
Blockchain Application for Academic

Documents Verification

By

Asad Hayat

00000119891

Supervisor

Dr. Jamil Ahmad

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MS COMPUTATIONAL

SCIENCE AND ENGINEERING

Research Center for Modelling and Simulation (RCMS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

September 2018

Declaration

I, AsadHayat declare that this thesis titled "DocChain: Academic Documents Verifica-

tion on Blockchain" and the work presented in it are my own and has been generated

by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Science

degree at NUST

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly at-

tributed

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work

5. I have acknowledged all main sources of help

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself

Asad Hayat,

00000119891

i

This thesis is dedicated to my beloved Ammi and Abbu, Daji and

Chachi, my sisters, brothers and my fiancee.

Thank you for your everlasting prayers, love, sacrifices and warm

encouragement throughout my life. I couldn’t have reached this far

without your support.

ii

Acknowledgments

I would like to thank Almighty ALLAH who is the greatest of all, who has provided me

with strength to achieve this milestone. I would like to show my deepest gratitude to my

supervisor Dr. Jamil Ahmad for his support, guidance and mentor-ship throughout this

project. I sincerely appreciate the efforts of my GEC members Dr. Mian Ilyas Ahmad,

Dr. Sana Ajmal and last but not the least Dr. Muhammad Tariq Saeed for giving their

insightful input at every step.

I am highly obliged to my all family members, without their unending support, tolerance

and prayers it was impossible to complete this work.

iii

Contents

1 Introduction 1

1.1 Introduction to Blockchain . 1

1.2 Applications of Blockchain . 1

1.2.1 Cryptocurrency Applications . 2

1.2.2 Non Cryptocurrency Applications 3

1.3 Documents Forgery and Fake Degrees 4

1.4 Problem Statement . 5

1.5 Aim and Objectives . 5

2 Overview of Blockchain in Context of Bitcoin 7

2.1 Centralized, Decentralized and Distributed Systems 7

2.2 Cryptography Concepts . 8

2.2.1 Cryptographic Hash Function . 8

2.2.2 Collision in Cryptographic Hash Functions 9

2.2.3 Public Key Cryptography . 9

2.2.4 Byzantine General Problem . 11

2.3 Bitcoin . 11

2.3.1 Transactions . 12

2.3.2 Block . 14

2.3.3 Genesis Block . 16

iv

Contents

2.3.4 Blockchain . 16

2.3.5 Merkle Tree . 16

2.3.6 Bitcoin Mining . 20

2.3.7 Forks and Side Chains . 21

2.4 Ethereum . 22

2.5 Hyperledger . 23

3 Hyperledger Fabric 25

3.1 Hyperledger Fabric Network . 25

3.1.1 Transactions . 26

3.1.2 State . 26

3.1.3 Ledger . 26

3.1.4 Nodes . 27

3.2 Channel . 28

3.3 Chaincode . 29

3.4 Certificate Authority . 29

4 Blockchain Solution 31

4.1 Development Environment . 31

4.1.1 Installing Fabric Binaries and Docker Images 32

4.1.2 Generating Artifacts . 33

4.1.3 Channel Configuration Transaction 34

4.1.4 Starting Network . 35

4.1.5 Creating Channel . 35

4.1.6 Joining Channel . 35

4.1.7 Updating Anchor Peers . 36

4.1.8 Installing and Instantiating Chaincode 37

5 Development and Testing of Blockchain Solution 38

v

Contents

5.1 Participants and Use Case . 38

5.1.1 Governing Body . 38

5.1.2 Organizations (Universities) . 39

5.1.3 Degree Signers . 40

5.1.4 Employer/Verification Point . 41

5.2 Chaincode Development . 42

5.2.1 University Structure . 42

5.2.2 Department Structure . 43

5.2.3 Program Structure . 44

5.2.4 Specialization Structure . 44

5.2.5 Degree Structure . 45

5.2.6 CNICDegree Structure . 45

5.3 Development of Web Application . 45

5.3.1 University Admin Routes . 46

5.3.2 Exam Admin Routes . 46

5.3.3 Signing Routes . 46

5.4 Web Application Interface . 46

5.4.1 University Admin . 46

5.4.2 Exam Admin . 51

5.4.3 Degree Signing . 51

5.5 Testing of Blockchain Application . 57

5.5.1 University Admin . 57

5.5.2 Exam Admin . 62

5.5.3 Signing Degree . 65

5.5.4 Verification of Degree . 68

6 Discussion, Conclusion and Future Work 69

vi

Contents

6.1 Discussion . 69

6.2 Conclusion . 70

6.3 Future Work . 71

A Cryptographic Configuration 75

B Configuration Transaction 77

C Sample Network Configurations for docker-compose 81

C.1 YAML code for Docker Compose . 82

C.2 Starting the network . 96

vii

List of Figures

2.1 (A) Centralized System, (B) Decentralized System and (C) Distributed

System [17]. 8

2.2 View of real Bitcoin transaction. 12

2.3 Transactions for a specific Address . 13

2.4 An illustration to view how blocks are linked in the blockchain [22] . . . 17

2.5 Graphical representation of Merkle Tree [22] 19

2.6 Balancing of Merkle Tree with odd number of nodes. [22] 19

2.7 Illustration of using Merkle Path to verify a transaction. [22] 20

2.8 Illustration of Proof of Work. [23] . 21

2.9 Illustration of chain split. [23] . 22

2.10 Longest chain is the official chain. [23] 23

3.1 Illustration of Transaction flow in Hyperledger Fabric 28

3.2 High level overview of a typical Hyperledger Fabric Network. 30

5.2 Use Case Diagram: Exam Admin. 39

5.1 Use Case Diagram: University Admin. 40

5.3 Use Case Diagram: Principal. 41

5.4 Use Case Diagram: Registrar. 41

5.5 Use Case Diagram: Rector. 41

5.6 Chaincode Class Diagram . 43

viii

List of Figures

5.7 Sequence Diagram - Register University 47

5.8 Sequence Diagram - Add Department 48

5.9 Sequence Diagram - Add Program . 49

5.10 Sequence Diagram - Add Specialization 50

5.11 Sequence Diagram - Add Degree. 52

5.12 Sequence Diagram - View Degree. 53

5.13 Sequence Diagram - Signing Degree by Principal. 54

5.14 Sequence Diagram - Signing Degree by Registrar. 55

5.15 Sequence Diagram - Signing Degree by Rector. 56

5.16 Snapshot - Login View. 57

5.17 Snapshot - University Admin Dashboard at first login. 58

5.18 Snapshot - University Admin, registering university. 59

5.19 Snapshot - University Admin Dashboard, after university is registered. . 59

5.20 Snapshot - University Admin, Department details input. 60

5.21 Snapshot - University Admin, Departments list. 60

5.22 Snapshot - University Admin, Add Program. 61

5.23 Snapshot - University Admin, Add Specialization. 61

5.24 Snapshot - Exam Admin, Home Page. 62

5.25 Snapshot - Exam Admin, Add Degree. 63

5.26 Snapshot - Exam Admin, Add Degree, Success Response. 64

5.27 Snapshot - Exam Admin, Add Degree, Error Response 64

5.28 Snapshot - Exam Admin, View Degree 65

5.29 Snapshot - Exam Admin, Degree not found error. 65

5.30 Snapshot - Principal, Signing List. 66

5.31 Snapshot - Registrar, Signing List. 66

5.32 Snapshot - Rector, Signing List. 66

5.33 Snapshot - Degree Issued. 67

ix

List of Tables

2.1 Major fields in a Bitcoin block . 14

2.2 Structure of Block Header . 15

C.1 List of Peers, Orderers and Certificate Authority in each organization. . 82

x

List of Abbreviations and

Symbols

Abbreviations

BTC Bitcoin

ETH Ethereum

HL Hyperledger

HLF Hyperledger Fabric

LF Linux Foundation

CC Chaincode

CA Certificate Authority

POW Proof of Work

SHA Secure Hash Algorithm

xi

Abstract

Blockchain is an innovative technology that has the potential to overhaul our approach

to many problems and issues which previously did not seem possible. Blockchain is

distributed ledger technology in which record of different transactions are stored on

continuously growing ledger. This ledger of transactions are kept on different peers of

network in a way that make it tamper proof. Data on blockchain is highly secured by

the use of cryptography and network structure of blockchain makes it almost impossible

to hack. Moreover, transactions on blockchain are immutable, auditable and traceable.

Fake and forged academic documents is a major issue that organizations face worldwide.

Particularly in Pakistan, verification of academic documents is a time consuming process

that may require up to several days which prolong administrative processes of organiza-

tions. In this research we design and implement an approach to issue academic degrees

on blockchain, which can be verified by an employer by using Computerized National

Identity Card (CNIC) number of an individual. The proposed solution for academic

documents verification is a developed using Hyperledger Fabric. The chaincode (smart

contract) is developed in Go programming language. Web Interface of the application is

implemented by using official NodeJS Software Development Kit (SDK) for Hyperledger

Fabric.

This system allows examination section to create degrees on the blockchain network

which is then signed by different officials. After creation of a degree, first it needs to be

signed by Principal, then by University Registrar and finally by University Rector. After

all the sign transactions, the degree is made available for verification to any organiza-

tion that have obtained proper network enrollment certificates from Higher Education

Commission (HEC) or University.

xii

Chapter 1

Introduction

1.1 Introduction to Blockchain

The term "Blockchain" first appeared in the white paper [1], presented by the inventor of

Bitcoin, Satoshi Nakamoto. In 2008, Satoshi Nakamoto sent an email to cryptography

mailing list, in which he proposed peer to peer electronic cash system with a solution

to double spend problem. The proposed cash system was designed to operate without

the requirement of a central authority to clear and validate transactions. Few months

later, in november 2008, Satoshi Nakamoto shared link to Bitcoin White-paper [1]. On 9

January, 2009, Satoshi Nakamota released Bitcoin v0.1 on cryptography mailing list[2].

Bitcoin network was created in january 2009, when Satoshi Nakamoto mined the first

block (genesis block) of the chain.

Transactions record of bitcoin are grouped in form of blocks. Each new formed block

is linked with previous block by storing hash of previous block in newly formed block.

This series of cryptographically linked blocks forms a chain, called Blockchain. Each

full node on the network maintain a copy of blockchain which is updated continuously

as new blocks are added by the network.

1.2 Applications of Blockchain

Blockchain is one of the most important innovation of this century. Although it is

primarily know for its association with cryptocurrencies, mainly bitcoin, blockchain has

the potential to alter many industries to its core.

1

Chapter 1: Introduction

1.2.1 Cryptocurrency Applications

Blockchain is driving almost all decentralized cryptographic currencies. There are about

two thousands cryptocurrencies with combined market capitalization of more than 200

billion dollars 1. Few major cryptocurrencies are:

• Bitcoin: Bitcoin is the first and largest cryptocurrency by market capitalization.

Transactions are grouped in blocks, which are verified by network through mining.

Algorithm used for mining by Bitcoin network is called Proof of Work. On average,

a block is generated every 10 minutes. With every block mined, specific number

of bitcoins is awarded to miner. This block reward is halved every four years

until total number of bitcoins on the network is reached to its upper cap, 21

million bitcoins. Bitcoin core software is open source and is maintained by group

of developers, called Bitcoin Core Developers[1].

• Ethereum: Ethereum is open source, distributed blockchain platform with sup-

port of smart contract functionality. Ether is cryptocurrency on ethereum plat-

form, which ,like bitcoin, is used to transfer credit between accounts and reward

miners. Ethereum also use Proof of Work as consensus algorithm.

Smart contracts for ethereum platform are written in special programming lan-

guage called Solidity. Solidity is a java script styled programming language and is

developed specially for developing smart contracts for ethereum platform [3].

• Bytecoin: Bytecoin is open source cryptocurrency that uses CryptoNote technol-

ogy. Bytcoin is different from bitcoin and ethereum, as it ensures anonymous cash

settlement. Bytcoin was developed independently from bitcoin as a true private

cryptocurrency based on CryptoNote technology[4].

• Ripple: Ripple is a decentralized payment protocol designed for instant, secure

and nearly free global transactions of any size. Ripple network uses cryptocurrency

called XRP. Ripple is continuously expanding and has been adopted by many banks

and settlement companies across the globe[5].
1CoinMarketCap - www.coinmarketcap.com

2

Chapter 1: Introduction

1.2.2 Non Cryptocurrency Applications

Blockchain can be used in diffrent industries to improve transparency and services, and

reduce cost. Below are few scenarios where blockchain can be applied.

• Digital Identity: As blockchain, unlike traditional management systems, do not

require accounts and permission related to these accounts for managing digital

assets. On blockchain system, ownership of digital certificates or cryptographic

keys represents ownership of digital assets. Blockchain is continuously growing by

addition of new transactions and each transaction is signed by a cryptographic

keys to prove ownership of assets involved in transaction. This provide an efficient

and secure way to manage digital identities that avoid user to share personal

information[6][7].

• Financial Services

Blockchain has tremendous potential to improve various financial systems. Cur-

rent systems are slow, error prone and intermediaries are required to clear trans-

actions and resolve conflicts. Blockchain systems does not require intermediaries

for clearing transactions and conflict resolution. Trade processing and settlements,

Insurance claims processing and Cross border payment are few Use Cases[8].

• Supply Chain Management Blockchain has huge potential to increase trans-

parency and reduce costs of global supply chain. About 90% of goods in global

trade are carried by shipping. Processing documents and information for a con-

tainer shipment costs twice that of actual shipment2.

Every intermediary in the system maintains their own record independent from

others. This slow down the process and make the system prone to documentation

errors. Blockchain provide same ledger for all participants, thus greatly helps in

reducing documentation errors and speeding up the process.

Blockchain can be integrated with internet of things to record complete details

of conditions in which goods are shipped on the blockchain. This can greatly

improve the transparency for quality inspection to provide better end products to

consumer[9].
2https://youtu.be/dcddYatMCGQ?t=44

3

Chapter 1: Introduction

1.3 Documents Forgery and Fake Degrees

Even in this age of advanced digital communication, paper documents still holds very

important position. Advanced printing technologies provides various ways to print doc-

uments with special security features, but the same technology can also be accessed by

malicious users [10].

Document forgery is a process by which authorized documents are modified or unau-

thorized documents are fabricated for illegal usage[11]. Several techniques are used to

identify authentic documents. In [12], the author discusses the use of digital water-

marking for authentication of digital documents. In [13], the author propose the usage

of specialized fonts in documents to tackle documents forgery. Hidden information can

be embedded digital documents for verification purposes. This concept of using hid-

den information in digital documents is known as steganography [14] [15]. Although

these techniques makes forgery a difficult task but due to easy and cheap access to

technologies, these techniques can be used maliciously.

Forged academic degrees or diplomas have become a worldwide problem due to its

increasing commercial value. Academic achievements is used for employment access,

promotion, professional recognition and safe passage through immigration. Educational

records are also used as bargaining tool for better positions and salaries[16].

Today, where access to technology is cheaper than ever, forging an academic document

is not very difficult. With tens of thousands of educational institutes globally, verifying

the authenticity of an academic degree could also be a challenge. There are mainly

two points that needs to be verified in order to assure the authenticity of an academic

document. Firstly, it is assured that the issuing institute is legitimate and secondly,

the document at hand is actually issued by that particular institute and not forged

maliciously.

Another problem is that a legitimate document might be obtained illegally. In this type

of scenario the malicious actors have high level access to the issuing institute. In such

scenarios there is very low chance of tracing and detecting the illegal entry and audit of

the record might not be possible.

4

Chapter 1: Introduction

1.4 Problem Statement

Academic Degree is a document of proof issued by an educational institute stating

that the individual has studied a certain academic program at that particular institute.

Academic institutes issue degrees on paper with some unique features,like institute’s

seal, and signatures of officials.

The problem with the paper degree is that it can be illegally forged outside the institute

by malicious actors in society. These documents can be forged with such excellence that

it cannot be detected by common observation. Cases of using fake degree for employ-

ment has been on the news several times 3 in which applicants had successfully secured

employment position. The degree can be verified by contacting the issuing institute but

the process is slow and verification may require up to few days. Some institute also

offer verification portal, which is a quick way for degree verification. Although quick

and efficient, such portals maintain a central database which is a single point of failure.

Such portals are also prone to hacking and record can be altered without any detection.

In this thesis we are taking advantage of decentralized nature of blockchain to develop

a degree issuing and verification platform to address the issue of documents forgery.

Since the record on blockchain can be audited all the way to its origin, any alteration

of records can be detected and traced.

1.5 Aim and Objectives

Aim of this research is to develop a blockchain application for the verification of academic

documents. Objectives to develop this application are:

• Design a permissioned blockchain network for issuance and verification of academic

degrees.

• Design and model a blockchain solution for issuance and verification of academic

degrees.
3 https://www.thenews.com.pk/print/271370-more-than-1-100-pakistanis-paid-for-axact-degrees

https://tribune.com.pk/story/1660677/1-659-pia-employees-found-holding-fake-degrees-na-told/

https://tribune.com.pk/story/1706726/1-24-active-pia-pilots-fake-degrees-caa-informs-sc/

https://tribune.com.pk/story/674780/bogus-documents-ogdcl-suspects-109-officials-have-fake-degrees

https://www.thenews.com.pk/print/270174-axact-offered-fake-degree-to-bbc-reporter

5

https://www.thenews.com.pk/print/271370-more-than-1-100-pakistanis-paid-for-axact-degrees
https://tribune.com.pk/story/1660677/1-659-pia-employees-found-holding-fake-degrees-na-told/
https://tribune.com.pk/story/1706726/1-24-active-pia-pilots-fake-degrees-caa-informs-sc/
https://tribune.com.pk/story/674780/bogus-documents-ogdcl-suspects-109-officials-have-fake-degrees
https://www.thenews.com.pk/print/270174-axact-offered-fake-degree-to-bbc-reporter

Chapter 1: Introduction

• Develop and Deploy a smart contract that enables users to issue and verify aca-

demic degrees.

• Design and develop web user interface for interaction with blockchain network.

• Testing of network and application using docker containers.

• Deployment of application on physical network.

6

Chapter 2

Overview of Blockchain in

Context of Bitcoin

2.1 Centralized, Decentralized and Distributed Systems

Computer Network Systems can be classified as centralized systems, decentralized sys-

tems and distributed systems based on arrangement of connectivity among different

nodes. These systems can be described briefly as:

• Centralized Systems:

In Centralized Systems there is a central node to which every other node are

connected. Centralized systems have central entity which controls and manage

the whole system. If central entity is compromised the whole system goes down.

• Decentralized Systems:

Decentralized systems do not have a single central point of control, thus no single

point of failure. If one node is compromised, it does not compromise the whole

network but few nodes that are connected through the compromised node.

• Distributed Systems:

In Distributed Systems every node is connected to one or more adjacent nodes.

There is no single point of failure. If a node is compromised it does not affect the

network. The nodes that were connected to compromised node may already be

connected to other nodes or can form new connections to stay connected in the

network.

7

Chapter 2: Overview of Blockchain in Context of Bitcoin

Figure 2.1: (A) Centralized System, (B) Decentralized System and (C) Distributed System

[17].

2.2 Cryptography Concepts

2.2.1 Cryptographic Hash Function

A cryptographic hash function is a one to one mapping function that takes any arbitrary

input and map it to a fixed length alphanumeric output. The alphanumeric output is

called hash value, fingerprint, digest or signature of the input [18]. There are many

types of cryptographic hash functions, but the one that is of interest in this discussion is

SHA256. SHA stands for Secure Hash Algorithm. There are three different families of

SHA algorithms, SHA-0, SHA-1 and SHA-2. There are many hash functions in SHA-2

family, which uses same algorithms with different numbers of output bits. For example

SHA-256 produces hash of 256 bits and SHA-512 outputs 512 bits hash[19].

Hash functions are one way functions, we can easily compute hash of any arbitrary

input, but given a hash value, it is computationally infeasible to find the corresponding

input.

8

Chapter 2: Overview of Blockchain in Context of Bitcoin

2.2.2 Collision in Cryptographic Hash Functions

The take away from above paragraph is that if we feed any arbitrary input to a particular

cryptographic hash function we will get a fixed length hash string. No matter how many

times we provide a specific input, we will get same output. As the output is of fixed

length, no matter what the size of input data is, we have a finite set of outputs that a

particular hash function can produce. The variation of input data that we can provide

to a hash function is infinite. So without any doubt we can say that, there exists same

output for two different inputs. This same hash of two different inputs is called collision.

This problem of collision can be stated as,

Find two different inputs m1 and m2,

such that

m1 6= m2

hash(m1) = hash(m2) = h

where

m1, m2 ∈M, h ∈ H

.

In this statement M is an infinite sized state space, where as H has 2n elements, where

n is the number of bits in output of hash function.

Here we can easily infer that H ⊂M , because we can also provide hash value of specific

message as input to hash function. So it is possible to find m1 and m2, such that

hash(m1) = hash(m2).

For example, SHA-256 produces 256 bit long alphanumeric hash value. So the total

number of hashes that SHA-256 can produce is 2256. So we can certainly say that there

would be at least one collision for 2256 + 1 different inputs.

Although, theoretically, we can prove that a collision exists, but practically finding a

collision is computationally infeasible.

2.2.3 Public Key Cryptography

Public Key Cryptography is a cryptographic system that uses pair of keys, public key and

private key. Public key, as its name indicates, can be shared publicly, while private key

9

Chapter 2: Overview of Blockchain in Context of Bitcoin

is meant to keep private. Although this keys pair is mathematically related, computing

private key from public key is computationally infeasible.

This Private/Public keys pair is used to authenticate that a specific message is signed

by a specific sender. First a message is signed by by sender using its private key. Then

the sender share the message, message signature and public key with receiver. Now the

receiver can verify the message using message, message signature and public key[20].

Without going into low level details of this process, at high level two main operations

involved in this message sharing are.

• Signing of Message As stated the message is signed by sender using message

and private key using sign() operation. The prototype of sign() operation is as

following.

sign(Message, PrivKey) = Signature

The signature generated by sign() operation is different for different messages.

This ensures that no one can just take a signature of one message and attach with

another.

Now the sender shares Message, Signature and corresponding Public Key with

receiver.

• Verification of Message The receiver receives the Message, Signature and Public

Key of the sender. He can verify the message using verify() operation to make sure

that the message has not been tampered during its transmission from the sender.

The prototype of verify() operation is as following.

verify(Message, Signature, PublicKey) = T/F

As evident from the prototype, the verify operation is a boolean operation. It

returns True if the message is not tampered and input combination is correct. If

the message is tampered or the input combination is not correct, it will return

False.

The inside details of these operations are above the scope of this work, but the

take away from this discussion is that it is computationally infeasible to find a

10

Chapter 2: Overview of Blockchain in Context of Bitcoin

valid signature without knowing the private key.

2.2.4 Byzantine General Problem

Consider a city surrounded by several divisions of Byzantine Army. Each division is

headed by a General some of which are traitors. The strategy is that all divisions

must attack or retreat together. The city can not defeat Byzantine army if all divisions

attack at once, but have enough resources to defeat them if one or more divisions retreat.

These divisions of Byzantine Army communicate through messengers, who have to pass

through the city under-attack, to transfer messages between different divisions and city’s

defence can intercept and tamper these messages.

The problem is to devise a mechanism in this trust-less environment, so that all division

are in consensus about whether to attack or retreat.

Byzantine General’s problem is used in context of a fault tolerant system, particularly

distributed system, where components might fail and the information about status of

these components is not authentic. This cause confusion in failure detection system, be-

cause in order to shut down a component, failure detection system must be in consensus

regarding the status of component[21].

There are different solutions presented to different variants of Byzantine General’s Prob-

lem. In Bitcoin network Proof of Work 2.3.6 is used to reach consensus among peers.

2.3 Bitcoin

Bitcoin is the cryptographic currency conceptualized and developed by Satoshi Nakamoto.

It is the first cryptographic currency among more than fifteen hundreds others. Users

can perform transactions by transferring bitcoins from their wallet to receiver wallet by

sending it to receiver’s bitcoin address. Bitcoin can be obtained either by mining or

by buying from other bitcoin user. In this section we will discuss bitcoin and bitcoin

protocol in detail.

11

Chapter 2: Overview of Blockchain in Context of Bitcoin

2.3.1 Transactions

In simple terms, transaction refer that the owner of some bitcoins has allowed the

transfer of some of the the bitcoins, that he owned, to another owner. After successful

transaction the new owner can now perform transaction by transferring some of bitcoins,

he got from first owner, to another owner and so on.

Transaction has an input and an output. Input bitcoins are the bitcoins that a sender

want to sends to a receiver and the output bitcoins are the bitcoins that receiver receives.

The number of input bitcoins are not necessarily adds up to number of output bitcoins.

Instead the output bitcoins are slightly less in number. The difference of input and

output bitcoins are received by miner as transaction fees, who perform computational

work to include transaction in the ledger. Lets dig a little deeper by inspecting a real

bitcoin transaction.

Figure 2.2: View of real Bitcoin transaction.

Above screen-shot shows data of a real bitcoin transaction. The sender with address

3Jwt3zLs3Q4d7sQyKZJCSfP2ULs6dtfBVs sends 0.01529282 BTC to receiver with ad-

dress 349yShbhGmzqzapkFMQhuUoytT2pPrcUAG. But how does the bitcoin protocol

12

Chapter 2: Overview of Blockchain in Context of Bitcoin

ensures that the sender actually have the amount he is sending to receiver. As stated

every transaction is recorded on the ledger, so by inspecting the ledger for transactions

involving this specific sender. Final net balance of this sender must be greater or equal

to the amount he is sending (0.01529282 BTC). The following screen-shot shows actual

transactions involving this specific sender, 3Jwt3zLs3Q4d7sQyKZJCSfP2ULs6dtfBVs.

We can inspect the ledger to verify the balance of a specific sender. Fig 2.3 shows that the

sender received 0.01539282 BTC from 1Lsu6Hs27BRc-6iqBqAdcbs58N788gbB6iZ just

about half an hour before he send it to 349yShbhGmzqzapkFMQhuUoytT2pPrcUAG.

So in Bitcoin Network, there is a chain of transaction where output of one transaction

is the input of another.

Figure 2.3: Transactions for a specific Address

There is a problem, a big problem, in the scenario that we have built so far. The problem

13

Chapter 2: Overview of Blockchain in Context of Bitcoin

is that how can we prevent someone to spent on behalf of another user, since the ledger is

public and anyone can add transactions to the ledger. This is where public/private key

cryptography comes in play, Section 2.2.3. To put in simple terms, the sender signs the

transaction using his private key and broadcast the signed transaction to the network.

Other participants (miners) on the network receives the transaction, verify it using the

public key of the sender, verify that sender has sufficient balance by inspecting chain of

transaction on the ledgers and if all goes well, the transaction is validated and added to

the block. This process of validation of transaction and addition of transaction to ledger

is not so straight forward. Transactions are bundled in blocks and are added to ledger

by special nodes called miners. Miners compete each other to solve a special puzzle,

difficult to solve and easy to verify, and the winner gets to add the block to ledger. The

winner is rewarded with few freshly created bitcoins and transaction fees of transactions

in the block. Since all nodes on the network must maintain same ledger, there must be

consensus among nodes about transactions and order of transactions to be included in

the ledger.

Before discussing about consensus and mining we need to discuss the structure of ledger

maintained by participants in the bitcoin network.

2.3.2 Block

Blockchain is list of blocks of transactions. On average, new block is created every 10

minutes on bitcoin network. Each new block formed is linked with previous block by

referring to SHA-256 hash of previous block.

A typical block has four major fields.

Field Description

Block Size Size of block in bytes

Block header Multiple header fields

Transaction Counter Number of transactions included in this block

Transactions Transactions included in this block

Table 2.1: Major fields in a Bitcoin block

Let us discuss these fields one by one in details.

14

Chapter 2: Overview of Blockchain in Context of Bitcoin

Block Size is simple and self explanatory. It stores the size of block in bytes, excluding

itself.

Block Header

Header of Block contains several fields, like, Version, Previous Block Hash, Merkle Root,

Timestamp, Difficulty Target and Nonce.

Field Description

Version Version number of software/protocol used

Previous Block Hash Hash of previous block in the chain

Merkle Root Hash of root of Merkle-Tree of transactions

Timestamp Time of creation of this block

Difficulty Target POW Algorithm difficulty target

Nonce A number the miners have to find

Table 2.2: Structure of Block Header

The version number is used to track software/protocol updates. Previous Block Hash

links this block with parent block by using SHA-256 hash of previous block. Merkle

Root refers to the the hash of root of Merkle-Tree of transactions. Timestamp refers to

the approximate time of creation of this block, in seconds from Unix Epoch. Timestamp,

Difficulty Target and Nonce is related to mining and will be discussed in Bitcoin Mining,

Section 2.3.6.

Cryptographic hash of a block is its primary identifier.A block can be independently

identified by any node using block hash without any ambiguity.

Another identifier of a block is its position in the blockchain, called block height. The

first block of the blockchain have block height of zero. Unlike block hash, block height

is not unique identifier because a single block height can refer to more than one block.

Blockchain can grow side chain where blockchain splits in multiple chains. This com-

monly happens when there is a major upgrade in bitcoin protocol or two independent

miners mined same block independently. Forks and side chain are discussed in Section

2.3.7, Forks and Side Chains [22].

15

Chapter 2: Overview of Blockchain in Context of Bitcoin

2.3.3 Genesis Block

Genesis Block is the first block of the blockchain. It does not have any parent block and

its Previous Block Hash field’s value is "000-

00000000000000000000000". Genesis block of bitcoin was mined by Bitcoin’s creator

Satoshi Nakamoto at 2009-01-03 18:15:05.

2.3.4 Blockchain

Nodes on bitcoin maintain a local copy of blockchain. Local copy have all transactions

ever occurred on the network starting from genesis block. As new transactions are

performed, new blocks are formed. Nodes continuously updates local copy of ledger by

adding these new blocks to remain in synchronization with other nodes.

As the node receive new block, it validates it by validating the transactions in the block

and check that proof of work has been performed on the block. Now the newly received

block has to be linked after the last block of the local copy. The node will inspect the

"previous block hash" field in the header of new block and compare it with hash of last

block from local copy of ledger. If the two hash values are same, the new block is child

of the last block and are linked cryptographically.These blocks link to form a chain of

blocks called Blockchain (Figure 2.4).

2.3.5 Merkle Tree

Merkle Tree provides an efficient way to verify that a specific transaction exist in the

block. Each block uses Merkle Tree to store summary of all transactions.

Merkel Tree, like Binary Tree, is a Binary Hash Tree, which is used to verify the integrity

of large data sets. It is formed by the recursive hashing of pairs of nodes until until there

is a single node called root node. In bitcoin double SHA-256 is used in Merkel Trees.

Complexity and computation time of Merkel trees are same as that of Binary Trees,

which makes it an efficient approach to verify if a transaction is included in block. To

see how Merkel trees are used in bitcoin, let us apply it on sample scenario of four

transactions, Transaction A,B,C and D. HA, HB, HC and HD denotes double hashes of

transactions A, B, C and D respectively.

16

Chapter 2: Overview of Blockchain in Context of Bitcoin

Figure 2.4: An illustration to view how blocks are linked in the blockchain [22]17

Chapter 2: Overview of Blockchain in Context of Bitcoin

HA = SHA256(SHA256(TransactionA))

HB = SHA256(SHA256(TransactionB))

HC = SHA256(SHA256(TransactionC))

HD = SHA256(SHA256(TransactionD))

The parent node is formed by concatenating hashes of two consecutive pairs and then

hashing them together.

For example:

HAB = SHA256(SHA256(HA + HB))

This process is recursively performed until there is a single node, called Merkle Root.

Example is illustrated in Figure 2.5.

Merkle Tree needs even number of nodes, since it is a binary tree. If there are odd

number of transactions in a bitcoin block, the last transaction is duplicated to make

total number of nodes even. This process is called balancing of tree and is illustrated in

figure 2.6.

To verify that a specific transaction is included in a block, we need to produce only

Log2(N) hashes of merkle path that connects a specific transaction to merkle root.

In example, illustrated in figure 2.7, to verify that "Transaction K" is included in block,

we need a Merkle Path. In diagram (figure 2.7), the Merkle Path consists of four

hashes, HL,HIJ ,HMNOP and HABCDEF GH as indicated by blue nodes. With Merkle

Path provided we can verify that Transaction K is included in block by computing HK ,

HKL, HIJKL, HIJKLMNOP and the the Merkle Root. If the Merkle Root computed is

identical to that stored in block then Transaction K is included in block.

18

Chapter 2: Overview of Blockchain in Context of Bitcoin

HA

Hash(Tx A)
HB

Hash(Tx B)
HC

Hash(Tx C)
HD

Hash(Tx D)

HAB

Hash(HA + HB)
HCD

Hash(HC + HD)

HABCD

Hash(HAB + HCD)

Merkle Root

Figure 2.5: Graphical representation of Merkle Tree [22]

HA

Hash(Tx A)
HB

Hash(Tx B)
HC

Hash(Tx C)
HC

Hash(Tx C)

HAB

Hash(HA + HB)
HCC

Hash(HC + HC)

HABCC

Hash(HAB + HCC)

Merkle Root

Figure 2.6: Balancing of Merkle Tree with odd number of nodes. [22]

19

Chapter 2: Overview of Blockchain in Context of Bitcoin

HA HJ HOHN HPHMHK HLHIHHHB HC HD HE HGHF

HAB HOPHMNHKLHCD HEF HIJHGH

HABCD HEFGH HMNOPHIJKL

HABCDEFGH HIJKLMNOP

HABCDEFGHIJKLMNOP

Figure 2.7: Illustration of using Merkle Path to verify a transaction. [22]

2.3.6 Bitcoin Mining

Mining is the process in which new bitcoins are generated by the miners. Each miner

on the network compete to generate new block. To generate new block, miners have

to solve a puzzle, called proof of work. The first miner to solve the puzzle wins the

competition and are rewarded with newly created bitcoins and all the transaction fees

associated with transactions included in the block.

Proof of work is a competition among miners in which they have to find SHA-256 hash

of the block that possesses a certain property. As SHA-256 output is large 256 bits

hexadecimal value, the miner’s goal is to find a hash value that is less than a specific

hash value, called threshold value. The first miner to find this specific value wins the

competition and his version of block, after verification by other miners, is added to

blockchain by other nodes. A hash function produces same hash value for same input.

So how does we vary hash of block, for same block as input output must be same. To

variate hash value of block we vary a special field in block header, called Nonce as shown

in table-2.2. To find a hash that is less than threshold value, miner change value in nonce.

When nonce changes so does hash of the block. Since the output of hash function is

not predictable, the miner has no choice but to increment nonce and check block hash

against threshold. Each miner has different contents in the block, transactions and its

20

Chapter 2: Overview of Blockchain in Context of Bitcoin

Figure 2.8: Illustration of Proof of Work. [23]

order is different and reward address is different along with other other fields, so the

hash of block against a specific nonce value is different for each miner.

The bitcoin protocol automatically adjusted difficulty level of problem (threshold value)

so that the miners solve a block in about 10 minutes average. If the miners is solving

the puzzle in less than 10 minutes, the difficulty is increased and if the block is solved

in more than 10 minutes, the difficulty is decreased.

To summarize, proof of work is finding a value of nonce in about 10 minutes, so that the

hash value of block is less than the threshold value dynamically set by bitcoin protocol.

2.3.7 Forks and Side Chains

As stated bitcoin network relies heavily on consensus to function properly. So what

happens when two miners solves a block in about same time? When this happens both

miners broadcast their blocks to the network. Other miners receive both blocks but their

work on finding solution of next block will be based on whatever block they received

21

Chapter 2: Overview of Blockchain in Context of Bitcoin

first.

Miner A and Miner B are two miners that have solved same block in about same time.

Both miners, Miner A and Miner B, broadcasts their blocks to the network. Assume

that 50% of miners receive block from Miner A first and other 50% receive block from

Miner B first. This situation is illustrated in Figure 2.9

Figure 2.9: Illustration of chain split. [23]

At this point there are two versions of blockchain on the bitcoin network. Half miners

have Miner A’s block and other half have Miner B’s block. Only one of these versions

will survive so as to maintain consensus on the network. The survival of a version

depends upon the next block to be mined. If next block is mined by a miner who is

maintaining Miner A’s block first, then the blockchain with Miner A’s block will be the

longest. Similarly if a miner maintaining Miner’s B block mines the next block first,

Miner B’s version will be the longest. At the end the longest chain is official version of

blockchain. The miners who are maintaining other version drops the block and adopt

the official version. This block, dropped by miners is called orphan block. This process

is illustrated in Figure 2.10.

2.4 Ethereum

Ethreum is a blockchain platform specifically designed to support smart contracts.

Smart contracts are programs that lives on ethereum blockchain. It can send and

22

Chapter 2: Overview of Blockchain in Context of Bitcoin

Figure 2.10: Longest chain is the official chain. [23]

receive funds. Source code of smart contract is public and immutable, so a properly

designed smart contract can act as a trusted third party. Ethereum smart contracts are

written solidity. Solidity is a special, JavaScript like, programming language developed

for developing smart contracts on ethereum platform.

Ethereum platform has base cryptocurrency, called ether, that can be exchange on the

network. Ethereum also has concept of gas. Transactions needs gas to be executed

on ethereum network. Computational costs on the network are charged in form of

gas and enough gas should be paid by originator of transaction, for the transaction

to be executed on the network. Amount of gas to be paid depends on the amount of

computation needed for a transaction. Greater the amount of computation, greater gas

is charged. Smart contracts allow users to implement custom applications on ethereum

network. These applications are called Decentralized Applications or DApps in short.

2.5 Hyperledger

Hyperledger is an umbrella of projects hosted by Linux Foundation. Hyperledger hosts

several open source, enterprise grade blockchain projects which focus on providing

blockchain solutions to advance cross industry collaboration. Hyperledger projects also

focuses on improving performance and reliability of systems [24]. As of this writing, Hy-

perledger is hosting five projects, named, Hyperledger Fabric, Hyperledger Sawtooth,

Hyperledger Burrow, Hyperledger Indy, and Hyperledger Iroha.

• Hyperledger Fabric

Hyperledger Fabric is being actively developed by IBM. It is a permissioned

23

Chapter 2: Overview of Blockchain in Context of Bitcoin

blockchain and provide modular architecture. Its modular nature delivers high

degree of resilience and flexibility both in design and implementation. Hyper-

ledger fabric support chaincode (Smart Contracts on Fabric) to be written on

any language. Currently support Go, NodeJS, Java and many others are in the

line to be supported. Being permissioned blockchain, Hyperledger Fabric provide

high degree of confidentiality, as only registered users can join the network. Hy-

perledger Fabric also support channels, providing medium of private transactions

among multiple organizations.

Hyperledger Fabric is discussed in depth in chapter-3.

• Hyperledger Sawtooth

Hyperledger Sawtooth provides a modular platform for building and deployment

of distributed ledgers. Sawtooth is also a permissioned blockchain with support

of smart contracts. Sawtooth is highly modular and aims to keep smart contracts

safe for enterprise use.

• Hyperledger Burrow

Hyperledger Burrow provides permissioned and modular blockchain client with

interpreter partially developed for Ethereum Virtual Machine(EVM).

• Hyperledger Indy

Hyperledger Indy is a blockchain project that focuses on decentralized identity

solutions. These decentralized digital identity is inter-operable between different

domains and organizations.

• Hyperledger Iroha

Hyperledger Iroha is blockchain solution designed to be easily integratable with

other infrastructure projects. Iroha is also designed to be simple and easy to

manage.

24

Chapter 3

Hyperledger Fabric

Hyperledger Fabric is a distributed system that constitute of many components. We

can broadly divide Hyperledger Fabric in three main systems.

1. Hyperledger Fabric

2. Hyperledger Fabric Certificate Authority

3. Software Development Kits (SDKs)

Despite availability of default services, Hyperledger Fabric provides what is called plug

and play architecture. We can integrate any alternate service with hyperledger fabric to

deploy a working hyperledger fabric network. This allows the flexibility to modify the

system for a particular use case [25].

3.1 Hyperledger Fabric Network

In a nutshell Hyperledger Fabric blockchain is a distributed system consisting of many

peers that interact with each other. Hyperledger Fabric execute special program called

chaincode (smart contract in general), maintain state and ledger database and execute

transactions.Chaincodes are vital element as transactions are performed by special op-

erations on chaincode, called invocation of chaincode. Transaction needs to be endorsed

by other peers in the network and only endorsed transactions are committed to ledger

and have effect on state database. There are also special chaincodes, called system

chaincodes, for management of functions and parameters.

25

Chapter 3: Hyperledger Fabric

3.1.1 Transactions

The are two main types of transactions performed on Hyperledger Fabric network.

• Deploy Transaction

Deploy Transaction install a new chaincode on the blockchain network. Deploy

Transaction takes chaincode program as input parameter. Upon success it install

new chaincode on the blockchain network.

• Invoke Transaction

Invoke Transaction perform an operation in context of already deployed chaincode.

It performs a specific operation by executing a specific function from chaincode.

Invoke transaction take a function name and arguments as input in transaction

request. Upon success invoke transaction may update ledger and state data.

Deploy transaction is special case of invoke transaction on system chaincode, which

installs new chaincode on the network.

3.1.2 State

State represent the latest state of assets/data on blockchain. State is modelled as ver-

sioned Key Value Store (KVS). State is manipulated by chaincode using get and put

operations. get(k) reads blockchain state state for key k, and returns its value to chain-

code. put(k,v) add or update value v against key k.

Since transaction will be storing data persistently on blockchain, every updates are

logged on the blockchain ledger. This makes it possible to track various states of assets

(represented by KVS) all the way back to its inception on blockchain.

State database is maintained by peers and not by clients and orderers.

3.1.3 Ledger

Ledger is the verifiable record of all successful state change in hyperledger fabric. Ledger

is constructed by ordering service as ordered hash chain for blocks. Each block contains

array of ordered transactions. Ledger is maintained by all peers and optionally by

subset of orderers. Ledger maintained by peer is called PeerLedger, in context of peer,

and ledger maintained by orderer is called OrdererLedger, in context of orderer.

26

Chapter 3: Hyperledger Fabric

Orderers maintain ledger for fault tolerance. OrdererLedger have both valid and invalid

transactions submitted to network, thus providing complete history of transaction on

the network. Moreover, orderer may decide any time to prune ledger, since there is no

point of keeping invalid transactions forever.

Peers in addition to PeerLedger may maintain vLedger. vLedger is subset of PeerLedger

that contains only valid transactions. Blocks of vLedger are called vBlocks. A vBlock

can have zero transaction.

3.1.4 Nodes

Nodes are the entities that communicate each other on the blockchain network. Node

is just a logical term as a single physical service can run different types of nodes simul-

taneously.

There are three main type of nodes, namely client, peer, and orderer.

Client

Client is the endpoint where end user interact with the blockchain network. Client sub-

mit transaction to endorsers (peers) and and broadcast endorsed transaction to ordering

service. Client communicate with peers and orderers. Client create and thereby invoke

transactions.

Peer

Peers receive ordered state updates from orderer in the form of blocks and maintain

ledger and state database. Peers play an additional role of endorser. Peer can re-

ceive transaction proposal from client, simulate it w.r.t particular chaincode and return

endorsed response to client. Chaincode may specify endorsement policy that state nec-

essary and sufficient conditions valid transaction endorsement.

Orderers

Orders provide ordering service to the blockchain network. It can be implemented in

many ways. For development environment, a single centralized orderer node can be

27

Chapter 3: Hyperledger Fabric

used but for production multiple, distributed ordering nodes must be used to avoid

single point failure.

Orderers provides a communication channel shared by clients and peers. Clients connect

to this channel and broadcast messages(transactions) on the channel which are then

delivered to all peers. This channel provide atomic delivery of messages to guarantee

total order in the system. Peers then include these messages in blockchain state.

Figure 3.1: Illustration of Transaction flow in Hyperledger Fabric

3.2 Channel

Hyperledger is specially designed for enterprises to do business transactions on blockchain.

Usually business transactions among two organizations are confidential. Putting such

confidential data on a shared blockchain is not a good idea. To support such type of

confidential transactions, hyperledger is designed to support "Channels". A channel is

a private communication medium between two or more organization on the blockchain

network. Each channel maintain a separate ledger. So if a peer is member of more

than one channel will maintain multiple ledgers. Every organization that are part of

a channel have defined peer members, that can access transaction data on the ledger.

Channel can have multiple chaincodes. Each organization have to define an anchor peer

in the channel, through which cross organization communication is performed on the

channel.

28

Chapter 3: Hyperledger Fabric

Although one peer can be part of multiple channels and maintain multiple ledgers, data

from one ledger can not pass to other channel.

3.3 Chaincode

Chaincode is smart contract that implements business logic agreed upon on by member

of the network. Chaincode, currently, can be written in Go and NodeJS and eventually

in other programming languages such as Java. Chaincodes provides prescribed inter-

face. Chaincode run in docker container which keep it isolated from other processes of

endorsing peer. Chaincode manages transactions and ledger state on hyperledger fabric

network. State for a chaincode is exclusively scoped and other chaincodes cannot access

these states directly. However with appropriate permissions a chaincode can be invoked

by another chaincode to access its state.

Hyperledger Fabric offers two perspectives for a chaincode, chaincode developer and

chaincode operator. Chaincode developer develops chaincode for proper implementation

of required business logic. Chaincode Operator package, sign, install and initialize

chaincode on the network. Chaincode operator is also responsible for any subsequent

management of chaincode on the network.

3.4 Certificate Authority

Hyperledger Fabric provide an out of the box certificate authority, called Hyperledger

Fabric CA. Hyperledger Fabric CA is used to issue, revoke and manage participants

certificates on the network. Beside Hyperledger Fabric CA, any certificate authority

capable of issuing and managing ECDSA (Elliptic Curve Digital Signature Algorithm)

certificates can be used.

A high level schematic of a typical Hyperledger Fabric network is shown in Fig 3.2.

29

Chapter 3: Hyperledger Fabric

Peer 1 Peer 2 Peer 3 Peer N

Orderer 1 Orderer 2 Orderer 3 Orderer 4 Orderer K

Certificate Authority

CLIENT SDK

Figure 3.2: High level overview of a typical Hyperledger Fabric Network.

30

Chapter 4

Blockchain Solution

In this chapter we will be building blockchain solution for issuance and verification of

academic degrees.

After analyzing different blockchain platforms, we have selected hyperledger fabric as

development platform for our blockchain application. Primary reasons for selecting

hyperledger fabric as development platform are:

• Permissioned Blockchain

• Certificate Authority

• Organization Based Access

• Support of Channels

4.1 Development Environment

Hyperledger Fabric provides docker images for its different components and provide mul-

tiple options for developing chaincode. Hyperledger Fabric currently provide chaincode

development support in NodeJS and Go. Hyperledger Fabric also provides Software

Development Kit (SDK) for NodeJS and Java, for developing client applications.

We choose to develop chaincode in Go and NodeJS SDK for client application, as these

were only choices at the starting time of this development. Pre-requisite tools for devel-

opment environment for Hyperledger Fabric v1.2 are1:
1https://hyperledger-fabric.readthedocs.io/en/release-1.2/prereqs.html

31

Chapter 4: Blockchain Solution

• Docker CE 17.06.2 or greater

• Docker Compose v1.14.0 or greater

• Go v1.10.x

• NodeJS v8.9.x

• Node Package Manager (npm) v5.6.0

For development of chaincode in Go, standard go development environment setup is

required. We followed official guidelines for installation and configuration of Go devel-

opment environment2.

4.1.1 Installing Fabric Binaries and Docker Images

Hyperledger provides bootstrap Unix shell script that downloads all necessary binaries

and docker images required for running local Fabric network. List of tools downloaded

by the bootstrap script are as follow:

• cryptogen or Crypto Generator is used to generate cryptographic materials

(x509 certificates and signing keys) for various network entities. These crypto-

graphic materials represents identities of various network participants and allow

participants to sign and verify transactions.

• configtxgen or Configuration Transaction Generator is used to generate

some important configuration artifacts.

– Orderer genesis block

– Channel configuration transaction

– Anchor peer transaction

• configtxlator is used to translate between JSON and Protobuf version Fabric

data structures.

• peer has five commands which allows administrators to perform specific functions

related to peer. These commands are:
2https://golang.org/doc/install

32

Chapter 4: Blockchain Solution

– peer chaincode - for chaincode management related functions.

– peer channel - for channel management related functions.

– peer logging - for controlling and managing log stream.

– peer node - for starting and checking status of a peer node.

– peer version - prints version various Fabric components used by peer.

• orderer is used for starting ordering service.

• fabric-ca-client is used for managing identities and certificates.

• fabric-ca-server is used for starting certificate authority server.

4.1.2 Generating Artifacts

Configurations for required cryptographic certificates and signing keys are given in

Appendix-A. We write these cryptographic configurations in a text file, maintaining

valid yaml syntax. Now we feed this configurations file to cryptogen tool to generate

required certificated and signing keys. The cryptogen tool will generate cryptographic

materials in a separate folder, named crypto-config.

cryptogen generate --config=./crypto-config.yaml

Above bash command will create a folder named crypto-config with all the certificates

and signing keys for configurations defined in crypto-config.yaml file as specified by

–config flag in the command.

After creating cryptographic materials, we generated orderer genesis block using configtxgen

tool. Configurations for orderer genesis block are given in Appendix-B and are main-

tained in a file named configtx.yaml. Now we navigated to the directory where configtx.yaml

is located and executed following commands on the terminal.

export FABRIC_CFG_PATH=$PWD #Path to derectory of configtx.yaml

configtxgen -profile DocChainOrdererGenesis -outputBlock

./channel-artifacts/genesis.block↪→

configtxgen uses FABRIC_CFG_PATH environment variable to read configtx.yaml con-

figuration file and generate genesis block at path specified by -outputBlock option.

33

Chapter 4: Blockchain Solution

4.1.3 Channel Configuration Transaction

Now we need to create configuration transaction artifacts for the channel that we will

create on our blockchain network.

configtxgen -profile DocChainOrgsChannel -outputCreateChannelTx

./channel-artifacts/channel.tx -channelID docchain↪→

This command will create a channel configuration file, named channel.tx in folder

channelartifacts, alongside orderer genesis block we have created in previous section.

This command uses channel id, docchain, which will be the name of channel we are cre-

ating. This command also uses configtx.yaml file by leverging $FABRIC_CFG_PATH

environment variable.

Now we need to define anchor peer for each organization. Organizations are also defined

in configtx.yaml file and we will generate a configuration transaction file for each anchor

peer.

configtxgen -profile DocChainOrgsChannel -outputAnchorPeersUpdate

./channel-artifacts/NUSTMSPanchors.tx -channelID docchain -asOrg

NUSTMSP

↪→

↪→

This command define an anchor peer for organization NUST. Following commands de-

fines anchor peers for GIKI and LUMS.

configtxgen -profile DocChainOrgsChannel -outputAnchorPeersUpdate

./channel-artifacts/GIKIMSPanchors.tx -channelID docchain -asOrg

GIKIMSP

↪→

↪→

configtxgen -profile DocChainOrgsChannel -outputAnchorPeersUpdate

./channel-artifacts/LUMSMSPanchors.tx -channelID docchain -asOrg

LUMSMSP

↪→

↪→

These are all the configuration artifacts we need. Next we will be starting our Hyper-

ledger Fabric Network.

34

Chapter 4: Blockchain Solution

4.1.4 Starting Network

Network structure and configuration are discussed with detail in Appendix-C. We will

start our network as described in Appendix-C. After starting the network we will be

using cli container to create channel, add organizations to channel, define anchor peers

and install chaincode on the channel. To avoid mounting each container to have access

to configuration artifacts, we will mount the cli container to the folder that contains our

configuration artifacts and orderer genesis block. We will update the the environment

variables of cli container to run commands on behalf of different peers.

After we log in to cli container we will update its environment variables to run commands

on behalf of peer0 of organization NUST to create the channel.

4.1.5 Creating Channel

After starting the network and updating environment variables of cli container, we will

create channel named docchain on our network.

peer channel create -o orderer.nust.edu.pk:7050 -c docchain -f

./channel-artifacts/channel.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

ordererOrganizations/nust.edu.pk/orderers/orderer.nust.edu.pk

/msp/tlscacerts/tlsca.nust.edu.pk-cert.pem

↪→

↪→

↪→

↪→

This command returns a genesis block file, named docchain.block, with configurations

defined in channel.tx file. docchain.block is used by peers to join this particular channel.

The –cafile flag refers to the orderer certificate.

The channel ,docchain, is now created on the network.

4.1.6 Joining Channel

After successful creation of the channel, we need to join all peers of all organizations to

join the channel.

As we are in the cli container, we need to update environment variables one after other

for each peer and then join the peer to the channel.

35

Chapter 4: Blockchain Solution

peer channel join -b docchain.block

This command will make a particular peer join the channel depending upon the envi-

ronment variables of cli container.

4.1.7 Updating Anchor Peers

At this point our blockchain network is running, channel is set up and organizations

have joined the channel. Now we need to specify anchor peer for each organization.

Anchor peer enables cross organization communication for an organization.

NUST:

peer channel update -o orderer.nust.edu.pk:7050 -c docchain -f

./channel-artifacts/NUSTMSPanchors.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

ordererOrganizations/nust.edu.pk/orderers/orderer.nust.edu.pk

/msp/tlscacerts/tlsca.nust.edu.pk-cert.pem

↪→

↪→

↪→

↪→

GIKI:

peer channel update -o orderer.nust.edu.pk:7050 -c docchain -f

./channel-artifacts/GIKIMSPanchors.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

ordererOrganizations/nust.edu.pk/orderers/orderer.nust.edu.pk

/msp/tlscacerts/tlsca.nust.edu.pk-cert.pem

↪→

↪→

↪→

↪→

LUMS:

peer channel update -o orderer.nust.edu.pk:7050 -c docchain -f

./channel-artifacts/LUMSMSPanchors.tx --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

ordererOrganizations/nust.edu.pk/orderers/orderer.nust.edu.pk

/msp/tlscacerts/tlsca.nust.edu.pk-cert.pem

↪→

↪→

↪→

↪→

Note that we are using solo ordering service maintain by organization NUST at or-

derer.nust.edu.pk.

36

Chapter 4: Blockchain Solution

4.1.8 Installing and Instantiating Chaincode

At this point we are running a Hyperledger Fabric blockchain network with a channel

joined by all organizations. The final thing these organization require is a smart contract,

or chaincode, that they can invoke to perform transactions on the network. We will be

installing and instantiating a our chaincode for issuing and verification degrees. By

leveraging this chaincode any organization can issue degrees on this blockchain network.

peer chaincode install -n docchain -v 1.0 -p

github.com/chaincode/docchain/go/↪→

This command installs the docchain chaincode on the peer. After installing, the chain-

code needs to be initialized by some initial state.

peer chaincode instantiate -o orderer.example.com:7050 --tls --cafile

/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

ordererOrganizations/example.com/orderers/orderer.example.com/

msp/tlscacerts/tlsca.example.com-cert.pem -C docchain -n docchain -v

1.0 -c '{"Args":[""]}' -P "AND

('NUSTMSP.peer','GIKIMSP.peer','LUMSMSP.peer')"

↪→

↪→

↪→

↪→

↪→

This command initialize the docchain chaincode on the channel and also specifies mem-

bership policy. The membership policy defined by this command specifies that a trans-

action must be validated by at least one peer from all three organizations.

At this point we have a running Hyperledger Fabric network through which on-network

organizations can issue and verify degrees through command line. To make our appli-

cation more user friendly, we have developed a front end web interface for our network

through which users can leverage our blockchain application. Next chapter discusses

development of chaincode and and web interface for our blockchain application.

37

Chapter 5

Development and Testing of

Blockchain Solution

5.1 Participants and Use Case

We designed architecture of our network in light of Hyperledger Fabric. Participants of

our network are assigned specific roles as supported by Hyperledger Fabric. Each Uni-

versity is viewed as an organization with a certificate authority. Each department/school

of a university is department inside organization where at least one peer node is main-

tained. Although this is not a necessity, but its included to strengthen the network.

As mentioned each university is viewed as an organization in our blockchain network,

so a university has to maintain few peers, multiple orderers and a certificate authority.

Function and purposes of each of these components is discussed with details in chapter-

3. Each university has to join a common channel. The common channel is used by

universities to issue degrees that can be viewed by other universities and organizations

for verification purposes.

The main players in the network are:

5.1.1 Governing Body

Network is started by the governing body with creation of channel with proper chaincode

installed and initiated. Being a permissioned blockchain network, governing body can

add and remove organizations to and from the network. This allow governing body to

38

Chapter 5: Development and Testing of Blockchain Solution

stop unrecognized organizations from joining the network, which is the main reason for

choosing hyperledger fabric as our blockchain framework.

5.1.2 Organizations (Universities)

Every organization has a certificate authority, which issues signed certificates to other

participants of the university. These participants can be university admin, other inter-

mediate certificate authorities or department’s examination section. For simplicity of

our network we have only considered examination section of each department, where

degrees for corresponding department are issued.

University Admin

University Admin uses client certificate signed by root certificate of organization with an

attribute "university_admin=true". University is registered through this certificate on

blockchain. After registration, this certificate is used to register departments, programs

and specializations offered by each department. This structure is later used by Exam

Admin to issue degrees.

Exam Admin

Exam Admin uses client certificate signed by root certificate of organization with two

specific attributes, "exam_admin=true" and "department=Department Name". The

department attribute used in this certificate allows the admin to issue degrees for a

specific department.

Exam Admin

Create

Degree

Update

Degree

Figure 5.2: Use Case Diagram: Exam Admin.

39

Chapter 5: Development and Testing of Blockchain Solution

University Admin

Register

University

Update

University

Add

Department

Update

Department

Add Degree

Program

Update

Degree

Program

Add Degree

Specialization

Update

Degree

Specialization

Figure 5.1: Use Case Diagram: University Admin.

5.1.3 Degree Signers

After a degree is created by exam admin,it needs to be signed by three official bodies of

the university. After successful signing by all three officials, degree is viewed as verified

degree. These officials are:

• Department Principal/Dean

• University Registrar

• University Rector/Vice Chancellor

All three signers have client certificates with special attributes. Principal/Dean can only

40

Chapter 5: Development and Testing of Blockchain Solution

sign degrees issued by his/her department. After Principal/Dean sign the degree, it is

shown to Registrar in pending list for signing. After signing of registrar, degree is added

to pending list for signing of Rector/Vice Chancellor, where he/she can sign degree.

After signing of Rector/Vice Chancellor, a degree gains a status of valid degree on the

blockchain. Use case diagrams for Principal, Registrar and Rector are given.

Principal

Sign

Department

Degree

Figure 5.3: Use Case Diagram: Principal.

Registrar

Sign Degree

Figure 5.4: Use Case Diagram: Registrar.

Rector

Sign Degree

Figure 5.5: Use Case Diagram: Rector.

5.1.4 Employer/Verification Point

This is also a client certificate signed by either a registered organization or governing

body. This certificate has "verifier=true" attribute. This certificate provides access to

degree verification portal.

41

Chapter 5: Development and Testing of Blockchain Solution

5.2 Chaincode Development

Smart Contracts are called chaincode when working with Hyperledger Fabric Network.

Chaincode is programming logic deployed on Hyperledger Fabric network. Chaincode

implements two main methods, Init() and Invoke(). Init method is executed when an

initialize or upgrade operation is performed on chaincode. Invoke method is executed

when an invoke or query operation is performed on the chaincode. Interface of Init and

Invoke methods are as follow.

func (asset *CCAsset) Init(shim.ChaincodeStubInterface) peer.Response

func (asset *CCAsset) Invoke(shim.ChaincodeStubInterface) peer.Response

These are the entry points to chaincode and any operation that we need the chaincode

to perform will be triggered through these entry points. Init is only called when the

chaincode is initialized or upgraded and is mainly used to initialize initial states of

assets. Invoke is mainly called on query or invoke operation. In query operation any

updates in the state database or ledger is only simulated to compute final response and

do not result in any real updates of state database or ledger.While in invoke operation,

any updates to the state database are reflected throughout the channel and changes are

appended to ledger as a transaction.In this section we will be discussing our approach

to the development of chaincode for issuing and verification of academic degree.

Chaincode structure is illustrated in class diagram Figure 5.6. As evident from class

diagram(Figure 5.6), complete structure for a degree program is recorded on blockchain.

5.2.1 University Structure

A university is register by using Membership Service Provider ID (MSPID) as key.

So any certificate issued by a particular MSP will be treated as clients certificate of

same university. This functionality can be achieved by MSPID attribute in University

structure.

There are two methods associated with University structure, AddNewMSP () and GetUniversity().

When university organization is added to channel, the university admin has to register

the details of university on the blockchain. AddNewMSP () method is used to register

42

Chapter 5: Development and Testing of Blockchain Solution

University

+FullTitle:string
+AbbrTitle:string
+MSPID:string

+Departments:string[]
+City:string

+AddNewMSP():byte[]
+GetUniversity():byte[]

Department

+Title:string
+AbbrTitle:string
+University:string
+Programs:string[]

+AddNewDepartment():byte[]
+GetDepartment():byte[]

Program

+Title:string
+AbbrTitle:string
+Department:string
+Specializations:string[]

+AddProgram():byte[]
+GetProgram():byte[]

Specialization

+Title:string
+AbbrTitle:string
+Program:string

+AddSpecialization():byte[]
+GetSpecialization():byte[]

Degree

+SerialNumber:string
+RegistrationNumber:string
+CitizenshipNumber:string
+FullName:string
+DegreeLevel:string
+DegreeStartDate:string
+DegreeCompletionDate:string
+DegreeUniversity:string
+DegreeDepartment:string
+DegreeProgram:string
+DegreeSpecialization:string
+Status:string
+SignedBy:string[]

+NewDegree:byte[]
+GetDegreeByCNIC:byte[]
+GetDegreeByKey:byte[]
+GetDegreeHistoryByKey:byte[]

CNICDegree

+CNIC:string
+Degrees:string[]

Figure 5.6: Chaincode Class Diagram

university for blockchain. GetUniversity() return the details of the university by using

MSPID of the client certificate.

University structure also stores the ledger keys of all its departments in the Departments[]

slice.

5.2.2 Department Structure

After university is registered on blockchain, university admin can manage departments

of the university. University admin is also required to add the departments of the

university on the blockchain. Attributes for a department are given in class diagram,

fig-5.6.

There are two methods associated with Department structure, AddNewDepartment()

43

Chapter 5: Development and Testing of Blockchain Solution

and GetDepartment(). AddNewDepartment() is used to add new department in the

university and is only allowed to be executed by university admin. AddNewDepartment()

also updates Departments[] slice in University structure by adding ledger key of new

added department. Department structure also keep record of its university by main-

taining ledger key of university. In this way a direct relation is maintained between a

university and department.

5.2.3 Program Structure

A department may offer different academic programs. So after adding a department,

programs can be added to that department. Attributes for a degree program are given in

class diagram, fig-5.6. After a department is added, university admin can add programs

offered at particular department.

Program structure has two methods, AddProgram() and GetProgram(). AddProgram

adds new program for a particular department and add program ledger key to Programs[]

slice of Department structure. Program structure also maintains an attribute Department,

to keep record of the department it belongs to. In this way direct relation is maintained

between a department and program. An indirect relation between university and pro-

gram also exists through department.

5.2.4 Specialization Structure

A particular academic program can offer many specialization streams. After adding a

program, university admin can add specialization streams to that particular program.

Attributes for specialization are given in class diagram, fig-5.6.

Specilization structure has two methods, AddSpecialization() and GetSpecialization().

AddSpecialization() adds new specialization to program by adding specialization details

on blockchain and appending ledger key of specialization to Specializations[] slice of

Program structure. In this way specialization maintains a direct relationship with Pro-

gram, and indirect relationship with Department and university. GetSpecialization()

return details of specialization.

44

Chapter 5: Development and Testing of Blockchain Solution

5.2.5 Degree Structure

Degree structure provides interface to store degree on blockchain. Attributes related to

a degree are given in class diagram, fig-5.6. Degree structure provides four methods.

• NewDegree() adds degree to blockchain. A degree can be added by exam admin.

Degree structure has attributes to maintain direct relationship with university,

department, program and specialization. A degree, when created, is required to

be signed by principal,registrar and rector. Status attribute maintains current

status of degree.

• GetDegreeByCNIC() receives CNIC number as input and return all degrees

earned by the CNIC holder.

• GetDegreeByKey() receives degree ledger key and returns degree against that

particular key.

• GetDegreeHistoryByKey() receives degree ledger key and return complete his-

tory of transaction for the degree registered against that particular ledger key.

5.2.6 CNICDegree Structure

CNICDegree Structure is used to maintain degree records against CNIC. This structure

provide quick access to all degrees earned by an individual.

5.3 Development of Web Application

Web Application is developed using NodeJS server that will be running locally on client’s

computer. NodeJS server leverages Hyperledger Fabric NodeJS Software Development

Kit (Node SDK) to access blockchain network with ease. Moreover client can allow

other clients access to use NodeJS server.

For better structure and arrangement of web application we are using ExpressJS, a

NodeJS framework. The main routes (URL access points) of the application are divided

in following sections.

45

Chapter 5: Development and Testing of Blockchain Solution

5.3.1 University Admin Routes

These routes are prefixed by university_admin. Routes in this section can only be ac-

cessed by university admin and provide interface for managing university, departments,

programs and specializations.

5.3.2 Exam Admin Routes

These routes are prefixed by exam_admin. Routes in this section can only be accessed

by exam admin and provide interface for creating degree.

5.3.3 Signing Routes

These routes are prefixed by principal, registrarandrector. These routes can be ac-

cessed by principal, registrar and rector respectively to view and sign degrees.

5.4 Web Application Interface

Client can access application at a particular address and port that NodeJS server is

running on. At start client is presented with a Login form that require only username.

The web application automatically search for certificates at predefined path. If web ap-

plication found certificate, it determines user type associated with particular certificate

and route user to dashboard for that user type. From dashboard a user can perform

various operations as intended.

5.4.1 University Admin

University Admin registers and manages university on the blockchain. Firstly, univer-

sity admin register a university on the block chain. Registering of university is a one

time operation. Flow of registering a university is illustrated in fig-5.7. After university

is registered, university admin can add departments, programs offered at these depart-

ments, and specializations offered at each program. Sequence diagram illustrated in

fig-5.8 show the flow of adding a department, fig-5.9 shows flow of adding a program

to a specific department and fig-5.10 shows flow of adding a specialization to a specific

program.

46

Chapter 5: Development and Testing of Blockchain Solution

U
n

iv
e
rsity

A
d

m
in

L
o

g
in

U
n

iv
e
rsity A

d
m

in

D
a
sh

b
o

a
rd

S
m

a
rt

C
o

n
tra

c
t

L
e
d

g
e
r

Lo
g

in
 C

re
d

e
n

tia
ls

M
S

P

V
a
lid

a
te

 C
re

d
e
n

tia
ls

R
e
g

iste
r

U
n

iv
e
rsity

R
e
g

iste
r U

n
iv

e
rsity

U
n

ive
rsity

 D
a
ta

In
va

lid
 D

ata

V
a
lid

 D
a
ta

R
e
sp

o
n

se

R
e
sp

o
n

se

V
a
lid

a
te

 U
n

iv
e
rsity

A
d
m

in
 C

e
rtific

ate

In
va

lid
 C

e
rtifica

te
 w

ith
 a

ttrib
u

te
s

V
a
lid

 C
e
rtifica

te w
ith

 attrib
u

te
s

Figure 5.7: Sequence Diagram - Register University

47

Chapter 5: Development and Testing of Blockchain Solution

U
n

iv
e
rsity

A
d

m
in

L
o

g
in

U
n

iv
e
rsity A

d
m

in

D
a
sh

b
o

a
rd

S
m

a
rt

C
o

n
tra

c
t

L
e
d

g
e
r

Lo
g

in
 C

re
d

e
n

tia
ls

M
S

P

V
a
lid

a
te

 C
re

d
e
n

tia
ls

A
d

d
 D

e
p

a
rtm

e
n

t

A
d
d

 D
e
p

a
rtm

e
n
t

D
e
p

a
rtm

e
n
t D

ata

In
va

lid
 D

ata

V
a
lid

a
te

 U
n

iv
e
rsity

R
e
sp

o
n

se

R
e
sp

o
n

se

V
a
lid

a
te

 U
n

iv
e
rsity

A
d
m

in
 C

e
rtific

ate

In
va

lid
 C

e
rtifica

te
 w

ith
 a

ttrib
u

te
s

V
a
lid

 C
e
rtifica

te w
ith

 attrib
u

te
s

R
e
sp

o
n

se

In
va

lid
 U

n
iv

e
rsity

A
d
d

 D
e
p

a
rtm

e
n
t

Figure 5.8: Sequence Diagram - Add Department

48

Chapter 5: Development and Testing of Blockchain Solution

U
n

iv
e
rsity

A
d

m
in

L
o

g
in

U
n

iv
e
rsity A

d
m

in

D
a
sh

b
o

a
rd

S
m

a
rt

C
o

n
tra

c
t

L
e
d

g
e
r

Lo
g

in
 C

re
d

e
n

tia
ls

M
S

P

V
a
lid

a
te

 C
re

d
e
n

tia
ls

D
e

p
a
rtm

e
n

t

D
e
p

a
rtm

e
n
t

In
va

lid
 D

ata

V
a
lid

a
te

 U
n

iv
e
rsity

R
e
sp

o
n

se

R
e
sp

o
n

se

V
a
lid

a
te

 U
n

iv
e
rsity

A
d
m

in
 C

e
rtific

ate

In
va

lid
 C

e
rtifica

te
 w

ith
 a

ttrib
u

te
s

V
a
lid

 C
e
rtifica

te w
ith

 attrib
u

te
s

R
e
sp

o
n

se

In
va

lid
 U

n
iv

e
rsity

A
d
d

 D
e
p

a
rtm

e
n
t

A
d

d

P
ro

g
ra

m

A
d
d

 P
ro

g
ra

m

P
ro

g
ra

m
 D

ata

V
a
lid

a
te

 D
e
p
a
rtm

e
n
t

R
e
sp

o
n

se

In
va

lid
 D

e
p
a
rtm

e
n
t

Figure 5.9: Sequence Diagram - Add Program

49

Chapter 5: Development and Testing of Blockchain Solution

U
n

iv
e
rsity

A
d

m
in

L
o

g
in

U
n

iv
e
rsity A

d
m

in

D
a
sh

b
o

a
rd

S
m

a
rt

C
o

n
tra

c
t

L
e
d

g
e
r

Lo
g

in

C
re

d
e
n
tia

ls

M
S

P

V
a
lid

a
te

 C
re

d
e
n

tia
ls

D
e

p
a
rtm

e
n

t

D
e
p

a
rtm

e
n
t

In
va

lid
 D

ata

V
a
lid

a
te

 U
n

iv
e
rsity

R
e
sp

o
n

se

R
e
sp

o
n

se

V
a
lid

a
te

 U
n

iv
e
rsity

A
d
m

in
 C

e
rtific

ate

In
va

lid
 C

e
rtifica

te
 w

ith
 a

ttrib
u

te
s

V
a
lid

 C
e
rtifica

te w
ith

 attrib
u

te
s

R
e
sp

o
n

se

In
va

lid
 U

n
iv

e
rsity

A
d
d

 S
p

e
cia

liz
atio

n

P
ro

g
ra

m

P
ro

g
ra

m

S
p

e
cia

lizatio
n

V
a
lid

a
te

 D
e
p
a
rtm

e
n
t

R
e
sp

o
n

se

In
va

lid
 D

e
p
a
rtm

e
n
t

A
d

d

S
p

e
c
ia

liz
a
tio

n

S
p
e
cializa

tio
n

D
a
ta

V
alid

a
te P

ro
g
ram

R
e
sp

o
n

se
In

va
lid

 P
ro

g
ram

Figure 5.10: Sequence Diagram - Add Specialization

50

Chapter 5: Development and Testing of Blockchain Solution

5.4.2 Exam Admin

As stated exam admin can view and create degrees. The process of creating degree is

illustrated in sequence diagram in fig-5.11 and process viewing a degree is illustrated in

fig-5.12.

5.4.3 Degree Signing

As per our application design, after a degree is created by exam admin it needs to be

signed by Principal, Registrar and Rector to gain a verified status on blockchain. The

process of signing degree by Principal is illustrated in sequence diagram fig-5.13, signing

degree by Registrar is illustrated in sequence diagram fig-5.14 and signing degree by

Rector is illustrated in sequence diagram fig-5.15.

51

Chapter 5: Development and Testing of Blockchain Solution

E
xa

m
 A

d
m

in
L
o

g
in

E
xa

m
 A

d
m

in

D
a
sh

b
o

a
rd

C
re

a
te

D
e

g
re

e

S
m

a
rt

C
o

n
tra

c
t

M
S

P
L
e
d

g
e
r

Lo
g

in
 C

re
d

e
n

tia
ls

V
a
lid

a
te

 C
re

d
e
n

tia
ls

In
va

lid
 C

re
d

e
n
tia

ls

V
a
lid

 C
re

d
e
n
tia

ls

V
a
lid

a
te

 E
xa

m
 A

d
m

in

C
e
rtifica

te

R
e
sp

o
n

se

C
re

a
te

 D
e
g

re
e

D
e
g

re
e
 D

a
ta

V
a
lid

a
te

 D
ata

A
d
d

 D
e
g

re
e

In
va

lid
 D

ata

R
e
sp

o
n

se

R
e
sp

o
n

se

Figure 5.11: Sequence Diagram - Add Degree.

52

Chapter 5: Development and Testing of Blockchain Solution

E
xa

m
 A

d
m

in
L
o

g
in

E
xa

m
 A

d
m

in

D
a
sh

b
o

a
rd

V
ie

w
 D

e
g

re
e

S
m

a
rt

C
o

n
tra

c
t

M
S

P
L
e
d

g
e
r

Lo
g

in
 C

re
d

e
n

tia
ls

V
a
lid

a
te

 C
re

d
e
n

tia
ls

In
va

lid
 C

re
d

e
n
tia

ls

V
a
lid

 C
re

d
e
n
tia

ls

V
a
lid

a
te

 E
xa

m
 A

d
m

in

C
e
rtifica

te

R
e
sp

o
n

se

V
iew

 D
e
g

re
e

D
e
g

re
e
 K

e
y

V
a
lid

a
te

 K
e
y

R
e
q

u
e
st D

e
g

re
e

In
va

lid
 K

e
y

R
e
sp

o
n

se

R
e
sp

o
n

se

Figure 5.12: Sequence Diagram - View Degree.

53

Chapter 5: Development and Testing of Blockchain Solution

Princip
al

Login
Princip

al
D

ash
b

o
a

rd
Sign D

egree
Sm

art C
on

tract
M

SP
Ledger

Lo
gin

 C
red

e
n

tials

V
alid

ate
 C

re
d

e
n

tia
ls

In
va

lid
 C

red
e

n
tia

ls

U
n

siggn
e

d
 D

e
p

artm
e

n
t D

e
gre

es

V
alid

ate
 Prin

cip
al

C
e

rtificate

R
e

sp
o

n
se

Sign
 D

eg
re

e

D
e

gree
 D

a
ta

V
alid

ate
 D

ata

U
p

d
ate

 D
e

gree

In
va

lid
 D

a
ta

R
e

sp
o

n
se

R
e

sp
o

n
se

Figure 5.13: Sequence Diagram - Signing Degree by Principal.

54

Chapter 5: Development and Testing of Blockchain Solution

R
egistrar

Login
R

egistrar
D

ash
b

o
ard

Sign D
egree

Sm
art C

on
tract

M
SP

Ledger

Lo
gin

 C
red

e
n

tials

V
alid

ate
 C

re
d

e
n

tia
ls

In
va

lid
 C

red
e

n
tia

ls

U
n

siggn
e

d
 D

e
p

artm
e

n
t D

e
gre

es

V
alid

ate
 R

eg
istra

r
C

e
rtificate

R
e

sp
o

n
se

Sign
 D

eg
re

e

D
e

gree
 D

a
ta

V
alid

ate
 D

ata

U
p

d
ate

 D
e

gree

In
va

lid
 D

a
ta

R
e

sp
o

n
se

R
e

sp
o

n
se

Figure 5.14: Sequence Diagram - Signing Degree by Registrar.

55

Chapter 5: Development and Testing of Blockchain Solution

R
ector/V

C
Login

R
ector

D
a

sh
b

o
ard

Sign D
egree

Sm
art C

on
tract

M
SP

Led
ger

Lo
gin

 C
red

e
n

tials

V
alid

ate
 C

re
d

e
n

tia
ls

In
va

lid
 C

red
e

n
tia

ls

U
n

siggn
e

d
 D

e
p

artm
e

n
t D

e
gre

es

V
alid

ate
 R

ecto
r/V

C
C

e
rtificate

R
e

sp
o

n
se

Sign
 D

eg
re

e

D
e

gree
 D

a
ta

V
alid

ate
 D

ata

U
p

d
ate

 D
e

gree

In
va

lid
 D

a
ta

R
e

sp
o

n
se

R
e

sp
o

n
se

Figure 5.15: Sequence Diagram - Signing Degree by Rector.

56

Chapter 5: Development and Testing of Blockchain Solution

5.5 Testing of Blockchain Application

When client opens the web application, he is automatically redirected to login page. On

login page client needs to enter his username and local node server will automatically

load required cryptographic certificates from a specified location on local computer.

Snapshot of login view is given in fig-5.16.

Figure 5.16: Snapshot - Login View.

5.5.1 University Admin

We will be testing our application with university admin certificate first to register

university and setup department, program and a specialization.

Login

We are logging university admin for the first time. The current status of the system are

listed as follow.

Username: user11

User Type: University Admin

Special Attribute: university_admin=true

University Status: Not Registered

57

Chapter 5: Development and Testing of Blockchain Solution

Figure 5.17: Snapshot - University Admin Dashboard at first login.

Register University

University admin has logged in for the first time and his university is not registered on

the blockchain. In this scenario university admin is presented with "Register University"

button (fig-5.17) which provides interface for registering a university.

Fig-5.18 shows interface to input university details. Once university is registered, admin

dashboard must show "Add Department" button and not "Register University" button,

fig-5.18.

58

Chapter 5: Development and Testing of Blockchain Solution

Figure 5.18: Snapshot - University Admin, registering university.

Figure 5.19: Snapshot - University Admin Dashboard, after university is registered.

59

Chapter 5: Development and Testing of Blockchain Solution

Add Department

After university is registered, university admin can add departments by using "Add

Department" button. "Add Department" button opens interface to input department

details, as shown in fig-5.20.

Figure 5.20: Snapshot - University Admin, Department details input.

Figure 5.21: Snapshot - University Admin, Departments list.

After a department is added, it appears in list of departments at dashboard of university

60

Chapter 5: Development and Testing of Blockchain Solution

admin, fig-5.21. Each department is linked to a department page, where Programs

offered by department can be added.

Add Program

Department page provide "ADD PROGRAM" button, which opens interface to input

program details, fig-5.22 and add particular program to the department.

Figure 5.22: Snapshot - University Admin, Add Program.

After a program is added, it appears in list of programs on the department page as link

to program page.

Figure 5.23: Snapshot - University Admin, Add Specialization.

61

Chapter 5: Development and Testing of Blockchain Solution

Add Specialization

Program page provides "ADD SPECIALIZATION" button which open interface to in-

put specialization details, fig-5.23. After a specialization is added it appears in list of

specialization on program page.

5.5.2 Exam Admin

After university admin has setup basic platform, exam admin can now add degrees.

Every department has different exam admin, so for an exam admin to add degree, his

department must be registered by university admin. Since we have added RCMS de-

partment, we will be using RCMS exam admin certificate to log in. Specification are as

follow.

Username: gulzar

User Type: Exam Admin

Special Attributes: exam_admin=true, department=RCMS

Department Status: Registered

Figure 5.24: Snapshot - Exam Admin, Home Page.

62

Chapter 5: Development and Testing of Blockchain Solution

After login with exam admin certificate, client is automatically redirected to exam admin

home page, fig-5.24. Exam admin home page have two buttons, "NEW DEGREE" and

"VIEW DEGREE".

Adding Degree

NEW DEGREE button provide interface to create new degree by providing degree

details, fig-5.25. On Successful addition of degree, we are responded with a success

message, fig-5.26. If degree with same serial and registration number is already issued

by department, an error message is returned, fig-5.27.

Figure 5.25: Snapshot - Exam Admin, Add Degree.

63

Chapter 5: Development and Testing of Blockchain Solution

from 2018-09-14 14-16-51.png from 2018-09-14 14-16-51.png

Figure 5.26: Snapshot - Exam Admin, Add Degree, Success Response.

Figure 5.27: Snapshot - Exam Admin, Add Degree, Error Response

Viewing Degree

Exam Admin can view degree by using degree ledger key. VIEW DEGREE provides

interface to input ledger key to be viewed. If a degree is added against the provided

ledger key, client is moved to the page showing corresponding degree details, fig-5.28.

64

Chapter 5: Development and Testing of Blockchain Solution

Figure 5.28: Snapshot - Exam Admin, View Degree

As evident from fig-5.28, degree status is "Pending" since it needs to be signed by

Principal, Registrar and Rector.

If degree against the provided ledger key is not registered, an error message is returned,

fig-5.29.

Figure 5.29: Snapshot - Exam Admin, Degree not found error.

5.5.3 Signing Degree

After exam admin has created degree on the blockchain, it is appeared in the "Pending

signing list" of principal, where principal can sign degrees, fig-5.30. After principal has

signed a degree, it is added to "Pending signing list" of Registrar,fig-5.31, and after a

degree is signed by registrar it is added to "Pending signing list" of Rector, fig-5.32. After

rector has signed a degree, its issuance is completed and is available for verification by

65

Chapter 5: Development and Testing of Blockchain Solution

other organizations.

Figure 5.30: Snapshot - Principal, Signing List.

Figure 5.31: Snapshot - Registrar, Signing List.

Figure 5.32: Snapshot - Rector, Signing List.

When a signer clicks on a degree in the list a pop up appears which shows details of

degree and a button "SIGN DEGREE". When signer click on SIGN DEGREE button,

a request for degree signing is initiated by the respective signer and after successful

verification, degree is signed and removed from current signing list.

After a degree is signed by all three signers, degree status is updated to "issued", fig-5.33.

66

Chapter 5: Development and Testing of Blockchain Solution

Figure 5.33: Snapshot - Degree Issued.

67

Chapter 5: Development and Testing of Blockchain Solution

5.5.4 Verification of Degree

Username: verifier

Special Attributes: verifier=true

A verifier can verify degrees earned by a person by using CNIC/Citizenship Number of

the person. Verifier home page has single input CNIC/Citizenship Number field, that

returns all ledger keys of degrees earned by CNIC holder. Fig-5.33 shows degree view

of an issued degree.

68

Chapter 6

Discussion, Conclusion and

Future Work

6.1 Discussion

Blockchain is a distributed peer to peer system where record is replicated through out

the network. It was first conceptualized by creator of Bitcoin, Satoshi Nakamoto in 2008.

Nakamoto’s idea was implemented in 2009 in the shape of Bitcoin, the first decentralized

cryptographic currency.

Blockchain has variety of use cases in several industries and has the potential to trans-

form the core of these industries. Beside cryptographic currencies, blockchain can be

applied to supply chain management, digital identity, fast and cheap transactions set-

tlement, goods tracking and hundreds of other use cases.

Smart contracts are deployed on the blockchain to automate different processes. Smart

contracts are programmed set of rules and regulations deployed on the blockchain. It

enables us to implement various uses cases on blockchain. Ethereum is the first smart

contract platform. Linux Foundation have started Hyperledger project in December

2015. Different blockchain platforms are being developed under umbrella of hyperledger.

Hyperledger Fabric is one of the project developed under Hyperledger. Hyperledger is

permissioned, enterprise grade cross organizations based blockchain platform. Partici-

pants on Hyperledger Fabric platform are known and are granted permissions by their

respective organization to join the network. Hyperledger Fabric also supports smart

contracts. Smart contracts on hyperledger can be written in Go, NodeJS or Java as

69

Chapter 6: Discussion, Conclusion and Future Work

of this writing and support for other programming languages are in progress. Each

organization maintains a certificate authority that manages certificates for the organi-

zation. Hyperledger Fabric is an efficient blockchain platform as compared to bitcoin

and ethereum and its support of implementing smart contracts in general programming

languages makes application development more convenient.

Documents forgery is a major problem worldwide. To tackle this problem several tech-

niques are used, such as specialized fonts, seals, embossed areas on paper et cetra.

But easy and cheap availability of printing technology have enabled malicious bodies to

forge different type documents. There are several cases in which candidates have used

forged academic degrees for different purposes, such as securing employment position,

negotiating better salaries or running for public offices.

6.2 Conclusion

We have designed and developed a blockchain application for academic documents ver-

ification. Each university on the network is a separate organization. A university has

different types of participants to perform various type of operations. We have developed

chaincode in Go and make use of Hyperledger Fabric NodeJS Software Development Kit

(NodeJS SDK) to implement user interface for our application.

In our application for documents verification, a university has several types of user

with different level of roles. University admin registers and setup university academic

structure on the application. Exam admin creates academic degrees which needs to

be signed by three required signers, principal, registrar and rector. When exam admin

creates the degree, its initial status is "Issuance Pending". After principal, registrar and

rector sign the degree, the status of the degree is updated as "Issued". A degree with

"Issued" status can be verified by any verifier with valid certificates and permissions.

Traditional systems maintains record on a centralized server which is single point of

failure and have low security. An inside or outside attacker can modify the records

in the system without detection. Which may miss lead the system to verify forged

information as authentic.

Blockchain systems on the other hand is more secure than centralized systems. Any

updates in the record is logged on the ledger with complete history of information. This

70

Chapter 6: Discussion, Conclusion and Future Work

provides an easy way to audit record and detect any unauthorized updates to data.

Since each transaction on the blockchain is signed by cryptographic certificates of the

client, we can detect who updated what and when.

This system, Blockchain application for academic documents verification, can efficiently

address the problem of documents forgery. Adoption of this system will make the process

of degree verification fast, easier and inexpensive.

6.3 Future Work

The system we have developed can be extended by implementing additional features.

Following are the list of few features that will make the system more important.

• Addition of semester wise academic records to add feature for verification of stu-

dent transcript with complete timestamped history.

• Support for addition of academic record by boards of intermediate and secondary

education.

• Support for school and college to issue Detailed Marks Certificates (DMCs) and

other documents.

Implementation of these features will make the entire academic history verifiable at

single application.

71

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] ——, “Bitcoin v0.1 released,” 2009. [Online]. Available: https://www.mail-archive.

com/cryptography@metzdowd.com/msg10142.html

[3] V. Buterin et al., “Ethereum white paper, 2014,” URL https://github.

com/ethereum/wiki/wiki/White-Paper, 2013.

[4] N. van Saberhagen, “Cryptonote v 2.0, 2013,” URL: https://cryptonote.

org/whitepaper. pdf. White Paper. Accessed, pp. 04–13, 2018.

[5] D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol consensus algorithm,”

Ripple Labs Inc White Paper, vol. 5, 2014.

[6] O. Jacobovitz, “Blockchain for identity management,” The Lynne and William

Frankel Center for Computer Science Department of Computer Science. Ben-

Gurion University, Beer Sheva Google Scholar, 2016.

[7] A. Ebrahimi, “Identity management service using a blockchain providing certifying

transactions between devices,” Aug. 1 2017, uS Patent 9,722,790.

[8] S. Underwood, “Blockchain beyond bitcoin,” Communications of the ACM, vol. 59,

no. 11, pp. 15–17, 2016.

[9] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital supply chain transformation to-

ward blockchain integration,” in proceedings of the 50th Hawaii international con-

ference on system sciences, 2017.

[10] S. Shang, N. Memon, and X. Kong, “Detecting documents forged by printing and

copying,” EURASIP Journal on Advances in Signal Processing, vol. 2014, no. 1, p.

140, 2014.

72

https://www.mail-archive.com/cryptography@metzdowd.com/msg10142.html
https://www.mail-archive.com/cryptography@metzdowd.com/msg10142.html

References

[11] A. B. Hassan and Y. A. Fadlalla, “A survey on techniques of detecting identity

documents forgery,” in Computer Science and Information Technology (SCCSIT),

2017 Sudan Conference on. IEEE, 2017, pp. 1–5.

[12] S. Ibrahim, M. Afrakhteh, and M. Salleh, “Adaptive watermarking for printed doc-

ument authentication,” in Computer Sciences and Convergence Information Tech-

nology (ICCIT), 2010 5th International Conference on. IEEE, 2010, pp. 611–614.

[13] R. Bertrand, O. R. Terrades, P. Gomez-Kramer, P. Franco, and J.-M. Ogier, “A

conditional random field model for font forgery detection,” in 2015 13th Interna-

tional Conference on Document Analysis and Recognition (ICDAR). IEEE, 2015,

pp. 576–580.

[14] S. Bhattacharyya, “A survey of steganography and steganalysis technique in image,

text, audio and video as cover carrier,” Journal of global research in computer

science, vol. 2, no. 4, 2011.

[15] L. H. Newman. (2017) Hacker lexicon: What is steganography? [Online]. Available:

https://www.wired.com/story/steganography-hacker-lexicon/

[16] T. Buttress, Fraud: a growing problem in education, and how to guard

against it, August 2012. [Online]. Available: https://uknaric.org/2012/08/17/

how-to-spot-a-fraudulent-education-document

[17] P. Baran, “On distributed communications networks,” IEEE transactions on Com-

munications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[18] N. Sklavos and O. Koufopavlou, “On the hardware implementations of the sha-2

(256, 384, 512) hash functions,” in Circuits and Systems, 2003. ISCAS’03. Proceed-

ings of the 2003 International Symposium on, vol. 5. IEEE, 2003, pp. V–V.

[19] R. P. McEvoy, F. M. Crowe, C. C. Murphy, and W. P. Marnane, “Optimisation of

the sha-2 family of hash functions on fpgas,” in Emerging VLSI Technologies and

Architectures, 2006. IEEE Computer Society Annual Symposium on. IEEE, 2006,

pp. 6–pp.

[20] R. Housley, W. Ford, W. Polk, and D. Solo, “Internet x. 509 public key infrastruc-

ture certificate and crl profile,” Tech. Rep., 1998.

73

https://www.wired.com/story/steganography-hacker-lexicon/
https://uknaric.org/2012/08/17/how-to-spot-a-fraudulent-education-document
https://uknaric.org/2012/08/17/how-to-spot-a-fraudulent-education-document

References

[21] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3,

pp. 382–401, 1982.

[22] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies. "

O’Reilly Media, Inc.", 2014.

[23] P. Champagne, “The book of satoshi: The collected writings of bitcoin creator

satoshi nakamoto,” E53, 2014.

[24] P. Sajana, M. Sindhu, and M. Sethumadhavan, “On blockchain applications: Hy-

perledger fabric and ethereum.”

[25] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,

D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al., “Hyperledger fabric: a

distributed operating system for permissioned blockchains,” in Proceedings of the

Thirteenth EuroSys Conference. ACM, 2018, p. 30.

74

Appendix A

Cryptographic Configuration

Following yaml structure defines configurations for generating cryptographic certificates

for orderer and participants of organizations. There are three organizations and a single

orderer in the following sample. A single orderer, OrdererNUST, and three organizations

NUSTMSP, GIKIMSP and LUMSMSP.

OrdererOrgs:

- Name: OrdererNUST

Domain: nust.edu.pk

Specs:

- Hostname: orderer

PeerOrgs:

- Name: NUSTMSP

Domain: nust.edu.pk

Template:

Count: 3

Users:

Count: 2

- Name: GIKIMSP

Domain: giki.edu.pk

Template:

Count: 2

Users:

Count: 1

75

Appendix A: Cryptographic Configuration

- Name: LUMSMSP

Domain: lums.edu.pk

Template:

Count: 2

Users:

Count: 1

76

Appendix B

Configuration Transaction

Following yaml structure presents configuration for generating orderer genesis block,

channel configuration transaction, anchor peers transaction et cetera.

Profiles:

DocChainOrdererGenesis:

Capabilities:

<<: *ChannelCapabilities

Orderer:

<<: *OrdererDefaults

Organizations:

- *OrdererNUSTOrg

Capabilities:

<<: *OrdererCapabilities

Consortiums:

DocChainConsortium:

Organizations:

- *NUST

- *GIKI

- *LUMS

DocChainOrgsChannel:

Consortium: DocChainConsortium

Application:

77

Appendix B: Configuration Transaction

<<: *ApplicationDefaults

Organizations:

- *NUST

- *GIKI

- *LUMS

Capabilities:

<<: *ApplicationCapabilities

Organizations:

- &OrdererNUSTOrg

Name: OrdererNUST

ID: OrdererNUST

MSPDir: crypto-config/ordererOrganizations/nust.edu.pk/msp

- &NUST

Name: NUSTMSP

ID: NUSTMSP

MSPDir: crypto-config/peerOrganizations/nust.edu.pk/msp

AnchorPeers:

- Host: peer0.nust.edu.pk

Port: 7051

- &GIKI

Name: GIKIMSP

ID: GIKIMSP

MSPDir: crypto-config/peerOrganizations/giki.edu.pk/msp

AnchorPeers:

- Host: peer0.giki.edu.pk

Port: 7051

- &LUMS

78

Appendix B: Configuration Transaction

Name: LUMSMSP

ID: LUMSMSP

MSPDir: crypto-config/peerOrganizations/lums.edu.pk/msp

AnchorPeers:

- Host: peer0.lums.edu.pk

Port: 7051

Orderer: &OrdererDefaults

OrdererType: solo

Addresses:

- orderer.nust.edu.pk:7050

BatchTimeout: 2s

BatchSize:

MaxMessageCount: 10

AbsoluteMaxBytes: 99 MB

PreferredMaxBytes: 512 KB

Kafka:

Brokers:

- 127.0.0.1:9092

Organizations:

- *OrdererNUSTOrg

Application: &ApplicationDefaults

Organizations:

- *NUST

- *GIKI

- *LUMS

Capabilities:

Global: &ChannelCapabilities

V1_2: true

Orderer: &OrdererCapabilities

V1_2: true

Application: &ApplicationCapabilities

79

Appendix B: Configuration Transaction

V1_2: true

80

Appendix C

Sample Network Configurations

for docker-compose

Following .yaml represents structure and configurations of a sample docker virtual net-

work. This virtual network is used to test development of our application, DocChain.

An overview of the network is given in table C.1.

There is no upper or lower limit on the number of peers an organization can maintain.

In these configuration Organization NUST maintains 3 peers, a single orderer and a

single certificate authority. Organization GIKI maintains two peers, one orderer and

one certificate authority. Organization LUMS maintains two peers and no orderer or

certificate authority.

Certificate Authority is essential for any organization for issuing new certificates or

revoking already issued certificates. However, in our configurations, organization LUMS

do not have any certificate authority. This is an example of keeping certificate authority

completely out of the network. Keeping certificate authority out of the network will

not affect certificates in any way and will reduce security threats. The network can still

validate certificates even if no certificate authority is connected to network.

Organization LUMS also do not have any orderer. In this situation, where an organi-

zation have no orderer, any ordering service of other organizations can be used. Even

if all organization have running ordering services, to validate a transaction all orderers

must be in consensus.

81

Appendix C: Sample Network Configurations for docker-compose

Organization Peers Orderers Certificate Authority

GIKI
peer0.giki.edu.pk

peer1.giki.edu.pk
orderer.giki.edu.pk ca.giki.edu.pk

NUST

peer0.nust.edu.pk

peer1.nust.edu.pk

peer2.nust.edu.pk

orderer.nust.edu.pk ca.nust.edu.pk

LUMS peer0.nust.edu.pk - -

Table C.1: List of Peers, Orderers and Certificate Authority in each organization.

C.1 YAML code for Docker Compose

version: '2'

networks:

docchain:

services:

#==

ca.giki.edu.pk:

image: hyperledger/fabric-ca

environment:

- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server-config

- FABRIC_CA_SERVER_CA_NAME=ca.giki.edu.pk

- FABRIC_CA_SERVER_CA_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.giki.edu.pk-cert.pem↪→

- FABRIC_CA_SERVER_CA_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/3d1e52f62ee46c900d56e37be4394642c8da77faaa632

4b8f26ff26434fea9af_sk

↪→

↪→

ports:

- "7054:7054"

command: sh -c 'fabric-ca-server start -b admin:adminpw'

volumes:

82

Appendix C: Sample Network Configurations for docker-compose

- ./crypto-config/peerOrganizations/giki.edu.pk/ca/:/etc/

hyperledger/fabric-ca-server-config↪→

container_name: ca.giki.edu.pk

networks:

- docchain

#==

ca.nust.edu.pk:

image: hyperledger/fabric-ca

environment:

- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

- FABRIC_CA_SERVER_CA_NAME=ca.nust.edu.pk

- FABRIC_CA_SERVER_CA_CERTFILE=/etc/hyperledger/

fabric-ca-server-config/ca.nust.edu.pk-cert.pem↪→

- FABRIC_CA_SERVER_CA_KEYFILE=/etc/hyperledger/

fabric-ca-server-config/6d480a567fe47bd257f2bb46da3e8c651c2

8ddd614da596e2f2cdc44ff12cdaa_sk

↪→

↪→

ports:

- "8054:7054"

command: sh -c 'fabric-ca-server start -b admin:adminpw -d'

volumes:

- ./crypto-config/peerOrganizations/nust.edu.pk/ca/:/etc/

hyperledger/fabric-ca-server-config↪→

container_name: ca.nust.edu.pk

networks:

- docchain

#===

ca.lums.edu.pk:

image: hyperledger/fabric-ca

83

Appendix C: Sample Network Configurations for docker-compose

environment:

- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

- FABRIC_CA_SERVER_CA_NAME=ca.lums.edu.pk

- FABRIC_CA_SERVER_CA_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.lums.edu.pk-cert.pem↪→

- FABRIC_CA_SERVER_CA_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/69662f4cdd3161168ca754c5e201b2676d32e7fa5f887bda1ebb8de9

538fa5ff_sk

↪→

↪→

ports:

- "9054:7054"

command: sh -c 'fabric-ca-server start -b admin:adminpw -d'

volumes:

- ./crypto-config/peerOrganizations/lums.edu.pk/ca/:/etc/

hyperledger/fabric-ca-server-config↪→

container_name: ca.lums.edu.pk

networks:

- docchain

#===

#==

orderer.nust.edu.pk:

container_name: orderer.nust.edu.pk

image: hyperledger/fabric-orderer

environment:

- ORDERER_GENERAL_LOGLEVEL=INFO

- ORDERER_GENERAL_LISTENADDRESS=0.0.0.0

- ORDERER_GENERAL_GENESISMETHOD=file

- ORDERER_GENERAL_GENESISFILE=/var/hyperledger/orderer/

orderer.genesis.block↪→

- ORDERER_GENERAL_LOCALMSPID=OrdererNUST

- ORDERER_GENERAL_LOCALMSPDIR=/var/hyperledger/orderer/msp

84

Appendix C: Sample Network Configurations for docker-compose

enabled TLS

- ORDERER_GENERAL_TLS_ENABLED=true

- ORDERER_GENERAL_TLS_PRIVATEKEY=/var/hyperledger/orderer/tls/

server.key↪→

- ORDERER_GENERAL_TLS_CERTIFICATE=/var/hyperledger/orderer/tls/

server.crt↪→

-

ORDERER_GENERAL_TLS_ROOTCAS=[/var/hyperledger/orderer/tls/ca.crt]↪→

working_dir: /opt/gopath/src/github.com/hyperledger/fabric

command: orderer

volumes:

- ./channel-artifacts/genesis.block:/var/hyperledger/orderer/

orderer.genesis.block↪→

- ./crypto-config/ordererOrganizations/nust.edu.pk/orderers/

orderer.nust.edu.pk/msp:/var/hyperledger/orderer/msp↪→

- ./crypto-config/ordererOrganizations/nust.edu.pk/orderers/

orderer.nust.edu.pk/tls/:/var/hyperledger/orderer/tls↪→

- ./data/orderer.edu.pk:/var/hyperledger

ports:

- 7050:7050

networks:

- docchain

peer0.nust.edu.pk:

container_name: peer0.nust.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

85

Appendix C: Sample Network Configurations for docker-compose

#- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer0.nust.edu.pk

- CORE_PEER_ADDRESS=peer0.nust.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer1.nust.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.nust.edu.pk:7051

- CORE_PEER_LOCALMSPID=NUSTMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer0.nust.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer0.nust.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer0.nust.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 7051:7051

- 7053:7053

networks:

- docchain

peer1.nust.edu.pk:

container_name: peer1.nust.edu.pk

image: hyperledger/fabric-peer

environment:

86

Appendix C: Sample Network Configurations for docker-compose

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer1.nust.edu.pk

- CORE_PEER_ADDRESS=peer1.nust.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.nust.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer2.nust.edu.pk:7051

- CORE_PEER_LOCALMSPID=NUSTMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer1.nust.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer1.nust.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer1.nust.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 8051:7051

- 8053:7053

networks:

87

Appendix C: Sample Network Configurations for docker-compose

- docchain

peer2.nust.edu.pk:

container_name: peer2.nust.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer2.nust.edu.pk

- CORE_PEER_ADDRESS=peer2.nust.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer2.nust.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer0.nust.edu.pk:7051

- CORE_PEER_LOCALMSPID=NUSTMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer2.nust.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/nust.edu.pk/peers/

peer2.nust.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer2.nust.edu.pk:/var/hyperledger

88

Appendix C: Sample Network Configurations for docker-compose

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 9051:7051

- 9053:7053

networks:

- docchain

###

###

#

NUST PEER'S ENDS

GIKI PEER'S STARTS

#

###

peer0.giki.edu.pk:

container_name: peer0.giki.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

89

Appendix C: Sample Network Configurations for docker-compose

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer0.giki.edu.pk

- CORE_PEER_ADDRESS=peer0.giki.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.giki.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer1.giki.edu.pk:7051

- CORE_PEER_LOCALMSPID=GIKIMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/giki.edu.pk/peers/

peer0.giki.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/giki.edu.pk/peers/

peer0.giki.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer0.giki.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 10051:7051

- 10053:7053

networks:

- docchain

peer1.giki.edu.pk:

container_name: peer1.giki.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

90

Appendix C: Sample Network Configurations for docker-compose

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer1.giki.edu.pk

- CORE_PEER_ADDRESS=peer1.giki.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.giki.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer0.giki.edu.pk:7051

- CORE_PEER_LOCALMSPID=GIKIMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/giki.edu.pk/peers/

peer1.giki.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/giki.edu.pk/peers/

peer1.giki.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer1.giki.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 11051:7051

- 11053:7053

networks:

- docchain

###

###

#

GIKI PEER'S ENDS

91

Appendix C: Sample Network Configurations for docker-compose

LUMS PEER'S STARTS

#

###

peer0.lums.edu.pk:

container_name: peer0.lums.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer0.lums.edu.pk

- CORE_PEER_ADDRESS=peer0.lums.edu.pk:7051

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer0.lums.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer1.lums.edu.pk:7051

- CORE_PEER_LOCALMSPID=LUMSMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/lums.edu.pk/peers/

peer0.lums.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

92

Appendix C: Sample Network Configurations for docker-compose

- ./crypto-config/peerOrganizations/lums.edu.pk/peers/

peer0.lums.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer0.lums.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 12051:7051

- 12053:7053

networks:

- docchain

peer1.lums.edu.pk:

container_name: peer1.lums.edu.pk

image: hyperledger/fabric-peer

environment:

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

the following setting starts chaincode containers on the same

bridge network as the peers

https://docs.docker.com/compose/networking/

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=docchain_docchain

- CORE_LOGGING_LEVEL=INFO

- CORE_LOGGING_LEVEL=DEBUG

- CORE_PEER_TLS_ENABLED=true

- CORE_PEER_GOSSIP_USELEADERELECTION=true

- CORE_PEER_GOSSIP_ORGLEADER=false

- CORE_PEER_PROFILE_ENABLED=true

- CORE_PEER_TLS_CERT_FILE=/etc/hyperledger/fabric/tls/server.crt

- CORE_PEER_TLS_KEY_FILE=/etc/hyperledger/fabric/tls/server.key

- CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/tls/ca.crt

- CORE_PEER_ID=peer1.lums.edu.pk

- CORE_PEER_ADDRESS=peer1.lums.edu.pk:7051

93

Appendix C: Sample Network Configurations for docker-compose

- CORE_PEER_GOSSIP_EXTERNALENDPOINT=peer1.lums.edu.pk:7051

- CORE_PEER_GOSSIP_BOOTSTRAP=peer0.lums.edu.pk:7051

- CORE_PEER_LOCALMSPID=LUMSMSP

volumes:

- /var/run/:/host/var/run/

- ./crypto-config/peerOrganizations/lums.edu.pk/peers/

peer1.lums.edu.pk/msp:/etc/hyperledger/fabric/msp↪→

- ./crypto-config/peerOrganizations/lums.edu.pk/peers/

peer1.lums.edu.pk/tls:/etc/hyperledger/fabric/tls↪→

- ./data/peer1.lums.edu.pk:/var/hyperledger

- ./chaincodes:/var/chaincodes

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: peer node start

ports:

- 13051:7051

- 13053:7053

networks:

- docchain

cli:

container_name: cli

image: hyperledger/fabric-tools

tty: true

stdin_open: true

environment:

- GOPATH=/opt/gopath

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

- CORE_LOGGING_LEVEL=DEBUG

- CORE_LOGGING_LEVEL=INFO

- CORE_PEER_ID=cli

- CORE_PEER_ADDRESS=__

- CORE_PEER_LOCALMSPID=__

- CORE_PEER_TLS_ENABLED=true

94

Appendix C: Sample Network Configurations for docker-compose

- CORE_PEER_TLS_CERT_FILE=__

- CORE_PEER_TLS_KEY_FILE=__

- CORE_PEER_TLS_ROOTCERT_FILE=__

- CORE_PEER_MSPCONFIGPATH=__

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

command: /bin/bash

volumes:

- /var/run/:/host/var/run/

- /home/asad/projects/src/github.com/hyperledger/fabric:

/opt/gopath/src/github.com/hyperledger/fabric/↪→

- ./crypto-config:/opt/gopath/src/github.com/hyperledger/

fabric/peer/crypto/↪→

- ./chaincodes:/opt/gopath/src/github.com/chaincodes

- ./scripts:/opt/gopath/src/github.com/hyperledger/fabric/

peer/scripts/↪→

- ./channel-artifacts:/opt/gopath/src/github.com/hyperledger/

fabric/peer/channel-artifacts↪→

depends_on:

- orderer.nust.edu.pk

- peer0.nust.edu.pk

- peer1.nust.edu.pk

- peer2.nust.edu.pk

- peer0.giki.edu.pk

- peer1.giki.edu.pk

- peer0.lums.edu.pk

- peer1.lums.edu.pk

networks:

- docchain

95

Appendix C: Sample Network Configurations for docker-compose

C.2 Starting the network

To start network with these configuration follow, make sure that Docker and docker-

compose are installed on your system and follow these steps:

• Copy these configurations to a text file docker-compose-3-orgs.yaml.

• Navigate to the directory of docker-compose-3-orgs.yaml on your command

line.

• Now execute docker-compose -f docker-compose-3-orgs.yaml up.

If the script is being run for the first time, all the required docker images will be down-

loaded first and then the network will be started.

96

	Main Title
	Declaration
	Dedication
	Acknowledgments
	Contents
	Abstract
	Introduction
	Introduction to Blockchain
	Applications of Blockchain
	Cryptocurrency Applications
	Non Cryptocurrency Applications

	Documents Forgery and Fake Degrees
	Problem Statement
	Aim and Objectives

	Overview of Blockchain in Context of Bitcoin
	Centralized, Decentralized and Distributed Systems
	Cryptography Concepts
	Cryptographic Hash Function
	Collision in Cryptographic Hash Functions
	Public Key Cryptography
	Byzantine General Problem

	Bitcoin
	Transactions
	Block
	Genesis Block
	Blockchain
	Merkle Tree
	Bitcoin Mining
	Forks and Side Chains

	Ethereum
	Hyperledger

	Hyperledger Fabric
	Hyperledger Fabric Network
	Transactions
	State
	Ledger
	Nodes

	Channel
	Chaincode
	Certificate Authority

	Blockchain Solution
	Development Environment
	Installing Fabric Binaries and Docker Images
	Generating Artifacts
	Channel Configuration Transaction
	Starting Network
	Creating Channel
	Joining Channel
	Updating Anchor Peers
	Installing and Instantiating Chaincode

	Development and Testing of Blockchain Solution
	Participants and Use Case
	Governing Body
	Organizations (Universities)
	Degree Signers
	Employer/Verification Point

	Chaincode Development
	University Structure
	Department Structure
	Program Structure
	Specialization Structure
	Degree Structure
	CNICDegree Structure

	Development of Web Application
	University Admin Routes
	Exam Admin Routes
	Signing Routes

	Web Application Interface
	University Admin
	Exam Admin
	Degree Signing

	Testing of Blockchain Application
	University Admin
	Exam Admin
	Signing Degree
	Verification of Degree

	Discussion, Conclusion and Future Work
	Discussion
	Conclusion
	Future Work

	Cryptographic Configuration
	Configuration Transaction
	Sample Network Configurations for docker-compose
	YAML code for Docker Compose
	Starting the network

