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Abstract 

 

During the past century, rheology has emerged as a new science which deals with the 

deformation of the matter. Metal spinning, wire drawing, polymer extrusion, blood 

circulation, food industry, and pressure-sensitive adhesion, etc are a few of the 

potential application areas. Now in most of these applications materials are Non-

Newtonian and involve rotation, extrusion, and heat exchange. Therefore, 

understanding the rheology is critically important in order to improve the quality of 

product development, methodology, and resource utilization.  

The goal of this research is to present the boundary layer equations for fluid flow and 

heat transfer of cross fluid over a moving flat plate. The job is further expanded to 

cover a stretched surface with the rotating stream of cross fluid. The systems of 

governing partial differential equations are converted into highly non-linear ordinary 

differential equations by introducing appropriate similarity transformations. By using 

the bvp4c process, the governing ODEs are solved numerically, and the influence of 

the related parameters of practical importance such as skin friction coefficient and 

Nusselt number are calculated. The momentum boundary layer demonstrates the 

elevation impact of the growing local Weissenberg number. The contrary 

phenomenon for the thermal boundary layer was found. The temperature function has 

an exceptional S-shaped profile indicating the existence of an adiabatic case for the 

large enough wall to ambient temperature ratio. Velocity fields and the structures of 

the momentum boundary layer demonstrated the same enhancement tendency for the 

rising Weissenberg number.  
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Chapter 1 

Introduction 

 

1.1 Motivation 

An American chemistry professor first coined the term “Rheology” which he inspired 

from the Greek word “𝜋𝛼𝜈𝜏𝛼𝜌𝜀𝜄” meaning “everything flows”.  During the past 

century, rheology has emerged as a new science which deals with the deformation of 

the matter. The rheological studies are focused on dealing with applied stress and 

strain.  As all materials have rheological properties thus rheology is relevant in many 

fields. Examples include metal spinning, wire drawing, concrete technology, plastic 

processing, polymer extrusion, paint flows, blood circulation, cosmetics, food 

industry, and pressure-sensitive adhesion, etc.  Now understanding rheology is 

critically important in order to improve the quality of product development, 

methodology, and resource utilization.  Particularly to the food industry where most 

materials are Non-Newtonian, Rotating flows in mixtures, extruders, and heat 

exchangers are widely common [1].   

Owing to the above-mentioned application areas rotating, stretching flow, and heat 

transfer of Non-Newtonian have gained the special interest of the scientific 

community for the past few decades. Thus the current thesis is directed towards flow 

and heat transfer of Non-Newtonian fluid over flat and stretching surfaces.  

 

1.2 Non-Newtonian Fluid 

The fluids that flow Newton’s law of viscosity (Shear stress is linearly and directly 

proportional to deformation rate) are known as Newtonian fluid and any fluid that 

does not follow Newton’s Law of viscosity is a Non-Newtonian fluid. 

Mathematically: 

𝜏 = 𝜇∗�̇� 1.1 

 

Here 𝜏 is the shear stress, 𝜇∗   is the effective dynamic viscosity and  �̇� is the 

deformation rate. 𝜇∗ is constant for Newtonian and variable for Non-Newtonian 
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fluids. Fig 1.1 discusses different types of Rheological fluid models based on the 

behavior of their viscosity.  

  

1.3 Literature Review 

Blasius [2], pioneered in studying the motion of flow on a stationary flat plate. Then 

later, Leslie Howarth proposed the theory of turbulence in aerodynamics as well as in 

fluid dynamics [3]. The influence of the boundary layer over a moving plate was then 

scrutinized by Sakiadis [4-5]. By extending the work of Sakiadis, Crane [6] was able 

to work for the problem of stretching flat plate and found the exact solution of 

boundary layer equations. But all these studies were carried out for Newtonian fluids. 

We need non-Newtonian fluids Because of its broad spectrum of industries 

applications.  Various studies have been carried out on momentum and heat transfer 

and of non-Newtonian fluids [7-8]. Today many studies are being carried out for 

many other physical investigations of micropolar fluids, power law, Maxwell fluids, 

second-grade fluids, etc. So the complex fluids particles like suspensions, turbulent 

shear flows, can be described using the theory of micropolar fluid flows. [9-14] 

worked on micropolar and power-law fluids. The power-law model refers to non-

Newtonian fluids which are time-independent. The power-law model is sufficient for 

many non-Newtonian fluids to explore the shear stress and shear rate measurements. 

Cross 

Fig 1.1 Classifications of Rheological Models[1] 
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In spite, the power-law model has a strong engineering influence, but it cannot 

explore the normal stress differences. In this regard, we will consider a special type of 

differential equations of fluids for which the analytical solutions are available. These 

differential fluids are the class of second-grade fluids [15-17]. This model refers to 

determining the normal stress results. A significant amount of research on the 

physical analysis of the laminar boundary layer flows across solid surfaces has been 

published [18-25]. 

During the fast few decades, the study of flow in a rotating frame has increased 

substantially. This is because of the promising application in geophysical and 

cosmically fluid dynamics. Rotating flows are also crucial in solar physics Involved in 

sunspots growth, rotating magnetic stars, and solar cycle structures. Nanofluid flow 

study in rotating stretch sheets has enormous applications in industrial technology 

such as aerospace, rotary equipment, heat generation, rotor-stator systems, medical 

equipment, electronic and computer storage equipment, crystal phenomena 

development, air cleaning equipment, food processing technology, turbomachinery, 

and many more. The solution of many rotating flow problems is analyzed by 

understanding the behavior of boundary layers. Interesting flow analysis in a rotating 

system performed by authors Loper [26], Debnath [27], Gupta [28], Murthy, and Ram 

[29]. Keeping in view all this work is not enough progress of rotating flow for non-

Newtonian flow. In this perspective, Taylor [30] interpreted a significant indication of 

the different viscous fluids in the rotating system. Greenspan [31] Von Karman[32] 

studied the hydrodynamic flow through an infinite rotating disc. In this work, Von 

Karman applied his prominent similarity transformations. Which descend PDEs into 

ODEs. Choi and Eastman [33] were probably the first to use nanoparticles and base 

fluid mixture and they called it "Nanofluid". Turkyilmazoglu [34-35] examined  

Nanofluid flow behavior with a rotating disk with heat and mass transfer impacts. 

Sheikholeslami et al [36-37] conducted comprehensive research on the rotational 

behavior of nanofluid flow using distinct developments. Hayat et al.[38] explored the 

rotating three-dimensional (3D) flow of carbon nanotubes with a porous medium of 

Darcy – Frochheimer. The pioneering author Crane [6] introduced the fluid flow 

through the stretch sheet. Many researchers such as Vajraelu and Roper [39] who 

worked on the stream of second-grade liquids and stretching sheets extended Crane's 

job. Rosca and Pop [40] and Sajid et al.[41] observed the vicious unstable movement 

as a result of a curved shrinking / stretching medium. Wang [42] implemented the 
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small parameter 𝜆 to study the 3-D rotating viscous flow over a stretched surface. 𝜆 

indicates the ratio of the rotation-stretching rate. It is reported that the velocity 

distribution decays with increment in the value of 𝜆. Study of non-Newtonian second 

grade rotating fluid performed by Hayat and Hutter [43] and Hayat at el. [44]. They 

observed a direct relationship between the fluid velocity and material parameters of 

the second-grade flow. 

When suction or blowing is applied at the moving surface. Since the polymer is a 

flexible material, so the structure of the filament surface may expand during the 

ejection and thus the surface velocity can change from being uniform. The thermal 

radiation over a continually stretching surface has taken on excellent significance Due 

to its use in a wide range of manufacturing and scientific uses, such as the 

manufacture of plastics, metallurgy, crystal processing, and many others. Plastic sheet 

drawing. The performance of the final product relies on cooling and stretching rates. 

The boundary layer flows over a continuously moving surface First mentioned by 

Sakiadis [4]. For linear stretching sheets, Sakiadi's work was further extended by 

Crane. Rees and Bassom [45 ] predicted the flow of a micro-polar fluid over a flat 

plate on the Blasius boundary layer while Soundalgekar and Takhar proposed a 

similarity evaluation of flow and heat transfer over a continuously flowing semi-

infinite plane of micro-polar fluid [46]. Turkyilmazoglu [47] has investigated the flow 

through a rotating disk of five specific water-based nanofluid types. Sugu-namma et 

Al.[48] investigated the transfer of heat from nanofluid to rotating frames influenced 

by the magnetic field and thermal radiation. Pramanik [49] examined the heat transfer 

study of the Casson fluid on a suction / blowing exponentially stretching surface and 

found that the friction factor for suction is greater than that for blowing. 

 

1.4 Research Gap 

The above section shows that although a huge amount of research has been carried out 

on the boundary layer flows for Newtonian and non-Newtonian fluids. However, to 

investigate the shear-thinning/thickening region most popular non-Newtonian Model 

used is the Power Law model. Despite its ability to present a vast class of non-

Newtonian fluids, it has its limitations in presenting fluids with very high and very 

low shear rate. In 1965 Cross [50] introduce a model that caters to a wider sub-section 
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of generalized Newtonian fluids which can detect both the flow rate in the power-law 

region as well as the very high and very low shear rate range.  

Now, with the available computing resources and advancement in numerical 

techniques to tackle highly nonlinear equations such as arising in modeling of Cross 

fluid, researchers have started working on problems with many folds complexity.  

Khan et al [51] reported in 2016 on boundary layer flows and the heat transfer of the 

cross fluid over the stretch surface. Hayat et al [52] published in 2017 worked on the 

numerical simulation of heat distribution to a stretched surface of stagnation point 

MHD of cross-fluid. In 2017 Khan et al [53] reported on cross-axisymmetric flow and 

heat transfer across a radially stretched surface. In 2019, Sultan et al [54] explored 

theoretical elements of thermophoresis and Brownian motion with the activation 

energy for the 3-D flow of the cross fluid. For the validations purpose the results of 

the power-law index against temperature profile were compared with Kumari 

nath[55]. Therefore, still, a lot of potential fluid scenarios can be modeled and solved 

for an in-depth understanding of flow and heat transfer of the Cross fluid model.  

 

1.5 Objectives  

The objectives of this research are as follows: 

 To present the boundary layer equations for fluid flow and heat transfer of 

Cross fluid over a moving flat plate 

 To extend the 2D equations into 3D equations covering extrusion and 

rotational effects of Cross fluid.  

 To present the numerical solutions of the above-mentioned scenarios 

 To discuss the effects of important parameters arising during modeling and 

solution of Cross fluid model; especially, practically important parameters 

such as skin friction, Nusselt number, and Weissenberg number. 

 

1.6 Numerical Method 

The governing differential system for fluid flow and heat transfer phenomenon is 

generally a non-linear Boundary-Valued Problem (BV P). The boundary value 

problems can be solved using the finite difference method or the iterative procedure 

known as the Shooting method. The later is preferred in the boundary layer flow 

problems because it uses a fifth-order accurate Runge-Kutta scheme whereas the 
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finite difference method is only second-order accurate. Other advantages of the 

shooting method include its simple implementation as well as its faster convergence 

rate when compared to other numerical integration techniques. The basic idea of the 

shooting method is as follows:  

Consider the Blasius problem [2] 

𝑓′′′ + 𝑓𝑓′′ = 0;  𝑓(0) = 0;  𝑓′(0) =  0;  𝑓′(∞) =  1 (1.2) 

 

In order to solve the above-mentioned higher-order differential problems numerically. 

First, they are converted into a system of 1st order equations using new variables. 

Therefore, let 𝑦1 = 𝑓; 𝑦2 = 𝑓′and 𝑦3 = 𝑓′′. The equivalent first-order equations for 

Blasius problem are as follows: 

𝑦1
′ = 𝑦2; 𝑦2

′ = 𝑦3 and  𝑦3
′ = −𝑦1𝑦3 (1.3) 

 

with boundary conditions 

𝑦1(0) = 0; 𝑦2(0) =  0; 𝑦2(∞) =  1 (1.4) 

The solution of Eq. (1.15) is obtained using the fifth-order Runge-Kutta integration 

technique with the following initial conditions 

𝑦1(0) =  0; 𝑦2(0) =  0; 𝑦3(0) =  𝑢  (1.5) 

 

This solution can agree with the original BV P for a suitable value of 𝑢.  This means 

that 𝑦2(∞) is a function of 𝑢; that is 

𝑦2(∞) = 𝜃(𝑢) 

𝑟(𝑢) = 𝜃(𝑢) −  1 =  0  
(1.6) 

 

where 𝑟(𝑢) is the boundary residual (the difference between the computed and 

specified 

boundary value). Now Newton method can be used to determine the desired value of 

𝑢 such that the corresponding boundary condition is satisfied. 

 

1.7 Thesis Layout 

The thesis is divided into 5 chapters followed by the references section. The details of 

each chapter are as follows: 
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 Chapter 1 present a basic introduction to Newtonian and Non-newtonian 

fluids, their applications,  related research, missing links in research, and 

solutions method of corresponding governing equations. 

 Chapter 2 provides a brief overview of the Cross fluid model which is the 

main focus of this research.  

 Chapter 3 presents the modeling of Cross fluid in 2D and its numerical 

solution using the initial value problem solver technique. The chapter 

concludes with key observations of the study followed by results in both 

quantitative and qualitative means.   

 Chapter 4 presents the modeling of Cross fluid in 3D with rotational effects 

and its numerical solution using the initial value problem solver technique. 

The chapter concludes with key observations of the study followed by results 

in both quantitative and qualitative means.   

 Chapter 5 presents a summary of research followed by future work 

recommendations 

 

.  
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Chapter 2 

Cross Fluid Model 

 

2.1 Rheology Model 

Mostly Non-Newtonian models are enough to investigate a shear thinning and shear 

thinking region. Notwithstanding the ample application of process engineering, the 

main limitation of the power-law fluid is that it cannot characterize the liquid 

behavior at very low and very high shear regions, but only for a restricted shear rate 

range called the power-law area. To overcome all these limitations cross introduced a 

model. Which able to predict the flow behavior in the power-law region as well as 

very high and very low shear regions. Unlike the power-law model, in the cross fluid 

configuration the shear factor exceeds zero, we attain a finite viscosity, and secondly, 

it includes a time constant, which makes it good enough for many engineering 

calculations. The cross-rheology model is a fusion of polymeric solutions a blood-

aqueous polymer latex solution. The cross rheology model equation is given 

below[50]. 

𝜇∗ = 𝜇∞ + (𝜇0 − 𝜇∞) [
1

1 + (Γ�̇�)1−𝑛
] (2.1) 

Or equivalently  

(𝜇0 − 𝜇∗)

(𝜇∗ − 𝜇∞)
= (Γ�̇�)1−𝑛 (2.2) 

Where the limiting viscosities at low and high shear rates are 𝜇0 and 𝜇∞ .Where Γ is 

the material constant. 𝑛 is the flow behavior index. �̇�  is the shear rate. 

 

2.2 Special Cases 

 It is interesting to note that we can attain multiple other common viscosity models 

such as the power-law model, the Sisko model, and the Bingham model by creating 

some approximation to the Cross equation.  

 First and foremost for 𝑛 = 1 and Γ = 0 the model reduces to simple 

Newtonian fluids with a constant dynamic viscosity 

 Similarly, when 𝜇∗ ≪ 𝜇0 and 𝜇∗ ≫ 𝜇∞ the cross model reduces to 
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𝜇∗ = 𝐾1(�̇�)𝑛−1 (2.3) 

This is a famous power-law model.  

 Furthermore if 𝜇∗ ≪ 𝜇0 then 

𝜇∗ = 𝜇∞ + 𝐾1(�̇�)𝑛−1 (2.4) 

Which is the Sisko model.  

Several researchers have carried out experimental studies on the Cross model over the 

previous two centuries. Escudier et al. carried out an experimental study and the 

results on the fluid flow were presented by fitting the Cross model to the non-

Newtonian fluid, especially the Xanthan gum (XG). Xie and Jin[13 ] studied the 

Cross Rheology equation in order to assess the free surface flow of non-Newtonian 

fluids. An experimental method, namely the WC-MPS technique, was used to 

determine the Cross model's four rheology parameters for the numerical application of 

the Cross equation. 

 

2.3 Governing Boundary Layer Equations for Cross Fluid Model 

The conservation equations of mass, linear momentum, and energy for the flow of an 

incompressible fluid are 

∇ ⋅  𝑉 = 0 (2.5) 

𝜌
𝜕𝑉

𝜕𝑡
= ∇ 𝜏 (2.6) 

𝜌𝑐𝑝

𝑑𝑇

𝑑𝑡
= 𝜏. 𝐿 − ∇𝑞 (2.7) 

Where V is the velocity vector, 𝜌 is the density, 𝜏 is the Cauchy stress tensor,𝑇 is the 

fluid temperature, 𝑐𝑝 is the specific heat constant, 𝑞 is the heat flux, 𝐿 and  
𝑑

𝑑𝑡
 are the 

material derivatives. The Cauchy stress tensor for the fluid is defined as, 

𝜏 =  −𝑃𝐼 + 𝜇∗𝐴1 (2.8) 

Where 𝜇∗ is the cross model, 𝑃 is the pressure, 𝐼 is the identity tensor, 𝐴1 is the first 

Rivlin-Ericksen tensor. Whereas 

𝐴1 = 𝐿 + 𝐿𝑇 , 𝐿 = ∇𝑉 (2.9) 

So  𝐴1 = [

2𝑢𝑥 𝑢𝑦 + 𝑣𝑥 𝑢𝑧 + 𝑤𝑥

𝑢𝑦 2𝑣𝑦 𝑣𝑥 + 𝑤𝑦

𝑤𝑥 + 𝑢𝑥 𝑤𝑦 + 𝑣𝑥 2𝑤𝑧

] (2.10) 

�̇� = √
1

2
𝑡𝑟(𝐴1)2 (2.11) 
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The infinite shear viscosity 𝜂∞ in Eq (2.1) is taken zero often [50] .Due to this 

consideration, Eq (2.8) will get the following form. 

𝜏 =  −𝑃𝐼 + 𝜇0 [
1

1 + (Γ�̇�)1−𝑛
] 𝐴1 (2.12) 

The important aspect of cross fluid is that when 0 < 𝑛 < 1 the fluid will behave a 

shear thickening while if 𝑛 > 1 the fluid will behave a shear-thinning and additionally 

if 𝑛 = 0 the flow will reduce to Newtonian flow. Through Cartesian coordinates for 

two-dimensional flow, we consider the velocity field of the form 

𝑉 = [𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)] (2.13) 

Where 𝑢 and 𝑣 are the 𝑥 − and 𝑦 −component of the velocity vector. Keeping in view 

the shear rate Eq (2.11) can be written as 

�̇� = [4 (
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)

2

]

1
2

 (2.14) 

Putting Eq (2.13) in Eq (2.5) and Eq (2.6) while keeping in mind Eq (2.12) and Eq 

(2.14) a straight forward calculation gets the following form. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (2.15) 

𝜌 (𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑥
+ 2𝜇0

𝜕

𝜕𝑥

(

 
 
 𝜕𝑢

𝜕𝑥

1 + {Γ2 (4 (
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

)
2

)}

1−𝑛
2

)

 
 
 

+ 𝜇0

𝜕

𝜕𝑦

[
 
 
 
 
 

(
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

)

1 + {Γ2 (4 (
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

)
2

)}

1−𝑛
2

]
 
 
 
 
 

 

(2.16) 



 

23 

 

𝜌 (𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
)

= −
𝜕𝑝

𝜕𝑦
+ 𝜇0

𝜕

𝜕𝑥

(

 
 
 (

𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

)

1 + {Γ2 (4 (
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑢
𝜕𝑥

+
𝜕𝑣
𝜕𝑦

)
2

)}

1−𝑛
2

)

 
 
 

+ 𝜇0

𝜕

𝜕𝑦

[
 
 
 
 
 

(
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

)

1 + {Γ2 (4 (
𝜕𝑢
𝜕𝑥

)
2

+ (
𝜕𝑢
𝜕𝑦

+
𝜕𝑣
𝜕𝑥

)
2

)}

1−𝑛
2

]
 
 
 
 
 

 

(2.17) 

keeping in view the boundary layer analysis one can finally get the following form for 

the above equations. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
= 0 (2.18) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕

𝜕𝑦
[
 
 
 

𝜕𝑢
𝜕𝑦

1 + {Γ (
𝜕𝑢
𝜕𝑦

)}
1−𝑛

]
 
 
 

 (2.19) 

 

2.4 Important Non-Dimensional Numbers  

Some important parameters that arise during the numerical solution of the non-

dimensional boundary layer equations of the Cross fluid are Weissenberg number, 

Nusselt number, and skin friction coefficient. 

 

2.4 1Weissenberg Number 

The Weissenberg number 𝑊𝑒originates from Karl Weissenberg, who worked in the 

field of non-Newtonian fluid. In a non-Newtonian fluid, the stress and strain rate are 

not linearly related. Non-Newtonian fluids are elastic viscous, which means they 

combine elastic properties with viscous properties. In a fluid flow when the time-scale 

is much less than an elastic viscous material's relaxation time, elastic impacts 

dominate. While on the other hand, when the fluid flow time is much higher than the 

relaxation time, elastic effects are enough for viscous effects to overcome. The 

viscous forces-elastic forces ratio is a dimensionless number of special connotations 
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in the study of non-Newtonian fluid flow depending upon the situations. This is a 

Weissenberg number: 

𝑊𝑒 =
𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑓𝑟𝑜𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
 (2.20) 

 

2.4.2 Skin Friction Coefficient 

The ratio of shear stress at the boundary and the dynamic pressure of the free stream 

is known as the skin friction coefficient 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑣2

 
(2.21) 

Here 𝜏𝑤 is shear stress at the boundary, 𝑣 is the free stream velocity. For a particular 

type of flow, 𝐶𝑓 depicts the magnitude of the frictional force being felt by the fluid as 

it moves over the boundary. 

 

2.4.3 Nusselt Number 

A Nusselt number is a dimensionless term used to interpret convective heat transfer. 

Actually, it is the calculation of the ratio between convection heat transfer and 

conduction heat transfer. Mathematically 

𝑁𝑢𝑥 =
𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟

𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟
=

ℎ

𝑘/𝑥
 (2.22) 

Where "ℎ" is the convective heat transfer coefficient, "𝑥" is the distance from the 

boundary, and "𝑘" is the thermal conductivity of the fluid. Different values of the 

Nusselt number represent different flows. For example, Nusselt number “1” 

represents heat transfer utilizing pure conduction. Whereas values between “1” to 

“10” are observed for Laminar flows. In this thesis, we will observe values in the 

range of “1” to “10” (i.e. laminar flows). 
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Chapter 3 

Cross Fluid Flow over a Moving Flat Plate 

 

The present chapter is a pioneering attempt to introduce the boundary layer equations 

for the two-dimensional flow and heat transfer of the Cross fluid over a moving plate. 

The system of partial differential equations is converted into highly non-linear 

ordinary differential equations by introducing appropriate similarity transformations. 

The solutions of moving flat plates are provided for the shear-thinning as well as the 

shear-thickening process using a computational procedure namely the bvp4c system 

and graphs are built. The impact on the velocity and temperature fields of the 

evolving parameters, namely the power-law index n, the local Weissenberg number 

We, and the Prandtl number Pr, is investigated through graphs. 

 

Fig 3.1: Physical sketch of the problem 

 

 

3.1 Problem Formulation 

 

Consider an incompressible two-dimensional flow and heat transfer of the cross fluid 

over a moving flat plate. The plate (located at y=0) moving outside the boundary layer 

with the constant velocity 𝑈𝑤  and 𝑈∞ be the fluid velocity. A study on the analysis of 

heat transfer is carried out due to nonlinear thermal radiation. Moreover, the 

combined effects of Joule heating and viscous dissipation are considered. The plate is 
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held at constant 𝑇𝑤temperature, while 𝑇∞ implicitly denotes the temperature of the 

ambient liquid. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 (3.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 

𝜕

𝜕𝑦
[
 
 
 

𝜕𝑢
𝜕𝑦

1 + {Γ (
∂u
∂y

)}
1−𝑛

]
 
 
 

     𝑈𝑤 < 𝑈∞ (3.2) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −𝜈 

𝜕

𝜕𝑦
[
 
 
 −

𝜕𝑢
𝜕𝑦

1 + {Γ (−
∂u
∂y

)}
1−𝑛

]
 
 
 

    𝑈𝑤 > 𝑈∞ (3.3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
−

1

𝜌𝐶𝑝
(
𝜕𝑞𝛾

𝜕𝑦
) (3.4) 

Due to parallel free stream and nonlinear thermal radiation the following boundary 

conditions are produced. 

𝑢 = 𝑈𝑤, 𝑣 = 0,   𝑇 = 𝑇𝑤 at  𝑦 = 0      (3.5) 

𝑢 → 𝑈∞, 𝑇 → 𝑇∞as  𝑦 → ∞ (3.6) 

where 𝑥 − and 𝑦 − are the coordinates along and normal to the plate respectively.𝑢 

and 𝑣 are the velocity components along the 𝑥 − and 𝑦 −directions respectively, 𝜈 is 

the kinematic viscosity 𝑇 is the fluid’s temperature, 𝛼 is the thermal diffusivity, 𝐶𝑝 is 

the specific heat at constant pressure and 𝑞𝑟 is the radiative heat flux. 

The radiative heat flux qr is given by the Rosseland (1931) approximation as: 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 (3.8) 

This is further simplified 

𝑞𝑟 = −
16𝜎∗

3𝑘∗
𝑇3

𝜕𝑇

𝜕𝑦
 (3.9) 

So Eq (3.4) will get the final form  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝛼 +

16𝛼∗𝑇3

3𝜌𝐶𝑝𝑘∗
)

𝜕𝑇

𝜕𝑦
] (3.10) 

Where σ* and k* are the Stefan-Boltzman constant and the mean absorption 

coefficient. 

Now introduce the corresponding similarity transformation for the Eq (3.2-3.4). 

𝜂 = 𝑦√
𝑈

2𝜈𝑥
, 𝑢 = 𝑈𝑓′(𝜂), 𝑣 = √

𝑈𝜈

2𝑥
(𝜂𝑓′ − 𝑓), 𝜃(𝜂) =

𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
 (3.11) 
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Where 𝑓(𝜂) represent the dimensionless stream function and 𝜃(𝜂) represent the non-

dimensional temperature. The required continuity Eq-(3.1) is satisfied while Eq-(3.2), 

Eq-(3.3) and Eq-(3.4)  with boundary conditions Eq-(3.5) and Eq-(3.6) are 

transformed into the following form. 

 

𝑓′′′[1 + 𝑠𝑖𝑔𝑛(𝛾 − 0.5)(1 − 𝑛)(𝑊𝑒𝑓′′)𝑛] + 𝑓𝑓′′[1 + (𝑊𝑒𝑓′′)𝑛]2 = 0 (3.12) 

𝜃′′[1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)3] + 3𝑅𝑑[(1 + (𝜃𝑤 − 1)𝜃)2(𝜃𝑤 − 1)𝜃′2]

+ 𝑃𝑟𝑓𝜃′ = 0 
(3.13) 

𝑓(0) = 0, 𝑓′(0) = 1 − 𝛾, 𝜃(0) = 1, 

𝑓′(∞) → 𝛾, 𝜃(∞) → 0 
(3.14) 

Where  𝛾 =
𝑈∞

𝑈 
 is the velocity ratio parameter,  𝑊𝑒 =

𝑈Γ𝑅𝑒

1
2

𝑥√2
 is the Weissenberg 

number, 𝑃𝑟 = 𝜈

𝛼
  is the Prandtl number , 𝑅𝑑 =

16𝛼𝑇∞
3

3𝐾𝐾∗  are the radiation parameter and 

 𝜃𝑤 =
𝑇𝑤

𝑇∞
  is the temperature ratio parameter. 

The expression provided for the local skin friction coefficient and the local number 

Nusselt are: 

𝐶𝑓 =
𝜏𝑤

1
2𝜌𝑈2

,       𝑁𝑢 =
𝑥𝑞𝑤

𝑘(𝑇𝑤 − 𝑇∞)
 

(3.15) 

Where 𝜏𝑤 is local wall shear stress and 𝑞𝑤 is described as surface heat flux: 

𝜏𝑤 = 𝜏𝑥𝑦|𝑦=0
=

[
 
 
 

𝜂0

𝜕𝑢
𝜕𝑦

1 + {Γ (
𝜕𝑢
𝜕𝑦

)}
1−𝑛

]
 
 
 

𝑦=𝑜

,  

𝑞𝑤 = −𝑘
𝜕𝑇

𝜕𝑦
|𝑦=0 

(3.16) 

In the illumination of the Eq. (3.11) we obtain dimensional forms of the local skin 

friction coefficient and the local Nusselt number as: 

1

2
𝑅𝑒

1
2𝐶𝑓𝑥 =

𝑓′′(0)

1 + (𝑊𝑒𝑓′′(0))
1−𝑛,   

 −𝑅𝑒−
1
2𝑁𝑢𝑥 = [1 + 𝑅𝑑{1 + (𝜃𝑤 − 1)𝜃}3]𝜃′(0) 

(3.17) 

3.2 Numerical Solution 

In order to solve the higher-order differential problems numerically. They are 

converted into a system of 1st order equations using new variables. Therefore, let 𝑦1 =
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𝑓; 𝑦2 = 𝑓′;  𝑦3 = 𝑓′′;  𝑦4 = 𝜃 and 𝑦5 = 𝜃′. The equivalent first-order equations are as 

follows: 

𝑦1
′ = 𝑦2; 𝑦2

′ = 𝑦3;   (3.19) 

𝑦3
′ =

−𝑦1𝑦3[1 + (𝑊𝑒𝑦3)
𝑛]2

[1 + sign(𝛾 − 0.5)(1 − 𝑛)(𝑊𝑒𝑦3)𝑛]
;   (3.20) 

𝑦4
′ = 𝑦5;   (3.21) 

𝑦5
′ =

−𝑃𝑟𝑦1𝑦5 − 3𝑅𝑑[(1 + (𝜃𝑤 − 1)𝑦4)
2(𝜃𝑤 − 1)𝑦5

2]

[1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝑦4)3]
 (3.22) 

with boundary conditions 

𝑦1(0) = 0; 𝑦2(0) =  1 − 𝛾; 𝑦4(0) = 1;  𝑦2(∞) =  𝛾;  𝑦4(∞) =  0 (3.23) 

The solution of Eq. (3.19-3.23) is obtained using the fifth order Runge-Kutta 

integration technique with the following initial conditions 

𝑦1(0) =  0; 𝑦2(0) =  0; 𝑦3(0) =  𝑢1;   𝑦4(0) =  1;  𝑦5(0) =  𝑢2 (3.24) 

This solution can agree with the original BV P for suitable values of 𝑢1  and  𝑢2.  

 

3.3 Results and Discussion 

Using Matlab code bvp4c, the boundary value problem given in eq-3.12 and eq-3.13 

with boundary conditions eq-3.14 are solved. To make sure that the accuracy of 

obtained computations and validation of the code we have reproduced the results of 

[18]. After code validation now we will examine the impact of various evolving 

parameters on the velocity and temperature flow field. The obtained results are 

tabulated in Tables 3.1-3.3. Table 3.1 is designed to provide a skin friction coefficient 

and Table 3.3 provides heat transfer rate numerical values for various values of 

relevant parameters.  

Figure 3.4 indicates the horizontal velocity variation with an improvement in the 

velocity parameter ratio γ. It is observed that the velocity function 𝑓′ rises and that the 

thickness of the boundary layer declines when 0 < 𝛾< 0.5 increases. There is no 

boundary layer formation at γ=0.5. In this region, the free stream velocity is less than 

the velocity of the plate. The analysis of the impact of the power-law index ′𝑛′ on the 

velocity profile and fluid temperature profile is shown in Fig.3.2 and Fig.3.3 for two 

different values of 𝛾=0.2 and 𝛾 =1. examination of these figures reveals that the 

velocity profiles along with the momentum boundary layer thickness show a growing 

trend for both( 𝛾 < 0.2 and  𝛾 > 1) for increasing the power law of index. The effect 
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of the power-law index ′𝑛′ on the temperature profile is observed in fig.3.5. In fig.3.5 

the thermal boundary layer reveals a declining tendency while rising the power law of 

the index. The physical explanation for this behavior is that the fluid is facing less 

resistance due to low viscosity which causes the velocity of the fluid to rise and 

decrease in temperature of the fluid. 

Figures 3.6 and 3.7 show the behavior of the velocity profiles and temperature profile 

corresponding to a change in Weissenberg's local number. The study of the 

figures(3.6-3.7) reveals that We trigger the velocity of the fluid to increase and 

decaying in the temperature of the fluid. Physically, an enhancement in the 

Weissenberg number value 𝑊𝑒 causes the velocity of the fluid to boost and the 

temperature of the fluid to decrease. 

Fig. 3.8 Displays the effect on the temperature profile of the Prandtl number 𝑃𝑟 for 

fixed 𝑛 and 𝑊𝑒 values. Prandtl number is the resultant of viscosity, Specific heat, and 

thermal conductivity. Furthermore, Pr regulates the relative velocity thickness and the 

thermal boundary layers. Keeping in view all the above aspects that smaller Prandtl 

liquids lead to speedier heat diffusion in thicker thermal boundaries as compared to 

larger Prandtl liquids in thinner boundaries. Thus the rise in Pr leads to a decrease in 

the thermal boundary layer thickness and an improvement in the heat transfer rate at 

the plate. Perhaps it can be guaranteed that the Prandtl number can be used to upgrade 

the cooling rate in the conductive liquid flow. The influence of temperature ratio 𝜃𝑤 

on temperature is shown in fig.3.9. The higher temperature ratio parameter 𝜃𝑤 

indicates a higher plate temperature compared to ambient temperature. Due to which 

the temperature of the fluid rises because of the hotter surface. Figure 3.10 shows that, 

regardless of the range of values chosen for the velocity ratio 𝛾. 

 

3.4 Concluding Remarks 

This study is seminal work in the development of cross fluid flow boundary layer 

equations. Modeled partial differential equations of cross fluid were Simplified by 

implementing appropriate similarity transformations and numerical solutions using 

the bvp4c scheme. The key conclusions can be summarized as: 

 The increasing power-law index values culminated in the velocity of fluid 

elevation while a decrease in the thermal boundary layer was observed. 
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 The velocity profiles reach the free stream velocity at a long distance from the 

plate suggesting a rise in the momentum boundary layer thickness with an 

increase in the velocity ratio 𝛾. An increase in the temperature and heat 

transfer rate from the plate occurred. 

 The momentum boundary layer and Velocity fields are demonstrated the 

elevation impact of the growing local Weissenberg number. The contrary 

phenomenon for the thermal boundary layer was found. 

 The Prandtl number's elevated values reduced the temperature profile as well 

as the thickness of the thermal boundary layer. 

 The temperature rises in the region and from the plate the heat flux reduces as 

θw is increasing. 
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Table 3.1: Numerical validation for Newtonian Fluid Case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝛾 Cortell [18] Present 

0 −0.627547 −0.627555 

0.2 −0.363308 −0.363336 

0.4 −0.115777 −0.115809 

0.6 0.109652 0.109638 

0.8 0.307378 0.307354 

1 0.469602 0.469600 
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Table 3.2: Numerical findings Local skin friction for various values of, 𝑛 and 𝑊𝑒. 

 

  

𝛾 𝑛 𝑊𝑒 𝑓′′(0) 

0 0.6 0.8 - 0.443939 

0.2   - 0.295422 

0.4   - 0.106581 

0.6   0.124278 

0.8   0.385465 

1   0.625574 

0.2 0.1 0.2 - 0.87292 

 0.3  - 0.439217 

 0.5  - 0.350406 

 1.2  - 0.357323 

1 0  0.664115 

 0.5  0.55066 

 1  0.496975 

 2    0.472321 

0.3 0.8 0.5 - 0.213935 

  1 - 0.197768 

  1.5 - 0.184016 

  2 - 0.171461 
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Table 3.3: Numerical findings for Local Nusselt number against different values of n, 

We, 𝜃𝑤,𝛾,𝑅𝑑, 𝑃𝑟. 

 

 

  

𝑃𝑟 𝛾 𝑛 𝑊𝑒 𝜃𝑤 𝑅𝑑 𝜃′(0) 

6.2 0.3 0.2 0.8 1.5 1 - 0.610192 

  0.5    - 0.642717 

  0.8    - 0.644514 

  1.2    - 0.640061 

 0 0.8    - 0.738588 

 0.3     - 0.643104 

 0.7     -0.545214 

 1      -0.485732 

 0.3  0.5   - 0.641106 

   1.5   - 0.647132 

   2.5   - 0.651992 

0.7 0.6  0.8   - 0.191498 

1      - 0.234596 

2      - 0.347346 

7      - 0.690414 

    1  - 1.37613 

    1.2  - 1.18304 

    1.6  - 0.842045 

    2  - 0.603513 
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Fig 3.2: Velocity curve 𝑓′ Variation 

against 𝜂 for different values of  𝑛 for 

Sakiadis 𝛾 = 0 

Fig 3.3: Velocity curve 𝑓′ Variation 

against 𝜂 for different values of  𝑛 for 

Blasius 𝛾 = 1. 

 

 

Fig 3.4:. Velocity curve 𝑓′ Variation 

against 𝜂 for different values of γ 

Fig 3.5: Temperature curve 𝜃 Variation 

against 𝜂 for different values  of  𝑛. 

  

Fig 3.6: Velocity curve 𝑓′ Variation 

against 𝜂 for different values of  𝑊𝑒. 

Fig 3.7: Temperature curve 𝜃 Variation 

against  𝜂 for different values of  𝑊𝑒. 
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Fig 3.8: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝑃𝑟. 

Fig 3.9: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝜃𝑤 . 

  

Fig 3.10: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝛾. 

Fig 3.11: 𝑓′′(0) Variation against 𝜂 for 

different values of n. 

 

Fig 3.12: 𝜃′(0) Variation against 𝜂 for different values of  𝜃𝑤 
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Chapter 4 

3D Rotating Flow of Cross Fluid over a Stretching Sheet 

 

In this chapter, a description of the Cross fluid's rotating flow and heat transfer over a 

radially stretching surface is established. The present study gives the Cross fluid with 

3-d boundary layer equations. Through introducing appropriate similarity 

transformations, the derived momentum and energy equations are further transformed 

into nonlinear ordinary differential equations. The equation model is then solved 

numerically, using the bvp4c computational technique. For certain parameter values 

such as the power-law series the local Weissenberg number and the Prandtl number, 

velocity, and temperature profiles are established. In comparison, for several physical 

parameters, the numerical values for the local skin friction coefficient and the local 

number Nusselt are tabled. 

 

Fig 4.1: Physical configuration and coordinate system 

 

 

4.1 Problem Formulation 

 

Assuming a steady, laminar, and incompressible cross fluid flow induced by a stretch 

sheet in a rotating flow. Let (u, v, w) be the components of the velocity vector in the 

direction of the Cartesian axes (x, y, z) with the axes rotating at an angular velocity Ω 

in the direction of z with a constant temperature 𝑇𝑤 whereas  𝑇∞ indicates the ambient 



 

37 

 

fluid temperature. The governing equations derived for the rotating flow cross model 

are below using the standard the boundary layer approximation. 

 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 (4.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
− 2Ω𝑣 = 𝜐

𝜕

𝜕𝑧
[
 
 
 𝜕𝑢

𝜕𝑧

1 + {𝛤 (
𝜕𝑢
𝜕𝑧

)}
1−𝑛

]
 
 
 
      (4.2) 

𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+ 2Ω𝑢 =  𝜐

𝜕

𝜕𝑧
[
 
 
 𝜕𝑣

𝜕𝑧

1 + {𝛤 (
𝜕𝑣
𝜕𝑧

)}
1−𝑛

]
 
 
 
 (4.3) 

      𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
= 𝛼

𝜕𝑇2

𝜕𝑧2
+

1

𝜌𝐶𝑝
(
𝜕𝑞𝑟

𝜕𝑧
)    (4.4) 

u,v,w are the velocity components respectively, 𝑛 is the power-law index behavior, Ω 

is the angular velocity. ν the kinematic viscosity, 𝛤 is cross-time constant, 𝑇 the fluid 

temperature, α the thermal diffusivity, 𝐶𝑝 the specific heat at constant pressure and 𝑞𝑟 

is the radiative heat flux in the above equation. With the corresponding boundary 

conditions 

𝑢 = 𝑢𝑤 = 𝑎𝑥,    𝑣 = 0  , 𝑤 = 0 ,   𝑇 = 𝑇𝑤 ,       𝑎𝑡    𝑧 = 0 

            𝑢 = 0  ,     𝑣 =  0    ,      𝑇 =  𝑇∞        𝑎𝑠  𝑧 → ∞ 
(4.5) 

The Rosseland (1931) approximation provides the radiative heat flux 𝑞𝑟 as: 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
 (4.6) 

Which is further simplified as 

𝑞𝑟 = −
16𝜎∗

3𝑘∗
𝑇3

𝜕𝑇

𝜕𝑦
 (4.7) 

So Eq-(4.7)  will get the final form  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
+ 𝑤

𝜕𝑇

𝜕𝑧
=

𝜕

𝜕𝑧
[(𝛼 +

16𝛼∗𝑇3

3𝜌𝐶𝑝𝑘∗
)

𝜕𝑇

𝜕𝑧
] (4.8) 

where σ* is the Stefan-Boltzman constant and k* is the mean absorption coefficient. 

The similarity transformations of equations (4.1) – (4.4) are. 

𝜂 = √
𝑎

𝜐
𝑧   ,     𝑢 = 𝑎𝑥𝑓′(𝜂)   ,   𝑣 = 𝑎𝑥𝑔(𝜂)    ,  (4.9) 
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 𝑤 = −√𝑎𝜐𝑓(𝜂), 𝜃(𝜂) =
𝑇 − 𝑇∞

𝑇𝑤 − 𝑇∞
 

Eq-(4.1) is therefore automatically fulfilled whereas Eq-(4.2), (4.3), and (4.5) are 

applied to the form below. 

𝑓′′′(1 + (1 − 𝑛)(𝑊𝑒𝑓′′)𝑛) − [(𝑓′2 − 𝑓𝑓′′ − 2𝜆𝑔)(1 + (𝑊𝑒𝑓′′)𝑛)2] = 0 (4.10) 

𝑔′′(1 + (1 − 𝑛)(𝑊𝑒𝑔′)𝑛) − [(𝑓′𝑔 − 𝑓𝑔′ + 2𝜆𝑓′)(1 + (𝑊𝑒𝑔′)𝑛)2] = 0 (4.11) 

𝜃′′[1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)3] + 3𝑅𝑑[(1 + (𝜃𝑤 − 1)𝜃)2(𝜃𝑤 − 1)𝜃′2]

+ 𝑃𝑟𝑓𝜃′ = 0 
(4.12) 

𝑓(0) = 0,     𝑓′(0) = 1, 𝑔(0) = 0,         𝜃(0) = 1 

                               𝑓′(∞) = 0,    𝑔(∞) = 0,     𝜃(∞) = 0 
(4.13) 

In which  𝑃𝑟 =
𝜐

𝛼
   is the Prandtl number. 𝑅𝑑 =

16𝛼𝑇∞
3

3𝐾𝐾∗
 is the radiation parameter,  𝜆 =

 
Ω

𝑎
  is the ratio of rotation rate to the stretching rate, 𝑊𝑒 = Γ𝑎𝑥√

𝑎

𝜐
 is the local 

Weissenberg number, 𝜃𝑤 =
𝑇𝑤

𝑇∞
  is the temperature ratio parameter. 

The concepts of local skin friction and heat transmission rate are 

                𝐶𝑓𝑥 =
𝜏𝑥𝑧

𝜌𝑓𝑈𝑤
2 𝐶𝑓𝑦 =

𝜏𝑦𝑧

𝜌𝑓𝑈𝑤
2 

𝑁𝑢𝑥 =
𝑥𝑞𝑤

𝑘𝑓(𝑇𝑤 − 𝑇∞)
 

(4.14) 

Where   

𝜏𝑥𝑧 = 𝜂𝑛𝑓

𝜕𝑢

𝜕𝑧
|𝑧=0 , 𝜏𝑦𝑧 = 𝜂𝑛𝑓

𝜕𝑣

𝜕𝑧
|𝑧=0,  

  𝑞𝑤 = −𝑘𝑛𝑓

𝜕𝑇

𝜕𝑧
|𝑧=0 + 𝑞𝑟|𝑧=0 

(4.15) 

Using Eq-(4.9) in Eq-(4.14)  one can obtain the following dimensionless form  

𝐶𝑓𝑥𝑅𝑒
1
2 = 

2𝑓′′(0)

[1 + (𝑊𝑒𝑓′′(0)]𝑛
, 𝐶𝑓𝑦𝑅𝑒

1
2 = 

2𝑔′(0)

[1 + (𝑊𝑒𝑔′(0)]𝑛
 (4.16) 

𝑁𝑢𝑥𝑅𝑒𝑥
−

1
2 = −[1 + 𝑅𝑑{1 + (𝜃𝑤 − 1)𝜃}3]𝜃′(0) (4.17) 

Numerical solutions of  Eq-(4.10-4.12) are computed using a computational technique 

bvp4c. 
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4.2 Numerical Solution 

In order to solve the higher-order differential problems numerically. They are 

converted into a system of 1st order equations using new variables. Therefore, let 𝑦1 =

𝑓; 𝑦2 = 𝑓′;  𝑦3 = 𝑓′′;  𝑦4 = 𝑔;  𝑦5 = 𝑔′;   𝑦6 = 𝜃 and 𝑦7 = 𝜃′. The equivalent first-

order equations are as follows: 

𝑦1
′ = 𝑦2; 𝑦2

′ = 𝑦3;   (4.18) 

𝑦3
′ =

[(𝑦2
2 − 𝑦1𝑦3 − 2𝜆𝑦4)(1 + (𝑊𝑒𝑦3)

𝑛)2]

1 + (1 − 𝑛)(𝑊𝑒𝑦3)𝑛
;   (4.19) 

𝑦4
′ = 𝑦5 ; (4.20) 

  𝑦5
′ =

[(𝑦2𝑦4 − 𝑦1𝑦5 + 2𝜆𝑦2)(1 + (𝑊𝑒𝑦5)
𝑛)2]

1 + (1 − 𝑛)(𝑊𝑒𝑦5)𝑛
 (4.21) 

𝑦6
′ = 𝑦7; (4.22) 

𝑦7
′ =

−𝑃𝑟𝑦1𝑦7 − 3𝑅𝑑[(1 + (𝜃𝑤 − 1)𝑦6)
2(𝜃𝑤 − 1)𝑦7

2]

[1 + 𝑅𝑑(1 + (𝜃𝑤 − 1)𝑦6)3]
 (4.23) 

 

with boundary conditions 

𝑦1(0) = 0; 𝑦2(0) =  1; 𝑦4(0) = 0; 𝑦6(0) = 1;   
(4.24) 

𝑦2(∞) = 0;  𝑦4(∞) =  0;  𝑦6(∞) =  0 

The solution of Eq. (4.18-4.23) is obtained using the fifth order Runge-Kutta 

integration technique with the following initial conditions 

𝑦1(0) =  0; 𝑦2(0) =  0; 𝑦3(0) =  𝑢1;   
(4.25) 

𝑦4(0) =  0;  𝑦5(0) =  𝑢2;  𝑦6(0) =  1;  𝑦7(0) =  𝑢3   

This solution can agree with the original BV P for suitable values of 𝑢1; 𝑢2  and  𝑢3.  

 

4.3 Results and Discussion 

The estimated results for the local skin frictions 𝑓′′(0) and 𝑔′(0)  and the local 

Nusselt number is tabulated below Table 4.1-4.3. Figures 4.2 and 4.3 describe the 

results of power-law index n on the dimensionless velocity components x− and y− 

respectively. As the value of the power-law of index n enlarges the flow accelerates in 

both x and y directions. Fig's review. 4.2-4.3 shows a growing trend in the velocity 

profiles along with the boundary layer thickness. The practical explanation for this 

phenomenon is that due to low viscosity, fluid experiences less pressure, The impact 
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of the 𝜆 ratio on the velocity components x− and y− respectively are explained in 

Fig.4.4 and 4.5. Larger 𝜆 values suggest reduced stretching rates (along the x-

direction) relative to the rate of rotation. Just because of that, the x− component of 

velocity 𝑓′(𝜂) is inversely proportional to the rotation ratio parameter 𝜆 and the 

magnitude of the y− component of velocity 𝑔(𝜂) increases with an increase in 𝜆which 

triggers a rise in fluid velocity. Fig-4.6 and 4.7 depict the Weissenberg number 𝑊𝑒 

dependency on the fluid velocity profiles 𝑓′(𝜂)  and (𝜂) . The examination of these 

figures demonstrates that 𝑤𝑒 boost the fluid velocity. Fig. 4.6-4.7 shows an increment 

in the thickness of the momentum boundary layers of  𝑓′(𝜂)  and 𝑔(𝜂) with 

increasing values of the Weissenberg number  𝑊𝑒.The impact of the 𝜆  rotation ratio 

parameter on the temperature of fluid 𝜃(𝜂)is shown in Fig-4.8. Due to variation in 𝜆 

rise in temperature and boundary layer thickness occurs and the influence is felt 

prominently. The decrease in the temperature profile, as well as the thermal boundary 

thickness corresponding to the enhancement in the power-law index 𝑛, are shown in 

Fig-4.9. Fig-4.10 illustrates the reliance of the Weissenberg number 𝑊𝑒 on the 

temperature of the fluid. Examination of this figure conveys the rise in 𝑊𝑒 lead to a 

reduction in the temperature of fluid and decreases in the thermal boundary structure. 

The physical explanation for this action is that fluid experiences less pressure because 

of the reduced viscosity due to which the fluid temperature decreases. Temperature 

profiles are sketched in Figure 4.11 for several values of the temperature ratio 

parameter 𝜃𝑤 for different radiation parameters. Profiles shift from normal shape to 

thicker profiles when the 𝜃𝑤 is increased. The greater temperature ratio parameter in 

the plate suggests a higher temperature than the ambient temperature. This is a 

broader variation between the wall temperature and the ambient which eventually 

transmits a thicker thermal border layer. Fig-4.12 demonstrates how the Prandtl 

number 𝑃𝑟 influences the temperature of fluid 𝜃(𝜂). The enhanced Prandtl numbers 

lead to a lower temperature distribution and thermal boundary thickness. The Prandtl 

number physically indicates the ratio of the momentum diffusivity to the thermal 

diffusivity. The thermal diffusivity becomes weaker for elevated Pr-values as a result 

of which the heat flow into the fluid is restricted and thermal boundary layer 

structures are diminished. Due to high thermal conductivity, heat diffuses quicker 

from the wall for fluids with small Prandtl numbers. Therefore, the Prandtl number 

serves as a limiting factor in the conduction of flows to regulate the cooling 
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intensity.Figs-4.13-14 illustrate the influence of local Nusselt number vs Radiation 

parameter 𝑅𝑑 for different values of 𝜃𝑤 .From the We see a significant increase in the 

rate of heat transfer when 𝜃𝑤 is increased. 

 

4.4 Concluding Remarks 

A cross rotating fluid model is studied for flow and heat transfer over a stretching 

sheet. The current study shows the boundary layer flow and thermal transmission of 

cross fluid over a radially stretching sheet in rotating behavior. Using suitable local 

similarity transformations, the developed partial differential equations are transformed 

into ordinary differential equations and implemented numerically with BVP4C. The 

graphs were designed for the velocity and temperature field that corresponds to the 

emerging parameters. The  summarized  key results in this work are: 

 

 The y-velocity component is negative with a parabola distribution. 

 The parameter 𝜆, which provides the ratio between the rotating and the 

stretching rates, has a qualitatively Converse effect on the velocity 

components x− and y. While temperatures  Profiles showed a progressive 

trend with an increase in 𝜆. 

 The 𝑓′ and 𝑔 velocity distributions increase when using higher power-law 

index values parameter n. A decrease in the temperature profile was visualized 

for increasing power-law index values n number 

 The temperature function has an exceptional S-shaped profile indicating the 

existence of an adiabatic case for the large enough wall to ambient 

temperature ratio. 

 Velocity fields and the structures of the momentum boundary layer 

demonstrated the same enhancement tendency for the rising  Weissenberg 

number. However, with the growth of the local Weissenberg number values, 

the thermal boundary layer slowly deteriorated. 

 The local Nusselt number is directly proportional to the temperature ratio 

parameter. It leads to a greater temperature difference between the wall and 

the ambient as well as a thicker thermal boundary layer. 
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Table 4.1: Numerical Validation for Newtonian Fluid. 

 

 

Table 4.2: Skin-friction coefficients 𝑓′′(0) and 𝑔′(0) numerical values against  𝜂 for 

different emerging parameters 𝜆,𝑛, and 𝑊𝑒. 

 

  

𝜆 Wang [42]  

𝑓′′(0) 𝑔′(0) 𝑓′′(0) 𝑔′(0) 

0.0 -1.0000 -0.0000 -1.000000 -0.000000 

0.5 -1.1384 -0.5128 -1.138381 -0.512760 

1.0 -1.3250 -0.8371 -1.325029 -0.837098 

2.0 -1.6523 -1.2873 -1.652352 -1.287258 

5.0 -2.3901 -2.1506 -2.390141 -2.150562 

 

𝜆 𝑛 𝑊𝑒 𝑓′′(0) 𝑔′(0) 

0 0.8 0.8 - 0.631987 0 

0.5   - 0.684552 - 0.428399 

1   - 0.747729 - 0.603203 

1.5   - 0.791617 - 0.697665 

2   - 0.817958 - 0.755433 

0.5 0 0.8 -1.60991 -0.725151 

 0.4  - 1.3297 - 0.550272 

 0.6  - 0.877135 - 0.457213 

 1  -0.698278 -0.436952 

 0.8 0 -1.13838 -0.51276 

  1 - 0.61043 - 0.409593 

  2 - 0.384142 - 0.30242 

  3 - 0.242617 - 0.230158 

 



 

43 

 

 

Table 4.3: Numerical findings of local Nusselt number for different values of 

embedded parameters 

 

  

𝑃𝑟 𝜆 𝑛 𝑊𝑒 𝜃𝑤 𝑅𝑑 𝜃′(0) 

6.2 0 0.5 0.6 1.5 1 - 0.302885 

 0.5     - 0.282938 

 1     - 0.255167 

 2     - 0.206609 

 0.5 0.2 0.8   - 0.24475 

  0.4    - 0.266718 

  0.6    - 0.299477 

  1    -0.313663 

  0.6 0.5   - 0.293745 

   1   - 0.303147 

   1.5   - 0.314212 

   2   - 0.354017 

0.2      - 0.026140 

2      - 0.131361 

4      - 0.222372 

7      - 0.32303 

6.2   0.8 1  - 1.18748 

    1.5  - 0.298849 

    2  - 0.047025 

    3  - 0.029273 

    1.5 0 - 1.77942 

     0.5 - 0.655601 

     1 - 0.299477 

     1.5 - 0.162991 

     2 - 0.094575 
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Fig 4.2: The velocity curve 𝑓′(𝜂) 

variation against 𝜂 for various 𝑛 values. 

Fig 4.3: The velocity curve 𝑔(𝜂) 

variation against 𝜂 for various 𝑛 values. 

 

 

Fig 4.4: Velocity curve 𝑓′(𝜂) Variation 

against 𝜂 for different values of  𝜆. 

Fig 4.5: Velocity curve 𝑔(𝜂) Variation 

against 𝜂 for different values of  𝜆. 

  

Fig 4.6: Velocity curve 𝑓′(𝜂) Variation 

against 𝜂 for different values of  𝑊𝑒. 

Fig 4.7: Velocity curve 𝑔(𝜂) Variation 

against 𝜂 for different values  of  𝑊𝑒. 
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Fig 4.8: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝜆 . 

Fig 4.9: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝑛 . 

 
 

Fig 4.10: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝑊𝑒 . 

Fig 4.11: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝑃𝑟 . 

  

Fig 4.12: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝜃𝑤 . 

Fig 4.13: Temperature curve 𝜃 Variation 

against 𝜂 for different values of  𝑅𝑑 . 
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Fig 4.14: Local Nusselt number curve 𝜃′(0) Variation against 𝑅𝑑 for different values 

of  𝜃𝑤. 

  

𝜃
′(
0
) 
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Chapter 5 

Summary and Future Recommendations 

 

5.1 Summary 

The key findings of the current work are as follows: 

 We have successfully presented the boundary layer equation of Cros fluid for 

both 2D and 3D flows. 

 The non-Newtonian parameters 𝑛,𝑊𝑒 have the same effects in both 2D and 

3D flows.  

 The rotating and the stretching rates ratio parameter 𝜆 showed that temperature 

BL increases with an increase in 𝜆. 

 The temperature BL has S-shaped profiles indicating the existence of an 

adiabatic case for the large enough wall to ambient temperature ratio. 

 The local Nusselt number is directly proportional to the temperature ratio 

parameter. 

 

5.2 Future Recommendations 

The present work can be extended in the following directions: 

 Von Karman and Bodewadt flow of Cross fluid 

 MHD flow of Cross fluids 

 Cross fluid flow in a porous media 

 Flow and heat transfer of Cross fluid with nanoparticles. 
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