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Abstract 

Genome wide association Studies (GWAS) are an efficient approach to estimate the 

candidate risk loci associated with complex diseases. Juvenile onset of canine 

demodicosis is a common inflammatory disease of the skin of dogs. It is severely 

invasive and even fatal in some cases. Suppression of immune response as an underlying 

cause of infestation of demodicosis is well established. Genetic causes of the disease are 

yet unknown. Therefore, this thesis focuses on identifying the candidate single nucleotide 

polymorphic risk loci associated with juvenile onset of canine demodicosis through 

GWAS. Ten candidate SNPs were successfully identified to be significantly associated 

with the disease in a discovery phase. All these SNPs are located in intergenic region on 

chromosome 28. Literature search showed that all four genes neighboring these 

significant SNPs are directly or indirectly involved in inflammatory related diseases and 

with skin and immune system as related phenotypes in other species like humans. 

Therefore, we suggest that these genes might be good candidates for future research, to 

identify the causal genetic abnormalities of the disease. In further applications, this study 

can provide new dimensions in diagnostic and treatment domains related to demodicosis 

in dogs and once established in dogs as model organism, it can further be extended to 

benefit humans. 
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1. Introduction 

The chapter includes introduction of genome wide association studies (GWAS) and 

juvenile onset of canine demodicosis. 

1.1 Genome wide association studies  

GWAS is an approach that helps to locate differences in nucleotide sequences throughout 

the genomes. This is done in order to identify susceptible nucleotide loci for generally 

prevailing complex diseases among populations. It helps to prognosticate the persons to 

be at risk in future and to develop prevention and cure of the disease [1]. Most of the 

common diseases are the result of genomic mutations (variations) in more than one gene 

and are therefore called as complex diseases [1]. Though the effect size of these genes 

may be too low, yet they together with the environmental conditions lead to disease [2, 

3]. The objective of the GWAS is to determine not only the causal variants but also know 

how these variants contribute to the disease etiology and to find regulatory non-coding 

mechanisms involved [4]. Single nucleotide polymorphs (SNPs) are mapped throughout 

the genomes to find those significantly associated with a given disease [5]. 

1.1.1 Significance of GWAS 

GWAS have significantly performed the task of identifying the causal variants in 

coronary artery disease [6], blood pressure [7], hepatitis B and hepatic cancer [8], human 

height [9], type II diabetes [10]. It has also helped in identification of risk factors of 

neurological disorders like attention deficit hyperactivity (ADHD), autism, bipolar 

disorder, major depressive disorder, and schizophrenia [11]. To gain insight into 

heritability of complex diseases and foretell the chances of occurrences of common 

diseases has been achieved in many cases through determination of various single 

polymorphic loci associated with the diseases after the advent of GWAS [12]. 

The very first study on GWAS proved the presence of polymorphic alleles in CFH gene 

coding for complement factor H protein, resulting in a change of amino acid from 

tyrosine to histidine. This change proved to be associated with age related macular 

degeneration and hereby blindness in old age [13]. GWAS is able to identify variants 
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linked with the metabolism and efficacy of drugs as in case of warfarin. Many genes have 

been located through identification of variants that influence the doses of warfarin. As a 

consequence, patient related treatment of the doses to prevent toxic effects of anticlotting 

drug is recommended. Therefore, genetic tests of patients are proposed before warfarin 

dosing to avoid these adverse effects. It is a step forward to personalized medicine [1]. 

The National Human Genome Research institute has mentioned 1818 GWAS identifying 

12498 risk loci until March 2014 [14]. Till 2015 this number has been increased up to 

5582 as reported by GWAS catalog [15] as shown in figure 1.1.  

 

1.1.2  Single nucleotide polymorphims (The markers)  

Single nucleotide polymorphisms (SNPs) are said to be the variations responsible for 

etiology of complex diseases in many cases [16]. SNPs constitute complex genetic 

architecture of the disease [17]. SNPs differ in population at a single base pair position 

with a proportion of 1 in every 100 individuals [16]. In most cases SNPs occur in two out 

of four possible polymorphic conditions as shown in figure 1.2. This bi-allelic condition 

leads to the feasibility of their mapping through high throughput microarray technology 

[5]. GWAS approach looks for up to billions of SNPs throughout the organism’s genome   

 Figure 1.1: Total 5582 SNPs reported in GWAS Catalog  
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Figure 1.2: A SNP having CG base pair in one person and AT base pair in another person 

at same position in another person 

using mapping of tag SNPs [18]. 

  

 

 

 

 

 

 

 

 

The foundation for GWAS is laid on following developments in the field of genomics 

which are as follow; sequenced genomes [19], identification and verification of millions 

of common variants present across the population genomes in a frequency greater than 

5%. Selection of tag SNPs via the phenomenon of linkage disequilibrium to obtain 

desired coverage became possible after the identification of LD structures across the 

genomes of different populations through International Hap Map consortia [20, 21]. 

Microarray genotyping chips to assay these variants have also been developed, to gain 

maximum through put for GWAS. Large sample size is also a prerequisite to identify 

significant variants, associated with the phenotype of interest [22]. 

1.1.3 Assumptions for GWAS 

1.1.3.1 Common disease common variant hypothesis 

One of the assumptions underlying GWAS is the common disease common variant 

hypothesis (CD/CV) which states that same susceptible alleles are present in significant 

numbers among the patients sharing same disease [23]. 
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1.1.3.2 Linkage disequilibrium 

Most of the SNPs in the genome are associated through the phenomenon of linkage 

disequilibrium (LD). They are so intimately located on same chromosome that they are 

inherited together [21], until separated by genetic recombination whose chances are very 

rare in nature [16]. Since these recombination events occur on particular sites of the 

chromosome called as hot spots for the genetic interchange, [24] the linked regions 

constitute a haplotype block (Figure 1.3) [21]. 

 

 The success and accelerated rate of the GWAS have become possible after the 

completion of ―international Hap Map project‖. It was aimed to map the regions of single 

nucleotide polymorphisms (SNPs) inherited together because of linkage disequilibrium 

[25]. International Hap Map project enabled to extract a comprehensive collection of 

SNPs termed as ―Tag SNPs’’. These ―Tag SNPs‖ can be used as markers to map linked 

Figure 1.3: Four genes present in linkage disequilibrium with each other and 

hence forming a haplotype block. Tag SNPs are selected at appropriate 

distance within a single haplotype block to achieve maximum coverage at 

optimum genotyping cost. 
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SNPs in the same haploblocks of individual genomes, to identify SNPs associated with 

the complex diseases [26]. Through DNA (deoxyribonucleic acids) microarray 

technology, chips containing millions of these tag SNPs are produced on commercial 

bases. These genotyping chips are able to assess all the SNPs present in that chip across 

the genomes of genotyped individuals (cases and controls) and hence, check for the 

variants at particular loci without any prior knowledge [27]. Human genome bears 7.5 

million SNPs with minor allele frequency > 0.05; only 100,000 are typed on microarray 

genotyping chips [28]. However, most of the SNPs that are not typed, yet can be 

associated to the phenotype, are detected because they correlate due to linkage 

disequilibrium [29]. They occur in such proximity to tag SNPs on the same chromosome 

that they are always inherited together [29]. Linkage is measured through relatively 

common regions of chromosomes among related individuals, which are called as 

haplotypes and are said to be inherited by descent [30]. 

1.1.3.3 Population stratification 

Differences found in allele count within the members of a study group due to differences 

in ancestry are termed as population stratification. Population stratification, if not 

corrected, results in false positive associations [31]. Diverse populations differ in the 

respective frequencies of polymorphic loci. Likewise there is diversity in presence or 

absence of a particular locus to be susceptible in different populations [32]. In contrast to 

population stratification, cryptic relatedness causes spurious associations because of the 

presence of too close ancestors. 

1.1.3.4 Selection of tag SNPs  

 Selection of appropriate SNP markers to map through the whole genome with best 

possible coverage (tag SNPs), is another pre-requisite of GWAS for precision of results 

and economical concerns of genotyping (Figure 1.4). 
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Linkage disequilibrium enables the mapping of tag SNPs across the genomes of samples. 

If a tag SNP is not in a haplotype block of the associated SNPs that portion of block is 

left unmapped leading to loss of associated alleles in a particular study. Economical tag 

SNP selection is possible because of linkage disequilibrium as 500,000 tag SNPs are 

sufficient to map the whole human genome [33]. 

1.1.3.5 Sample size 

Large sample size (usually in thousands) of cases and controls is the prerequisite of the 

GWAS in humans [34] to determine those variants predisposing to the diseases like 

obesity, coronary artery disease, type II diabetes. Whereas, in case of dogs, small sample 

size (20 for mammalian and 100 cases and 100 controls for complex diseases) are 

required due to larger blocks of LD, as described in a study by Karlsson and Linblad-Toh 

in 2008. 

1.1.4 Steps and concerns of genome wide association studies 

1.1.4.1 Subject selection 

Patients suffering from a particular disease are chosen as cases (Figure 1.5). In contrast, 

people who do not have any of the symptoms of that disease are selected as controls. The 

only condition is that subjects chosen as controls should represent the same population as 

cases. In other words cases and controls in a case-control GWAS study should form a 

group with respect to age, sex and race to avoid the spurious associations caused by 

population stratification. A study reported the use of 3000 common controls for every 

2000 cases of each of the seven diseases under study and it had least effects on genotype 

 Figure 1.4: Tag SNPs directly or indirectly associate to the phenotype of 

interest 

M
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distribution. All the subjects were UK (United Kingdom) nationals [34]. Taking common 

controls for several phenotypes results in loss of power, but the issue can be resolved by 

large sample size selection. Issues of cryptic relatedness can also result in inflation of test 

statistic but it can be overcome by various approaches like genomic control [36].  

 

1.1.4.2 Genotyping 

Genome wide typing of the tag SNPs across the genomes of all the samples of cases and 

controls to search for SNPs associated with the phenotype of interest is crucial step of 

Figure 1.5: Pipeline of GWAS. Steps 1-4 are followed in an individual GWA 

Study. Meta-analysis is a combined analysis of different independent GWAS 

studies to reach at a conclusion regarding association of a SNP to the disease. 



    

9 
 

GWAS [37]. Two commercial platforms of genotyping are famous to efficiently perform 

this purpose. These are Affymatrix and Illumina [37]. Present study includes samples 

genotyped with Illumina HD Canine SNP array. It is a high density genotyping chip 

covering all the SNPs in the genome.                                                                                                                                

1.1.4.2.1 Sample preparation for genotyping 

After extraction of DNA, it is prepared for hybridization which is then performed through 

array based genotyping chips. Two platforms i.e. illumina and affymatrix are renowned 

for commercial production of genotyping chips based on genomic knowledge regarding 

the selection of markers to attain maximum possible coverage of genome or genomic 

regions. When hybridization step is completed the arrays are cleaned and a raw file is 

generated. The raw file named as .dat file consists of optical images of hybridization 

probes. After getting the optical images the strength of their intensities is computed 

through pixel values and is stored in another file named as .cel file. Each signal intensity 

represents each cell of the image and which indicates the data for each subject of the 

study. Signal intensities of these .cel files are normalized and following this step 

genotypes are obtained from these signal intensities [37]. 

1.1.4.2.2 Genotype calling 

An allele is said to be homozygous if its signal intensities are higher than the other allele. 

In contrast, if the intensities are equal for both the alleles of a SNP then they are said to 

be heterozygous. In this way genotypes are assigned to all the SNPs present on the array 

chips. Intensive computational effort is required which is complemented by efficient 

genotype calling algorithms. Therefore, there is possibility of three types of genotypes for 

each tag SNP. It would be either homozygous for any of the two alleles (AA or BB) or it 

would be heterozygous (AB) for a particular tag SNP. All the subjects are hence 

genotyped for all the tag SNPs of the microarray genotyping chip.  

Hence, the genotype data for each SNP should appear to be in three clusters of different 

colors representing any one of the three genotypes. In case sufficient number of genotype 

is not assigned to a particular SNP, it is termed as having missing genotypes and is 
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excluded from the analysis. In other words, if the SNP is not genotyped in many of the 

subjects included in the study (black dots in figure 1.6), it is not of any use and hence is 

discarded (Figure 1.6) [37]. 

 

1.1.4.2.2.1 Minor allele frequency (MAF) 

In such a situation, when abundant genotypes of a particular SNP are monomorphic 

genotypes for any one of the possible homozygous genotypes either AA or BB. 

Consequently, it is impossible to discriminate minor allele and major allele. Such alleles 

are of no use in GWA studies because calculation of association statistics is based on the 

minor allele frequency which is not obtained through monomorphic SNPs. This is the 

reason why minor allele frequency threshold is set in quality control analysis and the 

SNPs failed therein are discarded [37]. 

1.1.4.2.2.2 Hardy Weinberg Equilibrium (HWE) 

The principal on which all the population genetic studies rely is Hardy Weinberg 

Equilibrium (HWE) which states that there is a tendency of constancy for allele and 

genotypic frequencies in the population provided that following assumptions are met; 

1.6 A                   (Genotype calling)                      1.6   B 

Clusters well defined                                                  Overlapping in clusters 

Colors description: red (AA), green (Aa), blue (aa) and black for no call 
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large population size, random fertilization, no migration, no selection, fixed relationship 

between alleles and their respective genotypes (Figure 1.7) [37]. 

An interpretation of fixed relationship between allele and genotypes in the perspective of 

quality control is that genotyping errors may lead to deviation from HWE. So SNPs that 

are too much out of HWE may be a consequence of artifacts of genotyping. Choice of a 

disease status also violates the fourth assumption of HWE so; the SNPs that are too much 

out of HWE are also discarded [35]. 

 

1.1.4.2.3 Subjects calling for genotypes 

Subjects genotyped for less than 97% SNPs are considered as having missing SNPs and 

therefore should be removed from the analysis. It is necessary for powerful case control 

Figure 1.7: an illustration of hardy Weinberg equilibrium 
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analysis of the trait of interest in a particular GWA study. The threshold for individual 

call rate for SNPs may also be increased from (>3% to > 5%) or even >10% as 

recommended by the genotyping contract authorities [37]. 

Heterozygosity is a good indicator of the quality of subjects. A subject containing too 

much heterozygosity may be considered a poor sample because of the manual artifacts 

such as DNA contamination. So mean and Standard deviation of heterozygosity is 

computed across all the subjects. Those subjects being out of range (M      ) are 

eliminated from the data [37]. 

Relatedness is another criterion to judge quality of two or more samples. For any two of 

the subjects, if the probability of the SNPs to be identical is more than 50%, the samples 

are considered to be close relatives. That pair or one of the members of the pair is 

suggested to be removed from the analysis [37]. 

1.1.4.2.4 Quality control 

Quality control measures are important to make the data homogeneous for analysis. Steps 

of quality control are as follow [38]. 

1. Placement of allelic strands to be genotyped to the references on the chip. Forward 

placement is the usual setting [38]. 

2. Check for sample relatedness which would lead to inappropriate risk alleles’ 

identification, because of shared ancestry [39].  

3. Duplication is also checked and corrected which may otherwise lead to inflation of 

risk allele identification, if cases are over duplicated. Possibility is an increase in 

noise signal, if controls are over duplicated [38]. 

4. SNPs are checked for good quality call rates, minor allele frequency (MAF) and 

Hardy Weinberg Equilibrium [32]. SNPs having low call rates are eliminated form 

analysis. 

5. Hardy Weinberg equilibrium (HWE) is controlled through prior checking of the SNPs 

that violate HWE for elimination. SNPs associated to the disease violate HWE therefore, 
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they must not be eliminated. Therefore optimum threshold for HWE is set very carefully 

according to situational requirements [37]. 

6. SNPs highly linked through linkage disequilibrium are also eliminated because of the 

possibility of sample relatedness [40]. 

7.   Large samples are divided into batches for facilitation in analysis so batch effects 

must be checked [35, 36]. Batch effects are removed through variables critical for the 

study being randomized e.g. presence or absence of phenotype, age, sex, BMI (body mass 

index) [23].  

1.1.4.4 Statistical analysis 

1.1.4.4.1 Single base-pair position association analysis 

Analysis of single base-pair position association to the disease is pivotal statistical test. It 

analyses the association of MAF of each genotyped SNP individually to the phenotype of 

interest. Chi-square test and Fisher’s exact test are two tests statistics involving 

contingency table of case and control count of the subjects in rows and genotypes/alleles 

in the columns as the case may be (Figure 1.8).  

Association is measured in most of the GWAS analyses through trend test across the 

minor allele frequency (MAF) for each SNP. Odds ratio is determined for analysis of 

individual samples obtained by dividing the presence of the phenotype in the study 

samples through their presence in background population. Selection of p-value significant 

enough to find associations of SNPs with the trait of interest is of prime importance. This 

is done such that true positive SNPs can be identified and false positive SNPs can be 

removed. Interactions of more than one SNP, their combine role and haplotypes can also 

be analyzed by GWAS [41]. 
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1.1.4.4.2 Multiple testing analysis 

Genotyping of millions of SNPs in thousands of samples of cases and controls requires 

tens of millions of tests of associations which may cause type 1 error (false positive). One 

of the ways to remove this error is the Bonferroni correction. Bonferroni correction is 

used to transform p-values to a threshold value obtained by dividing the p-values to the 

total SNPs multiplied by total samples [28]. Bonferroni correction is more conservative 

because of the degree of correlation among tag SNPs [41]. False discovery rate is also 

calculated to determine how strongly significant SNPs are associated to the disease [42, 

43, 44]. Logistic regression including lasso penalized regression is another strategy 

Figure 1.8: Chi-square statistics implied in different tests such as Trend test 

etc, to find the association of a binary categorical variable with the 

phenotype of interest which is a disease in many cases. 
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utilized successfully in cases where predictors are far more than observations (Figure1.9) 

[29].  

 

To further avoid the false positives, replication studies can be conducted for exact 

determination of susceptible variant loci [45]. When individual SNPs are screened for 

association through multiple testing, suggested p-value threshold is 5*10e-8[46].  

1.1.5 Permutation testing 

Permutation testing is another technique used to cope up with strong correlation among 

variables [47]. One of the most important causes of strong correlation might be due to 

relatedness which leads to population substructure [48]. If correlation is not incorporated 

while performing statistical analysis, it may result in inflation of test statistics which is an 

indicator of false positives. To control for population substructure, genomic control (GC) 

is recommended provided that a complete knowledge of genetic markers is available 

[48].      

Figure 1.9: Regression to incorporate the covariates in association analysis 
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1.1.6 Replication 

Replication studies are continuation of the first phase called as discovery phase. The 

discovery phase constitutes the mapping of tag SNPs across the genomes of cases and 

controls, to screen for the SNPs appearing to be associated with the disease. The second 

phase called as replication, comprises of another independent case and control cohort of 

genotyping the SNPs selected in first study, to be verified as the SNPs significantly 

associated with the disease under study [45]. 

1.1.7 GWAS pathway analysis 

It is a very challenging task to identify actual causal variants through GWAS, because 

sometimes the associated SNPs may be in strong linkage disequilibrium with the causal 

SNPs. Most of the associated SNPs are found in the non-coding regions and identifying 

their role in regulatory mechanisms, is another challenge. The validation of SNPs to be 

associated to disease can be done through the pathway analysis of related genes. Thus the 

significant SNPs are subjected to gene annotation analysis followed by pathway analysis 

(Figure 1.10) [31, 39 and 50]. In this way the role genes related to the SNPs identified 

through GWAS is determined in terms of disease etiology.  

 
Figure 1.10: GWAS Pathway Analysis 
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1.1.8 Limitations of GWAS 

One of the limitations of GWAS is its inability to detect rare novel variants associated 

with the disease that are thought to satisfy the missing heritability of the common 

diseases [39, 31]. Violation of assumption of independence of SNPs for the tests of 

associations is also another limitation, because the study is based on the phenomenon of 

linkage disequilibrium of SNPs to their haplotypes. SNPs explored through GWAS, as 

risk loci for complex diseases, possess too little risk estimate to conduct comparative 

studies across multiethnic populations. This may lead to false positive estimates due to 

population specificity. SNPs are more common in populations and they may also share 

them evolutionarily [51]. 

1.2 Demodicosis in dogs 

Demodicosis is a commonly occurring skin disease in mammals. It is caused by 

proliferated population of Demodex mites (Figure 1.11). More than 50 species of 

mammals host in different species of Demodex. Even four or more species can be 

observed in some mammalian species [52] according to different habitat conditions [56].  

 

Demodex is an arthropod that belongs to the family democidae of class arachnida. Canis 

species was commonly observed in dogs two centuries ago [54] whereas, cati species is 

Figure 1.11 A                         Canine demodicosis                             Figure1.11B  

A: Demodicosis infestation in a dog    B: Same dog before the onset of 

demodicosis 
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specific to cats. Both the species have elongated cylindrical morphology [52]. In the start 

of 1980s, another species was observed with somewhat shorter morphology [53, 54]. It 

inhabited the outermost layers of epidermis [56] and its length was measured to be 55% 

to that of canis (Figure1.12) [57]. 

 

Demodicosis is most prevalent dermal infection, observed at the rate of (5-23%) in 

nondomestic dogs [58, 59] and (38-58%) in domesticated dogs [60, 61]. The causative 

agents differ at the start of the infection and at later stages [62]. 

The infection is categorized as juvenile onset of localized demodicosis (JOLD), in case of 

having five or less lesions (Figure 1.14) [63]. Instead, if the lesions are more than five, 

especially on feet and legs, before the age of one and a half year, it is categorized as 

juvenile onset of generalized demodicosis (JOGD) (Figure 1.15).  If the symptoms 

appear after the age of four, the infection is categorized as adult onset of generalized 

demodicosis (Figure 1.13) [65]. The categorization is important for management of the 

disease [64].  

Canine dermatitis is induced when the arthropod spreads in the follicular regions and 

sebaceous glands [52], which in normal (as in asymptomatic) conditions reside in the skin 

of dogs [65]. This seems to be caused by poor immune response due to some genetic 

variants that result in an increase in number of mites than normal [60]. Genetic risk 

factors appear to be the breed and condition of immune system of the animal [61]. 

Juvenile onset of localized demodicosis is less severe clinically but may also be followed 

by bacterial infection so antibiotic may also be needed (Figure 1.14) [66]. Generalized 

Figure 1.12: A. Short form of Demodex               B.       Demodex canis  
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Juvenile onset of generalized 

demodicosis 

Juvenile onset of localized 

demodicosis 

Adult onset of demodicosis 

 

Juvenile onset of demodicosis 

 

Demodicosis in dogs 

Figure 1.13: Classification of canine demodicosis 

demodicosis is more severe and even deadly. In some cases severe pruritus is also 

observed, hence longtime medication is needed (Figure 1.15) [67]. 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.14:  JOLD. Symptoms include hair loss and redness 

of skin 

Figure 1.15: JOGD. More invasive than localized type. Symptoms 

include inflammation, alopecia, and erythema 
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Factors that make animal susceptible to demodicosis are genetic modifications in 

cutaneous cellular biochemistry, disorders of immune system, endocrinal status, its age, 

length of hair coat, stage of reproductive cycle (if it is a female), parturition, internal 

parasites, and enfeebling diseases [64, 66, 68, 69]. Genetic mutations, as well as acquired 

inhibition of immune system [64, 70] and consequent cell mediated immune responses 

can result in abnormal proliferation of demodex mites [71]. Inhibition of immune 

response of T lymphocytes is due to the presence of α-β globulin found in the sera of 

infected dogs [72]. On the contrary, some suggest that mites may also stimulate the local 

inhibition of immune responses [73]. Increased numbers of mites stimulate a humoral 

factor that suppresses immune system and hence permits the multiplication of mites [74]. 

The mites also stimulate apoptosis in the infected dogs [75]. They have adapted 

mechanisms to either stimulate or inhibit apoptosis in host cells and so regulate the 

immune response [76]. Presence of abnormally lower number of CD4
+ 

T cells, in dogs 

infected with generalized demodicosis as compared to those with localized demodicosis, 

may be due to their down regulation by the mites [77]. 

1.3 Problem Statement 

Genetic basis of demodicosis are not known. Hence, the present study aims to make 

efforts in this direction by investigating the candidate risk factors associated with 

demodicosis via the GWAS.  

1.4 Objectives  

The objectives of this study are as follow. 

 To examine the single nucleotide polymorphic (SNPs) loci associated with 

demodicosis in dogs through genome wide association studies. 

 To conduct functional analysis of associated SNPs through their annotation. 

 To identify biological pathways associated with SNPs to understand their 

physiological roles. 
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2. Literature Review 

In this chapter the literature search regarding demodicosis is narrated briefly. The 

sections include a generalized overview of the work conducted with the disease. It is 

divided into four subsections. The first subsection describes immunological basis of 

demodicosis. Second includes work cited in the diagnosis and treatment of demodicosis. 

Third section includes overview of GWAS within dogs. The last section concludes how 

dogs are suitable model organisms to help identifying risk factors in humans also. 

A new species of Demodex was found to be existed in England, Belgium and China. Due 

to the existence of this species in three different continents of the world, it was 

considered a common inhabitant of dog’s skin. The length of this species was 50 % 

shorter as compared to the length of female members of Demodex canis [54]. 

Three breeds were reported to be at highest risk of JOGD namely, American 

Staffordshire terriers (odds ratio 35.6), Stafford shire bull terriers (odds ratio 17.1) and 

Chinese shar-pie (odds ratio 7.2) [64]. Induced immunosuppression of dogs was reported 

to cause development of generalized demodicosis [78, 79]. A dog lost his digit due to 

podedemodicosis. Skin biopsies confirmed the existence of demodex mites and 

infestation of demodicosis [80]. 

2.1 Immunological basis of canine demodicosis 

A mechanism of immune response against demodicosis was described as follow. 

Chitinous skin of mites is recognized by keratinocytes via toll like receptors (TL2). The 

recognition induces an innate immune response and hence the mite population is 

controlled in normal circumstances. It has been experimentally validated that immune 

response involves cellular as well as humoral immunity. It also incorporates the function 

of CD28 molecules which are co-stimulatory in nature. In case of JOGD, genetic basis 

are known to occur, but exact abnormality of genome is still unknown. When a dog is 

suffering from inherited immunological suppression, it is unable to control the mite 

population. In such a condition, low concentrations of IL2 (interleukin 2) and conversely 

high concentrations of interleukin 10 (IL10), along with growth factor-β are observed. All 
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Figure 2.1: Innate Immunity against demodex mites. Toll like receptors of 

keratinocytes recognize chitinous skin of the mites and stimulate an 

innate immune response. Antigen Presenting Cells (APC) of the host 

recognize foreign lipases, proteases and other antigens to B cells and 

hence B cells start acquired immune response to kill the antigens.  

these indicate exhaustion of T-lymphocytes. After acarcidal treatment, mites’ production 

starts reducing by killing. The load over T lymphocytes is reduced and hence, the body 

again starts fighting against the remaining mites. Healing process is also observed as the 

signs of clinical cure [81]. 

Strong association of dog leukocyte antigen class II molecules with JOGD was proven 

through studying the expression of microsatellite markers [82]. 

 

 

 

 

 

 

 

 

 

 

 

Considerable decrease in CD4
+
 T cells to that of CD8

+
 T cells was observed in dogs 

infected with generalized demodicosis in comparison to those suffering from localized 

demodicosis as well as in healthier ones [77]. 

Significant increase in acute phase C reactive protein was reported in dogs suffering from 

generalized demodicosis as compared to healthier ones. It was proposed that over-
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populated Demodex mites might have the ability to evoke inflammatory immune 

response in affected dogs [83]. 

The concentration of IL10 was higher in dogs suffering from recurring infestation of 

demodicosis as compared to those suffering from the disease for the first time and also 

the healthier ones [84]. 

Earlier onset of apoptosis in dogs’ peripheral blood leukocytes was proposed to cause 

immunosuppression in dogs affected with JOGD. This apoptosis irregularity was 

described to permit the overgrowth of mites in affected dogs [76]. 

The presence of IgG (immunoglobulin G) was observed in dogs affected with JOGD 

indicating towards the presence of humoral immune response in affected dogs [85]. 

An increased CD8
+
 T lymphocyte count and consequent decline in Cd4

+
 to CD8

+
 ratio 

was suggested to be the potential cause of immunosuppression in dogs suffering from 

generalized demodicosis [86]. 

2.2 Diagnosis and treatment of canine demodicosis 

It was concluded that definitive doses of Ivermectin (300µg/kg) moxidectin (400µg/kg) 

and mibemycin (2mg/kg) to be administered orally and Amitraz to be applied on 

biweekly basis. These doses were suggested to treat generalized form of canine 

demodicosis. It was further suggested not to breed the dogs infected with generalized 

demodicosis, because the disease has genetic basis [87]. 

 Ivermectin was proposed to be a better treatment in cases where dogs suffering from 

JOGD were resisted to Armitaz rinses [88]. 

Presence of a single mite in dermal skin scraping test or impression tape test was 

described to be enough to diagnose the infestation of demodicosis [89]. 

It was demonstrated in a comparative study that adhesive (impression) tape test (ITT) and 

hair plucking (trichograms) were 75% and 73% sensitive to detect the presence of 

demodex mites respectively when compared with 100% sensitivity of skin scraping. It 
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was further suggested to use any of the above mentioned two tests because, they were 

less invasive. The dermal skin scraping test (DSTT) was proposed to be gold standard. 

The DSST must be used to confirm the presence or absence of demodex mites if ITT and 

trichograms show negative results [90].  

Acetate tape test (ITT) was demonstrated to be significantly reliable procedure to 

diagnose D. canis as well as S. scabiei species with p-values equivalent to 0.0007. The 

method was again reported to be less invasive as compared to skin scrapings test (DSST). 

In addition, Demodex canis mites in different stages of development were observed 

through impression tape test (ITT). It was also confirmed that there was strong role of 

heredity as a risk factor to develop demodicosis [91]. 

2.3 GWAS in dogs 

Five distinct blocks of LD in dogs were reported with a size of 5 Mbp each. All these 

blocks bear five clusters each on chromosome 1,2,3,34,37. These discoveries were 

concluded by WGA mapping of 20 dogs from 5 breeds. The extent of LD in dogs was 

also measured to be 100 times greater as compared to humans. The dogs were also shown 

to possess lower diversity in 2-4 haplotype blocks. These blocks encompass 80% of the 

dog’s genome. In this way merely 15000 SNPs were sufficient to cover these blocks 

through GWAS [92]. 

The gene Striatin possesses an 8bp deletion in 3`UTR on chromosome 17. It was proven 

by another GWA study. The deletion leads to a reduction in mRNA expression of Striatin 

due to which cardiac muscle fibers are weakened. The deletion is in dominant mode of 

inheritance. So the disorder becomes more lethal in homozygous condition [93]. 

The SNPs on CFA31 within a segment of SODI gene were significantly associated to the 

canine degenerative myelopathy [94]. 

In another attempt of GWAS in 20 dogs, a mutation was identified in noncoding 1Mbp 

region in a locus termed as white spotted. It was reported that MITF gene expression is 

regulated by different combinations of a set of three variants showing phenotypic 

diversity [95]. 
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A SNP in close proximity of LHX3 gene was identified on chromosome 9 of the German 

Shepherd breed. The SNP was associated to a disorder named as pituitary dwarfism. Two 

SNPs located up and downstream the gene SODI, were significantly associated to the 

another dog disease Degenerative Myelopathy. Many SNPs on chromosome 12 were 

identified to be significantly associated to the disorder Mega-esophagus and Pancreatic 

acrinar apathy was having multi genic associations to be significantly involved in the 

disease [96]. 

A region on chromosome 27 of dogs and a frame shift mutation in ADAMTS20 were 

described to be significantly associated to the cleft palate fetal defect. A SNP within same 

gene was also identified to be significantly associated to the cleft palate in humans 

through family based GWAS [97]. 

2.4 Significance of dogs as model study organisms for humans 

Most of the modern dog breeds emerged from bottleneck of two founder populations. 

One were the domesticated wolves, other was the selective artificial breeding of the 

original dog genus. As a result of so close ancestry, dogs possess long segments of 

linkage disequilibrium (LD) in their genomes as compared to those of humans. 

Furthermore there is far less diversity in their genomes requiring very less number of 

single nucleotide variants to map across the genome to identify susceptibility loci 

associated to any disease or phenotype of interest [98]. 

In contrast to human genome wide association studies, canine genome wide association 

studies require very small sample size and very small number of markers to encompass 

whole of the genome. This also makes the study efficient and less expensive. Once a 

region or a gene is identified in canine GWAS, it can also be finely mapped in a 

replication study in humans [99]. 

One of the disadvantages of selective artificial breeding was that they become more 

prone to genetic disorders like autoimmune diseases, behavioral diseases and cancers, 

similar to those found in humans. Humans have taken advantage of this mimicry by 
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studying diseases like epilepsy and narcolepsy whose genes were very first time mapped 

in dogs and then were mapped in humans in a replication study [100].  

In another study 114 variants were successfully identified to be significantly associated 

with obsessive compulsive disorder (OCD) which could not be identified in a human 

GWAS study with far greater sample size and far more number of variants genotyped 

[101]. 

In the similar manner while studying osteosarcoma in dogs, a locus at position rs1906957 

found to be on intron of GRM4 gene, was identified [99]. The gene is involved in cAMP 

signaling and inhibition. Pathway analysis of this gene and other significant variants in 

humans revealed strong connections with osteoblasts cell cycle. So it is suggested that 

canine discoveries of susceptibility loci could be replicated in humans to understand the 

biology of the disease [99].  

It was also proposed that genome wide association study in case of demodicosis in dogs 

might explore the genetic causes of canine demodicosis [81]. 
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3. Methods 

The chapter includes materials and methods employed in GWAS analysis to achieve the 

significant results. 

3.1 Pipeline of GWAS 

The pipeline of GWAS analysis is beautifully explained in figure 3.1. Selection of cases 

and controls is carried out from same population to avoid the spurious associations due to 

differences in ancestry. Cases related to the phenotype of interest should be carefully 

selected according to standard diagnostic criteria, so that no false associations are 

identified. The samples are than genotyped using a suitable genotyping platform. The 

genotypes are than called and subjected to quality control criteria in order to remove poor 

quality samples as well as SNPs. The extensive statistical analysis results in identification 

of those SNPs which are significantly associated to the phenotype of interest. The SNPs 

or markers are than interpreted in order to give them biological meanings and to 

understand how they could lead to diseased conditions [102].  

 

Figure 3.1:  Pipeline of steps implemented in GWAS 
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3.2    Materials and Methods 

3.2.1 Subjects of study  

In this study we had genotyped data of 188 Stafford Shire Bull Terriers, sampled at 

Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden. These samples 

included 94 cases and 94 were controls. The 94 cases were further categorized into 43 

localized and 51 generalized. For cases, dogs having signs and symptoms of demodicosis 

before the age of 18 months were chosen. The phenotype characterization of cases was 

carefully done according to standard criteria. Those individuals having less than 5 body 

parts affected were categorized as localized. Those having more than five parts of the 

body affected were categorized as generalized. 

Skin scraping trichograms of Swedish healthy dogs were extracted from three different 

randomly selected areas of the body identifying no demodex mites on direct microscopy. 

Gender, age at the onset of the disease, type of disease and case control status was 

recorded as demographic information. All dogs were genotyped using 170K illumina HD 

canine SNP array and mapped with Can-Fam 3 Genome Assembly from UCSC Genome 

browser [103]. 

3.2.2 Data management & processing using Plink 

Data manipulation and trimming was performed using plink which is pioneer in 

conducting GWAS studies. Plink command --keep list.txt was used to make binary file 

which was than recoded using --recode and --tab commands with --no web options [106]. 

The data processing was done using plink software. In doing so, a binary file (.bed) was 

created by the following commands. 

plink --file data --allow-no-sex --dog --geno 0.25 --maf 0.05 --mind 0.25--noweb --out 

data --make-bed [104]. 

Plink efficiently conducts quality control while making the binary file. In this context 

both the genotypes and individuals having less than 75% call rate are eliminated while 
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the SNPs having minor allele frequency less than 95% are also removed. As a 

consequence newly generated datasets from this binary ped file already contain a good 

quality data. Plink generated two respective map and ped files by making a binary file 

with –keep file.txt command and then with another run of –bfile –recode command [104]. 

3.2.3 Workflow of GWAS analysis in GenABEL  

The steps implemented in GWAS analysis to identify candidate risk factors for juvenile 

onset of demodicosis in dogs, are expressed through Figure 3.2. 

 

Mapping of Genotyped Data in 

GenABEL 

Quality Control of SNPs and Samples 

Analysis for Population Stratification 

Analysis for Sub-Populations 

Association Analysis 

Covariate Analysis 

Plink formatted 

.map file (SNPs 

names and other 

information) 

Plink formatted .ped 

file (phenotypic & 

Genotypic 

Information) 

                             Figure 3.2: Workflow of GWAS Analysis 
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3.2.4 Genome wide association analysis in GenABEL 

3.2.4.1 GenABEL data import 

GenABEL is an R package, efficiently designed to conduct GWA analysis. Demographic 

file of the data contains information about individual IDs (identifiers), family IDs, 

gender, affection status and type. Individuals with male gender were coded as 1 and 

females as 0 to make it compatible to GenABEL. In a similar manner cases were coded 

as 1 and controls were coded as 0. All phenotypic information was saved in .dat 

formatted file. A short overview of .dat file is presented in table 3.1[105]. 

 

Genotypic information was contained in plink formatted .ped file. .Ped file contains at 

least six columns containing Individual Ids, Family Ids, Paternal Ids, Maternal Ids, 

gender and Phenotype of Interest. In contrast to GenABEL, 1 stands for controls while 2 

stands for cases in sixth column. All the columns next to phenotype column are the 

genotypes for SNPs for which all the samples have been genotyped. Therefore, for 188 

subjects in the study, there are 188 rows and 6+105769 columns. First six columns 

contain demographic information while all the rest contain genotypic information for 

each subject row wise [104]. A short tabular view of plink formatted ped file is presented 

in table 3.2. 

 

 

Table 3.1 GenABEL formatted .dat file 

Identifiers Gender Affection status 

(demodicosis) 

Type 

CFA000208 0 1 2 

CFA002888 1 0 0 

CFA001551 0 0 0 

CFA001663 0 0 0 

Gender number 0 is for females 1 is for males. Affection status 0 is for 

controls and 1 is for cases. Type 1 is for localized and 2 is for generalized 
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Table  3.2  Plink formatted .ped file 

 

IID FID PID MID Gend-

er 

Affstat SNP1 SNP

2 

SNP3 

CFA000050 CFA00005

0 

0 0 0 2 A A A G C C 

CFA000207 CFA00020

7 

0 0 0 2 A A A G C C 

Information of family, paternal, maternal identifiers and gender is compulsory to 

provide in .ped file. If not available the columns can be filled in as above from 2-5. 

 

The information regarding the markers was stored in plink formatted .map file which 

must be changed to make it accessible to GenABEL. Plink formatted map file contains 

four columns each having information about chromosome, markers names, genomic 

distance in Morgan and base pair position of each marker (SNP) on respective 

chromosome respectively [104]. For GenABEL compatibility third column containing 

genomic distance is deleted and headers for the rest three columns are inserted namely 

chrom (chromosome), marker (SNP), position (genomic base-pair position) respectively 

[105].  GenABEL formatted map file is shown in table 3.3 for same first five markers of 

the data. 

 

Plink formatted .ped and map file are imported into GenABEL through convert.snp.ped 

command without ―makemap‖ argument. The output file is a .raw file merging genotypic 

information from both the above mentioned files. The phenotypic dat file and genotypic 

Table 3.3  GenABEL formatted .map file 

Chrom Marker Position 

1 TIGRP2P259 249580 

1 BICF2G630707908 273487 

Chrom is for chromosome, Marker is for SNP name and Position is for base pair 

position of the SNP on the respective chromosome 
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raw file are loaded into gwaa.daa.class and the output data file is analyzed for genome 

wide association study in GenABEL. The data file contains row-wise information of 

SNPs in 14 columns in a sequence as follows, marker, chromosome, position, strand (u 

for unknown), allele coding A1 or A2 no. of observed genotype, call rate, allele 

frequency, genotypic distribution (P11 for homozygous effallele, P12 for heterozygous, 

P22 for homozygous reffallele), Pvalue for the exact test for HWE, Fmax (estimate for 

deviation from HWE), LRT (P-value for HWE) test are listed [105]. 

3.2.4.2 Quality control 

Preliminary quality control was done to remove the noisy data which otherwise could 

mislead the analysis by showing spurious associations. GenABEL takes data object of 

gwaa.data.class and uses the function ―check.marker‖ [105] to extract good quality SNPs 

and individuals and remove the ones having poor quality. The function check.marker 

screens the SNPs and individuals on the basis of following parameter as shown in Table 

3.4.                                                              

 

Table 3.4: GenABEL Quality Control Parameters 

Parameter (function 

in GenABEL) 

Description 

Call threshold call rate for SNPs 

perid.call threshold call rate for individuals 

het.fdr false discovery rate for extraordinary high individual 

heterozygosity 

Ibs threshold for identity by state to be included 

Ibsmark markers used to estimate identity by state 

ibs.exclude to investigate whether both samples with IBS > ibs be 

excluded or the one with lower call rate 

Maf minor allele frequency threshold. By default it is 5/2*nids 

p.level Pvlue threshold for Hardy Weinberg equilibrium 
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Above mentioned parameters strictly check for poor quality individuals and markers and 

exclude the ones, which are the result of systematic biases due to batch effects or some 

other reasons. If not eliminated, such poor quality data are eligible to play the role of 

confounding. Some of the parameters like SNP call rate, per individual call rate, maf and 

p-level for HWE are set by the user according to situational requirements. 

Quality control is conducted twice. First quality control is conducted on complete dataset 

to eliminate poor quality SNPs and individuals while second quality control is carried out 

on the controls only to ensure that controls don’t play the role of confounding in the 

analysis. In doing so, the markers out of HWE are eliminated from the controls through 

fdrate (false discovery rate) parameter, which sets false discovery rate threshold for 

identifying markers out of HWE [105]. 

3.2.4.3 Covariate analysis 

Covariate Analysis is important to check if any variable other than affection status to 

disease is influencing the infestation of the disease in any way. Two tests are conducted 

to check whether some variables are correlating with each other or not. These are as 

follow; 

Fdrate FDR threshold for hardy Weinberg equilibrium 

odds odds threshold remove markers that are sex-linked 

Hweidsubset a subset of individuals to be investigated for HWE 

Redundant to check redundancy between chromosome 

XXY.call to check whether the sample is a male or a female  by 

investigating the presence of Y chromosome n proportion 

to X chromosome 

Parameter is the name of parameter used in GenABEL. Description is the 

explaination of the respective parameter. 
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3.2.4.3.1 Fisher’s exact test  

Fisher’s exact test is a test through which independence of rows and columns in a 

contingency table is checked. For a 2*2 contingency table p-values are computed using 

central or non-central hyper-geometric distribution. For larger than 2*2 contingency table 

and argument (hybrid = TRUE), the asymptotic chi square probabilities are used, 

provided that no cell has zero count and minimum 5 counts are present in more than 80% 

of the cells, otherwise exact calculation is used [106-113]. 

3.2.4.3.2 Pearson product moment correlation test 

Pearson product moment correlation test is the method following t-distribution with 

degrees of freedom 2 less than the length of the object for samples that follows 

independent normal distribution. Given at least four complete pairs of observations an 

asymptotic confidence interval is provided [114, 115]. 

3.2.4.4 Analysis for population structure 

Population structure analysis is very important while performing GWAS analysis, 

because if present, stratification leads to spurious associations. It also results in inflation 

of the test statistic for associations of SNPs to the disease or phenotype of interest [30]. 

First step in this regard is the calculation of genomic kinship matrix. This kinship matrix 

is required to compute genomic differences between samples via autosomal markers. 

GenABEL has an efficient function "ibs‖ [105] to calculate identity of state (ibs) between 

autosomal markers with argument weight = ―freq‖. IBS values range between -1 to 1. 

High values of IBS indicate relatedness with 1 being an indicator of twin ship between 

two samples. During the calculation of ibs, monomorphic SNPs are considered as neutral. 

The distances between ibs values are stored in a distance matrix and are further used in 

multidimensional scaling to obtain mds plots [116-124]. These mds plots indicate 

population stratification, if there are two or more distinct groups within the population. 

The mds plots are better visualized, when gender and case control status are also 

mentioned. 
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3.2.4.5 Subpopulation analysis 

Optimum number of sub populations, if present in the data, can be obtained by K means 

clustering [125-128]. The goodness of a clustering is checked through looking at within 

cluster sum of squares. Optimum K value is obtained by taking minimum values of 

within cluster sum of squares (wss).A scree plot of wss Vs. K can be observed for 

number of subpopulations in the data. The bend in this plot indicates the clusters. After 

clustering, the individuals of the subpopulations are assigned different vectors 

accordingly. Coordinates for each individual in the subpopulations are separately stored 

and population structure is plotted in mds plots. Hence, the mds plots identify any outliers 

as well as subpopulation in the data, if it exists.   

3.2.4.6 Association analysis 

There are different approaches to investigate the association of SNPs with phenotype of 

interest, which is demodicosis in this case. The approaches include genomic control, 

mixed model approach and structured association approach using principal component 

analysis, to account for ancestral differences between cases and controls [30]. 

3.2.4.6.1 Genomic control 

GenABEL function ―qtscore‖ [129, 130] is meant for this purpose. This function 

investigates the association between a SNP and phenotype of interest. With covariates the 

analysis of the phenotype of interest is carried out through generalized linear model. The 

residuals of regression are then utilized for test of association of respective SNP and the 

phenotype of interest. It is carried out through armitage test with 1 degree of freedom. 

Effects are odds ratios expected in logistic regression model. 

Formula used in logistic regression is as follow Y ~ a + b. Genomic inflation factor 

lambda is estimated as output of the analysis. With the function ―estlambda‖ qqplots are 

obtained, which are visualization of chi-square distribution of data with expected chi-

square values on X-axis while observed chi-square values on Y-axis, the null hypothesis 
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bring no association. Another type of plots called as Manhattan plots are obtained with 

the function ―plot‖. The Manhattan plot is a plot showing p-values of all the markers used 

in the analysis with their chromosome location on X-axis while -ve log of P-values on Y-

axis [34]. 

3.2.4.6.2 Structured association approach 

The function implemented in GenABEL for structured association is ―egscore‖ [30]. It 

efficiently scores association between phenotype of interest and a SNP. However, the 

important function it performs is the application of principal components to adjust for 

population stratification. The output is the lambda statistics for one degree of freedom 

[32,105]. 

3.2.4.6.3 Mixed model approach 

Mixed model approach is used to account for issues of relatedness in the data to minimize 

the possibility of spurious associations. The GenABEL function ―polygenic_hglm‖ 

utilizes hierarchical generalized linear model and genomic kinship matrix, obtained by 

―ibs‖, to calculate heritability through extended quasi-likelihood estimates. The estimates 

are in turn used for estimating restricted maximum likelihood. The polygenic model is 

finally calculated by taking the covariates as fixed affects [129-138]. 

The function ―mmscore‖ takes as input the object, returned by ―polygenic_hglm‖ along 

with gwaa.data object and kinship matrix obtained by ―ibs‖. The variance of the kinship 

matirix controls for relatedness. The association is determined by residuals of the hglm 

model along with the covariates specified in the formula of polygenic function. The 

output is stored in summary of the ―mmscore‖ object which contains top ten SNPs with 

lowest p-values their chisquare statistic and other details [139].  

3.3 Visualization of results 

Manhattan plots and QQ-plots (Quantile Quantile plots) are the two ways which are used 

to explain GWA results, in addition to summary table showing 10 top most significant 

SNPs. Manhattan plots are plotted by taking –ve log of p-values of individual SNPs on 
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Y-axis and chromosomal location of individual SNPs n X-axis. [34] In this way highly 

significant SNPs can be seen at highest points with respective p-values along Y-axis and  

can visually be mapped down to the chromosome they belong to along X-axis. QQ-plot 

(Quantile-Quantile plot) is another way to visualize the distribution of test statistic as 

compared to expected test statistic under the null hypothesis of no association [34].   

3.4 Biological interpretation of results 

GWAS results can be interpreted by pathway analysis, as has been stated in many cases 

[140-144]. It is better recommended to extend the interpretation of the significant SNPs 

pathway analysis to investigate the functionality of the genes linked to significant SNPs 

[145]. For individual SNPs having p-values significant enough, Over Representation 

Analysis (ORA) is used for pathway analysis [145]. It is also called Functional 

Enrichment Test. It calculates p-values on the basis of hyper-geometric Test [148]. 

Pathway analysis is analogus to GO (gene ontology) but is more elaborative and deep 

[147]. In this context, ANNOAR was used for gene annotation of significant SNPs, 

which resulted in genes neighboring the significant SNPs. GO terms were used to 

interpret the gene functions. The SNPs list containing all the ten top most SNPs was 

obtained through summary of mmscore () object in the GenABEL. The SNP list was 

passed to ANNOVAR along with reference gene annotation file of canine SNP build Can 

Fam 3 which was downloaded from UCSC genome browser. Biological interpretation of 

these genes was done through GO, which is a gene ontology consortium [147]. 
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4. Results and Discussions 

The chapter discusses the results of GWAS analysis in GenABEL in an attempt to 

identify risk alleles associated with the juvenile onset of demodicosis. It contains the 

results starting from quality control, covariate analysis, analysis of population 

stratification and then the association analysis. It also includes gene annotation and 

biological interpretation through gene ontology terms. 

4.1 Quality control 

The analysis started with ~105769 SNPs that were obtained from SNP genotyping 

platform, genotyped across genomes of all 188 samples including cases and controls. 

Quality control was carried out twice to avoid any systematic biases and confounding due 

to batch effects, manual artifacts and failure in genotyping the samples properly. The 

parameters thresholds were set to be 95% call rate for SNPs and individuals and P = 10e-

8 for both minor allele frequency and HWE. 

GenABEL performs quality control in two or three (if required) iterations every time 

resetting the thresholds for those SNPs and individuals who have passed the previous run. 

In a similar fashion, first quality control was performed on complete dataset containing 

both case and control groups. In the first run of quality control analysis for whole dataset, 

3020 SNPs were removed because they were unable to pass 95% call rate. They were not 

present in at least 95% of the individuals. Three SNPs were removed in the first run 

because, they were not successful in reaching the thresholds of < 0.05 for minor allele 

frequency. They were having very less minor allele frequency count. Total 1430 SNPs 

were eliminated in the first run of first quality control, because they were out of HWE 

(p=10e-8). Hardy Weinberg Equilibrium is an indicator of mishandling the samples while 

sample preparation for genotyping i.e. manual artifacts. Therefore, poor quality SNPs are 

removed through quality control filters. No individuals were removed that could not 

possess 95% of the genotyped SNPs implying all individuals passed the filter. After first 

quality control total of 101490 (95%) of the SNPS and 188 (100%) individuals passed all 

the first quality control criteria. Mean identity by state (IBS) was calculated to be 

0.7143551 (S. e. 0.01591812) and IBS threshold was passed by all the samples. 
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Second quality control was performed on control group only, in order to remove the 

SNPs in controls that deviate from HWE. This filtering step is just applied on controls as 

we assume that in cases deviation from HWE could be the actual signal. In the second 

quality control, 2 SNPS failed minor allele frequency threshold while 1182 could not 

reach significance level for HWE and thus were removed. Collectively 100306 

(98.83338%) SNPs and all 188 individuals passed all the criteria for quality control 2. 

Mean IBS was 0.7126142 (s.e. 0.01548113) indicating that both case and control groups 

were selected from the same group bearing high degree of relatedness. Quality control 

thresholds and values are summarized in table 4.1. 

4.2 Covariate analysis 

Two different tests were performed to check the status of different covariates present in 

the phenotype data. Fisher’s exact test was performed to check the status of covariates in 

the data. While Pearson Product Moment correlation test was performed to observe direct 

linear relationship of the covariate with affection status that was demodicosis. Results of 

the covariate analysis are summarized in table 4.2. P-values for both tests were > 0.05 

and did not show significant results for gender as covariate. It means that gender was not 

playing the role of covariate in the dataset. Therefore, it was not considered as a covariate 

in association analysis. However P-values, of both Fisher’s Exact Test and Pearson’s  

Product Moment correlation Test were highly significant (P=2.2e-16< 0.05) for type to 

reject the null hypothesis. Hence, the type was very strongly correlating with the 

affection status as the value of test statistic for correlation test (0.976) also indicates. 

Table 4.1: Quality Control 

 Quality Control1 Quality Control 2 

SNP call rate (95%) 3020 _ 

Individual call-rate (95%) _ _ 

MAF 0.05 3 2 

HWE   (p =1e-8) 1430 1182 

Markers Passed 101490 100306/105769 

Individuals passed 188 188/188 
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Table 4.2: Covariate Analysis 

Variables to 

Affection status 

Fisher’s exact test Pearson Product Moment 

Correlation test 

Gender 0.8824 0.7687 

Type(localized, generalized) 2.2e-16 2.2e-16 

 

4.3 Population Structure Analysis 

Genomic kinship matrix and MDS (multidimensional scaling) plots were obtained taking 

into account 99724 autosomal markers for investigation of population structure in the 

data. Results of kinship coefficient are summarized in figure 4.1. Genomic kinship matrix 

is obtained by calculating similarity of genotypes within any two pair of the population 

and gives kinship coefficients which thus indicate degree of relatedness between the 

members of a pair. Positive value indicates relatedness while negative values of 

coefficient of kinship are indicator of high genomic differences in ancestry. The dataset 

used, did not show any negative values of kinship coefficient. It was calculated by 

measuring identity by state of autosomoal SNPs only, because the sex linked SNPs are 

highly varied even among the individuals of a family and then among the populations of 

same ancestry [148, 149, 150]. Hence, they are not considered for calculating kinship 

matrix. Negative values in the matrix are the signs of different ancestry indicating no 

identity by state. Absence of any negative values in genomic kinship matrix suggests that 

there was no population stratification [148, 149 and 150]. MDS plot obtained by 

computing distances on the basis of autosomal markers also present homogeneous 

populations of both genders and also case and control groups. Thus it can be concluded 

that there was no population stratification in the data (Figure 4.2). 
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                              A                                                              B                                          

      Figure 4.2: MDS plot showing no stratification in the data      

A: homogeneous population      B: case (crossed) and controls male 

and female are constituting a homogeneous population. No sign of 

stratification is evident from the plots 

                                       Figure 4.1: Genomic kinship Matrix  
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4.4 Subpopulation Analysis 

Subpopulation analysis was performed through plot for MDS and clustering vs. within 

cluster sum of squares with optimum no of clusters indicating subpopulations. The 

curvature in the plot showed subpopulations at the level of 2 indicating towards the 

presence of optimally two subpopulations only i.e. of cases and controls. The Multi-

dimensional scaling plot obtained in same step indicates that the two subpopulations were 

homogeneous and no stratification existed in the dataset and all the cases and controls 

were within same single cluster as far as association analysis with respect to strata in the 

population is concerned. 

 

 

4.5 Association Analysis 

There were no strata in the data, therefore principal component analysis and analysis of 

any of the model of association for strata, taking into account the populations, was not 

Figure 4.3 A & B: MDS & Scree plot to show subpopulations 
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done. Simple association and genomic control (qtscore function in GenABEL) was 

performed to investigate for any association between phenotype and genotype. 

Association analysis was performed by taking into account type (localized or 

generalized) as covariate using the function of qtscore for genomic control (GC).The 

inflation factor lambda was very high up to 1.43, as is also evident by extent of noise in 

association signals in Manhattan plot (Figure 4.4). However QQ-plot with pc1df 

(corrected p-value for genomic control) showed much deviation from the line of equality 

to null in both the cases (with p1df and pc1df). It was indicating cryptic relatedness as 

there was no apparent stratification in the dataset (Fig 4.5) [102]. 

                             Table 4.3 Association Analysis using type as covariate 

Model Covariate Lambda value 

Simple association Type 1.420729 

Genomic Control Type 1.420729 

Mixed Model Type 1 

 

 

Figure 4.4: Manhattan plots showing noise in the SNPs p-values due to 

relatedness. 
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To minimize this inflation due to cryptic relatedness, mixed model approach was utilized 

[148, 149 and 150]. In this context GenABEL function ―mm-score‖ was applied taking 

type as covariate [132-141]. It worked and most significant results of the study were 

obtained which were supported by all the three criteria used to identify risk alleles in 

GWAS i.e. Lambda value was equal to 1. In addition both the QQ-plot and Manhattan 

plot were supporting the SNPs to be true hits (Figure 4.6 A & B) [34]. Manhattan plot of 

the mixed model showed clear signal of all ten top most SNPs on chromosome 28 

reaching negative log of p-values up to 5 and even 6, explaining the significance of p-

values of top hits, which are summarized in table 4.4. The QQ plot expressed the chi-

square distribution of all the SNPs on line of equality, with only the third quantile 

deviating the null hypothesis of no associations, for significant SNPs, from the line of 

equality. These SNPs were having chi-square values from 18 to 20, as is also evident for 

the significant SNPs in table 4.4. All top candidate SNPs significantly associated with 

demodicosis in the study, were located on chromosome 28. The p-value of SNP with 

highest level of significance was 3.78 e-6 and the p-values of all the rest of the nine 

significant SNPs was in the range of 10e-5 (Table 4.4), showing that none reached 

Bonferroni corrected threshold (p=0.05/100347=4.98271e-07). However, Bonferroni 

threshold is very strict and shows conservative approach [102] when dealing with dogs 

Figure 4.5: QQ-plot showing deflation due to relatedness with qtscore 
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due to very high linkage disequilibrium indicating that the number of independent SNPs 

is very low in case of dogs [92].  

 

 

Figure 4.6 A) Manhattan plot showing chromosome 28 to possess 

significant SNPS with p-values 10e-6 and 10e-5 respectively. 

B) QQ-plot showing the deviation of significant SNPs from distribution 

line which is based on null hypothesis. It clearly indicates how strongly the 

SNPs are associated to demodicosis (the phenotype of interest) rejecting 

the null hypothesis of no association. 
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Thus the candidate SNPs and risk loci may be involved in demodicosis in dogs and need 

further experimental validation, to see the effects of SNPs at risk loci in cases and 

controls. Although p-values is low for top SNPs but previous studies indicate that low p-

values in GWAS may still be significantly associated with risk loci [36, 151, 152, and 

155, 156]. 

All ten top candidate significant SNPs were present in all 188 members of the study. The 

odds ratio of first nine significant SNPs was 3.53 while that of 10
th

 significant SNP was 

2.627 which also proved that all these significant SNPs were associated to phenotype of 

interest in the study that is juvenile onset of canine demodicosis. Moreover the distance 

of nearby genes from the tag SNPs is only in hundred kilo basepair (kb) positions for five 

of the SNPs indicating strong evidence towards the involvement of regulatory regions of 

nearby genes, obtained through gene annotation via ANNOVAR. 

4.6 Pathway analysis 

The results of gene annotation showed that all ten SNPs were present in the intergenic 

region. In such a situation when associated SNPs lie in intergenic regions, it is 

recommended to study neighboring genes because some non-coding elements such as 

activators or suppressors may alter the functioning of these genes [157, 158]. Therefore, 

the SNPs explain the association of these genes to the phenotype of interest. 

The neighboring genes include GOT1(Glutamic-Oxaloacetic Transaminase 1), ABCC2 

(ATP Binding Cassette Subfamily C Member 2), KCNIP2 (Potassium Voltage-Gated 

Channel Interacting Protein 2) and CYP2C18 (Cytochrome P450 Family 2 Subfamily C 

Member 18). Five of the SNPs lie in same intergenic region neighboring CYP2C18 

(Table 4.4). GOT1 is the neighboring gene of top most significant SNP i.e. 

BICF2G630275209. All four genes were given to gene ontology (GO) consortium for 

over representation analysis (ORA) and without Bonferroni correction, following results 

were obtained [151]. 
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Figure 4.7 Pie Chart obtained by GO terms with a list containing GO Ids 

of all four genes 

Catalytic 

Activity 

Transporter Activity 

GOT1 (Glutamic-Oxaloacetic Transaminase 1) was annotated with a p-value less than 

0.05, without Bonferroni correction. It was annotated at the levels; cellular component, 

biological process and molecular level, with; mitochondrion, cellular amino acid 

biosynthesis, trans-aminase and ATPase activity respectively. All four genes were 

involved in catalytic and transporter activity. It is also shown by the pie chart in figure 

4.5. KCNIP2 (Potassium Voltage-Gated Channel Interacting Protein 2) was involved in 

calcium mediated signaling and response to toxins. ABCC2 (ATP Binding Cassette 

Subfamily C Member 2) was involved in extracellular transport and CYP2C18 

(Cytochrome P450 Family 2 Subfamily C Member 18) was involved in fatty acid 

metabolic process [151]. 

 

  

; 

 

 

 

 

 

 

 

4.7 Discussion 

The results of the study show that minor alleles for top hit SNPs in the cases may cause 

suppression in catalytic activity leading to slowing down of immune response. As a result 

the dogs fail to control the population of mites and suffer from juvenile onset of 

demodicosis. Presence of tag SNPs flanking the region, containing gene CYP2C18 (base 

pair position from 9750949 and 9793351) may indicate the involvement of a large 
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intergenic segment of chromosome 28 to mediate the disease. All top ten hit SNPs 

obtained as a result of association analysis, through applying mixed model with type as a 

covariate, are lying in the inter-genic region of four genes which are; CYP2C18, GOT1, 

ABBC2 and KCNIP2.  

 The gene CYP2C18 is in close vicinity of six significant SNPs i.e. top most SNP number 

2, 3, 4, 5, 6 and 10 namely BICF2G630276092, BICF2G630276088, BICF2G630276065, 

BICF2S23342409, BICF2G630276060 and BICF2P70060 respectively from nucleotide 

position 992144bp till 1042924bp. The second gene on the chromosome 28, neighboring 

top SNPs is GOT1 which is at a distance of 1077644bp from the top most significant SNP 

of our GWAS analysis. This top most SNP is named as BICF2G630275209. Same gene 

GOT1 is in close vicinity of another significant SNP BICF2G630275212.  The seventh 

and eighth top most SNPs of our results i.e. BICF2G630274840, BICF2G630274545 are 

located in the neighborhood of another gene ABCC2 with a distance of 246799bp and 

14101bp respectively. The fourth gene neighboring the 8th significant SNP 

(BICF2G630274545) is KCNIP2 which is located 528385bp away from this SNP. The 

order of these genes on chromosome 28 is CYP2C18, GOT1, ABCC2 and KCNIP2. 

Results of literature search to determine previously stated biological role of the genes that 

are neighboring the top candidate SNPs, are summarized in table 4.5. The summary 

includes; the gene, number of top SNPs located in vicinity of that gene, diseases 

associated to the gene as reported by gnenecard information and phenotype that are 

linked to these diseases. In this way the genes were better interpreted to relate to the 

juvenile onset of canine demodicosis. 
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CYP2C18 is a member of cytochrome P450 family 2. Its subfamily is C and it is 18th 

member of this subfamily. It is expressed into an enzyme of monoxygenic nature. The 

enzyme is occupied on endoplasmic reticulum and is involved in anabolism of lipids and 

metabolism of drugs. Diseases associated to CYP2C18 are paralytic ileus and 

mediastinitis. Paralytic ileus is related to interstitial cystitis whose related phenotypes are 

skin and immune system. Both the skin and immune system are also related to 

demodicosis. Mediastinitis is another inflammatory disease which is related to CYP2C18 

gene [159] just like demodicosis. Mutations in this genes have also been reported to be 

involved in poor metabolism of drugs like warfarin [102]  

Hence, CYP2C18 might be a strong candidate gene responsible for etiology of 

demodicosis. Furthermore this gene is located in close vicinity of six of the ten top most 

SNPs. Additionally these 6 SNPs (map position 84087–84262) are very closely located in 

the map file within a range of 10 tag SNPs indicating that more SNPs with a strong 

linkage disequilibrium to these tag SNPs with the same haplotype block might be 

involved in causing the Juvenile onset of demodicosis disease. Therefore, it is a better 

option for future genotype imputation studies so that actual causal loci might be 
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identified. In short CYP2C18 gene might be a strong candidate gene associated with 

juvenile onset of canine demodicosis disease [159]. 

GOT1 is the gene neighboring the top most SNP of our results. It translates into an 

enzyme glutamic oxaloacetic transaminase present in soluble form in cytosol. It is an 

active participant of amino acid metabolism and urea and TCA cycle. One of its related 

diseases is localized pulmonary fibrosis, which is related to pulmonary fibrosis. Its 

related phenotypes include integument and immune system. Furthermore, biological 

processes related to this disease include, suppression of T-cells and stimulation of 

collagen biosynthesis process which are again related to demodicosis. In addition, the 

figure 4.8, which is a screenshot of gene card results for GOT1 gene, indicated that the 

protein is expressed in almost all types of immune cells including T-lymphocytes, CD4
+
 

T Cells and CD 8
+
 T cells which are found associated with juvenile onset of demodicosis 

disease [160]. 

 

Hence there might be role of this gene associated with demodicosis [160]. 

Figure 4.8: Genecard for GOT1: Expression of GOT1 in Immune system 
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ABCC2 is also a protein coding gene. It is translated into a protein named as ATP binding 

cassette with a subfamily C and member 2. It acts as a transporter across cell membranes. 

It is expressed in upper portion of liver cells canals and plays a role in transport of bile. It 

is also involved in resistance of drugs. It is important to discuss here the pathway for 

ABCC2 gene namely, ―blood brain barrier and immune cell transmigration‖. The pathway 

if disturbed, results in inflammation and invasion of immune cells in brain. One of its 

related diseases is Dubin Johnson syndrome which is related to hepatitis (the 

inflammation of liver). Integument is the phenotype associated to hepatitis as is of 

demodicosis. Its biological processes include positive regulation of collagen biosynthesis 

[161].  

KCNIP2 encodes the protein known as Potassium voltage gated channel interacting 

protein. It is involved in the regulation of neuronal stimulation. It belongs to the family of 

calcium binding proteins. One of the associated diseases is spinocerebellar ataxia type 

19/22 whose associated tissue also includes skin [162]. 

All these genes are showing signs of relevance to the juvenile onset of demodicosis 

disease, to a larger or a smaller extent, by either causing an inflammatory disease or by 

having skin or immune system as a phenotype. It may be hypothesized that CYP2C18 and 

GOT1 might be strongly associated to the infestation of JOGD while the ABCC2 may 

also be indirectly involved   in the infestation of this disease. 
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5. Conclusion 

In this study we performed GWAS on genotyped samples of Stafford Shire Bullterriers in 

an attempt to identify risk factors for Juvenile onset of canine demodicosis disease. 

Through applying logistic regression based linear mixed model with type as predictor, 

we were successful in achieving ten significant SNPs with  association P-values in the 

range of 10e-5 for nine SNPs while the p-value for top SNP was 1.78e-6. The QQ Plot and 

the Manhattan Plot also supported the significance of these results. All the ten 

significant SNPs are occupying canine chromosome 28. Gene annotation through 

ANNOVAR revealed the SNPs to occupy an intergenic region in a vicinity of four genes 

namely GOT1, CYP2C18, ABCC2 & KCNIP2. Two of these genes i.e. GOT1 and CYP2C18 

seem to be involved in the infestation of juvenile onset of generalized demodicosis as 

they are found to have an inflammatory background. In addition, nine of the significant 

SNPs in our study are neighboring these genes. Therefore, we conclude that the ten 

significant SNPs table 4.4 are strongly associated to the phenotype of interest i.e. 

juvenile onset of canine demodicosis in a discovery stage. 

5.1 Future perspective 

The study can provide basis for replication studies with independent genotyped samples, 

in an attempt to validate these results. We can further explore the intergenic region 

identified here to find some regulatory elements to identify if they are controlling the 

expression of these genes. This can be achieved using the targeted sequencing of the 

region in large number of individuals. Same strategy can also be applied to human 

samples to identify the risk factors associated with demodicosis or associated diseases in 

humans.  
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