

 Service Chaining in Network Function Virtualization

Author

Muhammad Arslan Tariq

Fall-MS2017 (CE) 00000206127

Supervisor

Dr. Muhammad Umar Farooq

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

NOVEMBER, 2020

Service Chaining in Network Function Virtualization

Author

Muhammad Arslan Tariq

Regn Number

206127

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Engineering

Thesis Supervisor:

Dr. Muhammad Umar Farooq

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

November, 2020

i

Declaration

I certify that this research work titled “Service Chaining in Network Function

Virtualization” is my own work. The work has not been presented elsewhere for assessment. The

material that has been used from other sources it has been properly acknowledged / referred.

Signature of Student

MUHAMMAD ARSLAN TARIQ

2017-NUST-MS-CE-00000206127

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. The work is original contribution of the author and does not

contain any plagiarism. Moreover, Thesis is also according to the format given by the university.

Signature of Student

MUHAMMAD ARSLAN TARIQ

2017-NUST-MS-CE-00000206127

Signature of Supervisor

DR. MUHAMMAD UMAR FAROOQ

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this

work at every step and for every new thought which You setup in my mind to improve it. Indeed

I could have done nothing without Your priceless help and guidance. Whosoever helped me

throughout the course of my thesis, whether my parents or any other individual was Your will, so

indeed none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Muhammad Umar

Farooq for his help throughout my thesis and also for Selected Topics in Computer Networks

courses which he has taught me. I can safely say that I haven't learned any other engineering

subject in such depth than the ones which he has taught.

I would also like to thank Dr. Ali Hassan and Dr. Farhan Hussain for being on my thesis

guidance and evaluation committee and express my special Thanks to these faculty members for

their help.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Dedicated to my exceptional parents and adored siblings whose

tremendous support and cooperation led me to this wonderful

accomplishment.

vi

Abstract

Network function virtualization (NFV) is a network built by an architectural concept and

technique that involves the different information technologies for the virtualized functioning of

different nodes and switches involved in it. Network function virtualization also creates a

virtualized environment for commodity hardware that runs the different services by using the

Network Function NFs through chaining and placement. Therefore, the involvement of chaining

and placement in network function virtualization makes our services and applications easy and

fast to accessible. However, it will be more cost-effective and will be a reason for increasing

robustness throughout the whole working system.

To optimize the NFV chaining and placement, it is necessary to ensure that resource

allocation is carefully carried out and orchestrated, preventing under or over-utilized NFs and

service placement. In this order, we have formalized the network function chaining and

placement problem and to cope with NFV placement, we propose the lightweight network

function placement solution that takes into account dynamic hardware parameters and finding the

shortest path to determine the utilization to place the Network function NF. In the process of

chaining, we have performed the automation of the system as well. We have also demonstrated

that we can run the Network function NFs with minimal 12 MB RAM and one vCPU to acquire

our expected outputs.

Key Words: Network function virtualization, Software defined network, service chaining, floyd

warshall

vii

Table of Contents

Declaration ..i

Language Correctness Certificate ... ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract ...vi

Table of Contents .. vii

List of Figures ...ix

List of Tables .. x

CHAPTER 1: INTRODUCTION... 1

1.1 Background, Scope and Motivation ... 1

1.2 Network Function Virtualization ... 4

1.2.1 Operation Support Subsystem (OSS) ... 5

1.2.2 Management and Orchestration (MANO) Layer ... 5

1.3 Software Defined Network .. 6

1.4 Problem Statement ... 7

1.5 Placement, assignment and chaining of NFV... 8

1.5.1 Placement in NFV .. 8

1.5.2 Assignment in NFV ... 9

1.5.3 Chaining in NFV .. 9

1.5.4 NFV Service Chaining Challenges .. 10

1.6 IoT in NFV ... 11

1.7 Thesis Contribution .. 12

CHAPTER 2: LITERATURE REVIEW .. 13

2.1 Related Work ... 13

2.2 Network Function Tools .. 14

2.2.1 OPNFV .. 15

2.2.2 TripleO ... 15

2.2.3 Tacker .. 16

2.2.4 MININET .. 17

2.2.5 CLICKOS .. 18

2.2.6 Floyd Warshall Algorithm ... 19

2.2.7 Dijkstra Algorithm ... 19

2.3 Network devices ... 20

2.3.1 Firewall .. 20

2.3.2 Deep Packet Inspection .. 20

2.3.3 Intrusion Prevention System .. 20

viii

2.3.4 Deception System .. 21

CHAPTER 3: PROPOSED METHODOLOGY ... 22

3.1 Proposed Architecture .. 22

3.2 Load Ratio Mechanism .. 25

3.3 Shortest path algorithm .. 27

CHAPTER 4: EXPERIMENTAL SETUP AND RESULTS ... 30

4.1 Network Function Tool .. 30

4.2 Experimental Setup .. 31

4.2.1 Implementation of ClickOS ... 31

4.2.2 Installation of XEN .. 32

4.2.3 Building the ClickOS ... 32

4.2.4 Installation of the Open vSwitch.. 32

4.2.5 Instantly starting a ClickOS ... 33

4.3 Simulation .. 35

CHAPTER 5: CONCLUSION AND FUTURE WORK .. 37

5.1 Conclusion ... 37

5.2 Future Work ... 37

REFERENCES .. 39

ix

List of Figures

Figure 1.1: Architecture of Network Function Virtualization .. 4

Figure 1.2: Architecture of Software Defined Networking .. 7

Figure 3.1: Proposed Cloud Infrastructure of multiple Nodes having SDN controller and Network Functions NFs . 23

Figure 3.2: Proposed multi-node path .. 28

Figure 4.1: Utilization of Network Functions in ClickOS .. 33

Figure 4.2: Output of Network Function in ClickOS ... 34

Figure 4.3: Network Address Translation in ClickOS .. 34

Figure 4.4: Output of Network Address Translation in ClickOS ... 35

x

List of Tables

Table 3-1: Performance Unit of nodes .. 26

Table 4-1: Simulation Results of nodes .. 36

1

CHAPTER 1: INTRODUCTION

For appreciating the need and motivation behind the networking industry’s rapid adaption

of the network function virtualization, it is important to discuss the history and background of the

networking. Moreover, it is important to analyze the challenges that were faced at that time. In

past years, technology was not evolved or upgraded that much to contribute and solve various

serious issues that were faced by the IT and networking firms and organizations. There was a

trend of utilizing the traditional network architecture that includes the use of traditional phone

networks and telegrams as well.

1.1 Background, Scope and Motivation

Early over the design criteria and benchmark of the qualities by which the network was

judged were the availability, capacity, latency, and throughput for carrying data with minimal

loss. However, all the network devices that were traditional and designed in the past years were

designed for specific functions. The network data built was designed customized and tailored for

meeting the efficiency criteria decided by the developer effectively. The codes or software

running to the custom-designed system were tightly coupled to it. They were integrated closely

with the silicon programmable field and the customized integrated circuits. However, the

traditional network architecture that was utilized before the NFV focused exclusively only on

performing the specific functions of the device. In traditional network devices, the service

providers were constantly looking for different ways to expand and scale their services without

the increase in their cost. Many characteristics of the traditional devices create various

constraints that limit the cost of the deployment, operational efficiency of the network, and

scalability as well. Some of the limitations are,

 Flexibility limitations

 Issues in manageability of the device

 Time to market challenges

 High costs of operations

 Migration considerations

 Interoperability

2

It was important to develop or invent some other system that can easily deal with the

above-mentioned limitations and the issues that were faced by traditional devices. In the present

time, data centers have already proven the technology of the server virtualization approach, in

which the stacks of independent serer of hardware are mostly replaced by the virtualized servers.

Network function virtualization built over the concept of server virtualization. It means that to

have an end to end data steaming it should pass through a series of functions. There are many

examples of these functions already been used by different IT and software firms and

organizations such as firewalls, software denied, WAN, encryption data etc. This focus of

network function virtualization with the help of service training is how it relates to getting on

board. Many enterprises are using this virtual network functions and for their correspondence,

the NFV plays an important role. Network function virtualization allows many providers who are

providing their internet services so that they can implement their key function which can arrange

from broadband remote access to internet multimedia systems etc. NFV is a virtual machine that

is helping out all the providers in the cloud environment and digital scopes [1].

Network function virtualization carries high future utilization and adaption by the

business market and Information Technology firms. There are various pros and cons of utilizing

the virtual network connection to provide internet services but one of the key problems is that the

virtual machines VM have to be managed for their placement in different cloud services. This

management issue can cause an interface and that would be problematic for clients if there is no

implementation of the virtual method policies in a broader cloud environment which is not using

a single interface. Working on this matter can improve the use of NFV in managing the VM in

the future. It is important to consider the cons of NFV to make them more advance and flexible,

which can be used in a different perspective in the upcoming time. Moreover, the problem with

modular management can be a disadvantage of using this network function virtualization.

However, this problem can be solved by using multiple tenants and sharing the sources to have

broader control over the multi-cloud services. There are many advantages of using the virtual

network such as that it can be set up when there is a heavy traffic flow coming so it can improve

the operational efficiency of whatever enterprise it is functioning in. Technology is also broadly

beneficial because it has the potential that it can enable the automated provisions of the

applications which are loaded upon it. Network function virtualization gives another approach to

3

make, convey, and operate networking administrations. It is the way toward decoupling the

system capacities from restrictive equipment machines so they can keep running over the

virtualized environment on standardized hardware. This capacity (firewall, deep packet

inspection, deception system and intrusion prevention) becomes a virtual network function

(VNF). NFV is intended to convey the systems segments expected to help a foundation

absolutely autonomous from equipment. These segments incorporate virtual register, storage,

and system capacities. The concept of NFV came from the service providers who wanted to

design something which can make the addition of new network or applications over hardware

easily and in with a limited time period (faster). The hardware-based appliances allow applying

the high standardized IT virtualization technology over there network. This idea was proposed

just because of the main reason that was the high investment of money. The individual firewall

system or any other system consumes a lot of time, energy and of course a great amount of

money to execute the same function or process over the network.

The motivation behind using the service training system is that it allows deploying to

deploy and chain together multiple LAN and IP networks. By using this it will provide an

opportunity for an open connectivity system among all the software that is launched. This can

beneficial even regarding the plugging boxes because it doesn't require any human assistance and

can easily run through. There is no need for any networking team member for the surveillance of

this service training system.

The NFV is high reliable network appliance. It can deliver

 High performance up to 100Gbps

 High reliability of about 99.999%

 Scalability to millions of the users

 Low-latency delivery of real-time applications

 Ability to integrate with legacy network architectures and link to existing operational

and billing systems.

It means that it cuts off all the traditional usage of a network reliability program. For

NFV it is compulsory to use high-performance servers especially the Intel-based servers. As it is

faster, reduces costs in buying network equipment, flexible and used in broad software horizons,

the NFV is the most advanced program. Though it faces challenges such as lacking mature

4

standards and difficulty using for many operators. It is widely available for the software

community around [2].

1.2 Network Function Virtualization

A way of virtualizing the network services is known as the network function

virtualization. It includes firewalls, load balancers, and routers, which have traditionally run over

the proprietary hardware. However, these services are known or packaged as the "virtual

machines" VM over the commodity hardware. A virtual machine allows the services provider to

run their network system over the standard servers rather than the proprietary one. With the

utilization of network function virtualization, there is no need to deploy dedicated hardware for

every individual network function. The network function virtualization improves agility and

scalability by allowing the service providers for delivering the new network services and the

applications over demand as well. However, NFV didn't require additional hardware resources as

well. The architecture of network function virtualization helps in defining and elaborating the

standards for the implementation of NFV. ETSI has developed various standards, one of the most

significant being the one given below which shows how the NFVI helps us to decouple hardware

and software.

 Figure 1.1: Architecture of Network Function Virtualization

5

1.2.1 Operation Support Subsystem (OSS)

OSS / BSS applies to an Operator's OSS / BSS. OSS performs the maintenance of

networks, error control, device management and infrastructure management. BSS performs retail

relations, inventory control, order relations and so on.

In the NFV architecture, the operator's decoupled BSS / OSS may be integrated using

standard interfaces with the NFV Management and Orchestration. Network function

virtualization carries high future utilization and adaption by the business market and Information

Technology firms. There are various pros and cons of utilizing the virtual network connection to

provide internet services but one of the key problems is that the virtual machines VM have to be

managed for their placement in different cloud services. This management issue can cause an

interface and that would be problematic for clients if there is no implementation of the virtual

method policies in a broader cloud environment which is not using a single interface. Working

on this matter can improve the use of NFV in managing the VM in the future. It is important to

consider the cons of NFV to make them more advance and flexible, which can be used in a

different perspective in the upcoming time. Moreover, the problem with modular management

can be a disadvantage of using this network function virtualization. However, this problem can

be solved by using multiple tenants and sharing the sources to have broader control over the

multi-cloud services. There are many advantages of using the virtual network such as that it can

be set up when there is a heavy traffic flow coming so it can improve the operational efficiency

of whatever enterprise it is functioning in. Technology is also broadly beneficial because it has

the potential that it can enable the automated provisions of the applications which are loaded

upon it.

1.2.2 Management and Orchestration (MANO) Layer

Management and Orchestration Layer is also abbreviated as MANO and it includes three

components:

 Virtualized Infrastructure Manager(s)

 VNF Manager(s)

 Orchestrator

MANO communicates both with layer NFVI and layer VNF. MANO layer handles all

services in the network layer as well as generating and removing resources and controlling their

6

VNF allocation. The Virtualized Infrastructure Manager (VIM) contains the functionalities used

under its jurisdiction to monitor and handle the connection of a VNF with and virtualize,

processing, storage and network services. Virtualized infrastructure Manager performs the

following:

 Inventory of NFV networking tools, processing , storage and network resources;

 Management and allocation of infrastructure resources e.g. increased VMs, increased

energy efficiency etc.

 Hypervisor allocation of VMs, Resource processing, capacity and related network

connections

 Root cause review of the output problems from the viewpoint of NFV technology

 Collection of details on network faults

 Collection of capacity planning , monitoring and optimization information

The VNF Manager is responsible for handling the life cycle of the VNF, including

launch, updates, demand, scaling up / down, and termination. To assist multiple VNFs for each

VNF, a VNF manager may be deployed, or one VNF manager may be deployed. Orchestrator is

responsible for organizing and managing NFV infrastructure and software resources and

realizing network services.

1.3 Software Defined Network

Software-defined technology to the network management that uses to enable the

dynamic, configuration of the programmatically efficient network for improving the performance

and monitoring of the network system. It used to make the network more like cloud computing

rather than traditional network management. Further, the SDN is also known as the categories of

the different technologies, which use to separate the network control plane from forwarding

plane for enabling more provisioning automated and the policy-based management of network

resources [14]. The driving concepts behind software-defined network creation and

implementation are myriad. In reducing the complexity of statistically defined networks, the

SDN helps. The implementation of the SDN makes the automation functions simple and

intelligent; it also enables the simple provisioning and control of resources from the data center

to the large network area.

7

 Figure 1.2: Architecture of Software Defined Networking

In SDN the open flow is known as the only one of the canons, however, it is a key

component because of its networking software revolution was started. Open flow defines a

network of programmable control that is used to manage and direct the traffic among the

switches and routers. From past years since the inception of SDN, it has evolved into a reputable

technology that is offered by the key vendors. The open network technology foundation develops

a myriad of open-source SDN technology as well [4]. SDN broadly consists of three layers:

 Application layer

 Control layer

 Infrastructure layer

1.4 Problem Statement

One of the main challenge in using network devices is that with the passage of time

network devices becomes obsolete and demands high cost for replacement and upgradation and

complexity to run those devices and later with different vendors it becomes hard to manage all

8

devices for services running in infrastructure. We have proposed a solution and algorithm to

cater these problems using network function virtualization NFV and also designed algorithm

using cost of nodes and compute of running node to find the shortest path and automate these

whole process.

1.5 Placement, assignment and chaining of NFV

Network function virtualization NFV [5] is an architecture that provides a new way to

create, to operate and to distribute the different networking services. It is a simple way to

decouple the different NFs (network functions) from miscellaneous hardware appliances. Those

decoupled network functions can run over commodity hardware or dedicated cloud

infrastructure. We need to implement the different service policies like traffic monitoring,

routing and bandwidth utilization for different services running over hardware. With the passing

time, it became hard to manage the service policies and security parameters for the services

running on the same parameters, so the main agenda of network function virtualization chaining

is proposed to replace the ordinary network and other devices with the virtualized network

function (vNF). The basic motive to design such a function was to reduce the cost and save time

which was spending on other physical hardware devices.

The placement of network function and chaining comprises of interconnecting a lot of

system capacities (e.g., firewall, load balancer, and so forth.) through the system to guarantee

system streams are given the right treatment. These streams must experience start to finish ways

navigating a particular set of capacities. Generally, this issue can be disintegrated into three

stages: 1) Placement 2) Assignment 3) Chaining [6]

1.5.1 Placement in NFV

In placement, we decide how many network functions are to be placed for efficient

completion of the service requirements. This placement also involves the right places for these

functions and it may even involve new NF instantiations. For instance, having a firewall service

entertained at multiple points can help minimize latency and add to the network’s performance.

Usually, network functions are best suited when placed at the network’s points of presence (N-

PoPs) [7] to easily manage the traffic flows and helps to create the ideal environment for

uninterrupted services running on infrastructure

9

1.5.2 Assignment in NFV

The assignment phase consists of allocating the network functions NFs for specific

network tasks i.e. Firewall, load balancer etc. Based on network traffic and service requirement,

it modifies the network functions accordingly and assign respective network services required

from network function NF. For example, it may be more efficient to deploy more than one

network functions NFs of firewall at the network’s points of presence (N-PoPs) to effectively

distribute the traffic and also monitors the traffic based on defined traffic rules and policies.

1.5.3 Chaining in NFV

Third phase is chaining, in this phase we create the process and service flows through

inter connected virtualized network functions NFs throughout the network. Suppose we’re

running different IoT services simultaneously within same network, the traffic goes through

same path and NFs which create latency and congestion issues over network. But with the help

of chaining, we can create the different network paths according to their requirements then we

can overcome this issue i.e. one service requires user authentication whereas other one is

fetching data from server then we can choose different data path and network functions

according to their needs.

Effective use of chaining involves flow based traffic engineering. NFV had been a topic

to research since 1980s, but they have become more practical after inclusion of software defined

network SDN [8], that separates the control and data planes for better data engineering. Hence,

this can easily handle the traffic and congestion control over the network and helps us in creating

virtualized network functions NFs according to services required.

Network function virtualization gives another approach to make, convey, and operate

networking administrations. It is the way toward decoupling the system capacities from

restrictive equipment machines so they can keep running over the virtualized environment on

standardized hardware. This capacity (firewall, deep packet inspection, deception system and

intrusion prevention) becomes a virtual network function (VNF). NFV is intended to convey the

systems dministration segments expected to help a foundation absolutely autonomous from

equipment. These segments incorporate virtual register, storage, and system capacities. The

concept of NFV came from the service providers who wanted to design something which can

make the addition of new network or applications over hardware easily and in with a limited time

10

period (faster). The hardware-based appliances allow applying the high standardized IT

virtualization technology over there network. This idea was proposed just because of the main

reason that was the high investment of money. The individual firewall system or any other

system consumes a lot of time, energy and of course a great amount of money to execute the

same function or process over the network. This chaining of NFV (network function

virtualization) provides all the terminations (such as firewall, virtualized data inspection,

intrusion, and deception) over a single platform, performing the same executing process in a

limited or we can say short time and consuming almost no amount of money. So in this paper

we’ll discuss solution for chaining problem, placement of Network function over commodity

hardware and algorithm to automate the assignment the Network function (NFs). Every single

node contain different amount of memory and operating systems into it, here we will suppose

those systems based on their utilization. The above-mentioned divisions are the inner divisions of

every single node placed in our network chaining. In our network, we will place an SDN

(software-defined network) and it will act as a virtual programming switch or switch instead of

the physical system network. So rather than using ordinary switch for packet forwarding we’ll

use SDN for traffic controlling and packet forwarding. And determine the node which is enough

capacity for the placement of NFs. We need to implement the different service policies like

traffic monitoring, routing and bandwidth utilization for different services running over

hardware. With the passing time, it became hard to manage the service policies and security

parameters for the services running on the same parameters, so the main agenda of network

function virtualization chaining is proposed to replace the ordinary network and other devices

with the virtualized network function (vNF). The basic motive to design such a function was to

reduce the cost and save time which was spending on other physical hardware devices.

1.5.4 NFV Service Chaining Challenges

One of the problems of digital network management is to develop an architectural

architecture to enable and drive device and service development by focusing on the concepts of

Software Defined Networks (SDN), Network Function Virtualization (NFV), and Cloud. Our

performance depends on the notion of abstraction and the availability of stable service manager

systems that meet the agility, optimization, and automation needs of next-generation networks.

11

1.6 IoT in NFV

The advancement and spread of the Internet of Things (IoT) have been massively

increased over a decade. Millions of IoT devices and network has already been in production and

gathering real-time data per millisecond. However, with the widespread of IoT networks, it’s

becoming difficult to acquire and execute real time data. Network function virtualization (NFV)

enables to provide a flexible and efficient solution for IoT based applications and service

management. In NFV based infrastructure, it offers dynamic network functions (NFs) for service

chaining and placement (SCP) of different IoT applications. Network function virtualization

(NFV) creates a virtualized environment on commodity hardware that runs the different IoT

services by using the Network Function NFs through chaining and placement. This paper

optimizes the NFV based chaining and placement algorithm to ensure that resource allocation is

carefully carried out and orchestrated, preventing under or over-utilized NFs and IoTs service

placement. In this order, we have formalized the network function chaining and placement

problem, and to cope with NFV placement, we propose the lightweight network function

placement solution that takes into account dynamic hardware parameters and finding the shortest

path to determine the utilization to place the Network function NF. The Internet of Things (IoT)

is becoming a reality with the exponential growth of information and communication

technology. Computers, sensors, actuators, and software systems with communication capacity

can be the “things” in the IoT. With the number of IoT devices expected to increase to more than

20 billion by 2020, intense network traffic will be on IoT applications. In addition, with more

and more IoT technologies emerging, the diversification of IoT-traffic specifications is difficult

for conventional network frameworks to match. To avoid these challenges and separate hardware

infrastructure for every IoT application to run, network function virtualization NFV provides a

new way to create, to operate, and to distribute the different networking services. It is a simple

way to decouple the different network functions (NF) from miscellaneous hardware appliances.

Those decoupled network functions can run over commodity hardware or dedicated cloud

infrastructure. We need to implement the different service policies like traffic monitoring,

service authorization, routing, and bandwidth utilization for IoT services running over hardware.

With the passing time, it became hard to manage the service policies and security parameters for

the IoT services running on the same parameters, so the main agenda of network function

virtualization chaining is to replace the ordinary network and other devices with the virtualized

12

network function (vNF). The primary motive to design such a function was to reduce the cost

and save time, spending on other physical hardware devices.

1.7 Thesis Contribution

We have thoroughly studied the behavior of network function virtualization and network

function. We have investigated the research challenges and key issues that usually occurs in

infrastructure. Finally, we have developed a chaining algorithm and solution, which provides the

solution to most of the investigated problems. So, following are the main contributions in thesis:

 A lightweight NF placement solution is provided that take account of the dynamic

 hardware parameter i.e. compute utilization.

 An algorithm is provided to solve the assignment problem for selecting most suitable NF

from multitude of NF instances

 Results from deploying network functions on commodity hardware are provided.

13

CHAPTER 2: LITERATURE REVIEW

We will highlight some of the most remarkable research work done on the network

function virtualization, network function placement and work is done on their chaining process.

We will relate the whole section with the efforts recently done to evaluate or to check the

technical feasibility over the hardware on which the virtualization to be performed or done.

2.1 Related Work

Yong et al. [9] work over the framework of dynamical service chaining in the software-

defined NFV system. It was observed that the cognitive radio and the software-defined radio use

to enable the 5G future network. In this framework, the role of SDN and NFV is to enable high

efficiency and flexibility in the construction of service chaining. It includes the flows of steering

through the required service chain. It is done by the ability of traffic routing of the agile and

deployment of the dynamic service. The overall system was carefully designed for the

identification of the optimal mechanism, which use to boost up both resource utilization and

performance. In this research, an optimization framework and a unified control are elaborated

and explained for enabling the SDN-NFV framework, which is utilized for the optimization of

the service chaining according to the requirement of the user and the network environment. By

the designing of the services, network, and by the development of an optimization technique this

system proves to be a beneficial framework for the miscellaneous scenarios of traffic steering.

This scenario includes the selection of virtual machines, policy optimization, and function

assignment. However, this research work over the chaining of network function virtualization

will provide the benefits that can be simulated under a realistic problem or scenario.

Hwang et al [10] also came up with another idea of the utilization of a NetVM “net

virtualization machine”, which is known as a very useful source while working over the

virtualization or planning anything regarding it. NetVM carries virtualization to the Network by

empowering high transfer speed system capacities to work at close line speed while exploiting

the adaptability and customization of ease item servers. NetVM permits adjustable information

plane handling capacities, for example, firewalls, proxies, and routers to be implanted inside

virtual machines. NetVM makes it simple to progressively scale, convey, and reconstruct system

capacities. This gives far more authentic reasons for adaptability than an existing reason

14

mentioned. The function of NetVM is to bring the virtualization to the network by enabling the

bandwidth at high power to function near the line speed of network functions. NetVM operates

the network function by this technique while gaining the advantage of the flexibility and slow

speed of the low-cost commodity servers.

According to Lorenz et al. [11], the number of threat vectors and attacks is increasing

with the passing years. Despite the occurrence of the following attacks, the main security system

such as the firewall of the network remained unchanged and out of any secondary danger.

Besides, various new challenges are raised not only over the level of security provided but also

over the manageability and scalability. The manageability includes the deployment of

countermeasures, which includes intrusion detections system and firewalls. Further due to the

strict integration into the infrastructure of the physical network it is hard to adapt the security

measures to the current condition of the network. All over, this research elaborates and

demonstrates the various architectural designs for the process of integration of the NFV/SDN

based solutions of the security into the enterprise network. The main security system such as the

firewall of the network remained unchanged and out of any secondary danger. Besides, various

new challenges are raised not only over the level of security provided but also over the

manageability and scalability. The manageability includes the deployment of countermeasures,

which includes intrusion detections system and firewalls. Further due to the strict integration into

the infrastructure of the physical network it is hard to adapt the security measures to the current

condition of the network. All over, this research elaborates and demonstrates the various

architectural designs for the process of integration of the NFV/SDN based solutions of the

security into the enterprise network.

2.2 Network Function Tools

A functional block building into a network infrastructure that contains the well-defined

externally managed interfaces and a well-designed or defined functional behavior is known as

the network functions. In simple and practical terms the network function is known as a network

node or a physical appliance in today’s generation. There are various tools of network functions

that can be applied for the chaining of network function virtualization. The network function

virtualization acts as flexible networking in the matter of the implementation of different tools.

However, some important tools of network functions are explained as:

15

2.2.1 OPNFV

The OPNFV open framework for the virtualization of network functions is an open

source platform released by the Linux Foundation in September 2014 [25]. The OPNFV aims to

act like a carrier-grade and an integrated platform, which introduces the new and smart products

to the company. The OPNFV use to promote the open-source networking that use to bring

different organizations together for the acceleration of innovation and new technologies in the

market. The main objective of OPNFV is the development of an open-source system to increase

and boost up the functionality of the network function virtualization. OPNFV aims to bring the

advanced services of NFs in the market. Further, as compared to the traditional network

virtualization the OPNFV brings up the components in a simple, upgraded, and smarter way. It

creates the simple end to end platform along with the storage and computation of the network

virtualization. The main attention of OPNFV is an integration of the various stack testing,

components, and automation. However, the architecture of OPNFV sum ups the virtualization

process in integration, testing, and some of the new features having complete control of security

[28]. As compared to the simple network function virtualization, OPNFV brings up the

components in a simple and upgraded way. It creates a simple end-to-end platform along with

the computation of storage and network virtualization. This tool pays attention to the integration

of different components, stack testing, and the build by automation. However, it sums up the

virtualization in testing, integration, and new features having a complete security control into it.

Following are main objectives of OPNFV:

 Development of an open-source system to increase the functionality of NFV, bringing-up

the advance services into the market

 Working on the standards of OPNFV to meet up-to-the requirements of companies using

NFV

 Contribution in to be an active part of an open-source project

 Establishment of an ecosystem.

2.2.2 TripleO

TripleO is an official project of the OpenStack with an aim or goal of allowing the users

to manage and deploy a production smart cloud onto the bare hardware metal by using a subset

of an existing open stack component. This network function tool aims of the deployment and

16

utilization of an open stack, it also works for enhancing their documentation more than before.

TripleO is a user-friendly tool, which lets users invest or spend their time on the development of

script over the respective tool [17]. Moreover, it also helps the system to come up with the

beneficial act of strong and smart security and bug fixing elements as well. The architecture of

TripleO is designed as a user friendly and smart interface. It allows user to design their script

according to the capacity of their RAM, storage, and CPU while working over the virtual

machines VM. TripleO accepts and processes all the commands that are generated by the user

during the designing and development of virtual machine VM. Moreover, TripleO can handle the

two different modes that are PoC “proof of contact” and scale. In tripleo, when the user is

working on virtual machines, they can design their script according to the capacity of their RAM,

CPU, and disk space. As long as the disk has that much capacity, it accepts all commands created

by the user during designing of VM. During the deployment of cloud, components act as a

constraint.

Following are main objectives of TripleO:

 Tripleo comes up with the aim of deployment and utilization of an open stack by its self

 They worked to make their documentation more well-enhanced then before

 Users can invest their own time in creating the script over this tool.

 To come up with the beneficial act of strong security and bug fixing elements.

2.2.3 Tacker

Tacker is known as an OpenStack service for the orchestration of NFV that contains a

general purpose of managing NFV for the deployment and operational process of virtual network

functions and the network services over the platform of network function virtualization. The

tacker is used for managing the OpenStack and enabling the remote CPE devices, it also used to

do the deployment of the VNFs for providing the local network services. However, the tacker is

also making network virtualization for converting its network services into a virtual function.

The architecture of the tacker is divided into the CLI and horizon that is directly

connected to the API that is known as a plugin framework. The API is linked to the NFV catalog

which works as the NFV descriptors. The NFV is further linked with the two different parts that

are NFVO and VNFM. The VNFM works as the basic life cycle of the VNF, which helps in the

good monetarization of the deployed VNFs. Whereas NFVO includes the VNF secure placement

17

policy and end-to-end deployment of network service in the decomposed VNF. Tacker divides

its architecture into horizon and CLI which is directly connected by the API (plugin framework),

which is linked to the NFV catalog. That catalog works as the NFV descriptors. That NFV is

further linked by the two different parts (NFVO and VNFM). VNFM works as the basic life-

cycle of VNF, and it helps in good monetarization of deployed VNF. Whereas NFVO includes

the VNF secure placement policy and end-to-end deployment of network service in the

decomposed VNF.

Following are main objectives of Tacker:

 Tacker is used by an NFV orcharstor and maintains its deployment to VNF in the SP

network for providing the advance services to the remote customers' network

 It is also use to manage the open stack and to enable the remote CPE devices. The

deployment of VNFs to provide local network services

 Tacker is also making network virtualization for converting its network services into a

virtual function

2.2.4 MININET

MININET is known as a software emulator for the prototyping of a large number of

networks over a single machine. It allows the users to create quickly, customize, share a

software-defined function, and interact for the simulation of the network topology that utilizes

the OpenFlow switches. MININET use to facilities over the manipulation of the software-

defined network component, moreover MININET aims to access the network of its framework

on different virtualization machines. MININET is further used for the support of arbitrary

custom topologies and to use a different type of commands to get experience over an open flow

system as well. The architecture of MININET is based on different isolated hosts, considered as

a group of different nodes working over the network for passing the data packets. The framework

of MININET contains different switches and a controller as well. The switch is set with the

default Linux bridge system running with the kernel mode of network. However, the system also

has applications, SDN application is a part of it as well. A mininet network is based on different

isolated hosts, considered as a group of different nodes working over the network for passing the

data packets. The architecture/software contains different switches and a controller as well.

Following are main objectives of MININET:

18

 Mininet facilities over the manipulation of software-defined network component

 To access the network of mininet on different virtualization machines

 To use a different type of commands to get experience over an open flow system

 Mininet also supports arbitrary custom topologies

2.2.5 CLICKOS

By the research and investigation of the researchers, a middlebox was conducted that was

a high-performance technological middlebox platform which was termed as ClickOS. ClickOS

consist of the Xen-based software-generated through the middle-box, which is the reason for the

alterations in the subsystems of I/O, which can travel through the speed of 10 GB/s. The ClickOS

is the reason for enabling hundreds of virtual network functions without any kind of delay or

interruption in the processing of miscellaneous packets. The ClickOS contains a primary

objective of turning the middleboxes into the programmed and virtual entities. This tool of

network function also aims to be designed smaller in size (5MB) and less time consuming (30

milliseconds)/network functioning. ClickOS also deploys or implement a different firewall, load

balancer, carrier-grade NAT, and others. Moreover, ClickOS is a sufficient way to make

functioning smart and successful network function virtualization. Its architecture includes

different walls and nodes for the passing of data packets. Initially, a switch is placed for the

generation of data. The data is passed through a firewall and then by different nodes and walls as

well. These walls are placed to check and clear up all the trash data from data packets. However,

this system consumes the minimum time in a possible time limit. These walls are placed to check

and clear up all the trash data from data packets.

Following are main objectives of CLICKOS:

 The primary objective of clickOS is to turn the middleboxes into virtual, programmed

(software) entities.

 To design clickOS smaller in size (5MB) and less time consuming (30

milliseconds)/network functioning.

 CliclOS to produce less delay (45 milliseconds).

 To implement different firewall, load balancer, carrier-grade NAT, and others.

19

In this section, we will discuss the methods or algorithms that we used in the service

chaining of network function virtualization. These methods or processes of the shortest path are

deployed for conducting the shortest way for the working of nodes throughout the whole

chaining process. However, the following methods were deployed over the service chaining

process:

 Floyd Warshall algorithm

 Dijkstra algorithm

2.2.6 Floyd Warshall Algorithm

Floyd Warshall algorithm is implemented to conduct the shortest path between all of the

pairs of multiple vertices in a defined weighted graph. This algorithm used to work for both

directed and undirected graphs but it is not applicable over the negative cycles (graphs having a

sum of edges in a negative number). Floyd Warshall can also conduct the transitive closure of

the directed graphs, inversion of the real matrices and it also conducts a test that if an undirected

graph is a bipartite or not. However, the dynamic programming approach is used in Floyd

Warshall for conducting the shortest path. Let’s suppose,

v(i,j) is considered as the weight of edges between the i and j vertices, the shortest path can be

defined as,

Shortest path (i,j,0)=v(i,j)

Its recursive case is defined as,

Shortest path (i,j,k)= min(shortest path(i,j,k-1), shortest path (i,k,k-1)+shortest path (k,j,k-1))

The above-mentioned formula is known as the main core formula of Floyd Warshall for

conducting the shortest path. It works by conducting the shortest path of all pairs one by one till

k=n.

2.2.7 Dijkstra Algorithm

Another way or algorithm to conduct the shortest path from the starting node to the

ending node in a defined weighted graph is known as the Dijkstra algorithm. This algorithm used

to work over the defined tree for conducting the shortest path from their starting vertex, source,

and to all the other points that are mentioned in the graph. The graph of Dijkstra can be directed

or non-direct, it does not work over the negative weights. Dijkstra algorithm is quite similar to

20

the Prism's algorithm for minimum spanning tree. The shortest path is generated with sources as

the root. In determination through Dijkstra two sets are arranged, one set has the vertices that are

included in the shortest path tree, the second set contains the vertices that are not included in the

shortest path yet. Allover in every set of Dijkstra algorithm a vertex is conducted that is from the

second set and have a minimum distance from source node [29].

The implementation of the modified Floyd Warshall and Dijkstra can be done over the

open-flow in network function virtualization. The use of both of the modified algorithms is

defined by Furculita et al., in their respective research conference paper. The paper highlights the

idea of presenting a gear-box like an algorithm routing system whose results are obtained by the

simulation process. However, both of the algorithms can be utilized in their best way for

conducting the shortest path through a graphical method in the network function virtualization.

2.3 Network devices

The network chaining in function virtualization comprises the interconnecting of different

system capacities.

2.3.1 Firewall

A firewall is designed for preventing unauthorized access or signals from an unknown

network. The firewall blocks the malware and dangerous nodes, which are private or unknown in

the network function system. Overall, a firewall is a security tool in the virtualization process.

2.3.2 Deep Packet Inspection

An advance and smart method of managing the network traffic in a system is known as

the deep packet inspection. It is a kind of packet filtration that uses to identifies, locates, reroutes,

block, and classifies the packets contains code payloads or any kind of specific data.

2.3.3 Intrusion Prevention System

The intrusion prevention system is another kind of network security deployed into the

virtualization process. It is used for detecting the malware and threats in a system. An intrusion

prevention system used to monitor the system in a continuous manner looking for various

malicious issues and collecting information regarding them.

21

2.3.4 Deception System

A deception system is deployed for the post-breach detection of any malware or threats

that pop-up or detected in the virtualization system. Moreover, it is also used for minimizing the

risks that are faced by the system during the process.

22

CHAPTER 3: PROPOSED METHODOLOGY

 In this chapter, we will explain the methodology of our proposed service chaining

algorithm and load ratio mechanism. Our proposed service chaining algorithm is based on Floyd

warshall algorithm, whereas load ratio mechanism utilizes compute of commodity hardware, and

it is mainly aimed for network function placement. Following subsections explain both the

variants of our proposed algorithm in detail.

3.1 Proposed Architecture

In this section, we discussed the network chaining problem and their generated or

planned solutions. Secondly we formulize our network as an Integer Linear Programming Model,

by using an algorithmic approach.

The designed network architecture system consists of four different layered network

functions. A firewall is considered as a security tool which controls network trafficking

according to the security rules. A propelled technique for controlling the system traffic is a type

of bundle separating finds or recognizes the traffic and to reroute the particular information is

known as Virtualized Deep Packet Inspection (vDPI). Intrusion prevention system another layer

of the characterized chain is a sort of a system security framework that checks your framework

and recognizes the errors, this framework screens your system constantly and watches out for all

possible malicious occurrences and accumulate data with respect to it. The last working layer

deception is the process which defends the attack by the hackers by transmitting the dummy or

any random data to them. It works to identify the hacker’s signature to block their access to the

system.

In our mentioned chaining system a firewall will be placed at both starting points to

check the transmitting of the packets through the network. If the firewall gets any suspicious or

unknown packet so the data packet is transferred to the virtualized deep packet inspection for

further check-up and inspection. The virtualized data packet inspector checks the packet to

decide rather send the packet to the intrusion prevention system or directly to the node through

the network. If any suspicious packet is found so the intrusion prevention drops it down

automatically. If it found an unverified signature or any zero attacks so the packet is sent to the

deception system for the further verification. Having such traffic forwarded through the desired

23

paths requires to have flow based traffic engineered for each user. This job can be best

accomplished by having an SDN controller setting the forwarding rules on all switches.

In chaining, the service policy and chaining problem are tied so, this procedure comprises

of making ways that interconnect the system capacities set and allowed in the past stages. This

stage considers two significant elements, specifically, start to finish way latencies and

unmistakable handling delays included by various virtual system capacities. In chaining all the

nodes are chained-up or we can say are connected in a manner able way for the passing of the

network traffic from the first router to another.

Figure 3.1: Proposed Cloud Infrastructure of multiple Nodes having SDN controller and

Network Functions NFs

24

In this figure 3.1, two switches are set 1 in the beginning and 2 toward the end considered

as a closure purpose of the system anchoring. An SDN controller is likewise put outside of the

cloud-associated with two nodes (N1, N4). The beginning switch 1 is then additionally

associated with two different paths (N1, N2), these paths are associated with the nodes of the

firewall and that firewall nodes are associated with one deep packet inspection node (N3) and

two simple data passing nodes (N4, N7). The data traffic will be generated by the switch, going

through the firewall nodes, the firewall nodes will inspect that data traffic, if they discover any

kind of issue so those information packets will be sent through the simply joined nodes for

further assessment or inspection process, if there is no malware so data packets will go through

the essentially joined nodes. The deep packet inspection is then associated with two different

nodes (N5, N6), one of them is the node of the intrusion prevention system (N6) and the other is

a simple node. The data packet went through deep packet inspection will go through the simple

node if the malware or issue which was discovered will be tackled, yet in the event that there is

some error left or the data packet is indicating an issue in the passing traffic so it will be gone

through the intrusion prevention system for further checking. In the wake of going through

intrusion prevention if the data packets are clear so will be sent through the simple data passing

node or if not, as yet having issues so will be sent through the deception system node. This

deception node will choose rather move the data traffic to the consummation point (second

switch) or to dismiss it. We will utilize Floyd Warshall's algorithm to direct the briefest way in

this binding. Floyd Warshall algorithm is implemented to conduct the shortest path between all

of the pairs of multiple vertices in a defined weighted graph. This algorithm used to work for

both directed and undirected graphs but it is not applicable over the negative cycles (graphs

having a sum of edges in a negative number). Floyd Warshall can also conduct the transitive

closure of the directed graphs, inversion of the real matrices and it also conducts a test that if an

undirected graph is a bipartite or not. However, the dynamic programming approach is used in

Floyd Warshall for conducting the shortest path. This algorithm used to work over the defined

tree for conducting the shortest path from their starting vertex, source, and to all the other points

that are mentioned in the graph. The graph of Dijkstra can be directed or non-direct, it does not

work over the negative weights. Dijkstra algorithm is quite similar to the Prism's algorithm for

minimum spanning tree. The shortest path is generated with sources as the root. In

determination through Dijkstra two sets are arranged, one set has the vertices that are included in

25

the shortest path tree, the second set contains the vertices that are not included in the shortest

path yet. The implementation of the modified Floyd Warshall and Dijkstra can be done over the

open-flow in network function virtualization. The use of both of the modified algorithms is

defined by Furculita et al., in their respective research conference paper. The paper highlights the

idea of presenting a gear-box like an algorithm routing system whose results are obtained by the

simulation process. However, both of the algorithms can be utilized in their best way for

conducting the shortest path through a graphical method in the network function virtualization.

3.2 Load Ratio Mechanism

We introduced the model having different nodes, starting point and ending for the

regulation and process of data packets. Now further, we will discuss the working and its

probability in each node placed in this chaining.

Let’s suppose our node’s mechanism is divided into three different parameters i.e. CPU

utilization, RAM and GPU/disk utilization having different probability ratios (α, β and γ). We’ll

use performance unit PU to evaluate the total capacity of each nodes and after measuring

performances of each nodes, we’ll again evaluate its utilization ratios w.r.t each parameters to

determine the current usage of nodes and to determine the less utilized node and future usability

of node as a Network Function NF. Given below is the equation for determining the performance

unit:

Performance Unit PU = α x CPU (No. of Cores) + β x RAM (GB) + γ x GPU (No. of Cores)

Whereas α is 0.5, β is 0.3 and γ is 0.2

Let’s suppose we want to calculate performance unit of three nodes i.e. Node A, Node B

and node C to determine the less utilized node to place network function NF. Node A has 8 GB

of RAM, CPU 4 cores and GPU 4 cores and calculating PU is:

PU=0.5x4+ 0.3x8+ 0.2x4

PU=2+2.4+0.8=5.2

26

Table 3-1: Performance Unit of nodes

Parameters CPU RAM GPU PU

 Node A 4 8 4 5.2

 Node B 6 16 4 8.6

 Node C 4 4 8 4.8

As we have computed the performance units of 3 different nodes, now we want to find

out the utilization ratio UR based on the values of performance unit of all three nodes. So,

Utilization ratio is basically utilization of each nodes at which they’re currently running and

based on this information we can compute the utilization ratio. Suppose Node A has utilization

of 60% whereas Node B has 45% and node C 70%. So, we compute utilization ratio as:

UR= 60% of PU of Node A=0.6x5.2=3.1

UR= 45% of PU of Node B=0.45x8.6=3.8

UR= 70% of PU of Node C=0.7x4.8=3.3

Now, we have both performance unit PU and utilization unit UR to calculate the Average

performance rate APR to check the remaining unused compute of nodes:

APR=PU-UR

APR of Node A=5.2-3.1=2.1

APR of Node B=8.6-3.8=4.8

APR of Node C=4.8-3.3=1.5

As shown above, and by the rule “The Greater the better” Node B has more unutilized

resources than Node A and Node C. So, if required SDN will choose Node B to place new

network function NF.

This whole mechanism is tested or performed for the process of chaining, for checking or

determining a node which will utilize the minimal resources and provides the least utilized nodes

so that we can place our NFs.

Every single node contain different amount of memory and operating systems into it, here

we will suppose those systems based on their utilization. The above-mentioned divisions are the

inner divisions of every single node placed in our network chaining. In our network, we will

27

place an SDN (software-defined network) and it will act as a virtual programming switch or

switch instead of the physical system network. So rather than using ordinary switch for packet

forwarding we’ll use SDN for traffic controlling and packet forwarding. And determine the node

which is enough capacity for the placement of NFs. At all starting points, a firewall will be

placed to verify the propagation of the packets across the network. If any unusual or unexplained

packet is received by the firewall, the data packet is passed for further check-up and analysis to a

virtualized deep packet inspection. The auditor of the virtualized data packet tests the packet to

determine whether to deliver the packet to the intrusion prevention device or directly across the

network to the node instead. If any suspicious packet is detected, it is immediately dropped by

intrusion protection. If an unverified signature or zero attacks are detected, the packet is

submitted for further verification to the deception device. For each user, making those traffic

forwarded along the desired paths allows flow-based traffic to be engineered. By having an SDN

controller setting the forwarding rules on all switches, this job will better be done. The designed

network architecture system consists of four different layered network functions. A firewall is

considered as a security tool which controls network trafficking according to the security rules.

A propelled technique for controlling the system traffic is a type of bundle separating finds or

recognizes the traffic and to reroute the particular information is known as Virtualized Deep

Packet Inspection (vDPI). Intrusion prevention system another layer of the characterized chain is

a sort of a system security framework that checks your framework and recognizes the errors, this

framework screens your system constantly and watches out for all possible malicious

occurrences and accumulate data with respect to it. The last working layer deception is the

process which defends the attack by the hackers by transmitting the dummy or any random data

to them. It works to identify the hacker’s signature to block their access to the system.

3.3 Shortest path algorithm

We need to determine the distance of each node to each other and try to find the shortest

path. So, we’re using Floyd warshall algorithm to determine the shortest path.

“The Floyd Warshall algorithm is an algorithmic method of finding the shortest path in a

weighted graph with both positive and negative edge weight, but no negative cycles are allowed

in it.” Floyd Warshall can also conduct the transitive closure of the directed graphs, inversion of

the real matrices and it also conducts a test that if an undirected graph is a bipartite or not.

28

However, the dynamic programming approach is used in Floyd Warshall for conducting the

shortest path.

Floyd warshall compare out all the possible paths with the help of the graph in between

the pair of different vertices. The comparisons Θ(|V|^{3}) is use in the graph, maybe there are

up to Ω(|V|^{2}) edges in working graph. In this algorithm every combination made over the

edges are tested. It does incrementally improving the way to find out the shortest path until the

graphical estimation is optimal.

However, after solving the algorithm we conclude a general formula or a form of the

matrix that we use to conduct the shortest path in any graph.

General formula:

Shortest path (i,j,k) = min[shortest path(i,j,k-1), shortest path(i,k,k-1) + shortest

path(k,j,k-1)]

 Figure 3.2: Proposed multi-node path

29

‖
‖

0 2 3 1 3
2 0 4 3 5
3 4 0 3 1
1 3 3 0 2
3 5 1 2 0

‖
‖

Calculating the sum of each row gives us total distance cost of all nodes in that respective row.

And the summation of these rows is followed as:

‖
‖

9
14
11
9

11

‖
‖

Now, using load ratio mechanism and Floyd warshall algorithm given the 50-50 split

ratio to acquire the results from both methods to determine the next potential network functions

NFs on infrastructure as below:

Node A=50% of load ratio mechanism (APR) + 50% of Floyd warshall algorithm (Total

node cost)

Node A= 0.5*2.1 + 0.5*9 = 1.0 + 4.5 = 5.5

Node B= 0.5*4.8 + 0.5*14 = 2.75 + 7 = 9.4

Node C= 0.5*1.5 + 0.5 * 11 = 0.75 + 5.5 = 6.25

After getting the mentioned above results, we can do the selection of node by “The Greater the

Better” method to place the network functions over there.

30

 CHAPTER 4: EXPERIMENTAL SETUP AND RESULTS

In this section, we are discussing the ClickOS tool which we’re using for our

performance evaluation in real time physical environment. As we discussed earlier that ClickOS

contain different nodes joined with each another. ClickOS can easily handle data packets in a

million/second. Furthermore, Considering ClickOS have many benefits and technological points

discussed in the brief architecture section.

4.1 Network Function Tool

The main objectify points, or we can say that the placement of ClickOS contains the

following nodes and switches (i.e., firewall, switches, and nodes). However, ClickOS is not

summed up only into these given objects.

The leading architectural designing or the software has a Xen to make the system easy to

understand and fast in speed. This system of Xen runs virtual machines of clickos; every

described version of clickOS is running over the top of the miniOS. Xen was made a part of this

working system because it provides a secure and better performance to the modified operating

systems as a guest. However, the guest Operating System (OS) is unmodified. For the running

process of ClickOS user do provide a configuration and managed text files of the different

interconnected elements. While running the programmable files ClickOS provides the different

readable/writable handlers and miscellaneous variables as well. These files and variables can

easily change the state of an element at any instant time. ClickOS is depended on the switches or

the proc/file system to provide the functioning through these described mechanisms [20].

ClickOS operates the three different parts of the plane of the operating system. First one

is the C-based CLI that take care of different tasks, creating and destroying the guest domains

coming into ClickOS for the functioning purpose. Whenever a guest domain or the data packet

boosts up miniOS, a threat is generated, that is considered as the second part of the controlling

the system's plane. This thread creates an entry to the Xen functioning store, a /proc file system

is shared between all the guests running domains or data packets and dom0. It is the duty of the

control thread system then to watch for the changes if they are made during the entry. However,

when the configuration settings are done or written by the user, the written function can take care

31

of threating issues occurred again and again during the chaining. It merely shows that the

different click instances can work at a single time through the single domain of ClickOS.

The third part of the architecture of the plane operating system consists of a new click

element named as clickOS control. It controls all the given elements by configuration on one end

and the Xen placement store on the second end. The CLI at that point gives users an interface to

peruse and keep in touch with component (to read and write to the element) handlers through the

Xen store and ClickOS Control. Every one of these activities on the ClickOS side of the things

and processed is done or executed in the safe and control thread maintains the environment

mentioned above.

4.2 Experimental Setup

In this section, we are discussing the deployment of network functions NFs over

commodity hardware using ClickOS to evaluate working of network functions. First, we

elaborate the hardware and functions used in this experiment and then the application of this

equipment over the virtualization function.

4.2.1 Implementation of ClickOS

In this section, a discussion will be done regarding the setup of a Virtual Machine for

running the ClickOS. Use the VM image with the installation of UBUNTU 14.04.4 “64-BIT

LTS”, it helps in the downloading of an image and using it as a starting point. However, Virtual

Box is needed for downloading the image.

 Configuration of the virtual machine

 Setting the memory to the 1024MB

 Set the total number of the processors to “2”

32

4.2.2 Installation of XEN

XEN is considered as one of the most known virtualized platforms. In the respective

project implementation of XEN is considered for supporting the network function.

 Installation of dependencies for XEN

 Making a directory known tutorial

 Downloading the XEN-4.4.1 in the directory of tutorial

 Compilation and building of XEN

 Configuration of the system for booting from XEN

 Updating some of the required configurations

 Updating the grub and rebooting of the system

 Verification of the installation of XEN

4.2.3 Building the ClickOS

Another mandatory step of the installation of ClickOS includes the following points,

 Getting the source code

 Setting up the environment variables

 Replacement of the mini-OS

 Building the toolchain

 The building of the ClickOS kernel

 Building the COSMOS

4.2.4 Installation of the Open vSwitch

OVS (open virtualization switch) setup should be set according to the MAC's address,

memory, and vCPUs (virtual central processing unit) of a virtual domain for the smooth running

of a virtual switch. For testing purposes, we make the content depicting system work for simply

getting the packet, print OK and afterward send the packet back to the system interface to check

the working of system work.

33

 Installation of the Open vSwitch

 Configuration and running OVS

 Creating a bridge over OVS

4.2.5 Instantly starting a ClickOS

For starting the ClickOS in instance the system have to,

 Create a configuration file for the XEN

 Create a configuration file for the Click

 Start the ClickOS instantly

We compose the content in Click language because the click is a language that can define

network function system capacity dependent on click modular. We design the script and execute

the click system capacity to check that the clickOS case is running. Network function starts

running with 12MB memory and 1 vCPU as shown in figure 4.1 use giving us the yield of the

required content.

Figure 4.1: Utilization of Network Functions in ClickOS

34

And in figure 4.2 we can see the output of click0 console network function that receives

packets from the network interface, prints the packets, and sends the packets back to the network.

Figure 4.2: Output of Network Function in ClickOS

Also, we have implemented the network address translation NAT over the commodity hardware

using network function NF.

Figure 4.3: Network Address Translation in ClickOS

35

Figure 4.4: Output of Network Address Translation in ClickOS

In Figure 4.3, we have initialized public IPs and private IPs for network address translation, and

in figure 4.4, we pinged the public IP through clickOS to check it’s NF, and it successfully

responded back

4.3 Simulation

We created different NFs in a physical environment for our virtualization process but

these NFs are designed for a specific parameter, so we implemented these NFs over a simulator

to get our desired result. Furthermore, we implemented a simulator of NS3 with a bandwidth of

about 2mbps; recorded time of simulation process is about 3 minutes. We have implemented the

cache server placement using the NS3 simulation tool. The proposed approach assumes a

scenario of nodes connected and checked the End to End delays from IoT users to all attached

nodes for better placement of the cache server with controller help. OpenFlow 1.3 [22] is used

for Controller to switch communication, and flow monitor [23] is used for obtaining results.

OpenFlow 1.3 module brings the OFSwitch13LearningController class that implements the

controller interface to work as a “learning bridge controller.” [19]. This learning controller

guides the OpenFlow switches to forward incoming frames from one port to the single correct

output port whenever possible [24]. Content query routing exceeds the scope of this paper.

Therefore, we presume that switches route the requests according to the network routing protocol

(e.g., shortest path routing).

36

Table 4-1: Simulation Results of nodes

Simulator Bandwidth Application Traffic Type MTU Data Rate Simulation Time

NS3 2Mbps On off

Application

Constant Bit

Rate

1000

byte

100Kb/s 3 Minutes

Link

Delays

(ms)

Switch1 Switch2 Switch3 Switch4 Switch5 Switch6 Switch7 Switch8 Switch9 Switch

10

Origin

Server

4 4 7 10 9 8 9 11 11 15 19

Place The cache server in each Open Flow Switch and measure the latency from sender

 Cache

server at

S1

Cache

server

at S2

Cache

server

at S3

Cache

server

at S4

Cache

server

at S5

Cache

server

at S6

Cache

server

at S7

Cache

server

at S8

Cache

server

at S9

Cache

server

at S10

Origin

Server

LATENCY

(ms)

12.40 12.40 15.40 18.41 17.41 16.41 17.41 19.41 19.41 23.42 27.42

37

 CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

Network function virtualization is an architecture that contains the capacity to recreate

the different network functions over a virtualized network. After working over the service

chaining of virtualization we also concluded that network function virtualization can help us to

cater many future problems regarding to the virtualization of NFs and optimization of curricular

technical issues.

In this thesis, we formularized the network function chaining and assignment problems in

NFs. We broadly discussed that how we can a virtualized environment for commodity hardware

that runs the different services by using the NFs. For that purpose we discussed the problem

overview and methodology in which we covered the placement, chaining and assignment of our

nodes defined in our virtualization process.

Further, we purposed an optimized algorithm “FLOYD WARSHALL ALGORITHM” to

solve the shortest path for our chaining [13]. Unified control architecture for a dynamic service

chaining using SDN controller is also discussed in the related work section. We also discussed

our simulation process in which we used a NS3 simulator to test our virtualization process.

However, we conducted our simulation result in a physical environment that shows us that the

minimum consumption of memory was done (about 12 MB) in a simulation of around 2000 secs.

Also, we mean to explore different software to reoptimize the NFs placement, assignments, and

chaining. Moreover, we discussed these different softwares in detail as our tools that include

OPNFV, TRIPLEO, TACKER, MININET and CLICKOS.

5.2 Future Work

Increased services over the internet has given multiple challenges for network devices to

perform different actions for assigned services. In future, the service requirement and chaining of

these services will increase exponentially and we have to come up with automated design to

cater all these problems. Future research along these lines include the use of mathematical

framework optimization to improve the algorithm's scalability and robustness. In order to

incorporate a more detailed output model of network devices with respect to the rules they

implement, we also aim to enrich our model. Finally, in order to simplify the general issue of

38

service chaining, where various forms of theoretically highly accessible VNFs have to be put,

intertwined and crossed, we plan to expand our model and create an integrated model. A

lightweight automated solution should be for chaining of network function NFs for IoT

applications. IoT applications have massively increased, and user-based data and applications

require different functions to cater to the different service requests. So, network function

virtualization provides the solution on commodity hardware to install the required network

function instantiations and instantly carry out the results. For automation and placement, we can

combine two algorithms, i.e., load ratio mechanism, to check the current commodity hardware

utilization. Secondly, finding the shortest path using Floyd warshall algorithm for automation to

the nearest available node has enough computed for network function provision.

39

REFERENCES

[1] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gaspary, “Piecing

together the NFV provisioning puzzle: Efficient placement and chaining of virtual network

functions,” 2015 IFIP/IEEE International Symposium on Integrated Network Management

(IM), 2015.

[2] Y. Li, F. Zheng, M. Chen, and D. Jin, “A unified control and optimization framework for

dynamical service chaining in software-defined NFV system,” IEEE Wireless

Communications, vol. 22, no. 6, pp. 15–23, 2015.

[3] “IEEE Recommended Practice for Routing Packets in IEEE 802.15.4 Dynamically Changing

Wireless Networks.”

[4] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, “Software-Defined

Networking: Challenges and research opportunities for Future Internet,” Computer

Networks, vol. 75, pp. 453–471, 2014.

[5] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck and R. Boutaba, "Network

Function Virtualization: State-of-the-art and Research Challenges"

[6] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “An efficient algorithm for virtual

network function placement and chaining,” 2017 14th IEEE Annual Consumer

Communications & Networking Conference (CCNC), 2017.

[7] M. C. Luizelli, W. L. D. C. Cordeiro, L. S. Buriol, and L. P. Gaspary, “A fix-and-optimize

approach for efficient and large scale virtual network function placement and chaining,”

Computer Communications, vol. 102, pp. 67–77, 2017.

[8] M. M. X. N. N. K. O. T. T. Bruno Nunes Astuto, "A Survey of Software-Defined

Networking: Past, Present, and Future of Programmable Networks," HAL, 2013.

[9] Y. Li, F. Zheng, M. Chen, and D. Jin, “A unified control and optimization framework for

dynamical service chaining in software-defined NFV system,” IEEE Wireless

Communications, vol. 22, no. 6, pp. 15–23, 2015.

[10] C. Lorenz, D. Hock, J. Scherer, R. Durner, W. Kellerer, S. Gebert, N. Gray, T. Zinner,

and P. Tran-Gia, “An SDN/NFV-Enabled Enterprise Network Architecture Offering Fine-

Grained Security Policy Enforcement,” IEEE Communications Magazine, vol. 55, no. 3, pp.

217–223, 2017.

40

[11] G. Carella, J. Yamada, N. Blum, C. Lück, N. Kanamaru, N. Uchida, and T. Magedanz.

2015. “Cross-layer service to network orchestration. In Proceedings of the 2015 IEEE

International Conference on Communications” (ICC’15). 6829–6835

[12] Fraunhofer FOKUS. 2016. OpenSDNCore—Reasearch and testbed for the carrier-grade

nfv/sdn environment. Retrieved July 25, 2016 from http://www.opensdncore.org/

[13] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar, “Making

middleboxes someone elses problem,” ACM SIGCOMM Computer Communication Review,

vol. 42, no. 4, pp. 13–24, 2012.

[14] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based network function

virtualization for software-defined networks,” 2015 IEEE Symposium on Computers and

Communication (ISCC), 2015.

[15] R. Cziva and D. P. Pezaros, “Container Network Functions: Bringing NFV to the

Network Edge,” IEEE Communications Magazine, vol. 55, no. 6, pp. 24–31, 2017.

[16] Docker Inc. 2016. Docker Documentation. Retrieved July 25, 2016 from

https://docs.docker.com/

[17] S. V. Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye, M. Pickavet, and P.

Demeester, “Deploying elastic routing capability in an SDN/NFV-enabled environment,”

2015 IEEE Conference on Network Function Virtualization and Software Defined Network

(NFV-SDN), 2015.

[18] Rackspace Cloud Computing. 2016. OpenStack Open Source Cloud Computing

Software. Retrieved July 25, 2016 from https://www.openstack.org/

[19] Linux Foundation. 2016. The OpenDaylight Plataform. Retrieved July 25, 2016 from

http://www.opendaylight.org

[20] J. Deng, H. Hu, H. Li, Z. Pan, K.-C. Wang, G.-J. Ahn, J. Bi, and Y. Park, “VNGuard: An

NFV/SDN combination framework for provisioning and managing virtual firewalls,” 2015

IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-

SDN), 2015.

[21] A. Gupta and R. K. Jha, “A Survey of 5G Network: Architecture and Emerging

Technologies,” IEEE Access, vol. 3, pp. 1206–1232, 2015.

[22] Pedro Fortuna and Manuel Ricardo, "FlowMonitor - a network monitoring framework for

the Network Simulator 3 (NS-3)" 2009.

41

[23] Luciano Jerez Chaves, Islene Calciolari Garcia, and Edmundo Roberto Mauro Madeira,

"OFSWITCH13: Enhancing ns-3 with Openflow 1.3 Support," 2016

[24] Yong Cui , Jian Song, Minming Li , Qingmei Ren, Yangjun Zhang, and Xuejun Cai,

“SDN-Based Big Data Caching in ISP Networks”,pp. 1-4, 2018.

[25] AT&T, Telecom Italia, Netronome, Intel, ServiceMesh, PLUMgrid, and Cisco Systems.

2015. PoC#16—NFVIaaS with Secure, SDN-controlled WAN Gateway. Technical Report.

The European Telecommunications Standards Institute.

[26] S. E. C. a. L. S. Guerassimov, "NFV and OPNFV," Network Architectures and Services,

2016

[27] C.-H. Lin, J.-C. Liu, M.-H. Liou, and W.-C. Wu, “Shortest Driving Time Computation

Based on Cloud Technologies and Genetic Algorithm,” 2014 5th International Conference on

Intelligent Systems, Modelling and Simulation, 2014.

