in interest in-human-machine-communications.  

This field is also growing because of-availability of the-big-data and-powerful-

computing-algorithms. It can teach computers that how to understand and process the natural 

language. NLP is utilized to-help-the-programmers to govern and organize the work 

knowledge to perform their tasks like summarization, named entity relationship, translation, 

information retrieval or relationship extraction, speech recognition and topic segmentation etc. 

[63]. This field helps computers and create automated systems that can understand and analyze 

a human language like Arabic, Latin or English etc. 

3.1.2 Tokenization 

Tokenization is a technique of-splitting or tokenizing a string or text into lists of tokens. 

It is a commonly used text-mining technique that involves splitting the text into-sentences or 

words [64]. The basic function of tokenization is-to find and split-the-tokens-found-in a text 

that-each-word and punctuations will become a-distant-token [65]. Tokenization is divided into 

two submodules named word tokenization and sentence tokenization explained below. 

3.1.2.1 Word Tokenization 

Word tokenization is used for the splitting of a sentence into words. The word 

tokenization’s output is transformed into-data frame for the more understanding of text in 

machine-learning algorithms. Machine learning algorithms need a numeric data for the training 

and prediction. Word tokenization can convert a text string to numeric data. Word tokenization 

is explained with example in table 3.1.  

Table 3.1: Word level tokenization 

Sentences Word Tokenization 

It is a simple sentence ‘It’ ‘is’ ‘a’ ‘simple’ ‘sentence’ 
That is exactly what we want to learn ‘That’ ‘is’ ‘exactly’ ‘what’ ‘we’ ‘want’ ‘to’ ‘learn’ 

That is not a pencil ‘That’ ‘is’ ‘not’ ‘a’ ‘pencil’ 



 

29 

 

3.1.2.2 Sentence-Tokenization 

It is a technique of-dividing a paragraph into many sentences. Sentence-tokenization is 

used when we want to count average words per sentence. It performed less well in for electronic 

health records that includes abbreviations, medical terms measurements and other forms not 

found in standard written English. Sentence tokenization is explained with examples in-table 

3.2.  

Table 3.2: Sentence level tokenization 

 

Paragraph Sentence Tokenization 

It is a technique of-dividing a paragraph into 

many sentences. Sentence-tokenization is 

used when we want to count average words 

per sentence. It performed less well in for 

electronic health records that includes 

abbreviations, medical terms measurements 

and other forms not found in standard written 

English. 

“It is a technique of-dividing a paragraph into 

many sentences”. “Sentence-tokenization is 

used when we want to count average words 

per sentence”. “It performed less well in for 

electronic health records that includes 

abbreviations, medical terms measurements 

and other forms not found in standard written 

English”. 

 

3.1.3 Stop Words Removal 

In NLP, idle words-are-considered-as stop-words. A stop-word is a commonly used 

word that is overlooked by search engines, we would not-want these idle words to take a space 

in our datasets. Most commonly used stop words are “the”, “a”, “an”, “in”, “a”. we don’t need 

these words during the processing or training because these words are not going to help in 

building the training model and will cost useless processing/computing power. Processing time 

and memory is very valuable in case of language processing, so we cannot let this useless data 

to increase the processing time and taking up extra memory.  We can remove stop words easily 

by storing a list of words which are unnecessary. We have used Python’s tool NLTK for-the-

removal of these-stop-words. Examples of stop words are given in-table 3.3 

Table 3.3: Stop-words removal 

Text with stop words Text without stop words 

It’s difficult for the developers to resolve all 

bug-reports 

Difficult, Developers, Resolve, Bug, Reports  

That is exactly what we want to learn Exactly, Want, Learn 

I like reading, so I read Like, Reading, Read 

 

3.1.4-Stemming 

Stemming-is a technique used for the normalization of words [63]. Basically, it is a 

process of removing the suffix from a word and reduce to-its base form. It-is utilized for the 

reduction of dimensionality of data, that is good for machine learning algorithms. A stemming 

algorithm can reduce the words to their base forms. Simply we can say that, if there are words 

like ‘work’, ‘works’, ‘worked’, ‘working,’ all these words are contextually same but different 

words. We can remove the suffixes of these words, ‘work’ will be the stemmed word. We have 

used porter stemmer [66] library of NLP for the stemming process in our purposed 

methodology. Stemming example show in-table 3.4. 
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Table 3.4: -Stemming-of-words 

 

Words Stemmed Words 

Sleeping, Slept, Sleeps Sleep 

Reading, Read, Reads Read 

Add, Adding, Added, Adds Add 

Eating, Eats, Eaten Eat 

 

3.1.5 Machine Learning 

ML is a “study of statistical models and algorithms which computer used to operate 

specific tasks without using explicit instructions”. It is an  Artificial-Intelligence (AI)’s 

application that allows computers to learn-accordingly-and improved from the experience 

without any programming. ML algorithms are usually categorized into two type. One is 

supervised machine learning and other one is unsupervised machine learning. In first type, class 

labels of some data are known, this data is called training data. New data is classified depend 

on the training data; this new data is called testing data.  

There are one-or many inputs and-liked-output for each training example. In 

unsupervised machine learning algorithms, class labels of training data are unknown.[10]. We 

have chosen Logistic-regression(LR), Naïve-Bayes (NB), and-Decision-Tree (DT) algorithms 

from supervised ML for our approach because they performed very well for the labeling of bug 

reports. 

3.1.5.1 Supervised Machine-Learning  

In this learning there are some input-variables (a) and an=output-variable (b). The 

mapping function is learned from input to put by using an algorithm 

b = f(a) 

The objective is to estimate the mapping function so accurate when an unseen-input 

data (a) which can forecast-the-output variables (b).  

In this learning, it is considered that a teacher is supervising the whole learning process of a 

model from training data. When the technique accomplishes a sufficient level-of efficiency 

learning will be stopped. 

Supervised learning further branched into the regression-and-classification-problems. 

Classification 

  In this problem-the-output-variables are categories, like “black” or “white” and 

“disease” or “not a disease”. 

Regression 

In this problem-the-output-variables are real values, like “dollars” or “weight”.  
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3.1.5.2 Unsupervised Machine Learning  

In this type class labels of training data are unknown. These approaches get a-set-of-

data-which consists inputs only-and-find the-structure of data such as clustering or grouping of 

the-data-points. Therefore, these approaches learned from the data which is not-labeled, 

categorized-or classified. This learning is further divided-into the-clustering-and-association-

problems. 

Clustering 

In this problem objective is to disclose the internal-groupings presents in-the-data, like 

grouping the customers-according to their behavior of purchasing. K-means is a popular ML 

approach for the clustering-problem. 

Association 

In association-learning problem objective is to identify the-rules which show maximum 

parts-of-the data, like people whose buy-X also-used-to-buy Y. 

3.1.6 Training & Prediction Phases 

In training phase ML algorithms are providing with the-training-data-in-order to learn 

from it. The training data will contain the true answers, that are known as “target” or “target 

attributes”. These learning algorithms identify patterns in the training-data which-map the 

input-data features to the target (An answer which we want to predict), and ML model is 

obtained as output which captured these-patterns. 

In prediction phase, a prediction or testing is utilized for the evaluation of a machine 

learning model. In this phase a machine learning model is validated on a testing data, whose 

target attributes are missing. 

ML model is used for the predictions on new data about which you do not know the outputs. 

In our approach we want to train multiple ML models for the predictions of SBRs and NSBRs. 

We provided our approach with the training-data which contains bug reports for which target 

is known. In our approach models are trained by this data to predict whether new bug reports 

are SBRs or NSBRs. 

3.2 Purposed Solution 
Our objective here is to purpose an-approach-for the-automatic-labeling of SBRs. Our 

purposed approach performed better than previous approaches. This approach-builds a 

classification model-from-historically-labeled-bug-report for the identification-of SBRs. 

Firstly, preprocessing is performed on bug reports. 

Then we performed-feature selection using a TF-IDF values. After feature selection, a class 

imbalance sampling technique is applied on the training data. We have applied three-ML 

algorithms, named Logistic-Regression and Decision-Tree and Naïve-Bayes. At the end a 

voting technique is applied on the results of these machine learning algorithms to get a better-

results. Our purposed approach is shown in figure 3.1  
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Figure 3.1: Purposed approach 

 

3.2.1 Preprocessing 

Preprocessing of bug-reports is the first step in our purposed technique. We only 

considered the description and-summary column of bug-reports as a textual data. Summary 

provide us an overview of bug reports in one sentence and description mostly encompasses 

more information. These fields are commonly available when a bug-report is submitted. 

Preprocessing is applied on this textual information of both training and testing bug reports. A 

textual information is transformed into a set of features by using Python’s-NLTK [70] standard-

preprocessing techniques.  

First step of preprocessing is tokenization of words. Tokenization of-description-and 

summary-fields of bug reports are performed. As result of tokenization, terms are extracted 

from bug-reports. These extracted terms are converted to lowercase forms. Punctuation 

removal is also performed. These terms also include stop words. In NLP, idle words are 

considered as stop words. These are mostly used words that are overlooked by search-engines, 

we would-not want these-words to take a space in our-datasets. Most commonly used stop 

words are “the”, “a”, “an”, “in”, “a”. These stop words are removed using NLTK’s stop words 

list. During stop words removal, unwanted terms are also removed.  

After the removal of stop words stemming is applied on the terms. Stemming is a 

process used for the normalization of words [63]. Basically, it is a process of removing the 

suffix from a word and reduce to its base form. Porter Stemmer is applied for the process of 

stemming. After the stemming, all terms are return to their base forms. These terms are 

considered as extracted features. Preprocessing steps are shown in figure 3.2, 
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Figure 3.2: Preprocessing of bug reports 

 

3.2.2 Feature Selection 

Security bug-reports identification is thought-as a-text-categorization problem. After 

the preprocessing, extracted terms are considered as features. The feature space’s dimension is 

very high for text categorization. The performance of a classification models will degrade 

because of high this dimension [71]. We have selected those features which are more important 

than others by applying TF-IDF. In our purposed methodology, we selected the top 50 terms 

each from both categories of bug-reports (SBRs and NSBRs) with the maximum TF-IDF values 

as our feature set [14]. We contracted the feature-set-to hundred because hundred features 

covered the feature-families [72].  

3.2.2.1 TF-IDF 

The abbreviation of TF-IDF is “term frequency–inverse document frequency”. TF-IDF 

is commonly utilized to measure the usefulness of words to-a document in-a-corpus [66]. TF-

IDF weight is commonly utilized in text mining.  

In this, words which are-frequent-in every-document, such as “it”, “who”, 

and “so”, rank less even still these are present many times, after all they are not important that 

document. But, if a word “Bug” presents many-times in a document and not presenting many-

times in other documents, it doubtlessly means-that it is most-relevant.  

By multiplying two different terms TF-IDF-for-a-word in a-document is computed: 

The Term Frequency (TF) 

There are many methods to compute Term frequency. The simplest and easiest method 

is a rough count of word occurs in a document. There are ways to accommodate-the-frequency, 

one is by the raw frequency of the most common-word in a document and other is by length-

of a document. 

The Inverse Document Frequency (IDF) 

IDF computes that how much a word is-common or-rare to whole document set. If its 

value is near to 0, the word will be more common. It is computed by counting-the total-number 
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of documents and dividing-it by the-number of-documents which contain this word, and at the 

end calculate-the-logarithm. 

Therefore, this number will be about “0”, if-the word-is most common and occurs in 

more-documents. Or else, it will be about “1”. 

By multiplication of these two numbers, TF-IDF values will obtained. The maximum 

value, the more relevant this word in that specific document. 

TF (term, doc) = count-of-term in doc / number of words-in-doc 

IDF (term) = log (n/(df + 1)) 

TF-IDF = (TF * IDF) 

“Term”-stands for word (term), “doc” stands for-document, “n” stands for-count-of 

corpus. Corpus-are the total-documents. 

3.2.3 Random Sampling 

Class-unbalancing is consistently a major issue in ML. It-may-cause a-classifier to 

perform badly. Imbalanced learning-strategies will be utilized for the balancing of the 

preliminary unbalanced dataset and assisting the trained model to-not-to be-biased to-the 

majority magnificence. Hence, in maximum cases, it is able to improve the efficiency of the 

classifier [73]. 

Three famous sampling strategies are under-sampling, oversampling and the SMOTE. We 

utilized random-under-sampling, as the performance of this method is- better in maximum 

cases [74]. 

3.2.3.1 Rando-Under-Sampling (RUS) 

RUS involves randomly selecting samples-from the maximum-class to eliminate these 

from the training-dataset. This has the impact of reducing the quantity of samples in the 

maximum class in the converted version of the training-dataset. This procedure can be 

replicated until the preferred class distribution is obtained, such as an identical number of 

samples for each class. 

Under sampling reruns, the below mentioned 2-steps-until a preferred-ratio of 

maximum samples-to all the-samples reaches-to-“r”: 

Step1: Sample Selection  

Step2: Sample Deletion 

Because of outstanding performance, we used RUS [74]. We set the value of r as .5 

declaring that the-variety of samples of both classes is identical within the training-data. 

3.2.4 Classifier Construction 

We have used three machine learning algorithms named-Decision-Tree, Logistic-

Regression and Naïve-Bayes in our approach. A voting strategy is also used to get the better 

result. Details of these algorithms are explained below. 
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3.2.4.1 Naïve Bayes (NB) 

Naïve Bayes is one-of the-most effective and efficient algorithms in machine learning 

[67]. Study shows that it performed very well as compare to other algorithms in defect 

prediction [68][69]. The NB is-based-on the Bayes’ law that used-independence assumptions 

between the predictors. A NB model can easily build. Even with its easiness, the NB model 

frequently does noticeably excellent and is extensively used because-it mostly surpasses more 

known classification techniques. We have used Gaussian NB, which is the variant of NB.  

3.2.4.2 Decision-Tree (DT) 

A decision tree is a supporting tool for making decision that utilizes a graph that is a 

tree. This tree is like a model of-decisions and its potential effects, along with likelihood event 

results, costs of resources, and the utility. A DT displays an algorithm which only consists 

statements about conditional controls. A DT is like a flowchart who’s each internal-node 

presents a “test” on-an attribute (e.g. if a bug report is SBR or NSBR), each branch shows the 

outcome of-a test, and at the end each leaf node-indicates a label of the class. The rules of 

classification are indicated by the roof to leaf paths.  

Tree-based algorithms grant easy interpretation and stability with high accuracy to 

predictive models. They map-nonlinear relationships-quite well unlike linear-models. These 

algorithms are flexible at solving all types of problem such as, classification-or-regression. 

A DT algorithm is also known as CART (Classification-and Regression-Trees). 

3.2.4.3 Logistic-Regression (LR) 

Logistic-regression is performs well when the-dependent variables are binary. A LR 

performs predictive analysis like all other regression analysis. It is utilized to define the data 

and for explanation of the relationship among one dependent binary-variable and one or more 

independent-variables. 

In the early-twentieth century, it was mostly utilized in the biological-sciences. It was 

also utilized in many different social science’s applications. LR is suitable when the resultant 

variable is a categorical. 

As an example, 

• To forecast if a bug report is SBR (1) or NSBR (0) 

• If the email is spam (1) or not (0) 

In our case where we want to classify a bug report as SBR or NSBR. Threshold value is 

necessary for classification in when linear regression is used.  

Say-if the real-class is SBR and 0.4 is the forecasted value and -0.5 is the threshold value, 

bug report will be categorized as NSBR that can cause a consequence for the software. Linear 

regression is not appropriative for the classifications problem as seen from this example. LR is 

un-bounded, and logistic-regression comes into-picture. Their value-are from zero to 1. 

3.2.4.4 Voting 

A Voting-Classifier which trains-on-an ensemble of many different models and-

forecasts-an output which based on the maximum probability-of selected-class as an output. 

http://www.statisticssolutions.com/academic-solutions/membership-resources/member-profile/data-analysis-plan-templates/data-analysis-plan-logistic-regression/
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It combines-the outcomes of every classifier and processed these into a-voting classifier. This 

classifier will forecast the outcome class which based on the maximum majority voting.  

The concept is that rather creating individual devoted models and calculating the 

efficiency for each model, it-creates one model that trains-by these devoted models and 

forecasts the outcomes that based on their joined majorities voting for every output class. 

There are two types of voting supported by Voting Classifier. 

1. Hard Voting 

In hard-voting, the forecasted output-class is a class with the maximum majority-of-votes. 

For example, the class which has the highest probability of being-predicted by each of 

the-classifiers. Consider three-classifiers forecasted the output-class (X, X, Y), so the 

majority-predicted X as output class. So, X will be the-final forecast. 

2. Soft Voting 

In-soft-voting, the prediction is based on the probabilities’ average given to that a specific 

class. Consider some input is given to three-models, the forecast probability for-class X 

= (0.40, 0.37, 0.63) and Y = (0.30, 0.22, 0.50). the average-for class X is 0.4666 and Y is 

0.34, So the winner is class X because it has the maximum probability-averaged by-each 

classifier. 

We have used soft voting for our approach. 

3.3 Implementation 
This section discussed the details of standard data set we used for our research and also 

elaborates the implementation details of our purposed approach. 

 

3.3.1 Data Set 

For the implementation of our purposed approach, we required labeled bug reports, that 

are labeled as-SBRs or-NSBRs. We utilized total 5 projects. Among these 5 projects, 4 are 

from-Ohira et al. [75]. A portion of reports-is-selected from-the-project of chromium. The 

details of these projects are presents in-table 3.5. This table shows-the name of projects, total 

number bug-reports for-every-project-and the percentage and the number of SBRs for each 

project. These are arranged in ascending-order of security bug-reports percentage. 

 

Table 3.5: Details of data sets 

 

Projects Total Bug-Reports Security-Bug-

Reports 

Security-Bug-

Reports (%) 

Chromium 41,940 192 0.5 

Wicket 1000 10 1.0 

Ambari 1000 29 3.0 

Camel 1000 32 3.0 

Derby 1000 88 9.0 
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In Ohira’s [75] data set, six kinds of bug reports are there. These includes dormant, 

security, blocking, performance, surprise and breakage. JIRA is used as their bug-tracking-

system for these four projects and the application-domain of every project is different. As Ohira 

et al. [75] only concentrated on-high-impact-bug-reports, they only chose-one-thousand-

reports-for-each project randomly whose label are BUG or IMPROVEMENT. These bug 

reports are labelled-by-faculty-members-and-graduate-students. 

The Chromium data set came from “mining-challenge of the mining-software-

repositories conference-2011”. When these reports are submitted to the system, (SBRs) are 

labeled-as Bug-Security. As our purposed methodology only focus on SBRs predictions, we 

consider all other type of-bug-reports as NSBRs.  

The bug-reports form Ohira et al. [75] are in-comma-separated-value (CSV) files. Each-

row-of these CSV files indicates a bug-report-and-columns shows the attributes of bug-reports. 

These attributes are issue_id, type, status, description, summary, and date & time of report 

submission and resolved. CSV file for Ohira project is shown in figure 3.3. For prediction of  

security bug reports, we only select summary, description and security fields for each project. 

Security fields with label ‘0’ for NSBRs and ‘1’ for SBRs for each project. 

 

 

 
 

Figure 3.3: Ohira’s data set 
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Chromium bug reports are also in CSV file whose column name are id, date, reports 

and security. Each row of CSV files represents a bug report. CSV file for Chromium project is 

shown in figure 3.4. We only selected summary and description fields from Ohira’s bug reports 

for prediction of security bug reports. From chromium subset, we selected reports field for 

prediction. All the preprocessing is applied on these fields of bug reports. 

 

 
 

Figure 3.4: Chromium’s subset of data 

 

3.3.2 Experimentation 

For the implementation of our purposed approach, we used PyCharm as IDE. Python is 

used as a programming language for the implantation of our approach. It is simple and its 

sentences are easy to learn. We have used different libraries of Pythons for the implementation. 

NLTK is used for the preprocessing of bug reports, Sklearn is utilized for the implementation 

of ML algorithms and Imblearn is utilized for RUS of bug reports. We have run our approach 

on Core i5-5200U CPU @ 2.20GHz with RAM of 12GB. 
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There are two phases in our approach, one is training phase and other one is prediction phase. 

In training phase, labelled bug reports are utilized for the training of ML classifiers. In prediction phase, 

new or unlabeled bug reports are given to classifiers, these classifiers will predict these bug reports 

either SBRs or NSBRs. All the data of bug reports are in CSV files. We select only description and  

summary fields for the Ohira’s [75] four projects shown in figure 3.5. For chromium projects, 

only report filed is selected. For training phase, label from bug reports is also selected. 

 

Figure 3.5: Textual data of bug reports 
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First step of our approach is preprocessing of bug reports. In preprocessing, we 

tokenized the summary and description fields of bug reports, convert them into lowercase, then 

removed stop  

words, punctuations, unwanted terms and at the end stemming is applied. As a result, many terms 

for each report are extracted as displayed in figure 3.6. 

 

Figure 3.6: Preprocessed Data 
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These extracted terms are considered as features. As these features are to many, we 

reduced it by applying TF-IDF. TF-IDF calculates the value of a term in a-document. TF-IDF 

of terms are shown in figure 3.7. 

 

Figure 3.7: TF-IDF Values 

We have selected Top 50 terms according to top TF-IDF from each bug reports category 

(SBRs and NSBRs) for each project as feature sets. The 100 selected features of Derby project 

shown in figure 3.8 
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Figure 3.8: Selected features for Ambari project 

After feature selection, we have applied a sampling technique named random under 

sampling to reduce the majority class for better performance of our purposed approach. Before 

random under sampling and after random under sampling training data shown in figure 3.9 and 

3.10 respectively. Before random sampling, training data has 900 samples. 
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Figure 3.9: Samples before Random Under Sampling 

After applying random under sampling technique, it reduces to 148 samples as it selects 

and delete the samples belonging to majority class and equals to minority class. 

 

Figure 3.10: Samples after Random Under Sampling 

We have used three ML algorithms which are decision-Tree, Logistic-Regression and 

Naïve-Bayes in our purposed approach. Voting is used as ensemble to get better result. These 

ML models are trained and tested on data sets for each project. Then voting is applied on the 

results of these three machine learning algorithms to get better-results shown in figure 3.11. 
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Figure 3.11: Classifier 

At the end, for the validation of our-approach, K-Fold cross validation is applied. Our 

approach is evaluated through confusion matrix. Performance measures used for our approach 

are Precision, PD, PF, F-measure and G-measure. 
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CHAPTER 4: RESULTS AND EVALUATION 
 

This chapter deals with the results and evaluation of purposed approach. Section 5.1 

discussed the evaluation metrics to be used for the evaluation of our approach. Section 5.2 

discussed the results and comparison with the previously used techniques. 

4.1 Evaluation-Metric 
For the evaluation of our purposed approach, we used precision, probability of detection 

or recall, F-measure and G-measure as evaluation-matrix’s. These are commonly-used-metrics 

for performance evaluation which are derived from confusion metric. These concepts are 

explained below. 

4.1.1 Confusion-Metrix 

Confusion matrix is a table which is commonly utilized to measure the efficiency of a-

classification model. It is mostly used for measuring precision, recall, F-measure, accuracy. It 

grants easy recognition of confusion-between the classes for example 1 class is mostly 

misclassified as-the other. It’s an overview of the predicted outcomes on a problem of 

classification. The true and false prediction’s numbers are overviewed with the numeric values. 

It shows the-means in which a-classification model is confused-during prediction. A confusion 

matric displayed in table 4.1. 

Table 4.1: Confusion Matric 

 Predicted Values 

SBRs Non-SBRs 

Actual 

Values 

SBRs TP FN 

Non-SBRs FP TN 

 

Definition-of-Terms 

• Positive-(P): Perception-is true (It’s a SBR). 

• Negative-(N): Perception -is not-true (It’s a Non-SBR). 

• True-Positive (TP): W have predicted it’s a SBR and actually it’s a SBR 

• False-Negative (FN): We have predicted it’s a SBR and actually it’s a NSBR 

• True Negative (TN): We have predicted it is a NSBR and actually it is a NSBR 

• False-Positive (FP): We have predicted it is a NSBR and actually it is a SBR. 

 

4.1.2 Precision 

It is defined as out-of-all the positive-classes we forecasted correctly, how-many are-

actually positive. Its value should-be-high. 

Precision = TP/(TP+FP) 
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4.1.3 Probability of Detection 

It is defined as out-of-all the positive classes, how-much we forecasted correctly. Its 

value should-be-high as possible. It is also called recall. 

PD = TP/(TP+FN) 

4.1.4 Probability of False Alarm 

It calculates the fraction of-the-Non-SBRs which are-inaccurately forecasted as-

SBRs. 

PF = FP/(FP+TN) 

 

4.1.5 F-measure 

It is very problematic to compare two-models which have precision’s value high and 

have recall’s value low or vice-versa. So, in order to make them-comparable, we utilize F-

measure. F-measure helps-to-calculate recall and precision at-same time. Harmonic-Mean is 

utilized instead of arithmetic-mean by grueling the-higher-values more. 

F-measure = (2*Precision*PD)/(Precision + PD) 

4.1.6 G-measure 

The g-measure is the defined as “the harmonic-mean of-PD and-(100-PF)”[76]. PF is 

the probability of false alarm. 

 

G-measure = (2*PD*(100-PF))/(PD+(100-PF)) 

 

4.1.7 K Fold Cross Validation 

Cross-validation is a shuffling process utilized for the evaluation of machine learning 

models on a data sample. This process has only one parameter which is K that indicates the 

number-of bunches for a given data is divide into. This process is commonly called k-fold-

cross-validation.  

It is mostly used in ML to measure the accomplishment of a ML model on unseen data. 

it is very easy understand. It is a popular method because it is less biased model than other 

methods. 

We set the value of K = 10. The idea-behind 10-fold-cross-validation is that-whole-data 

is divided randomly-into ten subsets. One subset is-used as testing data and nine subsets are 

used for training of model from these ten subsets of data. These steps are repeated ten times, 

with all-of the-subsets are used-as-testing-data for once in order to-evaluate the-performance 

of-our approach. The end result is the-average of all ten iterations.  

4.2 Results Evaluation and Comparison 
After the implementation of our purposed approach, we evaluated our experimentation 

by using Precision, PD, PF, F-measure and G-measure. For these evaluation matrixes, we used 

confusion matrix. TN, TP, FN and FP values are utilized for the evaluation from confusion 

matrix. For the validation of data, we used K-Fold cross validation method. We set the value 

of K = 10.  
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The python code and output for results are given below 

Python Code 

“Import-numpy-as-np 

import pandas-as-pd 

from-sklearn.linear_model-import LogisticRegression 

from-sklearn.ensemble-import VotingClassifier 

from-sklearn.naive_bayes-import GaussianNB 

from-sklearn.metrics-import confusion_matrix 

from-sklearn.tree-import DecisionTreeClassifier 

from-sklearn.model_selection-import KFold 

from-imblearn.under_sampling-import RandomUnderSampler 

df = pd.read_csv('Features.csv') 

target = 'label' 

G_measure = 0 

Recall = 0 

Precision = 0 

F_measure = 0 

X = df.loc[:, df.columns!=target] 

Y = df.loc[:, df.columns==target] 

skf = KFold(n_splits=10, random_state=0,shuffle=True) 

skf.get_n_splits(X,Y) 

nr = RandomUnderSampler(random_state=0) 

G_measure = 0 

Recall = 0 

Precision = 0 

F_measure = 0 

PFF = 0 

for train_index, test_index in skf.split(X, Y): 

    #print("TRAIN:", train_index, "TEST:", test_index) 

    X_train, X_test = X.loc[train_index], X.loc[test_index] 
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    y_train, y_test = Y.loc[train_index], Y.loc[test_index] 

    X_train_S, y_train_S = nr.fit_sample(X_train, y_train) 

   clf1 = LogisticRegression() 

    clf2 = DecisionTreeClassifier() 

    clf3 = GaussianNB() 

    evc = VotingClassifier(estimators=[('lr', clf1), ('dt', clf2), ('nb', clf3)], voting='soft') 

    result = evc.fit(X_train_S, np.ravel(y_train_S)) 

    Y_Test_Pred = result.predict(X_test) 

    tn, fp, fn, tp = confusion_matrix(y_test, Y_Test_Pred).ravel() 

     

    PD = (tp / (tp + fn)) * 100 

    Recall += PD 

    PF = (fp / (fp + tn)) * 100 

    PFF += PF 

    PREC = (tp / (tp + fp)) * 100 

    Precision += PREC 

    f_measure = (2 * PD * PREC) / (PD + PREC) 

    F_measure += f_measure 

    g_measure = (2 * PD * (100 - PF)) / (PD + (100 - PF)) 

    G_measure += g_measure 

print('Precision', Precision/10) 

print('PD', Recall/10) 

print('PF', PFF/10) 

print('F_Measure', F_measure/10) 

print('G_MEASURE', G_measure/10)” 

Results are shown in figure 4.1 
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Figure 4.1: Results for each project 

The average values of Precision, PD, PF, F-measure and G measure for each project 

are given in table 4.2. 
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Table 4.2: Results for each project 

Project Precision PD PF F-measure G-measure 

Camel 11.54 % 50.51 % 13.28 % 16.42 % 57.71 % 

Ambari 16.0 % 73.36 % 12.72 % 25.48 % 77.31 % 

Wicket 34.45 % 92.28 % 31.75 % 45.61 % 67.85 % 

Derby 27.90 % 54.47 % 12.47 % 34.34 % 64.70 % 

Chromium 3.42 % 18.055 % 2.24 % 5.52 % 28.48 % 

 

These results are also shown in figure 4.2 

 

Figure 4.2: Chart for results 
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We have performed comparison of our approach with the FARSEC [9] approach. They 

[9] purposed a filtering and ranking method for prediction of security bug reports [FARSEC]. 
They also used two filters, one is FARSECSQ in which applying support function to the word’s 

frequency found in SBRs and in FARSECTWO multiplying the frequency by two. We 

compared results of our purposed approach with FARSEC, FARSECSQ and FARSECTWO’s 

results. Our purposed approached better than these three approaches according to G-measure 

in all five projects. Comparison is shown in table 4.3. 

 

Table 4.3: Comparison of results 

 

Project Approach Precision PD PF F-

measure 

G-

measure 

Camel ALSBR 11.54 % 50.51 % 13.28 % 16.42 % 57.71 % 

FARSEC 8.3 % 16.7 % 6.9 % 11.1 % 28.3 % 

FARSECSQ 5.2 % 16.7 % 11.4 % 7.9 % 28.1 % 

FARSECTWO 4.3 % 50 % 41.8 % 7.9 % 53.8 % 

Ambari ALSBR 16.0 % 73.36 % 12.72 25.48 % 77.31 % 

FARSEC 4.0 % 14.3 % 4.9 % 6.3 % 24.8 % 

FARSECSQ 4.1 % 42.9 % 14.4% 7.4 % 57.1 % 

FARSECTWO 21.1 % 57.1 % 3.0 % 30.8 % 71.9 % 

Wicket ALSBR 34.45 % 92.28 % 31.75 % 45.61 % 67.85 % 

FARSEC 4.8 % 33.3 % 8.1 % 8.3 % 48.9 % 

FARSECSQ 2.1 % 66.7 % 38.3 % 4.0 % 64.1 % 

FARSECTWO 2.2 % 66.7 % 36.6 % 4.2 % 65.0 % 

Derby ALSBR 27.90 % 54.47 % 12.47 % 34.34 % 64.70 % 

FARSEC 35.6 % 38.1 % 6.3 % 36.8 % 54.2 % 

FARSECSQ 14.4 % 54.8 % 29.9 % 22.8 % 61.5 % 

FARSECTWO 26.0 % 47.6 % 12.4 % 33.6 % 61.7 % 

Chromium ALSBR 3.42 % 18.055% 2.24 % 5.52 % 28.48 % 

FARSEC 31.0 % 15.7 % 0.2 % 20.8 % 27.1 % 

FARSECSQ 23.9 % 14.8 % 0.3 % 18.3 % 25.7 % 

FARSECTWO 31.0 % 15.7 % 0.2 % 20.8 % 27.1 % 

 

Comparison of ALSBR, FARSEC, FARSECSQ and FARSECTWO with respect to G-

measure shown graphically in figure 4.3 and 4.4. 
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Figure 4.3: Comparison 1 of results with respect to G-measure 
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Figure 4.4: Comparison 2 of results with respect to G-measure 
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Chapter 5 

Discussion & Limitations 
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CHAPTER 5: DISCUSSION & LIMITATIONS 
 

This chapter presents discussion in  Section 6.1. Limitations to our work is shown in 

section 6.2. 

5.1 Discussion 
Automation has changed the today processes by introducing a great accuracy and 

reducing the time delays. NLP proved helpful in software development processes and it helped 

the software developers in many fields. On such field is the resolving the bugs found in many 

different software. In all kinds of bugs, security bugs are most important because these bugs 

are great threat to the privacy-and-security of-end users. Therefore, these bugs are needed to 

be fixed as early as possible.  

Therefore, we purposed an approach-for-the automatic identifications of security bug 

reports. We compared purposed approach with FARSEC model that is the state of the art 

technique and achieved improved results in terms of Precision, PD, PF, F-measure and G-

measure. 

5.2 Limitations 
As our technique is a unique step towards the automatic labeling of security bug reports 

but  few limitations are also present in our work. The-accuracy of Python’s libraries such as 

NLTK, Sklearn and Imblearn is questionable as it is not 100%. 
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Chapter 6 

         Conclusion and Future Work 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 
 

This chapter includes research conclusion in Section 7.1 and future work is described 

in Section 7.2. 

6.1 Conclusion 
This research shows a-unique technique for-the automatic labelling of security-bug-

reports by using NLP’s techniques and ML algorithms. The following milestones are achieved 

from this research.  

At first,  a detailed SLR of most related research is conducted. For SLR, first we defined 

some research questions mentioned in chapter 2. Then done a detailed SLR of 54 literatures 

which were selected conferring selection and rejection criterion. All the chosen studies were 

categorized into five categories conferring to the approaches used. Then we have found thirteen 

(13) tools that are purposed or developed by different researchers. We have also found different 

NLP techniques used by different researchers and categorized all selected studies according to 

these NLP techniques. We have also identified the twenty-four libraries/technologies used for 

the labeling/classifications of bug reports by different literatures. Then we have performed a 

comparison of identified or developed tools. After performing this analysis, we have answered 

all five questions. 

After conducting SLR, we purposed a novel approach for the automatic labelling of 

security bug reports by using NLP’s techniques and ML algorithms mentioned in chapter 3. 

Our approach named ALSBR is implemented in Python using Natural language Toolkit 

(NLTK), Sklearn and Imblearn. 

In our purposed methodology, first of all preprocessing of bug reports is performed. 

After the preprocessing, features are selected by TF-IDF values. Top 100 terms according to 

TF-IDF values are selected as features. After feature selections, a random under sampling 

technique is applied to balance the majority and minority classes. Three ML algorithms named 

Logistic-Regression, Decision-Tree and Naïve-Bayes is used as classification model. A voting 

strategy is also applied to get the more accuracy. For the validation of our approach, 10-Fold 

cross validation is applied. 

For the validation of our purposed technique we used bug reports of five projects. 

Among these 5 projects, four-are from Ohira et al. [75] and a-part-of-bug-reports is selected 

from Chromium-project. At the end, we compared our approach with state-of-the-art approach 

named FARSEC model and achieved improved results in terms of Precision, PD, PF, F-

measure and G-measure. 
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6.2 Future Work 
Future work includes improving and extending this approach in order to support the bug 

resolution in better way. It includes followings 

• In future we can add more information presents in bug-reports-like-who-were-assigned 

reports and time-duration-presenting-how-much-time is spent on fixing a bug. 

• Feedback and comments on-bug reports can also include on future. 

• A proper GUI tool can be generated and provided for the public access to use this tool. 

• In future, our work can be-extend for the labelling of other types of bugs-such as 

performance, usability etc. 
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