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Abstract

Biochemical systems represent a process that involves different biological species

linked by a network of chemical reactions. To analyze the behavior of the system,

we perform experiments either on the actual system or on the mathematical model

of the system. In this thesis, our focus is on modeling and analysis (computer sim-

ulation) of biochemical systems. The problem with mathematical models is their

complexity. The desire for more details and accurate results often generate large

scale complex models. Numerical simulation of such complex models is computa-

tionally expensive. Model order reduction can be utilized to tackle this issue of

complexity by trying to take out those parts of a reaction network that are mathe-

matically contributing very little in our parameters of interest. In this thesis we are

using an important projection based model reduction technique that is called IRKA

for model reduction of biochemical systems. To clarify the application of IRKA in

reduction of biochemical systems, we consider an example of biochemical system

from the literature and presents the key steps of modeling, conservation, lineariza-

tion and reduction. The results of IRKA are compared with lumping, which is a

common reduction technique for chemical reactions. It is observed that the approx-

imation error through IRKA is much better as compared to the lumping technique.

Keywords: model order reduction, complexity, mathematical modeling, chemical

reaction.



Chapter 1

Introduction

Biochemical systems represent a process that involves different biological species

linked by a network of chemical reactions. To analyze the behavior of the system,

we perform experiments either on the actual system or on the mathematical model

of the system. In this thesis, our focus is on modeling and analysis (computer sim-

ulation) of biochemical systems. One of the problem with mathematical models

is their complexity. The desire for more details and accurate results often gener-

ate large scale complex models. Numerical simulation of such complex models is

computationally expensive. Model order reduction can be utilized to tackle this

issue of complexity by trying to take out those parts of a reaction network that are

mathematically contributing very little in our parameters of interest. In the reduced

model, variables and parameters are less as compared to the original model but the

behavior of both models are almost same. In this thesis we are using an important

projection based model reduction technique that is called iterative rational Krylov

algorithm (IRKA) for model reduction of biochemical systems. The advantage of

IRKA is that, it can be extended to very large-scale settings because it involves only

matrix vector multiplications.

1



1.1 Biochemical Reactions

A biochemical reaction is a process that leads to the chemical transformation of

one set of chemical substances to another. Biochemical reactions are controlled by

enzymes [1], which are biological catalysts that can modify the rate of chemical

reactions. Computational analysis of biochemical reactions [2] is commonly used in

computational biology to observe important biological process such as cell signaling,

metabolism and the rules of gene expression. A network of biochemical reactions

that define a specific process is often used to predict the behavior of the network.

The example of such a biochemical networks is discussed by Gheorghe Craciun

and Martin Feinberg in 2006 [3] and is shown below.

Figure (1.1) Example of biochemical reaction networks

Biochemical reactions networks are usually very complex networks [4]. These

networks consist of hundreds of thousands of components with complicated inter-

actions. The quantitative description of such networks involve nonlinear ordinary
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differential equations (ODEs). However, the utilization of such large set of ODEs is

often prohibited, since we have to face the challenge of numerically solving a very

large nonlinear set of differential equations.

1.2 Model Order Reduction

Model order reduction (MOR) is a process where a large-scale mathematical model

[5] is reduced to a low order model such that the response of these two models are

almost equivalent or comparable. The reduced model is then used as a surrogate

model to obtain useful information about the actual system. There are different

types of techniques that are used for model order reduction. For example linear

reduction techniques [6] are used to reduce linear models and nonlinear reduction

techniques [7], [8] are used to reduce nonlinear models. In this thesis, our focus

is on linear reduction techniques with application in biochemical systems. Since

the ODE representation of biochemical systems involve nonlinear terms, we have to

linearize the model before proceeding to the model order reduction technique. We

have used two techniques for the purpose of MOR, one is lumping and second is

iterative rational Krylov algorithm (IRKA) [9], which are discussed in Chapter 2.

The main purpose of model order reduction is to simplify the model representation

so that we can get fast simulation response and in case of control, easily tune the

controller parameters.

1.2.1 MOR Formulation for Linear Systems

MOR for linear time-invariant systems can be formulated in both time and frequency

domain. We begin with the time domain [10] representation. Consider a linear state
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space model of the form :

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t),

where x ∈ Rn, y ∈ Rp, u ∈ Rm are n internal states, p outputs, m inputs of the

system respectively, and A,B,C are constant matrices of appropriate dimensions.

These matrices are either directly obtained from modeling or computed from a

linearization procedure of the corresponding nonlinear system [11]. The pictorial

representation of state space form of original model is shown in Figure 1.2 .

Figure (1.2) State space form of original model
.

The problem of MOR is to compute an order ‘r’ model (r� n) from the original

model the form:

ẋr(t) = Arxr(t) +Brur(t)

yr(t) = Crxr(t),

where xr ∈ Rr, yr ∈ Rp, r internal states, p outputs, m inputs of the reduced system
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respectively and Ar, Br, Cr are constant matrices of appropriate dimensions. The

pictorial representation of state space form of reduced model is shown in Figure 1.3.

Figure (1.3) State space form of reduced model
.

1.2.2 Importance of MOR

The main reasons for computing low-order models can be grouped as follows:

1. To have low-order models so as to simplify the understanding of a system.

2. To reduce computational efforts in simulation problems.

3. To decrease computational efforts required for design of a numerically efficient

controller, for the system to be reduced.

1.3 Problem Statement

Since biochemical systems are often very complex with hundreds of thousands com-

ponents with complex interactions, their models are not easy to simulate. MOR can

provide solution to this problem. Since we have different model reduction techniques,

we need to observe which reduction techniques perform better for biochemical sys-

tems. The performance of the reduced model is measured by observing the following

qualities of the reduction technique.

• The response of the original and reduced systems should be similar.
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• The reduction technique should be computationally efficient. In fact, the com-

putation time in constructing the reduced system and the time in simulating

the reduced system should be much less then the simulation time of the original

system.

• The reduction technique should be extendable to very large scale systems.

• The reduction technique should ensure the properties and structure of the

original system. For example if the original system is stable and have linear

structure, the reduced system should also be stable and linear.

1.4 Research Motivation

MOR is an important computational tool for efficient simulation and the control of

different large scale dynamical systems. Efficient simulation of large scale systems

decrease the computational cost and identify to the real-time response of the system.

Computer simulations are now used in almost every physical, chemical, biological

and other processes. It is good idea to simplify the model, either in size or in

complexity to speed-up the computation time.

1.5 My Research Contribution

The main contributions of this thesis are as follows:

• Convert biochemical systems into ODE for reduction.

• Use reduction techniques on ODE to reduce the nonlinear ODE.

• We propose the use of IRKA to reduce the complexity of large scale systems.

• Reduce computational time of ODE through reduction techniques.

6



1.6 Thesis Outline

This thesis is organized as a collection of articles, hence each chapter can be read

individually. An outline of the thesis follows next.

Chapter 1 is an introduction that gives an overview about the thesis, the problem

statement, some background about biochemical systems and stat space model, re-

search motivation and my contribution on this work.

Chapter 2 presents detail overview of previous literature o MOR.

Chapter 3 describe proposed methodology .

Chapter 4 discuss the results.

Chapter 5 draws the conclusion and present the direction for future work.
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Chapter 2

Literature Review

2.1 Modeling of Chemical reaction

A chemical reaction [12] is a process in which chemical substances are converted into

other substances with some rate of reaction [13]. A reaction rate is a concentration of

the produced chemical per unit time [14] or the concentration of consumed reactants.

There are different types of chemical reactions, a chemical reaction that complete

in a single step is known as elementary reactions and a reaction that complete in

more than one step is called composite reaction or complex reactions. The chemical

reaction models change the physical knowledge into a mathematical form so that

the knowledge can be used according to the academic problems in computational

simulation. There are several types of mathematical models of chemical reactions

[15]. Some of them are as follows:

2.1.1 The Law of Mass Action

The law of mass action [16] states that the rate of chemical reaction is directly

proportional to the product of the activities or concentrations of the reactants [17].

It defines and predicts the solutions in dynamic equilibrium. It means that for a

chemical reaction, the ratio between the concentration of reactants and the product

is constant [18].

For example, there are three chemical A, B and C. Chemical A and chemical B

8



reacts to produce chemical C:

Figure (2.1) Model of 3 chemicals
.

A+B
k−→ C

The k is the constant rate that determines the rate of the reaction. The probability

of collision between that reactants produces the results is described by reaction rate.

The law of mass action given as :

d[C]

dt
= k[A][B]

d[A]

dt
= −k[A][B]

d[B]

dt
= −k[A][B]

Where the product of [A] [B] represents the probability of a collision.

2.1.2 Reversible reactions

A reversible reaction is a reaction where the reactants form the products, which re-

act with the reactants and it reacts together to give the reactants back [19]. Suppose
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we have A, B, C and D are four chemicals. A and B can be react to form C and D

or, in the reverse reaction, C and D can reacts to form A and B.

For example, There are 3 chemicals A, B and C. A and B react with C to produce

the chemical and C and vice versa.

Figure (2.2) Model of 3 chemicals
.

The k+ and k− is the constant rate that determines the rate of the reaction.

Then the production rate is as following:

d[C]

dt
= k+[A][B]− k−[C]

d[A]

dt
= −k+[A][B] + k−[C]

d[B]

dt
= −k+[A][B] + k−[C]

2.2 Examples of Chemical Reactions

Suppose that you have a container which contains the 4 chemicals. The name

of chemicals are A, B, X, and Y. All of these chemicals are involved in chemical

10



reactions as shown below [14].

A+X
k1−→ 2X (2.1)

X + Y
k2−→ 2Y (2.2)

Y
k3−→ B (2.3)

The task is to construct a set of differential equations shows the variations of each

chemical with respect to time. Start with the differential equation for the first chem-

ical, that is A. To do this, Firstly identify all chemical reactions that either used as a

consumer the chemical A. And then construct the differential equation for chemical

A is given below in Figure 2.3

Figure (2.3) Construct the differential equation of first chemical ”A”
.
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Next, suppose build the differential equations for the second chemical that is B.

To do this, first of all, all chemical reactions identify that either they used as a prod-

uct or consumes the chemical (i.e., recognized all the chemical reactions in which

chemical B is used). And then the construct the differential equation according to

the governing equation is given below Figure 2.4

Figure (2.4) Construct the differential equation of second chemical ”B”
.

Next, suppose build the differential equations for the third chemical that is X.

To do this, first of all, all chemical reactions identify that either they used as a prod-

uct or consumes the chemical (i.e., recognized all the chemical reactions in which

chemical X is used). And then the construct the differential equation according to

12



the governing equation is given below in Figure 2.5

Figure (2.5) Construct the differential equation of third chemical ”X”
.

Next, suppose build the differential equations for the fourth and last chemical

that is Y. To do this, first of all, all chemical reactions identify that either they used

as a product or consumes the chemical (i.e., recognized all the chemical reactions in

which chemical Y is used). And then the construct the differential equation accord-

ing to the governing equation is given below in Figure 2.6

13



Figure (2.6) Construct the differential equation of fourth chemical ”Y”
.

Now all the differential equations that representing the concentration of all the

chemicals individually is received. The last step is to mix all the equations together

and put them as a simultaneous equations as shown below.

dA

dt
= −k1AX

dB

dt
= −k3Y

dX

dt
= −k1AX − k2XY

dY

dt
= −k2XY − k3Y

(2.4)

14



2.3 State Space Modeling

State space modeling convert higher order differential equations into a set of first

order differential equations. It is a mathematical model of a physical system in

which there is a set of inputs, outputs and state variables associated by first order

differential equation [22]. General nonlinear state space representation of a system

is

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))

Now take equation (2.4) as an example of nonlinear state space, so we get
ẋ1

ẋ2

ẋ3

ẋ4


=


f1(x(t), u(t))

f2(x(t), u(t))

f3(x(t), u(t))

f4(x(t), u(t))


=


−k1x1x3

−k3x4

−k1x1x3 −−k2x3x4

−k2x3x4 −−k3x4


(2.5)

where A = x1, B = x2, X = x3 and Y = x4. In case of linear systems, the

generalized state space representation is of the form shows in Figure 2.7

15



Figure (2.7) Differential equation into state space model
.

In the above figure, the first equation is known as the state equation and it has

a first order derivative of the state variables on the left side, and the state variables

and inputs, multiplied by matrices on the right side. And the second equation is

known as the output equation and it has the output on the left hand side and the

state variables and inputs, multiplied by matrices on the right hand side.In these

equations:

• x is n× 1 ( n rows and 1 column); x is called the state vector and it is a

function of time.

• A is n× n ( n rows and n columns); A is the state matrix and it is constant.

• B is n×m ( n rows and m columns); B is the input matrix and it is constant.

16



• u is m× 1 ( m rows and 1 column); u is the input and in general it is a

function of time.

• C is p× n ( p rows and n columns); C is the output matrix.

• D is p×m ( p rows and m columns); D is the direct transition matrix.

• y is p× 1 ( p rows and 1 column); y is the output of the system and it is a

function of time.

Now we represent the example discussed in the previous section in the state space

form. Equation (2.4) has a set of nonlinear differential equations. These nonlinear

equations can be converted in linear state space form as

dA

dt

dB

dt

dX

dt

dY

dt



=


−k1 0 0 0

0 0 0 −k3

−k1 0 −k2 0

0 0 −k2 −k3




A

B

X

Y


+


0

0

0

0


u(t) (2.6)

2.4 Techniques of Model Order Reduction

MOR is a computational technique that reduce large scale systems that are repre-

sented by a set of ODEs or DAEs, to make its simulation easy and smooth. There

are many methods or techniques of MOR that are used to reduce large scale systems.

A common approach for model order reduction is projection-based reduction. Some

techniques that fall in this category are as following:
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• Proper orthogonal decomposition

• Balanced truncation

• Transfer function interpolation

• Krylov subspace method in particular IRKA

• Lumping

In the following we discuss lumping and IKRA techniques for model order

reduction. For details on other techniques, we refer [23].

2.5 Lumping

Wei and Kuo in 1960s proposed a methodology for reduction of dynamical systems,

that is known as lumping [24]. Lumping remove atleast one set of a state-variable

and replace it with a single ‘lumped’ variable which shows some direct mapping

from the original variables in the system.

There are different types of lumping, each type define specific rules of combining

the state variables during reduction and their details are discussed in the following:

Proper Lumping And Improper Lumping [25]

In proper lumping every original state of system is presented in only one lumped

variable of the reduced model, while in improper lumping every original state of

the system can be presented in to one or more then one lumped variables of the

reduced model. Figure 2.8 represent the symbolic picture of proper lumping and

improper lumping. Proper lumping is a subdivision of original species, in which

every subdivision can be reduced in only one independant dynamicaal variable in

the reduced model. In literature most of the paper discussed only proper lumping
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methodologies. In majority literature, proper lumping methodologies are discussed,

which can be required to manage a certain degree of biological interpretability in

the reduced structure of the network.

Linear Lumping And Nonlinear Lumping [24]

In lumping when the lumped variable consist of only linear combinations of the

original species is known as linear lumping. When the lumped variable in lumping

consist of both linear or nonlinear combinations of the combinations of the original

species is known as nonlinear lumping [26]. In most of the literature,authors are

discussed that linear lumping is similar to the proper lumping and this approach

produces a reduced networks that can easy to translate biologically.

Exact Lumping And Approximate Lumping

In lumping when the lumped variable consist of only time-invariant parameters in

reduced system that can be exactly mapped to the original species is said to be

exact lumping schemes [24] [26]. Exact lumping schemes are divided into three cat-

egories that are; proper lumping, improper lumping [27] and semi-proper lumping.

In lumping when the lumped variable consist of small group of positive parameters

corresponding to different time scale in reduced system that can be exactly mapped

to the original species is said to be approximate lumping schemes [28]. There are

two types of approximate lumping [29]; linear and nonlinear approximate lumping.
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Figure (2.8) Symbolic picture of proper lumping and improper lumping. I Proper lumping II Improper lumping
.

A general state space model are

ẋ(t) = f(x(t),p,u(t)) (2.7)

y(t) = g(x(t),p) (2.8)

where u(t) ∈ Rm represents a input vector, y ∈ Rp represents the output, pi ∈ p are

real proportionality constant that is equal to the corresponding kinetic parameter

and the output function g(x(t)) involve the original state-variables and parameter

p. Reduction through any linear projection L ∈ {0, 1}r×n, where each row of L is

pairwise orthogonal. The reduced state-variables xr(t) can be computed as

xr(t) = Lx(t) (2.9)

The dynamics of the system can be represented through the reduced variables xr(t).
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So the reduced form of the system is

xr(t) = Lf (Lrxr(t),p,u(t)), xr(0) = Lx(0) = xr0 (2.10)

yr(t) = g(Lrxr(t),p) (2.11)

where Lr is the generalized inverse of L and there are different ways to construct this

inverse. In the paper of Wei and Kuo [24], they are suggesting to select the Lr that

rebuild the fixed state of the system, such that x̂ = Lrx̂r with x̂ = limt−→+∞ x(t).

In contradistinction, Dokoumetzidis and Aarons [25] follows the work of Li and

Rabitz [30], and suggested to use the Moore-Penrose inverse L+ for the reasons of

clarity and simplicity of calculation. However, this selection of lumping inverse, has

a major impact on the efficiency of the model reduction.

In the literature of recent years lumping are used to reduce a number of biochemical

systems. A lumping approach and successive optimization to a 20 dimensional

model of yeast glycolysis was applied by Dano in 2006 [31]. It was established that

this system may be reduced to 8 dimensions by maintaining good accuracy. An

algorithmic approach for linear, proper lumping was presented by Dokoumetzidis

and Aarons in 2009 [25]. This is an optimization-based reduction method, which

add two state-variables at every step and testing of each possible pair by the help of

simulating the results of reduced model and matching its output with the original.

This method was applied to a 26-dimensional model of the NF −k B signaling

pathway. The methodology of Dano [31] was applied on a 62-dimensional model

that studying the effect of snake vitriol management by Gulati in 2009 [32]. It

was presented that the 5-dimensional model can be formed which reproduced the

original system dynamics to within a maximal relative error of 20%. A lumping

style approach termed layer-based reduced modeling was applied by Koschorreck

in 2007 [33]. Under this approach, finding a lumping is comparatively good for
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understanding of the model in order to decompose it into lumpable modules. The

ability to switch between particular dimensionality of reduced models depending

upon the application and accuracy preferred was presented in 2010 by Sunnker

[34]. This method is demonstrated via application to a 26-dimensional model of

fluorescence production in photosynthesis, which is reduced to 6 dimensions yielding

only an insignificant difference in the output profile of the reduced model. They

extend their method to the nonlinear model in their second paper [35]. To reduce

a model of glycolysis from 9 down to 5 state-variables which still offers an excellent

description of the state dynamics then this methodology is used.

2.6 Iterative Rational Krylov Algorithm

Iterative Rational Krylov Algorithm (IRKA) is an interpolatory model reduction

technique that link the problem of optimal H2 approximation to projection [36]. In

that paper, the authors address the optimal H2 approximation of a stable, single-

input single-output large-scale dynamical system. They observe that for an nth order

linear dynamical system with transfer function

G(s) = C(sI − A)−1B

a stable rth order reduced system

Gr(s) = Cr(sIr − Ar)
−1Br

can be computed with r << n and with the H2 error satisfying

Gr(s) = arg min
deg(Ĝ=r)

‖ G(s)− Ĝ(s) ‖H2 (2.12)

where ‖ G ‖H2 := (
∫ +∞
−∞ |G(jw)|2dw)

1
2 .

The problem of computing Gr(s) is lined to Krylov projection. methods. Two pro-

jection matrices V ∈ Rn×r and W ∈ Rn×r are constructed certain with columns
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spanning the Krylov subspaces and satisfying W TV = Ir. Then the state matrices

of reduced order model are

Ar = W TAV, Br = W TB and Cr = CV. (2.13)

The problem is how to construct V and W that link this projection framework with

the H2 optimal model reduction problem defined in equation (2.12). To solve this

issue, the iterative rational Krylov algorithm has been proposed which efficiently

construct the projection matrices V and W through an iterative framework. IRKA

is acceptable for large-scale system as it involve matrix vector multiplications only.

The rational interpolation concept [Grimme] construct V and W through

Im(V) = Span {(σ1I − A)−1B, ..., (σrI − A)−1B}

Im(W) = Span {(σ1I − A)−TCT , ..., (σrI − A)−TCT}

with W TV = Ir.

IRKA use similar rational interpolation framework but these points σ′is are itera-

tively updated until σ′is are the negative eigenvalues of Ar.

IRKA basic steps

1. Make an initial shift selection σi for i = 1,...,r.

2. W = [ (σ1I − AT )−1CT , ..., (σrI − AT )−1CT ]

3. V = [ (σ1I − A)−1B, ..., (σrI − A)−1B]

4. while (not converged)

a) Ar = W TAV

b) σi ← −λi(Ar) for i = 1,...,r
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c) W = [ (σ1I − AT )−1CT , ..., (σrI − AT )−1CT ]

d) V = [ (σ1I − A)−1B, ..., (σrI − A)−1B]

5. Ar = W TAV, Br = W TB and Cr = CV
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Chapter 3

Research Methodology

In this chapter we discuss the methodology used to find our results of reduction of

biochemical reaction networks. Some basic steps that are followed in the methodol-

ogy are represented through a flowchart, shown in Figure 3.1.

3.1 Chemical Reaction Network

A CRN consists of a set of reactants, a set of products and a set of reactions. It

can be modeled by means of nonlinear, parameter dependent systems of ordinary

differential equations. To explain the modeling of chemical reaction, we consider a

nonlinear example from the literature [37], where the network consists of 9 species, 6

reactions, 10 kinetic rate constants and 1 input as shown in Figure 3.2. In a simple

way we describe this chemical reaction network by a set of chemical equations as
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Figure (3.1) Flowchart of my methodology
.

follows :

A+B
k1

�
k2

AB
k3→ C +B,

C +D
k4

�
k5

CD,

C + E
k6

�
k7

CE
k8→ A+ E,

A+ U
k9→ U + F,

F
k10→ A,
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While this is only a test example, it could be assumed that the example represents

a process where an enzyme B is catalyzing the transformation of a substrate A to

the form C. The enzyme C in turn can bind with E to revert to A or can bind

with D to undergo degradation. The specie U represents a molecule that catalyzes

the transformation of specie A to specie F hence sequestering the substrate from

performing the autonomous process described in Figure 3.2.

Figure (3.2) A nonlinear, system for the demonstration of model reduction methodologies.
.

3.2 Differential Equation Model

An ordinary differential equation is an equation containing a function of one inde-

pendent variable and its derivatives. The term “ordinary” is used in contrast to the

term partial differential equation which has more than one independent variable.

It is a fundamental tool for studying the dynamics of linear as well as nonlinear
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systems. To understand the behavior of any chemical system, we model that system

in the mathematical form through ODEs via application of the Law of mass action.

The set of chemical equations given in section 3.1 are modeled as a set of ODEs,

which are as follows

dx1

dt
= k2x3 − k1x1x2 + k8x8 − Uk9x1 + k10x9

dx2

dt
= k2x3 − k1x1x2 + k3x3

dx3

dt
= −k2x3 + k1x1x2 − k3x3

dx4

dt
= k3x3 + k5x5 − k4x4x6 + k7x8 − k6x4x7

dx5

dt
= −k5x5 + k4x4x6

dx6

dt
= k5x5 − k4x4x6

dx7

dt
= k7x8 − k6x4x7 + k8x8

dx8

dt
= −k7x8 + k6x4x7 − k8x8

dx9

dt
= Uk9x1 − k10x9

Where the state-variables are described as [A] = x1(t), [B] = x2(t), [AB] = x3(t),

[C] = x4(t), [CD] = x5(t), [D] = x6(t), [E] = x7(t), [CE] = x8(t), and [F] = x9(t).

Moreover, let u represents the concentration of the input molecule U , that is [U]=u.

In matrix-vector form, we have

ẋ(t) = Sv(x(t),k), (3.1)
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where

S =



1 0 0 0 1 −1 −1

1 1 0 0 0 0 0

−1 −1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 −1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 1 −1



, v =



k2x3 − k1x1x2

k3x3

k5x5 − k4x4x6

k7x8 − k6x4x7

k8x8

Uk9x1

k10x9



Also let us define a single output, y = x6(t)= [CD]. So this system can be expressed

clearly in a state-space form

ẋ(t) = f(x, t) + g(x, t)u,

y = x6(t).

where

f(x, t) =



k2x3 − k1x1x2 + k8x8 − k10x9

k2x3 − k1x1x2 + k3x3

−k2x3 + k1x1x2 − k3x3

k3x3 + k5x5 − k4x4x6 + k7x8 − k6x4x7

−k5x5 + k4x4x6

k5x5 − k4x4x6

k7x8 − k6x4x7 + k8x8

−k7x8 + k6x4x7 − k8x8

k10x9



,g(x, t) =



−k9x1

0

0

0

0

0

0

0

k9x1



u.
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The initial values of variables are as follows:

x1(0) = x4(0) = 1.54, x2(0) = x7(0) = 0.566, x3(0) = x8(0) = 0.435, x5(0) =

6.06, x6(0) = 3.94, and x9(0) = 0. These represents the steady-state of the sys-

tem under the condition, U = 0. The value of the parameters are fixed and are

given in Table 3.1

Table (3.1) The set of parameter values associated with the nonlinear example model as defined by equation (3.1)

Parameters Values

k1 1

k2 1

k3 1

k4 1

k5 1

k6 1

k7 1

k8 1

k9 100

k10 1

3.3 Conservation Analysis

It is easy to see that, in chemical reactions the rate of rise in concentration of one

specie is exactly equal to the rate of decay in concentration of another specie. This

means that some linear combination of the rate of change of specific species will be

zero. That is

Γẋ(t) = 0 (3.2)
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where Γ represents the conservation matrix of size h × n. By integration, we have

Γx(t) = c, (3.3)

These conservation relations can be solved for some targeted species dependent on

other species such that the dependent species are completely replaced in the original

model. To obtain this partition x into two subsets: xd and xi. xd is h dimensional

subset of the species with every element included in a given conservation relation and

describe the dependent specie. And xi is (n−h) dimensional subset that represents

the independent species. Thus

x(t) =

xd(t)

xi(t)

 (3.4)

Then from the equation (3.3)

Γ

xd(t)

xi(t)

 = c (3.5)

This is a system of linear equations and so if Γ is expressed in reduced row echelon

form, such that

Γ =
[
Ih N0

]
, (3.6)

Where Ih is an h dimensional identity matrix and N0 is an h × (n − h) matrix.

Simplification implies

xd(t) = c− N0xi(t). (3.7)

This indicates that the subset of dependent species xd can be excluded from the

governing system of ODEs by substituting it in the appropriate element of equation

(3.7). A system exhibiting conservation relations can be expressed in the form of a

semi-explicit system of DAEs, such that

ẋi = Siv(xi(t)), (3.8)
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xd(t) = N0xi(t)− c, (3.9)

where equation (3.9) has been utilized in equation (3.8) to get a system of ODEs

such that state-variables xd are no longer given. And Si represents the row of the

stoichiometric matrix proportional to the independent state-variables xi.

To identify the conservation matrix Γ, especially for large systems, a more algorith-

mic approach is possible through the stoichiometric form the model. Decompose

the stoichiometric matrix through the same partition as the set of species leads toẋd(t)

ẋi(t)

 =

Sd

Si

v(xd(t),xi(t)). (3.10)

However, through differentiation of equation (3.7), we have

ẋd(t) = −N0ẋi(t) = −N0Siv(xd(t),xi(t)). (3.11)

So, Sd = −N0Si. As, conservation relations can be found by finding the left null

space Zn of S (i.e by finding the null space of ST ) such that

Zn = {z ∈ Rn|STz = 0}, (3.12)

and so ZT
n S = 0. This implies that

ZT
n Sv(x(t)) = 0 = ZT

n (ẋ(t)) (3.13)

and then by comparison to equation (3.2), it is clear that

ZT
n = Γ, (3.14)

such that the transpose of the left null space of the stoichiometry matrix is equal to

the conservation matrix. In case of the biochemical system represented by equation
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(3.1), calculation of the left null-space is

Zn =



0 0 0 1

1 0 0 0

1 0 0 1

0 0 0 1

0 1 0 1

0 1 0 0

0 0 1 0

0 0 1 1

0 0 0 1



(3.15)

which implies that we have conservation relationships

BT = x2(t) + x3(t), (3.16a)

CT = x5(t) + x6(t), (3.16b)

ET = x7(t) + x8(t), (3.16c)

ST = x1(t) + x3(t) + x4(t) + x5(t) + x8(t) + x9(t) (3.16d)
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Finally, to get the simplified realization, just substituting these conservation rela-

tions into the system implies

dx1(t)

dt
= k2x3(t) + k10(x1(t)− ST + x3(t) + x4(t) + x5(t) + x8(t))

+ k8x8(t)− Uk9x1(t)− k1x1(t)(BT − x3(t)),

(3.17a)

dx3(t)

dt
= k1x1(t)(BT − x3(t))− k3x3(t)− k2x3(t), (3.17b)

dx4(t)

dt
= k3x3(t) + k5x5(t) + k7x8(t)− k4x4(t)(CT − x5(t))−

k6x4(t)(ET − x8(t)),

(3.17c)

dx5(t)

dt
= k4x4(t)(CT − x5(t))− k5x5(t), (3.17d)

dx8(t)

dt
= k6x4(t)(ET − x8(t))− k8x8(t)− k7x8(t). (3.17e)

The initial values of BT , CT , ET and ST are given in Table 3.2

Table (3.2) The initial values of conservation relationships as defined in equation (3.17)

Parameters Values

BT 1

CT 10

ET 1

ST 10

3.4 Linearization

The process of taking the slope of a nonlinear function with respect to all variables

and creating a linear representation at that specific point is called linearization.

We use linearization to allow the use of linear theory for analysis and design in

a specific range. Consider a nonlinear differential equation that is obtained from
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balance equations with the input u and output y .

dy

dt
= f(y, u)

The right hand side of the equation is linearized by a Taylor series extension, with

utilizing just the initial two terms.

dy

dt
= f(y, u) ≈ f(ȳ, ū) +

∂f

∂y
|ȳ,ū (y − ȳ) +

∂f

∂u
|ȳ,ū(u− ū)

If the values of ū and ȳ are selected at steady state conditions, then f(ȳ, ū) = 0

because at steady state
dy

dt
= 0. Deviation variables are defined as y

′
= y − ȳ and

u
′

= u − ū to simplify the final linearized expression. A deviation variable is a

change from the nominal steady state conditions. The derivatives of the deviation

variable is describe as
dy

′

dt
=
dy

dt
because

dȳ

dt
= 0 in

dy
′

dt
=
d(y − ȳ)

dt
=
dy

dt
− dȳ

dt
. If

there are additional variables such as a disturbance variable d then it is added as

another phase in deviation variable form d
′
= d− d̄

dȳ

dt
= αȳ + βū+ γd̄

The values of α, β and γ are constants and the partial derivatives of f (y , u, d)

analyzed at steady state conditions.

α =
∂f

∂y
|ȳ,ū,d̄ β =

∂f

∂u
|ȳ,ū,d̄ γ =

∂f

∂d
|ȳ,ū,d̄

Now we apply this method to linearize the nonlinear system obtained after conser-

vation. The systems consists of ODEs that can be linearized around a given state

xc by Jacobian matrix

Jxc = SE |x(t)=xc (3.18)

In which, the matrix E is represented as the elasticity matrix, with entries

E = {eij =
∂vi(x,p)

∂xj
} (3.19)
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So by the first Taylor series extension, the system can be approximated in the

neighborhood of xc by

ẋ(t) ≈ Sv(xc,p) + Jxc(x(t)− xc) (3.20)

The Jacobian matrix with the initial condition can be written as

Jxc =



−1.57− 100u 1.54 −1 −1 0

0.566 −3.54 0 0 0

0 1 −4.51 2.54 2.45

0 0 3.94 −2.54 0

0 0 0.566 0 −3.54


(3.21)

The linear state space form of equation (3.21) is written as

ẋ =



−1.57 1.54 −1 −1 0

0.566 −3.54 0 0 0

0 1 −4.51 2.54 2.45

0 0 3.94 −2.54 0

0 0 0.566 0 −3.54


︸ ︷︷ ︸

A



x1

x3

x4

x5

x8


︸ ︷︷ ︸

x

+



−100

0

0

0

0


︸ ︷︷ ︸

B

u

y =
[
1 0 0 0 0

]
︸ ︷︷ ︸

C



x1

x3

x4

x5

x8


︸ ︷︷ ︸

x

(3.22)
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3.5 Model Order Reduction

As discussed before, model order reduction is a technique for reducing the compu-

tational complexity of mathematical models in numerical simulations. As such it

is almost related to the idea of surrogate model with applications in all areas of

mathematical modeling [23]. So the model reduction is to compute a simpler model

that reduce the set of state-variables x ∈ Rn such that r < n. There are number

of techniques that are used to reduced biochemical reaction networks but we used

IRKA to reduced the system. IRKA is a robust model reduction technique which is

used to reduce stable linear dynamical systems [40]. A brief outline on the working

of IRKA is given below

Algorithm IRKA. Iterative Rational Krylov Algorithm

Given a full-order system with transfer function H(s), a reduced order r, and con-

vergence tolerance tol, the following steps are followed.

1. Make an initial selection of r distinct interpolation points, {si}r1, that are closed

under complex conjugation.

2. Construct Vr and Wr.

Vr = [ (σ1I − A)−1B, ..., (σrI − A)−1B]

Wr = (W T
r V )−T (to make W T

r V = Ir)

3. while (relative change in {si} > tol)

a.) Ar = (WT
r Vr)

−1WT
r AVr.

b.) Solve r × r eigenvalue problem Aru = λu and assign si ← λi(Ar) for

i = 1, . . . , r .

c.) Update Vr and Wr with new s ′is .
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4. On convergence compute reduced system state matrices Ar = (WT
r Vr)

−1WT
r AVr

, br = (WT
r Vr)

−1WT
r b and cr = VT

r c
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Chapter 4

Results and Discussions

In this chapter, we discuss the results of MOR for system of Chemical Reactions.

In particular we have applied the model order reduction technique, IRKA, after

linearizing the model, representing the biochemical reaction network. The results

are compared with lumping, a well used model reduction technique for system of

chemical reactions.

4.1 Linearized Model

The linearized model discussed in chapter 3 has a special form that can be written

in the standard form

ẋ(t) = Ax(t) + Bu(t)

,

y(t) = Cx(t) + Du(t)

, with

A =



−101.9573 0.0892 −1.0000 −1.0000 0

0.9573 −2.0892 0 0 0

0 1.0000 −10.1356 1.0895 1.0895

0 0 9.1784 −1.0895 0

0 0 0.9572 0 −2.0895


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,

B =



−8.9181 9.9962

0 0.0038

0 −0.0774

0 0.0735

0 0.0038


,

C =
[
0 0 0 1 0

]
and D = 0.

It is clear from the size of B that u(t) involve two inputs with second fixed to 1. The

first input is taken as a unit step function but it can be changed to any other signal.

With the above C, we have y(t) = x5(t). If we want to observe the concentration of

x1(t), we will choose

C =
[
1 0 0 0 0

]
.

4.2 Lumping and IRKA Techniques

We are implementing the two reduction techniques, the lumping method and IRKA

in MATLAB version 2015. We are using the reduced size of 3 and 2 with two

different outputs, y(t) = x1 and y(t) = x5. In each case, the response of the original

and the reduced systems are plotted along with the approximation error. Also the

computational time are shown for both lumping and IRKA. We first show the results

of reduction of order of 3 and then of order 2.

4.3 Reduction to order 3

We consider the chemical system of size 9 and observe tow outputs y(t) = x1 and

y(t) = x5. This system is reduced to order 3 with both IRKA and lumping. It
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is observed that when we reduce the model with y(t)=x1(t) IRKA shows better

approximation error and less computational time as compared to lumping. Similar

behavior is obtained for y(t)=x5(t). These results are shown in Figure 4.1.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

y(
t)

 =
 x

1

 

 
Original system
Conservation analysis
linearized model
Reduce model
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0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

time

er
ro

r
 

 
Lumping error
IRKA error
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(c) Actual response when y(t) = x5
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Figure (4.1) Change in concentration of [A] (y(t) = x1) and [CD] (y(t) = x5) using actual nonlinear systems,
linear system and reduced systems(order 3) with both IRKA and lumping

Notice that for the same size of the reduced system, IRKA outperforms the lump-

ing technique. The computational time and percentage decrease in the simulation

time of original system are shown in Table 4.1.
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Table (4.1) Comparison of computational time at 3 dimensional model

Computational time Percentage Decreases

Original System 0.860 —

IRKA when y(t) = x1 0.084 90%

IRKA when y(t) = x5 0.063 93%

Lumping when y(t) = x1 0.249 71%

Lumping when y(t) = x5 0.267 69%

It is clear from the Table 4.1 that the computational time of IRKA is much better

then the computational time of lumping in both cases. So IKRA is performing much

better then lumping method for the reduction of biochemical systems.

4.4 Reduction to order 2

We consider the chemical system of size 9 and observe tow outputs y(t) = x1 and

y(t) = x5. This system is reduced to order 2 with both IRKA and lumping. It

is observed that when we reduce the model with y(t)=x1(t) IRKA shows better

approximation error and less computational time as compared to lumping. Similar

behavior is obtained for y(t)=x5(t). These results are shown in Figure 4.2.
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Figure (4.2) Change in concentration of [A] (y(t) = x1) and [CD] (y(t) = x5) using actual nonlinear systems,
linear system and reduced systems(order 2) with both IRKA and lumping

Notice that for the same size of the reduced system, IRKA outperforms the lump-

ing technique. The computational time and percentage decrease in the simulation

time of original system are shown in Table 4.2.
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Table (4.2) Comparison of computational time at 2 dimensional model

Computational time Percentage Decreases

Original System 0.851 —

IRKA at y(t) = x1 0.093 89%

IRKA at y(t) = x5 0.024 97%

Lumping at y(t) = x1 0.247 71%

Lumping at y(t) = x5 0.258 70%

It is clear from the Table 4.2 that the computational time of IRKA is much better

then the computational time of lumping in both cases. So IKRA is performing much

better then lumping method for the reduction of biochemical systems.
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Chapter 5

Conclusion and Future work

In this chapter, we present the conclusions based on the observations of our results

and also show some interesting future research directions.

5.1 Conclusion

For an example of biochemical system taken from literature, the applicability of

IRKA has been tested and compared with lumping technique to obtain reduced order

representation of the system. The methodology also involve conservation analysis

and linearization. It is observed that linearization at steady state give us better

result as compared to linearization at initial state. Once we have linearized model,

we can perform the reduction techniques on the linearized model. The advantage

of IRKA is that, it can be extended to very large-scale settings because it involves

only matrix vector multiplications. It is observed that for the biochemical system of

size 9, the computational time for construction as well as simulation time of reduced

order model via IRKA is 89% less than the simulation time of full order model. In

case of lumping, the simulation time is 71% less than the simulation time of full

order models. Also the approximation error for the IRKA technique is much better

as compared to the lumping technique. So IRKA is performing much better than

the lumping technique.
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5.2 Future Work

An important future work is the implementation of the reduction technique IRKA on

an actual large scale biochemical system. That is, to utilize a framework which can

be used to analyze the reactions that involve different type of diseases like chromo-

somal abnormalities, muscular dystrophy and polycystic kidney disease. Since there

are some nonlinear versions of IRKA, it will also be important to see the utilization

of nonlinear reduction techniques on biochemical system, avoiding approximation in

linearization of the actual system.
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