

Validating Model Transformations using Search-based

Software Testing

Author

Momina Ramzan

00000205124

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUG, 2021

Validating Model Transformations using Search-based

Software Testing

Author

Momina Ramzan

00000205124

A thesis submitted in partial fulfillment of the requirements for the degree

of

MS Computer Software Engineering

Thesis Supervisor

Dr. Farooque Azam

Thesis Supervisor‟s Signature: _____________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

AUG, 2021

i

Declaration

I certify that this research work titled “Validating Model Transformations using

Search-based Software Testing” is my own work under the supervision of

Dr. Farooque Azam. This work has not been presented elsewhere for assessment.

The material that has been used from other sources has been properly

acknowledged / referred.

Signature of Student

Momina Ramzan

00000205124

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Momina Ramzan

00000205124

Signature of Supervisor

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author and lodged in the Library of NUST College of

E&ME. Details may be obtained by the Librarian. This page must form part of

any such copies made. Further copies (by any process) may not be made

without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in

this thesis is vested in NUST College of E&ME, subject to any prior

agreement to the contrary, and may not be made available for use by third

parties without the written permission of the College of E&ME, which will

prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and

exploitation may take place is available from the Library of NUST College of

E&ME, Rawalpindi.

iv

Acknowledgements

In the name of Allah, the Most Beneficent and the Most Merciful

First and foremost, I am highly grateful to Allah Almighty for blessing me

with this life, with the abilities, skills and environment to carry out this work

successfully.

Next, I am greatly indebted to my supervisor Dr. Farooque Azam for his kind

supervision, invaluable feedback, unwavering support, constant encouragement,

timely availability and patience throughout the course of this research work, without

which a work of this magnitude would not have been possible. I am also thankful to

Mr. Muhammad Waseem Anwar for his guidance and feedback at various stages of

this work.

I am grateful to all respected committee members who include Dr. Wasi

Haider Butt and Dr. Urooj Fatima for their kind and encouraging words. I would like

to acknowledge all faculty members at our department who taught us in-depth and

hands-on courses and always went out of their way to answer any queries that

students had. Dr. Saad Rehman who taught us the course of Research Methodology

deserves a special mention here, who often shared his wisdom and insights during the

course which helped me unstuck any convoluting problem that I faced during this

research work.

Moreover, several of my dear batch fellows that shared their experiences with

me and offered their help, I am indebted to you all as well. I am grateful to all the

administrative staff of our college for their timely coordination and cooperation.

Last but definitely not the least, I am very much grateful to my family – my

rock, who inspire me with their strength, resilience and perseverance, who is always

by my side, who believes in me, who celebrates my every achievement and who

reminds me that no matter how difficult it may get, there is always a way out – a

lesson which is apt in the prevailing times of uncertainty where the global pandemic

of COVID-19 looms above our head.

v

Dedicated to My Parents

vi

Abstract

Model Transformations (MTs) are the cornerstone of Model-Driven Engineering

(MDE). MTs systematically transform input models to output models. Validating

MTs establishes credibility of MDE which finds its applicability in avionics and

automotive industries, however; it is a non-trivial task as models are complex

structures consisting of attributes and associations of various cardinalities. These

models conform to their corresponding Metamodel (MM) which defines the model

structure. A MM further imposes additional constraints on models that they must

satisfy. These constraints manifest as Boolean expressions adding to the complexity

of models, making it all the more challenging to validate MTs for which test models

need to be generated. Previous studies showed that formal techniques for Test Model

Generation (TMG) involved overhead of intermediate formalism, were time

consuming and suffered from combinatorial explosion. In contrast to formal

techniques, Search-based Software Testing (SBST) demonstrated effective and

efficient TMG. SBST relies on search algorithms guided by heuristics and a Fitness

Function (FF) defined using different coverage criteria targeting model constraints.

Previously, FF based on weaker criteria such as Decision Coverage (DC) has been

widely studied. Few studies cater stronger condition-based coverage criteria only by

reusing DC‟s FF. This results in inadequate coverage for stronger criteria that are

often mandated as standards in MDE industries. To better cater condition-based

criteria, we propose a five-step approach employing SBST. A novel condition-based

FF is also proposed. Modified Condition/Decision Coverage (MC/DC) is selected as

the coverage criterion. Alternating Variable Method (AVM) is selected as the search

algorithm. An existing tool named EsOCL is extended to realize our approach. Two

case studies of varying complexity are used to evaluate our approach in terms of

coverage and success rate. Our condition-based FF is compared with the widely

studied DC‟s FF. Results are verified by means of an extensive analysis. Our results

demonstrate a significant improvement of ~36.2% in terms of coverage and ~0.3% in

terms of success rate. Our proposed approach advocates for the efficacy of our

condition-based FF which delivers promising results, ranging from weaker to stronger

coverage criteria, in comparison to existing DC‟s FF.

Key Words: Model Transformations, Validation, DC, MC/DC, SBST,

Fitness Function

vii

Table of Contents

Declaration ... i

Language Correctness Certificate ... ii

Copyright Statement ... iii

Acknowledgements .. iv

Abstract .. vi

Table of Contents ... vii

List of Figures .. ix

List of Tables... x

CHAPTER 1: INTRODUCTION ... 1

1.1 Model-Driven Engineering (MDE) .. 1

1.1.1 Model Transformations (MTs) ... 1

1.1.2 Validating MTs ... 2

1.2 Problem Statement ... 7

1.3 Proposed Solution ... 8

1.4 Contribution.. 10

1.5 Thesis Organization .. 11

CHAPTER 2: LITERATURE REVIEW ... 12

2.1 Validation for MTs ... 12

2.1.1 Black-box (BB) Validation ... 12

2.1.2 White-box (WB) Validation ... 13

2.1.3 Grey-box (GB) Validation .. 13

2.2 TMG using SBST ... 14

2.3 Research Gaps .. 15

2.3.1 Research Questions (RQs) .. 16

CHAPTER 3: PROPOSED METHODOLOGY.. 17

3.1 5-Step Approach for MC/DC TMG .. 17

3.1.1 Taking Input ... 18

3.1.2 Parsing .. 18

3.1.3 Determining MC/DC Test Suite ... 18

3.1.4 Applying Search Algorithm .. 18

3.1.5 Returning Output .. 20

3.2 Example .. 20

CHAPTER 4: VALIDATION ... 25

4.1 Tools Used .. 25

4.2 Case Studies ... 26

4.2.1 Case Study 1: Experimental Model .. 27

4.2.2 Case Study 2: RoyalandLoyal Model ... 28

viii

4.3 Results .. 30

CHAPTER 5: DISCUSSION AND LIMITATIONS ... 34

5.1 Discussion .. 34

5.2 Limitations.. 36

CHAPTER 6: FUTURE WORK AND CONCLUSION ... 37

6.1 Future Work ... 37

6.2 Conclusion .. 38

REFERENCES ... 39

ix

List of Figures

Figure ‎1.1: A Simple Visualization of a Model Transformation (MT) ... 1
Figure ‎1.2: Types of Model Transformations (MTs) .. 2
Figure ‎1.3: An Extended Visualization of a Model Transformation (MT) ... 3
Figure ‎1.4: Validation Process for MTs .. 4
Figure ‎1.5: Validation Views for MTs .. 6
Figure ‎1.6: Coverage Criteria for Validation .. 6
Figure ‎3.1: Our 5-Step Proposed Approach for MC/DC TMG using SBST ... 20
Figure ‎3.2: 1

st
 Step - UML Experimental Model Annotated with an OCL Constraint, Serving as Input

 .. 21
Figure ‎3.3: 4

th
 Step (2/2) – A Comparison of Our Condition-based FF (green) with Existing Branch-

based FF (red) [26] for one of the Substituted Constraints/Test Cases .. 24
Figure ‎3.4: 5

th
 Step – Test Model Returned (using our FF) against an MC/DC Test Case/Substituted

Constraint ... 24
Figure ‎4.1: Coding Interface of EsOCL where ours and existing FFs are implemented for the „implies‟

operator .. 25
Figure ‎4.2: A Glimpse of a Test Case in EsOCL where RoyalandLoyal can be seen as the Input Model

with a Constraint for which AVM Search Algorithm is applied for 500 Independent Runs 26
Figure ‎4.3: UML Class Diagram for Experimental Model.. 27
Figure ‎4.4: Case Study 1 - UML Class Diagram for Experimental Model Annotated with OCL

Constraints .. 27
Figure ‎4.5: Case Study 2 - UML Class Diagram for RoyalandLoyal Model .. 29

x

List of Tables

Table 1-1: Coverage Criteria Comparison in terms of Criterion Requirements from Weakest to

Strongest Criteria (adapted from [41]) ... 7
Table 2-1: A Comparison of Existing Work based on SBST for TMG ... 14
Table 2-2: A Comparison of Existing SBST Work based on FF for TMG ... 15
Table 3-1: Condition-level Distance Functions to Guide the Search Algorithm [15] 19
Table 3-2: 2

nd
 Step - Parsing of OCL Constraint with the Extracted Details... 22

Table 3-3: 3
rd

 Step - MC/DC Test Suite Determined for the Parsed OCL Constraint 22
Table 3-4: 4

th
 Step (1/2) – Heuristics and FF (our vs. existing [26]) to guide AVM against each

Substituted Constraint corresponding to each Test Case of the MC/DC Test Suite for TMG 23
Table 4-1: Summarized Details of Two Case Studies used for Validation of our Approach 29
Table 4-2: Results Obtained for Case Study 1 - Comparing Our Approach with Exiting Approach [26]

in terms of Coverage and Success Rate .. 30
Table 4-3: Results Obtained for Case Study 2 - Comparing Our Approach with Exiting Approach [26]

in terms of Coverage and Success Rate (1/2) ... 32
Table 4-4: Results Obtained for Case Study 2 - Comparing Our Approach with Exiting Approach [26]

in terms of Coverage and Success Rate (2/2) ... 32

1

CHAPTER 1: INTRODUCTION

This chapter introduces some of the major concepts that build the foundation

for our research work. These concepts are briefly described along with the challenges

that exist as open problems in the field and require further attention. The scope of the

research work is also set within this chapter. Problem statement is identified and idea

of the proposed solution is presented. The contributions made in the light of this

research are highlighted, concluding with the organization of the upcoming chapters.

1.1 Model-Driven Engineering (MDE)

MDE is a software engineering paradigm in which models are treated as the

primary artifacts. Models abstract away complexities of a system and can represent a

system at various abstraction levels ranging from Platform Independent Models

(PIMs) to Platform Specific Models (PSMs). Moreover, different dimensions of a

system can be represented using structural, behavioral and deployment models. These

models enable automated generation of several other artifacts of the Software

Development Lifecycle (SDLC) such as code, test cases, user documentation among

others. In contrast to traditional SDLC, MDE offers abstraction, reusability and

scalability as well. Owing to its benefits, it is extensively used in critical systems such

as avionics and automotive industries.

1.1.1 Model Transformations (MTs)

MDE involves the systematic engineering of models by means of Model

Transformations (MTs). MTs are the “heart and soul” of MDE [1]. They transform

input models to output models following a set of transformation rules and satisfying

certain constraints. This transformation process is the key to automation.

Figure ‎1.1: A Simple Visualization of a Model Transformation (MT)

2

Generally, MTs are classified into two main types: Model-to-Model (M2M)

transformations and Model-to-Text (M2T) transformations [2]. In M2M

transformations, the input as well the output is a model. Whereas, in M2T

transformations, the input is a model but the output is text
1
 which can represent code,

test cases or documentation.

Figure ‎1.2: Types of Model Transformations (MTs)

1.1.2 Validating MTs

MDE involves the systematic engineering of models via MTs till the desired

outcome is achieved. The output model of one transformation can serve as the input

model to another transformation whose output model can then again serve as input

model to another transformation, hence resulting in a chain of MTs. It is, therefore,

imperative to establish validity of MTs in order to ensure credibility of the MDE

process chain.

However, validating MTs is not an easy task. As the input and output under

consideration are models. Models are complex data structures comprising of

attributes, operations and associations of various cardinalities. Moreover, models also

1
 The output of M2T transformations can also considered as a model provided

that it conforms to a certain structure and semantics.

3

need to conform to the structure and semantics of a Meta-Model (MM), which is

defined at a higher abstract level, for a model to be declared as a valid instance of that

MM.

Apart from the inherent structural complexity of models, they are also

annotated with constraints that enrich the structural or behavioral elements of the

model with additional details. These constraints can manifest in the form of pre-

conditions, post-conditions or invariants that need to be satisfied throughout various

stages of the transformation process. A model satisfying these constraints would be

considered as a well-formed model.

Figure ‎1.3: An Extended Visualization of a Model Transformation (MT)

In MDE, to represent these models, a well-known industrial standard [3] such

as the Unified Modeling Language (UML) is used [4]. To complement UML, the

constraints are most commonly expressed using another standard known as the Object

Constraint Language (OCL) [5], which is a formal declarative language [6] to

expresses constraints in the form of decisions and conditions.

4

1.1.2.1 Process of Validating MTs

The validation process for MTs consists of three main steps [7] that are

enlisted below and briefly described in the figure that follows:

 Test Model Generation (TMG)

 Quality Assessment

 Oracle Checking

Figure ‎1.4: Validation Process for MTs

In order to initiate the validation process, we would limit our scope to focus on

the very first step of the validation process i.e. TMG, which is a known problem in

MDE.

1.1.2.1.1 Techniques for TMG

Common techniques for TMG make use of formal approaches such as

Boolean SATisfiability (SAT) [16], Satisfiability Module Theories (SMTs) [17],

Theorem Proving or Automated Reasoning [18], Model Checking [19] [20], Symbolic

Execution [21] to name a few. According to [15], in all these approaches, what is

common is the conversion of constraints from one formalism to another in order to

determine test models satisfying the given constraints. Apart from that, it is time

consuming to determine a test model satisfying a constraint within reasonable time.

Combinatorial explosion is also a common consequence when using these approaches

as the constraints grow in complexity.

5

Other than the aforementioned formal techniques, there are three validation
2

views for MTs [7] that are inspired from traditional software testing [8] but adapted in

the context of MDE. These validation views are mentioned and described below:

 Black-box (BB) Validation

 White-box (WB) Validation

 Grey-box (GB) Validation

For BB validation, the implementation of MT is not available. However, the

input model to the MT is available. This input model conforms to an input meta-

model (MM) to be considered as a valid model (instance of that MM) [2]. Moreover,

it may also be annotated with constraints that determine the well-formedness of that

model [2]. So, the input model along with the well-formedness constraints is the

artifact under consideration for BB validation.

For WB validation, implementation of the MT is available. Different types of

model transformation languages (MTLs) implement the transformation specifications

as a set of rules that map an input model to an output model. These MTLs can either

be declarative, imperative or hybrid [2] in nature based on the constructs offered by

the MTL to implement the model transformation. Hence, apart from the input model

and constraints, the internal structure of the MT or its implementation is under

consideration for WB validation.

Grey-box (GB) validation implies a combination of BB and WB validation.

For GB, input model with annotated constraints and expected output model is

available, similar to BB validation. However, the MT implementation may only be

partially available [7], which makes it similar to WB validation. Apart from that,

traces of MT execution [9] may also be available if supported by the Model

Transformation Language (MTL) used to implement that MT. Traces map the MT

rules or specifications to input model elements [9]. Apart from the input model and

constraints, the available implementation of MT along with the traces, if any, is the

artifact under consideration for GB validation.

2
 In the context of our research work, we consider Validation and Testing synonymous.

6

Figure ‎1.5: Validation Views for MTs

Considering the aforementioned validation views, coverage criteria are often

utilized for both BB and WB validation in the context of model constraints which

consists of Boolean expressions. These criteria are inspired from the Control-Flow

Graphs (CFGs) and Data-Flow Graphs (DFGs) [22] commonly used for traditional

software testing. Statement Coverage, Decision (or Branch) Coverage (DC),

Condition Coverage (CC) are commonly known CFG-based coverage criteria, often

used in the context of MDE as well. The figure that follows enlists those criteria that

are either often employed or can be further investigated for TMG problem.

Figure ‎1.6: Coverage Criteria for Validation

7

A comparison of coverage criteria is depicted in the following table as we

move from weaker to stronger criteria from left to right.

Table 1-1: Coverage Criteria Comparison in terms of Criterion Requirements from

Weakest to Strongest Criteria (adapted from [41])

1.2 Problem Statement

Our research work addresses the problem of TMG for validation of MTs. The

input model to a MT is inherently a complex structure owing to the attributes and

associations by which the model elements are specified and linked to one another

respectively. Moreover, this structural complexity of models increases manifold when

they are annotated with constraints to express additional dependencies on the models.

Hence, the complexity of models and imposed constraints remains a bottleneck for

validation of MTs.

The validation approaches that address this problem for automated generation

of test models rely on techniques that involve conversion of model constraints to

intermediate formalisms. It can also be time consuming to find a test model in a given

search space satisfying the given constraints. Moreover, another limitation is that

8

often such techniques suffer from combinatorial explosion as the number of operands

in a constraint increases. Our research work aims to overcome the identified problems

by making use of a technique that can overcome the aforementioned limitations.

1.3 Proposed Solution

For validation of constraints imposed on a model, one of the techniques that is

recently gaining momentum is that of Search-based Software Testing (SBST) [23].

SBST does not suffer from the limitation of conversion to intermediate formalisms as

the search algorithms are applicable to the artifact under consideration as-is.

Moreover, restricting the search space of possible test models can overcome the

problem of combinatorial explosion [15]. The search algorithms are able to find test

models satisfying the respective coverage criteria within a reasonable amount of time

[15] in comparison to formal approaches.

For coverage criteria that is often utilized for validation of MTs, SBST has

already been applied by utilizing Decision Coverage (DC) [15], [24], [25], however,

there are many other coverage criteria that can be utilized in the context of MT

validation such as various condition-based criteria [26].

Owing to the benefits mentioned above in using SBST for TMG, this

technique is further explored in detail and forms a part of our proposed solution. The

search algorithms under consideration for SBST are of the following three types based

on exploration of the search space. Some commonly known algorithms following

under each search category [27] are also mentioned:

 Local Search

o Hill Climbing (HC), Alternating Variable Method (AVM),

Simulated Annealing (SA)

 Global Search

o Genetic Algorithm (GA), Particle Swarm Optimization (PSO)

 Hybrid Search

o A combination of both Local Search and Global Search such

as:

 Genetic Algorithm (GA) along with Particle Swarm

Optimization (PSO)

9

For a given search space that consists of all possible test models, the search

algorithm is guided by means of heuristics [28]. These heuristics can be expressed in

the form of distance functions that help determine the distance of a searched test

model in the search space with respect to the given constraint i.e. they calculate how

far is a test model from satisfying the given constraint. Additionally, a fitness function

(FF) [28], which makes use of these heuristics helps in quantifying the quality of the

searched test model based on the distance calculation and assists the search algorithm

in moving towards the direction of the fittest test model that can satisfy the given

constraint. FFs are problem dependent and can vary based on the coverage criteria

which is under consideration for the constraints. Success rate [29] determines how

many times the search algorithm has been successful in finding a test model that

satisfies the test case [15]. It is calculated using the equation below:

 ⁄

Success rate is averaged over a 100 runs as a standard practice [14], [24] in order to

accommodate for the random nature of the search algorithm.

In terms of coverage criteria, there are many other coverage criteria identified

above that can be utilized in the context of MT validation such as various condition-

based criteria. Coverage percentage [29] for an OCL constraint is determined by how

many test cases in the coverage criterion‟s test suite have been satisfied by finding the

fittest test model. It is calculated using the equation below (adapted from DC):

 ⁄

Effectiveness of SBST techniques for MT against these other various coverage

criteria is yet to be investigated.

10

1.4 Contribution

Mentioned below is a list of contributions made in the context of TMG for

validation of MTs using SBST:

 A five-step approach is devised for this purpose which holistically

solves the constraint in the context of the input model, generating test

model instance(s) satisfying that constraint as per the selected coverage

criteria.

 A novel condition-specific FF has been proposed for stronger coverage

criteria such as CC, C/DC, MC/DC and MCC, while also remaining

compatible with weaker criteria such as DC.

 This condition-specific FF is also compatible with weaker criteria such

as DC according to the subsumption relationship as stronger criteria

subsume weaker criteria.

 An existing tool [25] which implements SBST in the context of MTs,

is extended to cater to stronger coverage criteria by implementing our

novel condition-based FF.

 Comparison between existing approach and our approach is performed

where we have demonstrated improvement in terms of:

o Coverage %

o Success Rate

o Along with reduction in False Positives

11

1.5 Thesis Organization

The rest of the thesis is organized as follows:

 Chapter 2 presents the literature review that covers various techniques for

different validation views of MTs, identifies the research gaps and enlists the

research questions that would derive our research while focusing on the TMG

problem.

 Chapter 3 presents the proposed methodology by devising our five-step

approach for TMG using SBST for the MC/DC criterion. Our novel FF is also

introduced. Our approach is demonstrated on an example whereby which we

also compare our novel FF with the existing FF.

 Chapter 4 presents the validation of our five-step approach using two case

studies. Brief details regarding the extended tool are also shared. Results

obtained against each case study in terms of coverage and success rate are also

enlisted along with the answers to our research questions.

 Chapter 5 discusses the implication of our results in the light of the analysis

performed. Moreover, overall limitations of our approach along with possible

mitigations are also mentioned.

 Chapter 6 offers suggestions for future work that may serve as potential

research opportunities and concludes the thesis by reiterating our problem,

proposed approach, novelty, comparison and major findings.

12

CHAPTER 2: LITERATURE REVIEW

Validation of model transformations (MTs) is an actively researched area

making use of Black-box (BB), White-box (WB) and Grey-box (GB) validation [7].

These validation views are greatly inspired from traditional software validation [8].

However, to be applicable in the domain of MDE, these techniques are adapted to suit

the needs of various challenges presented by models and model transformations, as

explained in Chapter 1. Although our research work focuses on BB validation of MTs

for test model generation, for the sake of completeness, we also touch upon other

validation views focusing on test model generation techniques.

2.1 Validation for MTs

2.1.1 Black-box (BB) Validation

For BB validation of MTs, different coverage criteria based on the input

model have been defined. The model considered can either be a structural model such

a Class Diagram or a behavioral model such as a State Machine Diagram. For

instance, in case of a Class Diagram, covering all-classes, all-attributes, all-

associations [22] constitute some of the coverage criteria based on the structure of the

model. Similarly, for a State Machine Diagram, covering all-states, all-transitions, all-

paths [22] constitute some of the coverage criteria based on the model structure.

These structural coverage criteria are not only extensively utilized in the

context of Model-based Testing (MBT) [22] but are also extensible in the context of

BB validation of model transformations [7] where the input model to a MT is the

artifact under consideration for test model generation. Some of the commonly known

techniques in MDE literature for coverage of model structures are adapted from

traditional software testing techniques. For instance, techniques such as Input Domain

Reduction [15], Partitioning [13] and Boundary Value Analysis [14] have also been

utilized for structural coverage of complex and large-scale models.

For input models annotated with constraints, apart from the coverage criteria

relying merely on model structure, the structure of constraints can also be utilized for

BB validation by covering the decisions and conditions involved in the constraints.

This leads to the coverage criteria common in traditional software testing such as

decision coverage and condition coverage among others [22] inspired from control-

13

flow testing of software programs. Such coverage criteria have often been explored

for generating input models of MTs [7], [22]. Apart from the formal techniques

already identified in Chapter 1, few authors [15], [26] have also utilized SBST

techniques for generating test models for MTs with promising results that outperform

the formal approaches.

2.1.2 White-box (WB) Validation

For WB validation of MTs, different coverage criteria based on the internal

structure of the MT, have been defined. Such coverage criteria are again inspired from

traditional WB software testing techniques. Some of the commonly used criteria rely

on abstract representations such as CFG and DFG that are adapted to be applicable for

MT implementation. Decision, condition and path coverage of MTs that has been

reported mostly utilizes techniques such as constraint analysis [13].

For the input models, different strategies have been devised to derive test

models when the MT is available such as Effective Meta-Model (EMM) [10]

followed by the Extended Effective Meta-Model (EEMM) [11].

For input models annotated with constraints, apart from the coverage criteria

relying on MT structure, the structure of constraints can also be utilized to generate

test models that perform effective WB validation by covering the decisions and

conditions involved in the constraints. Moreover, MTLs that are imperative and

hybrid in nature often express constraints within the MT implementation using

helpers and rule filters. Due to this commonality, BB validation for MTs can also be

extended to carry out WB validation. This leads to coverage criteria such as decision

and condition coverage for constraints in the MT as well [24]. Apart from the formal

techniques already identified in Chapter 1, few authors [24], [30]* have also utilized

SBST techniques for generating test models for WB validation of MTs that offers

promising results in comparison to formal approaches.

2.1.3 Grey-box (GB) Validation

For GB validation, both BB and WB techniques can be leveraged either

separately or in combination according to the artifacts available. It focuses more on

fault identification, detection and localization by exploiting the traces that are

available [9]. However, no techniques unique to GB test model generation have been

14

identified. More commonly, existing BB or WB techniques are utilized for this

purpose [7].

2.2 TMG using SBST

From among the techniques that are mentioned above, SBST techniques for

test model generation have stood out in contrast to other techniques that suffer from

limitations as described in Chapter 1. Being a relatively newer research area in the

domain of MDE, strength is that they have also been applied in industrial contexts

where models can be large and scalable with complicated constraints and where

search space for test models satisfying those constraints, can be adjusted accordingly

to gain promising results.

Even though, SBSE has been applied to other problems such as searching for

optimal MT in a given search space [31], we however, explicitly focus on the TMG

works identified above [11], [14], [24], [25], [30] where SBST has been applied for

validation of MTs by utilizing constraints annotated on the input model or occurring

within the MT. Strengths and limitations of identified works as described in the table

below:

Table 2-1: A Comparison of Existing Work based on SBST for TMG

15

Followed below is a look into the intricacies of SBST and comparison of

existing work based on the FF used.

Table 2-2: A Comparison of Existing SBST Work based on FF for TMG

From the works that we have shortlisted above, it is observed that a BB

approach can also be applicable in the WB context. Infact, for WB approach, the FF is

indeed derived from BB approaches but improved as per the needs of WB validation

of MTs.

2.3 Research Gaps

Considering the above table, it has been identified that the existing work [11],

[14], [24], [25] whether BB or WB in nature, mostly focuses on simple coverage

criterion such as Branch Coverage (BC) (also known as Decision Coverage (DC)) is

considered. To the best of our knowledge, only one paper [26] goes a step further and

considers stronger coverage criterion such as Modified Condition/Decision Coverage

(MC/DC).

For DC, the fitness functions to guide the search algorithms are designed

adequately as per the decision-level. However, even for MC/DC, the fitness function

used is still that of DC. As fitness functions are problem dependent, reusing a fitness

function that reflects DC may not perform adequately when dealing with a different

criterion such as MC/DC that leverages both DC as well as condition coverage (CC).

As identified, no specific fitness function has been proposed that deals with

constraints at the condition-level; as needed for MC/DC. This highlights the need to

16

further utilize SBST techniques for coverage of stronger criteria in the context of BB

validation of MTs.

2.3.1 Research Questions (RQs)

For our research work, we would focus on BB validation of MTs as BB

approach is scalable to WB approach as mentioned earlier. Following research

questions have been devised for BB TMG of MTs based on the research gaps

identified above:

RQ1: Can a condition-based FF achieve better coverage for MC/DC criterion

in comparison to reusing a branch-based FF?

RQ2: Can a condition-based FF achieve better success rate for MC/DC

criterion in comparison to reusing a branch-based FF?

We will aim to answer these RQs by devising our 5-Step proposed approach

with our novel condition-based FF which would be demonstrated and validated

against a two case studies in the upcoming chapters.

17

CHAPTER 3: PROPOSED METHODOLOGY

Generation of test models is the initial step that leads towards BB validation of

MTs. Our proposed methodology generates test models by satisfying MC/DC

criterion for OCL constraints. We utilize SBST guided by our novel condition-based

FF to achieve such test models. The following sections enlist and describe the various

steps to realize our approach.

3.1 5-Step Approach for MC/DC TMG

We generate test models as per MC/DC of OCL constraints by utilizing our

five-step approach which is briefly described below:

1
st
 Step: Taking Input

 UML Model

 OCL Constraint

2
nd

 Step: Parsing

 Decisions

 Conditions

 Operands (Variables and/or Constants)

 Logical and Relational Operators

3
rd

 Step: Determining MC/DC Test Suite

 MC/DC (Unique-Cause) Criterion

4
th

 Step: Applying Search Algorithm

 AVM

5
th

 Step: Returning Output

 Test Model

 Coverage

 Success Rate

Each of the previously mentioned steps is elaborated as follows:

18

3.1.1 Taking Input

The first step of the five-step approach starts with taking a UML model and

OCL constraint defined in the context of the same model. The input model is

specified by its file path ending with the .uml extension whereas the constraint to the

input model is defined as a string. At present, UML class diagram model is supported

along with one OCL constraint at a time.

3.1.2 Parsing

After taking the input, the second step involves the process of parsing it. The

OCL constraint to be resolved in the context of the input model is parsed into

decisions, conditions, operands (variables and/or constants), logical and/or relational

operators.

3.1.3 Determining MC/DC Test Suite

The MC/DC test suite is determined for the parsed OCL constraint. This

requires generating a truth table for the decision under consideration and identifying

the independence pairs for each condition of that decision. An independence pair for a

condition helps in locating those test cases from the truth table whereby the condition

is solely responsible for affecting the decision's outcome, hence the said condition

being the unique-cause for a change in the corresponding decision's truth value. These

independence pairs once determined for all conditions in a decision are combined to

form the MC/DC test suite.

3.1.4 Applying Search Algorithm

The fourth step of the approach is the application of search algorithm to find

test models that satisfy the MC/DC test suite obtained against an OCL constraint. The

algorithm is applied against one test case at a time till all the test cases have been

covered in the test suite. AVM, a local search algorithm [32], [15], [25], [11], [26] is

chosen to find a test model in the search space which satisfies the test case under

consideration. A set of distance functions (heuristics) used at the condition-level of an

OCL decision is given by the table below:

19

Table 3-1: Condition-level Distance Functions to Guide the Search Algorithm [15]

Where k is the smallest positive integer i.e. k = 1.

Our novel condition-based FF is proposed and described below:

FF = ∑

Where

 FF: Fitness Function (to be minimized)

 D: decision

 : set of conditions in decision D

 c: a single condition in C

 t: a test case for c

 d(c, t): distance function for condition c, provided a test case t

This is the step which distinguishes our condition-based FF from the existing

branch-based FF [26]. A comparison of both would be demonstrated through an

example in the upcoming sections.

The above process (1st Step to 4th Step) is repeated as such for each test case

of the MC/DC test suite.

Condition

c

Distance Function

d(c)

x = y if (x-y = 0) then d(c) = 0

else d(c) = abs(x-y)

x <> y if (x-y <> 0) then d(c) = 0

else d(c) = abs(x-y) + k

x < y if (x-y < 0) then d(c) = 0

else d(c) = abs(x-y) + k

x > y if (x-y > 0) then d(c) = 0

else d(c) = abs(x-y) + k

x <= y if (x-y <= 0) then d(c) = 0

else d(c) = abs(x-y) + k

x >= y if (x-y >= 0) then d(c) = 0

else d(c) = abs(x-y) + k

20

3.1.5 Returning Output

The last step of the five-step approach is returning the fittest test model that is

obtained against a test case of the MC/DC test suite for an OCL constraint. The fittest

test model is the one for whom the fitness function is minimized. For such a test

model, the distance with respect to the test case under consideration is also reduced to

a minimum. Hence, this test model satisfies the OCL constraint, one MC/DC test case

at a time. Apart from the test model(s), the success rate of the search algorithm and

the coverage of the MC/DC test suite is also returned.

The five-step approach elaborated above takes a UML class diagram model

along with its OCL constraint and searches for a test model that is able to satisfy the

given OCL constraint as per the MC/DC criterion.

Figure ‎3.1: Our 5-Step Proposed Approach for MC/DC TMG using SBST

3.2 Example

We demonstrate our 5-step proposed approach on an example below:

1
st
 Step: Taking Input

Consider the following UML experimental model consisting of 2 classes A

and B for which attributes of different class and data types have been declared. A and

B are connected to one another by means of a bi-directional association link.

Moreover, an OCL constraint has been defined in the context of B, involving integer

and double data type attributes. The experimental model annotated with the constraint

would serve as the input.

21

Figure ‎3.2: 1
st
 Step - UML Experimental Model Annotated with an OCL

Constraint, Serving as Input

2
nd

 Step: Parsing

For the constraint in the given example (1
st
 Step), which would need to be

resolved in the context of B, consists of a Boolean expression serving as one single

decision. This decision consists of two conditions. The first condition involves a

comparison of integer variable (attribute) involving the „>‟ relational operator, while

the second condition involves a comparison of double variable (attribute), also

involving the „>‟ relational operator. These conditions are conjuncted by means of an

„or‟ logical operator (at the decision level). Details such as the left hand side (LHS)

and right hand side (RHS) of each condition and decision, serving as operands,

respective operators involved and the operands (variables and/or constants) extracted

for test data generation as a result of parsing are mentioned in the following table:

22

Table 3-2: 2
nd

 Step - Parsing of OCL Constraint with the Extracted Details

3
rd

 Step: Determining MC/DC Test Suite

For the parsed constraint (2
nd

 Step), the truth table is given by the following

table. Each row of the truth table serves as a test case. For condition 1, row 2 and 4

are the identified independence pairs while for condition 2, row 3 and 4 serve as the

independence pairs. These independence pairs or MC/DC test cases after combining

together consist of rows 2, 3 and 4 resulting in the MC/DC test suite.

Table 3-3: 3
rd

 Step - MC/DC Test Suite Determined for the Parsed OCL Constraint

23

4
th

 Step: Applying Search Algorithm

For the MC/DC test suite (3
rd

 Step), each of the three test cases when

substituted against the given constraint result in three corresponding constraints as

depicted in the following table. For each corresponding constraint (or a test case), the

operators, heuristics and FF to guide AVM towards a test model satisfying this

constraint are also mentioned. How our condition-based FF approach (green) differs

from the existing branch-based FF approach (red) [26] for the „or‟ logical operator

involved in the corresponding substituted constraints, is also depicted in the following

table.

Table 3-4: 4
th

 Step (1/2) – Heuristics and FF (our vs. existing [26]) to guide AVM

against each Substituted Constraint corresponding to each Test Case of the MC/DC

Test Suite for TMG

For the sake of completeness, we also compare our condition-based FF

approach with the existing branch-based FF approach [26] for one of the substituted

constraints with respect to the given constraint, details of which are as follows:

 OCL Constraint: self.x >18 or self.d > 3.0

 Test Case: self.x >18 or self.d <= 3.0 (TF)

 Search Algorithm: AVM

 Assume (initial test data): x = 20, d = 3.5

The calculated distance and the result of both the FFs are illustrated in the following

figure.

24

Figure ‎3.3: 4
th

 Step (2/2) – A Comparison of Our Condition-based FF (green)

with Existing Branch-based FF (red) [26] for one of the Substituted

Constraints/Test Cases

The main distinguishing feature of our approach is that it helps eliminate the

false positives that are garnered as a result of using the existing branch-based FF, due

to which the test model returned by AVM in the latter case does not satisfy the

desirable substituted constraint/test case.

5
th

 Step: Returning Output

The test model satisfying one of the test cases is returned as an output whereby

which test data is generated for integer and double variables.

Figure ‎3.4: 5
th

 Step – Test Model Returned (using our FF) against an MC/DC Test

Case/Substituted Constraint

Output results that help determine success rate and coverage are elaborated in

the upcoming chapters.

25

CHAPTER 4: VALIDATION

In order to validate our approach, empirical evaluation is performed on two

case studies by extending an existing tool. Brief details regarding the tool are

mentioned and each of the case studies is described below which is followed by the

results that are obtained from the returned output (i.e. the 5
th

 Step of our proposed

approach).

4.1 Tools Used

We extend an existing tool named Evolutionary Solver for OCL (EsOCL) [15]

to realize our 5-Step proposed approach. To the best of our knowledge, it is the only

open-source
3
 tool available which implements SBST-based algorithms in the context

of MDE and does so adequately. It has been developed in Java and its output is

console-based. More details on this tool can be found in [15].

We only utilize a subset of this tool which pertains to our 5-Step proposed

approach. It, however, already implements the existing branch-based FF [26]. We

extend EsOCL to implement our novel condition-based FF, and then compare our

approach and results with the already implemented FF. For execution and extension

of EsOCL, we utilize the Eclipse Integrated Development Environment (IDE) and use

Papyrus for visualization of our case study models and constraints.

Figure ‎4.1: Coding Interface of EsOCL where ours and existing FFs are implemented

for the „implies‟ operator

3 https://github.com/Simula-COMPLEX/EsOCL

26

Figure ‎4.2: A Glimpse of a Test Case in EsOCL where RoyalandLoyal can be seen as

the Input Model with a Constraint for which AVM Search Algorithm is applied for

500 Independent Runs

4.2 Case Studies

Two case studies ranging from small to medium scale are selected to perform

validation of our approach. One of them is a small-scale experimental model whereas

the other one is a medium-scale benchmark model that is similar to an industrial-level

setting. Both of them are described below along with the results (in terms of success

rate and coverage) that we obtain against each of them.

27

4.2.1 Case Study 1: Experimental Model

First case study is an experimental model adapted from [15], [25]. It is a UML

class diagram consisting of two classes namely A and B. Their structural properties

are specified by means of attributes of varying class and data types. Classes A and B

are associated to one another by means of a bi-directional association namely A_b_a.

Each end of the association specifies its cardinality in terms of a lower and upper

limit. For the sake of simplicity, the cardinality of A_b_a is fixed at one i.e. both

upper and lower limit of the association is equal to one. An instance of A is associated

with one and only one instance of B and vice versa. Moreover, an instance of B is

owned by A and vice versa. The following figure visualizes this experimental model:

Figure ‎4.3: UML Class Diagram for Experimental Model

Seven OCL constraints have been defined in the context of both classes A and

B. These constraints impose additional restrictions in terms of attribute values and

associations between instances of A and B. This results in a total of twenty MC/DC

test cases for which test models are generated. The following figure visualizes the

experimental model annotated with its constraints:

Figure ‎4.4: Case Study 1 - UML Class Diagram for Experimental Model Annotated

with OCL Constraints

28

4.2.2 Case Study 2: RoyalandLoyal Model

The second case-study is a benchmark model often used for OCL constraint

evaluation, named as RoyalandLoyal.uml [6], [26]. It represents a loyalty

management program that facilitates program partners to offer different services to

their loyal customers. It is a Class Diagram consisting of 14 classes that models

different entities of the loyalty management program such as ProgramPartner,

Membership, Customer, LoyaltyAccount, Service, Transaction among others. These

classes are linked to one another either by simple association or by an inheritance

which then establishes the superclass and subclass relationship among the linked

classes. Ten OCL constraints have been specified in the context of various classes in

the model covering almost each class and each association link atleast once. These

constraints have been expressed by using both relational and logical operators. This

results in a total of twenty nine MC/DC test cases for which test models are generated.

The figure that follows shows this case-study model:

29

Figure ‎4.5: Case Study 2 - UML Class Diagram for RoyalandLoyal Model

Details of the two case-studies are summarized in the following table.

Table 4-1: Summarized Details of Two Case Studies used for Validation of

our Approach

30

4.3 Results

The following tables enlist the results obtained for the case studies in terms of

coverage and success rate. The constraints and their corresponding MC/DC test cases

are also enlisted and results obtained for our condition-based approach are compared

with the existing branch-based approach [26] cumulatively and try to answer our

research questions.

For the tables that follow, the rows in red highlight those constraints (or test

cases) where the existing approach lagged behind our approach.

Table 4-2: Results Obtained for Case Study 1 - Comparing Our Approach with

Exiting Approach [26] in terms of Coverage and Success Rate

31

Answer to RQ1: In terms of coverage, for case study 1 (Experimental

Model), the first four rows do not record any difference between ours and existing

approach where the „not‟ and „and‟ operators are commonly involved in the

constraints. However, as we move further from row 4 to 7, where operators such as

„or‟, „implies‟ and „xor‟ are involved, we observe a significant difference whereby

which our approach clearly outperforms the existing approach. For row 4 and 7, our

approach performs ~66.6% better than the existing approach. For row 5, ours

performs 50% better than the existing while for row 6, again our approach comes

close to performing ~66.6% in comparison to existing approach. For all the seven

constraints and twenty MC/DC test cases, our approach demonstrates an average

coverage of ~95.2% in contrast to the existing approach which only demonstrates it

upto ~59.5%, hence suggesting an improvement of ~35.7%.

Answer to RQ2: In terms of success rate, similar behavior is observed as both

coverage and success rate are interrelated. For case study 1, the first four rows do not

record any difference between ours and existing approach where the „not‟ and „and‟

operators are commonly involved in the constraints. However, as we move further

from row 4 to 7, where operators such as „or‟, „implies‟ and „xor‟ are involved, we

observe a significant difference whereby which our approach clearly outperforms the

existing approach. For row 4 and 7, our approach performs ~0.6% better than the

existing approach. For row 5, ours performs 0.5% better than the existing while for

row 6, again our approach comes close to performing ~0.6% in comparison to existing

approach. For all the seven constraints and twenty MC/DC test cases, our approach

demonstrates an average success rate of ~0.9% in contrast to the existing approach

which only demonstrates it upto ~0.5%, hence suggesting an improvement of ~0.3%.

32

Table 4-3: Results Obtained for Case Study 2 - Comparing Our Approach with

Exiting Approach [26] in terms of Coverage and Success Rate (1/2)

Table 4-4: Results Obtained for Case Study 2 - Comparing Our Approach with

Exiting Approach [26] in terms of Coverage and Success Rate (2/2)

33

Answer to RQ1: In terms of coverage, for case study 2 (RoyalandLoyal

Model), the rows 3, 4 and 6 do not record any difference between ours and existing

approach where a single condition/decision is used or operators such as „and‟ and „or‟

are involved in the constraints. However, we observe different trend in row 1, 2 and 9

where „or‟ and „and‟ operators are again involved in the constraints. Stark difference

is observed in rows 5, 7, 8 and 10 where the „implies‟ operator is commonly used in

the constraints. For row 1, 2 and 9 our approach performs ~33.3% better than the

existing approach. For row rows 5, 7, 8 and 10, our approach performs significantly

better than the existing approach and demonstrates an improvement of ~66.6%. For

all the ten constraints and twenty nine MC/DC test cases, our approach demonstrates

an average coverage of 100% in contrast to the existing approach which only

demonstrates it upto ~63.3%, hence suggesting an improvement of ~36.7%.

Answer to RQ2: In terms of success rate, for case study 2, the rows 3, 4 and 6

do not record any difference between ours and existing approach where a single

condition/decision is used or operators such as „and‟ and „or‟ are involved in the

constraints. However, we observe different trend in row 1, 2 and 9 where „or‟ and

„and‟ operators are again involved in the constraints. Stark difference is observed in

rows 5, 7, 8 and 10 where the „implies‟ operator is commonly used in the constraints.

For row 1, 2 and 9 our approach performs ~0.3% better than the existing approach.

For row rows 5, 7, 8 and 10, our approach performs significantly better than the

existing approach and demonstrates an improvement of ~0.6%. For all the ten

constraints and twenty nine MC/DC test cases, our approach demonstrates an average

success rate of 1 in contrast to the existing approach which only demonstrates it upto

~0.6%, hence suggesting an improvement of ~0.4%.

From the results, it can be seen that our condition-based approach outperforms

the existing branch-based approach by ~36.2% in terms of coverage or by ~0.3% in

terms of success rate. We also observe how the results obtained for the

RoyalandLoyal model which is an industrial-level case study are consistent with the

results obtained for the Experimental model, which also justifies how the latter, albeit

being small-scale is representative of medium to large-scale industrial case-studies

[15], [25].

34

CHAPTER 5: DISCUSSION AND LIMITATIONS

This chapter presents an analysis of the results obtained in terms of coverage

(or success rate). More importantly, we try to determine the reasons behind why our

condition-based approach performs significantly better in comparison to the existing

branch-based approach. Moreover, a few limitations regarding our research work are

also enlisted along with the suggested mitigations that can help overcome them.

5.1 Discussion

From the returned output against a case study which consists of test model(s),

coverage percentage and success rate, it is imperative to verify these obtained results

in order to ascertain the validity of our approach. Some of the major findings resulting

from a keen and extensive manual analysis of both existing and our results are

discussed below with possible reasons:

 It was observed that the existing branch-based FF and our novel condition-

based FF mostly demonstrated equivalent results for the „and‟ logical operator.

o The reason for this finding is that both existing and our FF sums up

distance functions of conditions that are connected by an „and‟

operator, hence resulting in the same results (i.e. equivalent coverage

and success rate).

o However, these results cannot be generalized as we also had

constraints with the „and‟ operator where the results were not

equivalent. The existing branch-based FF performed poorly for such

constraints with a drop in its performance, which can be attributed to

the random nature of SBST algorithms.

 For other logical operators such as „or‟, „implies‟, „xor‟, several false

positives were identified in the existing results [26] whereas these false

positives were overcome by our approach. A false positive occurs when the

search process is terminated assuming that the fittest test model is found

against a test case, however, in actual, the test model returned does not satisfy

that test case.

o The probable reason for this is that the branch-based FF used for

existing results calculates the distance function according to the logical

operator involved in the decision i.e. it is dependent on that logical

35

operator. Due to which, it operates at the decision-level. As soon as the

decision is satisfied the search process is terminated irrespective of

whether the test model returned satisfies the given test case or not.

o In contrast to that, our fitness function is independent of the logical

operator(s) involved and hence operates at the condition-level. Due to

which the MC/DC test cases, that are a combination of truth values of

conditions, can be satisfied without any false positives i.e. the search

process terminates when the fittest test model returned is infact the one

which satisfies the given test case. This also suggests that our approach

can also better handle complex operators such as „xor‟ and „implies‟

apart from the commonly used „or‟ operator or „and‟ operators.

The elimination of false positives from existing results is what leads to a

significant improvement in our results.

36

5.2 Limitations

Enlisted below are the limitations, which are inherent to the technique or the

coverage criterion considered for the problem of TMG by BB validation of MTs:

 Unlike formal approaches, SBST algorithms are random in nature.

They lack the rigor that comes with formal techniques and can offer

limited guarantee of the obtained results.

o However, to mitigate the randomness of the SBST algorithms,

the obtained results are averaged over several runs using small

to medium-scale case-studies. Representative results can be

obtained by following best practices [28].

 MC/DC is a strong coverage criterion which results in stringent test

cases. The type of MC/DC used in our work is Unique-Cause MC/DC,

which can often lead to infeasible test cases [25], [31]. Although,

infeasible test cases are eliminated before coverage or success rate is

determined, but it can involve tedious manual analysis that can be time

consuming.

o Another type of MC/DC is known as Masking MC/DC [34],

[35], [33]. Unlike Unique-Cause, this type is flexible and is

able to overcome the limitations of the former type.

o However, the fitness function that we proposed is still

applicable to Masking MC/DC. In order to limit the scope of

this work, we only focus on Unique-Cause and demonstrate

results for the same.

37

CHAPTER 6: FUTURE WORK AND CONCLUSION

This chapter suggests improvements for future that can be potentially explored

as research opportunities. It concludes with an overview of our approach, the novelty

that we introduced and shares the major findings of our research work especially in

comparison to existing approach.

6.1 Future Work

Below are a few suggestions that can be implemented as part of future work:

 For the sake of completeness, augment TMG with other steps of the

validation process for MTs i.e. perform

o Quality assessment of test models

 Using techniques such as Mutation Analysis [7], [9],

[36]

o Oracle checking

 Using techniques such as Metamorphic Testing [37]

 Extend this approach to apply stronger criterion for carrying out

validation of various MTLs, targeting language-specific constructs

other than OCL constraints

 Incorporate another metric [38], [39] along with the coverage objective

in the fitness equation i.e.

o Propose a multi-objective fitness function that utilizes

 Complexity metrics in the context of MDE

 Or incorporate performance-based factors for SBST

such as minimizing no of iterations to find a test model,

limit memory or time consumption

 Apply SBST algorithms to other open problems for validating MTs

such as

o Regression Testing

o Performance Testing

 Experiment with variations in configuration parameters of SBST

algorithms to gain optimal results [40].

38

6.2 Conclusion

TMG for validation of MTs is a known problem in the field of MDE.

Complexity of models and annotated constraints remain the bottleneck in overcoming

the challenge of TMG. Formal techniques for TMG requires conversion of given

constraints into intermediate formalism, are time consuming and suffer from

combinatorial explosion. SBST techniques overcome these challenges and offer

promising results to the TMG problem by eliminating the need for any intermediate

formalism and being able to find a test model in a given restricted search space within

a reasonable amount of time. Existing work on SBST for MTs only covers weaker

coverage criteria for constraints such DC (or BC) or it reuses the DC solution for

stronger coverage criteria such as MC/DC. No condition-specific solution has been

proposed to cater to the needs of condition-based criteria.

While considering the need of MC/DC as a standard mandated in the avionics

and automotive industries that extensively utilize MDE in their process chain, we

propose a solution that addresses the above problem by devising a novel FF which is

condition-specific. AVM – a local search algorithm has been applied for TMG using

MC/DC criterion for model constraints. The approach is validated against 2 case

studies ranging from small to medium scale. In comparison to existing results that

reuse DC solution for MC/DC, our approach outperforms with an improvement of

~36.2% in terms of coverage or 0.3% in terms of success rate. Moreover, our FF is

generalizable to other condition-based criteria such as C/DC, MCC and is even

applicable to DC due to the subsumption relationship as we move from weaker to

stronger criteria.

39

REFERENCES

[1] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of

model-driven software development,” IEEE Software, vol. 20, no. 5. pp. 42–45,

2003.

[2] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering

in Practice: Second Edition. Morgan & Claypool, 2017.

[3] ISO, “Unified Modeling Language Specification Version 1.4.2,” ISO/IEC

19501:2005(E), vol. 4, no. 1, pp. 1–432, 2005.

[4] OMG, “UML Unified Modeling Language Specification Version 2.5.1.”

[Online]. Available: https://www.omg.org/spec/UML. [Accessed: 14-Jun-

2021].

[5] OMG, “OCL Object Constraint Language Specification Version 2.4.” [Online].

Available: https://www.omg.org/spec/OCL/. [Accessed: 12-Jun-2021].

[6] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your

Models Ready for MDA, 2nd Edition. Addison Wesley, 2003.

[7] G. M. K. Selim, J. R. Cordy, and J. Dingel, “Model transformation testing: The

state of the art,” in Proceedings of the 1st Workshop on the Analysis of Model

Transformations, AMT 2012, 2012, pp. 21–26.

[8] J. Tian, Software Quality Engineering: Testing, Quality Assurance, and

Quantifiable Improvement, 1st ed. Wiley-IEEE Computer Society Press, 2005.

[9] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo, “Static fault localization

in model transformations,” IEEE Trans. Softw. Eng., vol. 41, no. 5, pp. 490–

506, 2015.

[10] F. Fleurey, J. Steel, and B. Baudry, “Validation in Model-Driven Engineering:

Testing Model Transformations,” in First International Workshop on Model,

Design and Validation (MoDeVa’04), 2004.

[11] A. A. A. Jilani, “Automated Test Data Generation for Model Transformation

Testing,” National University of Computer & Emerging Sciences, 2018.

[12] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon, “Metamodel-

based Test Generation for Model Transformations: an Algorithm and a Tool,”

in 17th International Symposium on Software Reliability Engineering

(ISSRE’06), 2006.

40

[13] C. A. González and J. Cabot, “Test Data Generation for Model

Transformations Combining Partition and Constraint Analysis,” in

International Conference on Theory and Practice of Model Transformations

(ICMT). Lecture Notes in Computer Science, 2014, vol. 8568 LNCS, pp. 25–

41.

[14] S. Ali, T. Yue, X. Qiu, and H. Lu, “Generating boundary values from OCL

constraints using constraints rewriting and search algorithms,” in IEEE

Congress on Evolutionary Computation (CEC), 2016, pp. 379–386.

[15] S. Ali, M. Zohaib Iqbal, A. Arcuri, and L. C. Briand, “Generating Test Data

from OCL Constraints with Search Techniques,” IEEE Trans. Softw. Eng., vol.

39, no. 10, pp. 1376–1402, 2013.

[16] E. Guerra and M. Soeken, “Specification-driven model transformation testing,”

Softw. Syst. Model., vol. 14, no. 2, pp. 623–644, 2015.

[17] F. Büttner, M. Egea, and J. Cabot, “On verifying ATL transformations using

„off-the-shelf‟ SMT solvers,” in 15th International Conference on Model

Driven Engineering Languages & Systems (MODELS). Lecture Notes in

Computer Science, 2012.

[18] K. Berramla, E. A. Deba, and M. Senouci, “Formal validation of model

transformation with Coq proof assistant,” in First International Conference on

New Technologies of Information and Communication (NTIC), 2015, pp. 1–6.

[19] D. Varró and A. Pataricza, “Automated Formal Verification of Model

Tranformations,” in Workshop on Critical Systems Development in UML

(CSDUML), 2003, no. Otka 038027, pp. 63–78.

[20] L. Lúcio, B. Barroca, and V. Amaral, “A Technique for Automatic Validation

of Model Transformations,” in International Conference on Model Driven

Engineering Languages and Systems (MODELS). Lecture Notes in Computer

Science, 2010, vol. 6394 LNCS, no. PART 1, pp. 136–150.

[21] B. J. Oakes, J. Troya, L. Lúcio, and M. Wimmer, “Full contract verification for

ATL using Symbolic Execution,” Softw. Syst. Model., vol. 17, pp. 815–849,

2018.

[22] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach,

1st ed. Morgan Kaufmann, 2006.

41

[23] M. Harman, Y. Jia, and Y. Zhang, “Achievements, Open Problems and

Challenges for Search Based Software Testing,” in 8th International

Conference on Software Testing, Verification and Validation (ICST), 2015, pp.

1–12.

[24] A. A. Jilani, M. Z. Iqbal, and M. U. Khan, “A search based test data generation

approach for model transformations,” in International Conference on Theory

and Practice of Model Transformations (ICMT). Lecture Notes in Computer

Science, 2014, vol. 8568 LNCS, pp. 17–24.

[25] S. Ali, M. Z. Iqbal, M. Khalid, and A. Arcuri, “Improving the performance of

OCL constraint solving with novel heuristics for logical operations: a search-

based approach,” Empir. Softw. Eng., vol. 21, no. 6, pp. 2459–2502, 2016.

[26] H. Sartaj, M. Z. Iqbal, A. A. A. Jilani, and M. U. Khan, “A Search-Based

Approach to Generate MC/DC Test Data for OCL Constraints,” in Search-

Based Software Engineering (SSBSE). Lecture Notes in Computer Science,

2019, vol. 11664 LNCS, no. August, pp. 105–120.

[27] M. Harman and P. McMinn, “A Theoretical and Empirical Study of Search

Based Testing: Local, Global and Hybrid Search,” IEEE Trans. Softw. Eng.,

vol. 36, no. 2, pp. 226–247, 2010.

[28] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search Based Software

Engineering: Techniques, Taxonomy, Tutorial,” in Empirical Software

Engineering and Verification (LASER 2008-2010). Lecture Notes in Computer

Science, 2012, vol. 7007 LNCS, pp. 1–59.

[29] R. Ferguson and B. Korel, “The Chaining Approach for Software Test Data

Generation,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp. 63–86,

1996.

[30] B. Alkhazi, C. Abid, M. Kessentini, D. Leroy, and M. Wimmer, “Multi-criteria

test cases selection for model transformations,” Autom. Softw. Eng., vol. 27, no.

1–2, pp. 91–118, 2020.

[31] M. Fleck, J. Troya, and M. Wimmer, “Search-based Model Transformations,”

J. Softw. Evol. Process, vol. 28, no. 12, pp. 1081–1117, 2016.

[32] B. Korel, “Automated Software Test Data Generation,” IEEE Trans. Softw.

Eng., vol. 16, no. 8, pp. 870–879, 1990.

42

[33] G. Gay, A. Rajan, M. Staats, M. Whalen, and M. P. E. Heimdahl, “The Effect

of Program and Model Structure on the Effectiveness of MC/DC Test

Adequacy Coverage,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, 2016.

[34] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A

Practical Tutorial on Modified Condition/Decision Coverage,” 2001.

[35] J. J. Chilenski, “An Investigation of Three Forms of the Modified Condition

Decision Coverage (MCDC) Criterion,” 2001.

[36] J. Troya, A. Bergmayr, L. Burgueño, and M. Wimmer, “Towards Systematic

Mutations for and with ATL Model Transformations,” in 8th International

Conference on Software Testing, Verification and Validation Workshops

(ICSTW), 2015, no. Mutation.

[37] J. Troya, S. Segura, and A. Ruiz-Cortés, “Automated inference of likely

metamorphic relations for model transformations,” J. Syst. Softw., vol. 136, pp.

1339–1351, 2018.

[38] M. Harman and J. Clark, “Metrics Are Fitness Functions Too,” in 10th

International Symposium on Software Metrics (METRICS), 2004.

[39] M. F. Van Amstel and M. G. J. Van Den Brand, “Using Metrics for Assessing

the Quality of ATL Model Transformations,” in CEUR Workshop, 2011, vol.

742, pp. 20–34.

[40] J. Kempka, P. McMinn, and D. Sudholt, “Design and analysis of different

alternating variable searches for search-based software testing,” Theor.

Comput. Sci., vol. 605, no. 618091, pp. 1–20, 2015.

[41] M. D. Natale “An Introduction to MC/DC Coverage”, Scuola Superiore S.

Anna-Pisa, Italy [Accessed: 14-Jun-2020].

