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ABSTRACT

In this modern era of science and technology, the use of software and computer-aided
programs has increased very rapidly. With the increase in use, the data and size of the
computer software’s are also increased. Due to which the collection of large amounts of
software testing data to support the software development and maintenance process has
become difficult. With the development of the software, there is a need to assure the quality
of the software. Software testing is the only solution to find the quality of the software and
there is a need to find the defects in the software before delivering it to the clients. Almost
50% of the projects failed due to low quality and poor software testing. So, based on this
problem we realized the need to use the latest data mining techniques for predicting defects in
software.

In this research study, we used Data Mining (DM) techniques to predict defects from the
software testing data. With the help of data mining techniques, we can improve the reliability
and quality of the software. First, we have identified some available software testing datasets
and selected data based on the parameters and requirements of the research study. For this
purpose, we have explored related studies in the Literature Review (LR) and identified some
defect prediction datasets & techniques. Based on the literature review, we have found
different defect prediction techniques and chose the best one for designing and implementing
research methodology. After data selection, we found the correlation between the different
parameters of the software testing dataset using the correlation analysis. Further, applied data
cleaning & transformation for preprocessed data. Processed data contains on the continuous
data, so we transformed data into discrete data while using clustering (grouping) techniques.
Then we implemented Apriori algorithm under Association Rule Mining (ARM) technique
for predicting defects in software testing data. Apriori algorithm provided the supports and
confidence in multiple iterations, and we got more accurate results. This proposed framework
is based on Market Basket Analysis (MBA) and found the most frequent defects while using

Association Rule Mining.

Keywords: Software Testing, Defect Prediction, Data Mining, Market Basket Analysis,

Association Rule Mining, Apriori Algorithm
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CHAPTER 1: INTRODUCTION
1.1. Background

Software testing is an important part of software development because success or
failure of a software product depends on it. With the improvement of the technologies, every
single task shifted on the software’s and applications. For implementing a successful and
according to the requirements product, it’s very important to perform software testing. It
means software reliability & quality can be judge with the help of testing phase. Today, most
of the software applications failed due to lack of quality & reliability and it’s due to a large
software system or enterprise system & a huge amount of data. Due to large software

systems, software testing also generated a lot of data which based on the software size.

Software engineering is one of the most focused fields in this era. Due to the
advancement in technology the amount of the data generated during the different phases of
software development process have increased very rapidly. Specially in phase of the software
testing and software quality check. To perform analysis at such an extensive data we need a
different approach. We can use the different kinds of statistical techniques to find
relationships between the different variables of both quantitative and qualitative data. The
techniques like the correlation and association rule mining can be used to find the most
related features and variables [1]. Similar kind of correlation and Apriori based association
finding techniques will be used in this paper to find out the relationship between the line of

codes and defects figured out during the software testing process.

Central focus should be to figure out the rules from old software test data set to run the
activities related to SDLC in future. Test data is data which has been specifically designed to
use in tests, typically of a software system. To attain the above stated goals Data Engineering
based techniques should be used to purify, analyze, and express data using existing
technology or developing new algorithms for the software testing process. This process is
used to discover use full knowledge and information for software development team and

other person involves in development activities like managers or technical leads [2].

1.2. Thesis Overview

This study is established for defect prediction using a software testing dataset.
Software testing is one of the important parts of the software development life cycle (SDLC).
Software development follows all the processes of SDLC, and software testing provided the

quality of the software product. According to the Standish group chaos report, the success



rate for software projects was only 29% last year. More than 50% of these projects were
failed due to Quality we cannot deliver what's client wants. So, we need to overcome this
kind of problem and need to explore the latest data mining techniques for defect prediction.
In this research study, first, we have explored the defect prediction techniques and proposed a
data mining-based framework that can predict defects in software testing data.

For conducting this research work, first, we have analyzed different datasets and
selected one dataset. So, identification of dataset and defect prediction techniques is the first
step. After that, we found the most important features using Spearman Ran Correlation.
Further, we have proposed a framework and implement it while using python language and
packages. The complete research work was done under Correlation Analysis & the

Association Rule Mining techniques.

1.3. Problem Statement

When we perform extensive testing at a large software system or enterprise system we
got a huge amount of data, so it becomes difficult to find out the main defect factors which
affect the performance of the software. All Parameters of the selected dataset have not been
interlinked. Perform analysis on these Parameters are effects on cost and time. So, need to

perform correlation analysis on these parameters.
1.4. Proposed Solution

Basically, the main identified problem of this research study is to defect prediction
from a huge amount of software testing data. For this purpose, we need to choose a latest
trends or techniques which can perform defect prediction automatically and save human
efforts, cost, and time. Data Mining is one of the effective solutions which mostly used for
getting important information from huge amount of data or raw data. In our case, we need to
implement such kind of solution which can predict defects from the software testing data. We
will use Apriori Algorithm under Association Rule Mining technique for solving this

problem.
1.5. Objectives

For solving this problem, required to identification of defect prediction techniques and
tools. There is a lot of software testing dataset available for defect prediction, required to
explore the dataset and select the best one which related to the study. Also, there is need to

find out the feature extraction techniques for getting the interlinked parameters or features in



the data. We also need to propose a defect prediction framework while using identified

techniques such as Association Rule Mining.

1.6. Work Contribution

Most of the studies discussed different techniques for testing defect prediction and we
have used Association Rule Mining. Finding an association between defects is the main
contribution of our research work. We have also explored the defect prediction &
classification techniques in data mining. Data Mining is one of the latest solutions to
predicting and finding associations between testing defects.

We have designed a complete research study process step by step which indicates our
research contribution in the testing defect prediction. We have implemented a new framework
that can find associations between software testing defects. For this purpose, we have used

the Apriori algorithm under the Association Rule Mining technique.

4

Introduction Literature Review

Methodology

4| Test Data &
Results

Conclusion Implementation

Association Rule Mining

Figure 1.1: Research Study Process

Figure 1.1 shows the complete research study process, and it starts from the
introduction chapter, follow up the literature review chapter in which we have explored the
related studies according to the research study. After that, we have proposed a methodology
and further implement the methodology. At last, we have discussed the results and compared

them with the related studies.

1.7. Research Questions

Here in this section, we state what problem we’re going to address. What questions are
there in our minds to be answered while and after successfully conducting the research? And

what hypothesis we have formulated. The hypotheses we have formulated during the research



study for the research proposal include the following:
RQ1: What are the factors which affect Software testing?

RQ2: What are the tools and techniques which can be used for defect prediction in software
testing?
RQ3: What type of datasets are available for the prediction of the defects in software testing?

RQ4: How we can propose a framework which can predict defects in software testing?
1.8. Software Testing

In the software development life cycle, the success of software is dependent on
software testing. Testers must confirm the software product should be error and bug-free. For
this purpose, software testing generates a lot of testing data when testers perform testing to
enhance the software quality and reliability. Figure 1.2 represents the complete process of

software testing.

(©) O]
Test Case
Creation

Test Case
Execution

Figure 1.2: Testing Process

Requirement Analysis: This is the first stage of the testing process, and it is set-up for the
identification of the required techniques and tools which verify the software testing
requirements.

Test Plan Creation: Test planning includes delivering a report that depicts a general
methodology and test goals.

Test Case Creation: The conditions and factors under which an analyzer will inspect if a

product works effectively in little, fathomable test steps.



Test Case Execution: Test execution includes running the predetermined test on a system
either physically or with the help of automatic tools.

Defect Logging: It is a process of discovering abandons in the application under test or
product by testing or recording criticism from clients and making new forms of the item that
fix the imperfections or the customer's feedback

Defect Fix & Re-Verification: When developer makes important code changes and confirms
the progressions then analyzer do the retesting of the changed code which developer has

given to him to check if the imperfection sorted out.

1.9. Data Mining Techniques for Software Test Data

Data mining technique can mine the important information from raw dat. "In this
modern era of science and technology, the use of software and computer-aided programs has
increased very rapidly. With the increase in use, the data and size of the computer software
are also increased". Due to which the collection of a large amount of software testing data to
support the software development and maintenance process has become difficult. When we
test software lot of data is generated with different features, different data mining techniques

are used to find the relation b/w Data Set Parameters.

1.10. Tools & Techniques

Defects Prediction implemented using Association Rule Mining & Apriori Algorithm.

Implemented using some techniques and libraries. Details are given bellow.

e Google Colab

e MS Excel

e Python Language
1.11. Summary

The chapter is all about the introduction of the research work and we have discussed
the background of the study. Also discussed the thesis context, problem statement, work
contribution, and research questions. We have found there is a problem with the large
software system and a huge amount of testing data. For solving this problem, we need to
explore data mining techniques that can handle defects prediction in testing data. Defect
prediction manually takes too much time, cost, and human effort. We’ll handle these

problems with the help of the Association Rule Mining technique and predict the defect rules.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we have focused on the related studies and try to find out the answers
to some research questions. First, we have analyzed the factors which affect the software
testing and identified them. Further, we have explored the studies which use the different
datasets for defect prediction for getting the suitable dataset for implementation of defect

prediction. Also explored the related tool and techniques which can use for defect prediction.

2.1. Literature Review & Search Process

Search process for finding the
related research articles

Search keyword definition

Selection and rejection criteria
definition

Final selection of papers

Reading and analysis of selected
papers

Figure 2.1: Literature Review Process

To conduct effective research a strong knowledge base is required. To make a strong
knowledge base we have reviewed state of the art more than 80 research papers only most
related and latest papers are included references section. More than 90 percent of paper we
selected for the literature review are published in last 15 Years. To perform a quality
literature review we only included paper from best ranked online databases like the Springer,
Science Direct or Elsevier and only included those conference papers which are ranked and

index by Scopus.



Search Keywords (Search with both ‘AND’ / ‘OR’ relations)

Software Testing Data Analysis Software Testing Data Mining
Test Data Analysis Data Mining Association Rule
Data Mining Association Rule Software Defect Analysis

Scientific Databases (For Research Article Selection)

Research Article Publication Year (For Research Article Selection)

e 2020

Figure 2.2: Research Papers Search Process

2.2. Factors of Software Testing Defect

There are various factors influencing on the quality of the software testing, like line of
code and test cases. However, the degree to which they utilize their influence on the
effectiveness is debatable. Line of code and test cases have been the widely researched topics
in the factors influencing the effectiveness. There still could be many other factors, which

have an impact on it. This section discusses the influential factors in further detail.

Wong et al. [14] reported from their experiments that the relationship between line of
code and test cases was higher than the relationship between efficiency and size. They also
mentioned that there was no reduction in the fault detection efficiency of a test set when the
size of the test set was reduced, and the line of code kept constant. This result of their
experiment highlighted that line of code was a more important factor than size in determining
the efficiency of a test set. Furthermore, Wong et al. [15] also concluded from that the test
cases that did not add to the line of code of test set were not likely to be efficient in detecting
faults. Adding test cases could contribute to the size of the test set, but the defect detection

efficiency of the test set remained unchanged.

Work by Rothermal et al [3] stated that there could be other factors apart from line of
code and test cases., which could also have an impact on the efficiency of the test suites. A
novel idea to measure efficiency was introduced by Cai and Lyu [16]. They measured
efficiency between the variables of execution time, line of code and test cases. Their main

approach was that defect detection was related to both the time the software experiences



under testing, which was called the execution time and the fraction of code that has been
covered by testing, called as the test case. Measuring reliability by including the execution
time along with line of code proved to be more accurate than a single measure of only

according to their results.

Chen et al. [17] defined that a testing effort can be termed as effective if and only if it
either increases any coverage criteria or reveals the presence of a fault. They observed that
the reliability of a program would increase only if the number of defects were being reduced
by the addition of new test cases. Redundant test cases should be avoided, as they do not
contribute to the testing efficiency, even if they improve the test set size. Another
disadvantage of having a redundant test case was that it increased the testing effort, i.e., the
time spent to execute the test case. Chen et al. also emphasized that a test case can be
considered effective only if it is executing some uncovered part of the program and/or the test
case causes some defects to be triggered; otherwise, the test case is considered non-effective.
Other than size and line of code, a new measure of execution time can also have an impact on

the efficiency of the software testing.
2.3. Code Size Role in Defect Prediction

The role of code size on the effectiveness of an analysis has been a widely discussed
topic. Many researchers have studied the impact of increasing line of code on the efficiency

and presented their solutions. This section looks at them in detail.

Andrews et al. determined that test of a program were related to real defects that occur
in a program. It was suggested that using test case to measure line of code adequacy allows us
to find more statistically significant properties of the study. Furthermore, used test cases to
assess and compare the test line of code criteria and found that test cases can be used to
predict the presence of defects. The results obtained stated that usage of test cases to detect

defects was like what would have been obtained with actual defects [20].

Taghi & Kehan et al. indicated that size and line of code are important for assessing
test cases and there exists a non-linear relationship between these three variables of size, line
of code, and defect numbers. Apart from line of code, that has been widely researched, size is
also important factor for improving the efficiency. They concluded that both size and line of
code independently influence the efficiency of a testing, and a linear relationship exists

between logarithm of size and line of code [21].

Work by Ro thermal et al. hypothesized and concluded that line of code is an

10



important factor in analyzing analysis efficiency. Results obtained from experiments by Garg
[4] also show a strong connection between software reliability and line of code, under any
criteria. Software reliability here can be defined as the measure of successful functioning of a
software system, in a particular environment at a given time. Results from the experiment
also showed that line of code seemed to relate more to reliability than the number of faults

that were found in the program [3].

Subbarao [5] also opinioned that though the efficiency of using line of code is
debatable, the code data gives an important insight on the efficiency of the tests. Subbarao
noted that code shows what part of the source code is thoroughly executed. Subbarao also
stated that measuring line of code and ensuring the gradual increase of code in a project
would lead to development of software that would be probably free of severe bugs. Tracking

coverage has ensured high quality software to be developed.

Cai and Lyu et al. reported that code is a reasonable indicator for the capability of
defect detection on a normal test set. They also noted that the effect of line of code on defect
detection varied based on the test set. And the co-relation between line of code and efficiency
is high for exceptional test cases and weak for normal test cases. Another interesting result of
their work was that the relationship between code and defect was higher in case of structural
testing than random testing. Though not conclusive, the result moves in a direction that
functional test cases are more effective than random test cases in determining the defect

detection efficiency of a test set [6].

Hutchins et al. performed experiments to analyze whether defect detection increases
when the line of code levels of test sets is increased. Measurement of defect detection
effectiveness was done by examining the number of faulty versions of the subject programs
that were detected by the test cases. After evaluating both data flow and control flow line of
code criteria, it was concluded that both are effective adequacy measures. Adding test cases

to improve code size proved to be beneficial [2].

Similar studies were conducted by Frankl and Weiss [1] to understand the
relationship between code size and test cases. It was concluded that “error - exposing” ability
of test cases showed an increase as more test elements were covered, but the dependence in
general was non-linear.Frankl and lakounenko also stated that for the subject programs with
naturally occurring faults, the likelihood of finding the presence of a defect increased with

increasing code size levels. So, it was hypothesized that better code size of an analysis led to

11



better defect-finding efficiency [7].

2.4. Impact of Code Size on Defect Detection

The impact of code size on the detection of defects has also been of interest. There is
still an on-going debate on whether increasing code size helps in detecting more defects. This
section describes the various research works discussing code size and defect detection.

Though Lyu et al. report of no strong correlation between the total number of defects
detected in a program and the code size measure of the program, it was hypothesized that the
more thorough a program is covered during testing, the greater number of defects it can
identify [8].

Kramer et al. reasoned that many bugs would still be undetected, even if “complete”
code size were achieved, asserting that “completeness” is measured only with respect to a
given population of tests. It was noted that good testing involved trade-offs based on
thoughtful judgment, rather than just trying to achieve “complete” coverage. Instead of
improving code size to improve efficiency of a test case, Kramer debated that testing must be
prioritized in such a way that the test strategy that is most likely to find bugs must be selected
and implemented on the software program [9].

Smith and Williams et al. also asserted through their experimental results that though
code size is being used widely by researchers and developers, and sometimes even as a
stopping criterion for unit testing, the confirmation surrounding the use of code size as a
software reliability predictor is not conclusive [10].

Gomes et al. reported extra number of resources would have to be invested to achieve
100% test case. Gomes also added that the earlier a bug is found during testing, the cheaper it
is to fix it and code size is one of the best ways to detect defect in the early stage. However,
Gomes also argued that every test created is also a test that will eventually require
maintenance, and therefore suggested that it is important to choose what to test wisely.
Knowing what goals need to be achieved by accomplishing high-test code size is very
important, and Gomes suggested that if the goals could be achieved by a lesser expensive
way, it should be the best way from the business perspective [11].

Ruiz et al. also reported an experimental result in which defect software achieved
100% code size which directed towards an important conclusion that high code size does not
automatically reflect a healthy code. Only by functional testing of the application, it can be
ensured that the application works as a whole and performs correctly [12].

Glover et al. stated that a high code size percentage alone does not ensure the quality
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of the code. Code that has high impact, meant that a lot of code was exercised, though it did
not imply that the code had been exercised well. Highly covered code is not defect free,
though it was less likely to consist of defects. Glover also opinioned that test cases tools are
important and stressed that they should be used for evaluation of the quality of code and for

assessing functional testing [13].

2.5. Tools & Techniques for Defect Prediction

Zhongbin et al. proposed a method to predict the defect in testing data. They have
used NASA testing data and applied some classification techniques. First, they have
converted the imbalanced class data into multiclass labels data and provided balance data to
the defect prediction model. They have implemented four classification algorithms and six
conventional methods; they have found classification algorithms provided the best results as

compared to conventional methods [18].

Huanjing et al. focused on the feature extraction and ranking methods for defect
prediction. They have determined important features from the collected data based on
different feature ranking methods. Performed classification models on 16 different defect
prediction datasets for finding the results of the best one approach and dataset. Finally, they
found that ensemble techniques for ranking algorithms and classification algorithms shown

effective results [19].

Shuo & Xin et al. collected different imbalanced defect prediction datasets and try to
apply different ensemble techniques to balance the data. Also investigated the imbalanced
learning techniques such as Adaboost, G-mean, and others. The adaBoost algorithm shows
the best result with different training data and ensemble techniques. The authors claimed that
the selected imbalanced dataset shows 32.29% accurate defect prediction results with

ensemble class imbalance techniques [20].

Taghi & Kehan et al. identified feature selection while using two different methods
individual & repetitive feature selection. All the feature selection techniques are implemented
with six different ranking methods or algorithms including boosting, voting, and AdaBoost.
They have concluded that the repetitive feature selection technique with AdaBoost provided

effective and better accurate results [21].

Marc & Johan et al. performed the "defect prediction" while using a "support vector
machine" and they have used an ensemble "support vector machine" in the implementation.

Binary "Support Vector Machine" and ensemble support vector machine-implemented two
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classifiers for compared the results. They have used Ijennl testing data for predicting defects

based on the ensemble SVM model [22].

Issam & lahouari et al. implemented feature extraction and ensemble techniques for
predicting defects in the NASA testing data. They have found approximately 1.0 AUC scores
with the help of a weighted support vector machine classifier. The greedy forward selection

approach shows the best features as compared to the other approaches [23].

Table 2.1: Identification of Defect Prediction Techniques & Datasets

Authors Paper Publication Techniques/Metho
Testing Data
Names Reference Year ds
Multiclass  Code-
Zhongbin,
_ [18] 2012 NASA based ensemble
Xiaoyan
Learning
Huanjing,
[19] 2012 LLTS Dataset | Ensemble Learning
Taghi
AdaBoost Ensemble
Shuo & Xin [20] 2013 Mc2
learning
RUSBoost &
Taghi & Kehan | [21] 2014 Jml
AdaBoost classifiers
SVM ensemble
Marc & Johan | [22] 2014 Ijennl
method
Issam &
_ [23] 2015 NASA W-SVM Model
Lahouari
Naive Bayes &
Fernando &
) [24] 2019 NASA Association  Rule
Wikan

Mining

2.6. Other Related Studies

To conduct effective research a strong knowledge base is required. To make a strong
knowledge base we have reviewed state of the art more than 100 research papers only most
related and latest papers are included references section. We choose a well-defined selection
and rejection criterion mentioned by Kitchen Ham in [33].

More than 90 percent of paper we selected for the literature review are published after
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2015. To perform a quality literature review we only included paper from best ranked online
databases like the Springer, Science Direct or Elsevier and only included those conference
papers which are ranked and index by Scopus. A study was conducted in 2015 about the fault
prediction of different kind of software systems using the expert systems and the data mining
applications [34].

Similarly [35] conducted another research and presented the “HySOM” a software
fault detection and prediction model using the supervised learning techniques and also
applied the same techniques on the data set of NASA software systems. Correlation based
model is derived for both functional size of the software and the effort required for the
software testing process [38].

Analysis of test coverage is performed using Bisayan and correlation-based data
engineering techniques and applied them on the case study for finding the relationship
between the amount of the testing data and the effort required to find out the defects from
such a large amount of code [39].

The applications of the data engineering and process mining for finding out the
defects in different software processes using the different data mining-based software testing
techniques is shown in the [40].

In this paper we have applied the correlation and Apriori based association rule
mining technique to find out the association between the line of codes and the defects at a
data set which is contains the software testing data after applying different testing techniques.
Similar kind of the work is performed by the [41] in which he also applied the correlation and
association rule mining to find out the associations in different aspects using the software
testing data set.

Data mining is domain for mining the knowledge form huge amount of data using
different association rules here in this paper author used Apriori based association mining
technique to mine relationships and associations in testing data variables. Different degrees of
level of confidence and level of support can be used to figure out the relationships and
association rules between different variable of testing data [41].

Yang et al. in [42] talks about the effort estimation in all stages of the "software
development life cycle (SDLC)" according to the author the testing phase requires 21.57% of
effort which also requires large amount of time but use of the data mining approaches this
effort can be reduced significantly. As the process of maintenance is started the rate of
modification in the software is also increased significantly so it is very necessary to conduct

the regression testing.
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Retest a system using Regression testing also increase the cost and time to maintain or
develop the system. To make debugging easier prioritize test case in regression testing.
Authors discuss to prioritize and rank the test cases using Association Rules Mining. In this
process we save the whole history of faults which occurred during any phase of the
development. It helps to keep record which component of system contain a greater number of
faults. When we change something in system, we test these parts of system in details. Using
this approach, we prioritize the "test cases" with respect to "Average Percentage of defect
Detection (APFD)" [43].

2.7. NASA Available Datasets

We have identified different datasets available online sources and published by
NASA data bank.

Table 2.2: Identification of NASA Defect Prediction Datasets

Testing Data Observations Parameters Defect%
Mc2 161 39 32.29
Kc2 522 21 20.49
Jml1 10885 21 19.35
Kcl 2109 21 15.45
Pc4 1458 37 12.20
Pc3 1563 37 10.23
Cml 498 21 9.83
Kc3 458 39 9.38
Mwl 403 37 7.69
Pcl 1109 21 6.94
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CHAPTER 3: PROPOSED METHODOLOGY

Overall research study based on the proposed methodology. This chapter describes the

main components of the research methodology. We have proposed our research methodology

while following Correlation Analysis & Association Rule Mining technique.

3.1. Proposed Methodology

For proposing a detailed methodology, first, need to collect data from reliable sources.

After data collection requires important features for implementing the model. Model results

and analysis are also part of the methodology which will show the importance of

implemented model for defect prediction.

Our Methodology consists of following Steps.

= Testing Data Collection

= Selective Data Extraction

= Data Pre-processing

=  Model Creation and Implementation

= Results and Feedback

All of the above steps are the main components of our methodology. Figure 3.1 shows the

visual form of our proposed methodology. Further, we have discussed each step or

component in detail.
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Figure 3.1: Proposed Approach
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3.2. Testing Data Collection

We have explored the different available datasets which can use for defect prediction
in software testing. After completed the analysis and exploration, we have found a reliable
testing dataset that is suitable and related to the research study requirements. This testing
dataset collected from the "NASA Data bank ". We have collected three dataset which are all
related to the software testing data. Table 3.1 shows the complete parameters of all three-

testing dataset.

Table 3.1: Testing Data Parameters

Parameters

e loc o i ¢ locCodeAndComment
o v(g) e ¢ e Uni qop

o ev(g) e b e Total op

o iv(g) o t e Total opnd

e n e [OComment e branch Count

defects

o Vv e Codesize (loc)
o | e JOBlank e defectnumber

e d e Testcasenumber

Figure 3.2 represents the testing dataset 1 and there is a total of 10885 records and 22

parameters. All the parameters will use in the Correlation Analysis.

H 1 J 3 L M N O P a R s T u v w X Y z |
I d i e b t size comicode_size(LOC)  I0Blank test case numbelocCodeAiunigOp  unigOpndtotalOp  totalOpncbranchCotdefects number of defects
13 13 13 13 13 13| 2| 2 86233 2 1717 2 12 12 12 12 14 b'false’ 187
1 1 1 1 1] i a4l A 57413 1 2976 1 1 1 1 1 1 b'true’ 304
0.05 2031 5585 23029.1 038 1279.39 51 10 94745 8 2844 1 17 36 112 86 13 b'true' 358
0.06  17.06 254.87 74202.67 145 412237 129 29 102821 28 3855 2 17 135 329 27 5 b'true' 350
006 1719 3486 102973 02 57207 28 1 101797 6 3029 0 1 16 7 50 7 btrue' 331
0.08 1225  47.55 7135.87 019 39644 19 0 18153 5 1373 0 14 2 69 22 3 btrue’ 22
[ 0 [ 0 0 0 0 0 5707 [ 1555 0 [ 0 0 [ 17 b'true" 138
0.36 28 1211 14201 0.02 783 5 0 10006 1 1605 0 a H 9 7 1 b'true’ 113
0 0 0 0 0 0 0 0 130258 [ 5647 0 0 0 0 0 3 btrue' 650
[ 0 [ 0 0 [ 82357 [ 4524 0 [ 0 0 [ 43 b'true’ 63
0 0 0 0 0 0 0 o0 105533 0 423 0 ] 0 0 ] 19 b'true' 7
[ 0 [ 0 0 0 0 0 70617 [ 1966 0 0 0 0 0 21 b'true’ 331
0.15 687 2434 1150.68 0.06 6393 8 0 21904 2 2530 0 1 12 22 15 5 bitrue" 211
0.06  17.35 401 120673 023 67041 29 1 160606 16 4565 0 19 23 87 2 7 b'true' 549
[ 0 [ 0 0 0 0 0 106913 [ 6064 0 0 0 0 0 15 b'true' 633
[ 0 [ 0 0 0 0 0 31930 [ 1354 0 0 0 0 43 b'true’ 60
0.5 2 135 54 0.01 3 2 0 9684 6 116 0 a a 5 a 1 btrue' 50
0.01 97 99.72 9383111 322 5212839 139 92 74496 17 5127 0 32 64 1081 83 97 b'true’ 556
0.02 4095 2835 47536.38 039 264091 59 O 38483 16 354 0 7 10 167 117 15 b'true' 50
0.03 3264 5253 5596102 0.57 310835 69 0 11166 14 2139 0 26 a7 161 118 13 b'true' 150
003 3341 6194 69127.22 0.69 32404 81 13 30067 14 821 0 27 59 176 146 33 b'true' 103
| 004 2533 3663 23506.58 031 130592 34 0 41978 13 626 0 19 2 107 64 11 b'true’ 59
"% [ data_set 1 .7¥3 7 4 o SR il {i50]

Figure 3.2: Testing Dataset 1
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Figure 3.3 represents the testing dataset 2 and there is a total of 497 records and 22
parameters. All the collected parameters will participate in the Correlation Analysis, and we

will find out the most interlinked parameters.

K L M N o 3 Q R s T u v w X Y z AR AB
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35852.6 043 199181 2 15 37001 a0 3305 0 2 28 161 70 9 b'false’ 293 1055376882 7.9187049
3958, 022 55322 3 20 66103 23 355 [ 19 25 80 a0 9 b'false’ 50 0.537040679 0.7563953
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211.89 0.02  1L.77 0 0 67032 0 3719 0 7 4 3 5 1 b'false’ 347 5.548096432 5.1766321
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Figure 3.3: Testing Dataset 2

Figure 3.4 represents the testing dataset 3 and there is a total of 2108 records and 22
parameters. Again, we will find the most important and interlinked variables or parameters.

All of the interlinked parameters will use for the implementation of the Apriori algorithm.
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Figure 3.4: Testing Dataset 3

3.3. Selective Data Extraction

Next step in the proposed methodology is selective data extraction. With the help of
this component, we can get most interlinked parameters from the testing datasets. There are
24 parameters in the original dataset, and we need to know relationship or correlation
between different parameters. For this purpose, we will implement the correlation analysis

using Spearman Rank Correlation technique.
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Figure 3.5: Correlation Analysis Process

3.3.1. Spearman Rank Correlation

"Spearman Rank Correlation" is a simple correlation analysis that shows whether
there is any relationship between two variables. Pearson correlation co-efficient is "non-
parametric test" and mostly used for finding the relation between parameters or interlinked
parameters. It obtained by finding the difference between paired ranks. Based on the co-
efficient value obtained, the relationship between the two variables can be described. If the
co-efficient value obtained is 0, then the variables are independent of each other. If the co-
efficient value obtained is 1, then the variables have the presence of a strong relationship
between them. We will implement the Pearson correlation analysis between the variables.

Figure 3.5 represents the formula for "Spearman Rank Correlation" analysis.

6y d;
n(n? — 1)

P = Spearman's rank correlation coefficient

p=1

di = difference between the two ranks of each observation

M = number of observations

Figure 3.6: "Spearman Rank Correlation" formula

3.4. Data Preprocessing

Data preprocessing is the primary part of the data analysis or model implementation.
Our collected testing data contains the missing values and irrelevant data so need to clean the
data first. For this purpose, we applied some data preprocessing techniques such as remove

missing data and transforms data in the suitable format. Data mining models specially
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"Apriori algorithm can’t deal with continuous numerical value". So, need to apply clustering

algorithm to deal with the parameter's discretization.

3.4.1 Handle Missing Data

For handling missing values in the testing data, we have performed some data
preprocessing or cleaning techniques such as replace the values with average data or remove
the values. So, we have replaced the missing values with the average of that parameter. All
the data contains continuous values, so it is easy to replace with the average of the data. In
this way, there are not any missing or null values in the testing data and it’s ready for further

analysis.

3.4.2 Parameters Scaling

Parameter’s scaling is one of the data preprocessing techniques which helps to found
most suitable and important parameters. We applied parameters scaling to discover the most
related data and introduced two new variables or parameters while using most interlinked
parameters. We will discuss these related and introduced parameters in the implementation

chapter. Formulas which we used for introducing two new Parameters are:

] ] TestCaseDesigned
Test Case Density Per 100 line = 100 * ( - )
SoftwareSize
_ . NumberOfDefects
Defect Density Per 1000 line = 1000 * ( : )
SoftwareSize

3.4.3 Parameters Discretization

Processed data contains continuous numerical values, and we need to implement the
Apriori algorithm under Association Rule Mining. But there is a problem with the continuous
data. "Apriori algorithm can’t deal with a continuous numerical value". So, we need to apply
a clustering algorithm to deal with the parameter's discretization. With the help of the
clustering algorithm, we can generate groups of continuous values and assign them a specific
label. Labels can easily use in the implementation of the Apriori algorithm.
3.5. Model Creation and Implementation

Next step in the methodology is model creation and implementation. For this purpose,

we have already cleaned and transformed data into suitable format. Further, developed a data
mining framework that provides us correlation analysis and defect detection for testing data.

In the Model creation and implementation process, we have utilized testing processed
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datasets. Predicted the defect which repeated in data. Detecting the defects which repeated in
testing data, and all these defect combinations analyzed from the collected testing data.

For analyzing the association between defect, we have used "Market Basket Analysis
with the help of Association Rule Mining & Apriori algorithm". Using "Market basket
analysis", we have tried to predict defect in testing data. It will decrease cost, time and

manpower for predicting defect in the software testing.

3.5.1 Market Basket Analysis (MBA)

"Market Basket Analysis" uses a pattern of collected data. "This analysis is based on
the if-else or if-then condition". Suppose software ‘A’ has ‘T’ defect then most likely there
will be ‘D’ defect in the software testing. "Market basket analysis" is a main approach in

which we can implement association rule mining with the help of Apriori algorithm".

Defect List » Create K-items ¢———

h 4

Pruning (Find
Support) No

h 4

Freguent
Defect

Y
Yes Setof k-1

Stop B frequent
Defectis null?

Figure 3.7: "Market Basket Analysis" flow diagram
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3.5.2 Association Rule Mining Algorithm

Apriori based Association calculation algorithm is also a well-known branch of the
data engineering process sometimes it is also termed as "Market Basket Analysis". It is used
to find the relationship between various entities and items related to the supermarkets and
economic systems. In terms of data mining, we mostly use it to find out the relationships and
the associations between different items which are hard to find manually.

Association rules general formula Level of Support: Level of support is defined as
real time occurrence of X and Y at a same time. Support(X—Y) =P (X U Y) Level of
Confidence: The Likelihood of occurrence of item set X with likelihood of occurrence of

item set Y Confidence(X—Y) =P(X|Y)

» A=zzociation Rule

A

Compute Support

Data

Compute Confidence

|

Create Association

Figure 3.8: "Association Rule Mining"

Minimal level of support and minimal level of confidence A value defined the data
engineer based on his experience is known as the “Threshold Value” this value is used to
change the level of support. Some time it is also known as the “Minimum level of support”
While on the other hand another type of the threshold value which is used to change the level
of the confidence is known as the “Minimum level of confidence” It also helps us in figuring
out the variables with lowest possible relationship or association. But any association rule
will be strong most if both threshold of the level of support and the threshold of the
confidence are fulfilled.

Set of items is combination of total items is known as X set of items if it owns X no.
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of items. e.g. {xyz, abc, efg} is a set of 3 items Transaction amount of any set of items is
knows as occurrence incidence it’s also known as level of supporting.
3.6. Apriori Framework Evaluation

When our proposed framework will implement, we need to evaluate the results of the
framework. For this purpose, we have used defect rules results for evaluation and find out the
best rules based on the support level and confidence.

The result will generate the combinations of the rules or defect rules which occurred
together in multiple testing data based on the minimum threshold values. We will set
different support, confidence, and lift values and evaluate the model.

Suppose defect Y and D occurred in multiple testing data, then maybe T also occurred
with D & Y in another association rule. So, we can generate multiple defect rules with the

help of an implemented model.

3.6.1 Expected Outcomes

Expected outcomes are the rules which we want to generate from the implemented
model. If we have T & D type defects in our testing data, then we can expect output based on
the occurrence of defects together. In table 3.2, we have designed a pattern of defects that
occurred, and we have designed basket 5 which represents the question mark for the expected
output. Now it depends on the performance of the model.

Table 3.2: Expected Outcomes

Basket Defect1 Defect2 Outcomes

1 T1 D2 T3

2 T2 D1 D4

3 T3 T1 D2

4 T4 D4 T2

5 T5 D5 ? [D1 is expected]

In the above table, we can see a combination of the defect which occurred together.
Based on the occurrence of these defect combinations, we can expect the output for the 5
number series. If our implemented model provides our results according to our expectations
then we can say, the model provided accurate results otherwise model results will not

acceptable.
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3.6.2 Evaluate Support & Confidence

"Apriori algorithm" based model can evaluate with the help of support level,
confidence, and lift. We have different formulas for calculating these values. But in starting
the model, we need to assign minimum support, confidence, and lift values. Association
Rules are generated based on the minimum values of these formulas. We can find support,

confidence, and lift as:

S _ frq(X,Y)
upport = ———
N
frqX,Y)
Confidence = —————
4 Frac®)
Support
Lift = PP

Supp(X) X Supp(Y)

3.7. Summary

This chapter discussed the detailed methodology of the framework or model which we
have proposed for conducting our research study. We have collected data from the NASA
data bank and this dataset can be used for testing defect prediction. Further, we’ll use
Spearman Rank Correlation Analysis for finding the most important or interlinked parameters
from testing data. Also, we need to introduce two new parameters which can use for defect
prediction in the Apriori algorithm. We’ll use the discretization technique to handle the
continuous data and assigned the data group a specific label. In the end, we’ll apply the

Apriori algorithm on the collected labels and find out the association between defects.
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CHAPTER 4: MODEL IMPLEMENTATION

Model Implementation follows the methodology of this research and we have
discussed all the implementation process in detail in this chapter. Based on the methodology,
we have collected testing data first and then processed the data according to our model
implementation requirements. We have implemented the Apriori algorithm with the help of
Association Rule Mining, so we need to process data that can use as an input for the model.
Figure 4.1 shows the complete process of the implementation, and we can see in this figure
there is correlation analysis after data collection. Correlation Analysis provided us very
important parameters from collected data that are interlinked and have a positive strong

relationship between them.

: _ | Correlation
Testing > Analysis
Data
Calculate
Extracted Parameters —— p New
Parameters
Discretize
-— <
Barnaters Processed Parameters
Apriori
_— - e
Groups Algorithm Rules Results

Figure 4.1: Implementation process of Model

After finding important parameters from the collected testing data, we need to find
any other variables which can be calculated from extracted parameters. So, we introduced
two new parameters while using different formulas which we have discussed in the
methodology chapter. After processing the data, we have found five parameters that can use

for the model implementation. All of these parameters include the continuous values, and the
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Apriori algorithm can’t deal with the continuous values. So, we have converted these
continuous values in the form of groups and assigned them specific labels with the help of the
clustering (grouping) technique. Further applied Apriori algorithm on the preprocessed &

transformed data and generated the defect rules based on the support and confidence values.

4.1. Python Required Packages

We have implemented our proposed framework in python language, and we need to
import some packages which are required for the implementation. Figure 4.2 shows the
screen shot of the python code and we have imported pandas, matplotlib, numpy, apriori, and

google.colab packages.

~ Importing Necessary libraries

° import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from apyori import apriori
from google.colab import files

Figure 4.2: Required Packages

Panda’s package is required for reading datasets and dealing with data frames. It also
can use for data manipulation and transformation. It means it participated in the data
preprocessing. Import NumPy package which can handle mathematics calculations, array,
and matrix interpretation. Matplotlib package required for the result visualization, we have
plotted correlation bar & stem plots with the help of this package. Further, import the apriori
package under apyori library and is used for the association rule mining. Google.colab library

used for importing files from google and we can also attach file from the local system.

4.2. Import Testing Data

The next step of the implementation is importing testing data and we have three
datasets in the testing data. So, imported all the datasets while using google.colab and pandas
packages. Figure 4.3 shows the implementation of importing testing data in the google colab
environment. There are 24 parameters in the dataset, and we need to explore the important
parameters from the data. So, further, we have implemented correlation analysis for dealing

with all parameters.
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[ ] from google.colab import files
uploaded = files.upload()

No file chosen Upload widget is only available when the cell has been executed in the current browser session.
Saving cml_new.csv to cml_new.csv

Printing Paraneters in Dataset

[ ] data = pd.read_csv('./cml_new.csv')
print( 'Available columns are : ', data.columns )

Available columns are : Index(['Unnamed: @', 'loc', 'v(g)', 'ev(g)', 'iv(g)', 'n', 'v', '1', 'd', 'i’',
'e', 'b', 't', 'size(KB)', 'commentRate', 'code_size(LOC)', 'lOBlank’,
'test_case_number', 'locCodeAndComment’, ‘uniqOp®, ‘unigOpnd',
‘totalOp’, 'totalOpnd', 'branchCount', 'defects', 'number_of_defects'],
dtype='object')

Figure 4.3: Testing data implementation

4.3. Parameters Extraction Implementation

In the original data, there are 24 parameters and Correlation based techniques are used
to find out the relationships between the different features of the data. It shows the positive
results if the selected features have directly proportional relationship and shows the negative
results vice versa. There are the two types of the correlations (a) Spearman Correlation (b)
Pearson Correlation. The Pearson method can be applied only when the data satisfies the
normal distribution. But sometimes data may not be in normal distributions. Similarly, in this
case data don’t follows the normal distribution curve. That’s why we applied the Spearman

Rank Correlation to find out the relationship between the required features.

4.3.1. Spearman Rank Correlation

~ Spearman Correlation

[ 1 colCorr = data.corr( method = ‘'spearman’ )

~ Stem Plot Creation and Saving

° columnNames = colCorr.columns
for col in columnNames :

plt.figure(figsize = (12,7))
plt.stem(colCorr[col])
plt.plot(9.42%np.ones((len(columnNames),1)), 'g--")
plt.plot(-©.42%np.ones((len(columnNames),1)), 'g--")
plt.title(col)
plt.xlabel('Variables')
plt.ylabel('Cross-Correlation')
plt.xticks(np.arange(len(columnNames)),columnNames, rotation = 28)
plt.savefig(col + '_stem.png')
plt.show()

Figure 4.4: Correlation Analysis Implementation
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Spearman correlation analysis was implemented because it is most suitable according
to our testing data. Used corr (method = ‘spearman’) function in python language for finding
a correlation between parameters. And we have found, three parameters have a positive

strong relationship between them.
4.3.2. Interlinked Parameters

The correlation analysis shows that some part of software information Test Data is
useless and need to wipe off.
Qualified Parameters are given below
e Software Size (LOC)
e Number of Test Case Designed
e Number of Defects
All the above parameters show a positive and strong correlation, so that’s why we have
selected these three parameters for further implementation.
4.4. Data Cleaning & Transformation
The next step is the data cleaning & transformation after parameters extraction. In the
implementation of data cleaning, we have replaced all the missing values with the average or
mean of the data. Further, In the data transformation, we have introduced two new variables

while performing calculations on three extracted parameters.

+ Transformation of Data

[ 1 import pandas as pd
df = pd.read_csv('./cml_new.csv')
df_focus = df[df.columns[-2:]]
df_focus = df_focus.rename(columns = {df_focus.columns[@]: 'Test_Case',
df_focus.columns[1]: 'Defects_Density'}, inplace = False)

[ ] df_focus.head()

Figure 4.5: Data Transformation Implementation

Figure 4.5 shows the implementation of the data transformation, we can see there are
two new variables test case and Defects denisty which we have formulated from the
extracted parameters. We have performed calculations in the Excel data file and show

parameters in the python environment.
4.4.1. Introducing Two New Parameters

Figure 4.6 shows the two new parameters which we have calculated. Test Case

Density Per 100-line parameter calculated from total case designed and software size
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parameters. Defect Density Per 1000-line parameter calculated from number of defects and
software size parameters. Formulas are discussed in the methodology chapter and these two

new parameters are also used for the implementation of the Apriori algorithm.
[ 1 import pandas as pd
df = pd.read_csv('./cml_new.csv')

df_focus = df[df.cclumns[-2:]]
df_focus.head()

Test Case Density Per 100 line Defect Density per 1000 line

0 3.053473 4.147926
1 3.082180 3.759621
2 4.074258 5.114469
3 18.936895 22.008327
4 4.686373 5.991247

Figure 4.6: Data Transformation Implementation

4.5. Discretization of Processed Parameters

After processed the parameters, we have found five important parameters including
two new parameters. Further, need to implement the Apriori algorithm testing data all
selected paraments consist of the continuous numeric values. Apriori algorithm can’t deal
with a continuous numerical value. The clustering algorithm is applied to deal with the
parameter's discretization.

~ Test Case Density Per 100 line Clustriing

[ 1 # df_focus.Test_Case.astype('string')
datacopy.Test_Case[ ( df_focus.Test_Case.astype(float) < 3 ) & ( df_focus.Test_Case.astype(fleat) >= @ ) ] = 'v1"
datacopy.Test_Case[ ( df_focus.Test_Case.astype(float) < 9 ) & ( df_focus.Test_Case.astype(float) >= 3 ) ] =
datacopy.Test [ ( df_focus.Test_Case.astype(float) < 14 ) & ( df_focus.Test_Case.astype(float) »>=9 ) ] = 'Y3"'
datacopy.Test_Case[ ( df focus.Test_Case.astype(float) < 20 ) & ( df_focus.Test_Case.astype(float) >= 14 ) ] = 'v4'
datacopy.Test_Case[ ( df_focus.Test_Case.astype(float) >= 20 ) ] = 'Y5"

Case

~ Defect Density Per 1000 line Clustring

[ 1 # df_focus.Test_Case.astype('string')
datacopy.Defects_Density[ ( df_focus.Defects_Density.astype(float) < il
datacopy.Defects_Density[ df_focus.Defects_Density.astype(float) < 6 ) & ( df_focus.Defects_Density.astype(float) >= 1 Q"
datacopy.Defects_Density[ df_focus.Defects_Density.astype(float) < 18 ) & ( df_focus.Defects_Density.astype(float) >= 6 ) ] = 'Q3'
2 8 o <
<

i 3 ) & ( df_focus.Defects_Density.astype(float) >= 8 ) = 'Q1'
ol ( =3 ) ]=
i (

datacopy.Defects_Density[ ( df_focus.Defects_Density.astype(float) < 16 ) & ( df_focus.Defects_Density.astype(float) >= 18 ) ] Q4
A (
o (

datacopy.Defects_Density[ ( df_focus.Defects_Density.astype(float) < 38 ) & ( df_focus.Defects_Density.astype(float) >= 16 ) ] fp5.

datacopy.Defects_Density[ df_focus.Defects_Density.astype(float) >= 38 ) ] = 'Q5'

Figure 4.7: Discretization Implementation

Figure 4.7 shows, how we have implemented the discretization while using the
clustering technique. For both new parameters, we have implemented clusters or groups. For

example, from 0 to <3 values for test case density parameter we have made a group or
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cluster. From >=3 to <6 values for test case density parameter we have made another group
or cluster. There is another cluster which convers from >=6 to <10 values for test case density
parameter. Same clustering technique applied for the second parameter which is defect

density per 10000 lines.
4.5.1. Labels Discretized Data

We need to assign labels to each cluster of the data, for this purpose we have defined
two types of labels. Y series labels and Q series labels assigned one label to every cluster. For
instance, Y1 assigned from 0 to <3 values for test case density parameter. Y2 assigned from
>=3 to <9 values for test case density parameter. Y3 assigned to another cluster which covers
from >=9 to <14 values for test case density parameter. Y4 assigned to cluster which covers
from >=14 to <20 values for test case density parameter.

[ 1 3abelsi= [ "¥1', "v2', "¥3', Y&, “Y5' ]
labels2 = [ 'Q1', 'Q2', 'Q3', 'Q4', 'Q5' ]
for label in labelsl:

temp = datacopy[ datacopy.Test_Case == label ]
print( np.array(np.unique(temp, return_counts=True)).T )

Figure 4.8: Labels Implementation

Q series labels assigned one label to every cluster of the defect density per 1000-line
parameter. For instance, Q1 assigned from 0 to <3 values for defect density parameter. Q2
assigned from >=3 to <6 values for defect density parameter. Q3 assigned to another cluster
which covers from >=6 to <10 values for defect density parameter. Q4 assigned to cluster

which covers from >=10 to <16 values for defect density parameter.

4.5.2. Occurrence of Variables

[ 1 np.array(np.unique(datacopy, return_counts=True)).T

array([['Q1", 115],
['Q2", 218],
['Q3", 89],
['Q4", 38],
['Q5", 38],
['Yl', 159],
[¥2Y, 261],
[*¥3™; 357
[¥4 5 22];
['Y5', 21]], dtype=object)

Figure 4.9: Variables Occurrence
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After assigning labels to each group or cluster of values, we have checked the
occurrence of the labels or variables in the complete testing data. In figure 4.9, we can see
there are 115 observations in the data which have a Q1 label. In the same way, there are 218
records or observations with Q2 labels or variables. All the Q labels represent the defect
density parameter values, and all the Y labels represent the test case density parameter values.
4.6. Implementation of Apriori Algorithm Based Model

Last but not the least, implementation of the Apriori algorithm under the Association
Rule Mining technique. Apriori algorithm needs input data for finding the rules between
defects and all the labels or variables represent defects in the testing data. Figure 4.10 shows
the flow diagram of the model implementation. Model required input labels and applied the
Apriori algorithm for finding the supports values. After checking the supports condition, the

model decided association whether an association is strong or weak between defects.

7 Apriori Algorithm ?
( Start )—i Input — Ifnplemeitation —i Supporting Levels/
i
End ‘_/Strongﬂssociatiom ; —/ Su?g.)ort%ng
: —__Condition Check
‘H-“ﬁ-\.

i

Figure 4.10: Model Flow Diagram

4.5.1. Apriori Algorithm Implementation

"Apriori Algorithm" implementation can be done with the help of apyori library in the
python language. Apyori library provided us Apriori package and can be imported while
using "from apyori import apriori". We have set support, lift, and confidence values in the
implementation and find out the defect’s rules based on the different values. Apriori function
is available under the Apyori library, and we have used it with different parameters such as
min_support, min_confidence, min_lift, and min_length. From this function, we have
collected a list of defect rules and assign them to the association_results variable. Figure 4.11
shows the implementation of the Apriori algorithm with different values of support,

confidence, lift, and length.
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° from apyori import apriori
support = 8.25
lift = @
a_length = 2
confidence = 8.5
# association_rules = apriori(datacopy.values)
association_rules = apriori(datacopy.values, min_support=support,
min_confidence=confidence, min_lift=1ift, min_length=a_length)
association_results = list(association_rules)
for item in association_results:
# first index of the inner list
# Contains base item and add item
print(item)

Figure 4.11: Implementation of Apriori Algorithm

We have used for loop to display the results of the association between defects. The
list function is used for generating a list of the rules because the Apriori function returns the
rules, not in the list form. So, we need to represent in a suitable form that’s why we have
implemented the list for the association rules.
4.7. Defect Rules Evaluation

Further, we need to evaluate the results or defect rules which we have found from the
Apriori algorithm under the association rule mining technique. We have evaluated rules
based on the different values of minimum confidence, minimum support, and minimum lift
values. All of the values provided us different defect rules and based on the different defect

rules we have decided which one is the best defect rule.
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CHAPTER 5: MODEL RESULTS & VISUALIZATION

In this chapter, we have discussed model results in detail. We have used different data
pre-processing, parameters extraction, and Apriori algorithm implementation techniques.
Apriori algorithm implemented under Association Rule Mining technique, and we have used

different values of support, confidence, and lift for evaluation of the results.

5.1. Parameters Extraction Result
We have found three important and interlinked parameters form parameters

extraction. Correlation analysis shows that some part of software information Test Data is

useless and need to wipe off.
5.1.1. Dataset 1 Important Parameters Result

First, we have performed the correlation analysis for the first dataset. From this
dataset, we have found the above three discussed parameters and these parameters show a

positive and strong relationship for the first dataset.
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Figure 5.1: Correlation Analysis of Dataset 1

Parameter’s software size, the number of test cases design, and the number of defects
is the important parameters because these three parameters show a strong and positive
correlation between them. That’s why we have selected these three parameters.

Table 5.1: Correlation Analysis Results (Dataset 1)

Software Size Number of Test Case Number of Defects

Designed

Software Size 1 0.57 0.668
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Number of test 0.57 0.91

case designed

Number of 0.668 0.91

defects

Table 5.1 represents Software size and number of test case designed show 0.57
correlation value and Software size and number of defects show 0.668 correlation value.

Number of test case designed, and number of defects show 0.91 correlation value.
5.1.2. Dataset 2 Important Parameters Result

After first dataset, we have performed the correlation analysis for the second dataset.
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Figure 5.2: Correlation Analysis of Dataset 2

Figure 5.2 shows the Parameter’s software size, the number of test cases design, and
the number of defects is the important parameters because these three parameters show a
strong and positive correlation between them. That’s why we have selected these three
parameters.

Table 5.2: Correlation Analysis Results (Dataset 2)

Software Size Number of Test Case Number of Defects

Designed

Software Size 0.57 0.634

Number of test 0.57 0.90

case designed
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Number of 0.634 0.90 1
defects

Table 5.2 represents Software size and number of test case designed show 0.57
correlation value and Software size and number of defects show 0.634 correlation value.

Number of test case designed, and number of defects show 0.90 correlation value.
5.1.3. Extracted Parameters Visualization Dataset 1

This section shows the visualization of extracted parameters from the correlation
analysis. Figure 5.3 shows Code size correlation stem visualization, it has a strong and
positive relationship with test cases and the number of defects. We have set a correlation

criterion which is 0.45, all the above values of 0.45 are all positively correlated.

codeSize

08

0.6

04

0.2

Cross-Correlation

0.0 o900 o B o o o o o—1 >0 oo

nnamed: 0
JComment -
codeSize 4
1seNumber
dComment -
uniq
uniq_Opnd
total_Opnd
anchCount
ctNumber

Figure 5.3: CodeSize Parameter Correlation Result (Data 1)

Next, there is a visualization of the second most important parameter. Figure 5.4
shows test case number correlation analysis stem visualization, it shows a positive and strong
relationship with code size and the number of defects. Because these two parameters have a

correlation value above 0.45.
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Figure 5.4: TestCaseNumber Parameter Correlation Result (Data 1)

Further, there is a visualization of the third interlinked parameter which is number of
defects. Figure 5.5 represents number of defects correlation stem visualization; it shows a
positive and strong correlation with code size and number of test cases. Because these two

parameters have a correlation value above 0.45.
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Figure 5.5: DefectNumber Parameter Correlation Result (Data 1)
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5.1.4. Extracted Parameters Visualization Dataset 2

In this section, we have visualized correlation analysis for the second selected testing
dataset. We have extracted the same parameters from the second testing data with the help of
correlation analysis. Figure 5.6 shows Code size correlation stem visualization, it has a strong
and positive relationship with test cases and the number of defects. Same as the first dataset

correlation analysis, we have used a minimum positive correlation value is 0.45.
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Figure 5.6: CodeSize Parameter Correlation Result (Data 2)
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Next, there is a visualization of the second most important parameter. Figure 5.7
shows test case number correlation analysis stem visualization, it shows a positive and strong

relationship with code size and the number of defects.
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Figure 5.8: DefectNumber Parameter Correlation Result (Data 2)

Further, there is a visualization of the third interlinked parameter which is number of
defects. Figure 5.8 represents number of defects correlation stem visualization; it shows a
positive and strong correlation with code size and number of test cases.

5.2. New Parameters Results

After finding a correlation between parameters, we have found there are only three
parameters that show the positive and strong relationship between them. Spearman
Correlation Analysis excluded 19 variables because there were 22 variables in each dataset.
From all datasets, we have found only three parameters that have an impact on the defect
prediction in testing data.

For defect prediction, we need to calculate two new parameters based on the line of
code. We have calculated two parameters, one with 100 lines of code and the second with
1000 lines of code. These two variables or parameters can use for predicting the defects in
testing data. We have used formulas for calculating these two parameters and named these as

Test Case Density Per 100 lines, and Defect Density Per 1000 lines.
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Figure 5.9: Two News Parameters

Figure 5.9 shows the results of the Two new parameters, the last two columns AA and
AB in the excel data represent them. After calculating two parameters, there were five
Parameters that can participate in the defect prediction using Apriori Algorithm. All of the
variables or parameters depend on the continuous values. So, we have performed
discretization to normalize the values. We have used clustering and assign labels to each
group of values.
5.3. Discretization Results

To normalize or discretize the values of the parameters, we have applied the

clustering technique to generate a group of values.
5.3.1. Test Case Density Per 100 Lines Parameter

In table 5.3, we can see there are five groups of value for one hundred lines. Further,
we have assigned labels to each cluster or group such as Y1, Y2, Y3, Y4, and Y5. All of
these defect labels and we have used them in the Apriori Algorithm for predicting defect
rules.

Table 5.3: Test Case Density Per 100 lines

Sr Scope (one hundred line) Scope Label

1 [0,3] Y1

2 (3.9] Y2

3 (9,14] Y3

4 (14,20] Y4

5 (20, ] Y5
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From 0 to 3 values there is Y1 type defect, from 3 to 9 values there is Y2 type defect,
from 9 to 14 values there is Y3 type defect, from 14 to 20 values there is Y4 type defect, and
from 20 to oo there is Y5 type defect in testing data. All these defect ranges assigned to the

Test Case Density Per 100 lines parameter.
5.3.2. Defect Density Per 1000 Lines Parameter

In table 5.4, we can see there are five groups of value for one thousand lines. We have
assigned labels to each cluster or group such as Q1, Q2, Q3, Q4, Q5, and Q6. All these defect
labels and we have used them in the Apriori Algorithm for predicting defect rules.

Table 5.4: Defect Density Per 1000 lines

Sr Scope (one Thousand line) Scope Label
1 [0,3] Ql
2 (3.6] Q2
3 (6,10] Q3
4 (10,16] Q4
5 (16,30] Q5
6 (30, o] Q6

From 0 to 3 values there is Q1 type defect, from 3 to 6 values there is Q2 type defect,
from 6 to 10 values there is Q3 type defect, from 10 to 16 values there is Q4 type defect, from
16 to 30 values there is Q5 type defect, and from 30 to oo there is Q6 type defect in testing
data. All these defect ranges assigned to the Defect Density Per 1000 lines parameter.

5.4. Association Rules Analysis Results

First, test case density is calculated and then we check the level of support for the

different orders sets. As displayed in the following table number 5.5.
Table 5.5: Test Case Density Supporting Level

Sr Order set Supporting Level
1 Y1 0.354213

2 Y2 0.461389

3 Y3 0.02838

4 Y4 0.066834
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Figure 5.10: Test Case Density Support Level

The level of support of Y1 and Y2 greater than the threshold value, so we can say the
most recurrent items in the given sets are Y1 and Y2. After finding the density ratios we
figured out the most common set of items in the following table 5.6 using the items of test
case set and defect sets.

Table 5.6: Supporting Level of Item sets

Sr Set of Items Supporting Level
1 Y1, Ql 0.26293
2 Y1, Q2 0.065812
3 Y1, Q3 0.024274
4 Y1, Q4 0.001325
5 X105 0.001325
6 Y1, Q6 0.0

7 Y2, Ql 0.272670
8 Y2, Q2 0.247863
9 Y2,Q3 0.055556
10 Y2, Q4 0.014530
11 Y2, Q5 0.0

12 Y2, Q6 0.004017
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The most common set of items are trimmed and checked with threshold level of ten

9

¥2,Q2 Y2,Q3 Y2,04 Y2,Q5 Y2,Q6

10 11 12

percent. And the threshold for the level of confidence is set as thirty five percent. The then

the level of confidence is figured out for both Y1 and Y2.

All of them are greater than the thirty five percent. After performing all above

extensive calculations the final association and relationships are shown in the following table

number 5.7.
Table 5.7: Supporting Level & Confidence of Item sets
Sr Ttem set Supporting Level Confidence Level
0.251282/0.364103
1 Y1,Ql 0.251282
=0.6901
0.194872/0.451282
2 Y2,Ql1 0.194872
=0.4318
0.158974/0.451282
3 Y2,Q2 0.158974
=0.3523
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CHAPTER 6: CONCLUSION AND FUTURE WORK

This chapter is about the discussion of the complete research study in the form of a
conclusion and a discussion of the future work. We can improve this research study and

results while using different approaches and techniques in the future.

6.1. Conclusion

In common words as we all know the software testing is one of the most important
phases of the software development life cycle which helps in reducing the number of defects
and increasing the quality of the software.

In this research study, we used Data Mining (DM) techniques to predict defects from
the software testing data. With the help of data mining techniques, we can improve the
reliability and quality of the software. First, we have identified some available software
testing datasets and selected data based on the parameters and requirements of the research
study. For this purpose, we have explored related studies in the Literature Review (LR) and
identified some defect prediction datasets & techniques. Based on the literature review, we
have found different defect prediction techniques and chose the best one for designing and
implementing research methodology.

We first applied the Spearman Rank Correlation to figure out the relevant features
then we applied the Apriori based association rule mining technique to generate the
associations among these variables. Only those parameters are used which effects most the
quality of the software. ie size of the software (“Software Size-KBs”), time for the starting of
testing of the software (“Start Time”), the language (“Language”) in which it is being
developed, and the total number of the test cases (“No of Test Cases”) and etc.

The association algorithm cannot be applied at the continuous data, so we calculated
the density functions with respect to size of the software. Then we used iterative Apriori
technique to find the associations between these density functions. At last, after finding the
associations we analyzed that the number of the test cases applied and the size of the software
the two most associated variables with the number of defects in the software product.

In last, we have found different association rules for defects of testing data. All the
defect rules were examined were based on the support level, confidence, and lift values. We
have implemented an Apriori algorithm with different values of support level, confidence,
and lift. Based on the values, we have found different scores and different defect rules. Y1,
QI rule, Y2, Q2 rule, and Y2, QI rule show the best support level and confidence as

compared to other results.
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6.2. Future Work

Based on the research study, we have found some important defect rules and we can

improve our study in the future.

e Inclusion of more features for proper effort estimation of the test cases

creation

e Use of more advanced feature selection and machine learning techniques to

conduct a more rigid analysis

e Improved data set collections
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