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Abstract

We consider the problem of modeling and simulation of large-scale gas distribu-

tion network. In general, a gas distribution network is described by the pressure at

the nodes and flow through branches of the network. There are different elements

in the gas network that include pipes, valves, resistors, compressors, preheaters and

coolers. The flow through these elements can be mathematically modeled by differ-

ential as well as algebraic equations. The complete model of the network becomes a

system of nonlinear Differential Algebraic Equations (DAEs) also called descriptor

systems. Often these systems are represented by large scale models in order to get

more and accurate details of the system. Simulation of such large scale models is

computationally expensive and prohibitive. An alternate option is to reduce the

model mathematically such that the response of reduced and actual model is almost

comparable. The reduced model is then used for simulation or control instead of

the original large-scale model. In this thesis our focus is on model reduction of

nonlinear DAEs. Existing model reduction techniques are not directly applicable to

nonlinear DAEs as they are unable to retain the structure of DAEs. This may result

in unbounded approximation error. We proposed a new model reduction framework

for some special linear and nonlinear DAEs that ensure the structure of original sys-

tem. For our numerical results we used Proper Orthogonal Decomposition (POD)

in the existing framework and in the proposed settings to compare the results. It is

observed that the proposed method gives 10% to 15% better relative approximation

error as compared to the direct use of standard reduction method and also retain

the original structure of the model representing the gas distribution network.



Chapter 1

Introduction

Modeling and simulation is a large and diverse discipline used for providing solutions

to complex problems encountered in almost every field of science and technology.

Modeling is the mathematical representation of the system and simulation is the

solution obtained through the model. Often large scale models are used for system

representation in order to get more and accurate details of the system. Simulation

of such large scale models is computationally expensive and prohibitive. An alter-

nate option is to reduce the model mathematically such that the response of the

reduced and actual model is almost comparable. The reduced model is then used

for simulation to predict the behavior of the actual system. The complete scenario

in the form of block diagram is shown for the application of gas distribution network

in figure 1.1.
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Figure 1.1: Block Diagram

In this thesis our focus is to observe the modeling and simulation of gas distri-

bution network. Gas network simulation becomes challenging as the size of network

increases. An important part of gas network is the gas pipe used for transportaion.

The dynamics of flow through the pipe can be modeled by using Isothermal eu-

ler equations as discussed in [4], [1], [6]. Flow through pipe is nonlinear and its

representation involves differential equations that are obtained after discretization.

Another component is gas valve that can be modeled by a simple switch with two

states, on and off, as expressed in [2]. Its representation is an algebraic equation.

Similarly there are other components and the overall gas distribution network is in

the form of differential algebraic equations (DAEs).
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1.1 Mathematical Formulation

The complete model of the gas distribution network involves nonlinear differential

as well as algebraic equations. In this section, we will discuss state space modeling

for nonlinear DAEs and the problem of model reduction for such systems.

(Nonlinear State Space Model) :


Eẋ(t) = f(x(t)) + bu(t)

y(t) = cTx(t)

(1.1)

Where f : Rn → Rn is nonlinear state evolution function and b, c ∈ Rn denote

the input and output vector, respectively. x(t), u(t), y(t) ∈ Rn are called the state,

input and output of the system, respectively. In case of linear system, f(x(t)) can

be replaced with Ax(t), where A ∈ Rn×n. While in case of quadratic system, f(x(t))

can be replaced with Ax(t) +H(x⊗ x), where H ∈ Rn×n2
and (x⊗ x) ∈ Rn2×1.

If n is of large size, it can be reduced to form a reduced nonlinear state space model

as given below

(Reduced Nonlinear State Space Model) :


˙̃x(t) = f̃(x̃(t)) + b̃u(t)

ỹ = c̃T x̃(t)

(1.2)

With f̃ : Rr → Rr, b̃, c̃ ∈ Rr and r � n.

1.2 Problem Statement

Mathematical models for a gas distribution network are in general large and in the

form of nonlinear DAEs. Simulation of large scale non-linear DAEs is complex.

To resolve this issue, model order reduction is often used. Model order reduction

of nonlinear Ordinary Differential Equations (ODEs) is well known, and different

techniques have been proposed in the literature [15]. However, for reduction of
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DAEs, there are still many open problems and it requires further research. Since

gas distribution networks are represented by nonlinear DAEs, the problem is how

to reduce the nonlinear DAEs for modeling of gas distribution network, such that

the behavior of original system and reduced system is approximately same.

1.3 Motivation

Model order reduction is an important computational tool for efficient simulation

as well as control of different large scale dynamical systems. Efficient simulation of

large scale systems improves computational cost and can identify real-time response

of the system.

1.4 Objectives

• Model reduction technique (POD) will be used for reduction of nonlinear

DAEs.

• Nonlinear DAEs can been transformed to an equivalent system that has a

nonlinear ODE part and nonlinear polynomial part before using the reduction

technique.

• The reduction technique will be used only on the ODE part to obtain a reduced

nonlinear ODE and the polynomial part will be retained in the reduced system.

• This new approach of reduction for nonlinear DAEs will ensure the structure

of DAEs in the reduced system.

• Comparison of indirect approach which involves split of DAEs with the direct

approach.

4



1.5 Outline

The remainder of the thesis is organized as follows: In Chapter 2 we discuss the dis-

cretization of Partial Differential Equations (PDEs) and POD techniques for model

reduction of some standard systems. In Chapter 3, first we have discussed our gas

distribution network application along with its mathematical modeling, secondly we

have discussed the model reduction of nonlinear DAEs by indirect method. Chap-

ter 4 is about numerical results, where we implemented POD and POD-DEIM on

non-linear RC-circuit, POD on burger’s equation and POD on structured bilinear

descriptor syetem. Chapter 5 draws conclusion and tells about future works.

5



Chapter 2

Reduction Technique

This chapter is organized in the following manners:We have discussed about the

nonlinear systems and model reduction techniques (POD and DEIM) for reducing

those nonlinear systems. Secondly we have discussed about discretization of flow

problems from PDEs to ODEs.

2.1 Model order reduction

There are different model reduction techniques. Here we will discuss a few of them.

Main purpose behind the model order reduction techniques is to obtain computa-

tionally efficient simulation of large-scale system.

Many methods for model reduction of linear system are available in literature such

as moment-matching method [28], balanced truncation [27] and iterative rational

Krylov method [29]. However many system applications like gas distribution net-

work, electrical circuits and water networks have nonlinearities and are described

by nonlinear differential algebraic equations (DAEs). There are not many methods

for model reduction of such nonlinear systems. However for nonlinear ODEs proper

orthogonal decomposition (POD) [8] is well used and is extensively discussed in the

next section.

6



2.2 Proper orthogonal decomposition

POD is a well known method of model reduction. This technique uses empirical

data and is used for computing the optimal approximating subspace for the data.

In this technique reduced model can be obtained by projecting the dynamics of the

original model to that subspace . This is computationally efficient model reduction

technique and is used to reduce nonlinear systems [30, 31].

An algorithm for POD along with explanation of each step is given below .

7



Algorithm 1: Proper Orthogonal Decomposition

1 INPUT: Original nonlinear system

2 OUTPUT: Reduced System

1: Solve the original non-linear system at some time samples to get the snapshots.

X = (x(t1), x(t2), .............x(tm))

Where x(t) ∈ Rn×1 which is a state space vector computed for m time intervals

resulting in a matrix of snapshots X ∈ Rn×m

2: Get the POD vectors of rank r from Singular value decomposition (SVD) of X.

X = UrSrV
T
r

SVD will be done for X, that will generate U ∈ Rn×n, S ∈ Rn×m and

V ∈ Rm×m. Since we require POD vectors of rank r from the SVD of X, so

U, S and V will be transformed to Ur ∈ Rn×r, Sr ∈ Rr×r and Vr ∈ Rm×r

3: Use projection basis Ur = (ũ1, ũ2, ...ũr) to get ROM.

UT
r E

dz(t)

dt
= UT

r f(Urz(t)) + UT
r Bu(t)

State space vector x(t) is transformed to low dimension state space vector

z(t) ∈ Rr×1 , by projecting vector z(t) onto the plane Ur ∈ Rm×r gives us

x(t) = Urz(t).

MATLAB code for this algorithm is given in Appendix A.

2.3 Discrete empirical interpolation method

Considering the algoritm for POD given in section 2.2, where the output is reduced

but nonlinear function f(Uqz(t)) is not reduced. It still has to be computed on the

8



original state space Rn and as a result simulation becomes time taking. To catter

this issue, there exists different methods like missing point estimation (MPE)[23],

emperical interpolation method (EIM) [24], best point interpolation method (BPIM)

[26] and DEIM [10].

Here we will discuss DEIM, where nonlinear function f(Urz(t)) is projected onto a

subspace with dimensions Rr and r � n, this approximates the subspace spanned

by the snapshots of the nonlinear function [10].

Ud = [u1, · · · , um] ∈ Rn×m and P = [eϕ1 , eϕ2 , ....eϕl
]n ∈ Rn×m with m interpola-

tion indices {ϕ1, ϕ2, ...ϕm}, being the output of DEIM algorithm will be used for

interpolation approximation of original function as follow.

PDEIM = Ud(P
TUd)

−1P T

The problem is that how to compute the Ud and how to specify the indices ϕi. The

solution to this problem requires the computation of a basis matrix Uf that is :

1. Collect the snapshots of f(x(t)) into a matrix F = (f(x(t1)), ..., f(x(tm)))

Solving f(x(t)) for [t1, ....tm] will give us a matrix of snapshots of f(x((t)).

2. Apply SVD to F : F = UfS(Vf )
T

3. Uf = (uF1 , ...u
F
l ) are projection basis of rank l.

DEIM approximation is uniquely determined by these projection basis Uf . Algo-

rithm for DEIM is given below.

9



Algorithm 2: Discrete Empirical Interpolation Method

1 INPUT: POD Basis Uf = (uF1 , u
F
2 , ....u

F
l )

2 OUTPUT: ϕ = [ϕ1, ϕ2, · · · , ϕm] ∈ Rm

1: [|ρ|, ϕ1] = max[|uF1 |]

2: Ud = [uF1 ], P = [eϕ1 ] , −→ϕ = [ϕ1]

3: for l = 2 to m do

4: solve (P TUd)c = P Tul for c

5: r = ul − Udc

6: [|ρ|, ϕl] = max[|r|]

7: Ud ← [Ud u
F
l ],P ← [P eϕl

], −→ϕ ←

 −→ϕ
ϕl


8: end for

MATLAB code for DEIM algorithm is given in Appendix A.

For more details see [10].

2.4 Discretization of flow problems

Flow problems can be expressed in terms of PDEs. By applying discretization,

we can change the PDEs to ODEs. There are many methods for discretization

like forward difference method, backward difference method and central difference

method. We will briefly discuss the forward difference method for discretization of

1st and 2nd partial derivative in space.

This means that if we have a PDE with 1st and 2nd derivative in terms of x and t,

and we discretize x in i = 1000 points, we will have 1000 variables and two boundary

values resulting in large scale ODE if we keep the derivative with respect to t. First

partial derivative can be discretized using backward difference method as

(
∂u

∂x
) ≈ ui+1 − ui

(∆x)
(2.1)

10



Second partial derivative can be be discretized using backward difference as

(
∂2u

∂x2
) ≈ ui+1 − 2ui + ui−1

(∆x)2
(2.2)

Here u = u(x, t) and ui = u(i, t) & ui−1 = u(i− 1, t).

Now we shall convert heat equation from PDE to ODE by discretization.

∂u

∂t
= c2

∂2u

∂x2

Initial boundary conditions are u0 = u(0, t) = f(x), where f(x) is input to the

system.

Final boundary conditions are un = un+1. So heat equation can be discretized as

follow.

dui
dt

= c2
ui+1 − 2ui + ui−1

(∆x)2

After applying boundary conditions the equation can be written as

u̇ = Au+Bf(x)

Here state vector u ∈ Rn×1, withA ∈ Rn×n, B ∈ Rn×m and input vector f(x) ∈ Rm×1

. Now this is an ODE obtained by discretization of heat equation which was in the

form of PDE.

11



Chapter 3

Model Reduction of DAEs.

In this chapter we discussed the methodology for representation of the complete

model of the gas distribution network as a nonlinear DAE and discussed an indirect

POD method for its reduction.

3.1 Modeling of gas distribution networks

The main components of modeling and simulation of gas distribution network are

given in following subsections.

3.1.1 Graph Theory in Gas Distribution Networks

A graph is formed by vertices and edges connecting the vertices [22]. So to represent

the structure or topology of the gas distribution network, graph theory is commonly

used where edges and vertices are connected. Edge of graph can be a pipe, regulator,

compressor or any other component of gas network and vertices are nodes. Topology

or structure can be modeled as a directed graph G = (E,N) with nodes set N and

edges set E. For M number of edges and N number of nodes, the corresponding

12



incidence matrix A ∈ RN×M is defined as:

Aij =


1, If edge j leaves node i;

−1, If edge j enter node i;

0, else.

Here edge is denoted by ij, where the flow is directed from i to j. Nodes which

are assigned to gas sources are supply nodes, while those which are assigned to gas

users are demand nodes. Supply node is denoted by N+ , demand node by N− and

interior nodes by No. So overall node N includes

N = N+ +N− +No

The valves and the hydraulic resistances can be described by algebraic equations,

for details see [2].

3.1.2 The Isothermal Euler Equations

The dynamic behavior of the gas flow through the gas pipelines can be represented

by the Isothermal Euler equations as discussed in [20] that is,

∂tρ+ ∂xq = 0 (3.1)

∂tq + ∂xp+ ∂x(ρv
2) + gρ∂xh =

−λ(q)

2D
ρv|v| (3.2)

p = γ(T )z(p, T )ρ (3.3)

Theses equations tells the transient behavior of the gas. (3.1) is continuity equation

obtained by Conservation of mass, (3.2) is pressure loss equation yield by conserva-

tion of momentum. While the 3rd one (3.3) is the state of real gas.

The above system of PDEs have state variables gas velocity v = v(x, t), gas density

ρ = ρ(x, t), gas pressure p = p(x, t), pipe elevation h = h(s) and gas temperature

13



T = T (x, t). Here gas flow can be calculated from the density and velocity of the

gas i.e,

q(x, t) = ρ(x, t)v(x, t).

Remaining components are: pipe diameter D, gravity constant g, gas state γ(T )

which is determined by temperature and gas constant R as γ = RT , friction factor

λ(q) and compressibility factor z(p, T ). Term γ(T )z(p, T ) in (3.3) is often approxi-

mated by square of sound velocity a ≈ 300m/s. So (3.3) can be written as p = a2ρ.

Considering two cases for behavior of gas, in 1st case p and q are time variant and

in 2nd case the p and q are time invariant. Former one is dynamic form and later

one is quasi-static form which are discussed in next sections.

3.2 Quasi-Static Model for Gas Network

This is the case where flows q and pressure p are time invariant so there will be no

continuity Equation (3.1) and pressure loss Equation (3.2) can be written as:

∂xρ = − λ

2Da2
q|q|
ρ

q = constant

∂x(ρ)ρ = − λ

2Da2
q|q|

1

2
∂x(ρ

2) = − λ

2Da2
q|q|

Considering p = a2ρ, the above equation becomes

∂x(p
2) = −a

2λ

D
q|q|

pj
2 − pi2 = −a

2λ

Dij

qij|qij|Lij qij = constant

After applying Kirchhoff’s law at the nodes, the full algebraic system will become:

pj
2 − pi2 = −a

2λ

Dij

qij|qij|Lij (3.4)

14



∑
j

qij −
∑
k

qij = 0 for all i ∈ No (3.5)

∑
j

qij −
∑
k

qij −Di(t) = 0 for all i ∈ Nin (3.6)

p− p̂i = 0 for all i ∈ Nout (3.7)

Parameters λ,
Dij

Lij
, a2 will be collected in p. Pressure supply p̂i and demand flow Di

will be considered as input and will be collected in vector u. All the states qij, pi

will be collected in vector x. So, the overall system will be written as.

A(p) +H(p)(x⊗ g(x)) +Bu = 0 (3.8)

3.3 Dynamic Model for Gas Network

Dropping kinetic energy term, replacing v with q
ρ

and putting p = a2ρ in (3.2), now

the Isothermal equations will be of the form

(Dynamic Case) :


∂tρ+ ∂xq = 0

∂tq + a2∂xρ = − λ
2D

q|q|
ρ
.

(3.9)

In order to solve the set of PDEs in (3.9), first we have to convert the PDEs into

ODEs by discretiztion as discussed in Chapter 2. To do this, pipe length should be

(xi − xi−1) ∈ [1000m, 5000m]). For a given pipe segment ij having length Lij, we

took discrete points for pressure at nodes i, j and flow q at beginning and end of

that pipe as shown in figure below.
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Figure 3.1: Single Pipe

Here qinij is flow at beginning of the pipe into the section ij, while qoutij is the flow

at end of the pipe out of the pipe ij, also there is pressure at node i and j denoted

by a2ρi and a2ρj respectively. For a dynamic pipe ij, (3.9) can be written as
∂t
ρi+ρj

2
+

qij
out−qij in
Lij

= 0

∂t
qij

out−qij in
2

+ a2
ρi−ρj
Lij

= − λ
4Dij

(qij
out+qij

in)|qijout+qij in|
ρi+ρj

(3.10)

To reduce complexity introducing a new variable
qij

out+qij
in

ρi+ρj
. Above system will be

transformed to (3.11) & (3.12).

∂t
ρi + ρj

2
+
qij

out − qij in

Lij
= 0 (3.11)

∂t
qij

out − qij in

2
+ a2

ρi − ρj
Lij

+
λ

4Dij

|qijout + qij
in|yij = 0 (3.12)

We will also have equations for internal node, demand nodes,supply nodes. Applying

Kirchhoff law for interior nodes (sum of gas flow into the node is equal to sum of

gas flow outside of that node) and we get (3.13).∑
ji∈A

qij
out −

∑
ik∈A

qij
in = 0 ∀i ∈ No (3.13)
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The sum of flows should be equal to demand at the demand nodes as given in (3.14).∑
ji∈A

qij
out −

∑
ik∈A

qij
in −Di(t) = 0 ∀i ∈ N− (3.14)

For the supply node we have input pressure p̂i(t), and for supply nodes we get (3.15).

a2ρi(t)− p̂i(t) = 0 ∀i ∈ N+ (3.15)

(ρi + ρj)yij − (qij
out + qij

in) = 0 ∀e = ij ∈ Apipe (3.16)

As an extra variable (yij) is introduced so it is necessary to take into account (3.16).

Parameters λ, 1
Dij
, 1
Lij
, a2 will be collected in p.Pressure supply p̂i(t) and demand flow

Di(t) will be considered as input and will be collected in vector u(t). All the states

ρi, qij
out, qij

in, yij will be collected in vector x. So, the overall system of equation

(3.11)− (3.16) will be written as.

Eẋ = A(p)x+H(p)(x⊗ g(x)) +Bu (3.17)

Here E is singular, so this system is Differential Algebraic Equation (DAE). (g(x))i =

xi or (g(x))i = |xi|. If we assume g(x)=x, then the dynamical system will become

quadratic.

3.4 Example Gas Network Model

Considering the gas network model: The network in Figure 3.2 has 16 pipes and

17 nodes(1 supply node and 8 demand nodes) [17]. Considering the quasi static

case where pressures at nodes and flows through pipes are time invariant and are

considered states of the system. They are collected in column vector x: Since there

are 16 pipes and 17 nodes, so there will be 17 different pressures pi nodes and 16

different flows qij for 16 pipes of the network. So state vector x ∈ R33×1 will be of

the form:

x = (p1, p2 · · · p16, p17 , q1,2, q2,3 · · · q15,16, q15,17)
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Figure 3.2: Gas Network Model [17]

1 supply node and 8 demand nodes will be considered as inputs and will be

collected in input vector u ∈ R9×1 as follow.

u = (D4, D8, D9, D10, D12, D14, D16, D17, p̂1)

Now come to the modeling of the gas network in quasi-static form:

Since there are 16 pipes, so we will have 16 equations like (3.4).

8 equations related to (3.5) for 8 internal nodes. Internal node equations are denoted

using NI .

8 equations related to (3.6) for 8 demand nodes. Demand node equations are de-

noted using ND.

1 equation related to (3.7) for 1 supply node. Supply node equation is denoted using

NS.

So overall there will be 33 equations for the example gas network that is given in

Figure 3.2. System of equation will be of the form (3.8) and is given below.

A(p)
(33×33)

x
(33×1)

+ H(p)
(33×332)

(x⊗ g(x))
(332×1)

+ B
(33×9)

u
(9×1)

= 0 (3.18)
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Where

H(p)(x⊗ g(x)) =



p2
2 − p12 + a2λ

D12
q12|q12|L12

p3
2 − p22 + a2λ

D32
q32|q32|L32

...

p17
2 − p152 + a2λ

D15,17
q15,17|q15,17|L15,17

p16
2 − p152 + a2λ

D15,16
q15,16|q15,16|L15,16

O(17 : 33, 1)


(3.19)

A(p)x =


O(1 : 16, 1)

NI(17 : 24, 1)

ND(25 : 32, 1)

NS(33, 1)


(3.20)

Bu =

O(1 : 24, 1)

u(25 : 33, 1)

 (3.21)

After Assuming λ = 0.0003328, diameter of the pipes D = 0.26, a = 430.5m/s,

supply pressure 44.5bar and Demands as given in [17]. We computed the solutions

x0, x1, · · · , xN for different inputs u0, u1, · · · , uN against the (3.18) with

ui = u0 +
i

N
(uN − u0) (3.22)

Here u0 is trivial solution with supply pressure p0 ≈ 45bar. The singular values of

snapshot matrix Y = [x0, · · · , xn] are found and are given in Figure 3.3.
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Figure 3.3: Singular Values

The Figure 3.3 is showing that there is a low dimensional linear space in which

solution lies. Here 1st 5 singular values are > 10−5, other singular values are so small

< 10−10, it means that the given model of 16 pipes and 17 nodes could be reduced

to 5 pipes. POD can be very useful for this quadratic linear function, however direct

implementation is expensive.

Now coming to dynamic form, where pressure and flows are time variant. 17 Pres-

sures p at nodes ,16 flows qoutij , 16 flows qinij and 16 extra variables for every pipe γij

will be considered states and will be collected in state vector x ∈ R65×1. Dynamic

case is having system of equations (3.11)− (3.16) which will be in the form of DAE

as follow.

E
(65×65)

ẋ
(65×1)

= A(p)
(65×65)

x
(65×1)

+ H(p)
(65×652)

(x⊗ g(x))
(652×1)

+ B
(65×9)

u
(9×1)

(3.23)

Where vector x will be of the form:

x = (p1, · · · , p17, qin1,2, · · · , qin15,17, qout1,2 , · · · , qout15,17, γ1,2, · · · , γ15,17)
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Input vector u is having constant demands and varying supply pressure

p̂1(t) = 44.5 + 2.5× (1− cos(
πt

1h
)) t ∈ (0, 1.5h)

The above system in (3.23) is quadratic form of DAEs, or special structure of DAEs.

These systems are known as descriptor systems. When we reduce a descriptor

system, it is possible that structure would lost and H2 and H∞ errors would grow.

In order to retain the structure, split the DAE into strictly proper and polynomial

part and apply model reduction technique on strictly proper part, which is discussed

in next section.

3.5 Indirect POD Method for DAEs

In indirect method, DAEs are splitted into strictly proper and polynomial part and

then the model reduction technique is applied to strictly proper part only. Details

are given in subsections below.

3.5.1 Index-1 Linear DAE’s

In this subsection, we shall discuss the splitting of linear descriptor system. Con-

sidering a linear descriptor system ”LDS”,

LDS :


Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(3.24)

Where E,A ∈ Rn×n and E is a singular matrix. x(t) ∈ Rn,u(t) ∈ Rm and Y (t) ∈ Rp

are the states , inputs and outputs respectively. B ∈ Rn×m,C ∈ Rp×n and D ∈ Rp×m

. Applying Laplace transformation on above system 3.24 gives us:

L(E ˙X(t)) = L(AX(t) +Bu(t))
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E(sX(s) +X(0)) = AX(s) +Bu(s)

here for zero initial conditions X(0) = 0 ,so

X(s) = (Es− A)−1Bu(s)

Transfer function of DAEs will be

G(s) =
Y (s)

u(s)

G(s) =
CX(s) +Du(s)

u(s)

Simplifying it will give us G(s) = C(sE −A)−1B +D. Similarly for reduced DAEs,

it will be G̃(s) = C̃(sẼ − Ã)−1B̃ + D̃ .

Using the concept of [13] and splitting G(s) and G̃(s) into strictly proper and poly-

nomial part.

G(s) = Gsp(s) + P (s)

G̃(s) = G̃sp(s) + P̃ (s)

In order to have bounded H2 and H∞ errors, polynomial part of G(s) should match

the polynomial part of G̃(s), Hence (P (s) = P̃ (s)). So model reduction technique

will be applied to strictly proper part Gsp(s) only and polynomial part will be

retained as it is, resulting in error transfer function as given below.

Gerr(s) = G(s)− G̃(s) = Gsp(s)− G̃sp(s)

The above equation shows that the error transfer function doesn’t contain a poly-

nomial part and it only contains strictly proper part i.e., lims→∞Gerr(s) = 0. It

means that interpolating G̃sp(s) on Gsp(s) is just like interpolating G̃(s) on G(s).
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Now considering semiexplicit descriptor system (SDS):

SDS =


E11ẋ1(t) + E12ẋ2(t) = A11(x1(t)) + A12(x2(t)) +B1u(t)

0 = A21(x1(t)) + A22(x2(t)) +B2u(t)

y(t) = C1(x1(t)) + C2(x1(t)) +Du(t)

(3.25)

where the state is x(t) = [xT1 (t), xT2 (t)]T ∈ Rn with x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , and

n1 + n2 = n, the input is u(t) ∈ Rm, the output is y(t) ∈ Rp, and E11, A11 ∈

Rn1×n1 , E12, A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rn1×m, B2 ∈ Rn2×m, C1 ∈

Rp×n1 , C2 ∈ Rp×n2 , D ∈ Rp×m. We consider it an index 1 descriptor system after

assuming that A22 and E11−E12A
−1
22 A21 are non-singular, also polynomial part P (s)

of G(s) is constant matrix

P (s) = CMB +D (3.26)

M = lim
s→∞

(sE − A)−1 =

0 E−1A E12A22
−1

0 −A22
−1(I + A21E

−1
A E12A22

−1)

 (3.27)

Here EA = E11 − E12A
−1
22 A21

3.5.2 Index-1 Bilinear DAE’s

Consider a bilinear SISO descriptor system of the form,

E11ẋ1(t) + E12ẋ2(t) = A11x1(t) + A12x2(t) +N11x1(t)u(t) +N12x2(t)u(t) +B1u(t)

0 = A21x1(t) + A22x2(t) +N21x1(t)u(t) +N22x2(t)u(t) +B2u(t)

y(t) = C1x1(t) + C2x2(t)

(3.28)

Lemma 3.5.1. Let Hk(s1, . . . , sk) = c(skE−A)−1N . . . (s2E−A)−1N(s1E−A)−1b
be a k-th transfer function associated with a descriptor system of the form (3.28),
where A22 and E11−E12A

−1
22 A21 are both non-singular. Then the polynomial part of

Hk(s1, . . . , sk) is a constant matrix given by

Pk = C(MN)k−1MB, (3.29)
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where M =

[
0 M1

0 M2

]
, in which

M1 = (E11 − E12A
−1
22 A21)

−1E12A
−1
22 (3.30)

M2 = −A−122 A21(E11 − E12A
−1
22 A21)

−1E12A
−1
22 − A−122 . (3.31)

Proof. Let

Fk(s1, . . . , sk) = (skE − A)−1N . . . (s2E − A)−1N(s1E − A)−1b, (3.32)

then the polynomial part of Hk(s1, . . . , sk) is given by

Pk(s1, . . . , sk) = C lim
s1,...,sk→∞

Fk(s1, . . . , sk) (3.33)

Note that for k = 1, (3.32) becomes,

F1(s1) = (s1E − A)−1B =

[
s1E11 − A11 s1E12 − A12

−A21 −A22

]−1 [
B1

B2

]
=

[
F1a(s1)
F1b(s1)

]
This leads to

F1a(s1) =
(
(s1E11 − A11)− (s1E12 − A12)A

−1
22 A21

)−1
(B1 + (sE12 − A12)A

−1
22 B2)

F1b(s1) = −A−122 (B2 + A21F1a(s1))

Taking the limit s1 →∞, we have

lim
s1→∞

F1(s1) =

[
0 M1

0 M2

] [
B1

B2

]
Using (3.33) for k = 1, it is clear that (3.29) holds for H1(s1). Now for k = j ≥ 1,
we assume that

lim
s1,...,sj→∞

Fj(s1, . . . , sj) = (MN)j−1MB. (3.34)

We need to show that (3.29) holds for k = j + 1. Note that

Fj+1(s1, . . . , sj+1) = (sj+1E − A)−1NFj(s1, . . . , sj)

Taking the limit s1, . . . , sj →∞, we have

lim
s1,...,sj→∞

Fj+1(s1, . . . , sj+1) = (sj+1E − A)−1N(MN)j−1MB.

Now using similar formulation as done for F1(s1), we have

lim
s1,...,sj+1→∞

Fj+1(s1, . . . , sj+1) = MN(MN)j−1MB.

Thus by induction (3.29) holds.
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Chapter 4

Numerical Results and Discussions

We have applied the model reduction technique POD with DEIM, and POD without

DEIM on the example large scale nonlinear RC circuit. We have also discretized

the nonlinear flow problems and applied POD method on it. Since gas distribution

networks are represented by descriptor systems. Model reduction of structured SISO

linear and bilinear descriptor systems is also performed for a random example.

4.1 Nonlinear RC-Circuit (Nonlinear ODEs)

Figure 4.1: Large Scale RC Circuit [7]

Considering a large scale RC circuit as given in Figure 4.1. Here all resistors

are nonlinear and are assumed to be the same. When the potential difference from
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Node-1 to Node-2 through resistor is v, then the current flowing from Node-1 to

Node-2 will be I = g(v) and

g(v) = e40v + v − 1 (4.1)

Input current source at Node-1 is i = u(t). Output is the potential at node-1 with

the state variables being the potential at Nodes 1, · · · , N .

Following set of equations can be used for its model

u(t) = C
dv1
dt

+ g(v1 − v2) + g(v1)

g(v1 − v2) = C
dv2
dt

+ g(v2 − v3)

...

g(vn−2 − vn−1) = C
dvn−1
dt

+ g(vn−1 − vn)

g(vn−1 − vn) = C
dvn
dt

Above set of equations can be arranged as

v̇(t) =



−g(v1)− g(v1 − v2)

g(v1 − v2)− g(v2 − v3)
...

g(vn−1 − vn−2)− g(vn−1 − vn)

g(vn−1 − vn)


+



1

0

...

0

0


u(t) (4.2)

where it is assumed that C = 1. (4.2) is a nonlinear system of ODEs and can be

written as:

v̇(t) = RC f(v) +Bu(t) (4.3)
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4.1.1 Implementation of POD

By applying POD technique we reduced large scale RC-circuit of n nodes to r nodes

(r << n). State space vector v(t) was transformed to low dimension state space

vector z(t) ∈ Rr×1 , by projecting vector z(t) onto the plane Ur ∈ Rn×r which yields

v(t) = Urz(t). We followed the steps of POD algorithm and used the projection

basis Ur, so (4.3) can be written as

ż(t) = Ur
TRC f(Ur ∗ z) + Ur

TBu(t) (4.4)

We have solved original large scale RC circuit having 500 nodes by solving (4.3)

and reduced the circuit to 20 nodes by solving (4.4). Comparison of simulations of

the original and POD reduced-order systems for an input u(t) = e−10t are shown in

Figure 4.2.
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Figure 4.2: Comparison of simulations of the original and POD reduced-order systems for an input u(t) = e−10t

4.1.2 Implementation of POD-DEIM

We applied POD with DEIM to that large-scale RC circuit 4.1,now (4.3) can be

written as

˙z(t) = (Uq
T )(PDEIM)[RC f(Uq ∗ z)] +Bu(t) (4.5)
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We solved (4.5) and results are given below, we can see in Figure 4.3a, the results

are similar to the original system.

Comparison of simulations of the original and POD-DEIM reduced-order systems

for an input u(t) = e−10t is shown in the Figure 4.3.
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Figure 4.3: Comparison of simulations of the original and POD-DEIM reduced-order systems for an input
u(t) = e−10t

Simulation time for POD and POD-DEIM are given in table below.

State Space Size (n)
Simulation Time)

Original POD POD-DEIM
n=500, r=20 11.63s 5.97s 6.17s

Table 4.1: Simualtion Time for Original System, POD and POD-DEIM Reduced System

4.2 Burger’s Equation (Quadratic Bilinear ODEs)

A burger equation is fundamental PDE and for a given field v(x, t) and a given

diffusion coefficient d, it is of the form

vt + vvx = dvxx (4.6)

Initial boundary conditions are.

• For x = 0, v(0, t)t is considered as an input u(t) to the system.
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• For x = n, vn+1 = vn

This equation can be observed as standard numerical test example for nonlinear

model reduction.

As discussed in Chapter 2: Any physical system represented by nonlinear PDEs

can be converted to nonlinear ODEs and then it can be reduced using any model

reduction technique. Complete scenario is shown in Figure 4.4 below.

Figure 4.4: QBDAES

We discretized the burger equation using central difference method with respect

to the dependent variable x, and after discretization (4.6) that is PDE, will become

ODE of the form given below.

v̇i + vi(
vi − vi−1

h
) = d(

vi+1 − 2vi + vi−1
h2

) (4.7)

Here h is the difference of v between the two-time intervals.

For i = 1 (4.7) becomes

v̇1 + v1(
v1 − v◦
h

) = d(
v2 − 2v1 + v◦

h2
)

By following initial boundary condition (x = 0), ”v◦” will be considered as input
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u(t) to the system. So above equation will become

v̇1 + v1(
v1 − u(t)

h
) = d(

v2 − 2v1 + u(t)

h2
)

For i = 2, (4.7) will become

v̇2 + v2(
v2 − v1
h

) = d(
v3 − 2v2 + v1

h2
)

Similarly for i = n.,

v̇n + vn(
vn − vn−1

h
) = d(

vn+1 − 2vn + vn−1
h2

)

. By following final boundary condition, for time t = n, vn+1 = vn. Defining

v(t) =


v1

v2
...

vn


(4.8)

This will define other matrices E,A,H,N & B. Matrix E will be generated against

˙v(t), matrix A will be generated against v(t), matrix H will be generated against

square terms of v(t), matrix N will be generated against bilinear terms v(t)u(t) and

finally matrix B will be generated for input u(t). Whole system will be of the form

of a descriptor system.

Ev̇(t) = Av(t) +H(v ⊗ v) +Nv(t)u(t) +Bu(t) (4.9)

The main idea of descriptor system formed in (4.9) was introduced in [16]. It’s

a quadratic bi-linear descriptor system, where E ∈ Rn×n , A ∈ Rn×n, N ∈ Rn×n

, B ∈ Rn×1 are state space matrices and their dimension is fixed by the state.

u(t) ∈ Rn is input to the system. H ∈ Rn×n2
is matricization of Hesse tensor of the

right hand side of the system of DAEs in (4.9).
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We solved the burger equation for given boundary conditions and considering diffu-

sion coefficient (d = 0.02) and input (u(t) = cos(πt) & u(t) = 2 sin(πt)) as given in

[12].

We then applied POD on discretized burger equation (4.9). Vector v(t) will be

projected on a lower dimension i.e., r << n subspace z(t).

Eż(t) = Arz(t) +Hr(z ⊗ z) +Nrz(t)u(t) +Bru(t) (4.10)

Here Er ∈ Rr×r , Ar ∈ Rr×r, Nr ∈ Rr×r , Br ∈ Rr×1 and Hr ∈ Rr×r2 . Results of

burger equation for original and reduced system are given below.
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Figure 4.5: Original and Reduced Solution of burger equation for Input (u(t) = cos(πt))
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Results in Figures 4.5 and 4.6 are same for both original and reduced system.

4.3 Random Example

4.3.1 Linear DAE

As explained in Chapter 3, Section 3.5, we have reduced the Linear descriptor sys-

tem (3.25) by direct method (without splitting) and indirect method (with splitting).

Considering input function u = e−10t, a linear descriptor system having state dimen-

sion n = 100 is reduced to r = 10 and r = 20. The time-domain responses of the

actual and the reduced linear systems, obtained by using the POD method (direct

& indirect), are shown in Fig. 4.7-4.10.
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Figure 4.7: Direct reduction approach of linear system for r=10
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Figure 4.8: Indirect reduction approach of linear system for r=10

By comparing results in Figures 4.7 and 4.8, we can see that the results of original

system and reduced system are improved for indirect approach as compared to direct

approach.
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Figure 4.9: Direct reduction approach of linear system for r=20
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Figure 4.10: Indirect reduction approach of linear system for r=20

Similarly for r = 20, comparing results in Figures 4.9 and 4.10, we can see

that the results of original system and reduced system are improved for our indirect

approach as compared to direct approach and as a result relative error also decreased.

4.3.2 Bilinear DAE

Considering bilinear descriptor system (3.28) that is given in Chapter 3, Section 3.5,

we have reduced it by direct method (without splitting) and indirect method (with
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splitting). Considering input function u = cos(πt), a structured 1 bilinear descriptor

system having state dimension n = 100 is reduced to r = 10 and r = 20.

The time-domain responses of the actual and the reduced bilinear systems, obtained

by using the POD method (direct & indirect), are shown in Figures 4.11-4.14.
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Figure 4.11: Direct reduction approach of bilinear system for r=10
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Figure 4.12: Indirect reduction approach of bilinear system for r=10

By comparing results in Figures 4.11 and 4.12, we can see that the relative error

1From structured it means that for bilinear terms (Nijxi(t)u(t)), we are considering only N11

is nonzero while N12, N21, N22 are considered zero matrices
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is decreased when we used indirect approach.
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Figure 4.13: Direct reduction approach of bilinear system for r=20
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Figure 4.14: Indirect reduction approach of bilinear system for r=20

By comparing results in Figures 4.13 and 4.14, we can see that the relative error

is decreased when we used indirect approach for bilinear system.
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Chapter 5

Conclusion and Future Work

Mathematical models of the gas distribution networks are in the form of nonlinear

differential algebraic equations also called descriptor systems. Since there size is of-

ten large, model order reduction is used as an efficient tool for numerical simulation.

It is observed that existing model reduction techniques are not directly applicable

to nonlinear DAEs as they are unable to retain the structure of DAEs. This may

results in unbounded approximation error. However for some structured nonlinear

descriptor systems, the system can be decomposed into strictly proper and polyno-

mial parts. An indirect POD technique for model reduction of descriptor systems

has been proposed, where only the strictly proper part of the original system is

reduced and the polynomial part of the original system is retained as it is in the

original system. Reduction of DAEs associated with the gas distribution networks

is more efficient in the indirect POD method in terms of system error, especially at

very high frequencies.

An important future work will be the splitting of more general nonlinear DAEs. Also

it would be interesting to work on the implementation of the proposed reduction

technique on an actual gas distribution network.
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Appendix A – MATLAB Codes for Model Order Reduction

NLPOD.m

1 f unc t i on [ Br , Cr ,Up, z , yr ] = NLPOD ( t , v0 , x s , B, C, r )
2 [U, ˜ , ˜ ] = svd ( x s ) ;
3 Up = U( : , 1 : r ) ;
4 Br = Up’∗B;
5 Cr = C∗Up;
6 v1=Up’∗ v0 ;
7 dzdt = @( t , z ) Up’∗RC f (Up∗z ) + Br∗ input1 ( t ) ;
8 opt ions = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−10) ;
9 [ ˜ , z ] = ode15s ( dzdt , t , v1 , opt ions ) ;

10 yr = Cr∗z ’ ;

Listing 5.1: POD Code

POD-DEIM.m

1 f unc t i on [ Br , Cr ,Up, v1 , Pdeim , yr ] = NLPOD DEIM (B, C,N, Np)
2 t = l i n s p a c e (0 ,10 ,N) ;
3 tp = l i n s p a c e (0 ,10 ,Np) ;
4 v0 = spar s e (N, 1 ) ;
5 dvdtp = @( tp , v ) RC f (v )+ B∗ input1 ( tp ) ;
6 opt ions = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−10) ;
7 [ ˜ , v ] = ode15s ( dvdtp , tp , v0 , opt ions ) ;
8 v=v ’ ;
9 S=s i z e (RC f (v ) )

10 [U, ˜ , ˜ ] = svd (v ) ;
11 Up = U( : , 1 :Np) ;
12 Br = Up’∗B;
13 Cr = C∗Up;
14 vt=v ;
15 F = [ ] ;
16 f o r i = 1 : Np
17 F = [F, RC f ( vt ( : , i ) ) ] ;
18 end
19 q=s i z e (F)
20 [ Uf , ˜ , ˜ ] = svd (F) ;
21 Uf = Uf ( : , 1 :Np) ; %p r o j e c t i o n ba s i s
22 [ ˜ , index1 ]=max( abs (Uf ( : , 1 ) ) ) ;
23 Ud = Uf ( : , 1 ) ; %U
24 I = eye (N) ;
25 P = I ( : , index1 ) ;
26 cP = index1 ;
27 f o r i =2:Np
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28 alpha=inv (P’∗Ud) ∗ P’∗Uf ( : , i ) ;
29 r e s = Uf ( : , i ) − Ud∗ alpha ;
30 [ ˜ , index new ]=max( abs ( r e s ) ) ;
31 cP = [ cP ; index new ] ;
32 P = [P I ( : , index new ) ] ;
33 Ud = [Ud Uf ( : , i ) ] ;
34 end
35 Pdeim = Ud∗ inv (P’∗Ud) ∗P ’ ;
36 v1 = spar s e (Np, 1 ) ;
37 dzdt = @( t , z ) Up’∗Pdeim∗RC f (Up∗z ) + Br∗ input1 ( t ) ;
38 opt ions = odeset ( ’ RelTol ’ ,1 e−8, ’ AbsTol ’ ,1 e−10) ;
39 [ ˜ , z ] = ode15s ( dzdt , t , v1 , opt ions ) ;
40 yr = Cr∗z ’ ;

Listing 5.2: POD-DEIM Code
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