

Detecting Cross Domain Ambiguity in Requirements Through

Natural Language Processing Approach

By

Ibrahim Khalil

(Registration No: 00000320876)

Supervisor: Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING,

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July 2023

Annex ‘A’

THESIS ACCEPTANCE CERTIFICATGE

Certified that final copy of MS/MPhil Thesis written by NS Ibrahim Khalil Registration No.

00000320876 of College of E&ME has been vetted by undersigned, found complete in all respects

as per NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and is accepted as

partial fulfillment for award of MS/MPhil degree. It is further certified that necessary amendments as

pointed out by GEC members of the scholars have also been incorporated in the thesis.

Dedicated to a hopeful couple, my mother and my father, whose

motivations, and endless prayers led me to this achievement.

i

Acknowledgment

I am thankful to ALLAH Almighty for his blessings throughout this research work. It was

quite a challenging process that could not have been completed without the help of Allah

Almighty and the strength that he given to me.

I would like to thank my sincere supervisor ‘Dr. Wasi Haider Butt’ for his determined

guidance and the entire committee: ‘Brig. Dr Farooque-e-Azam’ and ‘Dr. Arslan

Shaukat’ for their endless support. I cannot thank them enough for their role in the

completion of this thesis and report. I also thank my parents, spouse, siblings, and friends

who encouraged me and kept me motivated during my master’s program.

I am also eternally grateful to the Department of Computer and Software Engineering and the

management of College of Electrical and Mechanical Engineering, NUST, who helped me

and supported me throughout this journey.

ii

Abstract

Background: In the Requirements elicitation various techniques are adapted to gather the

exact needs of the stakeholders which are usually from different background. These

techniques are used to clarify the actual problem being solved. There may also be greater

chances of ambiguities in the terms used for the requirements. These terms used by

stakeholders may vary their meaning domain to domain which may lead to an undesirable

interpretation of the requirements.

Aim & Objectives: A project success can be measured/estimated if and only if the initially

collected requirements are clear, unambiguous, and well understood. Similarly, the

ambiguous or not understandable requirements can lead to the failure or closure of the project

in disastrous form. An initial step in the requirement elicitation is usually gathering

requirements in natural language. This study analyzes different tools, techniques, and

approaches used for detecting ambiguities in natural language requirements, validate the

approaches applied for the term’s ambiguity among different domain, and to develop and use

more precise approach for terms extraction of different domains, similarity finding and

ranking of the ambiguities in their semantics.

Methodology: An algorithm ‘Word2Vec’ was found as majority in use for ambiguous word

detection in text. This previously used algorithm was replaced by ‘FastText’ algorithm on a

same data to identify more suitable approach between them. Ambiguity score of the

ambiguous terms were calculated and compared scores of the high ambiguous terms

produced by Word2Vec with the score produced by FastText.

Results and Conclusion: Data of five different domain were assessed via Word2Vec and

FastText algorithms. Ambiguous terms were extracted and then was ranked as per their

ambiguity level. The rankings of same term produced by both algorithms were compared and

difference in the rankings were calculated.

This approach seeks to disambiguate texts and improve the process of software requirements

elicitation in natural language.

Keywords: Ambiguity detection in Natural language requirements, Cross-domain ambiguity,

Requirement’s engineering, Natural language processing (NLP), Term ambiguity in Domains

iii

Table of Contents

ACKNOWLEDGMENTS .. I

ABSTRACT .. II

TABLE OF CONTENTS .. III

LIST OF FIGURES ... IV

LIST OF TABLES ... V

CHAPTER 1: INTRODUCTION .. 1
1.1 MOTIVATION .. 3
1.2 PROBLEM STATEMENT ... 3
1.3 AIMS AND OBJECTIVES .. 3
1.4 THESIS OUTLINE .. 4

CHAPTER 2: LITERATURE REVIEW .. 6
2.1 OVERVIEW AND MAJOR OUTCOMES OF SLR ... 6
2.2 REVIEW METHODOLOGY ... 8

2.2.1 Research Questions ... 8
2.2.2 Category Definition ... 9
2.2.3 Review Protocol .. 9

2.3 RESULTS, ANALYSIS & ANSWERS TO RESEARCH QUESTIONS .. 15
2.4 CONCLUSION OF LITERATURE REVIEW ... 26
2.5 SUMMARY TABLE OF LITERATURE REVIEW .. 27
2.6 RESEARCH GAP .. 27

CHAPTER 3: PROPOSED APPROACH ... 29
3.1 WORD EMBEDDING .. 30
3.2 APPROACH ... 33

3.2.1 Wikipedia Crawling .. 34
3.2.2 Pre-Processing .. 35
3.2.3 Language Model Generation .. 36
3.2.4 Elicitation Scenarios ... 37
3.2.5 Cross-Domain Ambiguity .. 38
3.2.6 Cross-Domain Term Selection .. 38
3.2.7 Cross-Domain Ambiguity Ranking.. 40

CHAPTER 4: IMPLEMENTATION, RESULTS & DISCUSSION .. 44
4.1 DATA COLLECTION/DATASET ... 44
4.2 EXPERIMENTAL SETUP .. 45
4.3 RANKING OF TERMS FOR CROSS-DOMAIN AMBIGUITY USING WORD2VEC MODELS OF THE

LITERATURE .. 46
4.4 CROSS-DOMAIN AMBIGUITY RANKING USING WORD2VEC AND FASTTEXT MODELS ON

NEW DATASET .. 53
4.5 RANKING OF TERMS FOR CROSS-DOMAIN AMBIGUITY ON NEW DATASET USING

WORD2VEC AND FASTTEXT MODEL .. 53
4.6 COMPARISON OF WORD2VEC AND FASTTEXT COMBINED RESULTS ON NEW DATASET ... 62
4.7 SELECTION OF DOMINANT SHARED TERMS BY FASTTEXT ... 65
4.8 CASE STUDIES OF THE EFFECTIVENESS OF FASTTEXT TERMS .. 68
4.9 LIMITATIONS .. 70

CHAPTER 5: CONCLUSION & FUTURE WORK ... 71
5.1 CONCLUSION.. 71
5.2 FUTURE WORK .. 71

REFERENCES .. 72

iv

List of Figures

Figure 1. Thesis Outline ... 5

Figure 2. Overview & Major Outcomes of SLR.. 7

Figure 3. Search Process .. 11

Figure 4. Publication Year of cited Research Articles ... 13

Figure 5. Approaches for Cross Domain Ambiguity (I) .. 21

Figure 6. Approaches for Cross Domain Ambiguity (II) ... 21

Figure 7. Overview of Measuring Cross Domain Ambiguity.. 30

Figure 8. FastText 3-gram Representation of Word "string" ... 32

Figure 9. Training FastText on Domain Texts... 33

Figure 10. Wikipedia Articles Crawling .. 34

Figure 11. Wikipedia Articles of Domains as Text Files ... 35

Figure 12. Pre-processing of the Text .. 36

Figure 13. Generation of the Language Models .. 36

Figure 14. Code to Call Function for the Selection of Cross-Domain Terms 40

Figure 15. Dominant Shared Terms Ranking .. 42

Figure 16. Ambiguity Score of FastText in Comparison to Word2Vec (for I1 & I2) 56

Figure 17. Ambiguity Score of FastText in Comparison to Word2Vec (for I3 & I4) 58

Figure 18. Ambiguity Score of FastText in Comparison to Word2Vec (for M1, M2 & M3) . 61

Figure 19. Dominant-Shared Terms Ambiguity Scores Comparison (1) 63

Figure 20. Dominant-Shared Terms Ambiguity Scores Comparison (2) 63

Figure 21. Dominant-Shared Terms Ambiguity Scores Comparison (3) 63

Figure 22. Dominant-Shared Terms Ambiguity Scores Comparison (4) 63

Figure 23. Dominant-Shared Terms Ambiguity Scores Comparison (5) 64

Figure 24. Dominant-Shared Terms Ambiguity Scores Comparison (6) 64

Figure 25. FastText Word2Vec Ambiguity Score Comparison... 64

file:///E:/Nust/research/Documentation/Ibrahim%20Thesis.docx%23_Toc138755656
file:///E:/Nust/research/Documentation/Ibrahim%20Thesis.docx%23_Toc138755657

v

List of Tables

Table 1. Selected Research Papers with Catalogue ... 12

Table 2. Year-wise distribution of Selected Studies .. 13

Table 3. Data Abstraction and Combination.. 14

Table 4. Identified NLP Approaches for Automated Ambiguity Detection 16

Table 5. Identified Tools for Automated Ambiguity Detection .. 17

Table 6. Identified Techniques for Automated Ambiguity Detection 18

Table 7. Specific Cross-Domain Ambiguity Approaches .. 20

Table 8. Detail of the Cross-Domain Ambiguity Studies .. 27

Table 9. Scenarios Considered for Requirement Elicitation .. 37

Table 10. Domain with Wikipedia Articles ... 38

Table 11. Output Number of Terms from Different Scenarios Using Language Models of

Existing Code .. 46

Table 12. Code Files that Generated Dominant Shared Terms of Different Scenarios 47

Table 13. Terms of the Table 2 of [1] along with its Output File .. 49

Table 14. Terms of the Table 3 of [1] along with its Output File .. 50

Table 15. Terms of the Table 4 of [1] along with its Output Files .. 51

Table 16. Ambiguity Scores of the Terms of Table 13 Using New Language Models by

Word2Vec and FastText .. 54

Table 17. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 16 55

Table 18. Ambiguity Scores of the Terms of Table 14 Using New Language Models by

Word2Vec and FastText .. 56

Table 19. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 18 57

Table 20. Ambiguity Scores of the Terms of Table 15 (M1 & M2) Using New Language

Models by Word2Vec and FastText .. 58

Table 21. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 20 59

Table 22. Ambiguity Scores of the Terms of Table 15 (M3) Using New Language Models by

Word2Vec and FastText .. 60

Table 23. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 22 61

Table 24. FastText Word2Vec Comparison of Ambiguity Score .. 62

Table 25. Dominant-Shared Terms List by FastText for Light Controller and Mechanical

CAD Scenarios .. 65

vi

Table 26. Dominant-Shared Terms List by FastText for Medical Software and Athletes

Network Scenarios ... 66

Table 27. Dominant-Shared Terms List by FastText for Medical Device, Medical Robot and

Sport Rehab Machine Scenarios .. 67

1

CHAPTER 1: INTRODUCTION

Requirement engineering has a vital significance in the development of a software. It is the

phase that defines, documents, and maintains the requirements for all the upcoming phases in

the process. Commonly software system is built for different areas w.r.t its domain which

may be a simple straight forward and generalized field such as sports, construction or a more

specific and technical one such as mechatronics engineering. It sometime combines more

than one area for a single software development, e.g., sports and mechatronics engineering.

For this kind of situation, the requirements experts must meet with the domain specialists to

elicit the knowledge of its domain for the development of system [1]. In the requirement

elicitation process, even if a little ambiguity is left over, it leads to the major defects in the

later phases/steps.

Ambiguities in the system requirement can be of different types; specifically, the

requirements written in the natural languages have lexical, syntactic, or structural, semantic,

and pragmatic ambiguities in common. Lexical ambiguity occurs if a term used in natural

language requirement have un-related meanings due to poor usage of vocabulary [2]. In the

syntactic ambiguity the sentences have more tree of syntax with one, with diverse sense. A

semantic ambiguity exists if a sentence maybe interpreted into more logic expression [3]. In

the pragmatic ambiguity, meaning of sentence is subject to its context [4] and if someone

gives reference to a certain entity and that entity points to more than one meaning, this also

leads an ambiguous requirement called referential ambiguity [5]. After writing the

requirements, requirement analyst track them and remove the ambiguities in it. For the last

decade, natural language processing techniques are being applied successfully in the projects

wherever natural language is used to write requirements. Software requirements are based on

natural language initially from stakeholders’ point of view, which are addressed by

requirement engineers and domain experts in the iterations. Some of the ambiguities are easy

to trace out and some of the ambiguities may requires the meddling of relevant field experts

and stakeholders to rectify.

Natural language processing techniques are in use with the combination of other approaches

to analyze the requirements text for identifying ambiguities and inconsistencies. More

specifically if we talk about term ambiguities across the domain, there are lot of terms which

results varies in meaning subject to the domain i.e., the term ‘formula’ will be a mathematical

formula in one domain and a type of car for the other [1]. The study found different

2

approaches proposed to detect such kind of cross domain ambiguities, which were then

analyzed with the implementation and usage point of view.

The requirements in written form have been assumed plenty of times for the identification of

ambiguity in it. Some of the studies emphasis on the terms or expression, which may be the

source of uncertainties [6]. Various tools, techniques and approaches have projected for

uncovering and rectification related to the ambiguities in requirement’s document. Tools and

approaches in addition to Natural Language Processing techniques have been used for finding

uncertainties in the requirements [7]. The identified techniques are proposed for various kind

of ambiguities i.e., to address referential ambiguities, pragmatic ambiguities, domain specific

ambiguities and other variabilities in requirement documents [8], [9], [10]. Various studies

also proposed composite approaches and tools for better detection of anomalies in the

requirements and for its redressal.

This thesis proposes the identification of ambiguity caused in the requirements by different

terms. That is, the same term appears in different domains, but interpretation of the term

varies with respect to the domain in which it is used. The term ambiguity can occur when the

same term used to map different things. This may be due to feature of the language in use or

may be due to absence of or indefinite descriptions [11]. This form of ambiguity is more

problematic where there is more than one domain involved in the development of a system.

After the identification of these ambiguous terms from one domain based on its semantics,

the same term is checked in other domain(s) if it occurs sufficiently in that domain(s). These

ambiguous terms are then scored accordingly based on its ambiguity level and ranked upon it.

This procedure of ambiguity finding and ranking has done in the article [1]. The same

procedure is repeated in this study but via FastText Algorithm, and the results of both the

algorithms have been compared to determine which algorithm perform better for the same

purpose.

This chapter summarize that non-ambiguous requirements are essential for a successful

development of system and the focus here is on one of the ambiguity categories which

commonly occurs in natural language requirements, that is the terms which has different

interpretation in different domains. Word2Vec algorithm is used for detection of these

potential ambiguous terms in the literature. We used FastText on the dataset of different

domains to detect these ambiguous terms across the domains.

3

1.1 Motivation

The motivation of this research is to select the more effective approach for the uncovering of

vague terms used in the requirements gathered from different areas. The research used text

dataset from the Wikipedia articles related to five different domains. These articles were

considered to analyze general type data for different selected domains and to identify

ambiguous terms in it, which will lead to non-ambiguous requirements for further software

development. Also, it will provide an option to choose more appropriate approach to be opt

by requirement analysts for uncovering ambiguous terms in a certain domain requirement.

These ambiguous terms can then be modified for clarity of the meanings and to ease the

interpretation in the design phase.

1.2 Problem Statement

Requirement engineering has a significant role in the whole process of software development.

After the feasibility study, usually the requirements are elicited from the domain for which

the software is being developed. The requirements are elicited from domain expert via

different means such as questionnaires, meetings, interviews etc. These requirements are then

analyzed in different ways with a view to proceed further in the right direction in the

development cycle of the system. One of the ways among various is to detect ambiguities

from these requirements and eliminate or clarify as desired. These ambiguities can be of

different types needed to be identified. One of the common ambiguities exists in the

requirements is term ambiguity which is focused on this study. To deal with these

ambiguities, multiple ways were found in the literature. Most commonly Natural language

processing approaches were opted for the said purpose and precisely, skip-gram negative

sampling variant of Word2Vec algorithm had been used. In this study we considered

combination of approaches along with replacement of the approaches used in the literature

with other relevant solutions. Additionally, the outcome of approach must be compared with

the previous results got from the same dataset.

1.3 Aims and Objectives

The major objectives of the research are as follows:

• To perform a comprehensive systematic-literature-review of recent articles on cross-

domain ambiguity.

4

• To obtain dataset of different specified domains by crawling Wikipedia articles in text

form for further usage.

• To explore algorithms that are used particularly for the detection of ambiguous terms

in the corpus.

• To propose an approach that detect and rank the potential vague terms in the dataset

of different domains.

• To analyze the results which is obtained via new approach and to compare it with

previous results to observe any significance positive change.

1.4 Thesis Outline

The remaining work is structured as follows:

Chapter 2 states a literature review in detail and the important relevant work performed by

analysts and researchers in the previous few years, which covers the basics and background

of the ambiguity detection and NLP approaches usage for the analysis of requirements. The

systematic literature review is composed of three core sections. The ever first is the review-

protocol which displays detail upon the procedure using which the literature-review has

carried out. Second Section offers detail on research study carried out on this area in the form

of research-questions and tables. The section three shows the research-gap that are

encountered in the study.

Chapter 3 consists of the proposed approach in detail. It discusses the method in terms of an

overview of the algorithm, main components of the approach and depiction of solution.

Chapter 4 includes implementation, validation, and discussion on results together with

research-questions and related figures. It also compare results of our work with the state of

the art. Moreover, it precisely describes the limitations of this study.

Chapter 5 concludes the thesis and reveals the future work of this research.

The thesis outline is shown in Figure 1.

5

Figure 1. Thesis Outline

Chapter No. 1
Introduction

Chapter No. 2
Literature

Review

Chapter No. 3
Proposed

Methodology

Chapter No. 4
Results and
Discussions

Chapter No. 5
Conclusion

6

CHAPTER 2: LITERATURE REVIEW

This chapter covers the systematic literature review for the area of this research. The Chapter

comprises of an overview and major outcomes of Systematic literature, contribution of

literature review, review methodology, research questions, category definitions, review

protocol of literature review, results, and analysis, answer the research questions for literature

and conclusion of the SLR.

2.1 Overview and Major outcomes of SLR

There are several studies in which the authors presented tools, techniques, approaches, and

combination of these for the existence of cross-domain ambiguities in the requirements. Most

of these studies are covered in this SLR. It also provides an overview of detailed usage of

these approaches for the said purpose. Detailed research cover almost all the key features that

concerns with the use of natural language processing approach for the detection of ambiguity

in natural language requirements.

7

Figure 2. Overview & Major Outcomes of SLR

Overview and key results of SLR is depicted in Figure 2. Twentynine landmark articles which

were published from 2012 to 2022 in the major repositories were studied and analyzed in

detail after needful filtration as per selection criteria. The articles were then categorized in

further three groups for the purpose of analysis and to further study it to answer the research

8

questions. These groups are ‘Ambiguity Detection NLP Approaches – 10 papers’, ‘Tools for

Ambiguity Detection - 08 papers’, and ‘Ambiguity Detection Techniques - 07 papers. A

comprehensive analyzation of the final selected articles was performed to find the requisite

and accurate result. So, the whole synthesis of analysis is divided into three categories. Five

approaches were found relevant which were using Word2Vec algorithm with the combination

of POS tagging, Wikipedia crawling, language model generation, and Word-embeddings.

Ontologies based detection of term ambiguities were found in two studies. Ontologies were

developed with which the semantic-reasoner, N-gram module were used along with

clustering the contexts. Another approach was adopted for the same purpose using REGICE

tool that used QuARs and combine POS tagging.

The key contributions of Systematic Literature Review are:

a) Identifying the approaches of ambiguity detection in requirements.

b) Finding several automatic tools.

c) Reporting the usage position of the tool.

d) Detecting the major validation-techniques over which the rationality of the tools has

been confirmed by scholars.

e) identifying algorithms for ambiguity detection, stating its strategy and the procedure it

focused on for the ambiguity detection in natural language requirements.

f) Classifying the practical usage of several ambiguity finding tools and approaches.

g) Summarizing NLP approaches for the cross-domain ambiguity.

h) Finding more accurate and latest approach for the detection of terms potentially cause

of ambiguity.

2.2 Review Methodology

This literature review followed the guidelines of Kitchenham guidelines [12]. The key areas

of the methodology are planning, conducting and report. Review Protocol of the

methodology section is an important step which is further divided in two sub-categories such

as Review Protocol Development and Category Definition. More precisely, this segment

explains Category Definition and Review Protocol. Furthermore, research questions of this

study are also stated in this section.

2.2.1 Research Questions

Research questions have been summarized as below:

9

RQ1: Which techniques have been proposed in the literature for automated cross-domain

ambiguity detection in requirement engineering?

RQ2: Which NLP approaches have been used for automated cross-domain ambiguity

detection in requirement engineering?

RQ3: What are popular tools used / developed for automated cross-domain ambiguity?

RQ4: What are advantages and limitations of tools and techniques proposed for automated

cross-domain ambiguity detection?

RQ5: Which ambiguity detection approach has better research productivity over the years

from 2012 to 2022?

RQ6: How cross-domain ambiguity detection approach may be ranked as per their

accuracy?

2.2.2 Category Definition

The research has been divided into three main sections that helps finding answers to the

research questions.

a) Category 1: In this category the previous studies concerned with the identification of

techniques used for ambiguity detection in requirements, have been considered.

b) Category 2: This category step-in to the identified studies and filter out only those

which are very specific to NLP approaches used cross-domain ambiguities caused by

the same terms.

c) Category 3: In this category we have compared the mechanism of finding the cross-

domain ambiguities via popular and customized tools from the selected concerned

studies and identified the most common among them.

2.2.3 Review Protocol

After the category definition, the Review Protocol is formed as per the given procedure of

Kitchenham [12]. Review protocol has six stages. Two steps which is background and

research-questions are elaborated before, while rest of the steps are described in the below

captions:

I. Acceptance and Rejection Criteria

Acceptance and rejection mainly consists of a set of some proper rules and a criterion which

make the foundation for inclusion or exclusion of a specific study for the topic. These rules

10

consist of steps which are necessary to be followed with a view to decide regarding a study

for its inclusion or exclusion. The articles which do not follow these certain pre-defined

parameters are not considered for the SLR. Whereas the studies which fulfilled these rules

have been considered for further work. These parameters for acceptance and rejection of

papers are given below:

a) Subject: The papers which closely belong to the ambiguity detection in requirements

should be selected. Those studies which dealt with other than cross-domain

ambiguities must be dropped as this literature only focused on cross domain

ambiguity detections caused via same terms in different domains.

b) Publication Year: This literature deals only with the articles which are published

from 2012 onward till date. Even the relevant papers which were published before

2012 were rejected. This is because, the latest research on the topic was focused and

the second justification is that almost all this research was based on the results of

previous research. Therefore, this literature studies duration was sensibly selected.

This decade papers focused the more recent approaches related to the topic and

backing by previous studies on the relevant area. As an example, a framework based

on ontologies is used for the corrections of requirements with inconsistent state in

paper [13] published in 2016, while the same concept of using ontologies for the

same purpose was also used in [14] study. Hence the paper [13] covers the approach

beyond 2012.

c) Publisher: Papers were chosen from various well-known and authentic scientific

databases. The repositories include IEEE, ACM, SPRINGER to conduct this

literature review. These repositories are so dependable and reliable and the articles

which are selected via these databases endure a rigorous peer review. Thus, majority

of the articles for this SLR were selected from these databases.

d) Language: Only English language studies have been selected for this systematic

literature review. The studies written other than in English language were not

considered for this review.

e) Validation: The articles in which the validation of approaches, tools is done

thoroughly with the help of dataset, open-source data or supported via a proper case

study are included. As an example, a paper [10] presented the detection of

ambiguous terminologies using NLP approach with Word2Vec algorithm and its

validation process by presenting dataset and complete project. On the other hand, the

articles that missing validation or case studies were excluded from the study.

11

II. Search Process

The well-known repositories i.e., IEEE, Elsevier, ACM, Springer started to be explored after

specifying the criteria of acceptance / rejection of studies. Different keywords and search-

items were used for finding the papers in the mentioned databases. Search of the articles was

performed using very relevant keywords such as “ambiguity detection in requirements”.

Resultantly, hundreds of links were coming up which could not be practically examined. For

example, the IEEE showed 19700 results for the search phrase “cross domain ambiguity in

requirements” in default search setting.

Figure 3. Search Process

The searching results were refined by applying filters like the searching publication range

was applied i.e., from 2012 to 2022. The logical operators were applied to extract the process

of search on keyword searching. Furthermore, synonyms of the keywords and possible

replacement words were tried with a view not to miss out any relevant and important study

from the literature. The snowballing guidelines [15] (forward and backward snowballing)

were used to search further related studies. We gathered the most related papers after these

procedures to consider it for this systematic literature review. With these methods, a detailed

12

search process was carried out, through which we found 29 research articles to find out

precise and correct answers to the research-questions. The whole searching procedure is

explained in Figure 3, and the phases are described below:

• At first, 99 papers got from whole databases. Titles of research were checked and

analyzed the relevance of it as per criteria. Eleven studies were rejected which shows

insignificance to this research in their titles.

• Secondly, we focused on the abstract of the remaining 88 papers. The studies whose

abstract went against the defined criteria were dropped from consideration. Total of

10 papers were discarded after the study of paper abstracts.

• The remaining 78 papers were analyzed. Detailed study of the papers was carried out,

in which validation of the studies was also considered for the verification of the

approach adapted in the papers. Based on the detailed investigation of remaining

papers, 49 further articles were excluded from the literature review of this research.

• Finally, the remaining 29 papers were selected for a comprehensive analysis and

systematic literature review on the topic.

Table 1. Selected Research Papers with Catalogue

Sr.

Catalogue Article

Type

Studies References (selected) No. of Articles

1 IEEE
Conference [3], [4], [8], [9], [10], [16], [17], [18],

[19], [20], [13], [21], [22] 13

3 ACM Conference [23], [24] 02

4 Springer

Journal [1], [25], [26], [27], [28] 08

Conference [29]

Book Sec. [30], [31]

5 Others Journal [32], [33], [34], [35], [36], [37] 06

III. Quality Evaluation

Research studies from high impact articles which were authentic and acknowledged

internationally were tried to be selected from scientific repositories to ensure the reliable

outcomes of the literature review. Major databases were considered to select articles

according to the criteria for the selection and rejection as mentioned above. The detail of

selected papers and its distribution via concerned publishing scientific databases are given in

Table 1. The table explains the details of the selected articles to be referenced, their

databases, the paper publication type i.e., conference or journal, and total selected papers

from repository. From IEEE 13 papers are selected, from ACM 02 papers, 08 papers from

Springer, and 06 articles from other journals.

13

Figure 4. Publication Year of cited Research Articles

Moreover, studies were separated based on its type i.e., conference and journal, against each

database in the table. Such as, 13 conference papers from IEEE database are selected, 02

conference papers from ACM repository is added to the SLR, 05 journals, 01 conference

paper and 02 book sections are included from the Springer database, and 06 studies which

were very associated with this study was also included from other journals.

Table 2. Year-wise distribution of Selected Studies

Sr. Year Studies Contribution percentagewise Total

1 2012 [8] 3.4% 1

2 2013 [37] 3.4% 1

3 2014 [4] 3.4% 1

4 2015 -- 0% 0

5 2016 [13] 3.4% 1

6 2017 [9], [17], [27], [32] 13.8% 4

7 2018 [3], [10], [18], [20], [25] 17.2% 5

8 2019 [16], [19], [24], [26], [30], [34], [1] 24.1% 7

9 2020 [21], [29], [31], [33], [36] 17.2% 5

10 2021 [22], [23], [28], [35] 13.8% 4

11 2022 -- 0% 0

Yearly detail of the studies selected for the review is shown in the Figure 4. Vertical axis of

the graph show us the maximum number of article(s) per year included in the literature.

Similarly, horizontal axis indicates years in which the papers are published that is from 2012

to 2022.

Table 2 depicts the Figure 4 in tabular form which presents the division of the selected papers

year-wise. The focus was not to miss any relevant study from the review in these years and to

14

add the latest possible information from the trusted sites. The papers are mentioned against

each year for the reference. Percentage of year wise contribution is listed in the table. The last

column of the table shows the total number of selected papers in each year for the literature.

An important point here is that this research area started to be explored more from 2017

onward as the number of studies from 2017 onward were found more than the previous years

back till 2012. Similarly, IEEE database has more research studies relevant to this research

topic as compared to other databases, as a smaller number of studies were found from other

repositories. Resultantly, 29 total papers were extracted for this systematic literature review

finally.

Types of the publications and sortation is also a significant factor in the SLR demonstration

in better way. Therefore 13 journal papers + book sections out of 29 are included in this SLR,

which is 44.8% contribution in the study. Similarly, 16 conference papers were included in

which calculated about 55.2% of the total studies. These studies qualified the criteria of

inclusion in this SLR.

IV. Data Extraction and Synthesis

Selection of studies was done according to the pre-defined criteria after which a pattern was

created to extract and synthesize the data. This process is shown in Table 3. Using this

pattern, answers to the research questions have automatically been extracted. It also helps us

in gathering and synthesizing the required details from the articles. The information obtained

from the selected studies have bibliography info, an overview of the study, methodology,

description of the implementation, results of the research, limitation of the study, tools,

techniques, and approaches adapted in the research papers. With this procedure all answers to

the research question were satisfied. The pattern facilitated in gathering outcomes of the

numerous unnecessary data.

Table 3. Data Abstraction and Combination

Sr Type Specification

1 Bibliography Data

Type of the research-paper i.e., conference or

journal, title headings, author, yearly

publication, publisher’s detail is studied.

Info Abstraction

2 General-Data This contains general overview of the SLR

3 Results Validation
Result of the research ideas is validated via

formal methods

Data Combination

5 Categorization All categories are considered to answer the

15

questions, and then outcome is classified

6
Approaches &

Techniques

The most relevant approaches & Techniques

are separately mentioned in Table 7

2.3 Results, Analysis & Answers to Research Questions

The main purpose of the study is to observe and analyze certain literature to search and find

answers to the research questions. In this section we are reporting the outcomes of the

extracted data after the detailed examination of data. The important journals which

contributed to the recent approaches in ambiguity detection are; ‘Automated Software Eng’,

‘Empirical Software Engineering’, ‘From software Engineering to formal methods, tools,

back’, ‘Requirements Engineering: Foundation for Software Quality’, ‘Journal of

Telecommunication, Electronic and Computer Engineering (JTEC)’, ‘Association for

computational linguistics’. Similarly, some of the conferences that contributed to this

systematic literature review are ‘Artificial Intelligence for Requirements Engineering

(AIRE)’, ‘International Workshop on Empirical Requirements Engineering (EmpiRE)’,

‘International Requirements Engineering Conference (RE)’, ‘Evaluation and Assessment in

Software Engineering’, ‘Human System Interaction (HSI)’, ‘International Conference on

Software Engineering (ICSE)’ and some others.

1) NLP Approaches Identified for Ambiguity Detection

One among the research questions includes the NLP approach used in the literature for the

detection of ambiguity in requirements. Various NLP approaches have been applied to sense

ambiguities in natural language requirements. An approach is precise methodology being

followed in which it is described in what way artifacts are formed. This portion discusses the

natural language processing approaches used by different researchers in the selected research

literature. From this literature 09 different NLP approaches were identified being used by

researchers in a number of ways. These approaches and combination of approaches are listed

in Table 4. These approaches are mentioned in 10 different research articles published

between 2012-22. These approaches are mentioned with their concern abbreviations

wherever available. NLP basic techniques like POS tagging, lemmatization, tokenization

have been used in majority of the studies with a combination of other approaches to obtain

the purpose. Wikipedia crawling, Word embeddings, Language model generations were other

commonly used approaches along with these previously mentioned approaches. Different

pre-defined and customized algorithms were adapted for ambiguous word detection. Some of

16

them are Word2Vec, Text mining, Constituency parser, BabelNet and Frame semantics. This

combination of approaches along with its custom usage to trace ambiguity are listed against

the study referenced.

Table 4. Identified NLP Approaches for Automated Ambiguity Detection

Identified NLP Approaches Custom Usage of the Approach Identified Research

Word2vec (SGNS)
Word Embeddings,

Language Model Generation
[9], [10]

Linear Transformation of Word

Embedding Spaces

Applied linear transformation on

Word Embedding spaces via

Machine Learning techniques.

[33]

POS tagging and normalization

(using Stanford parser)

Graph-based Centrality for word

sense disambiguation
[3]

BabelNet (lexical database) for

Ambiguity detection.

N-gram approach lexical

ambiguity detection

POS Tagging

Online English dictionary (for

disambiguation)
[18]

Tokenization

Wordnet

OpenNLP

POS Tagging,

Generated & analyze models for

detecting ambiguities and

inconsistencies. (A Theoretical

approach)

[34]

Tokenization,

Morphological analysis,

Semantic analysis

Text mining

Active learning

Frame semantics Generated via SEMAFOR
[35]

NLTK for POS Tagging

Wikipedia crawling (through

Petscan)
Word Embeddings,

Language Model Generation
[19] POS Tagging

Tokenization

word2vec (SGNS)

POS Tagging

Heuristics applied for the ease of

decision making related to a

phrase.

[22]

Tokenization

Constituency parser

Wikipedia crawling

Heuristics

word2vec (SGNS) Word Embeddings,

Language Model Generation,
[1]

Wikipedia crawling

17

POS Tagging

Customized algorithms for cross

domain term selection and

ranking

2) Tools Identified for Ambiguity Detection

In the selected literature studies, some of the authors proposed tools/solutions for identifying

ambiguities in requirements. Tools having specific functionalities designed to achieve a

targeted aim through some processing. This section represents the modern ambiguity

detection tools and are listed in Table 5. Total of 09 tools identified that are precisely used for

the identification of ambiguity in requirements. These tools are listed from the selected

literature found in 12 research studies published in between 2012-22.

Some of tools are used in single while some have made combination with other tools, NLP

approaches or requisite alteration to achieve the goal. Each tool with its combination or

alteration if any is listed along with its custom usage design for ambiguity detection in

requirements. The last column shows the research reference in which the approach has been

identified. The mostly used tool in the literature was Quality-Analyzer for Req Specification

(QuARS) and General-Architecture for Text Engineering (GATE) on second.

Table 5. Identified Tools for Automated Ambiguity Detection

Identified Tools Custom Usage of Tool Identified Research

Tokenizaiton

Language Model Generation

SpaCy-based NLP tool

prototype

[23]

POS_Tagging

Dependency_Parsing

Lemmatization

Sentence_Boundary Detection

Rule-Based-Match

Syntactic-derivation tree

GATE Shallow parsing

Gezetter

Jape Rule

[25]
SREE

QuOD -- [26]

GATE

Shallow Parsing

Gazetteer

JAPE Rules

[27]

QuARs
Lexical/syntactical analyzer

quality evaluator
[20], [24], [30], [36]

18

GATE
Text Extraction

Boilerplate checking

BNF Grammar with JAPE

[32]

Stanford NLP parser

QuARS

Requirements Glossary term

Identification and Clustering

(REGICE)

[31]

Part-of-Speech (POS) Tagging

Requirement Assessment Tool

(RAT)

RAT (in comparison with other

four tools, i.e., QuOD,

QVscribe, Innoslate, RQA)

[16]

QuARS

Compared with Req. Scout,

QVscribe
[29]

3) Techniques Identified for Ambiguity Detection

Most of the Techniques are applied to validate different tools. Some of the researchers have

used combination of open-source projects and models for validity. Techniques mostly

express how to apply or use the tool(s) or other functionality to achieve goals. Six different

techniques and combination of techniques were identified from the selected studies that were

designed in such a way that detects ambiguities in the requirements. Total 07 studies were

identified using these techniques for the above-mentioned purpose. These approaches were

applied to sense these inconsistencies from natural language requirements, general listed

common in use requirements, while some were applied on controlled natural languages

(CNLs). As described above, these techniques were detected from the papers published

between 2012-22. These identified techniques are listed in Table 6, along with its custom

usage to obtain the purpose. Last column of the table lists the research article references from

which these approaches are identified.

Table 6. Identified Techniques for Automated Ambiguity Detection

Identified Techniques Custom Usage of the Technique Identified Research

Syntax for NL requirement
logic based CNLs (controlled natural

language)

Effective requirement’s language

proposition.

[17] Use artifact i.e., architecture

model and connecting it with

the texts of requirement.

Semantic of Business

Vocabulary and Rules

(SBVR)

Controlled NL

used for ambiguity resolution [28]

19

Ontology Based Framework

1. Develop ontology represents

domain knowledge.

2. A Semantic reasoner for the

deduction of logical

inferences from the axioms

[13]

N-gram module For non-referential ambiguities

[37]
Ontologies

(Wiktionary, Wikipedia

disambiguation pages) for across

domain ambiguities

Clustering the contexts used

for either of the above

--

Score-Based Ambiguity

Detector and Resolver

(SBADR)

(Using “Stanford Core NLP” API

and four filtering pipelines.)

Worked on Coordination, attachment,

& analytical ambiguities

[21]

Shortest-path (least-cost path)

search Algorithm

Constructs Domain Knowledge

Graph for identifying ambiguities.

[4], [8]

4) Cross-Domain Ambiguity Detection Approaches

There are several different types of ambiguities which can be found in requirements through

proper analysis of these requirements. If the requirements are elicited in natural language can

be in inconsistent state due to various reasons. These may be due to syntactic ambiguities,

structural or lexical ambiguities, semantic or pragmatic ambiguities in these requirements

which leads the requirements interpretation to a different perspective other than stockholders’

actual needs. Lexical ambiguity may occur if a specified terminology has a meaning that is

not related to problem due to poor vocabulary usage [2]. If the sentence has more than one

syntax trees in different ways, then this is syntactic ambiguity but if a sentence can be

interpreted into more than one logical expression; this kind of ambiguity is semantic

ambiguity [3]. Pragmatic ambiguity occurs when meaning of an expression depends on its

context [4]. Similarly, if a reference points to an entity which has more than a single

interpretation resultantly makes a requirement inconsistent and such kind of ambiguity may

be referred to as referential ambiguity [5].

The ambiguities as mentioned above make a requirement inconsistent in different ways.

Either of these leads to the wrong interpretation of the user needs which can then be costly

recovery for both developers and stakeholders. One of them is an ambiguity caused by terms

used differently for different domains and meaning of these terms may be changed if the

20

requirements domain change [9]. Such kind of terms if associated with computer

terminologies then it is more likely to be considered in alternate yet diverse meaning as

requirement analysts, designers and developers may interpret it certainly as per meaning of

their own domain. This specific type of ambiguity was targeted by a very few research

studies which is figured out from the specified literature.

Among various tools, techniques, and NLP approaches specifically the target of which is

identification of ambiguities lies in the same terms of different domain are separated and

listed below in Table 7.

Table 7. Specific Cross-Domain Ambiguity Approaches

Approach/Technique Number of research Identification

Word2Vec (SGNS)

Word Embeddings
5 [1], [9], [10], [19], [33]

Develop Ontology representing

domain knowledge 2 [13], [37]

Requirement Glossary term

identification and clustering

(REGICE)
1 [31]

Skip Gram Negative Sampling (SGNS) type of Word2Vec perform Word Embeddings which

represents words in vectors and using vectors spaces, semantic similarities among the words

are computed. Based on the input words, various language models are generated and using

documents of different domain, the meaning of words from the different domain are being

compared [1], [9], [10], [19], [33]. 05 research studies have been found using this similar

approach for detecting ambiguous terms across the domain. For the same purpose, 02 studies

using ontology-based approach for the representation of domain knowledge [13], [37]. One

of the articles used QuARs tool in combination with NLP basics functionalities and designed

a customized tool REGICE tool to detect term ambiguity in requirements [31]. Word2Vec

algorithm has used more than any other technique for the detection of ambiguities in different

domain as shown in Figure 6 & Figure 5. Both pie and box-and-whisker charts depict the

number of research categorized upon specified approach for the said purpose.

21

Based on NLP techniques, the domain ontology is supposed to be developed using

SRS document. These ontologies and language models represent domain

knowledge, act as domain model which helps in removing various types of ambiguities in

comparison with other domain and particularly term ambiguities detection [13].

In addition to that n-gram module was also used for referential ambiguity detection

followed by two ontologies and clustering. One ontology used Wiktionary for

identifying terms having multiple senses, other used Wikipedia for identifying terms

having disambiguation pages [37].

Figure 6. Approaches for Cross Domain Ambiguity (I)

Figure 5. Approaches for Cross Domain Ambiguity (II)

22

For the detection of variabilities and ambiguity in natural language requirements QuARs tool

was used and particularly the usage of a tool REGICE which is using the glossary of terms

from the requirement document, building clusters of the similar requirement terms. This tool

clarifies the use of these terms in relevance to the domain and helps disambiguate the

requirement text of the software domain [31].

5) Answers to the Research Questions

1. Which techniques have been proposed in the literature for automated cross-domain

ambiguity detection in requirement engineering?

Answer: Total of six techniques have been proposed for ambiguity detection in the

requirement documents as shown in Table 6. Two of the techniques proposed controlled

natural languages (CNLs) templates for the requirements. One of these focused on the syntax

of the requirements using logic based CNLs. Formal languages are used along with these

CNLs for removing the ambiguities using syntaxes with additional information [17]. This

study combines natural language requirements with the predefined formal syntaxes.

Additionally, these natural language requirements are mapped with generated models.

Outcome of this process believed to disambiguate the requirements texts. This study

considers a requirement as a property, which would be either true or false. It considers the

requirement a Boolean valued function. The requirements are divided into the possible

smaller parts to make atomic expressions of it. These atomic expressions and implication

functions are bonded with conjunctions making tree like structure. This way the requirement

text is interpreted to perform reasoning and check it as per consistency criteria.

CNL is also considered as bridge between natural language requirements and the actual

formal requirements in the study [28]. It also reports logical representation usage as

formalized mathematical expressions in the place of natural language to avoid ambiguity in

the software requirement specification (SRS). One significant study related to the cross-

domain ambiguity used domain ontology to explore the related domain knowledge [13]. This

technique used NLP techniques to discover the terms synonyms that are multilingual. This

concept epitomizes an abstract domain model. Resultantly, the SRS document is converted

into formal logical form in which each requirement will be interpreted in exactly one way to

eliminate ambiguities.

Tyler Baldwin suggested a Term Ambiguity Detection framework having three modules [37].

One of the modules used to sense non-referential ambiguity by examining N gram data from

23

requirement text. Second module used two ontologies for the detection of cross domain

ambiguities. One ontology used Wiktionary to check whether a term has other than one

senses, if so, that term will be considered as ambiguous term. Second ontology is to find that

if a term has Wikipedia disambiguation page, then mark it ambiguous. The third module used

an approach by clustering contexts of words. For this module they used topic modeling

method “latent Dirichlet allocation (LDA)” [38]. If a term is not seemed in the most weighted

10 words in a cluster, then it is marked as ambiguous. As a conclusion, a term is marked

ambiguous if any of these three modules indicates ambiguity for it.

For the detection of coordination ambiguity, attachment & analytical ambiguities of natural

language requirements, a technique namely “Score-based Ambiguity Detector & Resolver

(SBADR)” has been used by Mohamed Osama [21]. This technique used “Stanford Core

NLP” API with combination of four filtering pipelines. The API is used to obtain maximum

possible parsing tree of the sentences in a requirement. These generated trees are then passed

through the pipelines to sense and resolve the syntactic ambiguity by suggesting maximum

possible interpretation of the given requirement. These interpretations are then analyzed a

sentence level for the different types of ambiguity in it. It provides a reliable automated

identification process for syntactic ambiguity and not restricted to a particular ambiguity

type.

A technique outlined in the research [4] tries to identify pragmatic ambiguity in papers with

NL requirements. A requirement has a pragmatic ambiguity, if various readers understand it

differently, subject to the requirement context. A requirement's context refers to the other

related requirements in document that have an impact on how well the requirement is

understood as well as the reader's background knowledge [8], which gives interpretation

to the requirement's concept. This study builds graphs for the domain knowledge from the

requirement document and using these graphs identifying pragmatic ambiguity in the

document.

2. Which NLP Approaches have been used for automated cross-domain ambiguity

detection in requirement engineering?

Answer: In the relevant literature of the cited period, Nine NLP approaches were identified

that are proposed for the ambiguity detection in the requirement documents as shown in

Table 4. Total of five studies were more specific to detect cross-domain ambiguity and all of

24

them used word embeddings, SGNS variant of Word2Vec algorithm in combination with

other techniques for the detection and rectification of this specific type of ambiguity [1], [9],

[10], [19], [33].

3. What are popular tools used / developed for automated cross-domain ambiguity?

Answer: Use of nine tools has been identified from the research. As mentioned in Table 5 in

detail. Majority of the tools were used for vague terms identification, other types of

ambiguities in requirement documents. Only a single tool that was found to be proposed for

cross-domain type ambiguities was REGICE [31].

4. What are advantages and limitations of tools and techniques proposed for

automated cross-domain ambiguity detection?

Answer: Various tools & techniques and NLP approaches have been identified from the

literature which is discussed below:

 REGICE Tool: As the focus is on term ambiguity in the requirements across the domain,

therefore REGICE (Requirement Glossary term identification and clustering) is suggested in

the [31] in detail which basically extract terms, computes similarity in them, and divide these

terms into relative terms clusters as presented in [39], but it works on one requirement

document only at a time.

Developing Ontologies: One of the modules proposed for cross domain ambiguity detection

employs ontologies. The terms that have more than one senses in Wiktionary or pages in

Wikipedia were considered as ambiguous. Issue in this methodology is the reason of specific

term selection from the large text, i.e., all the appeared terms cannot be processed, and this

approach was recommended for limited number of terms.

Word2Vec (SGNS)/Word Embeddings: Majority of the study used this approach for

determining cross-domain ambiguities from requirements which generate language models

and computes semantic similarity between words of different domains. Word2Vec model

uses cosine similarity for the computation of similarity among words in vector space. The

prominent feature of this approach is that it selects those terms which occurs highly frequent

in one domain and that appears sufficiently in other domain(s).

5. Which ambiguity detection approach has the better research productivity over the

years from 2012 to 2022?

25

The literature has revealed several tools, strategies, and NLP approaches, which are

addressed below:

One of the ambiguities type in the requirements brought on by several terminologies used in

the natural language requirements. In other words, although a term may exist in several

different contexts, its meaning will change depending on the context. When two different

concepts are mapped to the same term, ‘term ambiguity’ could arise. This could be because

of the language being used, the lack of descriptions, or both [11]. In situations where more

than one domain is involved in the creation of a system, this type of ambiguity is particularly

difficult. The same phrase is examined in other domains if it occurs frequently enough there

after such ambiguous terms in one domain are identified based on their semantics. All the

ambiguous terms were then ranked and graded in accordance with their degree of ambiguity.

This method of ambiguity detection and rating was used to create the article [1].

6. How cross-domain ambiguity detection approach may be ranked as per their

accuracy?

REGICE (Requirement Glossary term identification and clustering), which basically extracts

terms, computes their similarity, and divides those terms into relative terms clusters as

presented in [39], is suggested in the [31] in detail because term ambiguity in the

requirements across the domain is the priority. However, it only works on one requirement

document at a time. Ontologies are used by one module suggested for cross-domain

ambiguity identification [37]. Wiktionary terms and Wikipedia entries with several meanings

were seen as ambiguous. The main issue with this methodology is that it only works for a

small number of terms because it is impossible to process all the terms that exist in the

immense text.

An approach was employed by most of the articles to identify cross-domain ambiguity from

requirements that produce language models and compute semantic similarity between terms

of various domains [1], [9], [10], [19], [33]. The Word2Vec model calculates word similarity

in vector space using cosine similarity. This approach's standout characteristic is that it

chooses words that are used frequently in one domain and that sufficiently exist in other

domains.

26

2.4 Conclusion of Literature Review

The existence of cross-domain ambiguity in the requirements covered by this SLR has been

addressed in several research articles that have reported methodologies, approaches, and

combinations of these approaches. It also gives a general overview of how these methods are

used thoroughly for the intended purpose.

The use of a natural language processing technique for the identification of inconsistency

within natural language requirements was extensively studied, covering nearly all the

significant concerns in the limited yearly frame. After the necessary filtration in accordance

with the selection criteria, 29 landmark publications that were published in the main

repositories between 2012 and 2022 were studied and thoroughly analyzed. The articles were

subsequently separated into three further groups for assessment and further investigation to

get the answers to the research questions. These groups are 'Ambiguity Detection NLP

Approaches - 10 papers', 'Tools for Ambiguity Detection - 08 papers', and 'Ambiguity

Detection Techniques - 07 papers'.

 To obtaining the necessary and precise result, a thorough analysis of the final chosen articles

was carried out. The entire synthesis is thus separated into three groups. The Word2Vec

algorithm with the integration of POS tagging, Wikipedia crawling, language model

development, and Word-embeddings were found in five relevant studies. Two research

studies found that term ambiguities might be detected using ontologies. Semantic-reasoner,

N-gram module, and context clustering were employed in the development of ontologies.

Another strategy employing the REGICE tool that combined POS tagging with QuARs was

employed for the same objective.

The identified approaches analyzed each one in detail with an aim to carry out the techniques

which work on automated cross-domain ambiguities. As compared to other identified tools,

techniques and approaches which are proposed for cross-domain ambiguities, ‘word

embedding through SGNS variant of Word2Vec used in combination with other algorithms’

is implemented more than any other proposed techniques successfully for the required

purpose.

27

2.5 Summary Table of Literature Review

Table 8. Detail of the Cross-Domain Ambiguity Studies

Tool /

Approach

Reference

No.

Author(s) Publication

Year

Combination

Tool(s) /

Algorithm(s)

Comparison

Req Glossary

term

identification

and

clustering

(REGICE)

[31] S. Jarzabek 2020

QuARS

 Works on one

requirement

document only

at a time
Part-of-Speech

(POS) Tagging

Develop

Ontology

representing

domain

knowledge

[13] M.p.s Bhatia 2016

Ontology Based

Framework

Recommended

for limited

number of

terms

Semantic

reasoner

[37] T. Baldwin 2013

N-gram module

Ontologies

Clustering the

contexts used

for either of the

above

Word2Vec

(SGNS)

Word

Embeddings

[1] A. Ferrari 2019

Word2Vec (SGNS)

NLP Techniques

Language Models

Not any of the

Above

limitations.

Works with

multiple

Domains

[9] A. Ferrari 2017

[10] A. Ferrari 2018

[19] S. Mishra 2019

[33] V. Jain 2020

Table 8 presents a summary of the literature on tools/frameworks that are proposed by

worthy researchers. These approaches are used for cross-domain ambiguity detection /

resolution. It also provides to-the-point knowledge about tools/frameworks as the Algorithm

used, the comparison in these approaches/results, author's information, publication year and

cited reference number.

2.6 Research gap

In this section area for the improvement in the existing research literature is discussed. A

detailed analysis of the selected articles was carried out in which tools, techniques,

frameworks, and other NLP approaches were used. After a comprehensive screening

28

procedure filtered the research that stipulates an endorsement for the detection of the

ambiguities caused by terms in requirements across different domains.

The gap found in our selected studies was that research focused on using different approaches

like using ontologies, QuARs tool with NLP approaches, and Word2Vec algorithm with NLP

approaches. The first two approaches have some deficiencies as mentioned in Table 8 in the

comparison column. However, Word2Vec model is featured as it selects ambiguous yet

highly frequent terms in more than one domain. Data of different domains was taken from the

Wikipedia articles for which the Wikipedia crawling of the relevant domain articles was

performed. After which language models are generated through Word2Vec model based on

the text corpus. The model uses cosine similarity for the computation of similarity among

words in vector space.

 The words that sense ambiguous based on the context of the word are marked as ambiguous

and assigned dissimilarity score. But some of the words in the text that have more than a

single meaning in different domains are scored less by the model as compared to other words.

It is therefore the target of this research is to apply some other algorithm / model using the

same parameters and analyze ambiguity sense in terms from the given corpus or other

analyzer as well to find an improved solution to the gap.

29

CHAPTER 3: PROPOSED APPROACH

This Chapter presents approach for the most suitable alternative of the Word2Vec algorithm

for the detection of ambiguities caused by the terms used in natural language requirements

that are domain dependent. The approach has a pipeline of data collection, pre-processing of

data, building language model, applying alternative algorithm(s), and resultant terms score of

dissimilarity.

The alternate algorithm used in this approach is FastText. The potential ambiguous terms

were scored as per their dissimilarity score. The score is then compared with the previously

generated dissimilarity score of the previous approach. Figure 7 shows the basic procedure of

this approach.

 The approach starts with domains of the software requirements. Data considered for the

domain is taken from Wikipedia via Wikipedia crawling. The process gives us data for each

domain to be processed further. Wikipedia articles for predefined domains are crawled and

resultantly domain documents are collected. The domain documents become the input for the

generation of language models. Language models for each of the domains are separately

generated. The cross-domain terms are selected from all domain documents. Those terms are

selected which appeared enough in at least two of the domains and ambiguous by meaning

with respect to its domain. This process produces dominant-shared terms of the domain. The

dominant-shared terms are then scored as per its ambiguity level called ambiguity score. This

score is generated through language models of the domains. Higher score indicates that the

term has more different interpretations as compared to another domain and vice versa. The

terms are then ranked as per their ambiguity score.

30

Figure 7. Overview of Measuring Cross Domain Ambiguity

3.1 Word Embedding

Word embedding comprehend combination of approaches to represent the words in a vector

space as numerical vector. This representation of words enables to measure similarities in

these vectors and thus the semantic similarity in the words can be calculated [9]. It is

automatic word representations that incorporate semantic information from a specified corpus

of natural language (NL). Specifically, a vector space is built based on given

input called word embeddings, which are vector representations of words. If the matching

words in the input corpus are more semantically similar, the distance between word

embeddings will be closer. Consequently, the distance between vectors will be less for

31

more similar words (given a domain specific corpus) than the distance in vectors for less

similar words.

 The base of word embedding is distributional structure [40] where the author stated about the

distributional facts that a speech can possibly be divided into discrete segments which has

distribution in speech yet independent in its own. These segments are considered as elements.

Other distributional facts stated in some elements are same as per their distribution. These

similar terms are combined in a set called “similarity groupings”. The degree of dependance

of same set elements can be measured upon the utterances of the elements. The sets

interpretation of these elements varies domain to domain but if an element appear in the same

context may have similar meanings.

Collobert and Weston proposed to train word embeddings using a deep neural network

expects words based on two words on the right and two words on left [41]. One of the most

well-known word-embedding approaches was presented in the study [42]. The term "skip-

gram with negative sampling" (SGNS) refers to this technique. The log-bilinear models were

suggested to efficiently learn continuous word representations from very large datasets. Some

of the vector space models and their classes are studied in the Turney and Pantel article [43].

The "Word2vec" model created by Google researchers [44] learns and creates word-

embedding from corpus of natural language text. The Word2vec implementation of skip

gramme negative sampling (SGNS) [42] predicts a set of words w ∈ VW and their contexts c

∈ VC, where VC and VW are respectively the vocabularies of the context-words and input-

words. A word's context words wi are a group of words (wi-win, …, wi-1, wi+1, …, wi+win) for

a given window size win. Each w, c ∈ ℝd is the d dimensional word embedding w word and

c context. Each word/context vector formed by Word2Vec from text corpus and analyzed to

compare them for semantic similarity [45]. Negative sampling's (NS) primary goal is to

develop accurate word-vector representations from a corpus. Word vectors represented in the

paper [19] from the different domain’s requirements using Word2Vec and the author aimed

to use FastText for the same purpose in the future.

The study of Fabiano and Nan [46] demonstrated that Word2Vec in comparison with

FastText is less suitable for the representation of high dimensional word vectors specifically

when transitory data, multiword combinations, spelling mistakes or if there is multilingual

data exists. FastText specifically makes advantage of the sub-word information to

32

make effective representation of rare words when embedded [47]. The author of article [48]

trained different models for vector representation from text corpus (tweets), demonstrated in

his study that FastText had the higher precision among other models i.e., Word2Vec and

GloVe and effectively handle different disparities in linguistic styles which is a part of

natural language. FastText is a useful way to represent sentences as it helps in utilizing word

morphology, which allows words with similar radicals to share training [49].

The Word2Vec extension FastText proposed by AI research laboratory Facebook in 2016

[50], [51]. FastText divides words into multiple n-grams called sub-words [52], in contrast to

Word2vec, which input a single word to the neural network. Example of the n-grams for a

word string is str, tri, rin, ing. The total of these n-grams will be embedding vector to

represent the word string, as shown in Figure 8. We receive word-embedding for all n-grams

provided the training dataset after the neural network is fully trained. Due to the high

likelihood that a certain n-grams will also exist in other words, FastText accurately depicts

unusual words. It's important to note that Word2vec does not offer any vector representations

for words that are not present in the corpus.

Figure 8. FastText 3-gram Representation of Word "string"

The cosine similarity is used by the FastText model to determine the semantic relationship

between two distinct words in a vector space. If we assume that there are two words

embedding vectors wʹ and wʺ, the following equation can be used to compute cosine

angle of these vectors [45].

cos(wʹ, wʺ) =
wʹ. wʹʹ

|wʹ||wʹʹ|

The scoring range of a word is in between 0-1. The words are employed in nearly

a different context and are more semantically dissimilar if the score is close to 1. The

33

opposite is true only if the score is nearer to 0, which indicates that the terms are not

so related. Figure 9. Training FastText on Domain Texts shows training of the FastText on

the input domain’s corpora.

Figure 9. Training FastText on Domain Texts

3.2 Approach

The suggested method for creating a prioritized list of possibly ambiguous terms is shown in

Figure 7. To limit the scope of our process, we concentrate on nouns rather than the terms as

a whole. However, the strategy is transferable to other linguistic categories.

The strategy is as stated below. To extract domain-specific documents for a given domain,

we first crawl Wikipedia (Wikipedia Crawling). Then, we use the FastText model to train the

word embeddings (Generating Language Models) from the corpus formed up of domain-

specific documents.

The next step is to look for the most common nouns that appear across texts (Cross-domain

Term Selection). We compare the meanings of each of the nouns, that we refer to as

dominant shared terms, across the various domains. As was previously said, these are words

that are frequently used in different domains, and as a result, when stakeholders use them in

different contexts, they may frequently lead to misconceptions. The dominating shared terms'

degree of ambiguity is measured in the final step, and a score (Cross-domain Ambiguity

34

rating) is provided based on this measurement. This is accomplished by using vector space

using FastText embeddings to represent a similarity space, where the two related words

would be considered as similar if its embeddings (through cosine similarity) found to be

closer to each other. FastText can provide a ranked list of the given words that are most

similar in the language model's embeddings space along with a measure of how similar they

are. Therefore, to determine the degree of ambiguity of a dominating shared term, we

evaluate the list of more similar words generated by various domain-specific language

models. The dominant shared term is considered as less ambiguous if the two lists have more

common words and if the similarity-values of the exact same terms in two lists are closer to

each other.

The following subsections provide comprehensive descriptions of the various steps.

3.2.1 Wikipedia Crawling

The Wikipedia Crawling stage makes a corpus Ci for every domain Di for a set D = (Di: i =

1... n) of n domains. Each Ci contains pages from a Wikipedia portal that belong to a

particular area domain. Every Wikipedia portal is organized as a tree, with categories acting

as the nodes and pages acting as the leaves.

Figure 10. Wikipedia Articles Crawling

35

Figure 11. Wikipedia Articles of Domains as Text Files

One can visit a base category of mechanical engineering1 domain to see a visual sample. We

developed an algorithm that, assuming the base category of the portal, conducts breadth-first

search upon subclasses of the base category, and gets all the Wikipedia articles that are

available through the search, to access the pages classified by a Wikipedia portal. We

established a maximum limit of 10,000 articles to be retrieved from each portal because the

total number of pages that could be accessed might be very large. In addition, we restricted

the depth of the subcategories of a domain to a maximum of 2. Reaching articles with more

general content in comparison to deep subcategories is possible by concentrating on higher-

level subcategories. Figure 10 shows the code of extracting Wikipedia pages as text files,

while Figure 11 shows extracted files view of different domains.

3.2.2 Pre-Processing

Each of the corpus is pre-processed by:

a) Changing each word's case to lowercase.

b) Eliminating stop words such as common terms like pronouns,

articles and conjunctions are avoided because they do not have a special meaning

in this context.

c) Lemmatizing by converting every single term to its corresponding lemma, which

enables each word inflections (i.e., processes, process) to be treated as a single word

1 https://en.wikipedia.org/wiki/Category:Mechanical_engineering

36

(i.e., process). We employ the WordNet Lemmatizer from NLTK Package2 Python in

this implementation.

Figure 12 shows some of the pre-processing code used for the input text.

Figure 12. Pre-processing of the Text

As an example, the phrase "meetings are arranged for requirements analysis" becomes

"meeting arrange requirement analysis" after pre-processing.

3.2.3 Language Model Generation

The FastText algorithm [50] is used in this stage to develop language models Mi specific to

its domain using each input corpus Ci. The amount of L, or the total length of

context that is to be observed, the measurement of d, or the dimensionality of the

embedding, and the m value, or the smallest amount of occurrence that a word must have for

the algorithm to take it into consideration, must be specified. We used L = 10, d = 50, and m

= 10 for our illustration.

Figure 13. Generation of the Language Models

2 https://www.nltk.org/

37

The values have been chosen based on preliminary inspections on data. Figure 13 is the code

preview of language models generation using FastText.

3.2.4 Elicitation Scenarios

A total of five domains are represented in the elicitation scenarios. That is:

i. Computer Science (CS)

ii. Electronic Engineering (EEN)

iii. Mechanical Engineering (MEN)

iv. Medicine (MED)

v. Sport (SPO)

 Each scenario takes a portion of the domains into account. The initial four can be viewed as

an interview between an analyst with computer science expertise and a domain expert. The

final three scenarios consist of a group meeting for elicitation with related domain specialists.

The situations are briefly explained below, together with a code (“Int” will be used for

interviews and “Mee” for the group-meetings), and the abbreviations of the domains as

mentioned above is taken into consideration. The details have just a narrative purpose by

offering examples of real-world settings in which our technique might be applied. Detail of

the scenario are given below in Table 9. Scenario abbreviations are listed against each

scenario that is considered for the interview and meeting for the sake of eliciting

requirements for the specific domain.

Table 9. Scenarios Considered for Requirement Elicitation

Sr. Scenario Scenario

Code

Detail

1.

Light Controller

(CS-EEN)

Int1 A controller with a generic piece of software

incorporated in it that controls

the room illumination.

2.
Mechanical CAD

(CS-MEN)

Int2 A program that helps in the designing of

mechanical parts.

3.
Medical Software

(CS-MED)

Int3 A program that helps in the diagnosis of specific

diseases according to symptoms.

4.
Athletes Network

(CS-SPO)

Int4 An online community of athletes.

5.

Medical Device

(CS-EEN-MED)

Mee1 A medical device connected with a mobile app,

used to track the patient's heart rate.

38

6.
Medical Robot

(CS-EEN-MEN-MED)

Mee2 A surgical robot operated by a computer.

7.
Sport Rehab Machine
(CS-EEN-MEN-MED-SPO)

Mee3 A technologically advanced rehabilitation device

designed especially for athletes.

3.2.5 Cross-Domain Ambiguity

The approach was put into practice in Python with the help of several other

necessary libraries, including the Wikipedia Python API 3 , gensim 4 for FastText

implementation, and spaCy library5 for tasks related to NLP [53]. Such as it is used for POS

tagging for the identification of nouns.

Table 10. Domain with Wikipedia Articles

Sr. Domain Name
Wikipedia

Articles
Words Vocabulary

1. Computer_Science 10,000 6971198 140757

2. Electronic_Engineering 4,901 3427293 82098

3. Mechanical_Engineering 6,513 4081887 97122

4. Medicine 10,000 6737874 183625

5. Sports 10,000 7326483 187145

Table 10 lists the downloaded articles of Wikipedia for given domains as well as the size of

vocabulary and number of words in total pages related to a domain. Since we crawled all the

pages contained in the corresponding Wikipedia portals, several corpora of the domain (such

as EEN & MEN) contain fewer than 10,000 documents because articles in these portals were

less than the mentioned threshold.

There are five separate language models produced against each domain-specific corpus.

3.2.6 Cross-Domain Term Selection

In this step we will select the terms that will be checked for ambiguity occurrence in the

domain corpora Corp of each domain. Such terms will be considered as dominant shared

3 https://pypi.org/project/wikipedia/.
4 https://radimrehurek.com/gensim/.
5 https://spacy.io.

39

terms TDom. These terms will be extracted from the corpus through proper procedure using

Algorithm 1 [1].

Algorithm 1: Selection of Cross Domain Terms

Select_Dominant_Shared_Terms (Corp, m, n)

1. TDom = Empty

2. for Corpa ∈ Corp do

3. for term ∈ Vocab (Corpa) do

4. if Frequency (term, Corpa) ≥ m do

5. if POS (term) == Noun do

6. if term ∉ TDom do

7. for Corpb ∈ (Corp - Corpa) do

8. if Frequency (term, Corpb) ≥ n × Frequency (term, Corpa) do

9. TDom = TDom ∪ {term}
10. Return TDom

There are three inputs to this algorithm upon which it operates. The first input parameter is

corpora Corp = [Corpa : a = 1…5] of a specific domain. Second parameter is m, which is the

minimum number of existences of a term in the Vocabulary “Vocab” of a specific domain

Corpora Corpa. If a term is m or more then m number of time appeared in one specific

domain, then this term would be recommended as candidate for dominant shared terms TDom

inclusion. Similarly, the candidate term will be checked for its “Frequency” in at least on

other domain corpora Corpb. The third parameter is n, if candidate term is n or more than n-

time frequent in another domain then it will be considered for further checks to include it in

TDom. Thus, m and n are the frequency ratio of a term in two different domains. If a term is

more frequent in the corpora of one domain but not sufficiently occur in any other domain,

then it will not be considered as part of TDom. Moreover, the term will be checked if it is not

already the part of TDom and the part-of-speech “POS” tag of the term is “Noun”. If all the

conditions are satisfied, then the term will be selected to be the part of TDom.

This procedure shall be repeated for each term of the corpus belongs to a domain to produce

list of dominant shared terms. Figure 14 shows the code used to call function for cross-

domain terms selection.

40

Figure 14. Code to Call Function for the Selection of Cross-Domain Terms

3.2.7 Cross-Domain Ambiguity Ranking

This step generates ambiguity ranked list ADom of the dominant shared terms TDom. As per the

language models Ḿ = [Ma : a = 1…5], the cross-domain ambiguity calculated, and the degree

of ranking is measured.

Algorithm 2 given below is used to calculate the ambiguity ranking. Detail of the algorithm is

as follows. Every dominant shared term may have similar words in each domain. The concept

of similar words is that a word will be considered as similar with the dominant shared term if

it has the same linguistic context, such that they have similar neighbor words in the input

corpora of the domain upon which the language models are generated. The similar word’s

lists of a dominant shared term in each domain is generated using the FastText Model, called

similarity lists. The similarity lists are then compared to evaluate the meaning variation of

dominant-shared term. The dissimilarity score of each dominant shared term is computed on

comparing the similarity lists, as this comparison of the list is indirectly linked with it. The

term will be considered more ambiguous if the dissimilarity score is high. This dissimilarity

score can be reflected as the ambiguity score to a given dominant shared term.

Algorithm 2: Ambiguity Valuation of Cross Domain Terms

Ambiguity-Ranking (TDom, Ḿ, h)

1. ADom, simLa, simVa, Union, Rnk, Var, σ = Empty

2. for term ∈ TDom do

3. for Ma ∈ Ḿ do

4.

41

5. simLa [term], simVa [term] ← MostSimilar (term, Ma, h)

6.

7. Union[term] ← simL1 [term] ∪...∪simL5[term]

8.

9. for word ∈ Union[term] do

10.

11. Rnk[term] [word] ← BestRank(simL1 [term] [word] . . . simL5[term] [word])

12. σ[term] [word] ← Variance(simV1 [term] [word] . . . simV5[term] [word])

13.

14. Var[term] ← ∑
𝜎[𝑡𝑒𝑟𝑚][𝑤𝑜𝑟𝑑]

𝑅𝑛𝑘[𝑡𝑒𝑟𝑚][𝑤𝑜𝑟𝑑]𝑤𝑜𝑟𝑑∈𝑈𝑛𝑖𝑜𝑛[𝑡𝑒𝑟𝑚]

15.

16. ADom = Sort (TDom, Var)
17. Return ADom

 While comparing the words in the similarity lists, if a word is not available in other

similarity lists, then the word will obtain a zero-similarity value. For example, the word

player lists in the similarity-list for loop in the domain of sports for the Tug-of-war, but it

would not appear in the computer domain. Similarly, if the lists have more similar words

against a dominant shared term and the words possess more close similarity values to each

other, then the dominant-shared term is having a consistent interpretation in various domains

and is not considered as ambiguous. On the other hand, if the lists have a rare similar word

against a dominant shared term, then that term is likely to have diverse interpretation in

different domains and would be considered as more ambiguous. A word will be weighted

more if it is most similar to a dominant shared term as per the language model. The

maximum rank of a word in all the similarity lists will be count for the ambiguity score

computation. More concisely, for each word, its sum of best-ranked variance of the

similarity-values is associated with the ambiguity score.

42

Figure 15. Dominant Shared Terms Ranking

Input to the Algorithm 2 is set TDom of dominant-shared term, the Ḿ language model and the

length h of a similarity list [10]. The ambiguity score is calculated against each term ∈ TDom.

This process is accomplished by determining the similarity-lists simLa [term] along with the

similarity-values simVa [term] against each of the language model. In the next step union

of the similar words Union[term] in the similarity list are taken. The maximum similarity

of a word in the Union[term] is considered as the best one Rnk[term] [word] and it is

calculated by BestRank function. For every word belong to the Union[term], the variance

of its similarity values σ[term][word] is calculated against all the similarity lists using

Variance function. Rank weights are then assigned by dividing the word variance

σ[term][word] with the best-ranked value Rnk[term] [word]. Finally, sum of all the rank

weighted variances Var[term] produces the ambiguity score to a term belongs to TDom.

43

All the terms in the TDom are then sorted based on ambiguity score and a sorted list of

ambiguous terms ADom is returned by the algorithm. Figure 15 shows the code used for

ranking of the dominant-shared terms.

The number of dominant shared terms m that were intended to rank in our scenarios is 800.

The frequency ratio n is set at 0.3, and the total amount of words h for the similarity lists

which we compare using the Ambiguity-Ranking process is set at 100. The values for these

factors were taken from the previously applied approach [1]. With these parameters, we

regenerate lists of dominant shared terms in each scenario, sorted according to the ambiguity

level.

44

CHAPTER 4: IMPLEMENTATION, RESULTS & DISCUSSION

In this chapter, implementation of the approach as stated in the chapter 3 is discussed, and

results of the approach are analyzed in detail. The implementation consist of data collection

of different fields and results preparation and examination. Basic information of the approach

implementation, use of algorithms and programs is also discussed in this section.

The research model of previous literature and approach by researchers were configured

successfully and the same approach with different model algorithm was applied. Common

code of the literature [54] was reused in which necessary modification was performed for the

new models and results generation.

The dataset consists of Wikipedia articles and the previous implementation was performed in

2018 [1]. As the Wikipedia articles are modifiable, therefore articles of the domains were

crawled again, and the same approach was applied using old model and then used the new

model on the same data. The reason behind was to accurately get results for the same data

and perform comparison among different model results. As if we get results on new model

using new corpora, it would not be effectively compared with the results of old model on old

dataset and it is more likely to have a different corpus for the application of model.

4.1 Data Collection/Dataset

Data of the five domains was considered for the language models generation, and data for the

domain is obtained from Wikipedia articles. For the requirement elicitation, 07 scenarios

were made for interviews and meetings. Each scenario considered a subset of the domains.

The first four can be seen as an interview between a domain expert and an analyst with

computer science knowledge. The remaining three scenarios included a group of experts from

related domains for elicitation meeting. The interviews were between two domain experts

while the meetings were among a group of domain experts as the remaining three scenarios

were a composite of more than two domains (detail is given in the Table 9).

Interviews of the Electronic Engineering, Mechanical Engineering, Medical, and Sports

domain experts were considered in the elicitation scenarios to be conducted with

requirement’s analyst of the computer science domain. On the other hand, for the meeting of

Medical Device domain, there involved three domains computer science, electronic

engineering, and medical in the meeting. Likewise for the Medical Robot scenario, four

45

domains involved in the meeting; that were computer science, electronic engineering,

mechanical engineering and medical. Similarly, in the Sport Rehab Machine, all the five

domains i.e., computer science, electronic engineering, mechanical engineering, medical, and

sports involved in the meeting of the domain expert of the requirement’s elicitation.

For each domain, maximum ten thousand Wikipedia articles as text files were used as the

dataset for the approach implementation. The language models of the dataset generated using

different models, and the data was pre-processed using NLP approaches and APIs. Different

terms that were frequent in more than one domain were selected called dominant shared

terms. The context of each dominant-shared terms are analyzed using the language models

and most-similar words from the context of these dominant-shared terms were gathered,

analyzed in such a way that those terms that shared more similar words in their context are

considered as less ambiguous and the terms that had little similar words across its contexts

tended to be more ambiguous in their interpretation in different domains. These terms were

scored and ranked as per their ambiguity level and then sorted. In this way the results were

generated. This procedure is discussed in detail in chapter 03.

As discussed earlier the language models were generated using Word2Vec algorithm using

Gensim library. According to the literature most of the cross-domain ambiguity detection was

performed using NLP approaches and Word2Vec algorithm for word vector representation

and comparison of these vectors. We found in the literature that the same algorithm

Word2Vec extension FastText was compared and used by many researchers for word vector

representation on natural language text, and they demonstrated that FastText brought

effective results in comparison to Word2Vec [19], [46], [47], [48], [49]. So, for the same text

corpus, we used FastText model to generate language models, and then these language

models were used for the selection of dominant-shared terms and their ambiguity rankings.

Result of both the models will be compared in this chapter.

4.2 Experimental Setup

The proposed methodology was employed in Python language version 3.10 using PyCharm

community edition 2.2.2022 various libraries as mentioned in section 3.2. Description of the

algorithms is given in the section 3.2.6 and 3.2.7. Results to compare with state of the art

were extracted using 06 code snippets that implement the algorithm for generating the results.

46

4.3 Ranking of Terms for Cross-Domain Ambiguity Using Word2Vec

Models of the literature

The ambiguity ranking of dominant-shared terms are listed in table 2, 3, 4 of article [1]. The

author listed terms of the scenario-based domains such as each scenario has different domains

involved in it (detail is given in Table 9). The author listed 20 terms higher in rank and 20

terms that are bottom in rank list of dominant-shared term against each scenario. High

rankings suggest a greater likelihood of ambiguity because words with higher rankings may

have multiple meanings depending on the domains involved.

The approach of the state-of-the-art article was re-configured, and the output of the code was

generated using six files as given in the code files [54] using the same dataset (language

models). Four of the code files were marked significant as per result generation according to

the scenarios stated above. Detail of these files given below:

Table 11. Output Number of Terms from Different Scenarios Using Language Models

of Existing Code

File Name
Output Terms (Dominant-Shared-Term) Detail of Different

Scenarios

ambiguity_tests_merge

C
S

-E
le

C
S

-M
ec

C
S

-M
ed

C
S

-S
p
o
rt

T
o
tal

30 30 30 30 120

ambiguity_tests_intervie

ws_combi

C
S

-E
le

C
S

-M
ec

C
S

-M
ed

C
S

-S
p
o
rt

T
o
tal

30 30 30 30 120

ambiguity_tests_multi

M
ed

-S
w

M
ed

-

D
ev

M
ed

-

R
o
b
o
t

S
p

o
rt-

R
eh

ab
-

M
ach

in
e

T
o
tal

40 40 40 40 160

47

ambiguity_tests_multi_co

mbi

M
ed

-S
w

M
ed

-

D
ev

M
ed

-

R
o
b
o
t

S
p
o
rt-

R
eh

ab
-

M
ach

in
e

T
o
tal

30 30 30 30 120

ambiguity_tests_merge_f

or_AMT

C
S

-E
en

C
S

-M
en

C
S

-M
ed

C
S

-S
p
o
rt

M
ed

-S
w

M
ed

-D
ev

M
ed

-

R
o

b
o

t

S
p

o
rt-

R
h

b

T
o
tal

414 302 328 261 328 513 606 731 3483

ambiguity_tests_pairs

C
S

-E
le

C
S

-L
it

C
S

-M
ec

C
S

-M
ed

C
S

-S
p
o
rt

E
le-L

it

E
le-M

ec

E
le-M

ec

E
le-M

ed

E
le-S

p
o

rt

L
it-M

ec

L
it-M

ed

L
it-S

p
o
rt

M
ec-M

ed

M
ec-S

p
o

rt

T
o
tal

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 3000

Different abbreviations of domain name are used in the Table 11. CS for Computer Science,

Ele/Een for Electronic Engineering, Men/Mec for Mechanical Engineering, Med for Medical,

Sw for software, Lit for Literature, Rhb for Rehab, Dev for Device (the abbreviations

mentioned here as it is in the output file). Similarly, there are different scenarios given having

different combination of domains i.e., Med-Sw has two domains (CS-MED), Med-Dev has

three domains (CS-EEN-MED), Medical Robot has four domains (CS-EEN-MEN-MED) and

Sport Rehab Machine has five domains (CS-EEN-MEN-MED-SPO) in it.

Different files have output for different scenarios, detail of the file output is given below in

Table 12:

Table 12. Code Files that Generated Dominant Shared Terms of Different Scenarios

Sr. File Name Output Detail

1. ambiguity_tests_merge

(ATM)

Lists terms for the Interviews related combination

of domains used in requirement elicitation.

2. ambiguity_tests_interviews_combi

(ATIC)

Lists terms for the Interviews related combination

of domains used in requirement elicitation.

3. ambiguity_tests_multi

(ATMu)

Lists terms for the Meetings related combination

of domains for requirement elicitation.

48

4. ambiguity_tests_multi_combi

(ATMC)

Lists terms for the Meetings related combination

of domains for requirement elicitation.

5. ambiguity_tests_merge_for_AMT

(ATMFA)

Lists terms for the Interviews and Meetings related

combination of domains for requirement

elicitation.

6. ambiguity_tests_pairs

(ATP)

Lists dominant shared terms found in inter-domain

combination

Most of the terms with the same ambiguity score as mentioned by the authors were generated

and analyzed in detail. The output of each file was printed in the console that were saved as

text file for further analysis.

Table 2 in the paper [1] listed the top 19 and bottom 20 ranked terms (total 39) for each of the

scenario’s interviews I1 & I2, along with ambiguity scores. I1 has been given the scenario

name as Light Controller having two domains involved in it, that is: Computer Science and

Electronic Engineering. While I2 has been given the scenario name of Mechanical CAD,

having two domains involved in it, that is: Computer Science and Mechanical Engineering.

Similarly, Table 3 listed the top 19 and bottom 20 ranked terms (total 39) for each of the two

scenario’s interviews I3 & I4, along with ambiguity scores. I3 has been given the scenario

name as Medical Software having two domains involved in it, that is: Computer Science and

Medical. While I4 has been given the scenario name of Athletes Network, having two

domains involved in it, that is: Computer Science and Sports.

Table 4 of the base paper listed top 20 and bottom 20 rank terms (total 40) the meetings of 03

scenarios. The meetings are given name as M1, M2, M3, and the scenarios names are

Medical device, Medical robot, and Sport rehab machine respectively. In the M1, the listed

terms are basically the dominant-shared terms of three domains that are: Computer Science,

Electronic Engineering, and Medical. In the M2, the listed terms are the dominant-shared

terms of four domains that are: Computer Science, Electronic Engineering, Mechanical

Engineering and Medical. Likewise, In the M3, the listed terms are the dominant-shared

terms of five domains that are: Computer Science, Electronic Engineering, Mechanical

Engineering, Medical and sports.

Locally generated output of the files was analyzed in which some of the terms were not found

despite of using the language models already provided. Each term was searched in the output

thoroughly and recorded the file name in which the term and its similar score was found.

49

Similar kind of tables were generated in which the file name was mentioned against the term,

in the output of which the term and its score existed. The tables are mentioned below as

Table 13, Table 14, and Table 15.

Table 13. Terms of the Table 2 of [1] along with its Output File

I1 CS, EEN Score Output

 File

I2 CS, MEN Score Output

 File

news 1.475026

 hull 1.654419

formula 1.466022 ATM house 1.447376

relation 1.452569 ATM argument 1.391507

surface 1.428484

 bar 1.361833

motor 1.406120

 option 1.339622 ATM

flash 1.405892

 room 1.336570

studio 1.375377 ATM disk 1.328546

contact 1.375058

 expression 1.317302 ATM

interpretation 1.343498 ATM interpretation 1.316122 ATM

bell 1.343395

 reduction 1.314786 ATM

reduction 1.292722 ATM respect 1.306615

head 1.282602

 relation 1.295833 ATIC, ATM, ATP

deal 1.246001

 representation 1.286481 ATM

link 1.199083

 formula 1.270888 ATM

ion 1.178597

 institute 1.245143

desktop 1.171765 ATM port 1.241405 ATM

pair 1.171018

 rest 1.229141

profile 1.141438

 statement 1.215488

particle 1.139154

 string 1.214932

school 0.238366

 october 0.385298

performance 0.235937 ATIC, ATP state 0.366343 ATIC, ATP

term 0.233936 ATIC, ATM, ATP category 0.360713

article 0.226150 ATM december 0.360142

september 0.225291

 period 0.359295

conference 0.222977 ATIC, ATM, ATP hour 0.355321

number 0.221349 ATIC, ATM, ATP cost 0.354388 ATIC, ATM, ATP

example 0.219640 ATIC, ATM, ATP test 0.352514

computer 0.216365 ATIC, ATM, ATP space 0.346210 ATIC, ATM, ATP

range 0.214473

 advantage 0.345200 ATM

student 0.212899

 september 0.343362

march 0.210152

 day 0.338486 ATM

system 0.203739 ATIC, ATM, ATP minute 0.331166

december 0.202965

 time 0.316961 ATIC, ATM, ATP

variety 0.201474 ATM market 0.316713 ATM

50

point 0.200544 ATIC, ATM, ATP range 0.289602

science 0.197188 ATIC, ATP variety 0.270675 ATM

april 0.196663

 term 0.260514 ATIC, ATM, ATP

october 0.176143

 year 0.245205 ATIC, ATM, ATP

june 0.159893

 example 0.220515 ATIC, ATM, ATP

Total Found 17 Total Found 19

Total 17 terms of the I1 and 19 terms of I2 were traced in the output of all six code files.

Some of the terms existed in more than one file output.

Table 14. Terms of the Table 3 of [1] along with its Output File

I3 CS,

MED

Score Output

 File

I4 CS, SPO Score Output

 File

mouse 1.599703

michael 1.849829

matrix 1.542257

protein 1.677702

argument 1.478305

statement 1.619878 ATM

client 1.430145

reduction 1.617916

pair 1.423335

loop 1.535914

editor 1.419535

string 1.522536

arm 1.418809

founder 1.503727 ATM

strength 1.409200

formula 1.489577 ATM

house 1.396889

washington 1.484234

relation 1.369563

effect 1.480257

formula 1.356015

edge 1.447221 ATM

layer 1.348549 ATM mechanism 1.435133

loop 1.340321

layer 1.430993

symbol 1.316503

corner 1.424862

reduction 1.316299 ATM threat 1.418862

room 1.311479

driver 1.418780

statement 1.311244 ATM fire 1.412927

expression 1.297684 ATM surface 1.411994 ATIC, ATM, ATP

surface 1.296393 ATIC, ATM, ATMu, ATMC, ATP wave 1.411662 ATM

report 0.383933

category 0.503321 ATP

concern 0.379293

level 0.497828 ATP

publication 0.346782 ATM sale 0.488006 ATM

article 0.336694 ATIC, ATM, ATMu, ATMC, ATP book 0.485710 ATIC, ATM, ATP

issue 0.333983 ATIC, ATM, ATMu, ATMC, ATP term 0.481157 ATIC, ATM, ATP

history 0.330724 ATIC, ATM, ATMu, ATMC, ATP company 0.456744 ATIC, ATM, ATP

student 0.321891 ATIC, ATM, ATMu, ATMC, ATP market 0.448333 ATM

award 0.319464 ATIC, ATM, ATMu, ATMC, ATP april 0.409362

time 0.308453 ATIC, ATM, ATMu, ATMC, ATP history 0.401996 ATIC, ATM, ATP

december 0.299433

child 0.394809

april 0.283379

june 0.377780

51

october 0.279610

september 0.365755

march 0.279493

student 0.355196 ATIC, ATM, ATP

september 0.272048

time 0.353464 ATIC, ATM, ATP

june 0.264172

award 0.350350 ATIC, ATM, ATP

category 0.263526 ATM article 0.343666 ATM

term 0.214670 ATIC, ATM, ATMu, ATMC, ATP march 0.341266

variety 0.201947 ATM october 0.335467

range 0.187092

december 0.331697

year 0.187065 ATIC, ATMu, ATMC, ATP range 0.329518

Total Found 16 Total Found 18

Total 16 terms of the I3 and 18 terms of I4 were traced in the output of all six code files.

Some of the terms existed in more than one file output.

Table 15. Terms of the Table 4 of [1] along with its Output Files

M1 CS,

EEN,

MED

Score Output

 File

M2 CS,

EEN,

 MEN,

MED

Score Output

 File

M3 CS,

EEN,

MEN,

MED,

SPO

Score Output

 File

argument 2.023164 ATMFA argument 2.363125 ATMFA consequen

ce

2.626065

relation 1.921059 ATMFA respect 2.180597

respect 2.596219 ATMFA

formula 1.915565 ATMFA expression 2.180273 ATMFA

, ATM

statement 2.555115 ATMFA

interpretati

on

1.904085 ATMFA,

ATM

consequen

ce

2.173204

michael 2.497249

consequenc

e

1.863527

statement 2.094200 ATMFA story 2.398440 ATMFA

expression 1.849218 ATMFA,

ATM

ion 2.089713 ATMFA argument 2.363125 ATMFA

arm 1.838583

father 1.952681 ATMFA brother 2.304480 ATMFA

surface 1.811224 ATMFA,

ATMu,

ATMC

institution 1.933082 ATMFA founder 2.238028 ATMFA

house 1.802686 ATMFA relation 1.921059 ATMFA end 2.236240

client 1.741765 ATMFA formula 1.915560 ATMFA ray 2.228692

strength 1.730889 ATMFA interpretati

on

1.904085 ATMFA

, ATM

relation 2.216734 ATMFA

mouse 1.716812 ATMFA career 1.890641 ATMFA stability 2.213691 ATMFA

appearance 1.681019 ATMFA option 1.875132 ATMFA

, ATM

institution 2.201938 ATMFA

ion 1.626415 ATMFA office 1.868301 ATMFA sense 2.199332

statement 1.622403 ATMFA appearance 1.864991 ATMFA surface 2.193154 ATMFA,

ATMu

52

discovery 1.615736 ATMFA man 1.863109 ATMFA robert 2.185128

differential 1.615159

compressio

n

1.845858 ATMFA expression 2.180273 ATMFA,

ATM

sense 1.600477

symbol 1.834537 ATMFA angle 2.164515

gap 1.598580 ATMFA piece 1.823973

option 2.157274 ATMFA,

ATM

segment 1.580185 ATMFA,

ATM

house 1.816749 ATMFA bill 2.147097 ATMFA

range 0.288589

keyboard 0.350738 ATMFA polygon 0.400052 ATMFA

purpose 0.286876 ATMFA spin 0.350316

organizatio

n

0.398878 ATMFA

capability 0.284362 ATMFA architectur

e

0.338673 ATMFA processing 0.395477 ATMFA

april 0.283379

quantum 0.324911

project 0.379329 ATMFA

phone 0.282070 ATMFA instruction 0.322033 ATMFA battery 0.373586 ATMFA

code 0.281997 ATMFA time 0.308453 ATMFA geometry 0.360184 ATMFA

october 0.279610

testing 0.305869 ATMFA keyboard 0.350738 ATMFA

march 0.279493 ATMFA decrease 0.297651

architectur

e

0.338673 ATMFA

book 0.277109 ATMFA case 0.296671 ATMFA quantum 0.324911 ATMFA

september 0.272048

test 0.292459

instruction 0.322033 ATMFA

publication 0.266428 ATMFA electron 0.288590 ATMFA time 0.308453 ATMFA

june 0.264172

photon 0.284026

test 0.292459

group 0.243118 ATMFA,

ATM

phone 0.282070 ATMFA electron 0.288590 ATMFA

school 0.238366 ATMFA,

ATM

code 0.281997 ATMFA

, ATM

photon 0.284026

term 0.233936 ATMFA,

ATM,

ATMC

term 0.233936 ATMFA

, ATM,

ATMC

phone 0.282070 ATMFA,

ATM

article 0.226150 ATMFA,

ATM

conference 0.222977 ATMFA

, ATM,

ATMC

code 0.281997 ATMFA,

ATM

conference 0.222977 ATMFA,

ATM,

ATMC

computer 0.216365 ATMFA

, ATM,

ATMC

computer 0.216365 ATMFA,

ATM,

ATMC

computer 0.216365 ATMFA,

ATM,

ATMC

student 0.212899 ATMFA student 0.212899 ATMFA

student 0.212899 ATMFA variety 0.201474 ATMFA

, ATM

variety 0.201474 ATMFA,

ATM

variety 0.201474 ATMFA,

ATM

century 0.179093 ATMFA

, ATM,

ATMC

century 0.179093 ATMFA,

ATM,

ATMC

Total Found 31 Total Found 32 Total Found 31

53

Total 31 terms of the M1, 32 terms of M2 and 31 terms of M3 were traced in the output of all

six code files. Some of the terms existed in more than one file output.

Output of the six files was analyzed further and it was observed that three files were not

significant for the above table terms as its output score for a certain term also existed in other

file’s result. So, the most significant files with respect to the above table terms are three files,

that are ambiguity_tests_merge (ATM), ambiguity_tests_merge_for_AMT (ATMFA), and

ambiguity_tests_pairs (ATP). These files have all the available outputs of the above table

terms.

4.4 Cross-Domain Ambiguity Ranking Using Word2Vec and FastText

Models on New Dataset

The previous approach used Wikipedia articles of 2018 (as the dataset) for all the domains. It

is obvious that these articles are kept being modified by the experts of relevant domain. Also,

only the ready language models were available in the literature code, and the dataset

(Wikipedia articles) of that time was not available. Therefore, before the application of

FastText model, the dataset (Wikipedia articles) of the relevant domains were again crawled

using the same parameters as mentioned in the section 3.2.1. Detail of the newly crawled

dataset is given in Table 10.

After obtaining the articles from Wikipedia, further procedure was performed as given in

chapter 3, i.e., the next step was to perform pre-processing and build language models to train

Word2Vec and FastText on the given text corpora. So, by following the proposed approach,

language models were built on new dataset, and then we applied the algorithms on new

language models to select dominant shared terms rank it as per its ambiguity level. We used

the same six code files as with the old models for the sake of obtaining same scenario’s

output as defined. Different Output of the code files were generated by using the same

parameters and stored in the .csv files for further analysis and comparison.

4.5 Ranking of Terms for Cross-Domain Ambiguity on New Dataset Using

Word2Vec and FastText Model

The Word2Vec model is applied on re-crawled Wikipedia article’s text. On the same dataset

the FastText was also applied and language models from both models were generated. For the

application of algorithms, selection of cross domain dominant shared terms and its ranking,

54

the six files (mentioned in Table 12) were executed with the same parameters and with a little

due modification. The results are stored in .csv files for further analysis. Each term

mentioned in the Table 13, Table 14, and Table 15 was searched in the generated results and

the ambiguity scores of both models were recorded. It is necessary to mention that these

terms were listed in the state of the art as top and bottom 20-terms as per its ambiguity level

against each scenario.

Table 16. Ambiguity Scores of the Terms of Table 13 Using New Language Models by

Word2Vec and FastText

I1 CS, EEN WV

score

FT

score

Difference I2 CS, MEN WV

score

FT

score

Difference

news 1.4786 1.5707 0.0921 hull

formula 1.3131 1.2184 -0.0947 house 1.0279 1.4661 0.4382

relation 1.3109 0.9607 -0.3502 argument

surface 1.1939 1.5910 0.3970 bar 1.2062 0.8578 -0.3484

motor 0.5379 1.0334 0.4955 option 0.7359 1.0474 0.3115

flash

 room 1.0105 0.8660 -0.1444

studio 1.3122 1.5154 0.2033 disk

contact 1.0793 0.9794 -0.0999 expression

interpretation

 interpretation

bell 0.8897 0.9050 0.0152 reduction 0.7359 0.6805 -0.0555

reduction 0.6601 0.6059 -0.0542 respect 1.0766 1.3274 0.2508

head 0.5295 1.1513 0.6217 relation 1.1647 1.2043 0.0396

deal 1.2544 1.3505 0.0961 representation

link

 formula 1.1621 1.0994 -0.0627

ion

 institute

desktop

 port

pair

 rest

profile 0.8120 1.0252 0.2133 statement

particle 1.3158 1.2053 -0.1105 string

school

 october

performance 0.1709 0.7012 0.5303 state 0.2382 0.7153 0.4771

term 0.2826 0.7563 0.4738 category 0.4272 0.9496 0.5224

article 0.4300 0.4227 -0.0073 december

september

 period 0.2845 0.6784 0.3939

conference

 hour 0.2809 0.4923 0.2114

number 0.2426 0.6241 0.3816 cost

example 0.3201 0.4080 0.0879 test 0.3783 0.5671 0.1888

computer 0.2492 0.8274 0.5782 space 0.3926 0.6600 0.2674

range 0.2394 0.5316 0.2922 advantage 0.2409 0.4304 0.1895

student

 september

55

march

 day 0.3536 0.7404 0.3868

system 0.3695 0.7396 0.3701 minute 0.2120 0.5648 0.3528

december

 time 0.2247 0.8429 0.6182

variety 0.2454 0.4462 0.2008 market 0.4466 0.6027 0.1561

point

 range 0.2889 0.4749 0.1860

science

 variety 0.2040 0.3807 0.1767

april

 term 0.2825 0.6598 0.3773

october

 year 0.1956 0.8400 0.6443

june example 0.2534 0.3855 0.1322

Table 16 lists the terms of Table 13 with ambiguity scores generated by new Word2Vec and

FastText models against each term. The difference of both model’s scores are calculated and

listed with a view to find which term is marked more ambiguous as per the FastText score.

For this, the Word2Vec ambiguity score was subtracted from the FastText score. The positive

value in the difference column indicates that the term is marked more ambiguous by

FastText, likewise the negative value shows that the term is marked less ambiguous by

FastText model.

Table 17. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 16

I1 Light Controller (CS, EEN) I2 Mechanical CAD (CS, MEN)

Model Terms Score Total Terms Model Terms Score Total Terms

FastText

Positive 16

FastText

Positive 20

Negative 6 Negative 4

Not Found 17 Not Found 15

Total 39 Total 39

In the 39 listed terms of I1 scenario Light Controller,16 terms marked positive which means

these terms are considered more ambiguous, 6 terms values are negative indicates that these

terms are computed as less ambiguous by FastText word-vector representation, in

comparison with Word2Vec model (as shown in Table 17). The 17 terms were not found in

the new outputs. Similarly, in the I2 scenario Mechanical CAD, total 20 terms calculated

positive, 4 were negative, and 15 terms were not found. Comparison of both the models is

given in Figure 16.

56

Figure 16. Ambiguity Score of FastText in Comparison to Word2Vec (for I1 & I2)

Table 18 includes terms from Table 14 along with the ambiguity scores determined for each

term using new models. To determine which term is identified as more ambiguous according

to the FastText, the difference between the scores of the models is calculated and listed. To

account for this, the FastText score was deducted from the Word2Vec ambiguity score. The

difference column's positive value indicates that the term has been identified as being more

ambiguous by the FastText model, while the negative value indicates the term is classified as

being less ambiguous in comparison with Word2Vec.

Table 18. Ambiguity Scores of the Terms of Table 14 Using New Language Models by

Word2Vec and FastText

I3

CS, MED

WV

score

FT

score

Difference I4

CS, SPO

WV

score

FT

score

Difference

mouse

 michael

matrix

 protein

argument 1.1495 1.6139 0.4644 statement 1.6386 1.6291 -0.0094

client

 reduction

pair

 loop

editor 1.1431 0.8626 -0.2805 string

arm

 founder

strength 1.1629 1.4413 0.2784 formula 1.5427 1.5903 0.0476

house 1.2062 1.3571 0.1509 washington

relation 1.0317 0.7766 -0.2551 effect 1.2423 1.4687 0.2264

formula 1.2051 1.3617 0.1567 edge 1.3502 1.4599 0.1098

layer

 mechanism

loop

 layer

symbol

 corner 1.0777 1.1400 0.0623

reduction 0.4981 0.6410 0.1430 threat 1.5018 1.3462 -0.1556

room 0.7852 0.9174 0.1322 driver 1.3229 1.2959 -0.0270

57

statement 1.3254 1.3452 0.0198 fire

expression 1.2320 1.2160 -0.0160 surface 1.1264 1.6873 0.5609

surface 1.2366 1.5338 0.2972 wave 1.3199 1.5637 0.2438

report 0.3539 0.8266 0.4726 category 0.4274 1.0885 0.6612

concern 0.3644 1.2511 0.8866 level 0.4349 1.0773 0.6424

publication 0.3185 0.8023 0.4837 sale 0.4648 0.5826 0.1178

article 0.3595 0.4867 0.1272 book 0.6974 0.7708 0.0734

issue 0.4573 1.3039 0.8466 term 0.4349 0.8855 0.4507

history 0.4008 0.9536 0.5529 company 0.4525 0.7291 0.2765

student 0.3065 0.5812 0.2747 market

award 0.2247 0.6297 0.4050 april

time 0.2884 0.9699 0.6815 history 0.4759 1.1165 0.6406

december

 child 0.3406 0.5253 0.1847

april

 june

october

 september

march

 student 0.6424 0.8079 0.1655

september

 time 0.3427 1.2673 0.9245

june

 award 0.5621 0.7553 0.1933

category 0.2768 0.4056 0.1288 article 0.4979 0.6069 0.1090

term 0.2132 0.8121 0.5989 march

variety 0.1788 0.8812 0.7024 october

range 0.2339 0.5453 0.3113 december

year 0.3863 0.9448 0.5585 range 0.6968 1.0417 0.3450

Table 19. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 18

I3 Medical Software (CS, MED) I4 Athletes Network (CS, SPO)

Model Terms Score Total Terms Model Terms Score Total Terms

FastText

Positive 22

FastText

Positive 19

Negative 3 Negative 3

Not Found 14 Not Found 17

Total 39 Total 39

The 39 terms listed in the I3 scenario Medical Software, in which 22 terms have positive

values, indicate that they are more ambiguous, and 3 terms have negative markings,

pointing that FastText as opposed to Word2Vec model, computes these terms as less

ambiguous (given in Table 19). The new outputs did not contain any of the 14 terms.

Likewise, results were obtained in the I4 scenario Athletes Network, where a total of 19

58

terms were calculated as positive, 3 as negative, and 17 as not found. The two models are

compared as shown in Figure 17.

Figure 17. Ambiguity Score of FastText in Comparison to Word2Vec (for I3 & I4)

Table 22 contain the terms from Table 15, with the newly calculated ambiguity scores for

each term using the new models. The difference column shows which term is ambiguous by

the FastText. The Word2Vec ambiguity score is subtracted from the FastText for the

evaluation. The term is considered as being more ambiguous by the FastText model if the

difference column has positive value, while negative values indicate that the term has been

determined to be less ambiguous in comparison to Word2Vec.

Table 20. Ambiguity Scores of the Terms of Table 15 (M1 & M2) Using New Language

Models by Word2Vec and FastText

M1

CS, EEN,

MED

WV

score

FT

score
Difference

M2

CS, EEN,

MEN, MED

WV

score

FT

score
Difference

argument 1.1495 1.6139 0.4644 argument 1.1495 1.6139 0.4644

relation 1.7698 1.2323 -0.5375 respect 2.1368 2.2208 0.0840

formula 1.7813 1.7706 -0.0107 expression 2.2029 1.5736 -0.6293

interpretation

 consequence 1.4678 1.3797 -0.0882

consequence 0.5591 1.1151 0.5560 statement 1.3254 1.3452 0.0198

expression 1.2320 1.2160 -0.0160 ion

arm

 father

surface 1.8182 2.1538 0.3356 institution 0.5461 1.0328 0.4867

house 1.2062 1.8194 0.6133 relation 2.0889 1.8586 -0.2302

client 1.4509 1.2633 -0.1877 formula 1.9784 1.9287 -0.0498

strength 1.4320 1.6707 0.2387 interpretation

mouse

 career 0.9498 0.8639 -0.0859

59

appearance 1.0677 0.9733 -0.0944 option 1.5689 1.6228 0.0538

ion

 office 1.7145 2.0938 0.3792

statement 1.3254 1.3452 0.0198 appearance 1.8794 1.3751 -0.5044

discovery 0.8578 0.8638 0.0059 man 2.0139 2.0425 0.0287

differential

 compression 1.4077 0.7231 -0.6846

sense 1.4915 1.4170 -0.0746 symbol

gap 1.4768 1.6187 0.1418 piece 1.8707 1.7651 -0.1056

segment 1.4565 1.3899 -0.0666 house 1.6825 1.8321 0.1496

range 0.3460 0.9463 0.6003 keyboard

purpose 0.4379 1.0515 0.6136 spin

capability 0.2946 0.4188 0.1242 architecture

april

 quantum 0.7796 1.0898 0.3102

phone 0.2424 0.4190 0.1766 instruction 1.3436 1.1762 -0.1674

code 0.9078 1.1172 0.2094 time 0.4403 1.4424 1.0021

october

 testing 0.4486 0.7526 0.3040

march

 decrease

book 0.4022 0.6902 0.2880 case 0.7083 0.8238 0.1155

september

 test 0.4486 0.7526 0.3040

publication 0.3185 0.8023 0.4837 electron 1.1818 1.5797 0.3978

june

 photon

group 0.5350 0.8317 0.2967 phone 0.2424 0.4190 0.1766

school 0.2961 0.6151 0.3189 code 1.0073 1.5125 0.5051

term 0.4991 0.7563 0.2573 term 0.5757 0.9316 0.3559

article 0.4300 0.4227 -0.0073 conference 0.4705 0.8391 0.3686

conference 0.4705 0.8391 0.3686 computer 0.7425 0.8510 0.1085

computer 0.2492 0.8274 0.5782 student 0.3065 0.5812 0.2747

student 0.3065 0.5812 0.2747 variety 0.3354 0.6292 0.2937

variety 0.2454 0.4462 0.2008 century 0.1945 0.4912 0.2967

Table 21. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 20

M1 Medical Device (CS, EEN, MED) M2 Medical Robot (CS, EEN, MEN, MED)

Model Terms Score Total Terms Model Terms Score Total Terms

FastText

Positive 22

FastText

Positive 22

Negative 8 Negative 9

Not Found 10 Not Found 9

Total 40 Total 40

60

Table 22. Ambiguity Scores of the Terms of Table 15 (M3) Using New Language Models

by Word2Vec and FastText

M3

CS, EEN, MEN, MED, SPO

WV score FT score Difference

consequence 1.4678 1.3797 -0.0882

respect 2.5993 2.5128 -0.0864

statement 1.9414 1.8920 -0.0495

michael

story 1.9306 2.5789 0.6483

argument 1.1495 1.6139 0.4644

brother 1.8379 1.2399 -0.5980

founder

end

ray

relation 2.0889 1.8586 -0.2302

stability 1.7865 0.9160 -0.8706

institution 0.5461 1.0328 0.4867

sense 1.8001 1.6886 -0.1114

surface 1.1264 1.6873 0.5609

robert

expression 2.2029 1.5736 -0.6293

angle 1.6802 1.4746 -0.2055

option 1.5689 1.6228 0.0538

bill 2.0789 2.2631 0.1843

polygon

organization 0.6251 1.0004 0.3753

processing 0.4417 1.0235 0.5818

project 0.3966 0.6587 0.2620

battery 0.5983 0.7987 0.2004

geometry 1.0715 0.7578 -0.3137

keyboard

architecture

quantum 0.7796 1.0898 0.3102

instruction 1.3436 1.1762 -0.1674

time 0.5354 1.8147 1.2793

test 0.8820 1.3883 0.5063

electron 1.1818 1.5797 0.3978

photon

phone 0.2424 0.4190 0.1766

code 1.4340 1.9659 0.5319

computer 0.7425 0.8510 0.1085

student 0.6424 0.8079 0.1655

61

variety 0.9956 1.1567 0.1611

century 0.2640 0.4912 0.2272

Table 23. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 22

M3 Sports Rehab Machine (CS, EEN, MEN, MED, SPO)

Model Terms Score Total Terms

FastText

Positive 20

Negative 11

Not Found 9

Total 40

The 40 terms stated in the M1 scenario Medical Device, 8 terms have negative value,

indicating that FastText rather than the Word2Vec model computes these terms as less

ambiguous, while 22 terms have positive values, indicating that they are more ambiguous as

per FastText Model. None of the 10 terms were present in the revised outputs.

Figure 18. Ambiguity Score of FastText in Comparison to Word2Vec (for M1, M2 &

M3)

The M2 scenario Medical Robot produced results such that, with a total of 22 terms

calculated as positive, 9 as negative, and 9 as not found (shown in Table 21). Moreover, M3

scenario Sport Rehab Machine given the result as, difference of 20 terms found as positive,

62

11 was negative and 9 was not found in the total of 40 terms (given in Table 23). In Figure

18, the two models are contrasted.

4.6 Comparison of Word2Vec and FastText Combined Results on New

Dataset

Different files were used to produce the ambiguous words in the different scenarios. Detail of

these files’ usage are given in Table 12. Output of these files is combined in such a way that

common terms from both files were searched and ambiguity score of both Word2Vec and

FastText models are written in a third file. For example, output of file ambiguity_tests_merge

(ATM) are total 2878 terms. Common terms of these two files (ATM output for Word2Vec

and for FastText) are 2806 in the total 2878 ranked terms. In these common terms, after the

comparison of all terms, the ambiguity score of 2399 terms is high in the FastText ATM

result and Word2Vec score high for 407 terms. Similar comparison for each scenario in the

result of the given files are given in Table 24 and Figure 19, Figure 20, Figure 21, Figure 22,

Figure 23, and Figure 24.

As the dominant-shared terms for each scenario were so large in quantity against each model,

and the manual analysis might be time consuming and error prone, therefore we built Excel

Macros for finding, comparing, listing, and organizing the terms. Also, these macros were

used to extract the uncommon terms of both models in each pair of domains.

Table 24. FastText Word2Vec Comparison of Ambiguity Score

File Common Terms Positive Ambiguity Score Terms Not Found in FT Total

FastText Word2Vec

ATM 2806 2399 407 72 2878

ATIC 385 362 23 15 400

ATMu 371 363 8 29 400

ATMC 755 728 27 44 799

ATMFA 4124 3384 740 38 4162

ATP 942 898 44 58 1000

63

Figure 19. Dominant-Shared Terms Ambiguity Scores Comparison (1)

Figure 20. Dominant-Shared Terms Ambiguity Scores Comparison (2)

Figure 21. Dominant-Shared Terms Ambiguity Scores Comparison (3)

Figure 22. Dominant-Shared Terms Ambiguity Scores Comparison (4)

362

23

0 50 100 150 200 250 300 350 400

FastText

Word2Vec

ATIC

2399

407

0 500 1000 1500 2000 2500 3000

FastText

Word2Vec

ATM

363

8

0 50 100 150 200 250 300 350 400

FastText

Word2Vec

ATMu

728

27

0 100 200 300 400 500 600 700 800

FastText

Word2Vec

ATMC

64

Figure 23. Dominant-Shared Terms Ambiguity Scores Comparison (5)

Figure 24. Dominant-Shared Terms Ambiguity Scores Comparison (6)

Figure 25. FastText Word2Vec Ambiguity Score Comparison

Figure 25 shows visual representation of Table 24 in which the clustered columns represents

the high FastText output, and the horizontal brown line represent high values of Word2Vec

model.

3384

740

0 500 1000 1500 2000 2500 3000 3500 4000

FastText

Word2Vec

ATMFA

898

44

0 200 400 600 800 1000

FastText

Word2Vec

ATP

362

2399

363

728

3384

898

23

407

8 27

740

440

500

1000

1500

2000

2500

3000

3500

4000

ATIC ATM ATMu ATMC ATMFA ATP

FastText Word2Vec Ambiguity Score Comparison

FastText Word2Vec

65

4.7 Selection of Dominant Shared Terms by FastText

As in the literature, from the result of Word2Vec dominant-shared terms the top 20 and

bottom 20 terms were listed [1], expressing the 20 most and 20 least ambiguous terms. In the

same way from the result of FastText dominant-shared terms, the 20 most ambiguous and 20

least scored terms are listed against each scenario and given in the Table 25 Table 26 and

Table 27 below:

Table 25. Dominant-Shared Terms List by FastText for Light Controller and

Mechanical CAD Scenarios

Sr. Light controller I1

(CS, EEN)

Sr. Mechanical CAD I2

(CS, MEN)

Term Score Term Score

1. surface 1.59096 1. machinery 1.646123

2. news 1.570741 2. park 1.615587

3. man 1.552746 3. bell 1.474922

4. studio 1.515439 4. appliance 1.471294

5. potential 1.452937 5. house 1.466081

6. contrast 1.440053 6. gradient 1.459927

7. aspect 1.428504 7. potential 1.450888

8. ground 1.423502 8. calculator 1.445849

9. air 1.360362 9. class 1.439836

10. channel 1.358456 10. stock 1.433542

11. deal 1.350508 11. field 1.418269

12. water 1.344624 12. piece 1.41196

13. game 1.336707 13. ground 1.388091

14. energy 1.3231 14. clock 1.362174

15. coverage 1.316237 15. parallel 1.360973

16. cell 1.313304 16. action 1.353842

17. field 1.299738 17. type 1.339001

18. piece 1.293262 18. respect 1.327407

19. gap 1.253745 19. hybrid 1.323835

20. carrier 1.245965 20. mark 1.321176

21. amplitude 0.467667 21. experiment 0.539596

22. amd 0.466124 22. measure 0.536097

23. sale 0.465218 23. measurement 0.530514

24. addition 0.464722 24. location 0.526131

25. color 0.459062 25. manufacturer 0.524683

26. mobile 0.458707 26. flight 0.523489

27. test 0.458335 27. reference 0.522834

66

28. total 0.446947 28. academy 0.511415

29. telephone 0.420993 29. hour 0.492302

30. phone 0.418956 30. degree 0.488334

31. advantage 0.41661 31. order 0.481053

32. today 0.394948 32. range 0.474885

33. sin 0.386986 33. calculation 0.467964

34. president 0.368968 34. case 0.461196

35. price 0.364017 35. college 0.44772

36. increase 0.350908 36. advantage 0.430415

37. clock 0.343635 37. increase 0.429334

38. combination 0.337399 38. master 0.407038

39. modulation 0.327778 39. north 0.391403

40. court 0.255111 40. variety 0.380674

Table 26. Dominant-Shared Terms List by FastText for Medical Software and Athletes

Network Scenarios

Sr. Medical software I3

(CS, MED)

Sr. Athletes network I4

 (CS, SPO)

Term Score Term Score

1. fiber 1.640556 1. boot 1.695729

2. motor 1.606068 2. surface 1.687301

3. type 1.599276 3. movement 1.598654

4. pulse 1.585226 4. agency 1.581641

5. library 1.560013 5. art 1.571298

6. resource 1.548058 6. wave 1.563652

7. idea 1.546585 7. card 1.562775

8. failure 1.535262 8. material 1.53141

9. surface 1.53385 9. activity 1.521687

10. program 1.531147 10. course 1.497328

11. property 1.52729 11. spin 1.495257

12. alternative 1.521999 12. route 1.492943

13. host 1.519336 13. bill 1.491617

14. air 1.510406 14. goal 1.491474

15. case 1.509322 15. equipment 1.479725

16. friend 1.508765 16. relay 1.472861

17. name 1.483718 17. family 1.456204

18. mission 1.470916 18. piece 1.44645

19. scientist 1.461924 19. variation 1.43019

20. availability 1.461715 20. story 1.428106

21. protection 0.607006 21. hour 0.889138

67

22. chair 0.602771 22. military 0.841241

23. job 0.600881 23. television 0.831664

24. measurement 0.600296 24. partner 0.811091

25. money 0.583641 25. participant 0.789333

26. student 0.581199 26. success 0.772783

27. experiment 0.552848 27. music 0.762495

28. range 0.545283 28. school 0.760408

29. travel 0.521072 29. report 0.75292

30. increase 0.507215 30. position 0.748885

31. sale 0.494142 31. member 0.716138

32. decade 0.488249 32. direction 0.712265

33. article 0.486702 33. protection 0.707374

34. biology 0.473625 34. total 0.702056

35. reference 0.465292 35. president 0.669979

36. north 0.435227 36. brand 0.658793

37. executive 0.422421 37. regulation 0.644789

38. director 0.418565 38. chief 0.619433

39. category 0.405581 39. list 0.559163

40. price 0.347632 40. child 0.525307

Table 27. Dominant-Shared Terms List by FastText for Medical Device, Medical Robot

and Sport Rehab Machine Scenarios

Sr. Medical device M1

(CS, EEN, MED)

Sr. Medical robot M2

(CS, EEN, MEN, MED)

Sr. Sport rehab machine M3

(CS, EEN, MEN, MED, SPO)

Term Score Term Score Term Score

1. motor 2.054434 1. park 2.419028 1. ability 2.610864

2. type 1.996133 2. type 2.268756 2. story 2.578883

3. air 1.969982 3. respect 2.220806 3. respect 2.51284

4. phenomenon 1.919298 4. surface 2.153767 4. type 2.454103

5. process 1.89895 5. device 2.150813 5. future 2.425817

6. particle 1.89878 6. property 2.14334 6. park 2.419028

7. material 1.896871 7. solution 2.134443 7. order 2.415292

8. gamma 1.891737 8. process 2.12899 8. thing 2.373934

9. liquid 1.884634 9. barrier 2.115433 9. film 2.335974

10. solution 1.867904 10. thing 2.105908 10. motor 2.334503

11. board 1.855416 11. office 2.093762 11. spot 2.313416

12. film 1.847767 12. story 2.091625 12. formula 2.293928

13. property 1.835732 13. magazine 2.090205 13. peak 2.281734

14. pattern 1.834297 14. team 2.070382 14. magazine 2.281644

15. respect 1.824345 15. approach 2.068058 15. stock 2.264412

16. house 1.819449 16. glass 2.061337 16. bill 2.263122

17. beam 1.811696 17. film 2.059012 17. deal 2.255644

18. mark 1.806572 18. motor 2.054434 18. field 2.242056

19. glass 1.798863 19. atom 2.052603 19. spin 2.239163

68

20. barrier 1.795809 20. ability 2.043992 20. sheet 2.23529

21. executive 0.422421 21. usb 0.48659 21. actuator 0.50265

22. telephone 0.420993 22. omega 0.482839 22. century 0.491201

23. phone 0.418956 23. biology 0.473625 23. usb 0.48659

24. capability 0.418835 24. prediction 0.46769 24. omega 0.482839

25. laptop 0.417104 25. amd 0.466124 25. biology 0.473625

26. category 0.405581 26. mpeg 0.459843 26. prediction 0.46769

27. chief 0.404338 27. color 0.459062 27. amd 0.466124

28. today 0.394948 28. mobile 0.458707 28. mpeg 0.459843

29. compatibility 0.39377 29. fi 0.448872 29. color 0.459062

30. director 0.391759 30. pc 0.435289 30. mobile 0.458707

31. sin 0.386986 31. executive 0.422421 31. fi 0.448872

32. wireless 0.384006 32. phone 0.418956 32. pc 0.435289

33. president 0.368968 33. capability 0.418835 33. phone 0.418956

34. increase 0.350908 34. laptop 0.417104 34. capability 0.418835

35. clock 0.343635 35. compatibility 0.39377 35. laptop 0.417104

36. combination 0.337399 36. sin 0.386986 36. compatibility 0.39377

37. modulation 0.327778 37. wireless 0.384006 37. sin 0.386986

38. degree 0.32216 38. increase 0.350908 38. wireless 0.384006

39. storage 0.321692 39. clock 0.343635 39. clock 0.343635

40. court 0.255111 40. modulation 0.327778 40. modulation 0.327778

4.8 Case Studies of the Effectiveness of FastText Terms

In the dominant-shared terms of FastText, some of the terms have a high ambiguity score but

was not listed in the resultant terms of Word2Vec model. Based on various scenarios, we

discuss some important cases below:

The term net is ranked higher in the domain of CS-Sports domain, which may be interpreted

as computer network or internet, while in the Sport domain it may be expressed as fabric,

bag, or a mesh for ball. The term press in the same domain combination also ranked high for

ambiguity level; it can be seen as the news, media related to the sports events in sport

domain, and ‘a click’, ‘a press down on a key’ like meaning in the CS domain. The term port

given in the list against CS-Electronics also has dual interpretation in both domains, such as it

can be a physical terminal for an electronic machine to connect with an external physical

circuit. While the port can also be seen as the logical port numbers declared in a software and

associated with network protocols to allow transfer of data between two systems. The term

park given as ambiguous term in CS-Sport domain is intended as to adjust read/write head of

the hard disk to its default location, or it may be an area name where computers / technology

69

company exists. On the other hand, the park may be a venue for playing, presentation, or

exercises in the sports domain.

The term star is ranked high in Electronic-SPO domain can be taken as a key player of a

game, or in the electronics domain, it refers to an energy star, with high star, an electronic

appliance considers as least efficient and vice versa. Similarly, in the CS domain, the star is a

star topology for computers connectivity, or referring a pointer variable, or a product symbol.

The term man in the medical domain may refer to a patient or a doctor, in sports it may be

referred to a coach, a sportsman. If we see this term in CS domain, it may be a type of

network. The term boot ranked high in the domain CS-Mec and CS-Sport, can be interpreted

as in sport footwears, while in the CS the term means loading an operating system to primary

memory or startup of a system. The same term is used for a piece of pipe in a three-phase

separator's bottom, often upstream of the weir, or a steering wheel boot of a vehicle. The term

book in the sport domain is a bet on the game events, and the study books in all other

domains.

A common term code in the computer domain is considered as set of instructions that is

written in a programming language for a specific task, while in the electronics it is group-of-

symbols for the representation of letters or numbers. In all other domains the code may be

interpreted as the rules, law, and standards to be followed for the achievement of a specific

goal. Moreover, the term art is one of the high scored terms, can be read in the medical

domain as the treatment of HIV (antiretroviral), while in the other domain it will lead to a

default meaning as a skill, or creativity related to something. The term spot is considered as a

mark, area, or a specific location in general domains, and in the mechanical domain it can

also be interpreted as a satellite name that an imaging satellite (spot) for observational

purpose. The term parameter ambiguity score given high in the domain of CS-electronics

which can be elaborated in the electronics field as the values that shows the performance of

circuits and components, while in the computer domain the same term is considered as in the

meaning of argument which passes the values to the methods or procedures in the

programming.

These were some of those terms which are only listed in FastText, and we have observed its

ambiguity level through examples. There were other important terms listed in the FastText

output that were absent from the list of Word2Vec.

70

4.9 Limitations

Amongst all the dominant-shared terms listed by FastText, usage of terms in its context was

not checked manually and the case study of each term couldn’t be analyzed for another

verification of the effectiveness of the approach. The reason is that the produced terms

needed to be compared with the result of Word2Vec model, which was two time generated

due to the expected variation in the internet contents.

As the author of study [19] applied Word2Vec for word vector representation also mentioned

FastText and GloVe to be applied for the same purpose, we missed the GloVe model

application due to the implementation of FastText and detailed comparison of the terms.

We also did not apply multiple n-grams with the FastText for the detailed examination of the

effectiveness of n-grams on the given text corpora. As if n-grams change the language

models must be re-build for it and the algorithms must be re applied on the models which

needed a lot of time for processing.

One major limitation of the FastText usage is that it requires more time to train on data and

generate language models as compared to Word2Vec.

71

CHAPTER 5: CONCLUSION & FUTURE WORK

5.1 Conclusion

In this research, we have proposed a problem to detect cross-domain ambiguity caused by

multi-meaning terms of different domains. We performed a detailed literature review related

to the cross-domain ambiguity. The dataset was obtained from the Wikipedia pages for the

selected domains. We applied NLP approaches for pre-processing on the text corpus and on

the resultant text of different domains, we applied Word2Vec and FastText on the data and

built language models. The language models were generated separately against each of the

domain. Total seven scenarios were supposed to combine the domains for a particular

purpose. Cross-domain ambiguity was calculated by the selection of dominant-shared terms

in each domain combination and ranking of the set of terms as per its ambiguity level.

Ambiguity score of the terms was calculated based on the similar wording they share in its

context across the domains. The process was done twice, once using Word2Vec and secondly

using FastText language models. Output of both models were stored and compared with the

state-of-the-art article results. Ambiguous terms generated by both models were also

compared in which the ambiguity score of most of the terms was high in the FastText results,

specifically in the scenarios where more than two domains were involved. Furthermore, we

observed that some of the most ambiguous terms listed by FastText were not found in the

Word2Vec generated results. We also observed that the model training time of Word2Vec

was less than FastText. We concluded that the use of FastText by requirements analyst will

be more beneficial for the track of cross-domain ambiguity terms in requirements if there is

no strict time constraint for the implementation of approach.

5.2 Future Work

As future work, the proposed approach can be extended to implement by increasing the

number of n-grams in the implementation of FastText. Similarly GloVe and BERT can also

be used to see its effectiveness in the similar methodology.

72

REFERENCES

[1] A. Ferrari and A. Esuli, “An NLP approach for cross-domain ambiguity detection in

requirements engineering,” Autom. Softw. Eng., vol. 26, no. 3, pp. 559–598, Sep. 2019, doi:

10.1007/s10515-019-00261-7.

[2] O. Al-Harbi, S. Jusoh, and N. M. Norwawi, “Lexical Disambiguation in Natural

Language Questions (NLQs).” arXiv, Sep. 26, 2017. [Online]. Available:

http://arxiv.org/abs/1709.09250

[3] F. Zait and N. Zarour, “Addressing Lexical and Semantic Ambiguity in Natural

Language Requirements,” in 2018 Fifth International Symposium on Innovation in

Information and Communication Technology (ISIICT), Oct. 2018, pp. 1–7. doi:

10.1109/ISIICT.2018.8613726.

[4] A. Ferrari, G. Lipari, S. Gnesi, and G. O. Spagnolo, “Pragmatic ambiguity detection

in natural language requirements,” in 2014 IEEE 1st International Workshop on Artificial

Intelligence for Requirements Engineering (AIRE), Aug. 2014, pp. 1–8. doi:

10.1109/AIRE.2014.6894849.

[5] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry, “Requirements for tools for

ambiguity identification and measurement in natural language requirements specifications,”

Requir. Eng., vol. 13, no. 3, pp. 207–239, Sep. 2008, doi: 10.1007/s00766-008-0063-7.

[6] S. F. Tjong and D. M. Berry, “The Design of SREE — A Prototype Potential

Ambiguity Finder for Requirements Specifications and Lessons Learned,” in Requirements

Engineering: Foundation for Software Quality, J. Doerr and A. L. Opdahl, Eds., in Lecture

Notes in Computer Science. Berlin, Heidelberg: Springer, 2013, pp. 80–95. doi: 10.1007/978-

3-642-37422-7_6.

[7] M. Bano, “Addressing the challenges of requirements ambiguity: A review of

empirical literature,” in 2015 IEEE Fifth International Workshop on Empirical Requirements

Engineering (EmpiRE), Aug. 2015, pp. 21–24. doi: 10.1109/EmpiRE.2015.7431303.

[8] A. Ferrari and S. Gnesi, “Using collective intelligence to detect pragmatic

ambiguities,” in 2012 20th IEEE International Requirements Engineering Conference (RE),

Sep. 2012, pp. 191–200. doi: 10.1109/RE.2012.6345803.

[9] A. Ferrari, B. Donati, and S. Gnesi, “Detecting Domain-Specific Ambiguities: An

NLP Approach Based on Wikipedia Crawling and Word Embeddings,” in 2017 IEEE 25th

International Requirements Engineering Conference Workshops (REW), Lisbon, Portugal:

IEEE, Sep. 2017, pp. 393–399. doi: 10.1109/REW.2017.20.

73

[10] A. Ferrari, A. Esuli, and S. Gnesi, “Identification of Cross-Domain Ambiguity with

Language Models,” in 2018 5th International Workshop on Artificial Intelligence for

Requirements Engineering (AIRE), Banff, AB: IEEE, Aug. 2018, pp. 31–38. doi:

10.1109/AIRE.2018.00011.

[11] V. Gervasi, A. Ferrari, D. Zowghi, and P. Spoletini, “Ambiguity in Requirements

Engineering: Towards a Unifying Framework,” in From Software Engineering to Formal

Methods and Tools, and Back, M. H. ter Beek, A. Fantechi, and L. Semini, Eds., in Lecture

Notes in Computer Science, vol. 11865. Cham: Springer International Publishing, 2019, pp.

191–210. doi: 10.1007/978-3-030-30985-5_12.

[12] B. Kitchenham, “Procedures for Performing Systematic Reviews”.

[13] M. P. S. Bhatia, A. Kumar, and R. Beniwal, “Ontology based framework for detecting

ambiguities in software requirements specification,” 2016.

[14] F. Siddiqui and M. A. Alam, “An Ontology Based Approach for Requirement

Inconsistency Detection,” no. 1, 2011.

[15] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a

replication in software engineering,” in Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering, London England United Kingdom:

ACM, May 2014, pp. 1–10. doi: 10.1145/2601248.2601268.

[16] A. Naeem, Z. Aslam, and M. A. Shah, “Analyzing Quality of Software Requirements;

A Comparison Study on NLP Tools,” in 2019 25th International Conference on Automation

and Computing (ICAC), Lancaster, United Kingdom: IEEE, Sep. 2019, pp. 1–6. doi:

10.23919/IConAC.2019.8895182.

[17] B. Lebeaupin, A. Rauzy, and J.-M. Roussel, “A language proposition for system

requirements,” in 2017 Annual IEEE International Systems Conference (SysCon), Montreal,

QC, Canada: IEEE, Apr. 2017, pp. 1–8. doi: 10.1109/SYSCON.2017.7934808.

[18] J. Kuchta and P. Padhiyar, “Extracting Concepts from the Software Requirements

Specification Using Natural Language Processing,” in 2018 11th International Conference on

Human System Interaction (HSI), Gdansk, Poland: IEEE, Jul. 2018, pp. 443–448. doi:

10.1109/HSI.2018.8431221.

[19] S. Mishra and A. Sharma, “On the Use of Word Embeddings for Identifying Domain

Specific Ambiguities in Requirements,” in 2019 IEEE 27th International Requirements

Engineering Conference Workshops (REW), Jeju Island, Korea (South): IEEE, Sep. 2019, pp.

234–240. doi: 10.1109/REW.2019.00048.

74

[20] A. Fantechi, A. Ferrari, S. Gnesi, and L. Semini, “Requirement Engineering of

Software Product Lines: Extracting Variability Using NLP,” in 2018 IEEE 26th International

Requirements Engineering Conference (RE), Banff, AB: IEEE, Aug. 2018, pp. 418–423. doi:

10.1109/RE.2018.00053.

[21] M. Osama, A. Zaki-Ismail, M. Abdelrazek, J. Grundy, and A. Ibrahim, “Score-Based

Automatic Detection and Resolution of Syntactic Ambiguity in Natural Language

Requirements,” in 2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Adelaide, Australia: IEEE, Sep. 2020, pp. 651–661. doi:

10.1109/ICSME46990.2020.00067.

[22] S. Ezzini, S. Abualhaija, C. Arora, M. Sabetzadeh, and L. C. Briand, “Using Domain-

Specific Corpora for Improved Handling of Ambiguity in Requirements,” in 2021

IEEE/ACM 43rd International Conference on Software Engineering (ICSE), Madrid, ES:

IEEE, May 2021, pp. 1485–1497. doi: 10.1109/ICSE43902.2021.00133.

[23] A. Fantechi, S. Gnesi, S. Livi, and L. Semini, “A spaCy-based tool for extracting

variability from NL requirements,” in Proceedings of the 25th ACM International Systems

and Software Product Line Conference - Volume B, Leicester United Kindom: ACM, Sep.

2021, pp. 32–35. doi: 10.1145/3461002.3473074.

[24] A. Fantechi, S. Gnesi, and L. Semini, “Applying the QuARS Tool to Detect

Variability,” in Proceedings of the 23rd International Systems and Software Product Line

Conference - Volume B, Paris France: ACM, Sep. 2019, pp. 29–32. doi:

10.1145/3307630.3342388.

[25] A. Ferrari et al., “Detecting requirements defects with NLP patterns: an industrial

experience in the railway domain,” Empir. Softw. Eng., vol. 23, no. 6, pp. 3684–3733, Dec.

2018, doi: 10.1007/s10664-018-9596-7.

[26] A. Ferrari, G. O. Spagnolo, A. Fiscella, and G. Parente, “QuOD: An NLP Tool to

Improve the Quality of Business Process Descriptions,” in From Software Engineering to

Formal Methods and Tools, and Back, M. H. ter Beek, A. Fantechi, and L. Semini, Eds., in

Lecture Notes in Computer Science, vol. 11865. Cham: Springer International Publishing,

2019, pp. 267–281. doi: 10.1007/978-3-030-30985-5_17.

[27] B. Rosadini et al., “Using NLP to Detect Requirements Defects: An Industrial

Experience in the Railway Domain,” in Requirements Engineering: Foundation for Software

Quality, P. Grünbacher and A. Perini, Eds., in Lecture Notes in Computer Science, vol.

10153. Cham: Springer International Publishing, 2017, pp. 344–360. doi: 10.1007/978-3-319-

54045-0_24.

75

[28] F. Ashfaq and I. S. Bajwa, “Natural language ambiguity resolution by intelligent

semantic annotation of software requirements,” Autom. Softw. Eng., vol. 28, no. 2, p. 13,

Nov. 2021, doi: 10.1007/s10515-021-00291-0.

[29] M. Shepperd, F. Brito e Abreu, A. Rodrigues da Silva, and R. Pérez-Castillo, Eds.,

Quality of Information and Communications Technology: 13th International Conference,

QUATIC 2020, Faro, Portugal, September 9–11, 2020, Proceedings, vol. 1266. in

Communications in Computer and Information Science, vol. 1266. Cham: Springer

International Publishing, 2020. doi: 10.1007/978-3-030-58793-2.

[30] M. H. ter Beek, A. Fantechi, and L. Semini, Eds., From Software Engineering to

Formal Methods and Tools, and Back: Essays Dedicated to Stefania Gnesi on the Occasion

of Her 65th Birthday, vol. 11865. in Lecture Notes in Computer Science, vol. 11865. Cham:

Springer International Publishing, 2019. doi: 10.1007/978-3-030-30985-5.

[31] S. Jarzabek, A. Poniszewska-Marańda, and L. Madeyski, Eds., Integrating Research

and Practice in Software Engineering, vol. 851. in Studies in Computational Intelligence,

vol. 851. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-26574-8.

[32] A. Mustafa, W. M. W. Kadir, and N. Ibrahim, “Automated Natural Language

Requirements Analysis using General Architecture for Text Engineering (GATE)

Framework,” Journal of Telecommunication, Electronic and Computer Engineering

(JTEC)JTEC, vol. 9, no. 3–4, pp. 97–101, 2017, [Online]. Available:

https://jtec.utem.edu.my/jtec/article/view/2925

[33] V. Jain, R. Malhotra, S. Jain, and N. Tanwar, “Cross-Domain Ambiguity Detection

using Linear Transformation of Word Embedding Spaces.” arXiv, Mar. 29, 2020. Accessed:

Apr. 11, 2023. [Online]. Available: http://arxiv.org/abs/1910.12956

[34] S. Çevikol and F. B. Aydemir, “Detecting Inconsistencies of Natural Language

Requirements in Satellite Ground Segment Domain,” REFSQ Workshops, 2019, [Online].

Available: https://ceur-ws.org/Vol-2376/NLP4RE19_paper15.pdf

[35] A. Chattopadhyay, N. Niu, Z. Peng, and J. Zhang, “Semantic Frames for Classifying

Temporal Requirements: An Exploratory Study,” REFSQ Workshops, pp. 1–9, 2021,

[Online]. Available: https://homepages.uc.edu/~niunn/papers/NLP4RE21.pdf

[36] M. Arrabito, A. Fantechi, S. Gnesi, and L. Semini, “A comparison of NLP Tools for

RE to extract Variation Points,” REFSQ Workshops, 2020, [Online]. Available: https://ceur-

ws.org/Vol-2584/NLP4RE-paper1.pdf

76

[37] T. Baldwin, Y. Li, B. Alexe, and I. R. Stanoi, “Automatic Term Ambiguity

Detection,” Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pp. 804–809, Aug. 2013.

[38] D. M. Blei, Andrew Y. Ng, and Michael I. Jordan, “Latent Dirichlet Allocation,”

Journal of Machine Learning Research 3 (2003) 993-1022, pp. 993–1022, Jan. 2003.

[39] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated Extraction and

Clustering of Requirements Glossary Terms,” IEEE Trans. Softw. Eng., vol. 43, no. 10, pp.

918–945, Oct. 2017, doi: 10.1109/TSE.2016.2635134.

[40] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2–3, pp. 146–162, Aug.

1954, doi: 10.1080/00437956.1954.11659520.

[41] R. Collobert and J. Weston, “A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning”.

[42] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality”.

[43] P. D. Turney and P. Pantel, “From Frequency to Meaning: Vector Space Models of

Semantics,” J. Artif. Intell. Res., vol. 37, pp. 141–188, Feb. 2010, doi: 10.1613/jair.2934.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space.” arXiv, Sep. 06, 2013. Accessed: May 05, 2023. [Online].

Available: http://arxiv.org/abs/1301.3781

[45] K. Bhatia, S. Mishra, and A. Sharma, “Clustering Glossary Terms Extracted from

Large-Sized Software Requirements using FastText,” in Proceedings of the 13th Innovations

in Software Engineering Conference on Formerly known as India Software Engineering

Conference, Jabalpur India: ACM, Feb. 2020, pp. 1–11. doi: 10.1145/3385032.3385039.

[46] F. Dalpiaz and N. Niu, “Requirements Engineering in the Days of Artificial

Intelligence,” IEEE Softw., vol. 37, no. 4, pp. 7–10, Jul. 2020, doi:

10.1109/MS.2020.2986047.

[47] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo, “Evaluating word

embedding models: methods and experimental results,” APSIPA Trans. Signal Inf. Process.,

vol. 8, no. 1, 2019, doi: 10.1017/ATSIP.2019.12.

[48] P. Vora, M. Khara, and K. Kelkar, “Classification of Tweets based on Emotions using

Word Embedding and Random Forest Classifiers,” Int. J. Comput. Appl., vol. 178, no. 3, pp.

1–7, Nov. 2017, doi: 10.5120/ijca2017915773.

[49] S. Mishra and A. Sharma, “A Generalized Semantic Filter for Glossary Term

Extraction from Large-Sized Software Requirements,” in 14th Innovations in Software

77

Engineering Conference (formerly known as India Software Engineering Conference),

Bhubaneswar, Odisha India: ACM, Feb. 2021, pp. 1–9. doi: 10.1145/3452383.3452387.

[50] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors with

Subword Information.” arXiv, Jun. 19, 2017. Accessed: May 02, 2023. [Online]. Available:

http://arxiv.org/abs/1607.04606

[51] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient Text

Classification.” arXiv, Aug. 09, 2016. Accessed: May 05, 2023. [Online]. Available:

http://arxiv.org/abs/1607.01759

[52] “Word representations · fastText.” https://fasttext.cc/index.html (accessed May 17,

2023).

[53] C. D. Manning, “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some

Linguistics?,” in Computational Linguistics and Intelligent Text Processing, A. F. Gelbukh,

Ed., in Lecture Notes in Computer Science, vol. 6608. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2011, pp. 171–189. doi: 10.1007/978-3-642-19400-9_14.

[54] “GitHub - isti-fmt-nemis/Domain-specific-ambiguity: Tool for comparing terms of

different domains.” https://github.com/isti-fmt-nemis/Domain-specific-ambiguity/tree/master

(accessed May 14, 2023).

