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Abstract 

The ever-increasing human-machine interaction and advancement in socio-technical 

systems have made it essential to analyze the vital human factors such as mental workload, 

vigilance, fatigue, and stress, etc via monitoring brain states. Similarly, brain signals are becoming 

paramount for rehabilitation and assistive purposes in fields such as brain-computer interface 

(BCI), closed-loop neuromodulation for neurological disorders, etc. The complex, non-stationary, 

and very low signal-to-noise ratio of brain signals poses a significant challenge for researchers to 

design robust and reliable BCI systems outside the laboratory environment. In this work, I have 

presented a novel recurrence plots (RPs) based time-distributed convolutional neural network and 

long short term memory (CNN-LSTM) algorithm for four class functional near-infrared 

spectroscopy (fNIRS) BCI, electroencphelography (EEG) BCI and Hybrid EEG-fNIRS BCI. The 

acquired brain signals are projected into a non-linear dimension with RPs and fed into the CNN 

which extracts the important features and then LSTM learns the chronological and time-dependent 

relations. The average accuracy achieved with the proposed model is 79.7% with fNIRS 83.6% 

with EEG and 88.5%. for hybrid EEG-Fnirs BCI. While the maximum accuracies achieved are 

85.9%, 88.1% and 92.4%, respectively. The results confirm the viability of RPs based deep 

learning algorithm for successful BCI systems. 

 

Key Words: BCI, fNIRS, EEG, Recurrence Plots (RP),  Convolutionl Neural Networks (CNN), 

Long-Short Term Memory (LSTM), Time  distributional layers
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CHAPTER 1: INTRODUCTION 

The research work in this dissertation has been presented in multiple parts. The first part is 

related to the detailed literature review of electroencephalography (EEG) and functional near-

infrared spectroscopy (fNIRS) based brain-computer interface (BCI), hybrid EEG-fNIRS based 

BCI, different machine learning (ML) and deep learning (DL) algorithms used for classification 

for BCI and use of recurrence analysis in BCI. The next part includes the detailed methodology 

adopted for classification of 4-class EEG-BCI, fNIRS-BCI and hybrid EEG-fNIRS-BCI using 

recurrence plots. Further in the line, the detailed results for all three cases of BCI are presented. 

Lastly, the results are discussed and concluded in the last section. 

1.1  Background 

1.1.1 Brain Computer Interface  

Brain Computer Interface (BCI) is becoming an indispensable element for individuals who 

are unable to control their muscular activities due to neuromuscular disorder, stroke, Locked-in 

syndrome (LIS), spinal injuries, or amyotrophic lateral sclerosis (ALS) [1]. BCI has become the 

integral component of the contemporary medical application, but the applications of the BCI 

cannot be limit just here, the BCI has strengthened its roots in the communication systems, human-

machine interfaces (HMI), and neurofeedback applications [2],[3]. The BCI communicates 

between the human brain and the external computer/device through generated brain commands 

avoiding the peripheral nervous system [4]. BCI is among such neurofeedback methods that can 

enhance the condition of life of patients suffering from serious motor debilities due to tetraplegia, 

stroke, ad other spinal cord injuries [5]. BCI has also applications in neuro-rehabilitation, 

communication and control, motor therapy and recovery, brain monitoring, and neuro-ergonomics 

[6],[7],[8].  

BCI works by taking a bio-signal measured from a healthy/patient subject and based on 

that predicts some intangible aspects of his/her cognitive state. Usually a BCI systems has three 

main steps involved: first is data acquisition from brain depending on the application and modality 

chosen, next is to interpret or processes acquired data to commands, and last step is outputting 

commands to a connected computer/ machine to execute any action. Among the three types of BCI 

i.e., reactive, active, and passive BCI, passive BCI (pBCI) is an important research area in BCI 
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that is mainly focused on the estimation of human emotions, cognition, intentions and behavior 

from generated brain responses to different situations. With the advancement in neuroimaging 

modalities, the demand for improvement in traditional BCI practices is also increasing. The major 

non-invasive BCI modalities include fMRI, EEG, MEG, and fNIRS. Among these non-invasive 

BCI modalities, EEG, and fNIRS are the foremost modalities in terms of price and manageability 

[9],[10]. EEG measures brain activity by calculating the voltage fluctuations from neurons' action 

potentials while fNIRS detects the brain activity concerning the changes in hemodynamic response 

[11],[12]. 

1.1.2 Hybrid EEG-fNIRS BCI 

  Though the invasive techniques provide considerably accurate data than the non-invasive 

techniques. But the use of non-invasive modalities is more frequent and appreciated in the research 

domain. For recording the brain activities non-invasive techniques not only provide safety but also 

exempts ethical concerns [13],[14]. Over time various non-invasive techniques have found their 

way into the research the most commonly used are electroencephalography (EEG), functional 

near-infrared spectroscopy (fNIRS), electrooculography (EOG), and functional magnetic 

resonance imaging (fMRI) [15],[16]. Each modality has offered some pros over the other, there 

are always some tradeoffs associated with the selection of the non-invasive modality according to 

the application. The choice is made for the modality depending upon many factors, usually, the 

following parameters are put into consideration, the cost, the ease of use, temporal and spatial 

resolution as needed by the application. As described earlier there are tradeoffs associated with 

each modality, the pros of one modality compensate the cons of the other modality thus the hybrid 

approaches are proving to be more efficient. The hybrid neuroimaging modalities not only increase 

the accuracy but also offer a greater degree of credible control [17-19]. 

Researchers highly appreciate the low-cost neuroimaging modalities. The modalities which 

offer the non-laboratory setup convenience usually are the choice of interest too. The most 

commonly used neuroimaging modalities in this respect are EEG and fNIRS. Both the modalities 

are portable as well as low cost as compared to the others. EEG signal is captured by the electrodes 

as a result of current variation in the neurons due to postsynaptic activities [20]. For the EEG data 

acquisition, several electrodes are placed on the scalp of the subject. EEG provides better temporal 

resolution. The resolution ranges up to 0.05 seconds approximately. However, EEG does not have 



a good spatial resolution. The spatial resolution is approximately around 10mm [21],[22]. The 

contrasting comparison of the temporal and spatial resolution manifests the tradeoffs while using 

the EEG modality. In contrast to the EEG, fNIRS constructs the functional neuroimages of the 

brain by employing near-infrared light. The NIR light measures the blood oxygen level 

dependence (BOLD). Like EEG fNIRS is low cost and portable too. But unlike EEG, fNIRS 

provide a better spatial resolution. Moreover, fNIRS is also less influence by electrical noises [23]. 

As evident by the comparison that the tradeoffs of the EEG modality can be compensated by 

fNIRS. Thus, on the theoretical grounds, the hybrid of the EEG and fNIRS should prove itself as 

a breakthrough in neuroimaging [24]. 

Since fNIRS measures the hemodynamic responses, so it is bind with an innate delay in 

the measurement [25]. Various methods have been offered in this regard to compensate for this 

conducive slow command generation. EEG and fNIRS hybrid can to compensate for the delayed 

response of the fNIRS modality. Moreover, the measurement of the initial dip (i.e., at the onset of 

the neural firing the HBO level first falls) instead of the actual hemodynamic response [26],[27]. 

The other contrasting difference between both the modalities is the rate at which data is sampled. 

The EEG data acquisition rate is approximately 10-100 times swifter than the fNIRS. When the 

EEG and fNIRS hybrid is intended to use then it is a common practice to down sample the EEG 

data to make its processing compatible with the fNIRS data [28],[29]. The down sampling might 

discard some chunks of the valuable data. As EEG signal is prone to electrical noises similarly the 

fNIRS suffer from physiological noises, instrumentation, and experimental errors. The 

experimental errors can be the spontaneous unintentional diversion from the intended protocol like 

the motion artifacts or the changing light intensity in the ambiance. The motion artifacts present 

in the data can be significantly reduced via wiener filtering-based methods [30] or wavelet 

analysis-based methods [31]. The instrumentation can also induce noise in the data, like the noises 

from the hardware, though these noises are high-frequency components thus can be eliminated by 

using a low-pass filter. The physiological noises can arise as a result of breathing activity or from 

the heartbeat, these noises are unavoidable, yet the literature has shown many methods to counter 

these noises, the commonly used techniques are using bandpass filters; parameter mapping, and 

individual component analysis [32-34]. Denoising the data further remove the chunks of data; thus 

the processed data is even smaller in magnitude than raw. The down sampling of the EEG data to 
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match the fNIRS data after preprocessing removes a considerable amount of valuable information 

regarding brain activity. Literature review of hybrid EEG-fNIRS BCI is given in below table. 

Table 1-1: Literature review of Hybrid EEG-fNIRS BCI 
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1.1.3 Classification Approaches Used in BCI 

The brain signals as captured by the EEG and fNIRS modalities is a time series data. The 

time-series data has many practical applications, that range from the regime of cybersecurity to 

bio signal processing. However, apart from their wide usage, the classification of the time series 

data poses issues. Machine learning algorithms have been developed to classify this time series-

based data [35],[36]. One of the widely used classification technique is to extract temporal features 

from the data and feeding them as input to the classifier [37],[38]. Traditionally the classification 

of this time series data was based on the following parameters, i.e., instance and the features-based 

methods [39]. The instance-based classification technique focuses on measuring the resemblances 

between the training and test data. One of the popular examples of the instance-based classification 

are the KNN and dynamic time wrapping [40],[41]. While on the contrary the feature-based 

method applies a newer approach and transforms the data into a newer space. Unlike the instance-

based classification method, this method focuses on the differences and discrimination of the test 

data [42]. This method has proven to be more efficient as compared to the instance based. 

For the brain-computer interface applications, the CNN can be employed in two ways, the 

first being is the alteration or modification of the CNN algorithm architecture to accommodate the 

1-dimensional time-series data obtained by the modalities. Or 1-dimensional data can be 

transformed into the 2dimensional data and then can be conveniently put as an input to the 

CNN.DNN along with the other traditional classifiers have also been employed on the fNIRS 

signals to recognize three different cognitive states [43],[44]. A similar approach has been used 

for various other applications, i.e., controlling the robots [45-48], differentiated the different levels 

of the workloads by analyzing the fNIRS signal and using deep learning techniques. Literature 

also manifests the use of the time-delay neural network (TDNN) for classification purposes. [49] 

used this approach to classify the EEG signal however the presented model was not deep enough 

to be capable of learning the hierarchical features of the EEG signal. The research that greatly 

resonated with our study under observation is [50], the author investigated deep learning based 

BCI for detection of driver drowsiness. The output strength of the selected channels was translated 

into the colormaps, the colormaps were then fed into the CNN classifier as an input. The output 

color maps were obtained as a result of the linear mapping of the values from the channel into the 

color intensity. Literature review on Classification approaches used in BCI is presented in table 

below. 
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Table 1-2: Literature review on Classification approaches used in BCI 

1.1.4 Recurrence Analysis of Brain Signals  

The brain signal captured through the modalities of the EEG and fNIRS exhibit the data in 

the format of 1-Dimensional time series data. The contemporary techniques of bio signal analysis 

have a higher inclination towards non-linear dynamics. One of the widely used technique is the 

Reference Classifier Modality 

[26] Bagged importance weighted LDA EEG 

[28] Marginalized stacked 

denoising autoencoder  

EEG 

[32] Selective instance transfer with active learning  EEG 

[33] C3, C4 EEG 

[34] Common Spatial Patterns (CSP) and LDA EEG 

[24] Stationary 

subspace CSP (ssCSP) 

EEG 

[38] Principal component analysis (PCA) based 

CSP 

EEG 

[43] Extreme learning machine 

(ELM) 

EEG 

[44] Domain adaptation SVM (DASVM) EEG 



recurrence plot. The analysis hunts for the repeatability of the time series states and presents the 

output in the form of geometric structures. the characteristic features of the dynamics are estimated 

by analyzing the topology of these structures [51],[52]. 

Recurrence quantification analysis (RQA) of RP has become popular in recent years in 

analyzing brain activity because brain signals are both recurrent and dynamic in nature. RP in 

general terms is a non-linear evaluation method for recurrent and dynamic signals. It is a 

visualization displaying the recurrence occurances of states x(n) of a time signal in phase space. 

RQA is the analysis technique to quantify features of constructed RP. In literature, RQA features 

analysis has been used in EEG signal detection of epilepsy and Alzheimer’s, coupling and 

synchronization in EEG of epileptic discharge etc. At different sleep stages the cortical function 

has also been analyzed using RP features. RQA analysis shows that unique RPs are extracted for 

different sleep stages [53]. Few studies have also used artificial neural network (ANN) and 

support-vector machines (SVM) to classify extracted RQA features. One study has used four-layer 

ANN for different EEG channels to predict the onset of seizures using RQA measures [54]. 

Deep neural networks (DNNs) on the other hand are highly efficient training classifiers 

resulting in better classification accuracies as compared to other ML classifiers, but only a few 

studies on application of these algorithms are available so far of their application in BCI [55], [56]. 

Only one study has used a CNN for binary classification of epileptic seizures from EEG using RP 

as images [57]. Effective application of biological feedback in BCI requires efficient and precise 

methods for motor activity detection and classification. 

As machine learning has swiftly become a state-of-the-art analysis tool, so researchers are 

more considerate about finding the features for classification. The qualitative aspect of these 

recurrence plots can be used for classification. Various approaches have been used in this regard 

like in [58] the author exhibited the use of the video compression algorithms along with the 

distance measure of cross-reference plot. [59] employed the recurrence feature classification to 

measure the heart rate variability using the support vector machine, in [60] the recurrence feature 

classification technique was employed along with the support vector machine. Another common 

trend observed in the literature is the classification and visualization of these plots using deep 

learning techniques. The approach has been employed in [61] to recognize the intention of the 

user, i.e., determine g the behavior of the user. In [62] and [63] Convolutional neural networks 



 

11 
 

were used to recognize the convolutional neural network. Literature review of application of RP 

in brain signal analysis is given in below table. 

 

Table 1-3: Literature review on recurrence analysis of brain signals 
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1.1.5 Challenges to Real-Time BCI 

To use BCI out of the laboratory on daily basis, BCI needs to address several challenges 

such as robust signal acquisition, extracting valuable knowledge from the acquired raw brain 

signals (either electrical or hemodynamic) for control-command generation, etc [25][26]. Another 

main problem is the requirement of recalibrating the BCI system. The recalibration requirement is 

required for every new session and subject. Usually, the calibration time for 

electroencephalography (EEG) and functional Near-Infrared spectroscopy (fNIRS) based BCI 

systems may take up to 20 minutes to 30 minutes, depending upon the situations, for each new 

session [27][28]. This is a strenuous and exhausting in terms of total time that the subject healthy/ 

patient has to commence before the BCI system is completely practical again. Also, another reason 

for having a such lengthy adjustment time for neuroimaging-based BCI is due to the high 

dimensionality of EEG and fNIRS signals that have low signal-to-noise ratio (SNR) [29]. In order 

to successfully classify the correct brain states, obtained neuroimaging signals are usually 

implemented in four stages: first preprocessing, second feature extraction, third classification, and 

lastly command generation [30][31]. The extracted features from brain signals are used to train the 

classifier. The collection of neuroimaging data is very complicated and also expensive both in 

terms of time and cost that makes it very hard to develop a substantial-scale, high-quality marked 

dataset for the training of deep learning models. That results in limited trials available for training. 

From low SNR signals, it is extremely difficult to approximate probability distributions of the 

features, usually in the case of machine learning algos, using only a few trials of multi-dimensional 

brain signals. Another important factor is the non-stationary nature of fNIRS and EEG signals. 

The exact brain state depends on factors such as the psychological and mental states, concentration 

level, drowsiness, fatigue, anatomical differences between subjects, and statistical variations in the 

data [32][33]. The instrumental noise and experimental error such as fluctuation in electrodes 

impedance due to perspiring may also temper the acquired brain signals [34]. All these facts 

combine results in the trained classifier performing poorly on new session data. The different 

studies tried to address these challenges by exploiting different methods and algorithms while 

trying to keep the models' accuracy in an acceptable range [28][35-37].  

The most important objective of all studies carried on BCI is to enhance real-time 

classification accuracies and reduce computational costs, with multiple commands, emphasizing 

the need to develop appropriate identification and classification methods for real-time BCI [7]. 



Usually, multichannel brain signal acquisition modality i.e., EEG, is used to analyze brain motor 

activity by different existing methods like time and frequency feature analysis, event-related 

synchronization- desynchronization analysis, common spatial or temporal patterns, and spatial-

spectral decomposition. The back draw of many of these methods is they require high 

computational costs, thus less feasible to use for real-time BCI [8].  

These conventional quantification and feature selection methods along with the use of 

simple machine learning (ML) classifiers have few challenges while implementing for real-time 

BCI. The conventional feature engineering methods involve multiple steps like feature extraction, 

feature selection, finding suitable combinations for multiple feature, and sometimes 

dimensionality drop from a comparatively small quantity of data, that often leads to multiple other 

problems like overfitting and biasness [5], [9]. These inherent constraints make it difficult for 

researchers to make adjustments around the constraints and therefore a lot of time is consumed in 

initial steps of analysis i.e. data mining and data preprocessing.  

1.2  Motivation 

Researchers highly appreciate the low-cost neuroimaging modalities. The modalities which 

offer the non-laboratory setup convenience usually are the choice of interest too. The most 

commonly used neuroimaging modalities in this respect are EEG and fNIRS. Both the modalities 

are portable as well as low cost as compared to the others. EEG signal is captured by the electrodes 

as a result of current variation in the neurons due to postsynaptic activities [64]. For the EEG data 

acquisition, several electrodes are placed on the scalp of the subject. EEG provides better temporal 

resolution. The resolution ranges up to 0.05 seconds approximately. However, EEG does not have 

a good spatial resolution. The spatial resolution is approximately around 10mm [65-66]. The 

contrasting comparison of the temporal and spatial resolution manifests the tradeoffs while using 

the EEG modality. In contrast to the EEG, fNIRS constructs the functional neuroimages of the 

brain by employing near-infrared light. The NIR light measures the blood oxygen level 

dependence (BOLD). Like EEG fNIRS is low cost and portable too. But unlike EEG, fNIRS 

provide a better spatial resolution. Moreover, fNIRS is also less influence by electrical noises [67]. 

As evident by the comparison that the tradeoffs of the EEG modality can be compensated by 

fNIRS. Thus, on the theoretical grounds, the hybrid of the EEG and fNIRS should prove itself as 

a breakthrough in neuroimaging [68].   
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Since fNIRS measures the hemodynamic responses, so it is bind with an innate delay in the 

measurement [69]. Various methods have been offered in this regard to compensate for this 

conducive slow command generation. EEG and fNIRS hybrid can too compensate for the delayed 

response of the fNIRS modality. Moreover, the measurement of the initial dip (i.e., at the onset of 

the neural firing the HBO level first falls) instead of the actual hemodynamic response [70],[71]. 

The other contrasting difference between both the modalities is the rate at which data is sampled. 

The EEG data acquisition rate is approximately 10-100 times swifter than the fNIRS. When the 

EEG and fNIRS hybrid is intended to use then it is a common practice to down sample the EEG 

data to make its processing compatible with the fNIRS data [72],[73]. The down sampling might 

discard some chunks of the valuable data. As EEG signal is prone to electrical noises similarly the 

fNIRS suffer from physiological noises, instrumentation, and experimental errors. The 

experimental errors can be the spontaneous unintentional diversion from the intended protocol like 

the motion artifacts or the changing light intensity in the ambiance. The motion artifacts present 

in the data can be significantly reduced via wiener filtering-based methods [74] or wavelet 

analysis-based methods [75]. The instrumentation can also induce noise in the data, like the noises 

from the hardware, though these noises are high-frequency components thus can be eliminated by 

using a low-pass filter. The physiological noises can arise as a result of breathing activity or from 

the heartbeat, these noises are unavoidable, yet the literature has shown many methods to counter 

these noises, the commonly used techniques are using bandpass filters; parameter mapping, and 

individual component analysis [76-78]. Denoising the data further remove the chunks of data; thus, 

the processed data is even smaller in magnitude than raw. The down sampling of the EEG data to 

match the fNIRS data after preprocessing removes a considerable amount of valuable information 

regarding brain activity. 

The most important objective of all studies carried on BCI is to enhance real-time 

classification accuracies and reduce computational costs, with multiple commands, emphasizing 

the need to develop appropriate identification and classification methods for real-time BCI [79]. 

Usually, multichannel brain signal acquisition modality i.e., EEG, is used to analyze brain motor 

activity by different existing methods like time and frequency feature analysis, event-related 

synchronization- desynchronization analysis, common spatial or temporal patterns, and spatial-

spectral decomposition. The back draw of many of these methods is they require high 

computational costs, thus less feasible to use for real-time BCI [80].  



These conventional quantification and feature selection methods along with the use of 

simple machine learning (ML) classifiers have few challenges while implementing for real-time 

BCI. The conventional feature engineering methods involve multiple steps like feature extraction, 

feature selection, finding suitable combinations for multiple feature, and sometimes 

dimensionality drop from a comparatively small quantity of data, that often leads to multiple other 

problems like overfitting and biasness [5], [9]. These inherent constraints make it difficult for 

researchers to make adjustments around the constraints and therefore a lot of time is consumed in 

initial steps of analysis i.e. data mining and data preprocessing.  

1.3  Novelty 

In this study, I have investigated the performance of Recurrence Plots (RP) for EEG, fNIRS 

and Hybrid EEG-fNIRS within the deep CNN-LSTM model for neuroimaging brain data for BCI. 

RP transforms the time series data into the image space and provides an alternate way to envisage 

the periodic nature of trajectory of a time series in phase space. RP helps us in exploring specific 

features of the multi-dimensional phase space trajectory using a 2D visualization. In last few years 

RP have been used for recurrence analysis of EEG for different applications but either using RQA 

or with ML classifiers using extracted features from RQA. In my work I have used RP of EEG and 

fNIRS as images to feed into the hybrid CNN-LSTM network for classification. Furthermore, I 

have implemented time-distributional layers in my network that are not being used in field of BCI 

before.  

1.4 Structure of Research 

The rest of the manuscript is devised as follows: Chapter 2 explains the detailed 

methodology of this research, the dataset used, RP formation from EEG and fNIRS dataset and 

the classification approach used for 4-class classification of constructed RP, in Chapters 3 the 

results are discussed related performance of RP in EEG-BCI, fNIRS-BCI and hybrid EEG-fNIRS-

BCI.  Chapter 4 compares the results from three BCI protocols with previous studies and conclude. 

 

CHAPTER 2: RECURRENCE PLOTS AND CLASSIFICATION 

METHODOLOGY 
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In this study, the performance of Recurrence Plots (RP) for EEG, fNIRS and Hybrid EEG-

fNIRS within the deep CNN-LSTM model is investigated for neuroimaging brain data for BCI. 

RP transforms the time series data into the image space and provides an alternate way to envisage 

the periodic nature of a trajectory of a time series in phase space. RP helps us in exploring specific 

features of the multi-dimensional phase space trajectory using a 2D visualization. In last few years 

RP have been used for recurrence analysis of EEG for different applications but either using RQA 

or with ML classifiers using extracted features from RQA. In this work RPs of EEG and fNIRS 

are used as images to feed into the hybrid CNN-LSTM network for classification. Furthermore, I 

have implemented time-distributional layers in my network that are not being used in field of BCI 

before. Detailed methodology is covered in this section. The methodology adopted for the study 

is shown in figure 2-1. 

 

 

 

 

 

 

 

 

 

 

 

Each of the block shown in the above figure is discussed in detail in next sections of this chapter. 

 

2.1 Dataset and Experiment Protocol 

 The research used an open source meta dataset. The data was recorded at the Technische 

Universität Berlin [15]. The data was acquired through 26 healthy participants. The data were 

Simultaneous 

signal 

acquisition 

Figure 2-1: Methodology of Research 



collected through three different paradigms, while the focus of attention was paid to the cognitive 

tasks. the three datasets A, B, and C chosen for three different cognitive tasks were n-back, 

discrimination response, and word generation respectively. On these grounds, the selected dataset 

was an apt choice for the research in the domain of hybrid BCI. 

2.1.1 Participants 

The subject size of the study was 26. Twenty-six health individuals were employed in the 

study. The subjects were 9 males and 17 females, with ages ranging from 17 to 33 years. The 

exclusion criteria were any previous history of the neural or psychological disease. The 

experimental procedure was well communicated with the subjects before the data collection. The 

written consent of the subjects was also taken.  

2.1.2 Experimental Paradigm 

It was ensured that the subjects sit in a comfortable chair with the armrests, the chair was 

faced towards a 24 inches LCD monitor. For each session of the data recording, it was ensured 

that the distance between the subject and the monitor is 1.2 meters. The subjects were asked to use 

the numeric pad with their index and middle fingers. The subjects were asked to press numeric 

keys 7 and 8. The keypad was set up on the right side of the arm of the chair. before data collection 

subjects were asked to keep their eyes focused on the monitor and avoid making unnecessary 

movements throughout the data acquisition, to avoid the motion artifacts. In each experiment, the 

subject was asked to perform three sessions of -back, DSR, and WG. Since the strain on the 

subject’s focus was probable, owing to the long duration of data recording. Keeping this in view 

the subjects were asked to perform the activities in descending order concerning task difficulty. 

First task A was performed then C and lastly B.  

 

In this study only dataset A (n-back) is used so only it is explained in detail in next section. 

One may refer to the paper for further details of other datasets and analysis.  

2.1.2.1 n-back Dataset  

 The whole n-back dataset consists of total three sessions. Further, every single section 

consists of three series, namely 0-back, 2-back and 3-back tasks. the repetition series in a section 

is in a counter-balanced order. 
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Thus, for every single patient total nine n-back series were performed. Total recording time 

of each series was 62 seconds, the initial 2 seconds were dedicated to the task illustration, the 

following 40 seconds were reserved for the task performance, and the last 20 seconds were of the 

rest period. However, additional assistance was provided to keep the subject focused. The starting 

and ending of the task was signaled by a 250 ms beep, with the visual of ‘STOP’ was presented at 

the end of the task on the screen. The rest phase was signified with a fixation cross on the screen. 

The task period was of two seconds, any random digit was displayed on the screen. Each number 

in a trial was presented for 0.5 seconds, followed by a cross to focus on the screen, which stayed 

on the screen for the rest of the duration. Twenty such trails were repeated. The target used to 

appear with a 30% chance. In the first task, namely the 0-back task the subjects were made to press 

either the targeted key or the non-targeted key on the numeric keypad. The participants were asked 

to press the targeted key using the right index finger and likewise the non-target key with the 

middle finger of the right hand. The 0-back task was followed by the 2 and 3 back tasks. in these 

tasks, the subjects were asked to press the target button only in the case that if the number being 

displayed matches the 2 and 3 prior numbers. The task period was followed by the fixation cross, 

the subjects were instructed to gaze at the cross and relax. This allowed the brain state to return to 

the normal baseline value. 

Thus, for every single n-task, there were a total of 180 trials. As there were 3 sessions, each 

having three series, while every single series encompassed 20 trials, making a total of 180 trials. 

Experiment protocol for n-back dataset is shown in Figure 2-2. 



 

Figure 2-2: Experiment protocol on n-back dataset 

2.1.4 Data Acquisition 

 The EEG and fNIRS data were recorded simultaneously, to keep the data synchronized a 

parallel port was used to send the triggers.  

Sampling frequency of EEG data was 1000 Hz. The BrainAmp EEG amplifier was used 

by the vendors. A stretchy fabric cap was used to place the active electrodes. Thirty electrodes 

were used for acquiring the data.  The electrodes were placed according to the internationally 

recognized 10-5 system [41]. The electrodes were placed at frontal (Fp1 to FC6), motor cortex (Cz 

to CP6) and parietal region (Pz to  POz) and occipital region (O1, O2) TP9 was kept as a reference 

while the TP10 was made ground. To determine the Electrooculogram signal (EOG) an EEG 

amplifier was also used. The EOG was recorded using four surface electrodes where 2 horizontal 

electrodes were placed at the canthus of the eye while the vertical electrodes were placed above 

and below the right eye. the sampling rate of the EOG signal was the same as the EEG. 

The fNIRS data were recorded at 10.4 Hz  sampling frequency via the NIRScout by NIRx 

Medizintechnik GmbH, Berlin, Germany. Sixteen electrodes, combination of sources with 

detectors were positioned at the frontal lobe across the region of AFz to  AF8, four channels were 
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paced at C3 and C4 for the motor cortex region. four channels were places in the parietal region 

across P3 and P4. Likewise, four channels around the POz region for the occipital region. The  

distance between the source and the detectors was ensured to be 30mm [42-44]. The Optodes of 

the NIRS were fixed with the EEG electrodes on the same cap. The positioning of the electrodes 

and the Optodes have been illustrated in figure 1-3. Yellow circles reflect the positioning of the 

EEG electrodes while the red circles showed the NIRS Optodes. 

 

 

 

 

 

 

 

 

 

 

 

2.1.5 Data Pre-processing and Labelling  

 The EEG data were down sampled to 200Hz. For filtering purposes, a 6th order 

Butterworth bandpass filter was used. The passband frequency range of the filter was 1-40 Hz. To 

pre-process the fNIRS data, the acquired data were first translated to the oxy and deoxy-

hemoglobin intensity variations. The conversions were made through the modified Beer-Lambert 

law. The fNIRS raw data were down sampled at 10Hz. The fundamental frequency of this dataset 

was very low so the down sampled was not fed into the Butterworth bandpass filter owing to the 

reason that the fundamental frequency was low. The data was instead low pass filtered to avoid 

the loss of the fundamental frequency component. The cutoff frequency of the filter was chosen to 

be 0.2 Hz.  

Figure 2-3: Electrode placement for simultaneous data acquisition of EEG and fNIRS 

according to 10-20 electrode placement system (red = fNIRS, yellow = EEG) 



The data was acquired through MATLAB R2013b. however, further processing was done 

using python on Spyder in the anaconda development environment. The dataset after filtration was 

labelled using the activity time markers given with the acquired continuous EEG and fNIRS 

signals. Four classes i.e., three n-back classes, 0-,2- and 3-back and one of the rests, were labelled 

w.r.t to the experiment protocol. The labelled data was then sent to the RP function for RP 

construction.  

2.2 Recurrence Plots  

 A recurrence plot is a contemporary technique for analyzing nonlinear data. recurrence lots 

are a technique that employs the visualization of a square matrix. The elements of the matrix link 

to the dynamic state repetition. The ordered pair of the matrix corresponds to the specific pair of 

the timing of the repetition.  

The recurrence analysis is a graphical technique that aims to point towards the hidden 

recurring patterns (Eckmann et al., 1987). Let us illustrate this by supposing that our desired 

information is univariate time series data. The data under analysis is a subpart of the large n-

dimensional dataset. In the case of the above-mentioned scenario, Taken presents the viewpoint 

that the topological picture of this original n-dimensional dataset can be made by using a single 

observable variable.  

Thus, the embedded matrix namely the xm can be constructed as:  

 

where xi is the scalar series, dimension is represented with m while d is signifying the delay. In 

case: 

 

 above mentioned condition satisfies then the single output variable exhibits the potential 

to recreate the whole system. the recreation heavily depends upon the sequence of the embedded 

matrix. The sequence can be vigilantly controlled by aptly choosing the parameters m and d.  

asymmetric matrix of the Euclidean distances can also be constructed by measuring the distance 

between the pairs of the embedded vectors. In the recurrence plots, these distances are translated 

into an equivalent color, each distance has a distinctive color. Thus, in other words a recurrence 
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plot is a rectangular assortment of the pixels whose color depends upon the corresponding 

magnitude of the values. The coordinates of the pixels also carry useful information that is linearly 

related to the location of that data into the original data matrix.  

The use of ε is also commonly employed in the recurrence plots this ε. I referred to it as 

the critical radius. Each value is compared with the critical radius if the pixel value is less than or 

it is equal to ε only then the pixel is displayed as a darkened pixel. In other words, RP is a 

visualization of a square recurrence matrix showing all the instances of times at which a state of a 

nonlinear system repeats where columns and axis of recurrence matrix correspond to specific time 

intervals. In technical terms, an RP shows all the times of a nonlinear time signal from a dynamical 

system when its phase space trajectory visits approximately the same area in the phase space. In 

graphical terms, it is a graph of 

 

where 𝑖 is on a horizontal axis and 𝑗 is on a vertical axis, and �⃗� is a phase space trajectory 

of the dynamical system. Thus, I constructed a binary recurrence matrix using a certain time 

window w = 5 sec where any two-time steps are separated by the time interval ɛ = 0.1 and step 

size of 10 as follows: 

 

where 𝑖 and 𝑗 are horizontal and vertical time axis,  𝑖, 𝑗 ∈  {𝑡0,  𝑡1, … . t, … 𝑡𝑇}. The 

recurrence plot is a visualization of the recurrence matrix with a black little square of the lattice at 

coordinates (𝑖, 𝑗) if 𝑅 (𝑖, 𝑗)  =  1, and a white little square if 𝑅 (𝑖, 𝑗)  = 0.  



 

                    Figure 2-4: Recurrence plot of a time signal. 

 

Operationally the plot is drawn as follows: 

a) A certain time window �⃗⃗⃗� =  < 𝑡0,  𝑡1, … . t, … 𝑡𝑇 > is chosen where any two-time steps are 

separated by the time interval ɛ, and where the state 𝑥 ⃗(𝑡) of the system is recorded for 

each time step, thus collecting the trajectory X=  < �⃗�(𝑡0),  �⃗�(𝑡1), … �⃗�(𝑡𝑇) >. 

b) A 2D plot is created where the x-axis and y-axis both report 𝜔 ⃗, forming a 𝑇×𝑇 lattice of 

little squares each with side measuring ɛ. 

c) The 𝑋 are used to compute a matrix 𝐷 (𝑇, 𝑇) formed by binary elements recording the 

recurrence/non-recurrence of values 𝑥 ⃗ through the binary function: 

 

where  𝑖, 𝑗 ∈  {𝑡0,  𝑡1, … . t, … 𝑡𝑇}.  
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d) The recurrence plot then visualizes 𝐷(𝑇, 𝑇) with a black little square of the lattice at 

coordinates  (𝑖, 𝑗 ) if 𝑅 (𝑖, 𝑗) =  1, and a white little square if 𝑅 (𝑖, 𝑗) = 0. 

 

2.3 Classification Network 

2.3.1 Convolutional Neural Networks (CNN)  

CNN is a multi-layered neural network with architecture to detect the complex features in 

the data. Unlike the traditional multi-layer perceptron architectures, CNN uses two operations 

called ‘convolution’ and ‘pooling’ to reduce the image into its essential features, and then uses 

Figure 2-5: Steps of recurrence plot formation 
 

 

Figure 2-6: Architecture of convolutional neural networks 

 



those features for understanding and classification of the image. CNNs are made up of some basic 

building blocks. Typical CNN architecture is shown in figure: 

 These blocks include Convolutional Layer in which a filter or kernel is passed over an 

image, Activation Layer has normally an activation function “Relu”, this layer introduces 

nonlinearity that allows the network to train itself through backpropagation. Pooling layer down-

samples and reduces the size of the matrix, it focuses on the most prominent information in each 

feature of the image. The last one is named the fully connected layer, this layer outputs the different 

probabilities associated with every label attached to the image. The label with the highest 

probability is the classification decision. CNNs are widely used in agriculture, self-driving 

vehicles, healthcare, and surveillance. The output size of every layer of CNN is determined with: 

 

Where W and H are the width and height of the output activation map or feature map, N is 

the dimension of the input activation or feature map, F is dimension of filter sliding over the input 

image or activation map, stride is the number of steps taken whille sliding filter. While the 

parameters of a layer are calculated using: 

 

Where W and H are the width and height of the output activation map or feature map, K is 

the number of filters and K biases are the number of biases. 

2.3.2 Long-Short-Term Memory (LSTM) 

LSTM or long-short-term memory networks are the type of Recurrent Neural Networks 

that uses some special unit in addition to the standard units. These special units include the 

“memory cell” that maintains information in its memory for a longer period. LSTM has feedback 

connections unlike the standard feed-forward neural networks, it can process the whole sequence 

of data i.e., speech, video, etc. LSTM is used widely in speech recognition, handwriting 

recognition, handwriting generation, Music generation, Language translation, image captioning, 

and anomaly detection in intrusion detection systems. A simple LSTM unit is made up of a cell, 

input gate, output gate, and forget gate. The cell remembers the information whereas gates regulate 

the flow of information. LSTM networks are modified forms of RNN, they remember the past data 

in memory. The logistic sigmoid function for the LSTM memory cell is given by: 
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Where: 

e is the natural logarithm base, 

x0 is the sigmoid midpoint, 

K is the logistic growth rate. 

 

Figure 2-7: Architecture of a Memory Cell of Long Short Term Memory Network 

In LSTM gates outputs are determined by: 

 

Which leads to: 



 

For vectorized operations and ease to use we define them as: 

 

LSTM parameters are calculated as: 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 =  4 ∗  ((𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 +  1)  ∗  𝑖𝑛𝑝𝑢𝑡𝑠 +  𝑖𝑛𝑝𝑢𝑡𝑠^2)  

2.3.3 Time Distribution Layers  

 In ML or DL, for classification problems we have to predict outputs on complex data like 

images etc. using neural networks. Taking example of CNN here, one needs to send multiple inputs 

one at a time to be analyzed. It is okay in case of classification problems related different events 

or objects but sometimes, the inputs are chronological. Like in my case activity and rest data of 

EEG or fNIRS is chronological i.e., events are happening in a sequence not randomly. In such 

cases traditionally two solutions are opted as shown in figure 2-8.  

 
Figure 2-8: Convolutional neural network with input sequence 
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The first problem that usually arises while feeding multiple images in CNN at a time, that 

typically takes one image at a time, using these approaches is it will cause unwanted image 

merging. In typical sequential neural networks layers are fully connected means every layer has 

impact on all layers forward and backward to the input. It is okay in case of one image but while 

dealing with multiple images, it will cause unwanted merging of image pixels within several 

images. Figure 2-9 shows the solution to the above-mentioned problem. 

 

Figure 2-9: Desired Convolutional neural network with input sequence 

 

In this case each image has got its own convolutional flow i.e., the input images will not 

merge as desired but it is like one CNN per image. This will cause several unwanted behaviors. 

First, very long training time will be required as there are multiple convolutions to do and train 

each network separately. Secondly, each convolutional flow will have separate set of weights, for 

one sequence, so there will be different features detection that will not be linked with each other. 



Lastly based on the image sequences, different CNN will detect different features that the other 

network is not doing may be. Here, time distribution layers make up the best solution as time 

distributed layers apply the same layer to several inputs and it produce one output per input to get 

the result in time. Moreover, the weights are shared and do not need separate updating for each 

input in backpropagation, thus it saves time and computation as well. 

Now, time distribution layers when used with CNN and LSTM, there are two possible 

configurations to implement them in the network. They can be used either before or after LSTM 

layer depending on the application.  

Figure 2-10 shows the configuration of time distributional layers before LSTM. It will first 

use the CNN network to extract features from an input sequence and then will use the memory 

power of LSTM to chronologically order the input sequence and detect the movement or direction 

or any activity. So, this configuration is used when the demand for application is to learn or extract 

some features first and then based on the extracted feature, order them with LSTM and detect any 

activity, like in this study. So, this configuration will be used latter in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-10: Time distributed before LSTM 
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This is just the representation for each input, same convolutional and flatten layers will be 

used.  

Figure 2-11 shows the second possible configuration for time distributional layers with 

CNN and LSTM i.e., using time distributional layers before LSTM. This configuration is useful 

when one needs LSTM to produce a sequence and then CNN to extract features from that sequence. 

Here LSTM is working not only as a filter, but it is also keeping input computations in the memory 

so that one can retrieve them to make manipulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is just the representation for each input, same convolutional and flatten layers will be 

used. 

Figure 2-11: Time distributes after LSTM 



2.3.4 Time Distributed CNN-LSTM 

Over the period, researchers have experimented with different architectures and types of 

deep learning networks. Unlike images, text, voice, and other widely used types of datasets, 

neuroimaging signals are intrinsically different and possess important chronological order in 

themselves. This chronological order dictates the flow of necessary information to detect activity 

or action. The examples of such chronological order might be the initial dip at the start of activity 

in fNIRS signals and positive deflection in event-related potential (ERP) P300 signal in EEG. A 

novel CNN-LSTM network is designed for this study. The network consists of one CNN and one 

LSTM module combined with a Dense layer. The data after pre-processing is fed into the CNN 

module which consists of two convolutional layers each having 16 filters and ‘relu’ as an activation 

function and one max pooling layer. The CNNs are best known for their feature extraction abilities 

from 2-3D images. As we are working on the sequence of the data in form of time windows that 

are chronologically ordered, we want to be able to detect relations from window to window in a 

given input. Now to enable the network to use memory and enhance its prediction, the LSTM layer 

is used. The convoluted output from the CNN block is reshaped and flattened before feeding into 

the LSTM layer. The layers up till LSTM layers are wrapped inside a time-distributed layer that 

allows applying these layers to every temporal slice of an input data. This time-distributed wrapper 

applies the same instance of convolutional layers to each of the timestamps, so the same set of 

weights are used at each timestamp. The LSTM layer after passing through another dense layer 

terminates into the Output layer.  

Figure 2-12: Time distributed CNN-LSTM network for 4-class EEG and fNIRS classification  
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To the best of the authors’ knowledge, no one has exploited this chronological order using 

time-distributed layers in deep learning models. The constructed RPs with fixed window length 

and overlapping portion are fed into the network as images. The different configurations of this 

proposed network for fNIRS, EEG, and hybrid modalities are discussed in detail in the Discussion 

section. The network architecture for EEG and fNIRS BCI is given in figure. 

For hybrid BCI, almost same architecture is used except that now instead of a single 

modality’s RPs, RPs for both EEG and fNIRS are being fed into the network in parallel order. As 

with a unit increase in data points, size of RPs grows exponentially and EEG’s sampling frequency 

is higher than the fNIRS, it is still wrapped in time-distributional layers while fNIRS RPs are 

passed through a separate network and the hybrid feature extracted from both modalities are 

combined at the dense layer for further classification. 

 

   

Figure 2-13: Time distributed CNN-LSTM network for 4-class hybrid EEG-fNIRS classification 



Researchers have put a tremendous amount of effort into determining the single best 

architecture for the deep learning neural network. This gives rise to the standalone sub-research 

field known as Neural Architecture Search (NAS). But as of yet, unfortunately, there is no definite 

answer for the optimal neural architecture priori. The number of neurons, the number of filters, the 

number of layers, their combinations, dropout, and max-pooling percentage, etc, all remain to be 

at best ‘hyper parameters’. The most viable approach seems to be using own intuition and domain 

knowledge and start with a rough guess for these parameters and iteratively shortlist to the good 

working parameters. In this study, the design process for the NAS was as follows: create a network 

with a minimum number of parameters, a single conv layer, a single LSTM layer, and one dense 

layer, then tune other hyperparameters. Add more layers and then tune network hyperparameters 

with grid search using the sklearn wrapper. We performed the above grid search with a sample of 

data and choose the best performing network for EEG, fNIRS, and EEG+fNIRS datasets. 

However, the issue with this approach was input dimensions mismatch due to the extra amount of 

features in the hybrid dataset as compared to the single modality datasets.  This, problem is solved 

by adding another sequence module on top of the EEG network architecture and wrapped it inside 

the TD layer just like EEG one. The later stages of a network like dense layer, LSTM layer, and 

following layers remain the same but this solves the input dimensionality mismatch problem.  

The modal parameters summary is given in figure. 

 

 

 

 

 

 

 

 

 

 

Figure 2-14: Modal parameters summary 
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The modal summery is shown in figure. 

 

Figure 2-15: Modal summary(layers, input and output sizes) 

  



CHAPTER 3: RESULTS 

The time-distributed CNN-LSTM is used in this research to classify 4-classes i.e., three n-

back activity and the rest using the simultaneously acquired EEG-fNIRS dataset for 26 subjects. 

Fig. 1 depicts the non-linear mapping of acquired brain signals to the new dimension. Each subject 

data is split into 70:30 ratio as train and test set before performing classification to avoid over-

fitting and for better generalization. The average accuracy achieved for 4-class classification with 

fNIRS is 78.08%, EEG is 80.10% and hybrid EEG-fNIRS data is 83.65%. While the maximum 

accuracy is 86.23%, 88.70% and 92.31%, respectively. The deep learning algorithms are trained 

on a GTX 1060 graphic card having 3 GB VRAM and Intel 6th Gen Core i7-6700HQ processor 

with 3.2 GHz frequency. The Keras API is used with the TensorFlow backend on Spyder in 

Anaconda integrated development environment. Table 3-1 summarizes the results of 22 

participants in terms of their classification accuracies in percentages. 

 

Table 3-1: Accuracies of fNIRS-BCI, EEG-BCI and Hybrid EEG-fNIRS-BCI 

 

Subject No. 
Accuracies of fNIRS 

BCI (%) 

Accuracies of EEG 

BCI (%) 

Accuracies of 

Hybrid EEG-fNIRS 

BCI (%) 

1 76.45 77.68 81.66 

2 76.73 78.79 82.49 

3 83.33 85.97 89.48 

4 79.27 80.76 84.70 

5 70.34 73.00 76.58 

6 81.11 83.61 86.99 

7 79.47 81.82 84.77 
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8 79.99 82.14 85.52 

9 86.23 88.70 92.31 

10 68.78 70.97 74.83 

11 75.45 77.69 81.17 

12 79.12 80.99 84.68 

13 72.18 73.85 77.36 

14 83.79 86.54 89.44 

15 79.50 81.13 84.89 

16 86.09 87.63 91.37 

17 79.86 81.63 84.82 

18 77.64 79.84 83.44 

19 74.83 76.10 79.97 

20 83.42 84.81 88.66 

21 65.06 67.37 70.74 

22 79.00 81.19 84.53 

….    

Maximum accuracy 85.9 88.10 92.4 

Average accuracy 79.7 83.6 88.5 

 



 

 

 

Figure 3-1: Comparison of accuracies 
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CHAPTER 4: CONCLUSIONS AND FUTURE WORK 

Researchers highly appreciate the low-cost neuroimaging modalities. The modalities which 

offer the non-laboratory setup convenience usually are the choice of interest too. The most 

commonly used neuroimaging modalities in this respect are EEG and fNIRS. Both the modalities 

are portable as well as low cost as compared to the others. However, EEG does not have a good 

spatial resolution. The spatial resolution is approximately around 10mm [11],[15]. The contrasting 

comparison of the temporal and spatial resolution manifests the tradeoffs while using the EEG 

modality. In contrast to the EEG, fNIRS constructs the functional neuroimages of the brain by 

employing near-infrared light. Since fNIRS measures the hemodynamic responses, so it is bind 

with an innate delay in the measurement [5]. Various methods have been offered in this regard to 

compensate for this conducive slow command generation. EEG and fNIRS hybrid can too 

compensate for the delayed response of the fNIRS modality. But the sampling frequencies of both 

modalities are different resulting in information loss. Moreover, the most important objective of 

all studies carried on BCI is to enhance real-time classification accuracies and reduce 

computational costs, with multiple commands, emphasizing the need to develop appropriate 

identification and classification methods for real-time BCI [7]. Usually, multichannel brain signal 

acquisition modality i.e., EEG, is used to analyze brain motor activity by different existing 

methods like time and frequency feature analysis, event-related synchronization- 

desynchronization analysis, common spatial or temporal patterns, and spatial-spectral 

decomposition. The back draw of many of these methods is they require high computational costs, 

thus less feasible to use for real-time BCI [8].  

To solve the above problems, I have used RPs as a pre-processing step. One advantage of 

using RP with neural network is it incorporates the whole signals and does not require any extra 

steps to make hybrid modalities compatible for each other. Moreover, it also minimizes any feature 

extraction of pre-processing steps like finding temporal or spatial features etc. The constructed 

RPs of EEG, fNIRS are then fed to the classification network to detect the class of activity (0-, 2-

, 3-back or rest) . The classification network used is time-distributed CNN-LSTM. CNNs are best 

known for feature extraction from multi-dimensional images. While the recurrent neural network 

has an excellent ability of pattern recognition in sequences of input. But they have stability issues 

either due to exploding gradients or vanishing gradients. I used a variant of recurrent neural 



network that solved the exploding and vanishing gradient problem by using memory cells, Long 

Short-Term Memory (LSTM). The highest classification accuracy of four class mental workload 

data for the brain-computer interface is achieved using this network. Moreover, the 

implementation of time distributional layers has made the computation not only easy but faster. 

This is indeed a state-of-the-art algorithm in the present brain-computer interface realm. This 

makes them an excellent choice as the network do not require a long time for training. Also, it has 

in order of magnitude fewer parameters. That can be used in real-time BCI. There are a lot of 

potential applications for recurrence plots in BCI. Working in that direction will help researchers 

to mitigate nuances attached to deep learning algorithms in BCI. 
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APPENDIX A 

Table-I 

Visual evoked nerve cerebral oxygen characteristics analysis based on NIRS-EEG 

2018 Hybrid 

NIRS- 

EEG 

Relation between 

electrophysiological 

And hemodynamic 

responses to a 

checkerboard stimulus 

reversing. 

1) mBLL for detecting cerebral 

oxygenation concentration using 

NIRS. 

2) SSVEP signal detection using EEG 

through time and frequency domain 

analysis. Amplitude detection of 

P100N135. 

3) Linear regression analysis to find the 

relationship. 

Results show that there is a 

linear relationship between 

P100N135 amplitude and 

cerebral 

Oxygenation concentrations 

in the visual cortex, positive 

association between the 

amplitude of the P100N135-

component and HbO2 

concentration changes and a 

negative correlation 

association between the 

P100N135-component 

amplitude and HbR 

concentration changes.  

A hybrid NIRS-EEG system for self-paced brain-computer interface with online motor imagery 

2014 Hybrid 

NIRS-

EEG 

Designed a unique 

sensor frame that 

records NIRS and EEG 

simultaneously for the 

realization 

of system. a novel 

analysis method that 

detects the 

the occurrence of motor 

imagery with the NIRS 

system and classifies its 

type with the EEG 

system. 

1) mBLL for detecting cerebral 

oxygenation concentration using 

NIRS. 

2) Thresholding to detect motor 

imagery from NIRS signal. 

3) Calculation of log-scaled variance, 

the alpha-band power, the beta-band 

power, the delta-band power and the 

theta-band power from 2D EEG 

signal. 

4) Linear-SVM classifier for 

classification of left- or right-hand 

motor imagery. 

 

An online experiment 

demonstrated that the hybrid 

system had a true positive 

rate of about 88%, a false 

positive rate of 7% with an 

average response time of 

10.36 s. 

 

NIRS-EEG joint imaging during transcranial direct current stimulation: Online parameter estimation with an 

autoregressive model 

2016 Hybrid 

NIRS-

EEG 

Online resting-state 

spontaneous brain 

activation may be 

relevant to monitor 

tDCS neuromodulatory 

effects that can be 

measured using 

electroencephalography 

(EEG) in conjunction 

with near-infrared 

spectroscopy (NIRS). 

Kalman Filter based online parameter 

estimation of an autoregressive (ARX) model 

to track the transient coupling relation 

between the changes in EEG power spectrum 

and NIRS signals during anodal tDCS (2 mA, 

10 min) using a 4 × 1 ring high-definition 

montage. 

The online ARX parameter 

estimation technique using 

the cross-correlation 

between log (base-10) 

transformed EEG band-

power (0.5–11.25 Hz) and 

NIRS oxy-hemoglobin 

signal in the low 

frequency(≤0.1 Hz) range 

was shown in 5 healthy 

subjects to be sensitive to 

detect transient EEG-NIRS 

coupling changes in resting-

state spontaneous brain 



activation during anodal 

tDCS. Conventional sliding 

window cross-correlation 

calculations suffer a 

fundamental problem in 

computing the phase 

relationship as the signal in 

the window is considered 

time-invariant and the choice 

of the window length and 

step size are subjective. 

Here, Kalman Filter based 

method allowed online ARX 

parameter estimation using 

time-varying signals that 

could capture transients in 

the coupling relationship 

between EEG and NIRS 

signals. 

A Mobile, Modular, Multimodal Bio-signal Acquisition Architecture for Miniaturized EEG-NIRS-Based Hybrid 

BCI and Monitoring 

2017 Hybrid 

NIRS-

EEG 

Objective 

was to design such an 

instrument in a 

miniaturized, 

customizable, and 

wireless form. 

The design and evaluation of a mobile, 

modular, 

multimodal bio-signal acquisition 

architecture (M3BA) 

based on a high-performance analog front-

end optimized for 

biopotential acquisition, a microcontroller, 

and open- 

NIRS technology is presented. 

The designed M3BA 

modules 

are very small configurable 

high-precision and low-noise 

modules (EEG input referred 

noise @ 500 SPS 1.39 μ Vpp, 

NIRS noise equivalent 

power NEP750 nm = 

5.92pWpp, and 

NEP850 nm = 4.77pWpp) 

with full input linearity, 

Bluetooth, 

3-D accelerometer, and low 

power consumption. They 

support 

flexible user-specified 

biopotential reference setups 

and wireless body 

area/sensor network 

scenarios. 

Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With 

EEG 

2017 Hybrid 

NIRS-

EEG 

Simultaneous 

acquisition of brain 

activity signals 

from the sensorimotor 

area using NIRS 

combined with 

EEG, imagined hand 

clenching force and 

speed modulation 

1) Feature extraction for NIRS: HbD 

and HbO features for 24 channels 

from (0,10) sec were extracted. 

2) To identify different levels of hand 

clenching force and speed motor 

imageries, the instantaneous 

amplitude (IA), instantaneous phase 

(IP), and instantaneous frequency 

(IF) of EEG signals were calculated 

and combined into a feature vector 

1) HbO-HbD (60-

69%) 

2) IA-IP-IF (70-74%) 

3) Combined (71-

78%) 
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of brain activity, as well 

as 6-class classification 

of these 

imagined motor 

parameters by NIRS-

EEG were explored. 

that was expected to enhance 

classification performance. 

3) It was assumed that the main factor 

influencing NIRS and EEG was 

imagined force and speed of hand 

clenching. The influence factor 

involved six levels. 

4) Six-class classifications were 

performed in the study (three levels 

of hand clenching force and three 

levels of hand clenching force motor 

imageries) using SVM.  

Hybrid EEG-NIRS based active command generation for quadcopter movement control 

2016 Hybrid 

NIRS-

EEG 

Four active commands 

are generated using 

hybrid 

electroencephalography 

(EEG) and functional 

near-infrared 

spectroscopy (fNIRS) 

for quadcopter control 

in online environment.   

Linear discriminant analysis (LDA) was used 

for the 

offline classification of data. Power spectral 

density was used to detect the left-hand 

clenching and SSVEP. Peak and skewness 

were used for the detection of eye-

movements. Signal mean and signal peak of 

ΔHbO was used as features for NIRS data 

classification. Ten-fold cross-validation was 

used for the estimation of classification 

accuracies. We also used combined EEG and 

fNIRS signals to generate the commands. 

For three subjects. 

1) Mental arithmetic 

(avg. 86.6%) 

2) Left-clenching 

Imagery (avg. 78.1) 

3) Eye- movement 

(avg. 86.9) 

4) SSVEP (avg. 87.2) 

Long-term Monitoring of NIRS and EEG Signals for Assessment of Daily Changes in Emotional Valence 

2018 Hybrid 

NIRS-

EEG 

The indices of frontal 

alpha asymmetry 

(FAA) obtained from 

electroencephalography 

(EEG) data in the 

resting state, laterality 

index at rest (LIR) from 

near infrared 

spectroscopy (NIRS) 

data and CVM are 

compared with BDI and 

STAI scores. 

 

1) FAA acquired as average FAA 

during the resting state. 

2) LIR, 2-channel, concentration 

changes in HbO during 

measurement of left and right PFCs. 

3) CVM, average comfort vector, 

emotional valance and arousal 

vectors were calculated. 

4) we evaluated the correlations 

between the self-reported 

inventories and the diagnostic 

markers. 

In this experiment, BDI and 

STAI scores in the two 

subjects changed by 

approximately 10% in 3 to 5 

weeks. For each subject, a 

correlation between the BDI 

score and FAA was found. 

However, the correlations 

require further analysis with 

sample data obtained over 

longer periods so that a 

regression model can be 

developed. These 

experimental results suggest 

that FAA, LIR, and 

emotional valence of CVM 

can be diagnostic markers for 

assessment of daily changes 

in emotional valence. 

EEG-NIRS Based Assessment of Neurovascular Coupling During Anodal Transcranial Direct Current Stimulation 

- a Stroke Case Series 

2015 Hybrid 

NIRS-

EEG 

NIRS recorded changes 

in oxyhemoglobin 

(HbO2) 

Hilbert-Huang transform-based assessment of 

neurovascular coupling. 

The results of this case series 

show that anodal tDCS 

induces a local 

neurovascular response 



and deoxy-hemoglobin 

(Hb) concentrations 

during anodal 

tDCS-induced 

activation of the cortical 

region located under 

the electrode and in-

between the light 

sources and detectors. 

Anodal tDCS-induced 

alterations in the 

underlying neuronal 

current generators were 

also captured with EEG. 

Then, a 

method for the 

assessment of NVC 

underlying the site of 

anodal tDCS was 

proposed. 

which may be used for 

assessing regional 

neurovascular coupling 

(NVC) functionality. 

It was postulated that tDCS 

leads to rapid dynamic 

variations of the brain cell 

microenvironment that 

perturbs hemodynamic and 

electrophysiological 

responses. 

Utilization of a combined EEG/NIRS system to predict driver drowsiness 

2017 Hybrid 

NIRS-

EEG 

In this study, a new 

approach is introduced, 

a combination of EEG 

and NIRS, to detect 

driver drowsiness. EEG, 

EOG, ECG and NIRS 

signals have been 

measured during a 

simulated driving task, 

in which subjects 

underwent both awake 

and drowsy states. The 

blinking rate, eye 

closure, heart rate, alpha 

and beta band power 

were used to identify 

subject’s condition. 

Statistical tests were performed on EEG and 

NIRS signals to find the most informative 

parameters. Fisher’s linear discriminant 

analysis method was employed to classify 

awake and drowsy states. Time series analysis 

was used to predict drowsiness. 

The mean accuracy of the 

combined EEG/NIRS 

increases 8.7 percent 

compared to EEG alone and 

5.5 percent compared to 

NIRS alone. 

Open Access Dataset for EEG+NIRS Single-Trial Classification 

2017 Hybrid 

NIRS-

EEG 

An open access dataset 

is provided in this study 

for hybrid brain–

computer interfaces 

(BCIs) using 

electroencephalography 

(EEG) and near-infrared 

spectroscopy (NIRS). 

Two BCI experiments (left versus right hand 

motor imagery; mental arithmetic versus 

resting state) were done. The dataset was 

validated using baseline signal 

analysis methods, with which classification 

performance was evaluated for each modality 

and a combination of both modalities. 

1) MI- and MA-

related activations 

were classifiable 

over motor areas 

and front-parietal 

areas, respectively. 

2) The approach used 

led to rather poorer 

decoding 

accuracies, the 

results obtained 

from time 

segmented data can 
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provide additional 

time-related 

information on the 

dataset. For a 

similar reason, any 

channel or subject 

selection based was 

not performed on 

signal quality or 

decoding accuracy 

in the analysis, 

except for the 

illustration of 

log(p)-based scalp 

plots. 

Open Access Repository for Hybrid EEG-NIRS Data 

 Hybrid 

NIRS-

EEG 

In the present study, to 

meet the increasing 

demand on a hybrid 

brain imaging data, an 

open access data set of 

electroencephalography 

(EEG) and near-infrared 

spectroscopy 

(NIRS) simultaneously 

measured during 

various cognitive tasks 

is introduced. The 

datasets contain BCI 

data such as motor 

imagery (MI)-, and 

mental arithmetic (MA), 

and word generation 

(WG)-related brain 

signals, and cognitive 

task data such as n-back 

(NB)-, and 

discrimination/selection 

response (DSR)-related 

brain signals. 

1) Down sampling EEG data. 

2) Band-pass filter. 

3) ICA- for EOG rejection. 

4) Common spatial patterns. 

5) Linear discriminant analysis.  

75.9 % and 86.2 % of the 

participants show improved 

performance by the hybrid 

approach for MI and MA, 

respectively. 

The performance of 74.2 % 

of the participants are 

significantly improved by 

the hybrid approach than EE. 

An EEG-NIRS Multimodal SoC for Accurate Anesthesia Depth Monitoring 

2018 Hybrid 

NIRS-

EEG 

In this paper, a 

multimodal head-patch 

system that 

simultaneously 

measures EEG and near 

Infrared spectroscopy 

(NIRS) on the frontal 

lobe is proposed for 

monitoring accurate 

anesthesia depth. 

Logarithmic transimpedance amplifier (TIA) 

and 

closed loop controlled (CLC) NIRS current 

driver are proposed in the paper. 

 



 

 

 

 

A Comparison of EEG and NIRS Biomarkers for Assessment of Depression Risk 

2018 Hybrid 

NIRS-

EEG 

This study assesses the 

Frontal Alpha 

Asymmetry (FAA) 

obtained from EEG data 

at the resting-state and 

Laterality Index at Rest 

(LIR) given from NIRS 

data for detection of 

depression risk in the 

early stage. The 

Comfort Vector model 

(CVM) is another 

potential biomarker 

using the feature value 

of prefrontal alpha wave 

fluctuation. 

Simultaneous NIRS and EEG recordings 

were performed during the resting-state for 5 

minutes, and then FAA, LIR, emotional 

valence and arousal were obtained. 

Then, each participant performed the BDI 

test. Employing Pearson's correlation 

analysis, the correlations between the self-

report inventories and the diagnostic markers 

were evaluated. 

These correlations need 

further analysis with sample 

data of longer periods so that 

a regression model to 

combine the potential 

biomarkers can be 

developed. 

Computational Pipeline for NIRS-EEG Joint Imaging of tDCS-Evoked Cerebral Responses—An Application in 

Ischemic Stroke 

2016 Hybrid 

NIRS-

EEG 

A software pipeline is 

presented in this paper 

incorporating freely 

available software tools 

that can be used to target 

vascular territories with 

tDCS and develop a 

NIRS-EEG probe for 

joint imaging of tDCS- 

evoked responses. 

The software pipeline incorporates freely 

available SimNIBS for calculations of electric 

fields (and Current density) induced by tDCS. 

The software pipeline incorporates the 

headModel module of the open-source 

MoBILAB toolbox for computing EEG 

forward and inverse resolutions to identify 

EEG scalp topography that can record from 

tDCS-affected brain regions. The software 

pipeline incorporates also the probe design 

module of the freely available Atlas Viewer 

software to compute NIRS forward models 

for developing source and detector probe 

geometry to cover tDCS-affected brain 

regions. 

For demonstration, the software pipeline was 

applied on the Colin27 average brain. 

Based on their prior work, a cross-correlation 

analysis approach is presented to capture the 

coupling relation between regional cerebral 

hemoglobin oxygen saturation and the log-

transformed mean-power time-series for EEG 

in case of ischemic stroke survivor.   

 

Multichannel Wearable fNIRS-EEG System for Long-Term Clinical Monitoring 

Study on Multi-parameter Evaluation Method of VDT Visual Fatigue Based on EEG and NIRS 

2017 Hybrid 

NIRS-

EEG 

The purpose of this 

paper is to build a 

system that can collect 

1. attend-to-ignore ratios (AIR) of 

SSVEP amplitude before and after 

experiment. 

The cerebral blood oxygen 

saturation would decrease 

because of visual fatigue. 
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EEG, SSVEP, ERP and 

blood oxygen signals at 

the same time. A more 

comprehensive and 

objective assessment of 

visual fatigue can be 

obtained by analyzing 

these signals. 

2. analyzed EEG data with eight 

octave wavelet decomposition. 

3. Calculated energy of each 

frequency band. 

4. Analyzed blood oxygen saturation 

levels. 

Results are almost consistent 

with previous relevant 

researches. 

Table-II 

Year  Modality  Objective  Methodology  Results 

Concealed face recognition analysis based on Recurrence Plots 

2011 EEG Use of Recurrence Plots 

(RPs) in order to 

discriminate between guilty 

and innocent subjects, using 

their single-trial ERPs 

EEG data recording during Guilty 

Knowledge Test (GKT) followed by 

recurrence plots and RQA parameters 

Some RQA variables in 

guilty subjects are 

significantly higher than 

innocent ones. The results 

also showed that 

appearance of the P300 

component can increase 

determinism and 

synchronization, in brains' 

signals 

Understanding Coupling and Synchronization in EEG of Epileptic Discharge Using Recurrence Plots with Varying 

Threshold 

2012 EEG Understanding the 

synchronicity of epileptic 

discharge using the property 

of recurrence of dynamical 

systems 

Evaluation of the synchronization 

index from the recurrence distribution 

of phase space with variations in the 

recurrence dynamics by varying the 

threshold 

he results of 

synchronization index 

indicate that the enhanced 

synchronicity is observed 

during seizure and 

decreases to near baseline 

level following seizure 

EEG-based emotion recognition using Recurrence Plot analysis and K nearest neighbor classifier 

2013 EEG The classification of EEG 

correlates on emotion using 

Recurrence Plot 

Recurrence Plot analysis to extract 

thirteen non-linear features from EEG. 

Then compared with feature extraction 

method based on spectral power 

analysis. The K nearest neighbor is 

applied to classify extracted features 

into the emotional states 

Performance rates of 

58.05%, 64.56% and 

67.42% for 3 classes of 

valence, arousal and liking 

     

Adaptive filtering of EEG and epilepsy detection using Recurrence Quantification Analysis 



2014 EEG Adaptive filtering of 

Electroencephalogram 

(EEG) signal and epileptic 

seizure detection using 

Recurrence Quantification 

Analysis (RQA) 

Adaptive filtering of EEG signal 

followed by its recurrence plot 

formation and recurrence 

quantification analysis to detect 

epilepsy 

sensitivity and specificity, 

97.4% and 93.5% 

respectively  

Detecting epileptic electroencephalogram by Recurrence Quantification Analysis 

2016 EEG Quantitative analysis of 

epileptic patient’s and 

healthy subject’s EEG to 

detect epilepsy  

Average Diagonal Length, a parameter 

from Recurrence Quantification 

Analysis (RQA), was calculated to 

analyze the difference between normal 

EEG and epileptic EEG in, 

quantitatively 

Compared with the healthy 

control subjects, the 

epileptic EEG is more 

regular and more certain, 

meanwhile, it is Average 

Diagonal Length is longer 

Recurrence plot structure of motor-related human EEG 

2019 EEG RP structure of EEG 

segments recorded in 

somatosensory cortex are 

related with motor 

executions 

RP reconstruction of EMG and EEG 

data recorded during motor task 

accomplishment 

In averaged EEG signal 

background activity is 

mostly characterized by the 

diagonal lines, while motor 

task execution is associated 

with increase of recurrence 

points density and the 

emergence of vertical and 

horizontal lines 

Time-frequency and recurrence quantification analysis detect limb movement execution from EEG data 

2019 EEG Application of recurrence 

quantification analysis 

(RQA) in detection of motor-

related 

electroencephalograms 

(EEG) 

RQA to reveal transitions of mu-

rhythm dynamics extracted from 

multichannel EEG recorded in motor 

cortex 

The results show that the 

considering RQA measures 

of EEG in time-frequency 

domain one can effectively 

reveal dynamical features of 

motor-related brain activity 

Characterization of EEG Resting-state Activity in Alzheimer’s Disease by Means of Recurrence Plot Analyses 

2019 EEG Characterize EEG resting-

state activity in Alzheimer's 

disease (AD) patient’s vs 

healthy subjects based on 

recurrence quantification 

analysis 

TREND, a linear regression coefficient 

over the recurrence point density RRτ 

and provides information on the non-

stationarity of a process 

These results suggest that 

the dynamic properties of 

EEG resting-state activity 

differ between controls and 

AD patients 

Classification of Epileptic Seizures using Recurrence Plots and Machine Learning Techniques 

2019 EEG To explore reliable and faster 

binary classification 

algorithms to develop real 

time seizure detection 

system 

EEG feature extraction based on the 

Recurrence Plots (RP), and Recurrence 

Quantification Analysis (RQA) and 

then their classification using Artificial 

Neural Network (ANN), Probabilistic 

Neural Network (PNN) and Support 

Vector Machine (SVM) 

91.2 % highest binary class 

accuracy achieved with 

SVM 
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Two Approaches to Machine Learning Classification of Time Series Based on Recurrence Plots 

2020 EEG Binary classification of 

epileptic seizure from EEG 

using two ML classification 

approaches for quantitative 

analysis and image 

classification 

Perceptron (with 7 layers) for 

quantitative analysis of Recurrence 

plots  

CNN (with 131 layer) for image 

(Recurrence plot) classification 

 97% with perceptron 

 

98% with CNN  
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