
Blockchain Application for Verification of Passports

BY

Muhammad Ahmed Saeedi
Fall-2015-MS-SYS&E00000118721

Supervised by
Dr. Jamil Ahmad

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTERS OF

SCIENCE
IN

SYSTEMS ENGINEERING

Research Centre for Modeling and Simulation(RCMS)
National University of Sciences and Technology (NUST)

Islamabad, Pakistan
September, 2018

I would like to dedicate this thesis to my loving mother and sisters.

i

Certificate

It is hereby declared that except where specific reference is made to the work

of others, the contents of this thesis are original and have not been submitted in whole

or in part for consideration for any other degree or qualification in this, or any other

University. The work presented in this thesis is the result of my own work.

Muhammad Ahmed Saeedi

September, 2018

ii

Acknowledgement

All praise for Almighty ALLAH Who is the ultimate source of all knowledge.

Almighty Allah has made me reach this present pedestal of knowledge with quality

of doing something novel, stimulating and path bearing. All respects are for Holy

Prophet Hazrat Muhammad (PBUH) who is the symbol of guidance and fountain of

knowledge.

I earnestly thank to my supervisor Dr. Jamil Ahmad, for his keen interest,

invaluable guidance, encouragement and continuous support during my research work.

I am grateful for his thought provoking and illuminating discussions, sound advices,

encouragement, and valuable suggestions. He enabled me not only to tackle the

problems more meaningfully on the subject but also provided an easy access to work

seriously & sincerely to quest after my objectives. I want to thank him for providing

me such a scientific knowledge which will help all of the humanity in a long run.

I am thankful to my GEC committee members and other faculty members of

RCMS who have been very kind enough to extend their help at various phases of this

research, whenever I approached them, and I do hereby acknowledge all of them. I

thank Engr. Sikandar Hayat Mirza, Dr. Mian Ilyas Ahmad and AP Muhammad

Tariq Saeed for their valuable suggestions and concise comments on some of the

research papers of the thesis. I am very thankful to Engr. Usman and Sir hassan for

providing us the facilities and research conducive environment at RCMS.

No words can express and no deeds can return the support and inspiration that

my family especially my sister Rahila Batool permeated in me during the course of

my research work. Deepest thanks to my parents, brother and sisters whose prayers,

patience, guidance & positive criticism helped me throughout my academic life and

particularly during this phase of my research. I am also thankful to my all friends

for their continuous moral support without whom it may be impossible to reach this

stage.

iii

Contents

Contents iv

List of Figures vii

ABSTRACT 1

1 INTRODUCTION 2
1.1 Background . 2
1.2 Problem Statement . 4
1.3 Aims and Objectives . 5

2 THE BLOCKCHAIN TECHNOLOGY 7
2.1 Evolution . 7
2.2 Blockchain . 8

2.2.1 Decentralization . 9
2.2.2 Trust in Decentralization 9
2.2.3 Operations . 10
2.2.4 Transactions . 11
2.2.5 Public-Key Cryptography 12
2.2.6 Hashing . 15
2.2.7 Consensus Protocol . 17
2.2.8 Robustness . 17
2.2.9 Forks . 20
2.2.10 Security . 21

2.3 Types of Blockchain . 23
2.3.1 Cryptocurrency Blockchain 23
2.3.2 Cryptocurrency Based Smart Contract Blockchain 24
2.3.3 Non-Cryptocurrency Based Smart Contract Blockchain . . . 24

2.4 Development Framework . 26
2.4.1 Iroha . 26
2.4.2 Sawtooth . 27
2.4.3 Indy . 27
2.4.4 Fabric . 27

2.5 Hyperledger Fabric . 27
2.5.1 Structure of Block . 28
2.5.2 Functionalities . 31
2.5.3 Architecture and Hierarchy 32

2.6 Hyperledger Composer . 33
2.6.1 Key Concepts . 34

3 PASSPORT VERIFICATION 40
3.1 Existing Security Mechanisms . 40

3.1.1 Basic Access Control . 40
3.1.2 Extended Access Control 41
3.1.3 Supplemental Access Control 42

Contents

3.2 Verification on Blockchain . 42
3.3 Requirements . 43
3.4 Modeling of Requirements . 47

4 DEVELOPMENT OF BLOCKCHAIN SOLUTION 52
4.1 Business Model Development . 52

4.1.1 Machine Specifications . 52
4.1.2 Development Environment 53

4.2 Development and Testing . 55
4.2.1 Defining Business Model 56
4.2.2 Defining Logic . 62
4.2.3 Defining Permissions . 66
4.2.4 Defining Query . 69
4.2.5 Generating Business Network Archive 70
4.2.6 Participant Access Verification 73

4.3 Implementation . 76
4.3.1 Structure of network . 77

5 DISCUSSION AND CONCLUSION 105
5.1 Discussion . 105
5.2 Conclusion . 106

REFERENCES 107

Appendix A Appendix 109
A.1 Business Model . 109
A.2 Modelling of Participant . 111
A.3 Transaction logic . 111
A.4 Access Rules . 112
A.5 Queries . 114

v

Abbreviations

Acronyms / Abbreviations

ACL Access Control Language

BAC Basic Access Control

BNA business network archive

CAN Card Authentication Number

CFT Crash Fault Tolerant

CLI Command Line Interface

CRUD Create, Read, Update or Delete

DAO Decentralized Autonomous Organization

EAC Extended Access Control

EACv1 Extended Access Control Version 1

ECC Elliptic Curve Cryptography

EIP Ethereum Improvement Proposals

ICAO International Civil Aviation Organization

MRP Mahine Readable Passport

MRZ Machine Readable Zone

OCR Optical Character Recognition

PACE v2 Password Authenticated Key Agreement Protocol

PIN Personal Identification Number

PKI Private Key Infrastructure

PoET Proof of Elapsed Time

Regex regular expression

RFID Radio-frequency Identification

RSA Rivest Shamir Adleman

SAC Supplemental Access Control

UML Unified Modeling Language

UTXO Unspent Transaction Output

vi

List of Figures

1.1 Centralized Network . 3

1.2 Peer to Peer Network . 5

1.3 Participants of a blockchain network 6

2.1 Block . 8

2.2 Blocks form a blockchain . 8

2.3 Block is added into blockchain after miners verify both transaction

and block. 13

2.4 Hashing . 15

2.5 Proof of Work . 18

2.6 Chain Split . 21

2.7 Chain Merge . 21

2.8 Bitcoin Stack . 24

2.9 Ethereum Stack . 25

2.10 Hyperledger Stack . 25

2.11 Flow of execution in Hyperledger Fabric 28

2.12 Hyperledger Fabric Architecture 29

2.13 Block . 30

2.14 Block Header . 30

2.15 Block Data . 30

2.16 Block Metadata . 31

2.17 Components of Hyperledger Fabric Network 34

2.18 Hyperledger Composer . 35

2.19 Business Network Archive . 39

3.1 Network Model . 43

3.2 Use Case Of Network . 44

vii

Figures

3.3 Use Case Of Managing Network 45

3.4 Use Case Of Managing Participants 46

3.5 Use Case Of Managing Passports 47

3.6 Use Case Of Managing Visa . 48

3.7 Creating A Passport . 49

3.8 Updating A Passport . 50

3.9 Creating A Visa . 51

4.1 Flow of Development . 56

4.2 Composer Rest Server . 93

4.3 Creating Passport Office Personnel 94

4.4 Creating Visa Office Personnel . 95

4.5 Network Admin Trying To Create Passport 96

4.6 Access Error While Creating Passport 97

4.7 List Passport . 98

4.8 Creating Passport . 99

4.9 Creating Passport Success Message 100

4.10 Entering Details To Delete Passport 101

4.11 Error Produced While Deleting Passport 102

4.12 Creating Visa . 103

4.13 Visa Creation Successful . 104

viii

ABSTRACT

Passports are essential traveling documents and are used to verify the credentials

of passport holder and verify the authenticity of visas. Pakistan and many other

countries have started the use of Machine Readable Passports (MRP). The reason

behind moving from traditional passports to MRP was to not only enhance the

security of passports, but also to speed up the process of passport verification. There

are security mechanisms implemented by International Civil Aviation Organization

(ICAO) for passport verification and these mechanisms are standardized and implemented

in all over the world. But despite of these security measurements in place, hackers

can still retrieve sensitive credentials from passports by exploiting vulnerabilities

in security mechanisms. The blockchain is considered as a futuristic infrastructure,

as no other technology provides functionalities and decentralization parallel to it.

Furthermore, it is designed to be distributed and synchronized across networks. In this

research, a blockchain application, Cryptopassports, has been designed and implemented

to verify the legitimacy of passports. Furthermore, it will enable the participants on the

network to verify the passport instantly. Due to the immutable aspect of data stored on

the blockchain, it will be almost impossible for hackers to hack or alter data. Sensitive

information about the passport holder will only be accessible to the participant on the

network. In addition, the application has been tested on a physical network by creating

three different participants and granting them access to the blockchain according to

their roles in the network. Participants can only access information and carry out

operations that they are given access to. For example, a network administrator will

not be able to carry out any operations on passports because his/her responsibility

will only be to maintain network and its participants. Furthermore, cryptopassport has

been tested by using data set of twenty passports and now it is ready for real world

deployment.

1

Chapter 1

INTRODUCTION

1.1 Background

Passports have become an essential travelling document. They are used to

identify the passport holder and verify his/her credentials. Before the technological

advancement passports were easy to fake and modify as there was no foolproof way

or method for verification. With the technological advancement security of passports

increased but along with that security risks and vulnerabilities related to those security

measurements were exposed.

In Pakistan and all over the world there are many cases in which people

used fake passport to cross borders and enter into a country therefore making it a

liability on that country of which passport that person holds. Currently there is not

a single foolproof way available by which we can trace and verify the authenticity

of any passport. All records are saved in traditional centralized database systems

which are vulnerable and data can be altered by using influential means. There are

certain amount of limitations in centralized database systems. These systems are

highly dependent on network connectivity. If the same set of data is to be accessed by

multiple people, it can lead to major decrease in general efficiency of the system. A

single copy is maintained in a single location, which makes it a single point of failure

Figure 1.1.

Pakistan and many other countries have started the use of Machine Readable

Passports (MRP) 1. The reason behind moving from traditional passports to MRP

was not only to enhance the security of passports, but also to speed up the process

of passport verification. These methods are standardized and implemented by the

1http://www.dgip.gov.pk/Files/Passport.aspx

2

Chapter 1 1.1 Background

Node Node

NodeNode

NodeNode Server

Figure 1.1. Centralized Network

International Civil Aviation Organization (ICAO) [17]. It was ensured that passports

were machine readable and human friendly as they must be read by border control

officials.

Smartcards are used in passports and they have contactless interface using

RFID [7]. To make the passport verification process more secure and faster these

features were introduced. However, the problem with these passports was skimming

of data and the most critical issue with this system is that it uses centralized database.

Central Database is a single point of failure for the whole system if it is corrupted or

if it becomes inaccessible.

Last year, an identity confirmation service carried out research on detecting

fake passports. The purpose of the research was to gauge how good public is at

identifying the fake passports and the results were worrying. Research was carried

out on a sample of 1013 people and 68% of those people were unable to identify a

3

Chapter 1 1.2 Problem Statement

fake passport 2. Interpol also released the data about lost and stolen travel documents

in the European Union and worldwide. There has been a sharp uptake in the number

of missing passports 3.

Blockchain is a ‘peer to peer’ network Figure 1.2. This network is distributed

among all the participant or nodes on a network. In traditional methods, it is not

possible to transfer digital assets without any intermediaries. In the case of blockchain

network, due to its unique principle it is possible to transfer digital assets without

any intermediaries. This technology was originally created to support the famous

cryptocurrency known as Bitcoin. Bitcoin was the first application of blockchain

whose network is distributed across thousands of peers or nodes. Blockchain uses

‘peer to peer’ communication mode for digital assets transfer. Furthermore, this technology

is based on decentralized transaction and data management aspects. All peers in the

network verify each transaction by running consensus [12].

The blockchain is poised to innovate and transform a wide range of applications,

including goods transfer, (e.g. Supply chain), digital media transfer, (e.g. Sale of art)

and remote services delivery, (e.g. Travel and tourism). It can be utilized as a platform

for decentralized business logic, for example, moving computing to data sources and

distributed intelligence, for example, education credentialing.

1.2 Problem Statement

In past few years, in Pakistan only, there has been a significant rise in scandals

related to fake passports. The implementation of biometric system is still not able to

stop identity theft [15]. Earlier this year, a Pakistani man was arrested in Malaysia with

62 fake passports 4. In 2012, a statement was made by British High Commissioner

Adam Thomson in which he said that Pakistan is a world leader in the visa fraud
2https://www.hooyu.com/resources/blog/70/Majority-of-people-are-unable-to-spot-fake-

passports-new-research-reveals
3https://www.politico.eu/article/europes-fake-forged-stolen-passport-epidemic-visa-free-travel-

rights
4https://tribune.com.pk/story/1477053/pakistani-man-arrested-malaysia-62-fake-passports/

4

Chapter 1 1.3 Aims and Objectives

Node Node

NodeNode

NodeNode

Figure 1.2. Peer to Peer Network

business. Therefore, we must meticulously check every single application, every

single passport and every single document. And the high commissioner was also

quoted as saying that the UK visa officials had spotted as many as 4000 fake documents

submitted by Pakistanis seeking travel documents last year 5.

1.3 Aims and Objectives

Blockchain application, cryptopassport, is to be used by all entities that are

identified initially which are embassies, passport offices and airports in Pakistan and

any other country. Due to the immutable characteristic of records in Blockchain

application, this approach will eliminate the use of fake passports, record forgery or

manipulation. Cryptopassport will help in verifying every passport by verifying and

backtracking history of that passport which will help in fighting counterfeit and stolen

5https://tribune.com.pk/story/413843/ pakistan-is-world-leader-in-visa-fraud-business-british-high-
commissioner

5

Chapter 1 1.3 Aims and Objectives

passports Figure 1.3. The main objectives of the project are as follows:

• To set up Blockchain network

• To design, model and verify the smart contract for passport verification

• To test and debug the smart contract

• To deploy smart contract to the Blockchain network

• To test Blockchain Application for Passport Verification

• To develop web application for online verification services

Border Control

EmbassyAirport

Police Station

DIRECTORATE GENERAL OF IMMIGRATION & PASSPORTS
Ministry of Interior

Figure 1.3. Participants of a blockchain network

6

Chapter 2

THE BLOCKCHAIN TECHNOLOGY

2.1 Evolution

The advent of the internet in the world wide web has transformed every

aspect of our lives, from stock markets to street corner food trucks. It has enabled

a technology explosion with Web 2.0 and the world of e-commerce applications.

Around 2008, 2009, when the trusted institutions and markets went crumbling down,

and everybody was running away from the Wall Street, a mysterious person called

Satoshi Nakamoto, introduced a new digital cryptocurrency called Bitcoin. Bitcoin

enabled an innovative platform for peer to peer transfer of value without any central

authority by implementing software programs for validation, verification, consensus

in a novel infrastructure called the blockchain. Later, in 2012, 2013, computation

elements were added to the blockchain infrastructure that has opened a whole world

of possibilities beyond simple currency transfer. These innovations are significantly

shaping the direction of Web 3.0 1.

The concept of the smart contract was there well before the advent of the

Bitcoin. Computer scientist, Nick Szabo, detailed his idea of cryptocurrency Bit gold

as a sort of a precursor for Bitcoin. He also outlined the concept of smart contract in

his 1996 publication. In fact, Szabo coined the term smart contract more than 20 years

ago [22]. Smart contract is a centerpiece and powerful feature of a blockchain. Bitcoin

has a script feature that includes rules and policies. Linux Foundation’s Hyperledger

blockchain has a smart contract feature called Chaincode. The Chaincode is written in

Go language and executed in a docker environment. Docker is a lightweight container

technology for executing programs.
1https://www.pcmag.com/article/351486/blockchain-the-invisible-technology-thats-changing-the-

wor

7

Chapter 2 2.2 Blockchain

2.2 Blockchain

Blockchain technology was initially developed for Bitcoin cryptocurrency

[13] which is based on decentralized transaction and data management aspects. Each

transaction is verified by all peers in the network by running consensus algorithms.

Ledgers on Blockchain networks are all most immune to hacking attacks. A block is

a record that could be anything like a bank statement. These records are saved in the

form of transactions Figure 2.1. Number of blocks join to form a blockchain Figure

2.2.

Tx 0

Tx 2

Tx 1

Tx is used to represent

transaction in a block

Figure 2.1. Block

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Genesis

Block

Block 1 Block 2

Figure 2.2. Blocks form a blockchain

There are two types of ledgers which are used in Blockchain technology:

permission-less and private ledgers [21]. Ledgers in case of Bitcoin are public permission-

less shared ledger that is ideal for cryptocurrencies transactions but not for private

business transactions since business transaction are needed to be transparent as well

as secure. Blockchain are mainly used for Bitcoin applications but now researchers

are more focused on non-Bitcoin applications such as document forgery verification,

8

Chapter 2 2.2 Blockchain

supply chain and others due to process integrity, transparency, immutability, reliability

and efficient transactions.

2.2.1 Decentralization

To understand the difference between centralized and decentralized network,

consider a scenario where customer wants to buy an item using his/her credit card.

Let’s enumerate the intermediaries involved in accomplishing this task. There is a

credit card agency, a customer bank, a credit cards bank, an exchange, merchant’s

bank, and finally, the merchant. This is an example of a centralized system. Now

compare this with a decentralized system where peers can transact directly with each

other irrespective of where they are located. Functions of the intermediaries are shifted

to the periphery to the peer participant in the blockchain infrastructure. Peers are not

necessarily known to each other.

2.2.2 Trust in Decentralization

Trust in decentralized system is established by validating and verifying transactions.

Furthermore, such transactions are recorded in temper-proof distributed ledger thus

creating chain of blocks. In addition, consensus protocol is implemented for blocks to

be added to the chain. So, validation, verification, consensus, and immutable recording

lead to the trust and security of the blockchain [19]. Consider a scenario in which

Ali is lending Amy $10,000. This is one single peer to peer transaction.Both of them

make a note of it on a ledger. What if Ali changes his entry from 10,000 to 11,000?

Alternatively, Amy changes hers from 10,000 to 1,000. To prevent this trust violation,

they need to seek the help of people around them and provide them all a valid copy

of this ledger. This is the basic concept of an immutable distributed ledger defined

in a blockchain process. In this scenario, all were physically present in one location.

In online transaction there are unknown peers and transactions scale up to 10,000 or

about a million transactions. A person should be able to transact with equal ease to

9

Chapter 2 2.2 Blockchain

any unknown peer in Pakistan, Albany, or Albania. This is the tenet of a decentralized

system supported by blockchain.

Trust is maintained with our unknown peers through verification and validation.

In above example, Amy requests Kevin to verify the amount Ali transacted with

her. Kevin checks it,and finds the amount of the transaction is not 10,000, but 300,

not valid then he rejects and nullifies the transaction. Like this case, validation,

then verification methods devised by the blockchain and implemented by the peers,

provide the collector trust needed in a decentralized system. Summarizing, blockchain

technology supports methods for a decentralized peer-to-peer system, a collective trust

model and a distributed immutable ledger of records of transactions.

2.2.3 Operations

Operations in the decentralized network are the responsibility of the peer

participants and their respective computational nodes. For example, laptop, desktop,

and server racks. These operations include validation transactions, gathering the

transactions for a block, broadcasting the ballot transactions in the block, and consensus

on the next block creation and chaining the blocks to form an immutable record.

There are two major roles for the participants. Participants that initiate transfer

of value by creating a transaction, additional participants called miners, who pick on

added work or computation to verify transactions, broadcast transaction, compete to

claim the right to create a block, work on reaching consensus by validating the block,

broadcasting the newly created block, and confirming transactions [16].

The participant would take on additional work because the miners are incentivized

with bitcoins for the efforts in managing the blockchain. Transaction validation is

carried out independently by all miners. The process involves validation of more than

20 criteria, including size and syntax. Some of these criteria are: Referenced Input

Unspent Transaction Output, UTXOs are valid, reference output UTXOs are correct,

reference input amount and output amount matched sufficiently, invalid transactions

10

Chapter 2 2.2 Blockchain

are rejected and will not be broadcast. All the valid transactions are added to a pool

of transactions. Miners select a set of transaction from this pool to create a block.

This creates a challenge. If every miner adds the block to the chain, there will be

many branches to the chain, resulting in inconsistent state. A system is implemented

to overcome this challenge. Miners compete to solving a puzzle to determine who

earn the right to create the next block. In the case of bitcoin blockchain, this parcel

is a computation of parcel and the central processing unit or CPU intensive. Once a

miner solves the puzzle, the announcement is broadcast to the network and the block

is also broadcast to the network. Then, another participant verifies the new block.

Participants reach a consensus to add a new block to the chain. This new

block is added to their local copy of the blockchain. Thus, a new set of transactions

are recorded and confirmed. The algorithm for consensus is called Proof of Work

protocol, since it involves work a computational power to solve the puzzle and to

claim the right to form the next block. Transaction zero, index zero of the confirmed

block is created by the miner of the block. It has a special UTXO (Unspent Transaction

Output) and does not have any input UTXO. It is called the coinbase transaction that

generates a minor’s fees for the block creation. This is how new coin is maintained in

bitcoin. To summarize, the main operations in a blockchain are transaction validation

and block creation with the consensus of the participants. There are many underlying

implicit operations as well in the bitcoin blockchain.

2.2.4 Transactions

Transactions are the basic element of the Bitcoin Blockchain. Transactions

are validated and broadcasted. Many transactions form a block and many blocks form

a chain through a digital data link. Blocks go through a consensus process to select

the next block that will be added to the chain. Chosen block is verified and added

to the current chain Figure 2.3. Validation and consensus process are carried out by

special peer nodes called miners. These are powerful computers executing software

11

Chapter 2 2.2 Blockchain

defined by the blockchain protocol [16].

A fundamental concept of a bitcoin network is an Unspent Transaction Output,

also known as UTXO. The set of all UTXOs in a bitcoin network collectively defined

the state of the Bitcoin Blockchain. UTXO’s are referenced as inputs in a transaction.

UTXO’s those are also outputs generated by a transaction. All that UTXO’s is in a

system, are stored by the participant nodes in a database. Transactions uses the amount

specified by one or more UTXOs and transmits it to one or more newly created output

UTXOs, according to the request finitiated by the sender. The structure of a given

UTXO is very simple. It includes a unique identifier of the transaction that created

this UTXO, an index or the position of the UTXO in the transaction output list, a

value or the amount it is good for. And an optional script, the condition under which

the output can be spent. The transaction itself includes a reference number of the

current transaction, references to one no more input UTXOs, references to one or

more output UTXOs newly generated by the current transaction, and the total input

amount and output amount. Participants can validate the transaction contents. The

UTXO’s reference input exist in the network state. This is the only one of the many

validation criteria. To summarize, transaction bring about transfer of value in the

Bitcoin Blockchain. The concept of UTXO defines the inputs and outputs of such a

transaction. Once a block is verified an algorithmic-ally agreed upon by the miners,

it is added to the chain of blocks, namely the Blockchain.

2.2.5 Public-Key Cryptography

Two techniques are predominantly used for securing the chain and for efficient

validation and verification. Hashing and asymmetric key encryption. These techniques

depend on several complex proven algorithms [24].

Blockchains decentralized network participants are not necessarily known

to each other. Credentials cannot be checked by the conventional means such as

verifying who you are with your driver’s license. Participants can join and leave the

12

Chapter 2 2.2 Blockchain

Transaction Added

Is the transaction

valid ?
Transaction Rejected

Yes

No

Added to the pool

of unconfirmed

transactions

Select set of

transactions to

create a block

Miners compete by

solving a puzzle

Puzzle solved ?
Broadcast solved

block
Yes

Block verified ?Yes

No

New block added to

chain and confirmed
Block rejectedNo

Figure 2.3. Block is added into blockchain after miners verify both transaction and
block.

chain as they wish. They operate beyond the boundaries of trust. Given this context.

Public-key cryptography is used to not only identify the peer participants but also to

authorize, authenticate and to detect forged or faulty transactions. In simple symmetric

13

Chapter 2 2.2 Blockchain

key encryption the same key is used for encryption and decryption, so it is called

symmetric key. Example, Caesar encryption is the simplest one with alphabets of a

message are shifted by a fixed number, and this number is called the Key. Consider

"Meeting at noon" the key value of every letter is sifted by three to encrypt it, and

receiver decrypts it, using the same three as the key. Shift the other way every character

to view the original message. Three is the key in this trivial example. Since the same

key is used for encryption and decryption, it is a symmetric key. Note that the key

and the encryption and decryption functions are typically much more complex in a

real application. In this case, it is easy to derive the secret key from the encrypted

data . These issues are further exasperated in a block chain decentralized network

where participants are unknown to each other. Public-key cryptography addresses

these issues. Instead of a single secret key, it employs two different keys that take care

of both the issues of symmetric key encryption [9]. Let, ‘nN’ be the private public-key

pair for a participant in NUST Islamabad Pakistan. Let ‘iI’ be the pair of keys for

the participant in USA. Public-key is published, private key is kept safe and locked.

Typically using a passphrase and the pair works as follows; encrypting function holds

two properties with a key pair. The public-key private key pair has the unique quality

that even though a data is encrypted with the private key, it can be decrypted with the

corresponding public-key and vice versa. If a participant in NUST wants to transact

with the participant in USA. Instead of sending just a simple message, a participant

in NUST will send a transaction data encrypted by NUST’s private key, and then

encrypted by USA’s public key. USA will first decrypt the data using its own private

key, then use NUST’s public key to decrypt assigned transaction data. This ensures

that only USA can decrypt and receive the data and that only NUST could have sent

the data. A popular implementation of public key, private key is the Rivest Shamir

Adleman (RSA) algorithm. Common application of RSA is the password-less user

authentication, for example for accessing a virtual machine on Amazon cloud. Though

RSA is very commonly used in many applications, blockchains need a more efficient

14

Chapter 2 2.2 Blockchain

and stronger algorithm. Efficiency is a critical requirement since public key pair is

frequently used in many different operations in block chain protocol. Elliptic Curve

Cryptography, ECC family of algorithms is used in the bitcoin as well as an Ethereum

block chain for generating the key pair.

2.2.6 Hashing

The private public key pair is a metaphorical passport to participating in

transacting on the blockchain. Like it is necessary to not only learn use of credit

card but also to secure it and protect it. The private key should be protected for the

security of your assets on the blockchain.

A hash function or hashing transforms and maps an arbitrary length of input

data value that could be a document, any data structure or a block, to a unique fixed

length value Figure 2.4. Even a slight difference in the input data would produce a

totally different hash output value [20].

Document

of any size
Hashing

256 bits
Hash

value

Data
structure

of any size

Block

Hashing

Hashing

256 bits
Hash

value

256 bits
Hash

value

Figure 2.4. Hashing

15

Chapter 2 2.2 Blockchain

There are two basic requirements of a hash function. The algorithm chosen

for the hash function should be a one-way function and it should be collision free or

exhibit extremely low probability of collision. The first requirement is to make certain

that no one can derive the original items hashed from the hash value. The second

requirement is to make sure that the hash value uniquely represents the original items

hashed. There should be extremely low probability that two different datasets map

onto the same hash value.

These requirements are achieved by choosing a strong algorithm such as

secure hash, and by using appropriately large number of bits in the hash value. Most

common hash size now is 256 bits and the common functions are SHA-3, SHA-256

and Keccak.

A 256-bit hash value space is indeed very large. 2 to the power of 256 possible

combinations of values. That is approximately 10 to the power of 77. That is 10

followed by 77 zeros. Odds of a meteor strike is higher than generating two of the

same hash values of 256 bits when applying this algorithm.

There are two different approaches for hashing based on how the constituent

elements are organized. A simple hash and a Merkle tree hash.

In the simple hash approach, all the data items are linearly arranged and

hashed. In a tree-structured approach, the data is at the leaf nodes of the tree, leaves

are pairwise hashing to arrive at the same hash value as a simple hash. Simple hash is

used when a fixed number of items to be hashed, such as the items in a block header,

and verifying the composite block integrity and not the individual item integrity. The

merkle tree hash is used when the number of items differ from block to block, for

example, number of transactions, number of states, number of receipts, with the tree

structure for computing the hash. Note that the state is a variable that may be modified

by a smart contract execution, and the result of the execution may be returned in a

receipt. Tree structure helps the efficiency of repeated operations, such as transaction

modification and the state changes from one block to the next.

16

Chapter 2 2.2 Blockchain

Summarizing, in blockchain, hashing functions are used for generating account

addresses, digital signatures, transaction hash, state hash, receipt hash and block

header hash. SHA-3, SHA-256, Keccak-256 are some of the algorithms commonly

used by hash generation in blockchains.

2.2.7 Consensus Protocol

A secure chain is a single main chain with a consistent state. Every valid block

added to this chain, adds to the trust level of the chain. The miners compete to add

their block to the chain. There is a method or protocol for choosing the next block to

the main chain called Proof of Work. Proof of Work uses hashing. [18].

Proof of Work is used in both bitcoin and ethereum Figure 2.5. In the process

of mining, a hash of the block header elements that is a fixed value and a nonce that

is a variable is computed. If hash value is less than 2 par 128 for bitcoin, and less

than function of difficulty for Ethereum, the puzzle has been solved. If it has not

been solved, repeat the process after changing the nonce value. If the puzzle has

been solved, broadcast the winning block that will be verified by other miners. Non-

winning miner nodes add the new block to the local copy of the chain and move on

to working on the next block. The winner gets an incentive for creating the block.

Proof of Work is a consensus protocol used by bitcoin block chain and by the current

version of Ethereum. The protocol may be the same, the implementations in these

two block chains are different. Many other approaches such as Proof of Stake, Proof

of Elapsed Time have been proposed.

2.2.8 Robustness

Trust is not only about executing regular operations correctly but also about

managing exception satisfactory. Robustness is the ability to satisfactorily manage

exceptional situations. It’s more important in a decentralized autonomous network

such as a blockchain where there are no intermediaries minding the store [11]. Double

17

Chapter 2 2.2 Blockchain

Transaction Added

Is the transaction

valid ?
Transaction Rejected

Yes

No

Execute

Transactions

Form Block

Consensus Process

(PoW)

Finalize and

Broadcast Block

Sufficient Gas and

Resources ?

Yes

Transaction RejectedNo

Block Verified By

Other Peers

Figure 2.5. Proof of Work

spending is a situation in which there might be more than one miner who solves the

consensus puzzle or there might be a case in which one transaction references as input

the same digital asset. Handling such exception satisfactorily is critical for ensuring

18

Chapter 2 2.2 Blockchain

the security of the blockchain. If there are two miners who have solved the consensus

puzzle very close to each other. Bitcoin protocol allows this chain split or two chains

for the next cycle Figure 2.6. One led by each of the competing blocks. The probability

that the next block will happen at the same time in both these chains is extremely low.

So, the winner of the next cycle for block creation consolidates one of the chains and

that chain becomes the accepted chain. In this case, the newest block is added to the

main chain. Now this chain is the longest and the valid main chain Figure 2.7. The

transaction in the other blocks are returned to the unconfirmed pool. Summarizing

with a very low probability, the main chain may split but if it does, the bitcoin protocol

has methods to consolidate it to a single chain within a cycle. Ethereum handles more

than one person by allowing Runner-Up blocks and allocating a small incentive for

these Runner-Up blocks. This incentive model helps in keeping the chains secure.

New blocks are added only to the mainchain and not to the Runner-Up chains. That

are Runner-up blocks are maintained for six more blocks after they were added. If

there is a blockchain in which there are two blocks one at the height, 4567, another

one at a height, 4557. The one deeper inside the chain is more trustworthy than the

one newly added. There’s a possibility that digital currency and other consumables are

single used digital assets, can be intentionally or inadvertently reused in transactions.

This is like an airline double booking a seat on a flight. In this case, a gate crew solved

this problem by using Ad hoc methods such as asking for volunteers to relinquish

their seats for money, etc. In a decentralized network, like a blockchain, there is no

intermediary. A policy and an automatic deterministic way is needed to handle this

situation. For handling transaction and double spending in Bitcoin it is allowed to the

first transaction that reference the digital asset and reject the rest of the transaction

that reference the same digital asset. In Ethereum, a combination of a call number and

a global nons is used to address the doublet spending issue. Every time a transaction

is initiated by an account, a global nonce is included in the transaction. After that, the

nonce is incremented. Time stamp on the nonce in the transaction should be unique

19

Chapter 2 2.2 Blockchain

and verified to prevent any double use of digital asset. Summarizing, well-defined

processes for handling exception improve trust in the blockchain.

2.2.9 Forks

Trust in Forks, a fork in the packed. Fork, hard fork and soft fork, are most

common phrases uttered in the context of a blockchain. Forks are just normal processes

in an evolutionary path of the nascent technology enabling a blockchain [3]. If

robustness and trust is about managing exceptional situations, hard forks and soft

forks are indeed at the front and center. In previous section change split was discussed

that is a minor perturbation in the chain. Such situation is handled as a naturally

expected occurrence within the block chain. On the other hand, occasionally, a minor

process adjustment must be carried out typically by bootstrapping a new software to

the already running processes. This is soft fork. For example, the script concept in

Bitcoin was introduced using this method. It can be considered as a software patch

or a bug fix to address an issue. Hard fork implies a major change in the protocol.

For example, the recent change from Ethereum Homestead to Metropolis Byzantium

version was a planned hard fork and important note after a hard fork the emerging

two chains are incompatible. There was an unplanned hard fork in Ethereum protocol,

Ethereum Core and Ethereum Classic split, that was enacted to address a critical

software issue in a decentralized autonomous organization (DAO).

Summarizing, soft fork and hard fork in the blockchain world are similar to

the release of software patches, and new versions of operating systems respectively.

Forks are mechanisms that add to the robustness of the blockchain framework. Well-

managed forks help build credibility in the blockchain by providing approaches to

manage unexpected faults and planned improvements 2.

2https://www.trustnodes.com/2017/12/02/blockchain-forks-shown-hayek-right-wrong

20

Chapter 2 2.2 Blockchain

Tx 0

Tx 3

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Genesis

Block

Block 1

Block 2 Block 3 Block 4

Block 2 Block 3

Tx is used to represent transaction

in a block

Figure 2.6. Chain Split

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Tx 0

Tx 2

Tx 1

Genesis

Block

Block 1 Block 2 Block 3 Block 4

Figure 2.7. Chain Merge

2.2.10 Security

The main components of the block are the header, the transactions, including

the transaction hash or the transaction root, and the state radio booth, the state hash,

or the state root. Integrity of the block is managed by assuring that the block header

contents along with the transactions are not modified, state transitions are efficiently

computed, hashed, and verified [10]. The block chain is supposed to be an immutable

record. In Ethereum, the block hash is the block of all the elements in the block header

which includes the transaction root and state root hashes. It is computed by applying

a variant of SHA-3 algorithm called Keccak and all the items of the block header.

A typical block has about 2,000 transactions in bitcoin and about 100 transaction

21

Chapter 2 2.2 Blockchain

Ethereum. An efficient way is needed to detect tampering and validate the transaction

efficiently. Hashes of transaction in a block are processed in a tree structure called

Merkle tree hash. Merkle tree hash is also used for computing the state root hash, since

only the hash of the chained states from block to block must be re-computed. It is

also used for receipt hash root. If any transaction is to be verified, only one path to the

tree must be checked and it is not needed to go through the entire set of transactions.

Smart contract execution in Ethereum results in state transitions. Every state change

requires state root hash re-computation. Instead of computing hash for the entire set

of states, only the affected path in the Merkle tree needs to be re-computed. When the

state 19 is changed to 20, that results in the path including 31, 41, and the state root

hash 64 to be re-computed. Only that path is re-computed, not the entire tree. Now,

let’s move on to block hash computation.

Block hash in Ethereum is computed by first computing the state root hash,

transaction root hash and then receipt root hash, shown at the bottom of the block

header. Hash is calculated from these roots and all the other items in the header with

the variable nodes to solve the proof of work puzzle. Block hash serves two important

purposes which are verification of the integrity of the block and the transactions,

formation of the chain link by embedding the previous block hash in the current

block header. If any participant node tampers with the block, its hash value changes

resulting in the mismatch of the hash values and rendering the local chain of the node

in an invalid state. Any future blocks initiated by the node would be rejected by other

miners due to hash mismatch. This enforces the immutability of the chain.

Summarizing, a combination of hashing and encryption are used for securing

the various elements of the block chain. Private public key pair and hashing are

important foundational concepts in decentralized networks that operate beyond trust

boundaries.

22

Chapter 2 2.3 Types of Blockchain

2.3 Types of Blockchain

Bitcoin blockchain is open-source and the entire code is available on the

GitHub. During the initial years beginning roughly in 2009, this open-source code

was extended to release different cryptocurrencies. About 300 plus cryptocurrencies

were introduced. Bitcoin supports an optional and special feature called scripts for

conditional transfer of values [14]. Ethereum Blockchain extended the scripting

feature into a full-blown code execution framework called smart contract. A smart

contract provides the very powerful capability of code execution for embedding

business logic on the blockchain. Based on such capabilities, three major types

of blockchains emerge from Bitcoin foundation. Type one deals with the coins in

cryptocurrency currency chain. Example, Bitcoin. Type two supports cryptocurrency

and a business logic layer supported by code execution. Example, Ethereum. Type

three involves no currency but supports software execution for business logic. Example,

The Linux Foundation’s Hyperledger. With the addition of code execution, comes the

serious consideration about public access to the blockchain hence, the classification

of public, private, and permissioned blockchains based on access limits [21].

2.3.1 Cryptocurrency Blockchain

Continuous operation of Bitcoin blockchain has been observed since its inception.

All supported by its public participants. Thus, Bitcoin is a fantastic example of a public

blockchain class. Anybody can join and leave as they wish. Transaction blocks and

the blockchain are publicly observable even though participants are anonymous. It is

open-source. It is also possible to create new coin digital currency by modifying the

Bitcoin code. Wallet applications provide the basic interface to transfer value through

the Bitcoin blockchain [14].

23

Chapter 2 2.3 Types of Blockchain

2.3.2 Cryptocurrency Based Smart Contract Blockchain

Bitcoin blockchain is the mother of all blockchains. It was intended for peer

to peer transfer of value and it does that well. Around 2013, a framework for code

execution was introduced by Ethereum Founders. The centerpiece and thrust of

this Ethereum blockchain is a smart contract. Consider figure 2.8 and figure 2.9,

comparing Bitcoin and Ethereum blockchain. There is the Bitcoin blockchain and a

wallet application for initiating transactions. On the other hand is Ethereum that took a

significant step towards transforming the blockchain into a computational framework

that opened a whole world of opportunities in the decentralized realm. Ethereum

supports smart contracts and of which will machine on which smart contracts execute.

Smart contracts in turn enable decentralized application that accomplish more than

a transfer of value. Efficient automation of decentralized application such as supply

chain [5].

Hardware

Peer to Peer Network and Operating

Systems

Bitcoin Blockchain Protocols/Operations

Wallet/Exchange Applications

Figure 2.8. Bitcoin Stack

2.3.3 Non-Cryptocurrency Based Smart Contract Blockchain

Non-cryptocurrency based smart contract blockchain uses permissioned blockchain.

Permissioned blockchain also called consortium blockchain. It is meant for a consortium

of collaborating parties to transact on a blockchain for ease of governance, provenance,

and accountability for example, a consortium of all automobile companies or healthcare

24

Chapter 2 2.3 Types of Blockchain

Hardware

Peer to Peer Network and Operating

Systems

Ethereum Blockchain and Ethereum Virtual

Machine

Application Framework: Smart Contracts

Verticals: End User Applications

Figure 2.9. Ethereum Stack

organizations [5]. Permissioned blockchain has the benefits of a public blockchain

with allowing only users with permission to collaborate and transact. It involves

no currency but supports software execution for business logic. Example, The Linux

Foundation’s Hyperledger Figure 2.10. The architecture of this blockchain is different

as it doesn’t rely on cryptocurrencies.

Hardware

Peer to Peer Network and Operating

Systems

Hyperledger Blockchain and services

Hyperledger APIs, SDKs and CLI

Verticals: End User Applications

Figure 2.10. Hyperledger Stack

In summary, significant innovations such as smart contracts have opened

broader applications for blockchain technology. Private and permissioned blockchain

allow for controlled access to the blockchain enabling many diverse business models.

25

Chapter 2 2.4 Development Framework

2.4 Development Framework

There are different types of ledgers which are used in Blockchain technology,

which includes public permission-less and private ledgers. Ledgers in case of Bitcoin

are public permission-less shared ledger which is ideal for cryptocurrencies transactions

but not for private business transactions.

Linux foundation introduced a project named “Hyperledger”, which aims

to identify and articulate goals for a cross industry standard for Blockchain [4].

Hyperledger has divided its development area into two parts, one focuses on developing

tools and other one focuses on developing framework. There are following frameworks

in Hyperledger:

1. Iroha

2. Sawtooth

3. Indy

4. Fabric

We have chosen Hyperledger Fabric as our development framework but lets

take a brief look at the other sister projects of Fabric to understand why we are using

Fabric and not any other framework [4].

2.4.1 Iroha

Iroha is a Hyperledger framework that focuses on financial and identity management

on a blockchain network. It uses algorithm known as Sumeragi. The limitation of this

algorithm is that with the increase in nodes n the network, the more time it would

take to reach consensus.

26

Chapter 2 2.5 Hyperledger Fabric

2.4.2 Sawtooth

Hyperledger Sawtooth uses Proof of Elapsed Time (PoET) algorithm and in

the algorithm the participant whom finishes his waiting time first, becomes the leader

of the new block. The limitation of this algorithm is that finality can be delayed due

to forks that must be resolved first and therefore it becomes not a suitable framework

for blockchain solution development for our use case.

2.4.3 Indy

Indy is another sister project of fabric and it uses Redundant Byzantine Fault

Tolerance algorithm and in this blockchain framework, all the instances on the network

order the request but only those which are ordered by master instance are executed.

The limitation with this algorithm is same as the one with Hyperledger Iroha and that

was, the more nodes there are on the network, the more time it would take to reach

the consensus.

2.4.4 Fabric

Hyperledger Fabric is framework built over Hyperledger project to offer shared,

permissioned and distributed ledger with support for smart contracts. Smart contracts

are business terms embedded in the ledger and are executed with each transaction. It

introduces the concept of special nodes called validating leader nodes and validating

nodes to offer complete security, transparency and accessibility to records. For data

security, it records and encrypts transaction on public ledger so that only those nodes

which were involved in transaction can make sense of data on ledger.

2.5 Hyperledger Fabric

A platform which is open source. It uses distributed ledger technology which

is permissioned. This platform is designed for contexts of enterprises. Architecture

27

Chapter 2 2.5 Hyperledger Fabric

in this platform is not only modular but also highly configurable. The modularity and

configurability enable this platform to be used for many of the use cases including

insurance, supply chain etc [1]. The typical flow of execution in this platform comprises

of execution, ordering, validation and finally updating the state of an asset Figure 2.11.

Execute Order Validate Update state

Figure 2.11. Flow of execution in Hyperledger Fabric

Typical blockchain solution uses domain specific languages but fabric is first

of its kind which supports many programming languages like java, go etc. This allows

developers to quickly familiarize themselves with programming architecture of this

platform. It omits the need for learning a new language.

The Hyperledger Fabric platform is highly customizable and can be used to

fit use cases. It also supports protocols consensus which is pluggable, which is also a

great factor in its modularity and customizability.

Pluggable consensus allows organization to use specific consensus according

to their needs. For example, crash fault tolerant (CFT) might be sufficient for single

organization and it might prove a drag to use complex consensus like fully byzantine

fault tolerant.

Fabric is a platform which provides bases for a blockchain solution that

doesn’t depends on the cryptocurrency or mining. This helps in reducing significant

risks involving cryptocurrencies.

2.5.1 Structure of Block

Block in hyperledger Fabric comprised of three parts Figure 2.13 that are [23]

28

Chapter 2 2.5 Hyperledger Fabric

ChaincodeMembership TransactionsBlockchain

Event Stream

Auditability

Identity
Management

Registration Consensus
Manager

P2P Protocol

Distributed
Ledger

Ledger Storage

Secure
Container

Secure Registry

Hyperledger APIs, SDKs and CLI

Hyperledger Services

Membership
Services

Chaincode
Services

Blockchain Services

Figure 2.12. Hyperledger Fabric Architecture

(A) Block Header

Block header is the part of a block in Hyperledger Fabric and it consists of a

number that is a unique identity of that specific block, a hash of the previous block

and finally a hash of the data which this block carries in it Figure 2.14.

(B) Block Data

Transaction which can be carried out, are stored in block data and it also

contains all the actions that can be carried out for a transaction on a blockchain

network Figure 2.15. Transactions are further divided into two parts, payload and

signature. Payload contains details of channel and signatures on it. And signature part

holds all the information about signatures that are used for executing of a transactions

and entities involved in creation of this block.

29

Chapter 2 2.5 Hyperledger Fabric

(C) Block Metadata

Metadata is a kind of data that gives information about the other data and

here it provides the information about signatures, last configuration block, all the

transactions and finally the metadata of ordering service Figure 2.16.

Block Data

Block Header

Block Metadata

Figure 2.13. Block

Number Data Hash
Previous

Hash

Figure 2.14. Block Header

SignaturesPayloads

Transactions

Figure 2.15. Block Data

30

Chapter 2 2.5 Hyperledger Fabric

Signature
Transaction

Filter
Last Config Orderer

Figure 2.16. Block Metadata

2.5.2 Functionalities

There are number of functionalities provided in Hyperledger Fabric. In this

section we have provided a brief introduction about those functionalities 3.

(A) Identity Management

Membership identity service is provided in Hyperledger Fabric which enables

permissioned networks and this service is used for managing IDs of users and it is

used for authentication of all the participant on the network. We can further manage

users by defining access controls for each participant depending on their role in a

network. For example, we can permit a user to invoke a chaincode application but

prohibit that same user from deploying a new chaincode.

(B) Privacy and confidentiality

Permissioned network allows coexistence of different competing business

groups, provided with private and confidential transactions on the same network. We

can divide fabric network into subset of networks using private channels. They behave

like a messaging path which is restricted to a specific member of a network. Thus,

providing confidentiality and privacy along with it.

(C) Efficient Processing

Hyperledger Fabric provides a functionality of assigning network roles according

to the type of node. In general, action on transactions are separated from each other

3https://hyperledger-fabric.readthedocs.io/en/release-1.1/functionalities.html

31

Chapter 2 2.5 Hyperledger Fabric

to provide parallelism in the network. Transactions are executed prior to ordering,

this enables each peer in the network to process number of transactions in any given

time. This doesn’t only dramatically increase transactions execution but also helps

with accelerating the delivery to the ordering service of the transactions.

(D) Chaincode Functionality

Logic is encoded in chaincode applications and they are invoked depending on

the type of transaction that is executed on the channel. We can use chaincode to define

the parameters that can be used to change ownership of the asset. Other than that, there

is also system chaincode which defined the parameters that are used for operating

an entire channel. To define the rules of the channel, lifcycle and configuration

chaincodes are used and we can also use endorsement and validation chaincode which

defines all the requirement which must be satisfied for the endorsement and validation

of transaction.

2.5.3 Architecture and Hierarchy

There are many components in Hyperledger Fabric Figure 2.17 that work

together to make up the whole system [2]. Those components and their hierarchy of

those components is discussed below:

(A) Domain

The domain is the namespace for the project. It is usually the name of project.

(B) Orderers

The orderers provides the functionality of creating a block from the new

transaction and then forwarding and committing it to all the adjacent peers in the

blockchain network. There can be multiple orderers. Orderer is informed about a

32

Chapter 2 2.6 Hyperledger Composer

transaction which is proposed and committed by a peer. They are not organization

dependent.

(C) Organizations

Every organization has its own peers and certificate authority. These organizations

act as a container of these network elements. They are used so that blockchain network

can be easily separated physically.

(D) Certificate Authorities

Like peers, every organization has its own certificate authority and is tied to

it. It is used to verify the ownership in the network and for creating users with their

respective certificates.

(E) Peers

These nodes are responsible for committing transactions and clients are connected

to these nodes. A CouchDB database is maintained in each peer where it has its

own copy of ledger. Number of peers can change from organization to organization

depending on the requirement and model of network.

2.6 Hyperledger Composer

Hyperledger fabric serves as a platform for development of business models

which do not use cryptocurrency within their transactions. It is not only pluggable

but also highly modular and customizable. Developing and deploying a blockchain

solution might take months in Hyperledger Fabric. Hyperledger composer makes it

not only easier but much faster also to develop and deploy blockchain solutions. It

is a framework that makes developing blockchain application easier. It also makes it

much easier to integrate with existing business systems [6].

33

Chapter 2 2.6 Hyperledger Composer

Domain (example.com)

Orderers (Multiple) [orderer.example.com]

Organization 2
(org2.example.com)

CA

Peer0

PeerN

Peer2

Organization 3
(org3.example.com)

CA

Peer0

PeerN

Peer2

Organization 1
(org1.example.com)

CA

Peer0

PeerN

Peer2

Figure 2.17. Components of Hyperledger Fabric Network

Pluggable blockchain consensus is supported by hyperledger fabric blockchain,

which makes sure that every transaction is validated according to the policy that is

according to the participants in the network. Access points are provided which can

be used by applications to consume data from business network.

We can use Hyperledger Composer for the quick modeling of our business

network Figure 2.18. We can map assets and transactions relating to our business

network into it. Assets can be tangible or intangible. Transactions are defined as an

interaction with the assets. We can also define which participants can interact with

them. Unique identity is associated with every participant.

2.6.1 Key Concepts

It is necessary for a developer to understand the basic and important key

concepts of Hyperledger Composer as they hold utmost importance in developing

34

Chapter 2 2.6 Hyperledger Composer

Assets

Participants

Transactions

Transaction

Functions

Access

Control

Rules

Query

Definitions

Business Network Archive

Hyperledger Fabric Web Browser

Model File Script File
Access

Control
Query File Use Composer to create

a Business Network

Definition, comprised of

Model, Script, ACL and

Query files.

Package up your

Business Network

Definition and export it as

an archive, ready to

deploy it somewhere.

Use ID Cards (which

include connection

profiles and credentials)

to deploy your Business

Network Definition to a
distributed ledger.

Figure 2.18. Hyperledger Composer

a better blockchain solution and to implement it successfully 4.

(A) Blockchain State Storage

Blockchain ledger is used to store all transactions which are submitted through

business network. Along with it, there is also a database which is used for storing the

current state of assets and participants called blockchain state. Blockchain state and

ledger is distributed uniformly across all peers and blockchain ensures that they are

consistent using a algorithm used for consensus.

(B) Connection Profiles

A JSON document which is a part of business network card is used by Hyperledger

Composer to define the system to which it connects to. They are referred and are used

to create cards for business network, which are used to connect to that system.

4https://hyperledger.github.io/composer/latest/introduction/key-concepts

35

Chapter 2 2.6 Hyperledger Composer

(C) Assets

These are tangible or intangible goods or services which are stored in registries.

Asset are used to represent anything in the business network. Each asset has a unique

identifier and they contain properties that defined at the time of business modeling.

(D) Participants

Members in a network whom may own assets and are able to submit transactions.

Just like modeling and defining assets, participants are also modeled. They also have

a unique identifier and related properties.

(E) Identities

Identity is comprised of private key and a digital certificate. For submitting

transactions, identities must be mapped. It is mapped to a participant. Typically, a

single identity is stored in a business network card and it allows that user or a member

of that business network to commit transactions on a business network.

(F) Business Network cards

Business network cards consists of an identity, metadata and a connection

profile. It is used to simplify the process of connecting to a business network.

(G) Transactions

Participants on a business network interact with assets through transactions.

(H) Queries

A participant can extract data in blockchain world-state using queries. They

are defined in the process of business modeling. Hyperledger Composer provides us

with an API, which is used to send queries.

36

Chapter 2 2.6 Hyperledger Composer

(I) Events

Events are used to give indication to external systems that something has

happened on blockchain business network. They are omitted when a transaction

process functions execute. Applications can be codded to subscribe to these events

emitted by transaction function.

(J) Access Control

A set of access control is defined in a business network which defines the

operations that are allowed by the participants on a business network under certain

conditions.

(K) Historian registry

It is a registry which records all the successful transactions. It also records

which participant submitted those transactions.

(L) Hyperledger Composer REST Server

Hyperledger Composer provides us a way to interact with the deployed business

network using REST API. This contains all the operations or transactions that could

be carried out on assets or participant etc. in a blockchain network.

(M) Business Network Archive

A typical blockchain solution in Hyperledger Composer comprises four types

of files or components that make up a whole solution. Each file has its own unique

characteristics and properties Figure 2.19.

1. Model File (.cto)

We use modeling language to model our business models. Modeling language

37

Chapter 2 2.6 Hyperledger Composer

has the following elements.

• Namespace

It should be only one in a single model file. It is used to uniquely identify

each model.

• Resource Definitions

It is a set of assets, transactions, participants, concepts, and events.

• Import

It is optional declarations, which are used to import foreigner resources.

2. Script File

Script file or logic.js file contains functions for transaction processor. These

functions are responsible for implementing the transactions that are defined in

the previous file i.e. Model file.

We use Business-Network-Connection Application Programming Interface (API)

to submit transactions, which in return invoke these functions. These functions

are coded using JavaScript Language.

3. Access Control (.acl)

To define or to permit different operations depending on the rule of the user in

the network, we use Access Control Language (ACL).

We define rules so that we can only allow a certain user or users to execute

Create, Read, Update or Delete (CRUD) operations on the assets or elements

defined in the business model.

4. Query File (.qry)

Queries are an important part or element of a business model as it returns

the required result by filtering hundred or maybe thousands of records. The

bespoke query language is used in the hyperledger composer to code queries

for a business model and all these queries are stored in this file.

38

Chapter 2 2.6 Hyperledger Composer

A
ss

e
ts

P
ar

ti
ci

p
an

ts
Tr

an
sa

ct
io

n
s

Tr
an

sa
ct

io
n

Fu

n
ct

io
n

s

A
cc

es
s

C
o

n
tr

o
l

R
u

le
s

Q
u

e
ry

D
ef

in
it

io
n

s

B
u

si
n

es
s

N
et

w
o

rk
 A

rc
h

iv
e

M
o

d
el

 F
ile

Sc
ri

p
t

Fi
le

A
cc

es
s

C
o

n
tr

o
l

Q
u

e
ry

 F
ile

Figure 2.19. Business Network Archive

39

Chapter 3

PASSPORT VERIFICATION

Pakistan and many other countries have started the use of Machine Readable

Passports (MRP). The reason behind moving from traditional passports to MRP

was to enhance the security of passports. In addition, it also speed up the process

of passport verification. These methods are standardized and implemented by the

International Civil Aviation Organization (ICAO). They made sure that passports are

not only machine readable but also human friendly as they must be read by border

control officials.

3.1 Existing Security Mechanisms

Prevention of data skimming and sniffing became the priority to put stop to

data leakage as it resulted in identity theft causing numerous crimes.

Using Personal Identification Number (PIN) was not ideal as not everyone

would remember their PIN and it would make the whole process of verification much

more slower and may cause many problems [8], [7].

3.1.1 Basic Access Control

To make process much secure and faster, Basic Access Control (BAC) was

implemented. It stores a pair of keys that are cryptographic keys, in the passport

chip. Passport number, birth date and issue date are accessed by reading Machine

Readable Zone (MRZ) with Optical Character Recognition (OCR). In the process

of scanning the passport it would engage in a protocol that comprises of challenge

response control. During this protocol upon successful authentication, contents are

released and if it fails, the holder i.e. passport holder is considered unauthorized.

40

Chapter 3 3.1 Existing Security Mechanisms

Problem with this security implementation was the limited entropy of the

secret keys. ICAO acknowledged that in few circumstances it might be possible for

someone to guess those bits, as they are comprised of data like birthdate or expiration

date etc. Another problem associated with security measure in place was the use of

single key for its lifetime that would mean that it would not revoke the readers access

for the lifetime which may result in compromise of sensitive data. It was a security

risk that just could not be ignored.

Security measure in place were not sufficient as the security issues were not

solved as efficient as they thought it would.

3.1.2 Extended Access Control

Extended Access Control (EAC) was implemented to overcome the shortcomings

in the previous passport security implementations. The whole process of verification

starts in this mechanism with verifying the certificates on the gates by the chip

inside of passports. Those certificates inside of gates (or e-gates) were short lived

and on verification by chip on passport the gates could read the data. But this whole

process required a larger sophisticated infrastructure. Infrastructure would be heavily

depended on the supportability of Private Key Infrastructure (PKI) in every country

and then every country would have to sign their own certificates. Furthermore, those

certificates should be stored in a centralized database or a repository from where all

the gates would retrieve certificates. Such large and complex infrastructure would

expose that much of vulnerabilities and security concerns in the system.

EACv1 was the first version of EAC. And it was tested and found much more

likely to be attacked and accessed despite its security measures in place. To overcome

those vulnerabilities, second version of EAC was introduced codenamed as EACv2.

It could prevent attacks that were induced on previous version of EAC but there were

few compatibility issues regarding implementation of this solution because not all

gates supported EAC, there were still large numbers of gates that were still using

41

Chapter 3 3.2 Verification on Blockchain

BAC. Another issue with this version was the possibility of expiration and leakage of

short life certificates. Expired certificates could still be used to retrieve the data from

the chip.

3.1.3 Supplemental Access Control

Despite of all the above implementations of security measures, it was still

possible to access and retrieve data and use it for identity theft and other crimes.

Password Authenticated Key Agreement Protocol (PACE v2) was implemented

to create Supplemental Access Control (SAC). It used Diffe-Hellman and mutual

authentication. It works in such a way that, it uses a small password which generates

a secret. But unlike in BAC, it would be of high entropy. PIN or Card Authentication

Number (CAN) are used as the password and it is printed on the passport. There are

two implementations of SAC. General Mapping and Integrated Mapping. Map2Point

algorithm is used in the latter one which would be a hub of vulnerabilities if it becomes

widely adopted.

Despite of much improvements in ICAO protocols, they still have doubtful

security. There are security concerns regarding brute-forcing.

3.2 Verification on Blockchain

The problem with current system in place is that despite of having countermeasures

in place, the system fails to detect every fake passport. Few might pass through the

verification process. That makes these security measures and mechanism insufficient.

Current systems are still using centralized databases which makes it a single point of

failure thus making it vulnerable to hacking attacks.

Blockchain addresses all the issues highlighted above. Furthermore, blockchain

provides immutability, provenance, finality and transparency.

In this research, the aim is to build blockchain application, Cryptopassports,

and model business network logic for the verification of passports. In this model, a

42

Chapter 3 3.3 Requirements

passport is considered an asset as our whole business model revolves around it. And

to extend the verification of passports during the process of visa creation, a visa is

considered as a transaction for a passport Figure 3.1.

This model can be implemented and extended to the needs of the user or

stakeholders. Three types of users or peer nodes are modeled using ACL Figure 3.2.

1. Network Administrator, who is responsible for managing all the nodes on the

network, deploying or upgrading a business network and creating users.

2. Passport Office Personnel, a user who is responsible for creating or adding and

updating a passport record.

3. Visa office Personnel, this user is using the record created by the Passport Office

Personnel to verify the passport before creating a visa, different checks are

created in passport verification that would be discussed in the model development

part.

Network Administrator

Network Administrator

Passport Office Personnel

Passport Office Personnel

Visa Office Personnel

Visa Office Personnel

Network Administrator
manages the blockchain
network and all the other
participants on the network.

Passport office Personnel is
responsible for adding a
passport record and updating
it.

Visa office Personnel is
responsible for verifying a
passport and adding a visa
record after it.

Figure 3.1. Network Model

3.3 Requirements

This blockchain solution is modeled on the basic requirements on the stakeholders

and model can be evolved with iterations to extend it to the requirements of the

43

Chapter 3 3.3 Requirements

stakeholders.

1. Storing records of passport in an immutable database. It must be immune to

hacking attacks.

2. Verification of passport must be confidential and should only be accessible by

stakeholders or verified users on the network.

3. Before visa creation existence of passport should be verified in the record.

4. Business network should be flexible and manageable in such a way that new

users can be added and access of existing users could be revoked if required.

Passport Office Personnel

Manage
Participants

Manage Network

Manage Passport

Manage Visa

Visa Office Personnel

Network Administrator

Figure 3.2. Use Case Of Network

44

Chapter 3 3.3 Requirements

There are three actors on a blockchain network that are Network Administrator,

Passport Office Personnel and Visa Office Personnel.

Network Administrator

Start Network

Stop Network

Install Business
Network Archive

Manage Business Network
{abstract}

Upgrade Business
Network Archive

Ping Business
Network

Figure 3.3. Use Case Of Managing Network

Managing network Figure 3.3 is an abstract use case which is specialized by

other use cases. The idea is that a network administrator could start or stop a network,

install business archive over a deployed network, upgrade existing network and it is

possible to test the network connection by pinging the network.

User or participants are managed by a network administrator Figure 3.4. A

network administrator can perform CRUD (Create, Read, Update, Delete) operations

on participants. Other operations included are binding of participant with some identity

and revoking access of current user if required in some scenario e.g. participant

leaving the network etc.

Passport office personnel is responsible for creating, searching and updating

45

Chapter 3 3.3 Requirements

Network Administrator

Create Participant

Update
Participant

Delete Participant

Manage Participants
{abstract}

Revoke Access of
Participant

Bind Participant

Find Participant

Figure 3.4. Use Case Of Managing Participants

passports Figure 3.5. The participant is not allowed to delete the passport to add a

layer of security from accidental deletion.

Visa office personnel can create and search a specific visa Figure 3.6. For visa

creation it is necessary to check if the passport that is being used for visa acquirement,

does exists or not and if it does exists then it is checked whether it is permitted and

not expired.

46

Chapter 3 3.4 Modeling of Requirements

Passport Office Personnel

Create Passport

Update Passport

Search Passport

Manage Passport
{abstract}

Figure 3.5. Use Case Of Managing Passports

3.4 Modeling of Requirements

Immutable record is provided by the blockchain called ledger. This section

will focus on depicting the use cases about creating or updating a passport record and

creating a visa.

Unified Modeling Language (UML) is used for modeling of user requirements

because it could be much easier to dynamically view the interactions between the

number of objects that are arranged in sequence. For that purpose, sequence diagram

of UML is used.

Passport office personnel sends a command to Hyperledger of creating a

passport record using web application. This invokes the function of creating passport

in the smart contract. Furthermore, before adding the passport it validates the data, id

and role of the user. On successful validation, it creates the record on a blockchain

Figure 3.7.

47

Chapter 3 3.4 Modeling of Requirements

Visa Office Personnel

Create Visa

Verfiy Passport

Search Visa

Manage Visa
{abstract}

<<include>>

Figure 3.6. Use Case Of Managing Visa

Passport office personnel sends a command to Hyperledger of updating a

passport record using web application. This invokes the function of updating passport

in the smart contract. It validates the data, id and role of the user. On successful

validation, it updates the record on a blockchain Figure 3.8.

Visa office personnel sends a command to Hyperledger of creating a visa

record using web application. This invokes the function of creating visa in the smart

contract. Furthermore, before adding the record it validates the data, id and role of the

user. In addition, it verifies whether passport number which is referred is valid and

does the record exists. On successful validation and verification, it creates the record

on a blockchain Figure 3.9.

48

Chapter 3 3.4 Modeling of Requirements

P
as

sp
o

rt

O
ff

ic
e

P
as

sp
o

rt

O
ff

ic
e

W
eb

A

p
p

lic
at

io
n

W
eb

A

p
p

lic
at

io
n

H
yp

e
rl

e
dg

er
H

yp
e

rl
e

dg
er

Sm
ar

t
C

o
nt

ra
ct

Sm
ar

t
C

o
nt

ra
ct

C
re

at
e

Pa
ss

p
or

t
A

tt
ri

b
u

te
C

re
at

e
A

tt
ri

bu
te

 C
o

m
m

a
nd

In
vo

ke
 S

m
a

rt
 C

on
tr

ac
t

C
re

at
e

Pa
ss

p
or

t
Fu

n
ct

io
n

V
al

id
at

e
N

ew
 P

a
ss

p
or

t

V
al

id
at

es
 U

se
r

ID

V
al

id
at

es
 U

se
r

R
o

le

P
ut

 S
ta

te

D
o

ne

Ex
it

 P
ut

 s
ta

te
 is

 t
h

e
sm

ar
t

co
n

tr
ac

t
cr

ea
ti

n
g

 a
 r

e
co

rd
.

 S
m

ar
t

co
nt

ra
ct

 c
h

ec
k

o
f

p
as

sp
o

rt

 r
ec

or
d

 d
o

es
n
’t

 a
lr

ea
d

y
ex

is
ts

.

Figure 3.7. Creating A Passport

49

Chapter 3 3.4 Modeling of Requirements

P
as

sp
o

rt

O
ff

ic
e

P
as

sp
o

rt

O
ff

ic
e

W
eb

A

p
p

lic
at

io
n

W
eb

A

p
p

lic
at

io
n

H
yp

e
rl

e
dg

er
H

yp
e

rl
e

dg
er

Sm
ar

t
C

o
nt

ra
ct

Sm
ar

t
C

o
nt

ra
ct

U
p

d
at

e
P

as
sp

o
rt

 A
tt

ri
b

ut
e

U
p

d
at

e
A

tt
ri

b
u

te
 C

o
m

m
an

d
In

vo
ke

 S
m

a
rt

 C
on

tr
ac

t
U

p
d

at
e

P
as

sp
o

rt
 F

u
nc

ti
o

n

G
e

t
St

at
e

V
al

id
at

es
 U

se
r

ID

V
al

id
at

es
 U

se
r

R
o

le

P
ut

 S
ta

te

D
o

ne

Ex
it

 S
m

ar
t

co
nt

ra
ct

 c
h

an
ge

s
st

a
te

 o
f

 s
pe

ci
fi

ed
 a

tt
ri

b
ut

e
to

 n
e

w
 v

al
ue

.

U
p

d
at

e
va

lu
e

(a
tt

ri
b

u
te

)

Figure 3.8. Updating A Passport

50

Chapter 3 3.4 Modeling of Requirements

V
is

a
O

ff
ic

e
V

is
a

O
ff

ic
e

W
eb

A

p
p

lic
at

io
n

W
eb

A

p
p

lic
at

io
n

H
yp

e
rl

e
dg

er
H

yp
e

rl
e

dg
er

Sm
ar

t
C

o
nt

ra
ct

Sm
ar

t
C

o
nt

ra
ct

C
re

at
e

V
is

a
A

tt
ri

b
u

te
C

re
at

e
A

tt
ri

bu
te

 C
o

m
m

a
nd

In
vo

ke
 S

m
a

rt
 C

on
tr

ac
t

C
re

at
e

V
is

a
Fu

n
ct

io
n

V
al

id
at

e
N

ew
 V

is
a

V
al

id
at

es
 U

se
r

ID

V
al

id
at

es
 U

se
r

R
o

le

P
ut

 S
ta

te

D
o

ne

Ex
it

 P
ut

 s
ta

te
 is

 t
h

e
sm

ar
t

co
n

tr
ac

t
cr

ea
ti

n
g

 a
 r

e
co

rd
.

 S
m

ar
t

co
nt

ra
ct

 c
h

ec
ks

 if
 p

as
sp

o
rt

 e

xi
st

s.
 If

 it
 e

xi
st

s,
 it

 c
he

ck
s

w
h

et
h

er

 p
as

sp
o

rt
 h

as
 a

lr
e

ad
y

e
xp

ir
ed

 o
r

 p

ro
hi

bi
te

d
 fr

om
 u

se
.

Figure 3.9. Creating A Visa

51

Chapter 4

DEVELOPMENT OF BLOCKCHAIN

SOLUTION

4.1 Business Model Development

For the development of the business model it is necessary to set up a development

environment on our machines.

We have used four machines, one for development and remaining for deployment

and as well as for testing. Each machine comprises of following specs. We have used a

light version of Ubuntu also called Lubuntu for setup of the development environment.

4.1.1 Machine Specifications

1. Operating System: Lubuntu 16.04 x64

2. RAM: 8 GB

3. Hard Drive: 400 GB

In this chapter, we will discuss setup on all those four machines into two parts.

We must make sure that we are using the fresh/clean machines to prevent us from

redundancy and other errors.

First part will emphasize on discussing the setup of a development environment

on one machine and second part will emphasize on implementation, network deployment

and environment setup.

52

Chapter 4 4.1 Business Model Development

4.1.2 Development Environment

Official installation guide is available on the website of the Hyperledger

Composer 1.

The development environment is crucial and for that we followed the instructions

provided on the official website of Hyperledger Composer.

Prerequisites comprise of following packages.

• Node

• Docker Engine

• npm

• Docker-Compose

• git

• Python

To simplify the installation process, official documents on Hyperledger composer

provides us with the simple commands and an automated script to install the above-

mentioned prerequisites [6]. The process comprises opening a new terminal and

executing the following commands.

curl -O https://hyperledger.github.io/composer/latest/prereqs-ubuntu.sh

chmod u+x prereqs-ubuntu.sh

./prereqs-ubuntu.sh

Now we must install packages that provides us with Command Line Interface

(CLI) tools to interact with business model deployed locally or over the network.
1https://hyperledger.github.io/composer/latest/installing/installing-index

53

Chapter 4 4.1 Business Model Development

1. Step

Installation of the essential CLI tools.

npm install -g composer-cli

npm install -g composer-rest-server

npm install -g generator-hyperledger-composer

npm install -g yo

2. Step

Installation of Composer Playground (optional)

npm install -g composer-playground

*user has a choice of either using the online browser-based application or install

locally.

3. Step

Installation of Interactive Development Environment (optional)

Download VSCode, navigate to extensions, search for Hyperledger Composer

and download that extension.

4. Step

Installation of Hyperledger Fabric

(a)

mkdir /fabric-dev-servers && cd /fabric-dev-servers

curl -O https://raw.githubusercontent.com/hyperledger/composer-tools/

master/packages/fabric-dev-servers/fabric-dev-servers.tar.gz

tar -xvf fabric-dev-servers .tar.gz

54

Chapter 4 4.2 Development and Testing

(b)

cd /fabric-dev-servers

./downloadFabric.sh

5. Step

Finalizing the environment.

cd /fabric-dev-servers

./startFabric.sh

./createPeerAdminCard.sh

By completing all the above steps, we have a working environment and all the

necessary images of the Hyperledger Fabric.

4.2 Development and Testing

The typical flow Figure 4.1 of developing a complete business model is as

follows.

1. Create or define a business model. The business model contains a definition of

not only assets or elements in a business but also the definition of transactions.

Therefore, we cannot move forward without completing it beforehand.

2. If there are any transactions defined in a business model, the second step in

the development would be to define processors for those functions in Script or

Logic file.

3. Permissions are defined for certain user regarding operations and access to

elements in a business model.

4. Finally, queries are developed to return the required data from records.

55

Chapter 4 4.2 Development and Testing

Defining

Business Model

Defining Logic

Defining

Permission

Defining Query

Figure 4.1. Flow of Development

For the development of this business model, the vscode is used.

4.2.1 Defining Business Model

The development of the business model is divided into two parts, the first one

focuses on creating a business model while the second one focuses on creating a

model file for defining participants.

(A) Business Definition

In this section we will be developing a business model for the blockchain

solution.

To give this file a unique identification, we have named it as org.pakistan. cryptopassport.

cto A.1.

A namespace is defined for unique identification. namespace org.pakistan.

cryptopassport.

56

Chapter 4 4.2 Development and Testing

The passport is defined as an asset in this file. It is defined by using asset

keyword, followed by asset name and property name by which it is identified. To

make sure that user only enters only valid input, we have used regular expression with

each field or data property to make sure only certain type of input is accepted as an

input.

The asset defined in a business model should have all the properties that are

defined in real world. Therefore, in this model we have stored all the details that are

available on a passport. There are certain properties to be stored in this asset and we

must make sure that user only enter valid inputs. So, we have used regular expressions

with those data fields and regular expressions are easily identifiable as they are defined

with regex keyword.

asset Passport identified by passportNumber {

o String passportNumber regex = /^[0-9]+$/

//Details about passport

o PassportType passportType default="ORDINARY"

o PassportStatus passportstatus default="PERMITTED"

o String bookletNumber regex = /^[0-9]+$/

o String trackingNumber regex = /^[0-9]+$/

o String issuingAuthority

o String placeOfIssue

o DateTime dateOfIssue

o DateTime dateOfExpiry

o String previousPassportNumber optional

o String Exclusion default="ISREAL"

//Personal Details

o String givenName

57

Chapter 4 4.2 Development and Testing

o String surName

o Gender gender

o String religion

o String fatherName

o String placeOfBirth

o DateTime dateOfBirth

o String citizenshipNumber regex = /^[0-9]+$/

o String nationality

}

Data types in modeling language consist of but not limited to String, DateTime.

Other than these data types, enumerated data types are also used, which are passportStatus,

passportType and Gender. With the use of these variables we make sure that user is

only able to choose input from options as an input that are available in these data

types and these are defined as follows.

enum PassportType {

o ORDINARY

o DIPLOMATIC

o OFFICIAL

}

enum PassportStatus{

o PERMITTED

o PROHIBITED

}

enum Gender {

o MALE

o FEMALE

o OTHER

58

Chapter 4 4.2 Development and Testing

}

The above definition of passport asset follows the structure of a typical passport

and all the data or information that a passport contains are stored in this asset. It saves

not only the details of a passport holder but also details about passport itself.

To make sure that no invalid characters are stored in a field, regular expressions

are used to check the validity of each input.

Visa is used as a transaction in this business model but first, it must be defined

in the form of asset and make sure that user accessing that can only create or add this

asset’s record using transactions only.

asset Visa identified by visaNumber{

o String visaNumber regex = /^[0-9]+$/

o String passportNumber regex = /^[0-9]+$/

//Details about visa

o String country

o DateTime issueDate

o DateTime expiryDate

o String visaType

o String duration

o NumberOfEntries numberOfEntries

o String placeOfIssue

o VisaStatus visaStatus

o String applicationNumber regex = /^[0-9]+$/

}

It contains all the data a visa stamp contains on a passport. The asset definition

is the same as before in case of passport. Enumerated data types used in this asset

59

Chapter 4 4.2 Development and Testing

definition are NumberOfEnteries and VisaStatus.

enum NumberOfEntries {

o Multiple

o Single

}

enum VisaStatus {

o Accepted

o Rejected

}

As described before, a visa is created using transaction, now transaction function is

defined in this same file.

The difference between defining an asset and transaction is that we use keyword

transaction instead of an asset. There is also no identifier in the case of the transaction.

transaction CreateVisa{

-->Passport passportResource

o String visanumber

o DateTime issueDate

o DateTime expiryDate

o String country

o String visaType

o String duration

o NumberOfEntries numberOfEntries

o String placeOfIssue

o VisaStatus visaStatus

o String applicationNumber

}

In our business model, we have defined visa as a part of the passport asset and we

60

Chapter 4 4.2 Development and Testing

have defined that relationship by using following code of line.

-->Passport passportResource

It takes passport number as an input for it to be used as a reference to the

passport asset in the records. When a transaction executes two more data fields

are attached to it with those that are defined in this model automatically. Those

data fields are timestamp and transactionId. Timestamp holds the info about time

at which transaction was executed while transactionId is a unique identifier that is

also automatically generated.

(B) Participant Definition

In this model A.2, we define users that interact with the business model that

is to be deployed. The namespace of this model is defined as follows:

namespace org.pakistan.cryptopassport.participant

There are different resources definitions in the business model. Before defining

each participant separately, we must define an abstract type which holds participant

key and contact. Participant key is the unique identifier of that participant and contact

is a concept that holds the details of participant like first name, last name, and email.

abstract participant CryptoPassportParticipant identified by

participantKey {

o String participantKey

o Contact contact

}

concept Contact {

o String firstName

o String lastname

o String email

}

61

Chapter 4 4.2 Development and Testing

Here we are defining three types of participants according to the roles that are

to be assigned.

1. Network Admin

participant CryptoPassportNetworkAdmin extends

CryptoPassportParticipant {

/** This is a concrete resource definition */

}

2. Passport Office Personnel

participant CryptoPassportOfficePersonnel extends

CryptoPassportParticipant {

o String department

o String City

}

3. Visa Office Personnel

participant CryptoPassportVisaOfficePersonnel extends

CryptoPassportParticipant {

o String department

o String City

}

4.2.2 Defining Logic

Visa is used as a transaction and for that, we must create a script file that

contains the logic for executing the transaction A.3.

Parameter tag is used to represent the definition of the parameter. It is followed

by the complete name of the specific transaction that is defined in a specific model.

62

Chapter 4 4.2 Development and Testing

Following this, is the name of the parameter, which in this case is AddVisa.

/**

* @param {org.pakistan.cryptopassport.CreateVisa} AddVisa

* @transaction

*/

A new async function named as CreateVisa that takes AddVisa as an input parameter

is created.

async function CreateVisa(AddVisa) {

}

This function contains all the actions that are to be executed upon creating a transaction

to which it is related.

const assetRegistry = await getAssetRegistry('org.pakistan.

cryptopassport.Passport');

const validPassport = await assetRegistry.exists(AddVisa.

passportResource.passportNumber);

var passportStatus = AddVisa.passportResource.passportstatus;

var passportDateOfExpiry = new Date(AddVisa.passportResource.

dateOfExpiry).getTime();

There are four variables defined, assetRegistry, validPassport, passportStatus, and

passportDateOfExpiry.

The assetRegistry is storing the registry of asset we have defined as a passport.

It is to check whether the passport number that is being referred in the creation of

visa really exists or not. Therefore, first, we must access the passport registry using

this variable.

For the successful creation of visa, passport number is entered as an input.

The validPassport check for the existence of that passport and stores the result.

The variable passportStatus is storing the status of passport that is being

63

Chapter 4 4.2 Development and Testing

referred.

The pdoe variable is accessing the date of expiry of that passport and storing

it.

We have implemented three checks for the creation of visa, which are then

being implemented in if statements.

1. The existence of a valid passport.

2. Status of that passport.

3. The expiry date of that passport.

If a passport exists, then it checks its status that whether it has been permitted

for use or not and if that checks out, we finally check whether the passport has expired

or not. If any of it fails, this function will throw an error and function will exist without

creating a visa.

if (validno) {

if(passportStatus=="PERMITTED") {

//statements

}}

else{throw new Error("Passport has been prohibited !!!");}}

else {throw new Error('this transaction failed, no such Passport');}

If the passport has been permitted for use then the following statements will

execute.

let factory = getFactory();

let registry = await getAssetRegistry("org.pakistan.

cryptopassport.Visa");

let resource = factory.newResource("org.pakistan.

cryptopassport","Visa", AddVisa.visanumber);

Three variables have been defined in the above statements.

64

Chapter 4 4.2 Development and Testing

1. The factory variable is used to create an instance of the resource.

2. The registry variable is accessing the registry of visa asset.

3. The resource variable is storing a template based on the definition in a model

file and assigning it identifier as it is in the model definition.

resource.passportNumber = AddVisa.passportResource.passportNumber;

resource.country = AddVisa.country

resource.expiryDate = AddVisa.expiryDate

resource.issueDate = AddVisa.issueDate

resource.visaType = AddVisa.visaType

resource.duration = AddVisa.duration

resource.numberOfEntries = AddVisa.numberOfEntries

resource.placeOfIssue = AddVisa.placeOfIssue

resource.visaStatus = AddVisa.visaStatus

resource.applicationNumber = AddVisa.applicationNumber

var dateOfIssue = new Date(AddVisa.issueDate).getTime();

var dateOfExpiry = new Date(AddVisa.expiryDate).getTime();

Now we are accessing the data input given at the time of executing this

transaction and storing it in the template created before.

if(dateOfExpiry < dateOfIssue){throw new Error("Date of expiry cannot

be in the past!!!");}

else if(passportDateOfExpiry<dateOfIssue){throw new Error("Passport has

already expired!!!");}

else if(passportDateOfExpiry<dateOfExpiry){throw new Error("Passport is

expiring in visa duration!!!");}

else {await registry.add(resource);}

Here one more check has been placed before creating visa, which checks

whether the dates of a visa issue and visa expiry are valid or not. If it satisfies that

65

Chapter 4 4.2 Development and Testing

condition, a visa is created successfully.

4.2.3 Defining Permissions

In this section, we have defined the access rules for each participant that has

been previously created in model definition A.4.

Rules definition follows a certain template. First, we write rule keyword

followed by name of the rule. Then we define description, participant, operation,

resource and action.

Description contains the short description about what this rule does. Participant

define which participant can access this rule or for what participant it is created.

Operation contains information about what actions can be performed by that participant.

Resource contains information about which resource. And finally, action defines

whether participant can perform above mentioned operations on defined resources or

not.

To allow network admin to create participants and to maintain the business

network, we have defined following access.

rule NetworkControlPermission {

description: "give admin ALL access to system resources"

participant: "org.hyperledger.composer.system.NetworkAdmin"

operation: ALL

resource: "org.hyperledger.composer.system.*"

action: ALLOW

}

rule ParticipantRegistryControlPermission {

description: "give admin ALL access to CryptoPassport participant

types"

participant: "org.hyperledger.composer.system.NetworkAdmin"

operation: ALL

66

Chapter 4 4.2 Development and Testing

resource: "org.pakistan.cryptopassport.participant.*"

action: ALLOW

}

This rule is defined so that every participant could read the system registries.

rule CryptoPassportPermissionSystem {

description: "can READ the system registries"

participant: "ANY"

operation: READ

resource: "org.hyperledger.composer.system.**"

action: ALLOW

}

Following rules are defined so that passport office personnel could create, read or

update the records related to asset which is passport. And, a rule to allow this user to

read history of the system.

rule CryptoPassportOfficePersonnelPermissionSystem {

description: "can CREATE the system registries"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportOfficePersonnel"

operation: CREATE

resource: "org.hyperledger.composer.system.**"

action: ALLOW

}

rule CryptoPassportOfficePersonnelPermission {

description: "only passport Office personnel can CREATE, READ and

UPDATE a passport"

participant: "org.pakistan.cryptopassport.participant.

67

Chapter 4 4.2 Development and Testing

CryptoPassportOfficePersonnel"

operation: CREATE,READ,UPDATE

resource: "org.pakistan.cryptopassport.Passport"

action: ALLOW

}

rule CryptoPassportParticipantPermissionHistorian {

description: "can CREATE HistorianRecord to the Historian"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportOfficePersonnel"

operation: CREATE

resource: "org.hyperledger.composer.system.HistorianRecord"

action: ALLOW

}

To make sure that user responsible for creation of visa, following rules are written for

him. These rules allow him to create visa and as well read the records of passport.

rule CryptoPassportVisaOfficeParticipantPermissionHistorian {

description: "can write HistorianRecord to the Historian"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: CREATE

resource: "org.hyperledger.composer.system.HistorianRecord"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelPermission {

description: "only Visa Office personnel can CREATE and READ a visa"

participant: "org.pakistan.cryptopassport.participant.

68

Chapter 4 4.2 Development and Testing

CryptoPassportVisaOfficePersonnel"

operation: CREATE,READ

resource: "org.pakistan.cryptopassport.**"

transaction: "org.pakistan.cryptopassport.CreateVisa"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelReadPassportPermission {

description: "Reading a passport before creating a visa"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: READ

resource: "org.pakistan.cryptopassport.Passport"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelReadVisaPermission {

description: "Reading a visa"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: READ

resource: "org.pakistan.cryptopassport.Visa"

action: ALLOW

}

4.2.4 Defining Query

Queries are used to return data from records of an asset. We define queries by

using query keyword, followed by short description and finally statement. Statement

69

Chapter 4 4.2 Development and Testing

tells the about the records of an asset that are to be accessed A.5.

By completing all the steps, we have created a complete business model for the

passport verification and extended it by verifying passport on visa creation. And with

that we have also defined certain users depending on their roles. And have created

access rules for them. And finally defined all the queries that can be executed on

assets on this model.

4.2.5 Generating Business Network Archive

A typical solution comprises four components, model, script, access control

and queries. These components are then merged together in an archive file called,

business network archive.

To create an archive file from files that have been previously created, we open

a new terminal from the directory of our working and execute the following command.

composer archive create --sourceType dir --sourceName ../

This commands generate a single file with extension ‘.bna’. In this it has created a

cryptopassports.bna file.

Now we need to install our business solution on the development environment

that we have deployed previously.

First, we install archive onto the environment and then we use another command

to start the business network on the environment. These commands are as follows:

composer network install-a.\cryptopassports@0.0.1.bna-c PeerAdmin@hlfv1

composer network start-c PeerAdmin@hlfv1-n cryptopassports-V 0.0.1-A

admin-S adminpw

Here PeerAdmin@hlfv1 is a peer administrator that is created by default at the time

of setting up development environment. And admin is default username and adminpw

is default secret or password.

Now we have a working environment with business network deployed over it.

70

Chapter 4 4.2 Development and Testing

We test the rules defined in the access control by creating participants and

issuing them identity. To check this, we will be creating three users:

1. Network Administrator

2. Passport Office Personnel

3. Visa Office Personnel

Access rules and how these participants will make use of this network, has already

been described in previous section therefore, here we will focus on creating these

participants and verify their access control.

1. Network Administrator

Network administrator is responsible for creating a participant, here by default

a network administrator is created admin@cryptopassports. But here we will be

creating a new participant who is a network administrator. Following command

is executed for creating a participant.

composer participant add -d '{"$class":"org.pakistan.

cryptopassport.participant.cryptopassportnetworkadmin","

participantKey":"mahmedsaeedi","contact":{"$class":"org.

pakistan.cryptopassport.participant.Contact","firstName":"

Muhammad Ahmed","lastname":"Saeedi","email":"m.ahmed.

saeedi@outlook.com"}}' -c admin@cryptopassports

Above command creates a participant with details entered in this command.

It is as exactly discussed in the section of creating access control. From same

terminal now we need to issue identity to this participant by executing following

command

composer identity issue -u mahmedsaeedi -a org.pakistan.

cryptopassport.participant.CryptoPassportNetworkAdmin#

mahmedsaeedi -c admin@cryptopassports

71

Chapter 4 4.2 Development and Testing

Finally, we export identity card that has been created as a successful execution

of previous commands. Following command is executed in terminal

Command import -f mahmedsaeedi@cryptopassports.

This card that has been created contains all the information regrading this newly

created participant. And now same process will be repeated for creating other

participants and exporting their cards.

2. Passport Office Personnel

In this section we are creating personnel for passport office, Shahzad. And

issuing him identity and exporting card.

composer participant add -d '{"$class":"org.pakistan.

cryptopassport.participant.CryptoPassportOfficePersonnel","

participantKey":"shahzad","contact":{"$class":"org.pakistan.

cryptopassport.participant.Contact","firstName":"Shahzad","

lastname":"Shoukat","email":"shahzad@outlook.com"},"

department":"Passport office","City":"Islamabad"}' -c

admin@cryptopassports

composer identity issue -u shahzadshoukat -a org.pakistan.

cryptopassport.participant.CryptoPassportOfficePersonnel#

shahzadshoukat -c admin@cryptopassports

composer import -f shahzadshoukat@cryptopassports.card

3. Visa Office Personnel

In this section we are creating personnel for passport office, Asad. And issuing

him identity and exporting card.

composer participant add -d '{"$class":"org.pakistan.

cryptopassport.participant.CryptoPassportVisaOfficePersonnel

72

Chapter 4 4.2 Development and Testing

","participantKey":"asadhayat","contact":{"$class":"org.

pakistan.cryptopassport.participant.Contact","firstName":"

Asad","lastname":"Hayat","email":"asad@outlook.com"},"

department":"visa office","City":"Islamabad"}' -c

admin@cryptopassports

composer identity issue -u asadhayat -a org.pakistan.

cryptopassport.participant.CryptoPassportVisaOfficePersonnel

#asadhayat -c admin@cryptopassports

composer import -f asadhayat@cryptopassports.card

We can start a Composer Rest Server with each card created to verify the

access and operations which are executable by each participant on the business

network.

4.2.6 Participant Access Verification

(A) Network Administrator

Firstly, we will start Composer Rest Server with network administrator participant.

Following command is executed to start server with card of this participant.

composer-rest-server -c masaeedi@cryptopassports -n never -w true.

This participant can only create participant Figures 4.3, 4.4 and if he tries to

access or create passport or any other asset it will produce error Figures 4.5, 4.6.

(B) Passport Office Personnel

First we will exit the current terminal and will open a new terminal and execute

following command to start rest server with the passport office personnel participant

that we have already created.

73

Chapter 4 4.2 Development and Testing

composer-rest-server -c shahzad@cryptopassports -n never -w true.

This participant can only create and update passport record on the ledger. We can

verify this by opening a browser and entering the local address of rest server that

has deployed because of the execution of above command. The interface in figure

4.2 is provided by default when we start a rest server. Names of assets might change

according to the business model. All the transactions, assets, participants and queries

are displayed as they were defined at the time of business modeling.

According to the access control that has been defined at the time of business

modeling, this participant should only be able to create or update a passport record

and should not be able to create a visa or participant.

1. List passport

We can see all the list of operations that is available by default. And we can

further expand each operation by clicking on it. Here we will be expanding the

first operation that is GET, this operation will list all the passports in the record.

If we click on Try it out! Figure 4.7, it will return empty because at this point

we haven’t entered a record. By the end of this section we have not only created

a business model and deployed it over development environment but also, we

have created participants. Next section deals with network deployment over

three physical machines that we have set up earlier.

2. Create a Passport

Next step is to check if participant can successfully create a passport or not. For

this, we click on POST operation and enter following data into value section of

parameters. Make sure data that is being entered doesn’t violates any regular

expression that has been defined otherwise it will produce an error Figure 4.8.

Now, if we click on Try it out!, it can be observed that operation has been

successful Figure 4.9. In the same way we can navigate to other operations and

74

Chapter 4 4.2 Development and Testing

try if we have access to only available operations or all the operations. User will

fail to delete passport as we have not provided such access to the participant

Figures 4.10, 4.11.

(C) Visa Office Personnel

We will exit the previously opened terminal and will open a new terminal

and execute following command to start rest server with the visa office personnel

participant that we have already created.

composer-rest-server -c asad@cryptopassports -n never -w true

This participant can only create a visa record on the ledger. We can verify this by

opening a browser and entering the local address of rest server that has deployed

because of the execution of above command.

1. Create a Visa

Here we will create a visa by navigating to CreateVisa: A transaction named

CreateVisa, here recall that we have defined visa as an asset, but it is created by

using a transaction as we want our visa record to not be tempered with.

For this, we click on POST operation and enter following data into value section

of parameters.

Make sure data that is being entered doesn’t violates any regular expression

that has been defined otherwise it will produce an error. Transaction id should

be left empty as it is created automatically on successful execution Figure 4.12.

Now, if we click on Try it out!, it can be observed that operation has been

successful Figure 4.13.

In the same way we can navigate to other operations and try if we have access

to only available operations or all the operations.

By the end of this section we have not only created a business model and

deployed it over development environment but also, we have created participants.

75

Chapter 4 4.3 Implementation

Next section deals with network deployment over three physical machines that we

have set up earlier.

4.3 Implementation

In this research we have built a blockchain solution based on the development

framework that can be implemented in accordance to the requirement on the country.

Network structure and business model might differ from country to country but the

asset around which that business model would be built, would remain same. For

implementation of our solution, we have built a small network consisting of three

physical machines. We have assigned each machine a role in accordance to the

network model discussed in earlier sections. We have also built a frontend application

based on web languages html, css and java. User have the choice of choosing any

other language according to the requirement.

In the next section we will discuss how we have deployed our business model

on our network.

Prerequisites should be installed on each machine like we did during the

development of business model and with that we will also download platform specific

binaries on each machine that would provide us with necessary images for business

network and solution deployment.

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.1.0

This will download fabric samples and binaries along with it. We will be using these

samples in upcoming steps. Before moving on, we must make sure that each peer can

discover each other. We can achieve this by adding ip addresses of each peer on every

other peer or machine that we are using for network deployment. We can ping every

other machine from each machine to check if it is able to discover those machines or

not. We will be using these machines to setup a simple fabric network. Each machine

will be used for different participant in the network.

76

Chapter 4 4.3 Implementation

4.3.1 Structure of network

We will refer machine 1, machine 2 and machine 3, to network admin, passport

office personnel and visa office personnel respectively.

Orderer, certificate authority will be deployed on the same machine that is

network admin but in production deployment they should be on separate machine to

prevent it from becoming a single point of failure.

Each machine has its own peer and CouchDB image or binaries deployed to

be used by itself.

There are many files in the fabric-dev-servers that we have downloaded previously.

We will be focusing on the ones that we will be using for network deployment. For

the configuration we will navigate to the directory where fabric-dev-servers, we will

further navigate into a folder called fabric-scripts. There are two folders hlfv1 and

hlfv11. We will be working in hlfv11 as we are using fabric 1.1 version.

There is a folder within this folder called composer and in composer there

will be many files and folder. If there is a folder named crypto-config, we must first

delete it before continuing. There is a file named as crypto-config.yaml. In this file

we define the domain of our network and numbers of peers other than admin peer of

this network.

OrdererOrgs:

-Name:Orderer

Domain:nust.com

Specs:

-Hostname:orderer

PeerOrgs:

-Name:Org1

Domain:org1.nust.com

Template:

Count:3

77

Chapter 4 4.3 Implementation

Users:

Count: 2

It contains all the necessary information to establish a network between peers in

a blockchain network. Template is used to define the number total users on the

blockchain network and Users is used to define the number of users other than admin

user. In this model we have one network admin and two other participants therefore

we have used this configuration.

Now we need to run a command to generate these templates, for that we will

be executing following command in the new terminal.

cryptogen generate --config=./crypto-config.yaml

This will generate artifacts in the same directory under the folder, crypto-

config. Now we must create a genesis block and channel for our business network to

communicate on. For that we will be executing following commands in the terminal.

configtxgen -profile ComposerOrdererGenesis -outputBlock ./composer-

genesis.block

configtxgen -profile ComposerChannel -outputCreateChannelTx ./composer-

channel.tx -channelID composerchannel

This will produce composer-genesis.block and composer-channel.tx files.

Before continuing, we must modify the contents of other files. We will start

modification from docker-compose.yml file. Replace all the contents with the following

contents. This contains all the necessary modification for successful deployment of a

blockchain network.

version: '2'

services:

ca.org1.nust.com:

image: hyperledger/fabric-ca:$ARCH-1.1.0

78

Chapter 4 4.3 Implementation

environment:

- FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

- FABRIC_CA_SERVER_CA_NAME=ca.org1.nust.com

ports:

- 7054:7054

command: sh -c 'fabric-ca-server start --ca.certfile /etc/hyperledger/

fabric-ca-server-config/ca.org1.nust.com-cert.pem --ca.keyfile /etc/

hyperledger/fabric-ca-server-config/3

bea6f6f32ec415fe7b3bff9b39044a4cfa789a484b0014b88f4580377715800_sk -

b admin:adminpw -d'

volumes:

- ./crypto-config/peerOrganizations/org1.nust.com/ca/:/etc/hyperledger/

fabric-ca-server-config

container_name: ca.org1.nust.com

orderer.nust.com:

container_name: orderer.nust.com

image: hyperledger/fabric-orderer:$ARCH-1.1.0

environment:

- ORDERER_GENERAL_LOGLEVEL=debug

- ORDERER_GENERAL_LISTENADDRESS=0.0.0.0

- ORDERER_GENERAL_GENESISMETHOD=file

- ORDERER_GENERAL_GENESISFILE=/etc/hyperledger/configtx/composer-

genesis.block

- ORDERER_GENERAL_LOCALMSPID=OrdererMSP

- ORDERER_GENERAL_LOCALMSPDIR=/etc/hyperledger/msp/orderer/msp

working_dir: /opt/gopath/src/github.com/hyperledger/fabric

command: orderer

ports:

- 7050:7050

79

Chapter 4 4.3 Implementation

volumes:

- ./:/etc/hyperledger/configtx

- ./crypto-config/ordererOrganizations/nust.com/orderers/orderer.nust.

com/msp:/etc/hyperledger/msp/orderer/msp

peer0.org1.nust.com:

container_name: peer0.org1.nust.com

image: hyperledger/fabric-peer:$ARCH-1.1.0

dns_search: .

extra_hosts:

- "orderer.nust.com:xx.x.xx.xxx"

environment:

- CORE_LOGGING_LEVEL=debug

- CORE_CHAINCODE_LOGGING_LEVEL=DEBUG

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

- CORE_PEER_ID=peer0.org1.nust.com

- CORE_PEER_ADDRESS=peer0.org1.nust.com:7051

- CORE_CHAINCODE_STARTUPTIMEOUT=1200s

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=composer_default

- CORE_PEER_LOCALMSPID=Org1MSP

- CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/peer/msp

- CORE_LEDGER_STATE_STATEDATABASE=CouchDB

- CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb:5984

working_dir: /opt/gopath/src/github.com/hyperledger/fabric

command: peer node start

ports:

- 7051:7051

- 7053:7053

volumes:

- /var/run/:/host/var/run/

80

Chapter 4 4.3 Implementation

- ./:/etc/hyperledger/configtx

- ./crypto-config/peerOrganizations/org1.nust.com/peers/peer0.org1.nust.

com/msp:/etc/hyperledger/peer/msp

- ./crypto-config/peerOrganizations/org1.nust.com/users:/etc/

hyperledger/msp/users

depends_on:

- orderer.nust.com

- couchdb

couchdb:

container_name: couchdb

image: hyperledger/fabric-couchdb:$ARCH-0.4.6

ports:

- 5984:5984

environment:

DB_URL: http://localhost:5984/member_db

Replace the ip address of the orderer with the ip address of a local machine.

Also replace certificate in the following line with the one in the directory.

composer/crypto-config/peerOrganizations/org1.example.com/ca/.

command: sh -c 'fabric-ca-server start --ca.certfile /etc/hyperledger/

fabric-ca-server-config/ca.org1.nust.com-cert.pem --ca.keyfile /etc/

hyperledger/fabric-ca-server-config/3

bea6f6f32ec415fe7b3bff9b39044a4cfa789a484b0014b88f4580377715800_sk -

b admin:adminpw -d'

This file is responsible for deploying images on the local machines. We will

be modifying this file for other machines accordingly.

For second machine we will create a new file docker-compose-peer2.yml.

version: '2'

81

Chapter 4 4.3 Implementation

services:

peer1.org1.nust.com:

container_name: peer1.org1.nust.com

image: hyperledger/fabric-peer:$ARCH-1.1.0

extra_hosts:

- "orderer.nust.com:10.9.21.250"

environment:

- CORE_LOGGING_LEVEL=debug

- CORE_CHAINCODE_LOGGING_LEVEL=DEBUG

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

- CORE_PEER_ID=peer1.org1.nust.com

- CORE_PEER_ADDRESS=peer1.org1.nust.com:7051

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=composer_default

- CORE_PEER_LOCALMSPID=Org1MSP

- CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/peer/msp

- CORE_LEDGER_STATE_STATEDATABASE=CouchDB

- CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb2:5984

working_dir: /opt/gopath/src/github.com/hyperledger/fabric

command: peer node start

ports:

- 8051:7051

- 8053:7053

volumes:

- /var/run/:/host/var/run/

- ./:/etc/hyperledger/configtx

- ./crypto-config/peerOrganizations/org1.nust.com/peers/peer1.org1.nust.

com/msp:/etc/hyperledger/peer/msp

- ./crypto-config/peerOrganizations/org1.nust.com/users:/etc/

hyperledger/msp/users

depends_on:

82

Chapter 4 4.3 Implementation

- couchdb2

couchdb2:

container_name: couchdb2

image: hyperledger/fabric-couchdb:$ARCH-0.4.6

ports:

- 6984:5984

environment:

DB_URL: http://localhost:6984/member_db

Similarly, we will create a file for last machine docker-composer-peer3.yml

version: '2'

services:

peer2.org1.nust.com:

container_name: peer2.org1.nust.com

image: hyperledger/fabric-peer:$ARCH-1.1.0

extra_hosts:

- "orderer.nust.com:10.9.21.250"

environment:

- CORE_LOGGING_LEVEL=debug

- CORE_CHAINCODE_LOGGING_LEVEL=DEBUG

- CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

- CORE_PEER_ID=peer2.org1.nust.com

- CORE_PEER_ADDRESS=peer2.org1.nust.com:7051

- CORE_VM_DOCKER_HOSTCONFIG_NETWORKMODE=composer_default

- CORE_PEER_LOCALMSPID=Org1MSP

- CORE_PEER_MSPCONFIGPATH=/etc/hyperledger/peer/msp

- CORE_LEDGER_STATE_STATEDATABASE=CouchDB

- CORE_LEDGER_STATE_COUCHDBCONFIG_COUCHDBADDRESS=couchdb2:5984

working_dir: /opt/gopath/src/github.com/hyperledger/fabric

83

Chapter 4 4.3 Implementation

command: peer node start

ports:

- 9051:7051

- 9053:7053

volumes:

- /var/run/:/host/var/run/

- ./:/etc/hyperledger/configtx

- ./crypto-config/peerOrganizations/org1.nust.com/peers/peer2.org1.nust.

com/msp:/etc/hyperledger/peer/msp

- ./crypto-config/peerOrganizations/org1.nust.com/users:/etc/

hyperledger/msp/users

depends_on:

- couchdb2

couchdb2:

container_name: couchdb2

image: hyperledger/fabric-couchdb:$ARCH-0.4.6

ports:

- 7984:5984

environment:

DB_URL: http://localhost:7984/member_db

Now go to directory hlfv11, there is another file that we will modifying. That

file is createPeerAdminCard.sh.

Replace the contents of this machine with the following

#!/bin/bash

Usage() {

echo ""

echo "Usage: ./createPeerAdminCard.sh [-h host] [-n]"

84

Chapter 4 4.3 Implementation

echo ""

echo "Options:"

echo -e "\t-h or --host:\t\t(Optional) name of the host to specify in

the connection profile"

echo -e "\t-n or --noimport:\t(Optional) don't import into card store"

echo ""

echo "mat: ./createPeerAdminCard.sh"

echo ""

exit 1

}

Parse_Arguments() {

while [$# -gt 0]; do

case $1 in

--help)

HELPINFO=true

;;

--host | -h)

shift

HOST="$1"

;;

--noimport | -n)

NOIMPORT=true

;;

esac

shift

done

}

HOST=localhost

85

Chapter 4 4.3 Implementation

Parse_Arguments $@

if ["${HELPINFO}" == "true"]; then

Usage

fi

Grab the current directory

DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

if [-z "${HL_COMPOSER_CLI}"]; then

HL_COMPOSER_CLI=$(which composer)

fi

echo

check that the composer command exists at a version >v0.16

COMPOSER_VERSION=$("${HL_COMPOSER_CLI}" --version 2>/dev/null)

COMPOSER_RC=$?

if [$COMPOSER_RC -eq 0]; then

AWKRET=$(echo $COMPOSER_VERSION | awk -F. '{if ($2<19) print "1"; else

print "0";}')

if [$AWKRET -eq 1]; then

echo Cannot use $COMPOSER_VERSION version of composer with fabric 1.1,

v0.19 or higher is required

exit 1

else

echo Using composer-cli at $COMPOSER_VERSION

fi

else

echo 'No version of composer-cli has been detected, you need to install

86

Chapter 4 4.3 Implementation

composer-cli at v0.19 or higher'

exit 1

fi

cat << EOF > connection.json

{

"name": "hlfv1",

"x-type": "hlfv1",

"x-commitTimeout": 300,

"version": "1.0.0",

"client": {

"organization": "Org1",

"connection": {

"timeout": {

"peer": {

"endorser": "300",

"eventHub": "300",

"eventReg": "300"

},

"orderer": "300"

}

}

},

"channels": {

"composerchannel": {

"orderers": [

"orderer.nust.com"

],

"peers": {

"peer0.org1.nust.com": {},

87

Chapter 4 4.3 Implementation

"peer1.org1.nust.com": {},

"peer2.org1.nust.com": {}

}

}

},

"organizations": {

"Org1": {

"mspid": "Org1MSP",

"peers": [

"peer0.org1.nust.com",

"peer1.org1.nust.com",

"peer2.org1.nust.com"

],

"certificateAuthorities": [

"ca.org1.nust.com"

]

}

},

"orderers": {

"orderer.nust.com": {

"url": "grpc://xx.x.xx.xxx:7050"

}

},

"peers": {

"peer0.org1.nust.com": {

"url": "grpc://xx.x.xx.xxx:7051",

"eventUrl": "grpc://xx.x.xx.xxx:7053"

},

"peer1.org1.nust.com": {

"url": "grpc://xx.x.xx.xxx:8051",

88

Chapter 4 4.3 Implementation

"eventUrl": "grpc://xx.x.xx.xxx:8053"

},

"peer2.org1.nust.com": {

"url": "grpc://xx.x.xx.xxx:9051",

"eventUrl": "grpc://xx.x.xx.xxx:9053"

}

},

"certificateAuthorities": {

"ca.org1.nust.com": {

"url": "http://xx.x.xx.xxx:7054",

"caName": "ca.org1.nust.com"

}

}

}

EOF

PRIVATE_KEY="${DIR}"/composer/crypto-config/peerOrganizations/org1.nust.

com/users/Admin@org1.nust.com/msp/keystore/

c8c9bbdfa447c296cc15e76b4161ec6319487cbe46f622530203d7f6fbea07ca_sk

CERT="${DIR}"/composer/crypto-config/peerOrganizations/org1.nust.com/

users/Admin@org1.nust.com/msp/signcerts/Admin@org1.nust.com-cert.

pem

if ["${NOIMPORT}" != "true"]; then

CARDOUTPUT=/tmp/PeerAdmin@hlfv1.card

else

CARDOUTPUT=PeerAdmin@hlfv1.card

fi

"${HL_COMPOSER_CLI}" card create -p connection.json -u PeerAdmin -c "${

89

Chapter 4 4.3 Implementation

CERT}" -k "${PRIVATE_KEY}" -r PeerAdmin -r ChannelAdmin --file

$CARDOUTPUT

if ["${NOIMPORT}" != "true"]; then

if "${HL_COMPOSER_CLI}" card list -c PeerAdmin@hlfv1 > /dev/null; then

"${HL_COMPOSER_CLI}" card delete -c PeerAdmin@hlfv1

fi

"${HL_COMPOSER_CLI}" card import --file /tmp/PeerAdmin@hlfv1.card

"${HL_COMPOSER_CLI}" card list

echo "Hyperledger Composer PeerAdmin card has been imported, host of

fabric specified as '${HOST}'"

rm /tmp/PeerAdmin@hlfv1.card

else

echo "Hyperledger Composer PeerAdmin card has been created, host of

fabric specified as '${HOST}'"

fi

Replace the ip addresses of peers with ip addresses of your own machines.

Save all files and copy whole folder of fabric-dev-servers on other machines.

After copying whole folder, you can simplify the structure of files by removing

irrelevant docker-compose file and renaming the relevant one to docker-compose.yml

for example, remove docker-compose.yml file from second machine or peer and

rename docker-compose-peer2.yml to docker-composer.yml

Open a new terminal on first machine from within the directory and execute

following command.

./startFabric.sh && ./createPeerAdminCard.sh

This will set up the network and deploy relevant images locally. In second machine,

execute

90

Chapter 4 4.3 Implementation

./startFabric.sh

Also, in third machine, execute

./startFabric.sh

We don’t need to execute ./createPeerAdminCard.sh other than first machine.

Now we need to install and start the business network, we can achieve this by

changing our directory to where our business network archive and card is located. We

will doing this step on first machine. And execute following commands

composer network install --card PeerAdmin@hlfv1 --archiveFile

cryptopassports.bna

composer network start -n cryptopassports -V 0.0.1 -A admin -S adminpw

--card PeerAdmin@hlfv1 -f admin@cryptopassports.card

composer import -f admin@cryptopassports.card

On this machine we will be creating other users or participants cards for use in the

network just like we did in the development environment.

After creating cards, we can transfer or copy that file to respective machine.

We can check if business network has been deployed successfully by executing

following command

composer network ping --card admin@cryptopassports

On each machine we will deploy rest server. Execute following commands respective

to each machine.

Machine 1:

composer-rest-server -c masaeedi@cryptopassports -n never -w true.

Machine 2:

composer-rest-server -c shahzad@cryptopassports -n never -w true.

91

Chapter 4 4.3 Implementation

Machine 3:

composer-rest-server -c asad@cryptopassports -n never -w true.

In above commands it can be noted that we have passed few other arguments.

In this command we must mention card that we are using for deployment of local

rest server and we supply the name of card with -c. In this case we have not enabled

authentication ‘-n’, tls ‘-w’ and use of namespaces ‘never’. But we have allowed our

system to listen to events published. We have specified it in this command by using

‘true’. This can be changed according to the requirement of the business model.

We can again verify access rules of each participant and it can be observed

that each participant is only able to carry out operations that he has been allowed to.

In this chapter we have learned to set up four machines one for development and other

three for deployment of business network. And by the end of this chapter we have a

working business network.

Now we can use our frontend application and use it to interact with the

business model in a friendly manner.

92

Chapter 4 4.3 Implementation

Figure 4.2. Composer Rest Server

93

Chapter 4 4.3 Implementation

Figure 4.3. Creating Passport Office Personnel

94

Chapter 4 4.3 Implementation

Figure 4.4. Creating Visa Office Personnel

95

Chapter 4 4.3 Implementation

Figure 4.5. Network Admin Trying To Create Passport

96

Chapter 4 4.3 Implementation

Figure 4.6. Access Error While Creating Passport 97

Chapter 4 4.3 Implementation

Figure 4.7. List Passport

98

Chapter 4 4.3 Implementation

Figure 4.8. Creating Passport

99

Chapter 4 4.3 Implementation

Figure 4.9. Creating Passport Success Message

100

Chapter 4 4.3 Implementation

Figure 4.10. Entering Details To Delete Passport

101

Chapter 4 4.3 Implementation

Figure 4.11. Error Produced While Deleting Passport

102

Chapter 4 4.3 Implementation

Figure 4.12. Creating Visa
103

Chapter 4 4.3 Implementation

Figure 4.13. Visa Creation Successful

104

Chapter 5

DISCUSSION AND CONCLUSION

5.1 Discussion

Blockchain is an emerging technology in web. In this research, a blockchain

application, Cryptopassports, for passport verification has been developed. In comparison

to current implementations for passport security by ICAO, cryptopassports provides

the participant on the network with secure access to sensitive information about a

passport and its holder. Data is recorded in the form of ledger which is maintained

by all peers on the network. In addition, data is almost impossible to hack and

hackers will not be able to access sensitive data or to make any alterations to data

records. The participants on the network will only be able to access the records. Each

participant has been given certain access to record or carry out CRUD (Create, Read,

Update, Delete) operations on data records. Cryptopassports has been tested using

data set of twenty passports. And for the proof of concept, it has been deployed

on a physical network. For testing purposes, three participants were created for

carrying out different operations on a network. Those participants comprise a network

administrator, a passport office personnel and a visa office personnel. These participants

were given access according to their roles in the network. A network administrator

was only allowed to carry out operations regarding network and its participants. In

comparison to that, passport office personnel was allowed to carry out operations on

passport. For example, passport office personnel was only able to create, update or

verify the passport. And similarly, visa office personnel was only allowed to create

or verify visa. Furthermore, creation of visa also verifies the passport. The record

was maintained on all peers of the network but different access was granted to each

participant according to the roles given to these participants.

105

Chapter 5 5.2 Conclusion

5.2 Conclusion

In this research, a blockchain application, Cryptopassports, for verification of

passport has been created. Cryptopassports has been tested and implemented on a

physical network. Furthermore, cryptopassports provides a way to verify a passport

instantly. With the implementation of crypotpassports, it will be almost impossible

for hackers to access or alter data record in any way. Due to its unique technological

aspect, the data will be maintained by all peers. The application, cryptopassport, has

been found to be more efficient and secure then the current systems that are currently

implemented for passport verification in many countries including Pakistan. With the

implementation of the proposed system, it will be nearly impossible for anyone to

hack or penetrate the database. This will result in efficient and instant verification of

passports. And it would be made sure that only permissioned and verified participants

on the network, are able to access the record.

A future prospect may be to integrate the cryptopassports with other tools of

the Hyperledger. It is also possible to deploy Hyperledger network on other tools e.g.

docker swarm or kubernetes. We can add more features to make access to passport

verification more secure by using biometric or retina scan. It might be possible to add

functionality of storing picture of passport holder off the chain and then accessing it

at the time of passport verification. Passport verification is one use case of blockchain,

there are many other use cases that can be used for implementation of blockchain

based applications e.g. document verification, supplychain and manymore.

106

REFERENCES

[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady
Laventman, Yacov Manevich, et al. Hyperledger fabric: a distributed operating
system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference, page 30. ACM, 2018.

[2] Christian Cachin. Architecture of the hyperledger blockchain fabric. In
Workshop on Distributed Cryptocurrencies and Consensus Ledgers, volume
310, 2016.

[3] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International
Conference on, pages 1–10. IEEE, 2013.

[4] Vikram Dhillon, David Metcalf, and Max Hooper. The Hyperledger Project,
pages 139–149. Apress, Berkeley, CA, 2017.

[5] Garry Gabison. Policy considerations for the blockchain technology public and
private applications. SMU Sci. & Tech. L. Rev., 19:327, 2016.

[6] Richard Hull. Blockchain: Distributed event-based processing in a data-centric
world. In Proceedings of the 11th ACM International Conference on Distributed
and Event-based Systems, pages 2–4. ACM, 2017.

[7] Ari Juels, David Molnar, and David Wagner. Security and privacy issues in
e-passports. In Security and Privacy for Emerging Areas in Communications
Networks, 2005. SecureComm 2005. First International Conference on, pages
74–88. IEEE, 2005.

[8] Eleni Kosta, Martin Meints, Marit Hansen, and Mark Gasson. An analysis
of security and privacy issues relating to rfid enabled epassports. In IFIP
International Information Security Conference, pages 467–472. Springer, 2007.

[9] Yogesh Kumar, Rajiv Munjal, and Harsh Bardhan Sharma. Comparison of
symmetric and asymmetric cryptography with existing vulnerabilities and
countermeasures. 2011.

[10] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security issues
and challenges. IJ Network Security, 19(5):653–659, 2017.

[11] Mahdi H Miraz. Blockchain: Technology fundamentals of the trust machine.
Machine Lawyering, Chinese University of Hong Kong, 23rd December, 2017.

[12] Axel Moinet, Benoît Darties, and Jean-Luc Baril. Blockchain based
trust & authentication for decentralized sensor networks. arXiv preprint
arXiv:1706.01730, 2017.

[13] Satoshi Nakamoto. Whitepaper: Bitcoin: A peer-to-peer electronic cash system.
Email posted to listserv, 9:04, 2008.

107

[14] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and cryptocurrency technologies: a comprehensive
introduction. Princeton University Press, 2016.

[15] Wayne Penny. Biometrics: A double edged sword-security and privacy. SANS
Institute, 2002.

[16] Fergal Reid and Martin Harrigan. An analysis of anonymity in the bitcoin
system. In Security and privacy in social networks, pages 197–223. Springer,
2013.

[17] Zdenek Riha and Vashek Matyas. Privacy issues of electronic passport. 01 2011.

[18] Lakshmi Siva Sankar, M Sindhu, and M Sethumadhavan. Survey of
consensus protocols on blockchain applications. In Advanced Computing
and Communication Systems (ICACCS), 2017 4th International Conference on,
pages 1–5. IEEE, 2017.

[19] Bikramaditya Singhal, Gautam Dhameja, and Priyansu Sekhar Panda. How
blockchain works. In Beginning Blockchain, pages 31–148. Springer, 2018.

[20] Melanie Swan. Blockchain: Blueprint for a new economy. " O’Reilly Media,
Inc.", 2015.

[21] Tim Swanson. Consensus-as-a-service: a brief report on the emergence of
permissioned, distributed ledger systems. Report, available online, Apr, 2015.

[22] Nick Szabo. Smart contracts: building blocks for digital markets. EXTROPY:
The Journal of Transhumanist Thought,(16), 1996.

[23] Parth Thakkar, Senthil Nathan, and Balaji Vishwanathan. Performance
benchmarking and optimizing hyperledger fabric blockchain platform. arXiv
preprint arXiv:1805.11390, 2018.

[24] Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin. Public
Key Cryptography-PKC 2006: 9th International Conference on Theory and
Practice in Public-Key Cryptography, New York, NY, USA, April 24-26, 2006.
Proceedings, volume 3958. Springer, 2006.

108

Appendix A

Appendix

A.1 Business Model

namespace org.pakistan.cryptopassport

//Passport Definition

asset Passport identified by passportNumber {

o String passportNumber regex = /^[0-9]+$/

//Details about passport

o PassportType passportType default="ORDINARY"

o PassportStatus passportstatus default="PERMITTED"

o String bookletNumber regex = /^[0-9]+$/

o String trackingNumber regex = /^[0-9]+$/

o String issuingAuthority

o String placeOfIssue

o DateTime dateOfIssue

o DateTime dateOfExpiry

o String previousPassportNumber optional

o String Exclusion default="ISREAL"

//Personal Details

o String givenName

o String surName

o Gender gender

o String religion

o String fatherName

o String placeOfBirth

o DateTime dateOfBirth

o String citizenshipNumber regex = /^[0-9]+$/

o String nationality

}

// Visa Definition

asset Visa identified by visaNumber{

o String visaNumber regex = /^[0-9]+$/

o String passportNumber regex = /^[0-9]+$/

//Details about visa

o String country

o DateTime issueDate

109

o DateTime expiryDate

o String visaType

o String duration

o NumberOfEntries numberOfEntries

o String placeOfIssue

o VisaStatus visaStatus

o String applicationNumber regex = /^[0-9]+$/

}

enum PassportType {

o ORDINARY

o DIPLOMATIC

o OFFICIAL

}

enum PassportStatus{

o PERMITTED

o PROHIBITED

}

enum Gender {

o MALE

o FEMALE

o OTHER

}

enum NumberOfEntries {

o Multiple

o Single

}

enum VisaStatus {

o Accepted

o Rejected

}

// Transaction For Creating Visa

transaction CreateVisa{

-->Passport passportResource

o String visanumber

o DateTime issueDate

o DateTime expiryDate

o String country

o String visaType

o String duration

o NumberOfEntries numberOfEntries

o String placeOfIssue

o VisaStatus visaStatus

110

o String applicationNumber

}

A.2 Modelling of Participant

namespace org.pakistan.cryptopassport.participant

abstract participant CryptoPassportParticipant identified by

participantKey {

o String participantKey

o Contact contact

}

concept Contact {

o String firstName

o String lastname

o String email

}

participant CryptoPassportNetworkAdmin extends

CryptoPassportParticipant {

/** This is a concrete resource definition */

}

participant CryptoPassportOfficePersonnel extends

CryptoPassportParticipant {

o String department

o String city

}

participant CryptoPassportVisaOfficePersonnel extends

CryptoPassportParticipant {

o String department

o String city

}

A.3 Transaction logic

/**

* @param {org.pakistan.cryptopassport.CreateVisa} AddVisa

* @transaction

*/

async function CreateVisa(AddVisa) {

111

const assetRegistry = await getAssetRegistry('org.pakistan.

cryptopassport.Passport');

const validPassport = await assetRegistry.exists(AddVisa.

passportResource.passportNumber);

var passportStatus = AddVisa.passportResource.passportstatus;

var passportDateOfExpiry = new Date(AddVisa.passportResource.

dateOfExpiry).getTime();

if (validPassport) {

if(passportStatus=="PERMITTED")

{

let factory = getFactory();

let registry = await getAssetRegistry("org.pakistan.

cryptopassport.Visa");

let resource = factory.newResource("org.pakistan.

cryptopassport","Visa", AddVisa.visanumber);

resource.passportNumber = AddVisa.passportResource.passportNumber;

resource.country = AddVisa.country

resource.expiryDate = AddVisa.expiryDate

resource.issueDate = AddVisa.issueDate

resource.visaType = AddVisa.visaType

resource.duration = AddVisa.duration

resource.numberOfEntries = AddVisa.numberOfEntries

resource.placeOfIssue = AddVisa.placeOfIssue

resource.visaStatus = AddVisa.visaStatus

resource.applicationNumber = AddVisa.applicationNumber

var dateOfIssue = new Date(AddVisa.issueDate).getTime();

var dateOfExpiry = new Date(AddVisa.expiryDate).getTime();

if(dateOfExpiry < dateOfIssue){throw new Error("Date of expiry cannot

be in the past!!!");}

else if(passportDateOfExpiry<dateOfIssue){throw new Error("Passport has

already expired!!!");}

else if(passportDateOfExpiry<dateOfExpiry){throw new Error("Passport is

expiring in visa duration!!!");}

else {await registry.add(resource);}

}else{throw new Error("Passport has been prohibited !!!");}

}else {throw new Error('this transaction failed, no such Passport');}

}

A.4 Access Rules

112

rule CryptoPassportPermissionSystem {

description: "can READ the system registries"

participant: "ANY"

operation: READ

resource: "org.hyperledger.composer.system.**"

action: ALLOW

}

rule CryptoPassportOfficePersonnelPermissionSystem {

description: "can CREATE the system registries"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportOfficePersonnel"

operation: CREATE

resource: "org.hyperledger.composer.system.**"

action: ALLOW

}

rule NetworkControlPermission {

description: "give admin ALL access to system resources"

participant: "org.hyperledger.composer.system.NetworkAdmin"

operation: ALL

resource: "org.hyperledger.composer.system.*"

action: ALLOW

}

rule ParticipantRegistryControlPermission {

description: "give admin ALL access to CryptoPassport participant

types"

participant: "org.hyperledger.composer.system.NetworkAdmin"

operation: ALL

resource: "org.pakistan.cryptopassport.participant.*"

action: ALLOW

}

rule CryptoPassportParticipantPermissionHistorian {

description: "can CREATE HistorianRecord in the Historian"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportOfficePersonnel"

operation: CREATE

resource: "org.hyperledger.composer.system.HistorianRecord"

action: ALLOW

}

rule CryptoPassportVisaOfficeParticipantPermissionHistorian {

description: "can write HistorianRecord to the Historian"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: CREATE

113

resource: "org.hyperledger.composer.system.HistorianRecord"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelPermission {

description: "only Visa Office personnel can CREATE and READ a visa"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: CREATE,READ

resource: "org.pakistan.cryptopassport.**"

transaction: "org.pakistan.cryptopassport.CreateVisa"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelReadPassportPermission {

description: "Reading a passport before creating a visa"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: READ

resource: "org.pakistan.cryptopassport.Passport"

action: ALLOW

}

rule CryptoPassportVisaOfficePersonnelReadVisaPermission {

description: "Reading a visa"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportVisaOfficePersonnel"

operation: READ

resource: "org.pakistan.cryptopassport.Visa"

action: ALLOW

}

rule CryptoPassportOfficePersonnelPermission {

description: "only passport Office personnel can CREATE, READ and

UPDATE a passport"

participant: "org.pakistan.cryptopassport.participant.

CryptoPassportOfficePersonnel"

operation: CREATE,READ,UPDATE

resource: "org.pakistan.cryptopassport.Passport"

action: ALLOW

}

A.5 Queries

query AllPassports {

description: "Returns all passports in the registry"

114

statement: SELECT org.pakistan.cryptopassport.Passport

}

query AllVisas {

description: "Returns all passports in the registry"

statement: SELECT org.pakistan.cryptopassport.Visa

}

query PassportByNumber {

description: "Returns a passport in the registry"

statement: SELECT org.pakistan.cryptopassport.Passport

WHERE (passportNumber == _$Passport_Number)

}

query VisaByNumber {

description: "Returns a Visa in the registry"

statement: SELECT org.pakistan.cryptopassport.Visa

WHERE (visaNumber == _$Visa_Number)

}

query HistoryOfVisasForAPassport {

description: "List all records of Visa for a specific Passport"

statement: SELECT org.pakistan.cryptopassport.Visa

WHERE (passportNumber == _$Passport_Number)

}

115

	Contents
	List of Figures
	ABSTRACT
	1 INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Aims and Objectives

	2 THE BLOCKCHAIN TECHNOLOGY
	2.1 Evolution
	2.2 Blockchain
	2.2.1 Decentralization
	2.2.2 Trust in Decentralization
	2.2.3 Operations
	2.2.4 Transactions
	2.2.5 Public-Key Cryptography
	2.2.6 Hashing
	2.2.7 Consensus Protocol
	2.2.8 Robustness
	2.2.9 Forks
	2.2.10 Security

	2.3 Types of Blockchain
	2.3.1 Cryptocurrency Blockchain
	2.3.2 Cryptocurrency Based Smart Contract Blockchain
	2.3.3 Non-Cryptocurrency Based Smart Contract Blockchain

	2.4 Development Framework
	2.4.1 Iroha
	2.4.2 Sawtooth
	2.4.3 Indy
	2.4.4 Fabric

	2.5 Hyperledger Fabric
	2.5.1 Structure of Block
	2.5.2 Functionalities
	2.5.3 Architecture and Hierarchy

	2.6 Hyperledger Composer
	2.6.1 Key Concepts

	3 PASSPORT VERIFICATION
	3.1 Existing Security Mechanisms
	3.1.1 Basic Access Control
	3.1.2 Extended Access Control
	3.1.3 Supplemental Access Control

	3.2 Verification on Blockchain
	3.3 Requirements
	3.4 Modeling of Requirements

	4 DEVELOPMENT OF BLOCKCHAIN SOLUTION
	4.1 Business Model Development
	4.1.1 Machine Specifications
	4.1.2 Development Environment

	4.2 Development and Testing
	4.2.1 Defining Business Model
	4.2.2 Defining Logic
	4.2.3 Defining Permissions
	4.2.4 Defining Query
	4.2.5 Generating Business Network Archive
	4.2.6 Participant Access Verification

	4.3 Implementation
	4.3.1 Structure of network

	5 DISCUSSION AND CONCLUSION
	5.1 Discussion
	5.2 Conclusion

	REFERENCES
	Appendix A Appendix
	A.1 Business Model
	A.2 Modelling of Participant
	A.3 Transaction logic
	A.4 Access Rules
	A.5 Queries

