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Abstract 

Background: In the Requirements elicitation various techniques are adapted to gather the 

exact needs of the stakeholders which are usually from different background. These 

techniques are used to clarify the actual problem being solved. There may also be greater 

chances of ambiguities in the terms used for the requirements. These terms used by 

stakeholders may vary their meaning domain to domain which may lead to an undesirable 

interpretation of the requirements.  

Aim & Objectives: A project success can be measured/estimated if and only if the initially 

collected requirements are clear, unambiguous, and well understood. Similarly, the 

ambiguous or not understandable requirements can lead to the failure or closure of the project 

in disastrous form. An initial step in the requirement elicitation is usually gathering 

requirements in natural language. This study analyzes different tools, techniques, and 

approaches used for detecting ambiguities in natural language requirements, validate the 

approaches applied for the term’s ambiguity among different domain, and to develop and use 

more precise approach for terms extraction of different domains, similarity finding and 

ranking of the ambiguities in their semantics.  

Methodology: An algorithm ‘Word2Vec’ was found as majority in use for ambiguous word 

detection in text. This previously used algorithm was replaced by ‘FastText’ algorithm on a 

same data to identify more suitable approach between them. Ambiguity score of the 

ambiguous terms were calculated and compared scores of the high ambiguous terms 

produced by Word2Vec with the score produced by FastText.  

Results and Conclusion: Data of five different domain were assessed via Word2Vec and 

FastText algorithms. Ambiguous terms were extracted and then was ranked as per their 

ambiguity level. The rankings of same term produced by both algorithms were compared and 

difference in the rankings were calculated.  

This approach seeks to disambiguate texts and improve the process of software requirements 

elicitation in natural language. 

 

Keywords: Ambiguity detection in Natural language requirements, Cross-domain ambiguity, 

Requirement’s engineering, Natural language processing (NLP), Term ambiguity in Domains  
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CHAPTER 1: INTRODUCTION 

Requirement engineering has a vital significance in the development of a software. It is the 

phase that defines, documents, and maintains the requirements for all the upcoming phases in 

the process. Commonly software system is built for different areas w.r.t its domain which 

may be a simple straight forward and generalized field such as sports, construction or a more 

specific and technical one such as mechatronics engineering. It sometime combines more 

than one area for a single software development, e.g., sports and mechatronics engineering. 

For this kind of situation, the requirements experts must meet with the domain specialists to 

elicit the knowledge of its domain for the development of system [1]. In the requirement 

elicitation process, even if a little ambiguity is left over, it leads to the major defects in the 

later phases/steps.  

Ambiguities in the system requirement can be of different types; specifically, the 

requirements written in the natural languages have lexical, syntactic, or structural, semantic, 

and pragmatic ambiguities in common. Lexical ambiguity occurs if a term used in natural 

language requirement have un-related meanings due to poor usage of vocabulary [2]. In the 

syntactic ambiguity the sentences have more tree of syntax with one, with diverse sense. A 

semantic ambiguity exists if a sentence maybe interpreted into more logic expression [3]. In 

the pragmatic ambiguity, meaning of sentence is subject to its context [4] and if someone 

gives reference to a certain entity and that entity points to more than one meaning, this also 

leads an ambiguous requirement called referential ambiguity [5]. After writing the 

requirements, requirement analyst track them and remove the ambiguities in it. For the last 

decade, natural language processing techniques are being applied successfully in the projects 

wherever natural language is used to write requirements. Software requirements are based on 

natural language initially from stakeholders’ point of view, which are addressed by 

requirement engineers and domain experts in the iterations. Some of the ambiguities are easy 

to trace out and some of the ambiguities may requires the meddling of relevant field experts 

and stakeholders to rectify.  

Natural language processing techniques are in use with the combination of other approaches 

to analyze the requirements text for identifying ambiguities and inconsistencies. More 

specifically if we talk about term ambiguities across the domain, there are lot of terms which 

results varies in meaning subject to the domain i.e., the term ‘formula’ will be a mathematical 

formula in one domain and a type of car for the other [1]. The study found different 
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approaches proposed to detect such kind of cross domain ambiguities, which were then 

analyzed with the implementation and usage point of view.  

The requirements in written form have been assumed plenty of times for the identification of 

ambiguity in it. Some of the studies emphasis on the terms or expression, which may be the 

source of uncertainties [6]. Various tools, techniques and approaches have projected for 

uncovering and rectification related to the ambiguities in requirement’s document. Tools and 

approaches in addition to Natural Language Processing techniques have been used for finding 

uncertainties in the requirements [7]. The identified techniques are proposed for various kind 

of ambiguities i.e., to address referential ambiguities, pragmatic ambiguities, domain specific 

ambiguities and other variabilities in requirement documents [8], [9], [10]. Various studies 

also proposed composite approaches and tools for better detection of anomalies in the 

requirements and for its redressal.  

This thesis proposes the identification of ambiguity caused in the requirements by different 

terms. That is, the same term appears in different domains, but interpretation of the term 

varies with respect to the domain in which it is used. The term ambiguity can occur when the 

same term used to map different things. This may be due to feature of the language in use or 

may be due to absence of or indefinite descriptions [11]. This form of ambiguity is more 

problematic where there is more than one domain involved in the development of a system. 

After the identification of these ambiguous terms from one domain based on its semantics, 

the same term is checked in other domain(s) if it occurs sufficiently in that domain(s). These 

ambiguous terms are then scored accordingly based on its ambiguity level and ranked upon it. 

This procedure of ambiguity finding and ranking has done in the article [1]. The same 

procedure is repeated in this study but via FastText Algorithm, and the results of both the 

algorithms have been compared to determine which algorithm perform better for the same 

purpose. 

This chapter summarize that non-ambiguous requirements are essential for a successful 

development of system and the focus here is on one of the ambiguity categories which 

commonly occurs in natural language requirements, that is the terms which has different 

interpretation in different domains. Word2Vec algorithm is used for detection of these 

potential ambiguous terms in the literature. We used FastText on the dataset of different 

domains to detect these ambiguous terms across the domains.  
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1.1 Motivation 

The motivation of this research is to select the more effective approach for the uncovering of 

vague terms used in the requirements gathered from different areas. The research used text 

dataset from the Wikipedia articles related to five different domains. These articles were 

considered to analyze general type data for different selected domains and to identify 

ambiguous terms in it, which will lead to non-ambiguous requirements for further software 

development. Also, it will provide an option to choose more appropriate approach to be opt 

by requirement analysts for uncovering ambiguous terms in a certain domain requirement. 

These ambiguous terms can then be modified for clarity of the meanings and to ease the 

interpretation in the design phase.  

1.2 Problem Statement 

Requirement engineering has a significant role in the whole process of software development. 

After the feasibility study, usually the requirements are elicited from the domain for which 

the software is being developed.  The requirements are elicited from domain expert via 

different means such as questionnaires, meetings, interviews etc. These requirements are then 

analyzed in different ways with a view to proceed further in the right direction in the 

development cycle of the system. One of the ways among various is to detect ambiguities 

from these requirements and eliminate or clarify as desired. These ambiguities can be of 

different types needed to be identified. One of the common ambiguities exists in the 

requirements is term ambiguity which is focused on this study. To deal with these 

ambiguities, multiple ways were found in the literature. Most commonly Natural language 

processing approaches were opted for the said purpose and precisely, skip-gram negative 

sampling variant of Word2Vec algorithm had been used.  In this study we considered 

combination of approaches along with replacement of the approaches used in the literature 

with other relevant solutions. Additionally, the outcome of approach must be compared with 

the previous results got from the same dataset.  

1.3 Aims and Objectives 

The major objectives of the research are as follows:  

• To perform a comprehensive systematic-literature-review of recent articles on cross-

domain ambiguity. 
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• To obtain dataset of different specified domains by crawling Wikipedia articles in text 

form for further usage. 

• To explore algorithms that are used particularly for the detection of ambiguous terms 

in the corpus.  

• To propose an approach that detect and rank the potential vague terms in the dataset 

of different domains. 

• To analyze the results which is obtained via new approach and to compare it with 

previous results to observe any significance positive change. 

1.4 Thesis Outline 

The remaining work is structured as follows: 

Chapter 2 states a literature review in detail and the important relevant work performed by 

analysts and researchers in the previous few years, which covers the basics and background 

of the ambiguity detection and NLP approaches usage for the analysis of requirements. The 

systematic literature review is composed of three core sections. The ever first is the review-

protocol which displays detail upon the procedure using which the literature-review has 

carried out. Second Section offers detail on research study carried out on this area in the form 

of research-questions and tables. The section three shows the research-gap that are 

encountered in the study. 

Chapter 3 consists of the proposed approach in detail. It discusses the method in terms of an 

overview of the algorithm, main components of the approach and depiction of solution. 

Chapter 4 includes implementation, validation, and discussion on results together with 

research-questions and related figures. It also compare results of our work with the state of 

the art. Moreover, it precisely describes the limitations of this study. 

Chapter 5 concludes the thesis and reveals the future work of this research. 

The thesis outline is shown in Figure 1. 
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Figure 1. Thesis Outline 
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CHAPTER 2: LITERATURE REVIEW 

This chapter covers the systematic literature review for the area of this research. The Chapter 

comprises of an overview and major outcomes of Systematic literature, contribution of 

literature review, review methodology, research questions, category definitions, review 

protocol of literature review, results, and analysis, answer the research questions for literature 

and conclusion of the SLR. 

2.1 Overview and Major outcomes of SLR 

There are several studies in which the authors presented tools, techniques, approaches, and 

combination of these for the existence of cross-domain ambiguities in the requirements. Most 

of these studies are covered in this SLR. It also provides an overview of detailed usage of 

these approaches for the said purpose. Detailed research cover almost all the key features that 

concerns with the use of natural language processing approach for the detection of ambiguity 

in natural language requirements. 
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Figure 2. Overview & Major Outcomes of SLR 

Overview and key results of SLR is depicted in Figure 2. Twentynine landmark articles which 

were published from 2012 to 2022 in the major repositories were studied and analyzed in 

detail after needful filtration as per selection criteria. The articles were then categorized in 

further three groups for the purpose of analysis and to further study it to answer the research 
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questions. These groups are ‘Ambiguity Detection NLP Approaches – 10 papers’, ‘Tools for 

Ambiguity Detection - 08 papers’, and ‘Ambiguity Detection Techniques - 07 papers. A 

comprehensive analyzation of the final selected articles was performed to find the requisite 

and accurate result. So, the whole synthesis of analysis is divided into three categories. Five 

approaches were found relevant which were using Word2Vec algorithm with the combination 

of POS tagging, Wikipedia crawling, language model generation, and Word-embeddings. 

Ontologies based detection of term ambiguities were found in two studies. Ontologies were 

developed with which the semantic-reasoner, N-gram module were used along with 

clustering the contexts. Another approach was adopted for the same purpose using REGICE 

tool that used QuARs and combine POS tagging.  

The key contributions of Systematic Literature Review are: 

a) Identifying the approaches of ambiguity detection in requirements. 

b) Finding several automatic tools. 

c) Reporting the usage position of the tool. 

d) Detecting the major validation-techniques over which the rationality of the tools has 

been confirmed by scholars. 

e) identifying algorithms for ambiguity detection, stating its strategy and the procedure it 

focused on for the ambiguity detection in natural language requirements.   

f) Classifying the practical usage of several ambiguity finding tools and approaches. 

g) Summarizing NLP approaches for the cross-domain ambiguity.  

h) Finding more accurate and latest approach for the detection of terms potentially cause 

of ambiguity.  

2.2 Review Methodology 

This literature review followed the guidelines of Kitchenham guidelines [12]. The key areas 

of the methodology are planning, conducting and report. Review Protocol of the 

methodology section is an important step which is further divided in two sub-categories such 

as Review Protocol Development and Category Definition. More precisely, this segment 

explains Category Definition and Review Protocol. Furthermore, research questions of this 

study are also stated in this section. 

2.2.1 Research Questions 

Research questions have been summarized as below: 



    

 

9 

RQ1: Which techniques have been proposed in the literature for automated cross-domain 

ambiguity detection in requirement engineering? 

RQ2: Which NLP approaches have been used for automated cross-domain ambiguity 

detection in requirement engineering? 

RQ3: What are popular tools used / developed for automated cross-domain ambiguity? 

RQ4: What are advantages and limitations of tools and techniques proposed for automated 

cross-domain ambiguity detection? 

RQ5: Which ambiguity detection approach has better research productivity over the years 

from 2012 to 2022? 

RQ6: How cross-domain ambiguity detection approach may be ranked as per their 

accuracy? 

2.2.2 Category Definition 

The research has been divided into three main sections that helps finding answers to the 

research questions. 

a) Category 1: In this category the previous studies concerned with the identification of 

techniques used for ambiguity detection in requirements, have been considered. 

b) Category 2: This category step-in to the identified studies and filter out only those 

which are very specific to NLP approaches used cross-domain ambiguities caused by 

the same terms. 

c) Category 3: In this category we have compared the mechanism of finding the cross-

domain ambiguities via popular and customized tools from the selected concerned 

studies and identified the most common among them. 

2.2.3 Review Protocol 

After the category definition, the Review Protocol is formed as per the given procedure of 

Kitchenham [12]. Review protocol has six stages. Two steps which is background and 

research-questions are elaborated before, while rest of the steps are described in the below 

captions: 

I. Acceptance and Rejection Criteria 

Acceptance and rejection mainly consists of a set of some proper rules and a criterion which 

make the foundation for inclusion or exclusion of a specific study for the topic. These rules 
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consist of steps which are necessary to be followed with a view to decide regarding a study 

for its inclusion or exclusion. The articles which do not follow these certain pre-defined 

parameters are not considered for the SLR. Whereas the studies which fulfilled these rules 

have been considered for further work. These parameters for acceptance and rejection of 

papers are given below: 

a) Subject: The papers which closely belong to the ambiguity detection in requirements 

should be selected. Those studies which dealt with other than cross-domain 

ambiguities must be dropped as this literature only focused on cross domain 

ambiguity detections caused via same terms in different domains. 

b) Publication Year: This literature deals only with the articles which are published 

from 2012 onward till date. Even the relevant papers which were published before 

2012 were rejected. This is because, the latest research on the topic was focused and 

the second justification is that almost all this research was based on the results of 

previous research. Therefore, this literature studies duration was sensibly selected. 

This decade papers focused the more recent approaches related to the topic and 

backing by previous studies on the relevant area. As an example, a framework based 

on ontologies is used for the corrections of requirements with inconsistent state in 

paper [13] published in 2016, while the same concept of using ontologies for the 

same purpose was also used in [14] study. Hence the paper [13] covers the approach 

beyond 2012.  

c) Publisher: Papers were chosen from various well-known and authentic scientific 

databases. The repositories include IEEE, ACM, SPRINGER to conduct this 

literature review. These repositories are so dependable and reliable and the articles 

which are selected via these databases endure a rigorous peer review. Thus, majority 

of the articles for this SLR were selected from these databases.  

d) Language: Only English language studies have been selected for this systematic 

literature review. The studies written other than in English language were not 

considered for this review.  

e) Validation: The articles in which the validation of approaches, tools is done 

thoroughly with the help of dataset, open-source data or supported via a proper case 

study are included. As an example, a paper [10] presented the detection of 

ambiguous terminologies using NLP approach with Word2Vec algorithm and its 

validation process by presenting dataset and complete project. On the other hand, the 

articles that missing validation or case studies were excluded from the study.  
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II. Search Process 

The well-known repositories i.e., IEEE, Elsevier, ACM, Springer started to be explored after 

specifying the criteria of acceptance / rejection of studies. Different keywords and search-

items were used for finding the papers in the mentioned databases. Search of the articles was 

performed using very relevant keywords such as “ambiguity detection in requirements”. 

Resultantly, hundreds of links were coming up which could not be practically examined. For 

example, the IEEE showed 19700 results for the search phrase “cross domain ambiguity in 

requirements” in default search setting. 

 

 

Figure 3. Search Process 

The searching results were refined by applying filters like the searching publication range 

was applied i.e., from 2012 to 2022. The logical operators were applied to extract the process 

of search on keyword searching. Furthermore, synonyms of the keywords and possible 

replacement words were tried with a view not to miss out any relevant and important study 

from the literature. The snowballing guidelines [15] (forward and backward snowballing) 

were used to search further related studies. We gathered the most related papers after these 

procedures to consider it for this systematic literature review. With these methods, a detailed 
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search process was carried out, through which we found 29 research articles to find out 

precise and correct answers to the research-questions. The whole searching procedure is 

explained in Figure 3, and the phases are described below: 

• At first, 99 papers got from whole databases. Titles of research were checked and 

analyzed the relevance of it as per criteria. Eleven studies were rejected which shows 

insignificance to this research in their titles. 

• Secondly, we focused on the abstract of the remaining 88 papers. The studies whose 

abstract went against the defined criteria were dropped from consideration. Total of 

10 papers were discarded after the study of paper abstracts.  

• The remaining 78 papers were analyzed. Detailed study of the papers was carried out, 

in which validation of the studies was also considered for the verification of the 

approach adapted in the papers. Based on the detailed investigation of remaining 

papers, 49 further articles were excluded from the literature review of this research.  

• Finally, the remaining 29 papers were selected for a comprehensive analysis and 

systematic literature review on the topic.  

Table 1. Selected Research Papers with Catalogue 

Sr. 

# 

Catalogue Article 

Type 

Studies References (selected) No. of Articles 

1 IEEE 
Conference [3], [4], [8], [9], [10], [16], [17], [18], 

[19], [20], [13], [21], [22] 13 

3 ACM Conference [23], [24] 02 

4 Springer  

Journal [1], [25], [26], [27], [28] 08 

Conference  [29] 

Book Sec. [30], [31] 

5 Others Journal  [32], [33], [34], [35], [36], [37] 06 

 

III. Quality Evaluation 

Research studies from high impact articles which were authentic and acknowledged 

internationally were tried to be selected from scientific repositories to ensure the reliable 

outcomes of the literature review. Major databases were considered to select articles 

according to the criteria for the selection and rejection as mentioned above. The detail of 

selected papers and its distribution via concerned publishing scientific databases are given in 

Table 1. The table explains the details of the selected articles to be referenced, their 

databases, the paper publication type i.e., conference or journal, and total selected papers 

from repository. From IEEE 13 papers are selected, from ACM 02 papers, 08 papers from 

Springer, and 06 articles from other journals.  
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Figure 4. Publication Year of cited Research Articles 

Moreover, studies were separated based on its type i.e., conference and journal, against each 

database in the table. Such as, 13 conference papers from IEEE database are selected, 02 

conference papers from ACM repository is added to the SLR, 05 journals, 01 conference 

paper and 02 book sections are included from the Springer database, and 06 studies which 

were very associated with this study was also included from other journals.  

Table 2. Year-wise distribution of Selected Studies 

Sr.  Year  Studies Contribution percentagewise Total 

1 2012 [8] 3.4% 1 

2 2013 [37] 3.4% 1 

3 2014 [4] 3.4% 1 

4 2015 -- 0% 0 

5 2016 [13] 3.4% 1 

6 2017 [9], [17], [27], [32] 13.8% 4 

7 2018 [3], [10], [18], [20], [25] 17.2% 5 

8 2019 [16], [19], [24], [26], [30], [34], [1] 24.1% 7 

9 2020 [21], [29], [31], [33], [36] 17.2% 5 

10 2021 [22], [23], [28], [35] 13.8% 4 

11 2022 -- 0% 0 

 

Yearly detail of the studies selected for the review is shown in the Figure 4. Vertical axis of 

the graph show us the maximum number of article(s) per year included in the literature. 

Similarly, horizontal axis indicates years in which the papers are published that is from 2012 

to 2022.  

Table 2 depicts the Figure 4 in tabular form which presents the division of the selected papers 

year-wise. The focus was not to miss any relevant study from the review in these years and to 
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add the latest possible information from the trusted sites. The papers are mentioned against 

each year for the reference. Percentage of year wise contribution is listed in the table. The last 

column of the table shows the total number of selected papers in each year for the literature. 

An important point here is that this research area started to be explored more from 2017 

onward as the number of studies from 2017 onward were found more than the previous years 

back till 2012. Similarly, IEEE database has more research studies relevant to this research 

topic as compared to other databases, as a smaller number of studies were found from other 

repositories. Resultantly, 29 total papers were extracted for this systematic literature review 

finally. 

Types of the publications and sortation is also a significant factor in the SLR demonstration 

in better way. Therefore 13 journal papers + book sections out of 29 are included in this SLR, 

which is 44.8% contribution in the study. Similarly, 16 conference papers were included in 

which calculated about 55.2% of the total studies. These studies qualified the criteria of 

inclusion in this SLR.  

IV. Data Extraction and Synthesis 

Selection of studies was done according to the pre-defined criteria after which a pattern was 

created to extract and synthesize the data. This process is shown in Table 3. Using this 

pattern, answers to the research questions have automatically been extracted. It also helps us 

in gathering and synthesizing the required details from the articles. The information obtained 

from the selected studies have bibliography info, an overview of the study, methodology, 

description of the implementation, results of the research, limitation of the study, tools, 

techniques, and approaches adapted in the research papers. With this procedure all answers to 

the research question were satisfied. The pattern facilitated in gathering outcomes of the 

numerous unnecessary data. 

Table 3. Data Abstraction and Combination 

Sr Type Specification 

1 Bibliography Data 

Type of the research-paper i.e., conference or 

journal, title headings, author, yearly 

publication, publisher’s detail is studied. 

Info Abstraction 

2 General-Data This contains general overview of the SLR 

3 Results Validation 
Result of the research ideas is validated via 

formal methods  

Data Combination 

5 Categorization All categories are considered to answer the 
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questions, and then outcome is classified  

6 
Approaches & 

Techniques 

The most relevant approaches & Techniques 

are separately mentioned in Table 7 

 

2.3 Results, Analysis & Answers to Research Questions 

The main purpose of the study is to observe and analyze certain literature to search and find 

answers to the research questions. In this section we are reporting the outcomes of the 

extracted data after the detailed examination of data. The important journals which 

contributed to the recent approaches in ambiguity detection are; ‘Automated Software Eng’, 

‘Empirical Software Engineering’, ‘From software Engineering to formal methods, tools, 

back’, ‘Requirements Engineering: Foundation for Software Quality’, ‘Journal of 

Telecommunication, Electronic and Computer Engineering (JTEC)’, ‘Association for 

computational linguistics’. Similarly, some of the conferences that contributed to this 

systematic literature review are ‘Artificial Intelligence for Requirements Engineering 

(AIRE)’, ‘International Workshop on Empirical Requirements Engineering (EmpiRE)’, 

‘International Requirements Engineering Conference (RE)’, ‘Evaluation and Assessment in 

Software Engineering’, ‘Human System Interaction (HSI)’, ‘International Conference on 

Software Engineering (ICSE)’ and some others.  

1) NLP Approaches Identified for Ambiguity Detection 

One among the research questions includes the NLP approach used in the literature for the 

detection of ambiguity in requirements. Various NLP approaches have been applied to sense 

ambiguities in natural language requirements. An approach is precise methodology being 

followed in which it is described in what way artifacts are formed. This portion discusses the 

natural language processing approaches used by different researchers in the selected research 

literature. From this literature 09 different NLP approaches were identified being used by 

researchers in a number of ways. These approaches and combination of approaches are listed 

in Table 4. These approaches are mentioned in 10 different research articles published 

between 2012-22. These approaches are mentioned with their concern abbreviations 

wherever available. NLP basic techniques like POS tagging, lemmatization, tokenization 

have been used in majority of the studies with a combination of other approaches to obtain 

the purpose. Wikipedia crawling, Word embeddings, Language model generations were other 

commonly used approaches along with these previously mentioned approaches. Different 

pre-defined and customized algorithms were adapted for ambiguous word detection. Some of 
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them are Word2Vec, Text mining, Constituency parser, BabelNet and Frame semantics. This 

combination of approaches along with its custom usage to trace ambiguity are listed against 

the study referenced. 

 

Table 4. Identified NLP Approaches for Automated Ambiguity Detection 

Identified NLP Approaches Custom Usage of the Approach Identified Research 

Word2vec (SGNS) 
Word Embeddings, 

Language Model Generation 
[9], [10] 

Linear Transformation of Word 

Embedding Spaces 

Applied linear transformation on 

Word Embedding spaces via 

Machine Learning techniques. 

[33] 

POS tagging and normalization 

(using Stanford parser) 

Graph-based Centrality for word 

sense disambiguation 
[3] 

BabelNet (lexical database) for 

Ambiguity detection. 

N-gram approach lexical 

ambiguity detection 

POS Tagging 

Online English dictionary (for 

disambiguation) 
[18] 

Tokenization 

Wordnet 

OpenNLP 

POS Tagging,  

Generated & analyze models for 

detecting ambiguities and 

inconsistencies. (A Theoretical 

approach) 

[34] 

Tokenization, 

Morphological analysis, 

Semantic analysis 

Text mining 

Active learning 

Frame semantics Generated via SEMAFOR 
[35] 

NLTK for POS Tagging 

Wikipedia crawling (through 

Petscan) 
Word Embeddings, 

Language Model Generation 
[19] POS Tagging 

Tokenization 

word2vec (SGNS) 

POS Tagging  

Heuristics applied for the ease of 

decision making related to a 

phrase. 

[22] 

Tokenization 

Constituency parser 

Wikipedia crawling 

Heuristics 

word2vec (SGNS) Word Embeddings, 

Language Model Generation,  
[1] 

Wikipedia crawling 
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POS Tagging 

 

Customized algorithms for cross 

domain term selection and 

ranking 

 

 

2) Tools Identified for Ambiguity Detection 

In the selected literature studies, some of the authors proposed tools/solutions for identifying 

ambiguities in requirements. Tools having specific functionalities designed to achieve a 

targeted aim through some processing. This section represents the modern ambiguity 

detection tools and are listed in Table 5. Total of 09 tools identified that are precisely used for 

the identification of ambiguity in requirements. These tools are listed from the selected 

literature found in 12 research studies published in between 2012-22.  

Some of tools are used in single while some have made combination with other tools, NLP 

approaches or requisite alteration to achieve the goal. Each tool with its combination or 

alteration if any is listed along with its custom usage design for ambiguity detection in 

requirements. The last column shows the research reference in which the approach has been 

identified. The mostly used tool in the literature was Quality-Analyzer for Req Specification 

(QuARS) and General-Architecture for Text Engineering (GATE) on second.   

Table 5. Identified Tools for Automated Ambiguity Detection 

Identified Tools Custom Usage of Tool Identified Research 

Tokenizaiton 

Language Model Generation 

SpaCy-based NLP tool 

prototype 

[23] 

POS_Tagging 

Dependency_Parsing 

Lemmatization 

Sentence_Boundary Detection 

Rule-Based-Match 

Syntactic-derivation tree 

GATE Shallow parsing 

Gezetter 

Jape Rule 

[25] 
SREE 

QuOD -- [26] 

GATE 

Shallow Parsing 

Gazetteer 

JAPE Rules 

[27] 

QuARs 
Lexical/syntactical analyzer 

quality evaluator 
[20], [24], [30], [36] 
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GATE 
Text Extraction 

Boilerplate checking 

BNF Grammar with JAPE 

 

[32] 

Stanford NLP parser 

QuARS 

 

Requirements Glossary term 

Identification and Clustering 

(REGICE) 

 

[31] 

Part-of-Speech (POS) Tagging 

Requirement Assessment Tool 

(RAT) 

RAT (in comparison with other 

four tools, i.e., QuOD, 

QVscribe, Innoslate, RQA) 

[16] 

QuARS 

 

Compared with Req. Scout, 

QVscribe 
[29] 

 

3) Techniques Identified for Ambiguity Detection 

Most of the Techniques are applied to validate different tools. Some of the researchers have 

used combination of open-source projects and models for validity. Techniques mostly 

express how to apply or use the tool(s) or other functionality to achieve goals. Six different 

techniques and combination of techniques were identified from the selected studies that were 

designed in such a way that detects ambiguities in the requirements. Total 07 studies were 

identified using these techniques for the above-mentioned purpose. These approaches were 

applied to sense these inconsistencies from natural language requirements, general listed 

common in use requirements, while some were applied on controlled natural languages 

(CNLs). As described above, these techniques were detected from the papers published 

between 2012-22. These identified techniques are listed in Table 6, along with its custom 

usage to obtain the purpose. Last column of the table lists the research article references from 

which these approaches are identified.  

Table 6. Identified Techniques for Automated Ambiguity Detection 

Identified Techniques Custom Usage of the Technique Identified Research 

Syntax for NL requirement 
logic based CNLs (controlled natural 

language) 

Effective requirement’s language 

proposition. 

[17] Use artifact i.e., architecture 

model and connecting it with 

the texts of requirement.  

Semantic of Business 

Vocabulary and Rules 

(SBVR) 

Controlled NL 

used for ambiguity resolution [28] 
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Ontology Based Framework 

1. Develop ontology represents 

domain knowledge. 

2. A Semantic reasoner for the 

deduction of logical 

inferences from the axioms 

[13] 

N-gram module  For non-referential ambiguities 

[37] 
Ontologies  

(Wiktionary, Wikipedia 

disambiguation pages) for across 

domain ambiguities 

Clustering the contexts used 

for either of the above 

-- 

Score-Based Ambiguity 

Detector and Resolver 

(SBADR)  

 

(Using “Stanford Core NLP” API 

and four filtering pipelines.) 

Worked on Coordination, attachment, 

& analytical ambiguities 

[21] 

Shortest-path (least-cost path) 

search Algorithm 

Constructs Domain Knowledge 

Graph for identifying ambiguities. 

 

[4], [8] 

 

4) Cross-Domain Ambiguity Detection Approaches 

There are several different types of ambiguities which can be found in requirements through 

proper analysis of these requirements. If the requirements are elicited in natural language can 

be in inconsistent state due to various reasons. These may be due to syntactic ambiguities, 

structural or lexical ambiguities, semantic or pragmatic ambiguities in these requirements 

which leads the requirements interpretation to a different perspective other than stockholders’ 

actual needs. Lexical ambiguity may occur if a specified terminology has a meaning that is 

not related to problem due to poor vocabulary usage [2]. If the sentence has more than one 

syntax trees in different ways, then this is syntactic ambiguity but if a sentence can be 

interpreted into more than one logical expression; this kind of ambiguity is semantic 

ambiguity [3]. Pragmatic ambiguity occurs when meaning of an expression depends on its 

context [4]. Similarly, if a reference points to an entity which has more than a single 

interpretation resultantly makes a requirement inconsistent and such kind of ambiguity may 

be referred to as referential ambiguity [5].  

The ambiguities as mentioned above make a requirement inconsistent in different ways. 

Either of these leads to the wrong interpretation of the user needs which can then be costly 

recovery for both developers and stakeholders. One of them is an ambiguity caused by terms 

used differently for different domains and meaning of these terms may be changed if the 
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requirements domain change [9]. Such kind of terms if associated with computer 

terminologies then it is more likely to be considered in alternate yet diverse meaning as 

requirement analysts, designers and developers may interpret it certainly as per meaning of 

their own domain. This specific type of ambiguity was targeted by a very few research 

studies which is figured out from the specified literature.  

Among various tools, techniques, and NLP approaches specifically the target of which is 

identification of ambiguities lies in the same terms of different domain are separated and 

listed below in Table 7.  

Table 7. Specific Cross-Domain Ambiguity Approaches 

Approach/Technique Number of research Identification 

Word2Vec (SGNS) 

Word Embeddings 
5 [1], [9], [10], [19], [33] 

Develop Ontology representing 

domain knowledge 2 [13], [37] 

Requirement Glossary term 

identification and clustering 

(REGICE) 
1 [31] 

Skip Gram Negative Sampling (SGNS) type of Word2Vec perform Word Embeddings which 

represents words in vectors and using vectors spaces, semantic similarities among the words 

are computed. Based on the input words, various language models are generated and using 

documents of different domain, the meaning of words from the different domain are being 

compared [1], [9], [10], [19], [33]. 05 research studies have been found using this similar 

approach for detecting ambiguous terms across the domain. For the same purpose, 02 studies 

using ontology-based approach for the representation of domain knowledge [13], [37]. One 

of the articles used QuARs tool in combination with NLP basics functionalities and designed 

a customized tool REGICE tool to detect term ambiguity in requirements [31]. Word2Vec 

algorithm has used more than any other technique for the detection of ambiguities in different 

domain as shown in Figure 6 & Figure 5. Both pie and box-and-whisker charts depict the 

number of research categorized upon specified approach for the said purpose.  
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Based on NLP techniques, the domain ontology is supposed to be developed using 

SRS document. These ontologies and language models represent domain 

knowledge, act as domain model which helps in removing various types of ambiguities in 

comparison with other domain and particularly term ambiguities detection [13]. 

In addition to that n-gram module was also used for referential ambiguity detection 

followed by two ontologies and clustering. One ontology used Wiktionary for 

identifying terms having multiple senses, other used Wikipedia for identifying terms 

having disambiguation pages [37].  

Figure 6. Approaches for Cross Domain Ambiguity (I) 

Figure 5. Approaches for Cross Domain Ambiguity (II) 
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For the detection of variabilities and ambiguity in natural language requirements QuARs tool 

was used and particularly the usage of a tool REGICE which is using the glossary of terms 

from the requirement document, building clusters of the similar requirement terms. This tool 

clarifies the use of these terms in relevance to the domain and helps disambiguate the 

requirement text of the software domain [31].  

5) Answers to the Research Questions 

1. Which techniques have been proposed in the literature for automated cross-domain 

ambiguity detection in requirement engineering? 

Answer: Total of six techniques have been proposed for ambiguity detection in the 

requirement documents as shown in Table 6. Two of the techniques proposed controlled 

natural languages (CNLs) templates for the requirements. One of these focused on the syntax 

of the requirements using logic based CNLs. Formal languages are used along with these 

CNLs for removing the ambiguities using syntaxes with additional information [17]. This 

study combines natural language requirements with the predefined formal syntaxes. 

Additionally, these natural language requirements are mapped with generated models. 

Outcome of this process believed to disambiguate the requirements texts. This study 

considers a requirement as a property, which would be either true or false. It considers the 

requirement a Boolean valued function. The requirements are divided into the possible 

smaller parts to make atomic expressions of it. These atomic expressions and implication 

functions are bonded with conjunctions making tree like structure. This way the requirement 

text is interpreted to perform reasoning and check it as per consistency criteria.  

CNL is also considered as bridge between natural language requirements and the actual 

formal requirements in the study [28]. It also reports logical representation usage as 

formalized mathematical expressions in the place of natural language to avoid ambiguity in 

the software requirement specification (SRS).  One significant study related to the cross-

domain ambiguity used domain ontology to explore the related domain knowledge [13]. This 

technique used NLP techniques to discover the terms synonyms that are multilingual. This 

concept epitomizes an abstract domain model. Resultantly, the SRS document is converted 

into formal logical form in which each requirement will be interpreted in exactly one way to 

eliminate ambiguities.  

Tyler Baldwin suggested a Term Ambiguity Detection framework having three modules [37]. 

One of the modules used to sense non-referential ambiguity by examining N gram data from 
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requirement text. Second module used two ontologies for the detection of cross domain 

ambiguities. One ontology used Wiktionary to check whether a term has other than one 

senses, if so, that term will be considered as ambiguous term. Second ontology is to find that 

if a term has Wikipedia disambiguation page, then mark it ambiguous. The third module used 

an approach by clustering contexts of words. For this module they used topic modeling 

method “latent Dirichlet allocation (LDA)” [38]. If a term is not seemed in the most weighted 

10 words in a cluster, then it is marked as ambiguous. As a conclusion, a term is marked 

ambiguous if any of these three modules indicates ambiguity for it.  

For the detection of coordination ambiguity, attachment & analytical ambiguities of natural 

language requirements, a technique namely “Score-based Ambiguity Detector & Resolver 

(SBADR)” has been used by Mohamed Osama [21]. This technique used “Stanford Core 

NLP” API with combination of four filtering pipelines.  The API is used to obtain maximum 

possible parsing tree of the sentences in a requirement. These generated trees are then passed 

through the pipelines to sense and resolve the syntactic ambiguity by suggesting maximum 

possible interpretation of the given requirement. These interpretations are then analyzed a 

sentence level for the different types of ambiguity in it.  It provides a reliable automated 

identification process for syntactic ambiguity and not restricted to a particular ambiguity 

type. 

A technique outlined in the research [4] tries to identify pragmatic ambiguity in papers with 

NL requirements. A requirement has a pragmatic ambiguity, if various readers understand it 

differently, subject to the requirement context. A requirement's context refers to the other 

related requirements in document that have an impact on how well the requirement is 

understood as well as the reader's background knowledge [8], which gives interpretation 

to the requirement's concept. This study builds graphs for the domain knowledge from the 

requirement document and using these graphs identifying pragmatic ambiguity in the 

document.  

2. Which NLP Approaches have been used for automated cross-domain ambiguity 

detection in requirement engineering? 

Answer: In the relevant literature of the cited period, Nine NLP approaches were identified 

that are proposed for the ambiguity detection in the requirement documents as shown in 

Table 4. Total of five studies were more specific to detect cross-domain ambiguity and all of 
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them used word embeddings, SGNS variant of Word2Vec algorithm in combination with 

other techniques for the detection and rectification of this specific type of ambiguity [1], [9], 

[10], [19], [33]. 

3. What are popular tools used / developed for automated cross-domain ambiguity? 

Answer: Use of nine tools has been identified from the research. As mentioned in Table 5 in 

detail. Majority of the tools were used for vague terms identification, other types of 

ambiguities in requirement documents. Only a single tool that was found to be proposed for 

cross-domain type ambiguities was REGICE [31]. 

4. What are advantages and limitations of tools and techniques proposed for 

automated cross-domain ambiguity detection? 

Answer: Various tools & techniques and NLP approaches have been identified from the 

literature which is discussed below: 

 REGICE Tool: As the focus is on term ambiguity in the requirements across the domain, 

therefore REGICE (Requirement Glossary term identification and clustering) is suggested in 

the [31] in detail which basically extract terms, computes similarity in them, and divide these 

terms into relative terms clusters as presented in [39], but it works on one requirement 

document only at a time.  

Developing Ontologies: One of the modules proposed for cross domain ambiguity detection 

employs ontologies. The terms that have more than one senses in Wiktionary or pages in 

Wikipedia were considered as ambiguous. Issue in this methodology is the reason of specific 

term selection from the large text, i.e., all the appeared terms cannot be processed, and this 

approach was recommended for limited number of terms.  

Word2Vec (SGNS)/Word Embeddings: Majority of the study used this approach for 

determining cross-domain ambiguities from requirements which generate language models 

and computes semantic similarity between words of different domains. Word2Vec model 

uses cosine similarity for the computation of similarity among words in vector space. The 

prominent feature of this approach is that it selects those terms which occurs highly frequent 

in one domain and that appears sufficiently in other domain(s). 

5. Which ambiguity detection approach has the better research productivity over the 

years from 2012 to 2022? 
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The literature has revealed several tools, strategies, and NLP approaches, which are 

addressed below: 

One of the ambiguities type in the requirements brought on by several terminologies used in 

the natural language requirements. In other words, although a term may exist in several 

different contexts, its meaning will change depending on the context. When two different 

concepts are mapped to the same term, ‘term ambiguity’ could arise. This could be because 

of the language being used, the lack of descriptions, or both [11]. In situations where more 

than one domain is involved in the creation of a system, this type of ambiguity is particularly 

difficult. The same phrase is examined in other domains if it occurs frequently enough there 

after such ambiguous terms in one domain are identified based on their semantics. All the 

ambiguous terms were then ranked and graded in accordance with their degree of ambiguity. 

This method of ambiguity detection and rating was used to create the article [1]. 

6. How cross-domain ambiguity detection approach may be ranked as per their 

accuracy? 

REGICE (Requirement Glossary term identification and clustering), which basically extracts 

terms, computes their similarity, and divides those terms into relative terms clusters as 

presented in [39], is suggested in the [31] in detail because term ambiguity in the 

requirements across the domain is the priority. However, it only works on one requirement 

document at a time. Ontologies are used by one module suggested for cross-domain 

ambiguity identification [37]. Wiktionary terms and Wikipedia entries with several meanings 

were seen as ambiguous. The main issue with this methodology is that it only works for a 

small number of terms because it is impossible to process all the terms that exist in the 

immense text. 

An approach was employed by most of the articles to identify cross-domain ambiguity from 

requirements that produce language models and compute semantic similarity between terms 

of various domains [1], [9], [10], [19], [33]. The Word2Vec model calculates word similarity 

in vector space using cosine similarity. This approach's standout characteristic is that it 

chooses words that are used frequently in one domain and that sufficiently exist in other 

domains. 
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2.4 Conclusion of Literature Review 

The existence of cross-domain ambiguity in the requirements covered by this SLR has been 

addressed in several research articles that have reported methodologies, approaches, and 

combinations of these approaches. It also gives a general overview of how these methods are 

used thoroughly for the intended purpose.  

The use of a natural language processing technique for the identification of inconsistency 

within natural language requirements was extensively studied, covering nearly all the 

significant concerns in the limited yearly frame. After the necessary filtration in accordance 

with the selection criteria, 29 landmark publications that were published in the main 

repositories between 2012 and 2022 were studied and thoroughly analyzed. The articles were 

subsequently separated into three further groups for assessment and further investigation to 

get the answers to the research questions. These groups are 'Ambiguity Detection NLP 

Approaches - 10 papers', 'Tools for Ambiguity Detection - 08 papers', and 'Ambiguity 

Detection Techniques - 07 papers'. 

 To obtaining the necessary and precise result, a thorough analysis of the final chosen articles 

was carried out. The entire synthesis is thus separated into three groups. The Word2Vec 

algorithm with the integration of POS tagging, Wikipedia crawling, language model 

development, and Word-embeddings were found in five relevant studies. Two research 

studies found that term ambiguities might be detected using ontologies. Semantic-reasoner, 

N-gram module, and context clustering were employed in the development of ontologies. 

Another strategy employing the REGICE tool that combined POS tagging with QuARs was 

employed for the same objective. 

The identified approaches analyzed each one in detail with an aim to carry out the techniques 

which work on automated cross-domain ambiguities. As compared to other identified tools, 

techniques and approaches which are proposed for cross-domain ambiguities, ‘word 

embedding through SGNS variant of Word2Vec used in combination with other algorithms’ 

is implemented more than any other proposed techniques successfully for the required 

purpose. 
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2.5 Summary Table of Literature Review 

Table 8. Detail of the Cross-Domain Ambiguity Studies 

Tool / 

Approach 

Reference 

No. 

Author(s) Publication 

Year 

Combination 

Tool(s) / 

Algorithm(s) 

Comparison 

Req Glossary 

term 

identification 

and 

clustering 

(REGICE) 

[31] S. Jarzabek 2020 

QuARS 

 Works on one 

requirement 

document only 

at a time 
Part-of-Speech 

(POS) Tagging 

Develop 

Ontology 

representing 

domain 

knowledge 

[13] M.p.s Bhatia 2016 

Ontology Based 

Framework 

Recommended 

for limited 

number of 

terms 

Semantic 

reasoner 

[37] T. Baldwin 2013 

N-gram module  

Ontologies  

Clustering the 

contexts used 

for either of the 

above 

Word2Vec 

(SGNS) 

Word 

Embeddings 

[1] A. Ferrari 2019 

Word2Vec (SGNS) 

NLP Techniques 

Language Models 

 

Not any of the 

Above 

limitations. 

Works with 

multiple 

Domains 

[9] A. Ferrari 2017 

[10] A. Ferrari 2018 

[19] S. Mishra 2019 

[33] V. Jain 2020 

 

Table 8 presents a summary of the literature on tools/frameworks that are proposed by 

worthy researchers. These approaches are used for cross-domain ambiguity detection / 

resolution. It also provides to-the-point knowledge about tools/frameworks as the Algorithm 

used, the comparison in these approaches/results, author's information, publication year and 

cited reference number. 

2.6 Research gap 

In this section area for the improvement in the existing research literature is discussed. A 

detailed analysis of the selected articles was carried out in which tools, techniques, 

frameworks, and other NLP approaches were used. After a comprehensive screening 
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procedure filtered the research that stipulates an endorsement for the detection of the 

ambiguities caused by terms in requirements across different domains. 

The gap found in our selected studies was that research focused on using different approaches 

like using ontologies, QuARs tool with NLP approaches, and Word2Vec algorithm with NLP 

approaches. The first two approaches have some deficiencies as mentioned in Table 8 in the 

comparison column. However, Word2Vec model is featured as it selects ambiguous yet 

highly frequent terms in more than one domain. Data of different domains was taken from the 

Wikipedia articles for which the Wikipedia crawling of the relevant domain articles was 

performed. After which language models are generated through Word2Vec model based on 

the text corpus. The model uses cosine similarity for the computation of similarity among 

words in vector space. 

 The words that sense ambiguous based on the context of the word are marked as ambiguous 

and assigned dissimilarity score. But some of the words in the text that have more than a 

single meaning in different domains are scored less by the model as compared to other words. 

It is therefore the target of this research is to apply some other algorithm / model using the 

same parameters and analyze ambiguity sense in terms from the given corpus or other 

analyzer as well to find an improved solution to the gap. 
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CHAPTER 3: PROPOSED APPROACH 

This Chapter presents approach for the most suitable alternative of the Word2Vec algorithm 

for the detection of ambiguities caused by the terms used in natural language requirements 

that are domain dependent. The approach has a pipeline of data collection, pre-processing of 

data, building language model, applying alternative algorithm(s), and resultant terms score of 

dissimilarity.  

The alternate algorithm used in this approach is FastText. The potential ambiguous terms 

were scored as per their dissimilarity score. The score is then compared with the previously 

generated dissimilarity score of the previous approach. Figure 7 shows the basic procedure of 

this approach.  

 The approach starts with domains of the software requirements. Data considered for the 

domain is taken from Wikipedia via Wikipedia crawling. The process gives us data for each 

domain to be processed further. Wikipedia articles for predefined domains are crawled and 

resultantly domain documents are collected. The domain documents become the input for the 

generation of language models. Language models for each of the domains are separately 

generated. The cross-domain terms are selected from all domain documents. Those terms are 

selected which appeared enough in at least two of the domains and ambiguous by meaning 

with respect to its domain. This process produces dominant-shared terms of the domain. The 

dominant-shared terms are then scored as per its ambiguity level called ambiguity score. This 

score is generated through language models of the domains. Higher score indicates that the 

term has more different interpretations as compared to another domain and vice versa. The 

terms are then ranked as per their ambiguity score.  
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Figure 7. Overview of Measuring Cross Domain Ambiguity 

3.1 Word Embedding 

Word embedding comprehend combination of approaches to represent the words in a vector 

space as numerical vector. This representation of words enables to measure similarities in 

these vectors and thus the semantic similarity in the words can be calculated [9]. It is 

automatic word representations that incorporate semantic information from a specified corpus 

of natural language (NL). Specifically, a vector space is built based on given 

input called word embeddings, which are vector representations of words. If the matching 

words in the input corpus are more semantically similar, the distance between word 

embeddings will be closer. Consequently, the distance between vectors will be less for 
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more similar words (given a domain specific corpus) than the distance in vectors for less 

similar words. 

 The base of word embedding is distributional structure [40] where the author stated about the 

distributional facts that a speech can possibly be divided into discrete segments which has 

distribution in speech yet independent in its own. These segments are considered as elements. 

Other distributional facts stated in some elements are same as per their distribution. These 

similar terms are combined in a set called “similarity groupings”. The degree of dependance 

of same set elements can be measured upon the utterances of the elements. The sets 

interpretation of these elements varies domain to domain but if an element appear in the same 

context may have similar meanings. 

Collobert and Weston proposed to train word embeddings using a deep neural network 

expects words based on two words on the right and two words on left [41]. One of the most 

well-known word-embedding approaches was presented in the study [42]. The term "skip-

gram with negative sampling" (SGNS) refers to this technique. The log-bilinear models were 

suggested to efficiently learn continuous word representations from very large datasets. Some 

of the vector space models and their classes are studied in the Turney and Pantel article [43]. 

The "Word2vec" model created by Google researchers [44] learns and creates word-

embedding from corpus of natural language text. The Word2vec implementation of skip 

gramme negative sampling (SGNS) [42] predicts a set of words w ∈ VW and their contexts c 

∈ VC, where VC and VW are respectively the vocabularies of the context-words and input-

words. A word's context words wi are a group of words (wi-win, …, wi-1, wi+1, …, wi+win) for 

a given window size win. Each w, c ∈ ℝd is the d dimensional word embedding w word and 

c context. Each word/context vector formed by Word2Vec from text corpus and analyzed to 

compare them for semantic similarity [45]. Negative sampling's (NS) primary goal is to 

develop accurate word-vector representations from a corpus. Word vectors represented in the 

paper [19] from the different domain’s requirements using Word2Vec and the author aimed 

to use FastText for the same purpose in the future. 

The study of Fabiano and Nan [46] demonstrated that Word2Vec in comparison with 

FastText is less suitable for the representation of high dimensional word vectors specifically 

when transitory data, multiword combinations, spelling mistakes or if there is multilingual 

data exists. FastText specifically makes advantage of the sub-word information to 
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make effective representation of rare words when embedded [47]. The author of article [48] 

trained different models for vector representation from text corpus (tweets), demonstrated in 

his study that FastText had the higher precision among other models i.e., Word2Vec and 

GloVe and effectively handle different disparities in linguistic styles which is a part of 

natural language. FastText is a useful way to represent sentences as it helps in utilizing word 

morphology, which allows words with similar radicals to share training [49].  

The Word2Vec extension FastText proposed by AI research laboratory Facebook in 2016 

[50], [51]. FastText divides words into multiple n-grams called sub-words [52], in contrast to 

Word2vec, which input a single word to the neural network. Example of the n-grams for a 

word string is str, tri, rin, ing. The total of these n-grams will be embedding vector to 

represent the word string, as shown in Figure 8. We receive word-embedding for all n-grams 

provided the training dataset after the neural network is fully trained. Due to the high 

likelihood that a certain n-grams will also exist in other words, FastText accurately depicts 

unusual words. It's important to note that Word2vec does not offer any vector representations 

for words that are not present in the corpus.  

 

Figure 8. FastText 3-gram Representation of Word "string" 

The cosine similarity is used by the FastText model to determine the semantic relationship 

between two distinct words in a vector space. If we assume that there are two words 

embedding vectors wʹ and wʺ, the following equation can be used to compute cosine 

angle of these vectors [45]. 

cos(wʹ, wʺ) = 
wʹ. wʹʹ

|wʹ||wʹʹ|
 

The scoring range of a word is in between 0-1. The words are employed in nearly 

a different context and are more semantically dissimilar if the score is close to 1. The 
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opposite is true only if the score is nearer to 0, which indicates that the terms are not 

so related. Figure 9. Training FastText on Domain Texts  shows training of the FastText on 

the input domain’s corpora. 

 

Figure 9. Training FastText on Domain Texts 

3.2 Approach 

The suggested method for creating a prioritized list of possibly ambiguous terms is shown in 

Figure 7. To limit the scope of our process, we concentrate on nouns rather than the terms as 

a whole. However, the strategy is transferable to other linguistic categories. 

The strategy is as stated below. To extract domain-specific documents for a given domain, 

we first crawl Wikipedia (Wikipedia Crawling). Then, we use the FastText model to train the 

word embeddings (Generating Language Models) from the corpus formed up of domain-

specific documents.  

The next step is to look for the most common nouns that appear across texts (Cross-domain 

Term Selection). We compare the meanings of each of the nouns, that we refer to as 

dominant shared terms, across the various domains. As was previously said, these are words 

that are frequently used in different domains, and as a result, when stakeholders use them in 

different contexts, they may frequently lead to misconceptions. The dominating shared terms' 

degree of ambiguity is measured in the final step, and a score (Cross-domain Ambiguity 
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rating) is provided based on this measurement. This is accomplished by using vector space 

using FastText embeddings to represent a similarity space, where the two related words 

would be considered as similar if its embeddings (through cosine similarity) found to be 

closer to each other. FastText can provide a ranked list of the given words that are most 

similar in the language model's embeddings space along with a measure of how similar they 

are. Therefore, to determine the degree of ambiguity of a dominating shared term, we 

evaluate the list of more similar words generated by various domain-specific language 

models. The dominant shared term is considered as less ambiguous if the two lists have more 

common words and if the similarity-values of the exact same terms in two lists are closer to 

each other.  

The following subsections provide comprehensive descriptions of the various steps. 

3.2.1 Wikipedia Crawling 

The Wikipedia Crawling stage makes a corpus Ci for every domain Di for a set D = (Di: i = 

1... n) of n domains. Each Ci contains pages from a Wikipedia portal that belong to a 

particular area domain. Every Wikipedia portal is organized as a tree, with categories acting 

as the nodes and pages acting as the leaves. 

 

Figure 10. Wikipedia Articles Crawling 
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Figure 11. Wikipedia Articles of Domains as Text Files 

One can visit a base category of mechanical engineering1 domain to see a visual sample. We 

developed an algorithm that, assuming the base category of the portal, conducts breadth-first 

search upon subclasses of the base category, and gets all the Wikipedia articles that are 

available through the search, to access the pages classified by a Wikipedia portal. We 

established a maximum limit of 10,000 articles to be retrieved from each portal because the 

total number of pages that could be accessed might be very large. In addition, we restricted 

the depth of the subcategories of a domain to a maximum of 2. Reaching articles with more 

general content in comparison to deep subcategories is possible by concentrating on higher-

level subcategories. Figure 10 shows the code of extracting Wikipedia pages as text files, 

while Figure 11  shows extracted files view of different domains. 

3.2.2 Pre-Processing 

Each of the corpus is pre-processed by: 

a) Changing each word's case to lowercase. 

b) Eliminating stop words such as common terms like pronouns, 

articles and conjunctions are avoided because they do not have a special meaning 

in this context. 

c) Lemmatizing by converting every single term to its corresponding lemma, which 

enables each word inflections (i.e., processes, process) to be treated as a single word 

 
1 https://en.wikipedia.org/wiki/Category:Mechanical_engineering 
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(i.e., process). We employ the WordNet Lemmatizer from NLTK Package2 Python in 

this implementation. 

Figure 12 shows some of the pre-processing code used for the input text. 

 

Figure 12. Pre-processing of the Text 

As an example, the phrase "meetings are arranged for requirements analysis" becomes 

"meeting arrange requirement analysis" after pre-processing. 

3.2.3 Language Model Generation 

The FastText algorithm [50] is used in this stage to develop language models Mi specific to 

its domain using each input corpus Ci. The amount of L, or the total length of 

context that is to be observed, the measurement of d, or the dimensionality of the 

embedding, and the m value, or the smallest amount of occurrence that a word must have for 

the algorithm to take it into consideration, must be specified. We used L = 10, d = 50, and m 

= 10 for our illustration.  

 

Figure 13. Generation of the Language Models 

 
2 https://www.nltk.org/ 
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The values have been chosen based on preliminary inspections on data. Figure 13 is the code 

preview of language models generation using FastText.  

3.2.4 Elicitation Scenarios  

A total of five domains are represented in the elicitation scenarios. That is:  

i. Computer Science (CS) 

ii. Electronic Engineering (EEN) 

iii. Mechanical Engineering (MEN) 

iv. Medicine (MED) 

v. Sport (SPO) 

 Each scenario takes a portion of the domains into account. The initial four can be viewed as 

an interview between an analyst with computer science expertise and a domain expert. The 

final three scenarios consist of a group meeting for elicitation with related domain specialists. 

The situations are briefly explained below, together with a code (“Int” will be used for 

interviews and “Mee” for the group-meetings), and the abbreviations of the domains as 

mentioned above is taken into consideration. The details have just a narrative purpose by 

offering examples of real-world settings in which our technique might be applied. Detail of 

the scenario are given below in Table 9. Scenario abbreviations are listed against each 

scenario that is considered for the interview and meeting for the sake of eliciting 

requirements for the specific domain.  

Table 9. Scenarios Considered for Requirement Elicitation 

Sr. Scenario Scenario 

Code 

Detail 

1.  

Light Controller 

(CS-EEN) 

Int1 A controller with a generic piece of software 

incorporated in it that controls 

the room illumination. 

2.  
Mechanical CAD  

(CS-MEN) 

Int2 A program that helps in the designing of 

mechanical parts. 

3.  
Medical Software 

(CS-MED) 

Int3 A program that helps in the diagnosis of specific 

diseases according to symptoms. 

4.  
Athletes Network 

(CS-SPO) 

Int4 An online community of athletes. 

5.  

Medical Device 

(CS-EEN-MED) 

Mee1 A medical device connected with a mobile app, 

used to track the patient's heart rate. 
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6.  
Medical Robot 

(CS-EEN-MEN-MED) 

Mee2 A surgical robot operated by a computer. 

7.  
Sport Rehab Machine 
(CS-EEN-MEN-MED-SPO) 

Mee3 A technologically advanced rehabilitation device 

designed especially for athletes. 

3.2.5 Cross-Domain Ambiguity 

The approach was put into practice in Python with the help of several other 

necessary libraries, including the Wikipedia Python API 3 , gensim 4  for FastText 

implementation, and spaCy library5 for tasks related to NLP [53]. Such as it is used for POS 

tagging for the identification of nouns.  

Table 10. Domain with Wikipedia Articles 

Sr. Domain Name 
Wikipedia 

Articles 
Words Vocabulary 

1.  Computer_Science 10,000 6971198 140757 

2.  Electronic_Engineering 4,901 3427293 82098 

3.  Mechanical_Engineering 6,513 4081887 97122 

4.  Medicine 10,000 6737874 183625 

5.  Sports 10,000 7326483 187145 

Table 10 lists the downloaded articles of Wikipedia for given domains as well as the size of 

vocabulary and number of words in total pages related to a domain. Since we crawled all the 

pages contained in the corresponding Wikipedia portals, several corpora of the domain (such 

as EEN & MEN) contain fewer than 10,000 documents because articles in these portals were 

less than the mentioned threshold.  

There are five separate language models produced against each domain-specific corpus. 

3.2.6 Cross-Domain Term Selection  

In this step we will select the terms that will be checked for ambiguity occurrence in the 

domain corpora Corp of each domain. Such terms will be considered as dominant shared 

 
3 https://pypi.org/project/wikipedia/. 
4 https://radimrehurek.com/gensim/. 
5 https://spacy.io. 
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terms TDom. These terms will be extracted from the corpus through proper procedure using 

Algorithm 1 [1].  

Algorithm 1: Selection of Cross Domain Terms  

Select_Dominant_Shared_Terms (Corp, m, n) 

 

1. TDom   =   Empty 

2. for Corpa   ∈   Corp     do 

3.      for term   ∈   Vocab (Corpa)   do 

4.           if Frequency (term, Corpa)    ≥    m   do 

5.                if POS (term)   ==   Noun   do 

6.          if term   ∉   TDom   do 

7.               for Corpb   ∈   (Corp  -  Corpa)   do 

8.         if Frequency (term, Corpb )   ≥    n × Frequency (term, Corpa) do 

9.          TDom   =   TDom  ∪  {term}   
10. Return TDom    

There are three inputs to this algorithm upon which it operates. The first input parameter is 

corpora Corp = [Corpa : a = 1…5] of a specific domain. Second parameter is m, which is the 

minimum number of existences of a term in the Vocabulary “Vocab” of a specific domain 

Corpora Corpa. If a term is m or more then m number of time appeared in one specific 

domain, then this term would be recommended as candidate for dominant shared terms TDom 

inclusion. Similarly, the candidate term will be checked for its “Frequency” in at least on 

other domain corpora Corpb. The third parameter is n, if candidate term is n or more than n-

time frequent in another domain then it will be considered for further checks to include it in 

TDom. Thus, m and n are the frequency ratio of a term in two different domains. If a term is 

more frequent in the corpora of one domain but not sufficiently occur in any other domain, 

then it will not be considered as part of TDom. Moreover, the term will be checked if it is not 

already the part of TDom and the part-of-speech “POS” tag of the term is “Noun”. If all the 

conditions are satisfied, then the term will be selected to be the part of TDom.  

This procedure shall be repeated for each term of the corpus belongs to a domain to produce 

list of dominant shared terms. Figure 14 shows the code used to call function for cross-

domain terms selection. 
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Figure 14. Code to Call Function for the Selection of Cross-Domain Terms 

3.2.7 Cross-Domain Ambiguity Ranking 

This step generates ambiguity ranked list ADom of the dominant shared terms TDom. As per the 

language models Ḿ = [Ma : a = 1…5], the cross-domain ambiguity calculated, and the degree 

of ranking is measured.  

Algorithm 2 given below is used to calculate the ambiguity ranking. Detail of the algorithm is 

as follows. Every dominant shared term may have similar words in each domain. The concept 

of similar words is that a word will be considered as similar with the dominant shared term if 

it has the same linguistic context, such that they have similar neighbor words in the input 

corpora of the domain upon which the language models are generated. The similar word’s 

lists of a dominant shared term in each domain is generated using the FastText Model, called 

similarity lists. The similarity lists are then compared to evaluate the meaning variation of 

dominant-shared term. The dissimilarity score of each dominant shared term is computed on 

comparing the similarity lists, as this comparison of the list is indirectly linked with it. The 

term will be considered more ambiguous if the dissimilarity score is high. This dissimilarity 

score can be reflected as the ambiguity score to a given dominant shared term. 

Algorithm 2: Ambiguity Valuation of Cross Domain Terms 

Ambiguity-Ranking (TDom, Ḿ, h) 

 

1. ADom, simLa, simVa, Union, Rnk, Var, σ   =   Empty 

2. for term   ∈   TDom   do 

3.      for Ma   ∈   Ḿ     do 

4.            
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5.  simLa [term], simVa [term]   ←   MostSimilar (term, Ma, h) 

6.       

7.      Union[term]   ←   simL1 [term]   ∪...∪simL5[term] 

8.  

9.      for word   ∈   Union[term]   do 

10.           

11.             Rnk[term] [word] ←  BestRank(simL1 [term] [word] . . . simL5[term] [word]) 

12.             σ[term] [word]     ←  Variance(simV1 [term] [word]   . . .  simV5[term] [word]) 

13.                

14.      Var[term]   ←     ∑
𝜎[𝑡𝑒𝑟𝑚][𝑤𝑜𝑟𝑑]

𝑅𝑛𝑘[𝑡𝑒𝑟𝑚][𝑤𝑜𝑟𝑑]𝑤𝑜𝑟𝑑∈𝑈𝑛𝑖𝑜𝑛[𝑡𝑒𝑟𝑚]   

15.         

16. ADom =   Sort (TDom, Var)   
17. Return ADom 

 

 While comparing the words in the similarity lists, if a word is not available in other 

similarity lists, then the word will obtain a zero-similarity value. For example, the word 

player lists in the similarity-list for loop in the domain of sports for the Tug-of-war, but it 

would not appear in the computer domain. Similarly, if the lists have more similar words 

against a dominant shared term and the words possess more close similarity values to each 

other, then the dominant-shared term is having a consistent interpretation in various domains 

and is not considered as ambiguous. On the other hand, if the lists have a rare similar word 

against a dominant shared term, then that term is likely to have diverse interpretation in 

different domains and would be considered as more ambiguous. A word will be weighted 

more if it is most similar to a dominant shared term as per the language model. The 

maximum rank of a word in all the similarity lists will be count for the ambiguity score 

computation. More concisely, for each word, its sum of best-ranked variance of the 

similarity-values is associated with the ambiguity score.  
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Figure 15. Dominant Shared Terms Ranking 

Input to the Algorithm 2 is set TDom  of dominant-shared term, the Ḿ language model and the 

length h of a similarity list [10]. The ambiguity score is calculated against each term ∈ TDom. 

This process is accomplished by determining the similarity-lists simLa [term] along with the 

similarity-values simVa [term] against each of the language model. In the next step union 

of the similar words Union[term] in the similarity list are taken. The maximum similarity 

of a word in the Union[term] is considered as the best one Rnk[term] [word] and it is 

calculated by BestRank function. For every word belong to the Union[term], the variance 

of its similarity values σ[term][word] is calculated against all the similarity lists using 

Variance function. Rank weights are then assigned by dividing the word variance 

σ[term][word] with the best-ranked value Rnk[term] [word]. Finally, sum of all the rank 

weighted variances Var[term] produces the ambiguity score to a term belongs to TDom. 
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All the terms in the TDom are then sorted based on ambiguity score and a sorted list of 

ambiguous terms ADom is returned by the algorithm. Figure 15 shows the code used for 

ranking of the dominant-shared terms. 

The number of dominant shared terms m that were intended to rank in our scenarios is 800. 

The frequency ratio n is set at 0.3, and the total amount of words h for the similarity lists 

which we compare using the Ambiguity-Ranking process is set at 100. The values for these 

factors were taken from the previously applied approach [1]. With these parameters, we 

regenerate lists of dominant shared terms in each scenario, sorted according to the ambiguity 

level. 
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CHAPTER 4: IMPLEMENTATION, RESULTS & DISCUSSION 

In this chapter, implementation of the approach as stated in the chapter 3 is discussed, and 

results of the approach are analyzed in detail. The implementation consist of data collection 

of different fields and results preparation and examination. Basic information of the approach 

implementation, use of algorithms and programs is also discussed in this section. 

The research model of previous literature and approach by researchers were configured 

successfully and the same approach with different model algorithm was applied. Common 

code of the literature [54] was reused in which necessary modification was performed for the 

new models and results generation.  

The dataset consists of Wikipedia articles and the previous implementation was performed in 

2018 [1]. As the Wikipedia articles are modifiable, therefore articles of the domains were 

crawled again, and the same approach was applied using old model and then used the new 

model on the same data. The reason behind was to accurately get results for the same data 

and perform comparison among different model results. As if we get results on new model 

using new corpora, it would not be effectively compared with the results of old model on old 

dataset and it is more likely to have a different corpus for the application of model.  

4.1 Data Collection/Dataset 

Data of the five domains was considered for the language models generation, and data for the 

domain is obtained from Wikipedia articles. For the requirement elicitation, 07 scenarios 

were made for interviews and meetings. Each scenario considered a subset of the domains. 

The first four can be seen as an interview between a domain expert and an analyst with 

computer science knowledge. The remaining three scenarios included a group of experts from 

related domains for elicitation meeting. The interviews were between two domain experts 

while the meetings were among a group of domain experts as the remaining three scenarios 

were a composite of more than two domains (detail is given in the Table 9). 

Interviews of the Electronic Engineering, Mechanical Engineering, Medical, and Sports 

domain experts were considered in the elicitation scenarios to be conducted with 

requirement’s analyst of the computer science domain. On the other hand, for the meeting of 

Medical Device domain, there involved three domains computer science, electronic 

engineering, and medical in the meeting. Likewise for the Medical Robot scenario, four 
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domains involved in the meeting; that were computer science, electronic engineering, 

mechanical engineering and medical. Similarly, in the Sport Rehab Machine, all the five 

domains i.e., computer science, electronic engineering, mechanical engineering, medical, and 

sports involved in the meeting of the domain expert of the requirement’s elicitation. 

For each domain, maximum ten thousand Wikipedia articles as text files were used as the 

dataset for the approach implementation. The language models of the dataset generated using 

different models, and the data was pre-processed using NLP approaches and APIs. Different 

terms that were frequent in more than one domain were selected called dominant shared 

terms. The context of each dominant-shared terms are analyzed using the language models 

and most-similar words from the context of these dominant-shared terms were gathered, 

analyzed in such a way that those terms that shared more similar words in their context are 

considered as less ambiguous and the terms that had little similar words across its contexts 

tended to be more ambiguous in their interpretation in different domains. These terms were 

scored and ranked as per their ambiguity level and then sorted. In this way the results were 

generated. This procedure is discussed in detail in chapter 03.  

As discussed earlier the language models were generated using Word2Vec algorithm using 

Gensim library. According to the literature most of the cross-domain ambiguity detection was 

performed using NLP approaches and Word2Vec algorithm for word vector representation 

and comparison of these vectors. We found in the literature that the same algorithm 

Word2Vec extension FastText was compared and used by many researchers for word vector 

representation on natural language text, and they demonstrated that FastText brought 

effective results in comparison to Word2Vec [19], [46], [47], [48], [49]. So, for the same text 

corpus, we used FastText model to generate language models, and then these language 

models were used for the selection of dominant-shared terms and their ambiguity rankings. 

Result of both the models will be compared in this chapter.  

4.2 Experimental Setup 

The proposed methodology was employed in Python language version 3.10 using PyCharm 

community edition 2.2.2022 various libraries as mentioned in section 3.2. Description of the 

algorithms is given in the section 3.2.6 and 3.2.7. Results to compare with state of the art 

were extracted using 06 code snippets that implement the algorithm for generating the results.   
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4.3 Ranking of Terms for Cross-Domain Ambiguity Using Word2Vec 

Models of the literature  

The ambiguity ranking of dominant-shared terms are listed in table 2, 3, 4 of article [1]. The 

author listed terms of the scenario-based domains such as each scenario has different domains 

involved in it (detail is given in Table 9). The author listed 20 terms higher in rank and 20 

terms that are bottom in rank list of dominant-shared term against each scenario. High 

rankings suggest a greater likelihood of ambiguity because words with higher rankings may 

have multiple meanings depending on the domains involved. 

The approach of the state-of-the-art article was re-configured, and the output of the code was 

generated using six files as given in the code files [54] using the same dataset (language 

models). Four of the code files were marked significant as per result generation according to 

the scenarios stated above. Detail of these files given below: 

Table 11. Output Number of Terms from Different Scenarios Using Language Models 

of Existing Code 

File Name 
Output Terms (Dominant-Shared-Term) Detail of Different 

Scenarios 

ambiguity_tests_merge 

C
S

-E
le 

C
S

-M
ec 

C
S

-M
ed

 

C
S

-S
p
o
rt 

T
o
tal 

30 30 30 30 120 

 

ambiguity_tests_intervie

ws_combi 

C
S

-E
le 

C
S

-M
ec 

C
S

-M
ed

 

C
S

-S
p
o
rt 

T
o
tal 

30 30 30 30 120 

 

ambiguity_tests_multi 

M
ed

-S
w

 

M
ed

-

D
ev

 

M
ed

-

R
o
b
o
t 

S
p

o
rt-

R
eh

ab
-

M
ach

in
e 

T
o
tal 

40 40 40 40 160 

 

 

 

 

 

 

 

 



    

 

47 

ambiguity_tests_multi_co

mbi 

M
ed

-S
w

 

M
ed

-

D
ev

 

M
ed

-

R
o
b
o
t 

S
p
o
rt-

R
eh

ab
-

M
ach

in
e 

T
o
tal 

30 30 30 30 120 

 

ambiguity_tests_merge_f

or_AMT 

C
S

-E
en

 

C
S

-M
en

 

C
S

-M
ed

 

C
S

-S
p
o
rt 

M
ed

-S
w

 

M
ed

-D
ev

 

M
ed

-

R
o

b
o

t 

S
p

o
rt-

R
h

b
 

T
o
tal 

414 302 328 261 328 513 606 731 3483 

 

ambiguity_tests_pairs 

C
S

-E
le 

C
S

-L
it 

C
S

-M
ec 

C
S

-M
ed

 

C
S

-S
p
o
rt 

E
le-L

it 

E
le-M

ec 

E
le-M

ec 

E
le-M

ed
 

E
le-S

p
o

rt 

L
it-M

ec 

L
it-M

ed
 

L
it-S

p
o
rt 

M
ec-M

ed
 

M
ec-S

p
o

rt 

T
o
tal 

200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 3000 

Different abbreviations of domain name are used in the Table 11. CS for Computer Science, 

Ele/Een for Electronic Engineering, Men/Mec for Mechanical Engineering, Med for Medical, 

Sw for software, Lit for Literature, Rhb for Rehab, Dev for Device (the abbreviations 

mentioned here as it is in the output file). Similarly, there are different scenarios given having 

different combination of domains i.e., Med-Sw has two domains (CS-MED), Med-Dev has 

three domains (CS-EEN-MED), Medical Robot has four domains (CS-EEN-MEN-MED) and 

Sport Rehab Machine has five domains (CS-EEN-MEN-MED-SPO) in it.  

Different files have output for different scenarios, detail of the file output is given below in 

Table 12: 

Table 12. Code Files that Generated Dominant Shared Terms of Different Scenarios 

Sr. File Name Output Detail 

1.  ambiguity_tests_merge  

(ATM) 

Lists terms for the Interviews related combination 

of domains used in requirement elicitation. 

2.  ambiguity_tests_interviews_combi 

(ATIC) 

Lists terms for the Interviews related combination 

of domains used in requirement elicitation. 

3.  ambiguity_tests_multi  

(ATMu) 

Lists terms for the Meetings related combination 

of domains for requirement elicitation. 
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4.  ambiguity_tests_multi_combi 

(ATMC) 

Lists terms for the Meetings related combination 

of domains for requirement elicitation. 

5.  ambiguity_tests_merge_for_AMT 

(ATMFA) 

Lists terms for the Interviews and Meetings related 

combination of domains for requirement 

elicitation. 

6.  ambiguity_tests_pairs  

(ATP) 

Lists dominant shared terms found in inter-domain 

combination  

Most of the terms with the same ambiguity score as mentioned by the authors were generated 

and analyzed in detail. The output of each file was printed in the console that were saved as 

text file for further analysis.  

Table 2 in the paper [1] listed the top 19 and bottom 20 ranked terms (total 39) for each of the 

scenario’s interviews I1 & I2, along with ambiguity scores. I1 has been given the scenario 

name as Light Controller having two domains involved in it, that is: Computer Science and 

Electronic Engineering. While I2 has been given the scenario name of Mechanical CAD, 

having two domains involved in it, that is: Computer Science and Mechanical Engineering. 

Similarly, Table 3 listed the top 19 and bottom 20 ranked terms (total 39) for each of the two 

scenario’s interviews I3 & I4, along with ambiguity scores. I3 has been given the scenario 

name as Medical Software having two domains involved in it, that is: Computer Science and 

Medical. While I4 has been given the scenario name of Athletes Network, having two 

domains involved in it, that is: Computer Science and Sports.  

Table 4 of the base paper listed top 20 and bottom 20 rank terms (total 40) the meetings of 03 

scenarios. The meetings are given name as M1, M2, M3, and the scenarios names are 

Medical device, Medical robot, and Sport rehab machine respectively. In the M1, the listed 

terms are basically the dominant-shared terms of three domains that are: Computer Science, 

Electronic Engineering, and Medical. In the M2, the listed terms are the dominant-shared 

terms of four domains that are: Computer Science, Electronic Engineering, Mechanical 

Engineering and Medical. Likewise, In the M3, the listed terms are the dominant-shared 

terms of five domains that are: Computer Science, Electronic Engineering, Mechanical 

Engineering, Medical and sports. 

Locally generated output of the files was analyzed in which some of the terms were not found 

despite of using the language models already provided. Each term was searched in the output 

thoroughly and recorded the file name in which the term and its similar score was found. 
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Similar kind of tables were generated in which the file name was mentioned against the term, 

in the output of which the term and its score existed. The tables are mentioned below as 

Table 13, Table 14, and Table 15. 

Table 13. Terms of the Table 2 of [1] along with its Output File 

I1 CS, EEN Score Output 

 File 

I2 CS, MEN Score Output 

 File 

news  1.475026 
 

 hull  1.654419 
 

formula  1.466022 ATM  house  1.447376 
 

relation  1.452569 ATM  argument  1.391507 
 

surface  1.428484 
 

 bar  1.361833 
 

motor  1.406120 
 

 option 1.339622 ATM 

flash  1.405892 
 

 room  1.336570 
 

studio  1.375377 ATM  disk  1.328546 
 

contact  1.375058 
 

 expression  1.317302 ATM 

interpretation  1.343498 ATM  interpretation 1.316122 ATM 

bell  1.343395 
 

 reduction 1.314786 ATM 

reduction  1.292722 ATM  respect  1.306615 
 

head  1.282602 
 

 relation  1.295833 ATIC, ATM, ATP 

deal  1.246001 
 

 representation 1.286481 ATM 

link  1.199083 
 

 formula  1.270888 ATM 

ion  1.178597 
 

 institute  1.245143 
 

desktop  1.171765 ATM  port  1.241405 ATM 

pair  1.171018 
 

 rest  1.229141 
 

profile  1.141438 
 

 statement 1.215488 
 

particle  1.139154 
 

 string  1.214932 
 

school  0.238366 
 

 october 0.385298 
 

performance 0.235937 ATIC, ATP  state  0.366343 ATIC, ATP 

term  0.233936 ATIC, ATM, ATP  category 0.360713 
 

article  0.226150 ATM  december 0.360142 
 

september  0.225291 
 

 period  0.359295 
 

conference  0.222977 ATIC, ATM, ATP  hour  0.355321 
 

number  0.221349 ATIC, ATM, ATP  cost  0.354388 ATIC, ATM, ATP 

example  0.219640 ATIC, ATM, ATP  test  0.352514 
 

computer  0.216365 ATIC, ATM, ATP  space 0.346210 ATIC, ATM, ATP 

range  0.214473 
 

 advantage 0.345200 ATM 

student  0.212899 
 

 september  0.343362 
 

march  0.210152 
 

 day  0.338486 ATM 

system  0.203739 ATIC, ATM, ATP  minute 0.331166 
 

december  0.202965 
 

 time  0.316961 ATIC, ATM, ATP 

variety  0.201474 ATM  market 0.316713 ATM 
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point  0.200544 ATIC, ATM, ATP  range  0.289602 
 

science  0.197188 ATIC, ATP  variety 0.270675 ATM 

april  0.196663 
 

 term  0.260514 ATIC, ATM, ATP 

october  0.176143 
 

 year  0.245205 ATIC, ATM, ATP 

june  0.159893 
 

 example 0.220515 ATIC, ATM, ATP 

Total Found  17 Total Found 19 

Total 17 terms of the I1 and 19 terms of I2 were traced in the output of all six code files. 

Some of the terms existed in more than one file output. 

Table 14. Terms of the Table 3 of [1] along with its Output File 

I3 CS, 

MED 

Score Output 

 File 

I4 CS, SPO Score Output 

 File 

mouse  1.599703 
 
michael 1.849829 

 

matrix  1.542257 
 
protein  1.677702 

 

argument 1.478305 
 
statement  1.619878 ATM 

client  1.430145 
 
reduction  1.617916 

 

pair  1.423335 
 
loop  1.535914 

 

editor  1.419535 
 
string  1.522536 

 

arm  1.418809 
 
founder  1.503727 ATM 

strength  1.409200 
 
formula  1.489577 ATM 

house  1.396889 
 
washington  1.484234 

 

relation  1.369563 
 
effect  1.480257 

 

formula  1.356015 
 
edge  1.447221 ATM 

layer  1.348549 ATM mechanism  1.435133 
 

loop  1.340321 
 
layer  1.430993 

 

symbol  1.316503 
 
corner  1.424862 

 

reduction  1.316299 ATM threat  1.418862 
 

room  1.311479 
 
driver  1.418780 

 

statement  1.311244 ATM fire  1.412927 
 

expression  1.297684 ATM surface  1.411994 ATIC, ATM, ATP 

surface  1.296393 ATIC, ATM, ATMu, ATMC, ATP wave  1.411662 ATM 

report  0.383933 
 
category 0.503321 ATP 

concern  0.379293 
 
level  0.497828 ATP 

publication  0.346782 ATM sale  0.488006 ATM 

article  0.336694 ATIC, ATM, ATMu, ATMC, ATP book 0.485710 ATIC, ATM, ATP 

issue  0.333983 ATIC, ATM, ATMu, ATMC, ATP term  0.481157 ATIC, ATM, ATP 

history  0.330724 ATIC, ATM, ATMu, ATMC, ATP company  0.456744 ATIC, ATM, ATP 

student  0.321891 ATIC, ATM, ATMu, ATMC, ATP market  0.448333 ATM 

award  0.319464 ATIC, ATM, ATMu, ATMC, ATP april  0.409362 
 

time  0.308453 ATIC, ATM, ATMu, ATMC, ATP history  0.401996 ATIC, ATM, ATP 

december  0.299433 
 
child  0.394809 

 

april  0.283379 
 
june  0.377780 
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october  0.279610 
 
september  0.365755 

 

march  0.279493 
 
student  0.355196 ATIC, ATM, ATP 

september  0.272048 
 
time  0.353464 ATIC, ATM, ATP 

june  0.264172 
 
award  0.350350 ATIC, ATM, ATP 

category  0.263526 ATM article  0.343666 ATM 

term  0.214670 ATIC, ATM, ATMu, ATMC, ATP march  0.341266 
 

variety  0.201947 ATM october  0.335467 
 

range  0.187092 
 
december  0.331697 

 

year  0.187065 ATIC, ATMu, ATMC, ATP range  0.329518 
 

Total Found  16 Total Found 18 

Total 16 terms of the I3 and 18 terms of I4 were traced in the output of all six code files. 

Some of the terms existed in more than one file output. 

Table 15. Terms of the Table 4 of [1] along with its Output Files 

M1 CS, 

EEN, 

MED 

Score Output 

 File 

M2 CS, 

EEN, 

 MEN, 

MED 

Score Output 

 File 

M3 CS, 

EEN,  

MEN, 

MED, 

SPO 

Score Output 

 File 

argument  2.023164 ATMFA argument  2.363125 ATMFA consequen

ce  

2.626065 
 

relation  1.921059 ATMFA respect  2.180597 
 
respect  2.596219 ATMFA 

formula  1.915565 ATMFA expression  2.180273 ATMFA

, ATM 

statement 2.555115 ATMFA 

interpretati

on  

1.904085 ATMFA, 

ATM 

consequen

ce 

2.173204 
 
michael  2.497249 

 

consequenc

e  

1.863527 
 
statement  2.094200 ATMFA story  2.398440 ATMFA 

expression  1.849218 ATMFA, 

ATM 

ion  2.089713 ATMFA argument  2.363125 ATMFA 

arm  1.838583 
 
father  1.952681 ATMFA brother  2.304480 ATMFA 

surface  1.811224 ATMFA, 

ATMu, 

ATMC 

institution  1.933082 ATMFA founder  2.238028 ATMFA 

house  1.802686 ATMFA relation  1.921059 ATMFA end  2.236240 
 

client  1.741765 ATMFA formula  1.915560 ATMFA ray 2.228692 
 

strength  1.730889 ATMFA interpretati

on  

1.904085 ATMFA

, ATM 

relation  2.216734 ATMFA 

mouse  1.716812 ATMFA career  1.890641 ATMFA stability  2.213691 ATMFA 

appearance  1.681019 ATMFA option  1.875132 ATMFA

, ATM 

institution  2.201938 ATMFA 

ion  1.626415 ATMFA office  1.868301 ATMFA sense  2.199332 
 

statement  1.622403 ATMFA appearance  1.864991 ATMFA surface  2.193154 ATMFA, 

ATMu 
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discovery  1.615736 ATMFA man  1.863109 ATMFA robert  2.185128 
 

differential  1.615159 
 
compressio

n  

1.845858 ATMFA expression  2.180273 ATMFA, 

ATM 

sense  1.600477 
 
symbol  1.834537 ATMFA angle  2.164515 

 

gap  1.598580 ATMFA piece  1.823973 
 
option  2.157274 ATMFA, 

ATM 

segment  1.580185 ATMFA, 

ATM 

house  1.816749 ATMFA bill  2.147097 ATMFA 

range  0.288589 
 
keyboard 0.350738 ATMFA polygon  0.400052 ATMFA 

purpose  0.286876 ATMFA spin  0.350316 
 
organizatio

n  

0.398878 ATMFA 

capability  0.284362 ATMFA architectur

e  

0.338673 ATMFA processing  0.395477 ATMFA 

april  0.283379 
 
quantum  0.324911 

 
project  0.379329 ATMFA 

phone  0.282070 ATMFA instruction  0.322033 ATMFA battery  0.373586 ATMFA 

code  0.281997 ATMFA time  0.308453 ATMFA geometry  0.360184 ATMFA 

october  0.279610 
 
testing  0.305869 ATMFA keyboard  0.350738 ATMFA 

march  0.279493 ATMFA decrease  0.297651 
 
architectur

e  

0.338673 ATMFA 

book  0.277109 ATMFA case  0.296671 ATMFA quantum  0.324911 ATMFA 

september  0.272048 
 
test  0.292459 

 
instruction  0.322033 ATMFA 

publication  0.266428 ATMFA electron 0.288590 ATMFA time  0.308453 ATMFA 

june  0.264172 
 
photon  0.284026 

 
test  0.292459 

 

group  0.243118 ATMFA, 

ATM 

phone  0.282070 ATMFA electron  0.288590 ATMFA 

school  0.238366 ATMFA, 

ATM 

code  0.281997 ATMFA

, ATM 

photon  0.284026 
 

term  0.233936 ATMFA, 

ATM, 

ATMC 

term  0.233936 ATMFA

, ATM, 

ATMC 

phone  0.282070 ATMFA, 

ATM 

article  0.226150 ATMFA, 

ATM 

conference  0.222977 ATMFA

, ATM, 

ATMC 

code  0.281997 ATMFA, 

ATM 

conference  0.222977 ATMFA, 

ATM, 

ATMC 

computer  0.216365 ATMFA

, ATM, 

ATMC 

computer  0.216365 ATMFA, 

ATM, 

ATMC 

computer  0.216365 ATMFA, 

ATM, 

ATMC 

student  0.212899 ATMFA student  0.212899 ATMFA 

student  0.212899 ATMFA variety  0.201474 ATMFA

, ATM 

variety  0.201474 ATMFA, 

ATM 

variety  0.201474 ATMFA, 

ATM 

century  0.179093 ATMFA

, ATM, 

ATMC 

century  0.179093 ATMFA, 

ATM, 

ATMC 

Total Found 31 Total Found 32 Total Found 31 
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Total 31 terms of the M1, 32 terms of M2 and 31 terms of M3 were traced in the output of all 

six code files. Some of the terms existed in more than one file output.  

Output of the six files was analyzed further and it was observed that three files were not 

significant for the above table terms as its output score for a certain term also existed in other 

file’s result. So, the most significant files with respect to the above table terms are three files, 

that are ambiguity_tests_merge (ATM), ambiguity_tests_merge_for_AMT (ATMFA), and 

ambiguity_tests_pairs (ATP). These files have all the available outputs of the above table 

terms.  

4.4 Cross-Domain Ambiguity Ranking Using Word2Vec and FastText 

Models on New Dataset  

The previous approach used Wikipedia articles of 2018 (as the dataset) for all the domains. It 

is obvious that these articles are kept being modified by the experts of relevant domain. Also, 

only the ready language models were available in the literature code, and the dataset 

(Wikipedia articles) of that time was not available. Therefore, before the application of 

FastText model, the dataset (Wikipedia articles) of the relevant domains were again crawled 

using the same parameters as mentioned in the section 3.2.1. Detail of the newly crawled 

dataset is given in Table 10. 

After obtaining the articles from Wikipedia, further procedure was performed as given in 

chapter 3, i.e., the next step was to perform pre-processing and build language models to train 

Word2Vec and FastText on the given text corpora. So, by following the proposed approach, 

language models were built on new dataset, and then we applied the algorithms on new 

language models to select dominant shared terms rank it as per its ambiguity level. We used 

the same six code files as with the old models for the sake of obtaining same scenario’s 

output as defined.  Different Output of the code files were generated by using the same 

parameters and stored in the .csv files for further analysis and comparison. 

4.5 Ranking of Terms for Cross-Domain Ambiguity on New Dataset Using 

Word2Vec and FastText Model  

The Word2Vec model is applied on re-crawled Wikipedia article’s text. On the same dataset 

the FastText was also applied and language models from both models were generated. For the 

application of algorithms, selection of cross domain dominant shared terms and its ranking, 
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the six files (mentioned in Table 12) were executed with the same parameters and with a little 

due modification. The results are stored in .csv files for further analysis. Each term 

mentioned in the Table 13, Table 14, and Table 15 was searched in the generated results and 

the ambiguity scores of both models were recorded. It is necessary to mention that these 

terms were listed in the state of the art as top and bottom 20-terms as per its ambiguity level 

against each scenario.  

Table 16. Ambiguity Scores of the Terms of Table 13 Using New Language Models by 

Word2Vec and FastText 

I1 CS, EEN WV 

score 

FT 

score 

Difference I2 CS, MEN WV 

score 

FT 

score 

Difference 

news  1.4786 1.5707 0.0921  hull  
  

  

formula  1.3131 1.2184 -0.0947  house  1.0279 1.4661 0.4382 

relation  1.3109 0.9607 -0.3502  argument  
  

  

surface  1.1939 1.5910 0.3970  bar  1.2062 0.8578 -0.3484 

motor  0.5379 1.0334 0.4955  option 0.7359 1.0474 0.3115 

flash  
  

   room  1.0105 0.8660 -0.1444 

studio  1.3122 1.5154 0.2033  disk  
  

  

contact  1.0793 0.9794 -0.0999  expression  
  

  

interpretation  
  

   interpretation 
  

  

bell  0.8897 0.9050 0.0152  reduction 0.7359 0.6805 -0.0555 

reduction  0.6601 0.6059 -0.0542  respect  1.0766 1.3274 0.2508 

head  0.5295 1.1513 0.6217  relation  1.1647 1.2043 0.0396 

deal  1.2544 1.3505 0.0961  representation 
  

  

link  
  

   formula  1.1621 1.0994 -0.0627 

ion  
  

   institute  
  

  

desktop  
  

   port  
  

  

pair  
  

   rest  
  

  

profile  0.8120 1.0252 0.2133  statement 
  

  

particle  1.3158 1.2053 -0.1105  string  
  

  

school  
  

   october 
  

  

performance 0.1709 0.7012 0.5303  state  0.2382 0.7153 0.4771 

term  0.2826 0.7563 0.4738  category 0.4272 0.9496 0.5224 

article  0.4300 0.4227 -0.0073  december 
  

  

september  
  

   period  0.2845 0.6784 0.3939 

conference  
  

   hour  0.2809 0.4923 0.2114 

number  0.2426 0.6241 0.3816  cost  
  

  

example  0.3201 0.4080 0.0879  test  0.3783 0.5671 0.1888 

computer  0.2492 0.8274 0.5782  space 0.3926 0.6600 0.2674 

range  0.2394 0.5316 0.2922  advantage 0.2409 0.4304 0.1895 

student  
  

   september  
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march  
  

   day  0.3536 0.7404 0.3868 

system  0.3695 0.7396 0.3701  minute 0.2120 0.5648 0.3528 

december  
  

   time  0.2247 0.8429 0.6182 

variety  0.2454 0.4462 0.2008  market 0.4466 0.6027 0.1561 

point  
  

   range  0.2889 0.4749 0.1860 

science  
  

   variety 0.2040 0.3807 0.1767 

april  
  

   term  0.2825 0.6598 0.3773 

october  
  

   year  0.1956 0.8400 0.6443 

june         example 0.2534 0.3855 0.1322 

Table 16 lists the terms of Table 13 with ambiguity scores generated by new Word2Vec and 

FastText models against each term. The difference of both model’s scores are calculated and 

listed with a view to find which term is marked more ambiguous as per the FastText score. 

For this, the Word2Vec ambiguity score was subtracted from the FastText score. The positive 

value in the difference column indicates that the term is marked more ambiguous by 

FastText, likewise the negative value shows that the term is marked less ambiguous by 

FastText model.  

Table 17. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 16 

I1 Light Controller (CS, EEN) I2 Mechanical CAD (CS, MEN) 

Model Terms Score Total Terms Model Terms Score Total Terms 

FastText 

Positive 16 

FastText 

Positive 20 

Negative 6 Negative 4 

Not Found 17 Not Found 15 

Total 39 Total 39 

In the 39 listed terms of I1 scenario Light Controller,16 terms marked positive which means 

these terms are considered more ambiguous, 6 terms values are negative indicates that these 

terms are computed as less ambiguous by FastText word-vector representation, in 

comparison with Word2Vec model (as shown in Table 17). The 17 terms were not found in 

the new outputs. Similarly, in the I2 scenario Mechanical CAD, total 20 terms calculated 

positive, 4 were negative, and 15 terms were not found. Comparison of both the models is 

given in Figure 16. 
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Figure 16. Ambiguity Score of FastText in Comparison to Word2Vec (for I1 & I2) 

Table 18 includes terms from Table 14 along with the ambiguity scores determined for each 

term using new models. To determine which term is identified as more ambiguous according 

to the FastText, the difference between the scores of the models is calculated and listed. To 

account for this, the FastText score was deducted from the Word2Vec ambiguity score. The 

difference column's positive value indicates that the term has been identified as being more 

ambiguous by the FastText model, while the negative value indicates the term is classified as 

being less ambiguous in comparison with Word2Vec. 

Table 18. Ambiguity Scores of the Terms of Table 14 Using New Language Models by 

Word2Vec and FastText 

I3 

CS, MED 

WV 

score 

FT 

score 

Difference I4 

CS, SPO 

WV 

score 

FT 

score 

Difference 

mouse  
  

  michael 
  

  

matrix  
  

  protein  
  

  

argument 1.1495 1.6139 0.4644 statement  1.6386 1.6291 -0.0094 

client  
  

  reduction  
  

  

pair  
  

  loop  
  

  

editor  1.1431 0.8626 -0.2805 string  
  

  

arm  
  

  founder  
  

  

strength  1.1629 1.4413 0.2784 formula  1.5427 1.5903 0.0476 

house  1.2062 1.3571 0.1509 washington  
  

  

relation  1.0317 0.7766 -0.2551 effect  1.2423 1.4687 0.2264 

formula  1.2051 1.3617 0.1567 edge  1.3502 1.4599 0.1098 

layer  
  

  mechanism  
  

  

loop  
  

  layer  
  

  

symbol  
  

  corner  1.0777 1.1400 0.0623 

reduction  0.4981 0.6410 0.1430 threat  1.5018 1.3462 -0.1556 

room  0.7852 0.9174 0.1322 driver  1.3229 1.2959 -0.0270 
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statement  1.3254 1.3452 0.0198 fire  
  

  

expression  1.2320 1.2160 -0.0160 surface  1.1264 1.6873 0.5609 

surface  1.2366 1.5338 0.2972 wave  1.3199 1.5637 0.2438 

report  0.3539 0.8266 0.4726 category 0.4274 1.0885 0.6612 

concern  0.3644 1.2511 0.8866 level  0.4349 1.0773 0.6424 

publication  0.3185 0.8023 0.4837 sale  0.4648 0.5826 0.1178 

article  0.3595 0.4867 0.1272 book 0.6974 0.7708 0.0734 

issue  0.4573 1.3039 0.8466 term  0.4349 0.8855 0.4507 

history  0.4008 0.9536 0.5529 company  0.4525 0.7291 0.2765 

student  0.3065 0.5812 0.2747 market  
  

  

award  0.2247 0.6297 0.4050 april  
  

  

time  0.2884 0.9699 0.6815 history  0.4759 1.1165 0.6406 

december  
  

  child  0.3406 0.5253 0.1847 

april  
  

  june  
  

  

october  
  

  september  
  

  

march  
  

  student  0.6424 0.8079 0.1655 

september  
  

  time  0.3427 1.2673 0.9245 

june  
  

  award  0.5621 0.7553 0.1933 

category  0.2768 0.4056 0.1288 article  0.4979 0.6069 0.1090 

term  0.2132 0.8121 0.5989 march  
  

  

variety  0.1788 0.8812 0.7024 october  
  

  

range  0.2339 0.5453 0.3113 december  
  

  

year  0.3863 0.9448 0.5585 range  0.6968 1.0417 0.3450 

Table 19. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 18 

I3 Medical Software (CS, MED) I4 Athletes Network (CS, SPO) 

Model Terms Score Total Terms Model Terms Score Total Terms 

FastText 

Positive 22 

FastText 

Positive 19 

Negative 3 Negative 3 

Not Found 14 Not Found 17 

Total 39 Total 39 

The 39 terms listed in the I3 scenario Medical Software, in which 22 terms have positive 

values, indicate that they are more ambiguous, and 3 terms have negative markings, 

pointing that FastText as opposed to Word2Vec model, computes these terms as less 

ambiguous (given in Table 19). The new outputs did not contain any of the 14 terms. 

Likewise, results were obtained in the I4 scenario Athletes Network, where a total of 19 
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terms were calculated as positive, 3 as negative, and 17 as not found. The two models are 

compared as shown in Figure 17. 

 

Figure 17. Ambiguity Score of FastText in Comparison to Word2Vec (for I3 & I4) 

 

Table 22 contain the terms from Table 15, with the newly calculated ambiguity scores for 

each term using the new models. The difference column shows which term is ambiguous by 

the FastText. The Word2Vec ambiguity score is subtracted from the FastText for the 

evaluation. The term is considered as being more ambiguous by the FastText model if the 

difference column has positive value, while negative values indicate that the term has been 

determined to be less ambiguous in comparison to Word2Vec. 

Table 20. Ambiguity Scores of the Terms of Table 15 (M1 & M2) Using New Language 

Models by Word2Vec and FastText 

M1 

CS, EEN, 

MED 

WV 

score 

FT 

score 
Difference 

M2 

CS, EEN, 

MEN, MED 

WV 

score 

FT 

score 
Difference 

argument  1.1495 1.6139 0.4644 argument  1.1495 1.6139 0.4644 

relation  1.7698 1.2323 -0.5375 respect  2.1368 2.2208 0.0840 

formula  1.7813 1.7706 -0.0107 expression  2.2029 1.5736 -0.6293 

interpretation  
  

  consequence 1.4678 1.3797 -0.0882 

consequence  0.5591 1.1151 0.5560 statement  1.3254 1.3452 0.0198 

expression  1.2320 1.2160 -0.0160 ion  
  

  

arm  
  

  father  
  

  

surface  1.8182 2.1538 0.3356 institution  0.5461 1.0328 0.4867 

house  1.2062 1.8194 0.6133 relation  2.0889 1.8586 -0.2302 

client  1.4509 1.2633 -0.1877 formula  1.9784 1.9287 -0.0498 

strength  1.4320 1.6707 0.2387 interpretation  
  

  

mouse  
  

  career  0.9498 0.8639 -0.0859 
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appearance  1.0677 0.9733 -0.0944 option  1.5689 1.6228 0.0538 

ion  
  

  office  1.7145 2.0938 0.3792 

statement  1.3254 1.3452 0.0198 appearance  1.8794 1.3751 -0.5044 

discovery  0.8578 0.8638 0.0059 man  2.0139 2.0425 0.0287 

differential  
  

  compression  1.4077 0.7231 -0.6846 

sense  1.4915 1.4170 -0.0746 symbol  
  

  

gap  1.4768 1.6187 0.1418 piece  1.8707 1.7651 -0.1056 

segment  1.4565 1.3899 -0.0666 house  1.6825 1.8321 0.1496 

range  0.3460 0.9463 0.6003 keyboard 
  

  

purpose  0.4379 1.0515 0.6136 spin  
  

  

capability  0.2946 0.4188 0.1242 architecture  
  

  

april  
  

  quantum  0.7796 1.0898 0.3102 

phone  0.2424 0.4190 0.1766 instruction  1.3436 1.1762 -0.1674 

code  0.9078 1.1172 0.2094 time  0.4403 1.4424 1.0021 

october  
  

  testing  0.4486 0.7526 0.3040 

march  
  

  decrease  
  

  

book  0.4022 0.6902 0.2880 case  0.7083 0.8238 0.1155 

september  
  

  test  0.4486 0.7526 0.3040 

publication  0.3185 0.8023 0.4837 electron 1.1818 1.5797 0.3978 

june  
  

  photon  
  

  

group  0.5350 0.8317 0.2967 phone  0.2424 0.4190 0.1766 

school  0.2961 0.6151 0.3189 code  1.0073 1.5125 0.5051 

term  0.4991 0.7563 0.2573 term  0.5757 0.9316 0.3559 

article  0.4300 0.4227 -0.0073 conference  0.4705 0.8391 0.3686 

conference  0.4705 0.8391 0.3686 computer  0.7425 0.8510 0.1085 

computer  0.2492 0.8274 0.5782 student  0.3065 0.5812 0.2747 

student  0.3065 0.5812 0.2747 variety  0.3354 0.6292 0.2937 

variety  0.2454 0.4462 0.2008 century  0.1945 0.4912 0.2967 

Table 21. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 20 

M1 Medical Device (CS, EEN, MED) M2 Medical Robot (CS, EEN, MEN, MED) 

Model Terms Score Total Terms Model Terms Score Total Terms 

FastText 

Positive 22 

FastText 

Positive 22 

Negative 8 Negative 9 

Not Found 10 Not Found 9 

Total 40 Total 40 
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Table 22. Ambiguity Scores of the Terms of Table 15 (M3) Using New Language Models 

by Word2Vec and FastText 

M3  

CS, EEN, MEN, MED, SPO 

WV score FT score Difference 

consequence  1.4678 1.3797 -0.0882 

respect  2.5993 2.5128 -0.0864 

statement 1.9414 1.8920 -0.0495 

michael  
  

  

story  1.9306 2.5789 0.6483 

argument  1.1495 1.6139 0.4644 

brother  1.8379 1.2399 -0.5980 

founder  
  

  

end  
  

  

ray 
  

  

relation  2.0889 1.8586 -0.2302 

stability  1.7865 0.9160 -0.8706 

institution  0.5461 1.0328 0.4867 

sense  1.8001 1.6886 -0.1114 

surface  1.1264 1.6873 0.5609 

robert  
  

  

expression  2.2029 1.5736 -0.6293 

angle  1.6802 1.4746 -0.2055 

option  1.5689 1.6228 0.0538 

bill  2.0789 2.2631 0.1843 

polygon  
  

  

organization  0.6251 1.0004 0.3753 

processing  0.4417 1.0235 0.5818 

project  0.3966 0.6587 0.2620 

battery  0.5983 0.7987 0.2004 

geometry  1.0715 0.7578 -0.3137 

keyboard  
  

  

architecture  
  

  

quantum  0.7796 1.0898 0.3102 

instruction  1.3436 1.1762 -0.1674 

time  0.5354 1.8147 1.2793 

test  0.8820 1.3883 0.5063 

electron  1.1818 1.5797 0.3978 

photon  
  

  

phone  0.2424 0.4190 0.1766 

code  1.4340 1.9659 0.5319 

computer  0.7425 0.8510 0.1085 

student  0.6424 0.8079 0.1655 
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variety  0.9956 1.1567 0.1611 

century  0.2640 0.4912 0.2272 

Table 23. Comparison of FastText with Word2Vec Term's Ambiguity Score in Table 22 

M3 Sports Rehab Machine (CS, EEN, MEN, MED, SPO) 

Model Terms Score Total Terms 

FastText 

Positive 20 

Negative 11 

Not Found 9 

Total 40 

The 40 terms stated in the M1 scenario Medical Device, 8 terms have negative value, 

indicating that FastText rather than the Word2Vec model computes these terms as less 

ambiguous, while 22 terms have positive values, indicating that they are more ambiguous as 

per FastText Model. None of the 10 terms were present in the revised outputs. 

 

Figure 18. Ambiguity Score of FastText in Comparison to Word2Vec (for M1, M2 & 

M3) 

The M2 scenario Medical Robot produced results such that, with a total of 22 terms 

calculated as positive, 9 as negative, and 9 as not found (shown in Table 21). Moreover, M3 

scenario Sport Rehab Machine given the result as, difference of 20 terms found as positive, 
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11 was negative and 9 was not found in the total of 40 terms (given in Table 23). In Figure 

18, the two models are contrasted. 

4.6 Comparison of Word2Vec and FastText Combined Results on New 

Dataset 

Different files were used to produce the ambiguous words in the different scenarios. Detail of 

these files’ usage are given in Table 12. Output of these files is combined in such a way that 

common terms from both files were searched and ambiguity score of both Word2Vec and 

FastText models are written in a third file. For example, output of file ambiguity_tests_merge 

(ATM) are total 2878 terms. Common terms of these two files (ATM output for Word2Vec 

and for FastText) are 2806 in the total 2878 ranked terms. In these common terms, after the 

comparison of all terms, the ambiguity score of 2399 terms is high in the FastText ATM 

result and Word2Vec score high for 407 terms. Similar comparison for each scenario in the 

result of the given files are given in Table 24 and Figure 19, Figure 20, Figure 21, Figure 22, 

Figure 23, and Figure 24.  

As the dominant-shared terms for each scenario were so large in quantity against each model, 

and the manual analysis might be time consuming and error prone, therefore we built Excel 

Macros for finding, comparing, listing, and organizing the terms. Also, these macros were 

used to extract the uncommon terms of both models in each pair of domains.   

Table 24. FastText Word2Vec Comparison of Ambiguity Score 

File Common Terms Positive Ambiguity Score Terms Not Found in FT Total  

FastText Word2Vec 

ATM 2806 2399 407 72 2878 

ATIC 385 362 23 15 400 

ATMu 371 363 8 29 400 

ATMC 755 728 27 44 799 

ATMFA 4124 3384 740 38 4162 

ATP 942 898 44 58 1000 
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Figure 19. Dominant-Shared Terms Ambiguity Scores Comparison (1) 

 

Figure 20. Dominant-Shared Terms Ambiguity Scores Comparison (2) 

 

Figure 21. Dominant-Shared Terms Ambiguity Scores Comparison (3) 

 

Figure 22. Dominant-Shared Terms Ambiguity Scores Comparison (4) 
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Figure 23. Dominant-Shared Terms Ambiguity Scores Comparison (5) 

 

Figure 24. Dominant-Shared Terms Ambiguity Scores Comparison (6) 

 

Figure 25. FastText Word2Vec Ambiguity Score Comparison 

Figure 25 shows visual representation of Table 24 in which the clustered columns represents 

the high FastText output, and the horizontal brown line represent high values of Word2Vec 

model.  
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4.7 Selection of Dominant Shared Terms by FastText 

As in the literature, from the result of Word2Vec dominant-shared terms the top 20 and 

bottom 20 terms were listed [1], expressing the 20 most and 20 least ambiguous terms. In the 

same way from the result of FastText dominant-shared terms, the 20 most ambiguous and 20 

least scored terms are listed against each scenario and given in the Table 25 Table 26 and 

Table 27 below: 

Table 25. Dominant-Shared Terms List by FastText for Light Controller and 

Mechanical CAD Scenarios 

Sr. Light controller I1 

(CS, EEN) 

Sr. Mechanical CAD I2 

(CS, MEN) 

Term Score Term Score 

1.  surface 1.59096 1.  machinery 1.646123 

2.  news 1.570741 2.  park 1.615587 

3.  man 1.552746 3.  bell 1.474922 

4.  studio 1.515439 4.  appliance 1.471294 

5.  potential 1.452937 5.  house 1.466081 

6.  contrast 1.440053 6.  gradient 1.459927 

7.  aspect 1.428504 7.  potential 1.450888 

8.  ground 1.423502 8.  calculator 1.445849 

9.  air 1.360362 9.  class 1.439836 

10.  channel 1.358456 10.  stock 1.433542 

11.  deal 1.350508 11.  field 1.418269 

12.  water 1.344624 12.  piece 1.41196 

13.  game 1.336707 13.  ground 1.388091 

14.  energy 1.3231 14.  clock 1.362174 

15.  coverage 1.316237 15.  parallel 1.360973 

16.  cell 1.313304 16.  action 1.353842 

17.  field 1.299738 17.  type 1.339001 

18.  piece 1.293262 18.  respect 1.327407 

19.  gap 1.253745 19.  hybrid 1.323835 

20.  carrier 1.245965 20.  mark 1.321176 

      

21.  amplitude 0.467667 21.  experiment 0.539596 

22.  amd 0.466124 22.  measure 0.536097 

23.  sale 0.465218 23.  measurement 0.530514 

24.  addition 0.464722 24.  location 0.526131 

25.  color 0.459062 25.  manufacturer 0.524683 

26.  mobile 0.458707 26.  flight 0.523489 

27.  test 0.458335 27.  reference 0.522834 
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28.  total 0.446947 28.  academy 0.511415 

29.  telephone 0.420993 29.  hour 0.492302 

30.  phone 0.418956 30.  degree 0.488334 

31.  advantage 0.41661 31.  order 0.481053 

32.  today 0.394948 32.  range 0.474885 

33.  sin 0.386986 33.  calculation 0.467964 

34.  president 0.368968 34.  case 0.461196 

35.  price 0.364017 35.  college 0.44772 

36.  increase 0.350908 36.  advantage 0.430415 

37.  clock 0.343635 37.  increase 0.429334 

38.  combination 0.337399 38.  master 0.407038 

39.  modulation 0.327778 39.  north 0.391403 

40.  court 0.255111 40.  variety 0.380674 

 

 

Table 26. Dominant-Shared Terms List by FastText for Medical Software and Athletes 

Network Scenarios 

Sr. Medical software I3 

(CS, MED) 

Sr. Athletes network I4 

 (CS, SPO) 

Term Score Term Score 

1.  fiber 1.640556 1.  boot 1.695729 

2.  motor 1.606068 2.  surface 1.687301 

3.  type 1.599276 3.  movement 1.598654 

4.  pulse 1.585226 4.  agency 1.581641 

5.  library 1.560013 5.  art 1.571298 

6.  resource 1.548058 6.  wave 1.563652 

7.  idea 1.546585 7.  card 1.562775 

8.  failure 1.535262 8.  material 1.53141 

9.  surface 1.53385 9.  activity 1.521687 

10.  program 1.531147 10.  course 1.497328 

11.  property 1.52729 11.  spin 1.495257 

12.  alternative 1.521999 12.  route 1.492943 

13.  host 1.519336 13.  bill 1.491617 

14.  air 1.510406 14.  goal 1.491474 

15.  case 1.509322 15.  equipment 1.479725 

16.  friend 1.508765 16.  relay 1.472861 

17.  name 1.483718 17.  family 1.456204 

18.  mission 1.470916 18.  piece 1.44645 

19.  scientist 1.461924 19.  variation 1.43019 

20.  availability 1.461715 20.  story 1.428106 

      

21.  protection 0.607006 21.  hour 0.889138 
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22.  chair 0.602771 22.  military 0.841241 

23.  job 0.600881 23.  television 0.831664 

24.  measurement 0.600296 24.  partner 0.811091 

25.  money 0.583641 25.  participant 0.789333 

26.  student 0.581199 26.  success 0.772783 

27.  experiment 0.552848 27.  music 0.762495 

28.  range 0.545283 28.  school 0.760408 

29.  travel 0.521072 29.  report 0.75292 

30.  increase 0.507215 30.  position 0.748885 

31.  sale 0.494142 31.  member 0.716138 

32.  decade 0.488249 32.  direction 0.712265 

33.  article 0.486702 33.  protection 0.707374 

34.  biology 0.473625 34.  total 0.702056 

35.  reference 0.465292 35.  president 0.669979 

36.  north 0.435227 36.  brand 0.658793 

37.  executive 0.422421 37.  regulation 0.644789 

38.  director 0.418565 38.  chief 0.619433 

39.  category 0.405581 39.  list 0.559163 

40.  price 0.347632 40.  child 0.525307 

 

Table 27. Dominant-Shared Terms List by FastText for Medical Device, Medical Robot 

and Sport Rehab Machine Scenarios 

Sr. Medical device M1 

(CS, EEN, MED) 

Sr. Medical robot M2 

(CS, EEN, MEN, MED) 

Sr. Sport rehab machine M3 

(CS, EEN, MEN, MED, SPO) 

Term Score Term Score Term Score 

1.  motor 2.054434 1.  park 2.419028 1.  ability 2.610864 

2.  type 1.996133 2.  type 2.268756 2.  story 2.578883 

3.  air 1.969982 3.  respect 2.220806 3.  respect 2.51284 

4.  phenomenon 1.919298 4.  surface 2.153767 4.  type 2.454103 

5.  process 1.89895 5.  device 2.150813 5.  future 2.425817 

6.  particle 1.89878 6.  property 2.14334 6.  park 2.419028 

7.  material 1.896871 7.  solution 2.134443 7.  order 2.415292 

8.  gamma 1.891737 8.  process 2.12899 8.  thing 2.373934 

9.  liquid 1.884634 9.  barrier 2.115433 9.  film 2.335974 

10.  solution 1.867904 10.  thing 2.105908 10.  motor 2.334503 

11.  board 1.855416 11.  office 2.093762 11.  spot 2.313416 

12.  film 1.847767 12.  story 2.091625 12.  formula 2.293928 

13.  property 1.835732 13.  magazine 2.090205 13.  peak 2.281734 

14.  pattern 1.834297 14.  team 2.070382 14.  magazine 2.281644 

15.  respect 1.824345 15.  approach 2.068058 15.  stock 2.264412 

16.  house 1.819449 16.  glass 2.061337 16.  bill 2.263122 

17.  beam 1.811696 17.  film 2.059012 17.  deal 2.255644 

18.  mark 1.806572 18.  motor 2.054434 18.  field 2.242056 

19.  glass 1.798863 19.  atom 2.052603 19.  spin 2.239163 
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20.  barrier 1.795809 20.  ability 2.043992 20.  sheet 2.23529 

         

21.  executive 0.422421 21.  usb 0.48659 21.  actuator 0.50265 

22.  telephone 0.420993 22.  omega 0.482839 22.  century 0.491201 

23.  phone 0.418956 23.  biology 0.473625 23.  usb 0.48659 

24.  capability 0.418835 24.  prediction 0.46769 24.  omega 0.482839 

25.  laptop 0.417104 25.  amd 0.466124 25.  biology 0.473625 

26.  category 0.405581 26.  mpeg 0.459843 26.  prediction 0.46769 

27.  chief 0.404338 27.  color 0.459062 27.  amd 0.466124 

28.  today 0.394948 28.  mobile 0.458707 28.  mpeg 0.459843 

29.  compatibility 0.39377 29.  fi 0.448872 29.  color 0.459062 

30.  director 0.391759 30.  pc 0.435289 30.  mobile 0.458707 

31.  sin 0.386986 31.  executive 0.422421 31.  fi 0.448872 

32.  wireless 0.384006 32.  phone 0.418956 32.  pc 0.435289 

33.  president 0.368968 33.  capability 0.418835 33.  phone 0.418956 

34.  increase 0.350908 34.  laptop 0.417104 34.  capability 0.418835 

35.  clock 0.343635 35.  compatibility 0.39377 35.  laptop 0.417104 

36.  combination 0.337399 36.  sin 0.386986 36.  compatibility 0.39377 

37.  modulation 0.327778 37.  wireless 0.384006 37.  sin 0.386986 

38.  degree 0.32216 38.  increase 0.350908 38.  wireless 0.384006 

39.  storage 0.321692 39.  clock 0.343635 39.  clock 0.343635 

40.  court 0.255111 40.  modulation 0.327778 40.  modulation 0.327778 

 

4.8 Case Studies of the Effectiveness of FastText Terms 

In the dominant-shared terms of FastText, some of the terms have a high ambiguity score but 

was not listed in the resultant terms of Word2Vec model. Based on various scenarios, we 

discuss some important cases below: 

The term net is ranked higher in the domain of CS-Sports domain, which may be interpreted 

as computer network or internet, while in the Sport domain it may be expressed as fabric, 

bag, or a mesh for ball. The term press in the same domain combination also ranked high for 

ambiguity level; it can be seen as the news, media related to the sports events in sport 

domain, and ‘a click’, ‘a press down on a key’ like meaning in the CS domain. The term port 

given in the list against CS-Electronics also has dual interpretation in both domains, such as it 

can be a physical terminal for an electronic machine to connect with an external physical 

circuit. While the port can also be seen as the logical port numbers declared in a software and 

associated with network protocols to allow transfer of data between two systems. The term 

park given as ambiguous term in CS-Sport domain is intended as to adjust read/write head of 

the hard disk to its default location, or it may be an area name where computers / technology 
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company exists. On the other hand, the park may be a venue for playing, presentation, or 

exercises in the sports domain.  

The term star is ranked high in Electronic-SPO domain can be taken as a key player of a 

game, or in the electronics domain, it refers to an energy star, with high star, an electronic 

appliance considers as least efficient and vice versa. Similarly, in the CS domain, the star is a 

star topology for computers connectivity, or referring a pointer variable, or a product symbol. 

The term man in the medical domain may refer to a patient or a doctor, in sports it may be 

referred to a coach, a sportsman. If we see this term in CS domain, it may be a type of 

network. The term boot ranked high in the domain CS-Mec and CS-Sport, can be interpreted 

as in sport footwears, while in the CS the term means loading an operating system to primary 

memory or startup of a system. The same term is used for a piece of pipe in a three-phase 

separator's bottom, often upstream of the weir, or a steering wheel boot of a vehicle. The term 

book in the sport domain is a bet on the game events, and the study books in all other 

domains.  

A common term code in the computer domain is considered as set of instructions that is 

written in a programming language for a specific task, while in the electronics it is group-of-

symbols for the representation of letters or numbers. In all other domains the code may be 

interpreted as the rules, law, and standards to be followed for the achievement of a specific 

goal. Moreover, the term art is one of the high scored terms, can be read in the medical 

domain as the treatment of HIV (antiretroviral), while in the other domain it will lead to a 

default meaning as a skill, or creativity related to something. The term spot is considered as a 

mark, area, or a specific location in general domains, and in the mechanical domain it can 

also be interpreted as a satellite name that an imaging satellite (spot) for observational 

purpose. The term parameter ambiguity score given high in the domain of CS-electronics 

which can be elaborated in the electronics field as the values that shows the performance of 

circuits and components, while in the computer domain the same term is considered as in the 

meaning of argument which passes the values to the methods or procedures in the 

programming.  

These were some of those terms which are only listed in FastText, and we have observed its 

ambiguity level through examples. There were other important terms listed in the FastText 

output that were absent from the list of Word2Vec.  
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4.9 Limitations 

Amongst all the dominant-shared terms listed by FastText, usage of terms in its context was 

not checked manually and the case study of each term couldn’t be analyzed for another 

verification of the effectiveness of the approach. The reason is that the produced terms 

needed to be compared with the result of Word2Vec model, which was two time generated 

due to the expected variation in the internet contents.  

As the author of study [19] applied Word2Vec for word vector representation also mentioned 

FastText and GloVe to be applied for the same purpose, we missed the GloVe model 

application due to the implementation of FastText and detailed comparison of the terms. 

We also did not apply multiple n-grams with the FastText for the detailed examination of the 

effectiveness of n-grams on the given text corpora. As if n-grams change the language 

models must be re-build for it and the algorithms must be re applied on the models which 

needed a lot of time for processing.  

One major limitation of the FastText usage is that it requires more time to train on data and 

generate language models as compared to Word2Vec.  
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CHAPTER 5: CONCLUSION & FUTURE WORK 

5.1 Conclusion  

In this research, we have proposed a problem to detect cross-domain ambiguity caused by 

multi-meaning terms of different domains. We performed a detailed literature review related 

to the cross-domain ambiguity. The dataset was obtained from the Wikipedia pages for the 

selected domains. We applied NLP approaches for pre-processing on the text corpus and on 

the resultant text of different domains, we applied Word2Vec and FastText on the data and 

built language models. The language models were generated separately against each of the 

domain. Total seven scenarios were supposed to combine the domains for a particular 

purpose. Cross-domain ambiguity was calculated by the selection of dominant-shared terms 

in each domain combination and ranking of the set of terms as per its ambiguity level. 

Ambiguity score of the terms was calculated based on the similar wording they share in its 

context across the domains. The process was done twice, once using Word2Vec and secondly 

using FastText language models. Output of both models were stored and compared with the 

state-of-the-art article results. Ambiguous terms generated by both models were also 

compared in which the ambiguity score of most of the terms was high in the FastText results, 

specifically in the scenarios where more than two domains were involved. Furthermore, we 

observed that some of the most ambiguous terms listed by FastText were not found in the 

Word2Vec generated results. We also observed that the model training time of Word2Vec 

was less than FastText. We concluded that the use of FastText by requirements analyst will 

be more beneficial for the track of cross-domain ambiguity terms in requirements if there is 

no strict time constraint for the implementation of approach.  

5.2 Future Work 

As future work, the proposed approach can be extended to implement by increasing the 

number of n-grams in the implementation of FastText. Similarly GloVe and BERT can also 

be used to see its effectiveness in the similar methodology.  
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