
An Attempt Based Textual Graphical
Password Approach For User

Authentication To Protect Against
Shoulder Surfing Attacks

By

SOHAIB KHAN

NUST201463273MRCMS64214F

Masters of Science in Systems Engineering

Supervised by

Dr. Adnan Maqsood

RESEARCH CENTER FOR MODELING AND

SIMULATION (RCMS)

NATIONAL UNIVERSITY OF SCIENCES AND

TECHNOLOGY (NUST), ISLAMABAD, PAKISTAN

May, 2018

An Attempt Based Textual Graphical

Password Approach For User

Authentication To Protect Against

Shoulder Surfing Attacks

Supervised by

Dr. Adnan Maqsood

Research Center for Modeling and Simulation (RCMS)

A thesis submitted to the National University of Sciences and

Technology in partial fulfillment of the requirement for the degree of

Masters of Science

May, 2018

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Mr. Sohaib Khan, Reg-

istration No. NUST201463273MRCMS64214F of RCMS has been vetted by

undersigned, found complete in all aspects as per NUST Statutes/Regulations, is

free of plagiarism, errors, and mistakes and is accepted as partial fulfillment for

award of MS/MPhil degree. It is further certified that necessary amendments as

pointed out by GEC members of the scholar have also been incorporated in the said

thesis.

Signature with stamp:

Name of Supervisor: Dr. Adnan Maqsood

Date:

Signature of HoD with stamp:

Date:

Countersign by

Signature (Dean/Principal):

Date:

APPROVAL

It is certified that contents of the thesis entitled ”An Attempt Based Tex-

tual Graphical Password Approach for User Authentication to Protect

Against Shoulder Surfing Attacks ” submitted by Mr. Sohaib Khan, Regis-

tration No. NUST201463273MRCMS64214F of RCMS have been found sat-

isfactory as partial fulfillment for award of MS/MPhil degree.

Name of Supervisor: Dr. Adnan Maqsood

Signature:

Date:

Name of GEC member 1: Muhammad Tariq Saeed

Signature:

Date:

Name of GEC member 2: Fawad Khan

Signature:

Date:

Name of GEC member 3: Ammar Mushtaq

Signature:

Date:

Dedication

Dedicated to my beloved parents whose prayers and

sacrifices made me what I am today. This achievement is

a part of their dream to give me the best education as

they could.

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of original re-

search and has not been submitted for a higher degree to nay other University or

Institution.

Date Sohaib Khan

Acknowledgments

I would like to thank Almighty ALLAH who is the greatest of all, who has

provided me with strength to achieve this milestone. I would like to show my deepest

gratitude to my supervisor Dr. Adnan Maqsood for his support, guidance and

mentor-ship throughout this project. I sincerely appreciate the efforts of my GEC

members Engr. Fawad Khan and Dr. Ammar Mushtaq for giving their insightful

input at every step. Specially Mr. Muhammad Tariq Saeed without his assistance

and vision it was impossible for me to complete this project, the way he motivated

me at every step and keep pushing me to do more and better is admirable. I am

highly obliged to my all family members, without their unending support, tolerance

and prayers it was impossible to complete this work.

i

Contents

List of Abbreviations v

List of Tables vi

List of Figures vii

Abstract ix

1 Introduction 1

1.1 Information Security . 1

1.2 Authentication . 3

1.3 Attacks Against Authentication Systems 3

1.3.1 Keyloggers and Shoulder Surfing Attacks 4

1.4 Problem Statement . 5

1.5 Research Objectives . 5

1.6 Contributions . 6

ii

1.7 Structure of Thesis . 6

2 Literature Review 8

2.1 User Authentication . 8

2.1.1 Origin and History . 8

2.1.2 Encrypted Passwords . 9

2.2 Textual Passwords . 13

2.2.1 Two Factor Authentication (2FA) 14

2.3 Graphical Passwords . 14

2.3.1 Recall Based Techniques . 15

2.3.2 Recognition Based Techniques 17

2.3.3 Keyloggers and Shoulder Surfing Attacks 20

2.4 Missing Links in Literature . 21

3 Methods 22

3.1 Implementation of Textual-Graphical Password Authentication scheme 22

3.1.1 Registrations Phase . 22

3.1.2 Login Phase . 23

3.2 Algorithm For Proposed Approach 26

iii

3.3 Description of Algorithm . 28

3.4 Time Complexity of Algorithm . 29

4 Results & Discussion 32

4.1 Analysis of Technique . 32

4.2 Comparison with existing methods and techniques 34

5 Conclusion and Future Work 37

5.1 Conclusion . 37

5.2 Future Work . 38

References 39

Appendices 44

A Main 45

B Function 62

C Grid 91

D Interface 93

iv

List of Abbreviations

AES Advanced Encryption Standard

2FA Two Factor Authentication

DES Data Encryption Standard

S3PAS Scalable Shoulder Surfing Resistant Textual-Graphical Password Authentication Scheme

CIA Confidentiality, integrity, availability

GPU Graphical Processing Unit

v

List of Tables

4.1 Comparison and Evaluation Of Existing Schemes On the Basis of

Resistance Against Shoulder Surfing Attacks And User Acceptance . 35

4.2 Authentication Schemes Comparison On The Basis of Key Space,

Ease Of Use And Randomness . 36

vi

List of Figures

1.1 CIA Traid of Information Security. Confidentiality is set of rules to

limit access to data, integrity is Maintaining the originality of data

and availability is reliable access to data for authorized users. 2

2.1 Blonder Technique: User is presented with an image with tap regions

and user is asked to tap those regions in a specific sequence which

user needs to remember at the time of login [26]. 15

2.2 Pass-Face Scheme: In this technique user needs to recognize and select

set of images selected at the time of registration. (Source: Suo [28]) . 16

2.3 Captcha as Graphical Password, in this technique users need to enter

the distorted text from the image displayed displayed[34] 19

2.4 Grid of objects for Sobrado and Birget scheme where user needs to

click inside the triangle formed by objects selected at the time of

registration. [35] . 19

vii

3.1 Randomly Generated Grid, Circles show password characters in a

token and lines represent the area where user needs to click. (a)Shows

the login interface where user provides username, and password will

be fetched from Firebase after clicking login button. (b) Represents

Dot Logic where user needs to click any character pointed by arrow.

(c) Shows Line logic where user needs to click on characters lying on

line between token characters. (d) Represents Triangle Logic where

user needs to click in the area enclosed by triangle formed by token

characters and in the end user needs to click login. 23

3.2 Implementation Sequence of Proposed Technique: Scheme starts with

username as input, if username is valid password is fetched from Fire-

base and tokens are generated. Each token is placed randomly in grid

of 5x5 and user is asked to click in grid according to logic. Click co-

ordinates when compared with implemented logic decides the status

of “Auth Flag”. At the end of password if “Auth Flag” status is True

user will get access otherwise process stats again. 25

viii

Abstract

Most common schemes typically used for user authentication are based on textual

passwords. Such schemes are highly vulnerable to keyloggers, shoulder surfing and

brute force attacks. The increase in security breaches during the last decade have

forced security analysts to use graphical pass word schemes that lead to increased

complexity and decreased user friendliness. In this study, we present a comparison

of existing techniques with Scalable Shoulder Surfing Resistant Textual-Graphical

Password Authentication Scheme (S3PAS) on the basis of password strength, al-

gorithmic complexity, user friendliness and randomness. After comparison we have

developed an open-source algorithm for S3PAS to provide protection against key-

loggers and shoulder surfing attacks. The proposed architecture of scheme requires

original password only for registration process and session password for login process.

Session password will be different for each login attempt, so if attackers somehow

steal session password they will not be able to use that session password for next

attempt to login. Consequently there is an improved trade-off between user friend-

liness and protection against keyloggers and shoulder surfing attacks. Also time

complexity of proposed algorithm for the technique can be written in the form of

linear function ax + b which is better than existing techniques..

ix

Chapter 1

Introduction

1.1 Information Security

Information Security is the practice of protection of data from those with malicious

intentions to preserve its Confidentiality, Integrity and Availability (CIA). CIA is

the basics of information security as shown in 1.1

The prioritization out of three is done on the type of data or the process at

hand. To help aid in security and protection of data, information security is further

divided into five aspects [1] [2]. The five aspects of information security includes

1. Accountability: Trace-ability of actions performed by user on a system and

how these actions will be held against user responsible for breaches.

2. Assurance: Making sure that security measures must be designed and tested

to ensure assurance.

1

Chapter 1: Introduction 2

Figure 1.1: CIA Traid of Information Security. Confidentiality is set of rules to limit access to data, integrity is

Maintaining the originality of data and availability is reliable access to data for authorized users.

3. Authentication: Positive identification of users i.e. ensuring that users logging

into the system are who they say they are.

4. Authorization: Determining the individuals are allowed to access certain data.

5. Accounting: Record of which data has being accessed and by whom.

Security of the system can not be ensured by looking solely at the compo-

nents of the system. Interaction of these components is more that individual compo-

nents themselves [3]. Authentication is known as the corner stone of most netwroking

models. Attacks against authentication such as incidents of data breaches and iden-

tify theft in the recent past has really made it important to implement secure au-

thentication techniques. These threats can be external or from inside the system

by untrustworthy users [4]. According to Bilge in ”All your contacts are belong to

us: automated identity theft attacks on social networks” [5] most of the social se-

curity credentials are vulnerable to automated attack. Out of these, authentication

is most important in network security models because if attacker is able to exploit

2

Chapter 1: Introduction 3

authentication scheme, they can gain access to the system and data as a legitimate

user.

1.2 Authentication

Authentication is the positive identification of a system or person who wants to gain

access to the system. In authentication process, user identification is done through

textual passwords, smart-cards, graphical passwords, bio-metrics, two factor authen-

tication and so on. Authentication systems are used to provide security to user’s

data to preserve its confidentiality and integrity. Usability of any authentication

system is an important factor because users can misuse the system which can lead

to security failures [6].

Existing authentication systems suffer from various vulnerabilities. Various encryp-

tion protocols such as AES (Advance Encryption Protocol) are used these days for

protection of data. On the other hand advancement in technology has also increased

the level of threat. All efforts encryption of data is useless when attackers have ac-

cess to the system by obtaining the credentials of users by exploiting authentication

systems/techniques [7].

1.3 Attacks Against Authentication Systems

Authentication systems are vulnerable to multiple types of attacks which can be

categorized into two classes; capture attacks and guessing attacks [8].

1. Guessing attacks take place at the time of login when an attacker tries to access

3

Chapter 1: Introduction 4

the account by guessing the password. These attacks include brute force and

dictionary attacks. These attacks can be online where attacker tries to login

by guessing password or offline on stolen password file.

2. Capture attacks include tricking users to disclose their passwords or recording

it with the help of malwares which record passwords by installing malicious

software without the knowledge of user.

In existing authentication systems users are required to enter their credentials every

time they need access to the system. These actions of entering usernames and

passwords exposes users to keyloggers and shoulder surfing attacks.

1.3.1 Keyloggers and Shoulder Surfing Attacks

Keyloggers are software that record every keystroke made by user usually covertly.

So how strong a graphical or a textual password is; does not matter when every

keystroke is being logged. It doesn’t matter whether the password is human mem-

orable or not, when it can be recorded in the form of keystroke. Every key pressed

by a user is logged by these keyloggers and user credentials can easily be extracted

from these logs. In result attacker can use these credentials to log-in to the system

as legitimate user and can gain access to the data [9].

Same is the case with shoulder surfing attacks. In this type of attack person sitting

beside or standing behind a user can see and memorize user credentials. Similarly

camera installed at a certain angle can record every keystroke without even the

knowledge of user, which can later be used to see the entered credentials.

All security measures no matter how strong cannot protect the system, if the at-

4

Chapter 1: Introduction 5

tacker is logged in as legitimate user and can do whatever they want to do without

raising any alarm [10].

1.4 Problem Statement

Authentication plays a key role in protection of data to preserve its confidentiality

and integrity. Passwords are used in most of the authentication schemes and often

present multiple difficulties to users. In security systems, textual passwords are often

considered as weak link. In order to overcome the weaknesses of textual passwords,

many graphical password schemes are introduced which provide better security than

simple textual passwords. These graphical passwords are still vulnerable to multiple

attacks mainly the capture attacks. Passwords can be recorded either with the help

of key-loggers, through shoulder surfing attacks or phishing attacks. This informa-

tion can be used to get access of a system.

Main focus of this study is to mitigate key-logger and shoulder surfing attacks by

introducing a textual-graphical password authentication scheme. This scheme will

allow the users to access their data anywhere without exposing their password to

these attacks.

1.5 Research Objectives

Objectives of this research endeavour are to:

• Propose and implement Textual-Graphical password scheme to provide pro-

tection against keyloggers and shoulder surfing attacks.

5

Chapter 1: Introduction 6

• Compare and evaluate implemented technique with existing techniques on the

basis of complexity, randomness and user friendliness.

1.6 Contributions

The contributions of this thesis investigates the vulnerabilities of existing authen-

tication schemes to keyloggers and shoulder surfing attacks. We provide a textual-

graphical password authentication scheme to mitigate these attacks. This scheme

is based on S3PAS (Scalable Shoulder Surfing Resistant Password Authentication

Scheme) and is implemented using Firebase for data storage. This thesis provides an

open sources authentication technique which can be used in different authentication

applications.

This thesis also compares proposed authentication scheme with existing authenti-

cation schemes on basis of certain factors which includes user comfort-ability, ran-

domness, complexity and key space.

1.7 Structure of Thesis

The organization of rest of the thesis is as follows

• Chapter 1 includes introduction of thesis, problem statement, motivation and

objectives of research.

• Chapter 2 presents literature review of related work including the topics of

textual passwords, graphical password, existing authentication schemes, key-

6

Chapter 1: Introduction 7

logger and shoulder surfing attacks.

• Chapter 3 introduces the textual-graphical password authentication scheme.

We introduced this scheme to mitigate keylogger and shoulder surfing attacks.

• Chapter 4 presents results of proposed scheme and its effectiveness against

shoulder surfing and keylogger attacks. It also provides a comparison of pro-

posed scheme with existing authentication schemes on the basis of multiple

factors.

• Chapter 5 includes conclusion and future work.

7

Chapter 2

Literature Review

2.1 User Authentication

2.1.1 Origin and History

Back in 1960 passwords were first used in Massachusetts Institute of Technol-

ogy (MIT) on its time-sharing computer called Compatible Time-Sharing System

(CTSS) for accomodation of multiple users on various terminals. This was used to

identify individuals and allowing them access to the system [11]. Security aspect

was not under consideration at that time and passwords were stored in simple plain

text files. First documented breach was done by Allan Scherr in 1962 at MIT who

wanted to increase his allotted time to complete his performance simulation.

In 1966 a bug displayed the password file upon logging into the system this happens

because passwords were stored in plain text.

Earliest documented attempt to encrypt password was carried out by US air force

8

Chapter 2: Literature Review 9

in early 1970s over the Multics User Control Subsystem Mainframe (MULTICS).

It converts passwords through one way transformation, 90% of the passwords were

cracked on Multics in order to determine weak password by Paul Karger and his

team. During 1972-1974 security assessment of Multics was done and breached suc-

cessfully. This success motivated developers to develop stronger methods to protect

passwords. This was the turning point that leads to the development of the complex

algorithms and methods.

Sixth edition of UNIX (Uniplexed Information and Computing System) operating

system implements a password cipher that simulates M-209 cipher machine used in

World War II and it uses password as an encryption key. This was done to coun-

teract the weaknesses of the cipher [12]. In 1978 study was performed by Robert

Morris on possible attacks against the M-209 cipher key and calculated that average

password length used at that time can be cracked using brute force dictionary attack

against 62 alphanumeric character in approximately 318 hours.

Later version of UNIX start using DES (Data Encryption Standard) for faster en-

cryption [11]. Passwords were used as keys for encrypting the a constant which was

initially zero, 25 iterations were performed and the resulting bits were repacked to

a string of 11 printable characters[13]. In 1977 DES was announced as national

standard for encryption [14].Initially DES was vulnerable and the systems using it

were at risk because password length was limited to eight characters.

2.1.2 Encrypted Passwords

Up till early 80s, user names and passwords were stored in the same file and readable

to all users. In 1988, the concept of password shadowing was introduced by Sun

9

Chapter 2: Literature Review 10

Micro systems which separates user names from passwords and restricts user access

to password hashes and make it readable to only rootuser [12]. The main advantage

of hashing was that it was a one way function and was extremely difficult to reverse

and its slowness adds to the time required [11].

Password auditing and validation tools like Npasswd [15] for checking password for

easy guess ability, Crack [16] developed in 1996, a very powerful tool at the time

cracks password file by performing auditing sweeps. LANMAN hashing was in-

troduced by Microsoft in 1990 in which password length was limited to fourteen

characters which was later compromised. It was followed by NTLM (NT LAN Man-

ager) for windows NT. LANMAN uses DES encryption, it weakens the password

as it reduces the length of password and was not case sensitive. Unlike LANMAN

NTLM uses MD4 hashes. MD4 was introduced by Ronald Rivest in 1990 [17]. It

does not use salting for strong encryption, later on its weaknesses were compromised

in 1995-96 [17].

BSD/OS (Berkeley Software Design) extended DES-based crypt to support long

passwords as up till this time long passwords were not supported which was a major

vulnerability it uses 24bit salt. In 1994 MD5 was introduced with up to 1000 iter-

ations and 48 bit of salting. Linux distributions adopted using MD5 in late 1990s.

Rainbow tables attack tools like Qcrack and Bitslice were introduced in 1977, they

uses rainbow tables and have large databases of pre calculated hashes of dictionary

words [18].

In late 1990s password attacks were extended to networks. Attackers targeted pass-

words in transit by sniffing compromised servers.Introduction protocols like kerberos

and SSH (in 1995) were introduced to provide network authentication without ex-

posing keys. Web developers build application password security around PHP MD5

module but it still lacks salting and hashing in early 2000. NTLM hashing was

10

Chapter 2: Literature Review 11

introduced in windows NT4 2000 and in newer systems.

In 2000 DES encryption was cracked by Electronic Frontier Foundation in 23 hours.

Microsoft worked on NTLM and improved its security in Windows NT and newer

systems by using long passwords and distinction between upper and lower case let-

ters. Microsoft introduces SAM file to store password hashes. To add another layer

of security these SAM files were also encrypted by Microsoft using SYSKey encryp-

tion. SAMDUMP/SAMDUMP2 can recover SYSKey that was used from system

hive by using BKhive to dump the SAM file. This provides hacker with a copy of

user’s hashed password. Also these SYSKeys do not protect data in the memory

[19].

MD5 digest and AES (Advance Encryption Standard) key were introduced in win-

dows vista, windows 7, 8 2008, 2008R2. AES was developed by NIST in 2001 which

is also known as Rijndael. In networked domain environment passwords are stored

in NTDS. DIT database and are centrally managed through active directory. Later

in 2002 government replaced DES by AES as standard for encryption.

With increasing security demanding more and more computational power; attackers

began using distributed computing to increase available computing power. SANS

password calculator estimates that ten character password using both uppercase and

lowercase letters can be cracked in one day time using a cluster GPU.

A 25 GPU password cracking unit was introduced in conference in Norway in 2012

and have the capability of

• 14 character Windows XP password in six minutes.

• Eight character NTLM password in 5.5 hours

• 180 billion MD5 hashes per second.

11

Chapter 2: Literature Review 12

• 63 billion SHA1 per second

• 71000 bcrypt hashes per second

• 363000 SHA512 crypt hashes per second

They were working on to extend the hashcat implementation using virtual open

clusters to support up to 128 GPUs. And they achieved 90% to 95% success rate in

brute forcing against LinkedIn password hash that was leaked online.

With this much computational power available something more was required, so the

concept of two factor authentication was introduced which can be in the form of a

card and pin or password and sms code or one time password tokens.

In 2003 2FA by RSA security take over 72% of the market. Paypal introduces 2FA

in 2007. Blizz authenticator in 2008. Initially in 2010, phone calls were first method

of authetication supported by Duo Security. Later Duo introduced SMS delivered

on time pass codes in early 2011. Duo push was invented in 2010 and released in

2011, it offers asymmetric cryptography and mutually authenticated secure com-

munication over data network [20]. One time password tokens were used by RSA

security till 2011, at the time they had to replace 40 million of its secure ID tokens

because hackers attains the algorithm used to generate one time passwords. There

is also enforcement of security policies and practices related to passwords where user

is forced to use minimum of eight character password. Also the password must con-

tain uppercase, lowercase, numeric and symbols [21]. Users are warned not to store

passwords in simple plain text files and no storage of multiple passwords even in the

encrypted form. Password strength is measured before it is allowed to be selected,

this work is done by special strength checking meters [15]. Even the concept of 3FA

is under consideration which will includes physical token , password and biometric

12

Chapter 2: Literature Review 13

data. Biometric data can be in the form of a finger print scan or a voice print.

The work is still in progress in this field as fool proof security can never be provided

and hackers are coming up with more advanced approaches to compromise a system

by getting in to the system legally by getting password/credentials required illegally.

2.2 Textual Passwords

Most of the techniques used for authentication involve the use of traditional textual

passwords as first step of authentication. These textual passwords are vulnerable

to brute force, dictionary, keyloggers, shoulder surfing and other kind of attacks.

As users tend to select password which they can easily remember so it is far from

fulfilling the requirements of a strong password. It only results in making these

passwords vulnerable to threats.

Password recovery tools like John the Ripper provide dictionaries which can be used

for recovery as well as cracking passwords and have higher success rate against these

weaker passwords [22].

Even with the adaptation of restrictive password policies like the use of special

characters, alphanumeric and combination of upper case and lower case letters in

passwords, it still does not prevent a user from selecting a weak password. Mostly

passwords follow patterns like use of capitalized letter in the start of a password

and numeric in last making these passwords vulnerable to smart attacks but these

passwords are far better than the passwords selected without the enforcement of

any restrictive policy. However, users entering same password repeatedly on multiple

devices are still susceptible to different kind of threats and it requires further actions

13

Chapter 2: Literature Review 14

to be taken in order to minimize such threats.

2.2.1 Two Factor Authentication (2FA)

As per the name suggests it needs more than a user name and a password to log-in

into the system. An extra pass-code or token is always required for second step of

authentication. This token is usually a code sent to some other device owned by

user. It can be sent through a message or as an email from the service provider. As

effective as it sounds against different kind of attacks, it also has its drawbacks and

limitations [23]. One of the major issue in 2FA is its adaptability and acceptance

to users. Very small chunk (6.5%) of users are actually using 2FA provided by

Google and other service providers. 2FA needs more time than usual one factor

authentication systems and like in case of Google 2FA [24].

2.3 Graphical Passwords

With the limitations of textual passwords and their vulnerability to attacks, new

authentication schemes/methods are introduced including the use of pictures as

passwords. Various schemes have been introduced over the past years which can

be classified into two main categories including recall based and recognition based

techniques [25].

14

Chapter 2: Literature Review 15

2.3.1 Recall Based Techniques

In this type of techniques user is asked to reproduce a drawing or to repeat a selection

made earlier at the time of registration. Few techniques are discussed as

Blonder Technique

This scheme was presented by G.E blonder. In this scheme an image with tap regions

is presented to user and user is asked to click in those tap regions and in a specific

sequence as shown in 2.1.

This scheme has certain vulnerabilities in which memorable space is a major one.

As user can not click with full independence because of predetermined tap regions.

Figure 2.1: Blonder Technique: User is presented with an image with tap regions and user is asked to tap those

regions in a specific sequence which user needs to remember at the time of login [26].

15

Chapter 2: Literature Review 16

Pass-Face Scheme

During the registration process, the user is asked to select four images. These images

then need to be identified correctly for two consecutive times. When its time to log-

in; the user is presented with the grid of nine faces and has to choose the previously

selected images [27] as shown in 2.2.

Figure 2.2: Pass-Face Scheme: In this technique user needs to recognize and select set of images selected at the time

of registration. (Source: Suo [28])

However it should be kept in mind that a single password image will be

displayed in each grid. This method is predictable and is affected by certain factors

including attractiveness, gender and race. Pass-faces are very memorable over long

intervals [29, 30].

16

Chapter 2: Literature Review 17

Pass-Point Technique

At the time of registration user is asked to click on random points in a picture and

user has to click on the same points at the time of log in. If clicked points are within

the range of defined tolerance only then user will be logged in to the system [31].

These pass-points are difficult to learn, remember and take comparatively greater

time than textual passwords. These points are also vulnerable to shoulder surfing

attacks with no randomness.

2.3.2 Recognition Based Techniques

In this type of techniques, users are presented with a set of picture and they select

few of them. During authentication process user is again presented with a set images

and they identify and select images they have chosen earlier. Some of the techniques

along with their vulnerabilities are discussed as

Shoulder Surfing Resistant Graphical Password Authentication

A two step authentication technique asking user to select minimum of six images

from a grid of 25 for step I authentication, then to select three questions and to

answer these questions user has to click on images for step II authentication. For

log in phase user has to select correct graphical password in the same sequence as

user will be presented with a grid of random images including first pair of selected

images. By selecting the image displayed at the intersection of row and column of

password pair displayed user will complete first step of authentication. Then the

previously selected images and three questions numbers (instead of whole questions)

17

Chapter 2: Literature Review 18

will appear and user has to click in region of answers as selected at the time of

registration. This technique provides some randomness but asks users to remember

too much including images, order of images and order of questions selected. It

becomes harder and harder to memorize all these things as length of the password

increases [32].

Click Based Graphical Password

This scheme provides two step log in process. The first step involves traditional

textual password whereas second step requires clicks within the defined range on

previously selected image at the time of registration [33]. Similar to pass-point

technique, using same image over and over again provides no protection against

shoulder surfing and keyloggers.

Captcha as Graphical Password (CaRP)

Captcha is another technique which if combined with graphical passwords, has

proven to be very effective against security attack. However the generation of CaRP

images provide an extra load on server side as these captcha images have to be

generated at every log in [34]. Other than that these images are very hard to read

specially for the physically challenged user which results in making it useless for a

certain audience, such an example is shown below

18

Chapter 2: Literature Review 19

Figure 2.3: Captcha as Graphical Password, in this technique users need to enter the distorted text from the image

displayed displayed[34]

Sobrado and Birget Method

This technique prompts user to select images from different objects displayed at the

time registration process then the user has to click inside the area formed by the

selected images to get access [35] as shown in 2.4.

Figure 2.4: Grid of objects for Sobrado and Birget scheme where user needs to click inside the triangle formed by

objects selected at the time of registration. [35]

Display becomes crowded and it becomes harder to remember/recognize

selected objects.

19

Chapter 2: Literature Review 20

S3PAS (Scalable Shoulder Surfing Resistant Textual-Graphical Password

Authentication Scheme)

A Scalable Shoulder Surfing Resistant Textual-Graphical Password Authentication

Scheme provides resistance against shoulder surfing attacks and keyloggers. In this

scheme user is asked to select a user-name and textual password at the time of reg-

istration.

For log-in phase, an image is generated consisting of random characters along with

characters of password selected by user during registration phase. User has to click

within the areas formed by three characters of password scattered randomly in gen-

erated image. Slider window of one character is used to form three paired characters

[36]. For example, if user has four character password, say ”1Cdf” then the following

pairs will be formed according to logic used 1Cd, Cdf, df1 and f1C. Now user has

to click in the area of triangles formed by pairs in the specific sequence to complete

the process of authentication.

2.3.3 Keyloggers and Shoulder Surfing Attacks

How strong a graphical or a textual password is does not matter when every keystroke

is being logged or someone is watching over the shoulder. It doesn’t matter whether

the password is human memorable or not, when it can be recorded in the form of

keystroke or video. Every key pressed by a user is logged by these keyloggers and

user credentials can easily be extracted from these logs. In result attacker can use

these credentials to log-in to the system as legitimate user and can gain access to

system [9].

Same is the case with shoulder surfing, person sitting beside or standing behind a

20

Chapter 2: Literature Review 21

user can see and memorize user credentials. Similarly camera installed at an angle

to record every keystroke without even the knowledge of user. All security measures

no matter how strong cannot do anything if attackers are logged in as legitimate

users and can do whatever they want to do without leaving any trace [10].

2.4 Missing Links in Literature

Many authentication schemes have been proposed over the last decade to protect

user credentials against shoulder surfing and key-logger attacks. There is no open

sources textual-graphical password authentication scheme which protects password

against shoulder surfing attacks and is also user friendly. Adaptability rate for such

schemes is very low.

Work on protection of data against shoulder surfing and keyloggers is more focused

on hiding the credentials in plain sight but still users have to enter password at the

time of login. However this scheme will reduce the gap and will help the researchers

up to some extent in finding the missing links between data protection against shoul-

der surfing attacks and user friendliness. Also this scheme will mitigate shoulder

surfing as user will not need to add their original password at the time of login.

21

Chapter 3

Methods

3.1 Implementation of Textual-Graphical Password

Authentication scheme

In order to make S3PAS (Scalable Shoulder Surfing Resistant Textual-Graphical

Password Authentication Scheme) technique more effective, easier to learn and user

friendly we have made certain modifications/improvements in our proposed tech-

nique.

3.1.1 Registrations Phase

In our proposed scheme, users are asked to enter their full name, a unique user-name

and a password with the minimum length of 12 characters at the time of registration.

Interface for registration is shown in 3.1 (a). User credentials are stored in Firebase.

22

Chapter 3: Methods 23

Figure 3.1: Randomly Generated Grid, Circles show password characters in a token and lines represent the area

where user needs to click. (a)Shows the login interface where user provides username, and password will be fetched

from Firebase after clicking login button. (b) Represents Dot Logic where user needs to click any character pointed

by arrow. (c) Shows Line logic where user needs to click on characters lying on line between token characters. (d)

Represents Triangle Logic where user needs to click in the area enclosed by triangle formed by token characters and

in the end user needs to click login.

3.1.2 Login Phase

At the time of log-in, user is asked to enter previously selected user-name in step I of

authentication as shown in fig 3.1(b). At the back end, password against the entered

user name is requested and is split into group of three characters each; starting from

the first character. These groups are named as tokens. These tokens have three

types depending upon the similarity of three characters in a token which we will

explain later with example. The type of token will determine what type of logic will

be used in authentication process.

Lets take an example in order to explain how the proposed technique works. Creden-

tials required at the time of log-in are username e.g. ”all@gm.com” and password

e.g. ”111weeCaR”. In first step of authentication user will enter ”all@gm.com”

23

Chapter 3: Methods 24

against which password will be requested from database (Firebase). Password se-

lected for this example will cover all three types of token and authentication logic

implemented according to type of token. Password will be converted in to tokens as

follows

• Token1: 111 (Type1: Consists of three same characters)

• Token2: wee (Type2: Consists of two same characters))

• Token3: CaR (Type3: Consists of three different characters))

A random grid of 5x5 will be displayed consisting of random characters along with

first token characters scattered randomly, as type1 token consists of all three same

character so it will be displayed only one time at a random position in grid as shown

in figure 3.1 (c).

For the type1 token we named the logic used for authentication as ”Dot Logic”.

In this logic user has to click on a button in grid above, below, before or after the

token character displayed in grid as indicated in figure 3.1 (d) by arrows. Here four

characters (”=F) are the right choice. If the user clicks on right button, authflag

will be set as true otherwise it will be set as False. After making first click on grid,

another grid with random characters along with second token characters scattered

randomly will be displayed. As in type2 token two of the three characters are dif-

ferent so those two different characters will be displayed in grid at random positions

as shown in figure

For type2 token logic used for authentication is named as ”Line Logic”, as

the name clearly indicates that user has to click on any button on the line between

the two token characters. Here # and n are the right options. Here authflag will be

24

Chapter 3: Methods 25

Figure 3.2: Implementation Sequence of Proposed Technique: Scheme starts with username as input, if username is

valid password is fetched from Firebase and tokens are generated. Each token is placed randomly in grid of 5x5 and

user is asked to click in grid according to logic. Click coordinates when compared with implemented logic decides

the status of “Auth Flag”. At the end of password if “Auth Flag” status is True user will get access otherwise

process stats again.

set as True only when user has selected the right option and also the previous state

of the authflag is True, if any condition fails authflag will be set to False.

After making second click, again user will be presented with a grid of random char-

acters including all three different characters from type3 token scattered randomly

as shown in figure 3.1 in encircled form for clarity.

For type3 token logic used for authentication is named as ”Triangle Logic” because

here user needs to click on any button within the area of triangle. Here the best

and the most clear right option is ’0’, but in order to make this scheme more user

friendly some tolerance introduced and ’—’ is also a right option as this button also

lies within the area of the triangle. For authflag, same conditions will be applied as

in previous step.

25

Chapter 3: Methods 26

3.2 Algorithm For Proposed Approach

Here algorithm of proposed technique along with flow diagram is given for more

clarity and better understanding of how technique works.

1 Function Procedure (username)

2 get password from Firebase (username);

3 token= preprocessing(password);

4 while End of password do

5 determine logic (token);

6 if token type 1 then

7 Dot logic(token);

8 else if token type 2 then

9 Line Logic(token);

10 else

11 triangle logic (token);

12 end

13 grid[][]= generate random grid(token);

14 get token coordinated(token, grid);

15 Function on click

16 get click coordinates(click);

17 end

18 contd...

26

Chapter 3: Methods 27

18 Function Authentication(click coordinates, token coordinates)

19 case Token Type 1 do

20 if click coordinate is above, below, right or left to token coordinates

then

21 Auth Flag= True;

22 else

23 Auth Flag= False;

24 end

25 end

26 case Token Type 2 do

27 if click coordinate on line and between token coordinates then

28 Auth Flag= True;

29 else

30 Auth Flag= False;

31 end

32 end

33 case Token Type 3 do

34 if click coordinate in area triangle formed by token coordinates then

35 Auth Flag= True;

36 else

37 Auth Flag= False;

38 end

39 end

40 contd...

27

Chapter 3: Methods 28

40 Function Login(Auth Flag, End of Password)

41 if end of Password && Auth Flag then

42 Authentication = Success;

43 else

44 Authentication = Fail;

45 end

3.3 Description of Algorithm

This technique starts with username as input from user. This username is also the

input of a function which gets password from Firebase stored against a particular

username, after confirming the authenticity of username. Then a while loop on line

4 will start, which will execute till the length of password. In this while loop func-

tion “determine logic” function on line 5 will decide what logic will be used based

on the type of token generated.

The generated token will be placed randomly in a grid of 5x5 along with other ran-

domly generated characters. “get token coordinates” function on line 14 will get the

grid coordinates of password characters which will be compared with coordinates of

click received using “get click coordinates” function on line 16. On line 17 “Authen-

tication” function will determine depending on token type (Type 1 on line 18, type

2 on line 25 and type 3 on line 32) whether click made was in right area or not. At

the end of password “Login” function on line 40 will determine that authentication

was successful or not based on the status of Auth Flag.

28

Chapter 3: Methods 29

3.4 Time Complexity of Algorithm

Time taken for execution of our algorithm depends on the size of input so running

time of algorithm is defined as the size of input ”n” so max number of tokens will

be n/3. Also execution time for each line is different. Assuming cost for ith line is

Ci. Algorithm with cost of lines alongwith with number of time a line will execute

is presented below

1 Function Procedure (username)

2 get password from Firebase (username); 0 * 2

3 token= preprocessing(password); 0 * 2

4 while End of password c4 * n/3

5 do

6 determine logic (token); c6 * n/3

7 if token type 1 0 * n/3

8 then

9 Dot logic(token); c9 * n/3

10 else if token type 2 0 * n/3

11 then

12 Line Logic(token); c12 * n/3

13 else

14 triangle logic (token); c14 * n/3

15 end

16 end

29

Chapter 3: Methods 30

17 contd....

18 grid[][]= generate random grid(token) c17 * n/3;

19 get token coordinated(token, grid); c18 * n/3

20 Function on click

21 get click coordinates(click); c20 * n/3

22 Function Authentication(click coordinates, token coordinates)

23 CaseToken Type 1 c22 * n/3

24 Comparing click and token coordinates;

25 Return True or False on basis of comparison;

26 CaseToken Type 2 c25 * n/3

27 Comparing click and token coordinates;

28 Return True or False on basis of comparison;

29 CaseToken Type 3 c28 * n/3

30 Comparing click and token coordinates;

31 Return True or False on basis of comparison;

32 Function Login(Auth Flag, End of Password)

33 if end of Password && Auth Flag 0 * n/3

34 then

35 Authentication = Success;

36 else

37 Authentication = Fail;

38 end

30

Chapter 3: Methods 31

Now adding up execution time of all lines for execution time of complete

algorithm for one user. Taking ”n” common from all individual terms we will have

the following equation

T (n) = n(
c4

3
+
c6

3
+
c9

3
+
c12

3
+
c14

3
+
c17

3
+
c18

3
+
c20

3
+
c21

3
+
c22

3
+
c25

3
+
c28

3
) (3.1)

Execution time can be written in the form of linear function ax+b. As linear algo-

rithms are closest to ideal which proves that our proposed technique is better than

existing approaches in terms of efficiency as well.

31

Chapter 4

Results & Discussion

4.1 Analysis of Technique

In order to demonstrate the effectiveness of proposed technique and its advantages

over existing techniques we define the following notations to use in this section.

• N: Selected Password

• |N |: Length of selected password.

• k: |N |/3: Number of tokens.

• P: Password space (All printable characters)

• P1: Possible passwords in one grid

32

Chapter 4: Results & Discussion 33

Here we would take the worst case scenario and minimum length of password allowed

and see how propose system is going to respond.

|N | = 12 (4.1)

k = 4 (4.2)

P : 96 (4.3)

The number of possible passwords, out of 25 characters three taken at a time with

one click will be:

P1 = 25C3 =
25!

3! ∗ 22!
= 2300Passwords (4.4)

Every time grid generated will consist of random characters at random positions

within the grid. Only characters of first token will be displayed every time for first

grid of every log-in attempt. Token characters present in grid will also have random

positions for every attempt.

For one grid with the introduction of randomness of selection of characters from

password space P considering three characters remain same we will have the follow-

ing number of possible passwords:

P2 =
(96− 3)!

22! ∗ (93− 22)!
= 1.210090E + 21Passwords (4.5)

Now for worst case scenario, considering the fact that, even if the attackers get hold

of one token from password. They will have to put ’k’ times the effort required to

crack one password in order to get hold of complete password.

33

Chapter 4: Results & Discussion 34

4.2 Comparison with existing methods and tech-

niques

In this section we will be comparing our proposed technique with existing state of

the art techniques based on certain factors. In the table below, different methods

are evaluated on the basis of resistance they are providing against different type of

attacks [23]. Our main focus is to provide a scheme which mainly provides complete

protection against shoulder surfing and keyloggers while competing with existing

techniques and methods. Table 4.1 provides a generic comparison of existing meth-

ods whereas table 4.2 provides the comparison of techniques discussed which will

provide better understanding of vulnerabilities and effectiveness [37].

34

Chapter 4: Results & Discussion 35

Method

Resistance

against at-

tacks

Processing

Time

Protection

Level

User Ac-

ceptance &

Adaptability

Extra Cost

Textual

Passwords
No Fast Low High No

Graphical

Passwords

Shoulder

Surfing
Medium Medium Low No

Bio-metrics

Shoulder

Surfing ,

Brute Force,

keyloggers,

Phishing

Medium High Medium Yes

Two Factor

Authenti-

cation

Brute Force Slow Low Low Yes

Textual-

Graphical

Passwords

Shoulder

Surfing, key-

loggers, Brute

Force

Fast High Medium No

Table 4.1: Comparison and Evaluation Of Existing Schemes On the Basis of Resistance Against Shoulder Surfing

Attacks And User Acceptance

35

Chapter 4: Results & Discussion 36

Technique Advantages Disadvantages Key Space
Ease of use Range

(1-5)

Randomness Scale

(1-5)

Proposed

Technique

Scale-able, Good

generic security,

keyloggers and

Shoulder surfing

resistant

Effort in Finding

correct option
Large **** *****

Pass-Point Complexity

Difficulty in

remembering pass-

points, predictable

Medium ** **

Shoulder

Surfing

Resistant

Graphical

Password

Two step authenti-

cation

Image generation

at every log in

Medium, hot spots

remain an issue
*** ***

Click

Based

Graphical

Password

Two step authenti-

cation

Image generation

at every log in
Large *** **

Pass-Face
Complexity, faces

easy to remember

Predictable, af-

fected by race,

gender etc

Medium ** **

Blonder

Complexity, Im-

ages easier to

remember

Crowded display

makes it hard

to find selected

images, Image

generation at every

log in, load on

server side

Large ** ****

Captcha as

Graphical

Password

Effective when

used in combina-

tion, protection

against bots

Extra load on

server side, harder

to read, not suit-

able for physically

challenged users

Large * ***

S3PAS

Shoulder surfing

and key logger

resistant

Image generation

at every log-in
Large **** ****

Table 4.2: Authentication Schemes Comparison On The Basis of Key Space, Ease Of Use And Randomness

36

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Whenever users provide their credentials to access any system on a public device or

even on their personal device in public place, they are vulnerable to shoulder surfing,

keyloggers and brute force attacks. In this study we have implemented a technique

which introduces session password based on original password already registered,

these session password will change for every login attempt. Hence providing protec-

tion against mentioned capture attacks.

Main advantage of this approach is that, only three password characters i.e. one

token from original password will be displayed at one time in a grid. Also with

the introduction of randomness in grids possible password combination to crack one

token will be 1.210090E +21.

In this technique we are using a grid of 5X5 which provides better visibility to users

as it does not cause over crowding, hence increasing the userfriendliness. This tech-

37

Chapter 5: Conclusion and Future Work 38

nique provides overall balance in terms of protection against capture attacks, ease

of use and it is compatible with all operating systems. Also time complexity of

proposed algorithm is of the order O(n) which is better than existing techniques.

5.2 Future Work

First we aim to implement our approach on the server end this would help us to

incorporate this scheme in existing applications. Also it will allow us complete login

process every time without even calling password.

We will also make extensions and plugins for browsers, where saved passwords can

be stored securely and can only be accessed by going through the login process of

implemented technique.

In last we aim to make complete password vault with extended features, which can

compete with existing systems and will provide users with basic as well as corporate

level security for their confidential data access control.

38

Bibliography

[1] S. S. Greene, “Security policies and procedures,” Principles and practices. Up-

per Saddle, 2006.

[2] C. D. Schou and K. J. Trimmer, “Information assurance and security,” Journal

of Organizational and End User Computing, vol. 16, no. 3, p. 1, 2004.

[3] W. V. Maconachy, C. D. Schou, D. Ragsdale, and D. Welch, “A model for

information assurance: An integrated approach,” in Proceedings of the 2001

IEEE Workshop on Information Assurance and Security, vol. 310. United

States Military Academy, West Point. IEEE, 2001.

[4] G. J. Simmons, “A survey of information authentication,” Proceedings of the

IEEE, vol. 76, no. 5, pp. 603–620, 1988.

[5] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are belong to

us: automated identity theft attacks on social networks,” in Proceedings of the

18th international conference on World wide web. ACM, 2009, pp. 551–560.

[6] E. A. Stobert, “Graphical passwords and practical password management,”

Ph.D. dissertation, Ph. D. thesis, Carleton University Ottawa, Ottawa, 2015.

39

Bibliography 40

[7] A. H. Lashkari, S. Farmand, D. Zakaria, O. Bin, D. Saleh et al., “Shoul-

der surfing attack in graphical password authentication,” arXiv preprint

arXiv:0912.0951, 2009.

[8] R. Biddle, S. Chiasson, and P. C. Van Oorschot, “Graphical passwords: Learn-

ing from the first twelve years,” ACM Computing Surveys (CSUR), vol. 44,

no. 4, p. 19, 2012.

[9] F. Tari, A. Ozok, and S. H. Holden, “A comparison of perceived and real

shoulder-surfing risks between alphanumeric and graphical passwords,” in Pro-

ceedings of the second symposium on Usable privacy and security. ACM, 2006,

pp. 56–66.

[10] S. Sagiroglu and G. Canbek, “Keyloggers,” IEEE technology and society mag-

azine, vol. 28, no. 3, 2009.

[11] M. Bishop and D. V. Klein, “Improving system security via proactive password

checking,” Computers & Security, vol. 14, no. 3, pp. 233–249, 1995.

[12] D. V. Klein, “Foiling the cracker: A survey of, and improvements to, password

security,” in Proceedings of the 2nd USENIX Security Workshop, 1990, pp.

5–14.

[13] R. Morris and K. Thompson, “Password security: A case history,” Commun.

ACM, vol. 22, no. 11, pp. 594–597, Nov. 1979. [Online]. Available:

http://doi.acm.org/10.1145/359168.359172

[14] D. Coppersmith, “The data encryption standard (des) and its strength against

attacks,” IBM journal of research and development, vol. 38, no. 3, pp. 243–250,

1994.

40

Bibliography 41

[15] M. Bishop, “Proactive password checking,” in 4th Workshop on Computer Se-

curity Incident Handling. Citeseer, 1992, pp. 1–9.

[16] M. Garcia, “2006-331: Password auditing tools,” age, vol. 11, p. 1, 2006.

[17] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu, “Cryptanalysis of the hash

functions md4 and ripemd,” in Advances in Cryptology–EUROCRYPT 2005.

Springer, 2005, pp. 1–18.

[18] N. Provos and D. Mazieres, “A future-adaptable password scheme.” in USENIX

Annual Technical Conference, FREENIX Track, 1999, pp. 81–91.

[19] C. Walker, “Password security thirty five years later,” SANS Info Sec, 2014.

[20] T. Petsas, G. Tsirantonakis, E. Athanasopoulos, and S. Ioannidis, “Two-factor

authentication: Is the world ready?: Quantifying 2fa adoption,” in

Proceedings of the Eighth European Workshop on System Security, ser. EuroSec

’15. New York, NY, USA: ACM, 2015, pp. 4:1–4:7. [Online]. Available:

http://doi.acm.org/10.1145/2751323.2751327

[21] W. C. Summers and E. Bosworth, “Password policy: the good, the bad, and

the ugly,” in Proceedings of the winter international synposium on Information

and communication technologies. Trinity College Dublin, 2004, pp. 1–6.

[22] M. Dell’Amico, P. Michiardi, and Y. Roudier, “Password strength: An empirical

analysis,” in INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.

[23] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “Passwords and the

evolution of imperfect authentication,” Communications of the ACM, vol. 58,

no. 7, pp. 78–87, 2015.

41

Bibliography 42

[24] A. De Luca and J. Lindqvist, “Is secure and usable smartphone authentication

asking too much?” Computer, vol. 48, no. 5, pp. 64–68, 2015.

[25] H. K. Sarohi and F. U. Khan, “Graphical password authentication schemes:

current status and key issues,” Int. J. Eng. Innovative Technol.(IJEIT), vol. 10,

no. 2, 2013.

[26] A. Fulkar, S. Sawla, Z. Khan, and S. Solanki, “A study of graphical passwords

and various graphical password authentication schemes,” World, vol. 1, no. 1,

pp. 04–08, 2012.

[27] D. Davis, F. Monrose, and M. K. Reiter, “On user choice in graphical password

schemes.” in USENIX Security Symposium, vol. 13, 2004, pp. 11–11.

[28] X. Suo, “A design and analysis of graphical password,” 2006.

[29] T. Valentine, “Memory for passfaces after a long delay,” Technical Report,

Goldsmiths College, University of London, Tech. Rep., 1999.

[30] ——, “An evaluation of the passface personal authentication system,” Tech.

Rep., 1998.

[31] S. Wiedenbeck, J. Waters, J.-C. Birget, A. Brodskiy, and N. Memon, “Authen-

tication using graphical passwords: Effects of tolerance and image choice,” in

Proceedings of the 2005 symposium on Usable privacy and security. ACM,

2005, pp. 1–12.

[32] M. A. S. Gokhale and V. S. Waghmare, “The shoulder surfing resistant graph-

ical password authentication technique,” Procedia Computer Science, vol. 79,

pp. 490–498, 2016.

42

Bibliography 43

[33] V. S. Borkar and P. C. Golar, “Click based graphical passward with text pass-

word authentication,” International Journal of Computer Science and Network

Security (IJCSNS), vol. 15, no. 11, p. 76, 2015.

[34] B. B. Zhu, J. Yan, G. Bao, M. Yang, and N. Xu, “Captcha as graphical pass-

words—a new security primitive based on hard ai problems,” IEEE transactions

on information forensics and security, vol. 9, no. 6, pp. 891–904, 2014.

[35] L. Sobrado and J. Birget, “Graphical passwords. the rutgers scholar: An elec-

tronic bulletin of undergraduate research, volume 4, 2002,” 2004.

[36] H. Zhao and X. Li, “S3pas: A scalable shoulder-surfing resistant textual-

graphical password authentication scheme,” in Advanced Information Network-

ing and Applications Workshops, 2007, AINAW’07. 21st International Confer-

ence on, vol. 2. IEEE, 2007, pp. 467–472.

[37] M. Raza, M. Iqbal, M. Sharif, and W. Haider, “A survey of password attacks

and comparative analysis on methods for secure authentication,” World Applied

Sciences Journal, vol. 19, no. 4, pp. 439–444, 2012.

43

Appendices

44

Appendix A

Main

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8">

<meta http-equiv="X-UA-Compatible" content="IE=edge">

<meta name="viewport" content="width=device-width, initial-scale=1">

<title>Authenticate</title>

<link

href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"

rel="stylesheet">

<link

href="//maxcdn.bootstrapcdn.com/font-awesome/4.6.3/css/font-awesome.min.css"

rel="stylesheet">

<link href="css/main.css" rel="stylesheet">

<link href="css/grid.css" rel="stylesheet">

45

Appendix A 46

<script type="text/javascript" src="js/functions.js"></script>

<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and

media queries -->

<!-- WARNING: Respond.js doesn’t work if you view the page via file:// -->

<!--[if lt IE 9]>

<script

src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>

<script

src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>

<![endif]-->

</head>

<body>

<div id="pre_auth" style="display: none;">

<div class="container">

<div class="row">

<div class="col-sm-12">

<h2 class="main-title"><i class="fa fa-cube"></i> Textual

Graphical Authentication</h2>

</div>

<div class="col-sm-6 col-sm-offset-3 col-md-4 col-md-offset-4">

<div id="user_signup_div" class="dark-box">

<form class="user_signup">

46

Appendix A 47

<h3>Signup</h3>

<p>Fill in the form below and click Signup button:</p>

<div id="signup_error" class="form-group text-danger

errors"></div>

<div class="form-group">

<input type="email" name="thisUsername"

placeholder="Username" class="form-control"

required>

</div>

<div class="form-group">

<input type="password" name="password"

placeholder="Password" class="form-control"

required>

</div>

<div class="form-group">

<input type="text" name="display_name"

placeholder="Full Name" class="form-control"

required>

</div>

<div class="form-group">

<button type="submit" name="login" class="btn

btn-primary"><i class="fa fa-user"></i>

47

Appendix A 48

Signup</button>

<button type="button" id="btn_cancel_signup"

name="btn_cancel_signup" class="btn

btn-default">Cancel</button>

</div>

</form>

</div>

<div id="user_signin_div" class="dark-box">

<form class="user_login">

<h3>Login</h3>

<p>Enter your username to continue...</p>

<div id="login_error" class="form-group text-danger

errors">

</div>

<div class="form-group">

<input type="text" name="thisUsername"

placeholder="Username" class="form-control"

required>

</div>

48

Appendix A 49

<div id="pass-grid" class="form-group" style="display:

none">

<table class="table table-bordered p-grid">

<tbody>

<tr>

<td><button type="button" id="b0"

value="0"></button></td>

<td><button type="button" id="b1"

value="1"></button></td>

<td><button type="button" id="b2"

value="2"></button></td>

<td><button type="button" id="b3"

value="3"></button></td>

<td><button type="button" id="b4"

value="4"></button></td>

</tr>

<tr>

<td><button type="button" id="b5"

value="5"></button></td>

<td><button type="button" id="b6"

value="6"></button></td>

<td><button type="button" id="b7"

value="7"></button></td>

<td><button type="button" id="b8"

value="8"></button></td>

<td><button type="button" id="b9"

value="9"></button></td>

49

Appendix A 50

</tr>

<tr>

<td><button type="button" id="b10"

value="10"></button></td>

<td><button type="button" id="b11"

value="11"></button></td>

<td><button type="button" id="b12"

value="12"></button></td>

<td><button type="button" id="b13"

value="13"></button></td>

<td><button type="button" id="b14"

value="14"></button></td>

</tr>

<tr>

<td><button type="button" id="b15"

value="15"></button></td>

<td><button type="button" id="b16"

value="16"></button></td>

<td><button type="button" id="b17"

value="17"></button></td>

<td><button type="button" id="b18"

value="18"></button></td>

<td><button type="button" id="b19"

value="19"></button></td>

</tr>

<tr>

50

Appendix A 51

<td><button type="button" id="b20"

value="20"></button></td>

<td><button type="button" id="b21"

value="21"></button></td>

<td><button type="button" id="b22"

value="22"></button></td>

<td><button type="button" id="b23"

value="23"></button></td>

<td><button type="button" id="b24"

value="24"></button></td>

</tr>

</tbody>

</table>

</div>

<div class="form-group">

<button type="submit" name="login" class="btn

btn-success">Login</button>

<button type="button" id="btn_signup"

name="btn_signup" class="btn

btn-info">Signup</button>

<button type="button" id="btn_cancel_login"

name="btn_cancel_login" class="btn

btn-default">Cancel</button>

</div>

</form>

51

Appendix A 52

</div>

</div>

<div class="clearfix"></div>

</div>

</div>

</div>

<div id="post_auth" class="container" style="display: none;">

<div class="row">

<div class="col-sm-6 col-sm-offset-3">

<h2 class="text-center">Welcome <span

id="display_name"></h2>

<ul class="my-link-list">

<i class="fa

fa-google"></i> Google

<a href="http://yahoo.com" target="_blank"<i class="fa

fa-yahoo"></i> Yahoo

<p class="text-center"><a href="#" id="signout" class="btn

btn-success">Sign Out</p>

</div>

<div class="clearfix"></div>

</div>

52

Appendix A 53

</div>

<script type="text/javascript">

thisUser = null;

rand1 = null; // first random number

x = -3, incr = 3; // for increment till password length

c1=null,r1=null;

c2=null,r2=null;

c3=null,r3=null;

loc = null;

loc2 = null;

maxRow = null;

minRow = null;

maxCol = null;

minCol = null;

password = null;

pArray = new Array(); // password.split(’’);

plength = null; // password.length;

randomNumbers = new Array();

p1=null, p2=null, p3=null;

authflag = true, processStarted = processCompleted = false;

</script>

<script

src="//ajax.googleapis.com/ajax/libs/jquery/1.12.4/jquery.min.js"></script>

53

Appendix A 54

<script

src="//maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

<script src="//www.gstatic.com/firebasejs/3.4.1/firebase.js"></script>

<script src="//www.gstatic.com/firebasejs/3.4.0/firebase-app.js"></script>

<script

src="//www.gstatic.com/firebasejs/3.4.0/firebase-auth.js"></script>

<script

src="//www.gstatic.com/firebasejs/3.4.0/firebase-database.js"></script>

<script src="js/functions.js"></script>

<script>

// Initialize Firebase

var config = {

apiKey: "AIzaSyAnaNMCe5ul4SOr9ZLinnc-DCtB5u2pGKI",

authDomain: "sohaibk-b183a.firebaseapp.com",

databaseURL: "https://sohaibk-b183a.firebaseio.com",

storageBucket: "sohaibk-b183a.appspot.com",

messagingSenderId: "130990933079"

};

firebase.initializeApp(config);

</script>

<script type="text/javascript">

$(document).ready(function(){

firebase.auth().onAuthStateChanged(function(user) {

if (user)

54

Appendix A 55

{

thisUser = user;

postLogin();

}

else

preLogin();

});

$("#btn_signup").click(function(e){

$("#user_signin_div").fadeOut(function(){

$("#user_signup_div").show();

});

});

$(".user_signup").submit(function(e){

e.preventDefault();

var thisElem = $(this);

var email = $(’input[name=thisUsername]’, thisElem).val();

var password = $(’input[name=password]’, thisElem).val();

var displayName = $(’input[name=display_name]’, thisElem).val();

$("#signup_error").html(’’);

55

Appendix A 56

firebase.auth().createUserWithEmailAndPassword(email,

password).then(function(user){

thisUser = user;

user.updateProfile({

displayName: displayName

}).then(function(user){

firebase.database().ref(’users/’ +

Base64.encode(email)).set({

password: password

});

postLogin();

});

}).catch(function(error) {

var errorCode = error.code;

var errorMessage = error.message;

$("#signup_error").html(error.message);

});

});

/**

56

Appendix A 57

* Handle cancel signup

*/

$("body").on("click", "#btn_cancel_signup", function(e){

$("#user_signup_div").fadeOut(function(){

$("#user_signin_div").show();

});

});

$(".user_login").submit(function(e){

e.preventDefault();

var thisElem = $(this);

var thisUsername = $(’input[name=thisUsername]’, thisElem).val();

if (!processCompleted)

{

var decodedUsername = Base64.encode(thisUsername);

var userPath = ’users/’ + decodedUsername;

firebase.database().ref(userPath).once(’value’).then(function(snapshot)

{

var snap = snapshot.val();

57

Appendix A 58

if (snap == null)

{

tryAgain(’Invalid username or password’, false);

return false;

}

$("#login_error").html(’’);

password = snapshot.val().password;

pArray = password.split(’’);

plength = password.length;

determineLogic();

$("#pass-grid").slideDown();

thisElem.addClass("challenged");

$("input[name=thisUsername]").attr(’readonly’, true);

processStarted = true;

});

}

else

{

$("#login_error").html(’’);

if (authflag == false)

58

Appendix A 59

{

tryAgain(’Invalid username or password’, true);

return false;

}

firebase.auth().signInWithEmailAndPassword(thisUsername,

password).then(function(user){

thisUser = user;

postLogin();

}).catch(function(error) {

var errorCode = error.code;

var errorMessage = error.message;

$("#login_error").html(error.message);

});

}

});

/**

* Handle cancel login

*/

$("body").on("click", "#btn_cancel_login", function(e){

59

Appendix A 60

e.preventDefault();

resetProcess();

});

$("#signout").click(function(e){

e.preventDefault();

firebase.auth().signOut().then(function() {

thisUser = null;

preLogin();

}, function(error) {

alert(error.message);

});

});

/**

* Handle the button click on the grid

*/

$(’.p-grid button’).click(function(){

ClickedButtonValue = $(this).val();

60

Appendix A 61

authflag = checkAuth();

console.log(authflag);

if (x == (plength - 3))

processCompleted = true;

determineLogic();

});

/**

* Handle try again request

*/

$("body").on("click", "#link-try-again", function(e){

e.preventDefault();

resetProcess();

});

});

</script>

</body>

</html>

61

Appendix B

Function

var Base64 =

{_keyStr:"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/="

,encode:function(e){var t="";var n,r,i,s,o,u,a;var

f=0;e=Base64._utf8_encode(e);while(f<e.length)

{n=e.charCodeAt(f++);r=e.charCodeAt(f++);

i=e.charCodeAt(f++);s=n>>2;o=(n&3)<<4|r>>4;

u=(r&15)<<2|i>>6;a=i&63;if(isNaN(r)){u=a=64}else

if(isNaN(i)){a=64}t=t+this._keyStr.charAt(s)+this

._keyStr.charAt(o)+this._keyStr.charAt(u)+this._keyStr.charAt(a)}return

t},decode:function(e){var t="";

var n,r,i;var s,o,u,a;var f=0;e=e.replace(/[^A-Za-z0-9+/=]/g,"");

while(f<e.length){s=this._keyStr.indexOf(e.charAt(f++));

o=this._keyStr.indexOf(e.charAt(f++));

u=this._keyStr.indexOf(e.charAt(f++));

a=this._keyStr.indexOf(e.charAt(f++));n=s<<2|o>>4;

r=(o&15)<<4|u>>2;

62

Appendix B 63

i=(u&3)<<6|a;t=t+String.fromCharCode(n);

if(u!=64){t=t+String.

fromCharCode(r)}if(a!=64){t=t+String.fromCharCode(i)}}t=Base64._utf8_decode(t);

return t},_utf8_encode:function(e){e=e.replace(/rn/g,"n");var t="";

for(var n=0;n<e.length;n++){var r=e.charCodeAt(n);

if(r<128){t+=String.fromCharCode(r)}else

if(r>127&&r<2048){t+=String.fromCharCode(r>>6|192);

t+=String.fromCharCode(r&63|128)}else{t+=String.fromCharCode(r>>12|224);

t+=String.fromCharCode(r>>6&63|128);

t+=String.fromCharCode(r&63|128)}}return t},_utf8_decode:function(e){var

t="";

var n=0;var r=c1=c2=0;while(n<e.length){r=e.charCodeAt(n);

if(r<128){t+=String.fromCharCode(r);

n++}else if(r>191&&r<224){c2=e.charCodeAt(n+1);t

+=String.fromCharCode((r&31)<<6|c2&63);

n+=2}else{c2=e.charCodeAt(n+1);

c3=e.charCodeAt(n+2);

t+=String.fromCharCode((r&15)<<12|(c2&63)<<6|c3&63);

n+=3}}return t}}

/**

* This will return random string

*

* @return String, this will be the random number

*/

function getRand()

{

63

Appendix B 64

return Math.floor(Math.random() * 24) + 1;

}

function getchar()

{

return Math.floor(Math.random() * (126 - 32));

}

function getRow(indexPoint)

{

if(indexPoint >=0 && indexPoint <= 4)

{ return 0;}

if(indexPoint >=5 && indexPoint <= 9)

{ return 1;}

if(indexPoint >=10 && indexPoint <= 14)

{ return 2;}

if(indexPoint >=15 && indexPoint <= 19)

{ return 3;}

if(indexPoint >=20 && indexPoint <= 24)

{ return 4;}

64

Appendix B 65

}

function getMax(num1,num2,num3)

{

maxnum = num1;

if(num2 > maxnum)

{ maxnum = num2;}

if(num3 > maxnum)

{ maxnum = num3;}

return maxnum;

}

function getMin(num1,num2,num3)

{

maxnum = num1;

if(num2 < maxnum)

{ maxnum = num2;}

if(num3 < maxnum)

{ maxnum = num3;}

return maxnum;

}

65

Appendix B 66

function dot()

{

var inc = 0;

var y = null;

rand1 = getRand();

$("#b" + rand1).text(pArray[0 + x]);

while(inc < 25) // filling rest of the grid

{

y= String.fromCharCode(getchar() + 32);

while(y == pArray[0 + x]) // making sure that pword characters

dont repeat.

y= String.fromCharCode(getchar() + 32);

if (inc == rand1)

inc = inc +1;

else

{

$("#b" + inc).text(y);

inc = inc + 1;

}

}

66

Appendix B 67

}

function line ()

{

var inc = 0;

var y = null;

rand1 = getRand();

loc = rand1;

loc2 = null;

$("#b" + rand1).text(pArray[0 + x]);

rand1 = getRand();

loc2 = rand1

while (loc == rand1 || loc == (rand1 + 5) || loc == (rand1 - 5) || loc

== (rand1 + 1) || loc == (rand1 - 1) || loc == (rand1 - 4)|| loc ==

(rand1 - 6) || loc == (rand1 + 4)|| loc == (rand1 + 6))

{

rand1 = getRand();

loc2 = rand1;

}

if (pArray[0 + x] == pArray[1 + x]) // checking which two are same

then printing the two different ones

{

67

Appendix B 68

$("#b" + rand1).text(pArray[2 + x]);

} else {

$("#b" + rand1).text(pArray[1 + x]);

}

//////////////////////////////////

while (inc < 25)

{

y = String.fromCharCode(getchar() + 32);

while (y == pArray[0 + x] || y == pArray[1 + x] || y == pArray[2 +

x]) // making sure that pword characters dont repeat.

{

y = String.fromCharCode(getchar() + 32);

}

if (inc == loc || inc == loc2) {

inc = inc + 1;

} else {

$("#b" + inc).text(y);

inc = inc + 1;

}

}

}

function triangle ()

{

loc = null;

68

Appendix B 69

loc2 = null;

rand1 = getRand(); //random number

loc = rand1;

$("#b" + loc).text(pArray[0 + x]); //assignment

p1 = loc;

rand1 = getRand(); //2nd random number

console.log("rand1 : " + loc);

while (loc == rand1 || loc == (rand1 + 5) || loc == (rand1 - 5) ||

loc == (rand1 + 1) || loc == (rand1 - 1))

{

rand1 = getRand();

loc2 = rand1;

}

loc2 = rand1;

console.log("rand2 : " + loc2);

$("#b" + loc2).text(pArray[1 + x]); //2nd assignment

p2 = loc2;

rand1 = getRand(); // 3rd random number

p3 = rand1; // edge cases can also be checked here as well leaving

this to do later

// finding rows and coloumns

c1 = p1 % 5;

r1 = getRow(p1);

c2 = p2 % 5;

r2 = getRow(p2);

c3 = p3 % 5;

r3 = getRow(p3);

69

Appendix B 70

maxRow = getMax(r1, r2, r3);

minRow = getMin(r1, r2, r3);

maxCol = getMax(c1, c2, c3);

minCol = getMin(c1, c2, c3);

// edge cases check

while (minRow == maxRow || minCol == maxCol || loc == rand1 || loc ==

(rand1 + 5) || loc == (rand1 - 5) || loc == (rand1 + 1) || loc ==

(rand1 - 1) ||

loc2 == rand1 || loc2 == (rand1 + 5) || loc2 == (rand1 - 5) ||

loc2 == (rand1 + 1) || loc2 == (rand1 - 1))

{

rand1 = getRand();

p3 = rand1;

// finding rows and coloumns

c1 = p1 % 5;

r1 = getRow(p1);

c2 = p2 % 5;

r2 = getRow(p2);

c3 = p3 % 5;

r3 = getRow(p3);

maxRow = getMax(r1, r2, r3);

minRow = getMin(r1, r2, r3);

maxCol = getMax(c1, c2, c3);

minCol = getMin(c1, c2, c3);

}

console.log("rand3 : " + rand1);

$("#b" + rand1).text(pArray[2 + x]);

70

Appendix B 71

//p3=rand1;

// function for filling out the rest of the grid

var inc = 0;

var y = null;

while (inc < 25)

{

y = String.fromCharCode(getchar() + 32);

while (y == pArray[0 + x] || y == pArray[1 + x] || y == pArray[2 +

x]) // making sure that pword characters dont repeat.

y = String.fromCharCode(getchar() + 32);

if (inc == p1 || inc == p2 || inc == p3)

inc = inc + 1;

else

{

$("#b" + inc).text(y);

inc = inc + 1;

}

}

console.log("maxRow : " + maxRow);

console.log("maxCol : " + maxCol);

console.log("MinRow : " + minRow);

console.log("MinCol : " + minCol);

}

71

Appendix B 72

/**

* This will determine the logic either dot, triable or line

*

* @return void

*/

function determineLogic()

{

x = x + 3;

if(pArray[0 + x] == pArray[1 + x] && pArray[1 + x] == pArray[2 + x

] && pArray[0 + x] == pArray[2 + x]) // Dot Logic

dot();

else if(pArray[0 + x] == pArray[1 + x] || pArray[1 + x] ==

pArray[2 + x] || pArray[0 + x] == pArray[2 + x]) // Line Logic

line();

else // Triangle

triangle();

}

function preLogin()

{

72

Appendix B 73

jQuery(".errors").html(’’);

$("#pre_auth").show();

$("#post_auth").hide();

}

function postLogin()

{

$(".errors").html(’’);

$("#pre_auth").hide();

$("#post_auth").show();

$("#display_name").html(thisUser.displayName);

}

/**

* This will reset the whole process

*

* @return void

*/

function resetProcess()

{

pArray = new Array();

x = -3;

password = pLength = rand1 = null;

73

Appendix B 74

processStarted = processCompleted = false;

authflag = true;

$("#pass-grid").slideUp();

$("input[name=thisUsername]").val(’’).attr(’readonly’, false);

$("#login_error").html(’’);

$("form.user_login").removeClass("challenged");

}

/**

* Display try again login error

* @param String, message to display

* @param Boolean, display "Try Again" link if true

*

* @return void

*/

function tryAgain(msg, link)

{

if (link)

msg = msg + ’ try

again’;

$("#login_error").html(msg);

}

74

Appendix B 75

/**

* This will check the authentication

*

* @return Boolean

*/

function checkAuth()

{

if(pArray[0 + x] == pArray[1 + x] && pArray[1 + x] == pArray[2 + x

] && pArray[0 + x] == pArray[2 + x]) // Dot Logic

return case1();

else if(pArray[0 + x] == pArray[1 + x] || pArray[1 + x] ==

pArray[2 + x] || pArray[0 + x] == pArray[2 + x]) // Line Logic

return case2();

else // Triangle

return case3();

}

function case1()

{

if (authflag == false)

return false;

75

Appendix B 76

else

{

if(ClickedButtonValue == (rand1 + 1) || ClickedButtonValue ==

(rand1 - 1) || ClickedButtonValue == (rand1 + 5) ||

ClickedButtonValue == (rand1 - 5))

return true;

else

return false;

}

}

function case2 ()

{

if (authflag == false)

return false;

else

{

c1 = loc % 5;

r1 = getRow(loc);

c2 = loc2 % 5;

r2 = getRow(loc2);

maxRow = getMax(r1, r2);

minRow = getMin(r1, r2);

maxCol = getMax(c1, c2);

minCol = getMin(c1, c2);

76

Appendix B 77

// after getting rows and coloumns checking for same row or coloumns

if (maxRow == minRow) // same row

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (clickedRow == minRow && clickedCol < maxCol && clickedCol >

minCol)

return true;

else

return false;

}

else if (maxCol == minCol) // same colounm

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (clickedCol == minCol && clickedRow < maxRow && clickedRow >

minRow)

77

Appendix B 78

return true;

else

return false;

}

else

{

var mid = c1 - c2;

console.log("m1:" + mid);

var mid2 = r1 - r2;

console.log("mid2:" + mid2);

var diag = 0;

if ((mid < 0 && mid2 > 0) || (mid > 0 && mid2 < 0))

diag = mid + mid2;

else

{

diag = mid - mid2;

if (diag < 0)

diag = diag * (-1);

}

78

Appendix B 79

if (diag == 0)

{

//diag == 0 means both password characters are in diagonal

position

if (diag == 0 && loc < loc2 && c1 < c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) &&

((ClickedButtonValue == (loc + 6)) ||

(ClickedButtonValue == (loc + 12)) ||

(ClickedButtonValue == (loc + 18))))

return true;

else

return false;

}

else if (diag == 0 && loc < loc2 && c1 > c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) &&

((ClickedButtonValue == (loc + 4)) ||

(ClickedButtonValue == (loc + 8)) || (ClickedButtonValue

== (loc + 12))))

return true;

79

Appendix B 80

else

return false;

}

else if (diag == 0 && loc > loc2 && c1 > c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) &&

((ClickedButtonValue == (loc2 + 6)) ||

(ClickedButtonValue == (loc2 + 12)) ||

(ClickedButtonValue == (loc2 + 18))))

return true;

else

return false;

}

else if (diag == 0 && loc > loc2 && c1 < c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) &&

((ClickedButtonValue == (loc2 + 4)) ||

80

Appendix B 81

(ClickedButtonValue == (loc2 + 8)) ||

(ClickedButtonValue == (loc2 + 12))))

return true;

else

return false;

}

}

else

{

if ((c1 - c2 > 1 || c1 - c2 < -1) && (r1 - r2 > 1 || r1 -

r2 < -1)) // far apart but not diagonal

{

if (c1 > c2 && r1 > r2)

{

console.log("1");

return false;

}

else if(c1 > c2 && r1 < r2)

{

console.log("2");

return false;

}

else if(c1 < c2 && r1 > r2)

{

console.log("3");

return false;

}

81

Appendix B 82

else if(c1 < c2 && r1 < r2)

{

console.log("4");

return false;

}

/* clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (clickedRow > minRow)

return true;

else

return false; */

}

else if ((c1 - c2 == 1 || c1 - c2 == -1) && (r1 - r2 > 1 ||

r1 - r2 < -1)) // rows are far apart

{

console.log("5");

return false;

}

else if ((c1 - c2 > 1 || c1 - c2 < -1) && (r1 - r2 == 1 ||

r1 - r2 == -1))

{

console.log("6");

return false;

}

}

}

82

Appendix B 83

}

}

function case3()

{

if (authflag == false)

return false;

else

{

////////////////////// checking for same rows and coloummns

if (r1 == r2)

{

if (c1 == c3)

{

// finding position of clicked button

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c1 && clickedRow > minRow &&

clickedRow < maxRow))

return true;

else

return false;

}

83

Appendix B 84

else if (c2 == c3)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c2 && clickedRow > minRow &&

clickedRow < maxRow))

return true;

else

return false;

}

else

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol))

return true;

else

return false;

}

84

Appendix B 85

}

else if (r1 == r3)

{

if (c1 == c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c2 && clickedRow > minRow &&

clickedRow < maxRow))

return true;

else

return false;

}

else if (c2 == c3)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c2 && clickedRow > minRow &&

clickedRow < maxRow))

return true;

else

85

Appendix B 86

return false;

}

else

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r1 && clickedCol > minCol && clickedCol <

maxCol))

return true;

else

return false;

}

}

else if (r2 == r3) ///////////////////////////////

{

if (c1 == c3)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r2 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c1 && clickedRow > minRow &&

clickedRow < maxRow))

86

Appendix B 87

return true;

else

return false;

}

else if (c1 == c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r2 && clickedCol > minCol && clickedCol <

maxCol) || (clickedCol == c2 && clickedRow > minRow &&

clickedRow < maxRow))

return true;

else

return false;

}

else

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedRow == r2 && clickedCol > minCol && clickedCol <

maxCol))

return true;

else

87

Appendix B 88

return false;

}

}

else

{

if (c1 == c3)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedCol == c1 && clickedRow > minRow && clickedRow <

maxRow))

return true;

else

return false;

}

else if (c1 == c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedCol == c2 && clickedRow > minRow && clickedRow <

maxRow))

return true;

88

Appendix B 89

else

return false;

}

else if (c3 == c2)

{

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if (((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol)) ||

(clickedCol == c2 && clickedRow > minRow && clickedRow <

maxRow))

return true;

else

return false;

}

else

{

// finding position of clicked button

clickedRow = getRow(ClickedButtonValue);

clickedCol = ClickedButtonValue % 5;

if ((clickedRow > minRow && clickedRow < maxRow) &&

(clickedCol > minCol && clickedCol < maxCol))

return true;

else

return false;

89

Appendix B 90

}

}

}

}

90

Appendix C

Grid

/* *** P GRID *** */

table.p-grid{

width: 350px;

margin: 15px auto;

}

table.p-grid td{

width: 20%;

height: 70px;

padding: 1 !important;

}

table.p-grid td button{

background: rgba(0, 0, 0, 0);

color: #fff;

font-size: 21px;

border: 0;

border-radius: 0 !important;

91

Appendix C 92

display: block;

width: 100%;

height: 100%;

}

table.p-grid td button:hover{

background-color: #000;

}

92

Appendix D

Interface

html,body{/*height: 100%;*/}

body{

background: #fff url(’../images/texture.jpg’) no-repeat left top;

background-attachment: fixed;

}

a, a:visited{

color: #fff;

text-decoration: none;

border-bottom: 1px dashed #fff;

display: inline-block;

}

a:hover{

color: #fff;

text-decoration: none;

93

Appendix D 94

border-bottom: 1px solid #fff;

}

#pre_auth{

/*background: rgba(0, 0, 0, 0.5) none;*/

/*height: 100%;*/

}

h2.main-title{

color: #fff;

font-size: 30px;

text-align: center;

margin: 50px 0;

}

.dark-box{

background-color: rgba(0, 0, 0, 0.4);

color: #f8f8f8;

border-radius: 5px;

padding: 6px;

}

.dark-box > form > h3{

color: #ffe900; /* #fff for white */

margin-top: 0;

}

#post_auth{color: #fff;}

94

Appendix D 95

ul.my-link-list{

padding: 0;

margin: 0;

}

ul.my-link-list li{

font-size: 17px;

text-align: center;

list-style: none;

margin-bottom: 15px;

}

/* AUTHENTICATION */

.user_login,

.user_signup{/*margin-top: 60px;*/}

#display_name{

color: #fff;

font-style: italic;

}

#user_signup_div{

display: none;

}

form.user_login{

}

95

Appendix D 96

form.user_login #btn_cancel_login{display: none}

form.user_login.challenged #btn_signup{display: none}

form.user_login.challenged #btn_cancel_login{display: inline-block}

96

