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Abstract 

 

In this work we propose efficient deep neural networks for classification that are well suited to the 

edge computing and cloud computing environment. These environments inherently have to deal 

with bandwidth limitations and bounded computational resources. Our proposed methods tend to 

reduce the bandwidth requirements and reduce the computational costs for running these deep 

learning algorithms. As an extensively used image compression algorithm, DCT (Discrete Cosine 

Transform) is used to reduce image information redundancy because a limited number of DCT 

coefficients can preserve the most significant image information. In this thesis, a novel frame work 

is presented by joining DCT coefficients and deep neural networks. We have targeted the deep 

neural network that can predict the most important DCT coefficients for an image and we have 

utilized those important DCT coefficients for classification purpose. As part of its training process, 

the proposed DCT model eliminates the input information which mostly represents the high 

frequencies. After achieving the important DCT coefficients from images we have applied the 

classification models on the compact representation of Grey scale and RGB datasets (MNIST, 

CIFAR-10 and CIFAR-100). We have used two approaches for classification first is classification 

by important DCT coefficients and second is classification by low resolution images.  We have 

used VGG-16 and purposed CNN architecture for classification purpose.  Additionally we have 

also proposed the prediction model for predicting the important DCT coefficients by using Multi-

Layered Perceptron (MLP) model. The experiments has shown the promising results and we have 

found out that we can achieve almost the same classification accuracy with compact representation 

of Grey Scale and RGB datasets as we were achieving with raw pixels.  

 

Key Words:  Discrete Cosine Transform, Image Compression, DCT, CNN, Deep Learning, 

VGG-16, MLP, Zigzag Scanning, JPEG Compression, Classification.
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CHAPTER 1: INTRODUCTION 

In this chapter, the detailed introduction about the research work is presented and it is divided 

in to following sub sections. Section 1.1 presents the problem statement and gives a brief 

introduction of our work.  Section 1.2 discusses various approaches and techniques that are 

relevant to our solution. These include different methods for efficient image and video 

compression. Research contribution and thesis organization is given in Section 1.3 and Section 

1.4 respectively. 

 

1.1 Overview  

Deep learning is a subset of machine learning where artificial neural networks, algorithms 

inspired by the human brain, learn from large amounts of data. These deep learning 

architectures have now a day become the state of art algorithms for classification, prediction, 

function approximation, segmentation, localization, regression, and detection problems. 

Although these algorithms provide excellent results on image and video data they need to 

process enormous amount of information for any of the above mentioned tasks. 

Correspondingly processing huge amount of data means more computationally expensive 

networks.  

Another challenge arises due to the increased progress in Internet of Things, the number of 

smart devices that are connected to internet is growing, which results in large scale data and 

causes issues in bandwidth load. Today’s diverse needs of data processing is no longer 

sufficiently handled by conventional cloud computing, therefore edge computing technologies 

have taken this responsibility[1] [2] [3]. However in an edge computing environment data 

needs to be transferred from the source node to the computing (Edge) node.  These bandwidths 

requirements can become very challenging in case of image and video data[4]. A highly 

researched area nowadays is the reduction in cost of bandwidth during data transmission in 

edge computing. 

In this work we aim to target the classification of standard image datasets by deep learning 

models but with much less input information. Less number of input information corresponds 

to less number of input neurons and less number of network connections. This generally 
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reduces the overall computational cost of the network. Also if we are targeting this image 

classification problem in an edge computing environment then by using lesser input 

information for classification we can very well address the bandwidth issues in such an 

environment. A small amount of image information needs to be transmitted to the edge device 

in such a setting thus making them able to efficiently work in low bandwidth framework. Also 

a network with low computational cost (due to lesser input) would be well suited to an edge 

device. In our work we tend to explore the use of discrete cosine transforms [5] for compact 

representation of images. The next section defines a few the image compression algorithms in 

general with particular emphasis on discrete cosine transforms. 

1.2 Background 

These days many other methods are being addressed for reducing the data size for example 

image compression is also used for the same purpose it is used to provide the compact 

representation of images. The compression of images or videos can be achieved by selectively 

ignoring the unimportant part of the information [6]. There are various algorithms which are 

used for image compression, Most of the conventional lossless image compressions are based 

on prediction compression which predicts the value of current symbol by using several symbols 

which have already been encoded [7]. For example, image compression by prediction method 

[8]in which hierarchical prediction techniques are used to for horizontal, vertical and diagonal 

predictors to predict the pixels. It removes the prediction error rate near edges and preserves 

the sharpness of the images. Wavelet transform based methods are also used for images and 

videos compression. Wavelet transform decomposes an image or signal into a set of different 

basis functions and these basis functions are called wavelets. It presents the mathematical way 

of encoding process in such a way that it is layered according to level of details [9].  JPEG is a 

widely used standard image compression technique based on DCT. JPEG is done in two ways, 

first is lossy image compression and second is lossless image compression. In the lossless 

image compression the reconstructed image matches exactly with the original image. This type 

of the compression is usually takes place in case of medical images and legal record where we 

cannot afford of any loss of data. While lossy image compression techniques are very useful in 

video conferencing, TV broadcast and facsimile transmission. In such scenarios, some amount 

of error is acceptable. Such type of compression algorithms are usually more complex and 

needs more computations than lossless image compression [10]. In literature, we found that 

lossy compression techniques are most preferable as they much capable of achieving better 

compression [11] [12].  
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Nowadays, DCT is extensively used in image and video compression [13]. The Discrete Cosine 

Transform is a process for transforming a signal or image in to its frequency components [14], 

it converts the image in to sum of sinusoids having different magnitudes and frequencies. The 

definition of the two-dimensional DCT for an input image P and output image Q is. 

 

𝑄𝑥𝑦 = 𝛼𝑥𝛼𝑦 ∑ ∑ 𝑃𝑚𝑛
𝑁−1
𝑛=0

𝑀−1
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2𝑀
𝑐𝑜𝑠

𝜋(2𝑛+1)𝑦

2𝑁
, 0 ≤ 𝑥 ≤ 𝑀 − 1, 0 ≤ 𝑦 ≤ 𝑁 − 1          (1.1)
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 M and N are the row and column size of P, respectively. 

Similarly, the two dimensional Inverse Discrete Cosine Transform is defined as: 

 

𝑃𝑝𝑞 = ∑ ∑ 𝛼𝑥  
𝑁−1
𝑦=0

𝑀−1
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𝛼𝑦 =
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, 𝑦 = 0
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, 1 ≤ 𝑦 ≤ 𝑁 − 1

 

 

 

Here M and N are the row and column size of the input and output images respectively. 

For more understating of this topic conversion of an image from spatial domain to frequency 

domain is shown in Figure 1.1. For the image of size AXB, f (i, j) represents the intensity of 

pixel at x (i, j), while DCT coefficient for the pixel x (i, j) is represented by F (u, v). The output 

matrix of DCT coefficients contains integers, which lies from -1024 to 1023. As most of the 

matrix energy lies in low frequencies which appear in the left corner of DCT matrix, so we can 

discard the high frequencies which are small enough to be neglected.  

 

 

 

Figure 1.1: Image Transformation from Spatial Domain to Frequency Domain 

 

One of the most important features of FDCT is that it focuses heavily on signal strength on a 

few converted DCT coefficients at low spatial frequencies. In other words, the number of DCT 

coefficients of very large size is very low and small coefficients that are far are large in value. 

More often than not, much of the detail in the image is reflected in low frequencies. High 

frequencies often involve sharp changes that add extremely fine detail to the image. 

It can be seen in the Figure 1.2(a) that basis functions are exhibiting a continuous increase in 

both the horizontal and vertical frequency. It can be notice in Figure 1.2(c) that the DCT 

coefficients having the low frequency components representing the high energy are mostly 

located in the upper left corner of the DCT matrix. As described in Figure. 1.2(d) zigzag scan 
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can be used to group low frequency components in top of vector. The zig zag scan is used to 

map 32x32 in to 1x1024 vector and to gather low frequency coefficients present at the top of 

the vector. We have performed the series of experiments for the selected DCT coefficients and 

found the classification accuracy for each DCT selection we made on 32x32 and 8x8 block of 

data.   

 

 

Figure 1.2: DCT Basis Functions of Image Lena and Zigzag scanning  

Fig 1.2 (a) shows the 2-D DCT basis functions for 8x8 matrix. (b) Represents the original 

image. (c) DCT coefficients matrix of (b) (d) zigzag pattern used to select important DCT co-

efficient 

Figure 1.3 depicts the original images and their compressed versions. It can be seen that as we 

decrease the number of important DCT coefficients we begin lose the image quality as well as 

resolution of the images is reduced.  
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   (a)             (b)        (c)  (d) 

Figure 1.3: (a) Original Images (b) Reconstructed Images by 60% DCT Coefficients (c) 

Image Reconstructed Images by 25% DCT Coefficients (d) Reconstructed Images by 15% 

DCT Coefficients 

 

 

 

1.3 Research Contributions 

The major contributions from this research are as follows: 

 We designed a neural network that was able to predict the most important DCT    

Coefficients of an image. 

 We achieved classification of standard image datasets with several deep learning 

architectures, requiring much less information to perform this classification task. The 

amount of information was reduced by 

I. By using low resolution images for classification purpose 

            II. By using only the important DCT coefficients for classification. 

 

All the above mentioned techniques and algorithms were evaluated on standard image data sets 

starting from the MNIST and extending our work to more complex datasets like CIFAR 10 and 

CIFAR 100. 
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1.5 Thesis Organization 

This document consists of 5 chapters. Chapter 1 explains the detailed introduction of research 

problem and it consists of overview, problem statement, research flow, research contributions, 

and thesis organization. Chapter 2 gives the comprehensive literature review focusing the 

existing work done in the field of DCT domain by various researchers and scholars. Chapter 

3 provides the overview of the proposed methodology, and classifiers used in this study. Flow 

diagrams represent the flow of proposed methodology. Chapter 4 provides the details about 

experimentations, results and details about datasets. Chapter 5 provides the discussion of the 

whole thesis with the limitations and finally Chapter 6 gives the conclusion of the research 

work and suggests the future work.  
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CHAPTER 2: LITERATURE REVIEW 

 

 

In this chapter we present a brief overview of techniques and methods that are related to 

reducing the computations performed by a deep neural network. We also discuss deep learning 

algorithms that employ the use of Discrete Cosine Transforms for classification purpose. After 

the brief literature review of the studies from known databases we have mentioned the research 

gaps present in earlier studies.  

 

2.1 Related Work  

In literature standard techniques have been purposed for reducing the complexity of neural 

networks such as Factorization and decomposition of the convolution kernel. [15] Proposed to 

factorize the convolutional neural networks to reduce its computations and introduced the 

topological subdivisions in order to lessen the connections between input and output channels. 

[16] Proposed the model compression for deep CNNs by conducting the filter selection and 

filter learning at the same time. A factorized convolution filter which contains the standard real 

valued convolution filer and a scalar has been proposed. [17] Offers the scheme which is based 

on the tensor decomposition in order to accelerate the convolution neural networks. The given 

method removes the linear redundancy in convolution kernels and also highly speeds up the 

CNNs and maintaining the high classification accuracy at the same time. The results show that 

the proposed scheme is able to achieve the speed of whole model by x4 with 1.9% increase in 

top-5 error in AlexNet.  

Recently, the use of the separable convolution kernels in deep neural network architectures has 

been discussed. Different researchers [18] have used this techniques in their deep architectures 

and have achieved state of the art or near to state of the art performance. [19] Focuses on the 

real time implementation of a separable convolution kernel which is based on distributed 

arithmetic having support for handling high resolution images by using large kernel size. This 

proposed architecture processes the pixels directly when available from external memory 

which results in achieving the low processing time as compared to existing works.  
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Quantization is also used for reducing the complexity of deep neural networks. Such as [20] 

uses RNN (recurrent neural network) decoder with code book using weight quantization. Test 

results shows that memory overhead can be reduced by 98% and it also reduce the 

computational complexity with a minor performance loss.  [15] Introduces the novel technique 

in order to train the low bit networks using weights and activation quantized different bits. It 

also addresses the two issues, first is approximate activations from low bit discretization to 

reduce network overall computational cost and dot product memory and the second is to 

mention the weight quantization and provide mechanism for discrete weights to avoid gradient 

mismatch. [16] Purposes the new method for simplification of a trained deep neural network 

by finding an optimal, unique and optimal precision for each network parameter in which 

increase in loss in minimized. The purposed method was experimented on CIFAR, MNIST and 

SCHN datasets and results shows that near the state of the art reduction in model size is 

achieved.  

Pruning methods have also been used to cater the network complexity problems. In [21] author 

uses the sparse decomposition to reduce the redundancy of parameters in deep neural networks. 

Using the purposed procedure, the author was able to zeros out above 90% of the parameters 

having only a drop of less than 1% accuracy on ILSVRC2012 dataset. As structural pruning of 

a neural network lessons the energy, memory transfer and computation costs during inference. 

Therefore [22] proposed the method that calculates the involvement of neuron to a final loss 

and then removes those neurons with littler scores.  

Deep learning is mainly used for images and videos processing tasks. Nowadays, as digital 

imaging is gradually developing therefore, large stream of images are expected to be produced. 

The image size can be a problem keeping in mind the two specific scenarios, one is required 

bandwidth capability and second is storage space needed by those large streams of visual data. 

The transmission bandwidth and the storage requirement needed by the uncompressed data is 

significant [23]. In order to cope up with bandwidth and storage requirements various work in 

image compression techniques have been done and important achievements have been gained 

in the area of reducing storage requirements and bandwidth capacity[24] [25] [26]. DCT can e 

used for image and video compression techniques. In our thesis, we have focused on Discrete 

Transform which is a core component in the image compression. DCT has a close connection 

with Discrete Fourier Transform, it is basically the extended version of DFT [27]. As Discrete 

Fourier transform signals are periodic and therefore, most of the times discontinuities are found 

at the boundaries. Any arbitrary value taken from segment of the signal does not contain the 
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same value at its left and right both boundaries. While Discrete Cosine Transform signals can 

have more coefficients and thus keep the required shape of the truncation [28] and it shows that 

DCT is most preferable on DFT in case of image processing tasks. DCT are mainly used in 

Joint Photographic Experts methods, also known as JPEG compression techniques. JPEG uses 

both lossy and lossless image compression techniques on images and video data. A lot of work 

has been done in compression and classification from DCT coefficients. Also many research 

papers have discussed the problem of image recognition and classification by the use of 

Discrete Cosine Transform coefficients by applying different techniques. Table 2.1, shows the 

most relevant present in the literature. 

Table 2.1: Summary of carefully chosen studies according to scientific databases and 

publication type. 

Literature Publisher Year Type Description 

[29] IEEE 2020 Journal DCT based CNN 

is used for the 

detection of 

Median Filtering 

Forensics 

[30] IEEE 2019 Conference Compressed DCT 

coefficients from 

JPEG compression 

are used for 

classification 

[31] IEEE 2019 Conference Proposed CNN-C 

and CNNRC3 for 

classification from 

DCT coefficients 

[32] IEEE 2019 Conference DCT-Net is 

proposed for 

Classification of 

noisy/blur Images 

[33] Elsevier 2020 Journal DCT based CNN 

has been proposed 

to reduce JPEG 

Compression 

Artefacts 

[34] IEEE 2014 Conference Auto Encoder 

using DCT 

coefficients is 

proposed for 

classification tasks 

[35] ACM 2018 Conference Using DNN a 

JPEG compression 

framework has 
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been presented for 

ImageNet dataset 

[36] ACM 2018 Conference Resnet-50 has 

been used DCT 

coefficients 

available in the 

middle of JPEG 

Codec 

[37] IMVIP 2017 Conference Classification 

using Proposed 

CNN has been 

presented using 

DCT coefficients 

[38] Springer link 2019 Journal DCT based colour 

image 

compression 

algorithm has been 

presented using 

Adaptive block 

Scanning  

[39] IEEE 2019 Conference A CNN model has 

been proposed 

from classification 

for detection of 

compressed JPEG 

images 

[40] IEEE 2016 Conference DCT operation is 

performed on the 

feature maps 

generated by the 

layers of CNN 

[41] IEEE 1997 Conference ANN has been 

used for image 

compression and 

DCT computation 

[42] IEEE 2018 Conference CNN has been 

used for 

classification of 

embedded systems 

[43] NIPS 2012 Conference 1.2 million high 

resolution images 

of ImageNet has 

been classified 

using Deep CNN 

[44] IEEE IEEE Conference Cifar-10 

Classification has 

been proposed 

using Deep CNN 
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Using Neural Networks, a lot of searches have been done in image processing domain [45]. 

The very first approaches for using Neural Networks in image compression tasks are mentioned 

in [46] [47] [48] [49]. Nowadays, Convolution Neural Networks are also becoming very 

popular in image classification  [50], computer vision, image segmentation [51] and 

recognition [52] and understanding [53] [54] [55]. Normally, image classification is performed 

either supervised or unsupervised algorithms. A supervised image classification method on 

underwater fish detection is presented in [56] and a supervised classification algorithm is 

presented in [57]. In literature, DCT has been used in various researches for classification, 

detection and for identification purposed. In the above recent studies in DCT based 

classification have been presented. DCT transforms the each input data in to its frequency 

components [58] [59]. 

 Learning from frequency data is always been considered in past [60] presents that only 35% 

of DCT coefficients are enough for recognition of the image as face. [61] [62] shows the DCT 

on EEG and it focuses on using low frequency components and to avoid the high ones as most 

of the signal information is present in the low frequency data. As ImageNet challenge [63] has 

encouraged the new number of image classification models which starts from AlexNet [43], 

ResNet [64], ZFNet [65], VGG-NET [66], GoogleNET [67]. VGG-16 that uses Convolution 

having small sized filters have been used in literature and we have also used the VGG-16 [68] 

architecture in our proposed approach and found the results which gives better results as 

compared to previous approaches mentioned in above table. After a brief literature review and 

analysis we have targeted the classification accuracy of [23] and our results prove that we have 

gained the more accuracy as mentioned in this paper for CIFAR-10 and CIFAR-100 datasets.  
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CHAPTER 3: PROPOSED METHODOLOGY 

 

The problem statement of our thesis revolves around the classification of standard image 

datasets by deep learning architectures while working in an edge computing environment. The 

major challenges in such an environment are the limitations on the  

1) Bandwidth requirements (for transferring data to the edge device) 

2) Computational capabilities of the edge device 

In case of videos and images the above challenges can become more intensified. We propose 

two methods as a solution to the above challenges while targeting the image classification 

problem. 

Both of these methods broadly consist of transforming the images to frequency domain by 

using the Discrete Cosine Transform. The cost of bandwidth requirements is mitigated by 

transmitting only a subset of these DCT coefficients. These methods differ in how the 

classification is carried out at the edge device i.e. 

1) Classification is carried out by employing only the significant low energy coefficients 

2) Classification is carried out by reconstructing low resolution images from these reduced     

coefficients. 

In the first section of this chapter we present the conventional way of transforming an image 

in to frequency domain by employing Discrete Cosine Transforms and how we can extract the 

most significant values of the DCT for an image. In the 2nd and 3rd sections we discuss both 

of our proposed solutions along with the respective deep learning architectures in detail. 

3.1 Extraction of DCT from an Image 

Discrete cosine transform possess the property that, for a particular image, most of the high 

energy components, containing the most visually significant information of the image 

concentrated in just a few DCT coefficients.  

In this research zigzag scan has been used on each 8x8 and 32x32 matrix starting from upper 

left corner and then convert it in to a one dimensional  DCT coefficient vector of 1x64 and 

1x1024 respectively.  Figure 3.1 shows the zigzag scan of an 8x8 matrix. As DCT converts 

the input image in to linear combination of varying frequency components and mostly 
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components are not large in magnitude. Therefore, visually significant details about the image 

are present in just a few coefficients. Hence, we can remove the high frequency components 

so that amount of data needed to describe the image can be reduced as it does not disturb the 

too much image quality [25].  

. 

 

Figure 3.1: Zigzag Scanning 

The selection of input size being sent to the DCT network has been done by two approaches. 

In our first approach we have taken the input size equal to image size of the dataset and in the 

second approach we have divided the image in equal 8x8 blocks. Discrete cosine transform is 

then performed on both the inputs. Once we get the DCT transform of an image we can address 

the challenge of limited bandwidth by transmitting only a subset of these values. 

3.2 Classification from the Bare DCT coefficients 

In this section we present our first approach of classifying the standard image datasets. In this 

approach we only utilized the bare DCT coefficients for classification purpose. We broadly 

designed networks with two different approaches. In the first approach we designed the 

network such that it classifies the images based on the DCT of the whole image. In the second 

approach the network is designed such that it classifies the images based on the DCT of 8*8 

blocks. These networks are discussed in section 3.2.1 and 3.2.2 respectively. 

3.2.1 Classification using Whole Image as Input to DCT  

Same above technique was applied by taking full image as input to DCT instead of dividing it 

in to blocks and after applying the Zigzag scan to them and selecting high energy spatial 

frequencies, zero padding in place of discarded coefficients was done. Thus, in this method 
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matrix equal to image length is regenerated by placing blocks in to its location that is the input 

to CNN and VGG-16. Figure 3.2 represents this approach in the form of flow diagram.  

 

                                                                                                                                                                                                                                                                                                            

  

 

    

                                                                                                                                           

 

 

Figure 3.2: Classification from DCT coefficients by selecting important DCT coefficients 

from Whole Image 

 

3.2.2 Classification using 8x8 Block as Input to DCT  

In the second approach, instead of taking the inverse discrete cosine, input to the CNN and 

VGG-16 is the important DCT coefficients containing the high energy information of the 

image. As it can be seen in Figure 3.3, each image is first divided in to 8x8 non overlapping 

blocks, these blocks are input to DCT. After applying the Zigzag scan to these blocks and 

selecting high energy spatial frequencies, zero padding in place of discarded coefficients was 

done. Thus, in this method matrix equal to image length is regenerated by placing blocks in to 

its location. 
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                                                          Input 8x8 block                                                                                                                                                                                                                                                  

Input  
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Figure 3.3: Classification from DCT coefficients by selecting important DCT coefficients 

from 8x8 block 

 

These approach not only saves the bandwidth requirement but also reduces the complexity of 

the network because we are only utilizing a few number of DCT coefficients (as the input to 

the neural network is vastly decreased so does the complexity of the neural net also decrease). 

 

3.3 Classification from the Low Resolution Images  

In this section we present our second approach of classifying the standard image datasets. In 

this approach we reconstruct the low resolution images from the subset of transmitted DCT 

coefficients and then utilize these low resolution images for classification purpose. Once again 

keeping the uniformity with section 3.2 we broadly designed networks with two different 

approaches. In the first approach we reconstructed low resolution images from the subset of 

DCT coefficients which corresponded to the DCT taken of the whole image. In the second 

approach the low resolution images were constructed from the subset of DCT coefficients 

which corresponded to DCT taken when the original image was divided in to 8*8 blocks. These 

approaches are discussed in section 3.3.1 and 3.3.2 respectively. 

3.3.1 Classification using Whole Image as Input to DCT  

Similarly, instead of dividing the image in to smaller blocks the input to DCT is one block with 

the dimension similar to the height and width of the original input image. DCT takes the input 
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and outputs the corresponding basis functions or DCT coefficients. Thus, the DCT coefficients 

obtained can be regarded as relative amount of 2D spatial frequencies present in the original 

input image. Zigzag scan is applied on the resultant DCT coefficients. As the most important 

features such as texture, complexity and uniformity are concentrated in a few transformed basis 

function having the lower spatial frequencies, hence we have investigated the classification 

accuracy by gradually increasing those lower spatial frequencies components and discarding 

the high frequency components. Zero padding is done in place of discarded high frequency 

components and then IDCT of these low spatial frequencies was taken which results in low 

resolution images. Experimental results shows that we can achieve an excellent amount of 

accuracy with a small subset of DCT coefficients. Flow diagram of purposed approach is shown 

in Figure 3.4. 

 

 

                                                                                                                                                                                                                                                                                                            

  

 

    

                                                                                                                                        

 

Figure 3.4: Classification from low resolution images by selecting important DCT 

coefficients from Whole Image 

 

3.3.2 Classification using 8x8 Block as Input to DCT  

In this approach each 8x8 block from image is transformed in to a discrete coefficient matrix 

of size 8x8. Zigzag scan is applied on the resultant DCT coefficients. As discussed above, it is 

observed that most important DCT coefficients containing the most of energy are in upper left 

corner of the discrete cosine transform matrix so we have investigated this approach by 
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continuously increasing the DCT coefficients in each upper left corner and discarding the high 

frequency components in order to lessen the amount of data needed to describe the image. Zero 

padding is done in place of discarded high frequency components. Thus it again regenerates 

the 8x8 block. Inverse zigzag is performed on this block. Resultant block and flow diagram 

have been described in this Figure 3.5. Inverse discrete cosine is performed on the each 

resultant blocks and matrix equal to full image is regenerated that results in to low resolution 

image, which is the input to CNN and VGG-16. 
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Input  
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Figure 3.5: Classification from low resolution images by selecting important DCT 

coefficients from 8x8 block 

At the end of this section you should amplify that this approach only saves the bandwidth 

requirement it doesn’t greatly reduce the complexity of the network because we are not 

decreasing the number of neurons in the input layer.  

3.4 Neural Network for the Prediction of Most Important DCT Coefficients 

Another contribution in this thesis is that we have proposed a neural network based on Multi-

Layer Perceptron, this network can predict the important DCT coefficients for each 8x8 block. 

The input to this network is 8x8 block of image data and it outputs the important DCT 

coefficients from each block. This network is based on MLP which is class of feed forward 

artificial neural network. MLP models are designed to achieve the important 50, 40 and 30 

 

Segmentation in to 

Blocks of 8x8 

 
DCT 

 Network 
Important 

DCT 

Coefficients 

Combining Blocks 

into 32x22 matrix  

 
Inverse  

DCT 

Reconstructed 

Image 

 

Classifier 

 



 
 

32 
 

DCT coefficients from each 64 coefficients in 8x8 block of data. Each MLP model consists of 

six hidden layers. The output layer contains the varying number of neurons which represents 

the DCT coefficients. The proposed prediction model is shown in Figure 3.6. 

 

 

 

 

 

 

Figure 3.6: Proposed DCT Prediction Model using MLP 

 

3.4.1 Proposed MLP Architecture  

Cifar-10 and Cifar-100 datasets are used for training of DCT prediction model based on MLP. 

Each image in both datasets is divided in to blocks of 8x8 and then neural network was trained 

on these blocks. As in supervised learning, the desired output of the neural network is always 

known so important DCT coefficients from each block are used as labels. As it can be seen in 

Figure 3.7, input layer of DNN is fed with 8x8 blocks of original image and the output layer 

predicts the values of important DCT coefficients from each block. Four different estimates of 

important DCT coefficients i.e.  
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Figure 3.7: Proposed DCT Coefficients Prediction Model  

 

30, 40, 50 and 64 are used for as label for given training set of images and each prediction 

neural network model was trained on 500 epochs 

 

3.4.1.1 Activation Functions 

In order to get understanding of activation functions, we first have to understand the 

functionality of an artificial neuron. Neurons estimate the weighted sum of their inputs and add 

bias to it and then take the decision of whether they should be fired or not. There are plenty of 

activation functions depends upon each case. In out proposed MLP model, we have used two 

different activation functions i.e. ReLU and tanh.  

 ReLU (Rectified Linear Units) 

ReLU [69] works by making sure that output does not become the negative value. Therefore, 

when x is greater than zero then the output stays x and if the goes below zero the output stays 

zero. In our network, ReLU is used at input layers in order to take a decision whether to fire 

neurons to hidden layers or not.  

                                                    (𝒙) = 𝐦𝐚𝐱 (𝟎, 𝒙)                                                      (4.1) 
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ReLU is widely used for one of its main reasons that it does not activate the whole set of 

neurons at once. For example, when it gets the negative input it converts in to zero and neuron 

will not be activated. Which means, at a given time, only those neurons will be activated which 

fulfil the above criteria and in this way ReLU makes the Artificial Neural network sparse and 

hence helps in increasing its efficiency.  

 Tanh Function 

Tanh [70] activation function is used to limit the output in a range of (-1,1). In our proposed 

neural network we have used the Tanh in the output layer to predict the values of DCT 

coefficients.  

                                                                𝒇(𝒛) = 𝐭𝐚𝐧𝐡 (𝒛)                                                 (4.2) 

 

Normally, Tanh is used when we have a regression problem just like in our case where we want 

to predict the normalized values of DCT coefficients. As the DCT coefficients values range 

from positive to negative therefore, we have used Tanh in the output layer. 

 

3.4.1.2 Optimization  

In our work, we have used adaptive moment estimation technique for weight optimization. 

Details are given below.  

 Adam  

Adam (Adaptive Moment Estimation) [71] is known for computing the adaptive learning rates 

for all the parameters in a neural network. Apart from saving the exponentially decreasing 

averages of earlier squared gradients, like Adadelta or RMSprop, it is also somewhat similar 

to momentum. If momentum is termed as a ball moving down a slope then Adam can be thought 

of heavy ball with large friction and hence giving us flat minima. 

3.6.1.3 Loss Function 

Loss functions in machine learning, are objective function that needs to be minimized. A loss 

function finds how close the predicted output and actual output is and how good the results of 

prediction models are. The purpose of our purposed neural network was to produce the DCT 

coefficients with as little error as possible.  
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 Mean Absolute Error 

 

Mean Absolute Error [72] is a loss function which is used in regression models. It is the addition 

of absolute difference between the desired and actual variables. It calculates the mean 

magnitude of errors in the given set of predictions without considering their directions. We 

have used Mean Absolute Error instead of mean squared error as MAE is more vigorous to 

outliers and one high values cannot disturb the output.  

 

                                               𝑴𝑨𝑬 = 
∑ |𝒚𝒊−𝒚𝒊

𝒑
|𝒏

𝒊=𝟏

𝒏
                                                   (4.3) 
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                                              Chapter 4                                          

Implementation and Results  
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CHAPTER 4: EXPERIMENTATION AND RESULTS 

 

In this section, a brief overview of experimentation details and results of this thesis are 

discussed. This section is further divided in to sub parts. Section 4.1 provides the explanation 

of experimental setup, design assessment and give the brief information about datasets used in 

this research. Section 4.2 describes the configurations of the deep learning architectures 

employed in detail Section 4.3 and Section 4.4 presents the result of our proposed techniques 

while Section 4.5 gives the result of our DCT prediction network. 

 

4.1 Experimental Evaluation 

The proposed approaches are executed on GPU with Tensorflow deep learning framework [73]. 

The neural network design and training are implemented on Linux Based 64-bit Intel 4-core 

Xeon E5520 processors, 8 physical cores, 24GB DDR3 RAM. The programming language 

used is Python(3.5.2) having Keras framework [74] version 2.1.0, pandas, numpy, scipy.io, os, 

scipy.fftpack libraries in python are used for implementation.  Cifar10 and Cifar-100 are 

downloaded from Keras Library. The total training for CNN model is about 4 hours and for 

VGG-16 model it almost takes 5 hours. 

4.1.1 Design Assessment 

In this thesis, we have purposed the two less complex, more robust approaches for classification 

of CIFAR-10 and CIFAR-100 datasets by utilizing the important DCT coefficients. For initial 

understanding and we have first implemented this approach on MNIST dataset which contains 

60,000 training and 10,000 testing grey scale images containing hand written digits from 0 to 

9. For classification we have used CNN and VGG-16 and for DCT Prediction Model we have 

used Multi-Layer perceptron neural network. Most important DCT coefficients are used as 

reduced representation of the each image in both datasets and hence we have achieved the same 

classification accuracy from this reduced representation same as we were getting from raw 

pixels.  
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4.1.2 Datasets 

For initial understanding we have performed the purposed approaches on Modified National 

Institute of Standards and Technology Database i.e.; MNIST [75]. Image dataset consists of 

70,000 grey scale images of handwritten digits between 0 and 9 has been used. The dimension 

of the each image was 28 x 28 and pixel value of the images falls in the range between 0 and 

255. After achieving successful experimental results on MNIST we extended out approaches 

to CIFAR-10 and CIFAR-100 datasets[76]. CIFAR-10 contains 60,000 RGB images of size 

32x32x3 of 10 classes having 6,000 images in each class. CIFAR-100 has 100 classes which 

contains 600 images in each class, containing 500 RGB training images and 100 RGB testing 

images in each class. Dimensions of CIFAR-100 dataset is same as CIFAR-10. Overall split in 

both datasets is 50,000 training and 10,000 test images. In order to validate the results each 

dataset was divided in to two parts i.e.; training and testing. In MNIST dataset 60,000 images 

were used as training purpose and 10,000 were used as testing purpose. While in case of 

CIFAR-10 and CIFAR-100 datasets 50,000 images were used for training and 10,000 images 

were used for testing purpose. 

 

4.2 Purposed Neural Networks 

This section provides the configuration details of the deep learning architectures utilized in this 

thesis, namely the conventional CNN (Section 4.2.1) and the more complex VGG 16 (Section 

4.2.2) 

4.2.1 CNN Architecture 

We have used the CNN model from [77], here have used three repeated cells and each cell 

contains the two convolution layers, max pooling, batch normalization and dropout. The 

purposed architecture is relatively simple with total 6 convolution layers in which drop out and 

max-pooling are implemented after every two convolution layers. Table 4.1 shows this 

technique. As it can be seen that each convolution layer consists of similar filter dimension of 

3x3 and strides of 1x1, paddings are added to retain the size of input dimension. Dense layer is 

added only at the final output softmax layer. Regularization L2 is added on weights of all the 

convolution layers using the decay rate of 0.0001. In order get the faster convergence and to 

speed up the training time in less number of epochs batch normalization is also applied before 

every max-pooling[78]. 
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Table 4.1: Proposed CNN Model 

 

 

 Activation Function 

Softmax converts the logits, which is the output from the last linear layer of a neural network 

in a multi class classification, in to the probabilities. It takes the exponents of individual output 

and do normalization of each individual value by the addition of these exponents such that all 

probabilities output values should sums up to one. Softmax is normally added at the final layer 

of the neural network such that CNN, VGG-16 etc.  

 Optimizer 

We have used RMSProp  [79], It is alike to gradient descent algorithm including momentum. 

The purpose of the RMSProp is to maintain the moving average of the gradient square and to 

divide the gradient with root of this average.  

 Loss Function  

As we are dealing with the multi class classification problem therefore we have used 

Categorical cross entropy loss in our case. Log loss, or Categorical cross entropy loss estimates 

the performance of the classification model by calculating loss, whose output is the probability 
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estimation between 0 and 1. Loss increases when the predicated probability changes from the 

actual label.  

                                                       −∑ 𝑦𝑜,
𝑀
𝑐=1 𝑐𝑙𝑜𝑔(𝑝𝑜 , 𝑐)                                      (4.1) 

 

Here, M depicts the number of classes, log is the natural log function, and y is binary indicator 

i.e. 0 or 1. 

 

Table 4.2: Raw pixel accuracies for different datasets when conventional CNN is 

employed 

Dataset Raw Pixel Accuracy 

MNIST 98.8% 

CIFAR 10 87.5% 

CIFAR 100 60.5% 

 

4.2.2 VGG-16 Architecture   

In literature, we have found that VGG-16 [66] [80] is the most robust neural network found for 

image classification problems. Therefore, we have employed this model in our proposed DCT 

based network. We have used ReLU [81]  as an activation function and which is further 

followed by convolution layer and fully connected layer expect the last layer. We have used 

adaptive dropout only in fully connected layer. VGG-16 uses 3x3 filters in all its layers and 

2x2 max pooling with stride 2 is used in this model.  
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Figure 4.1: VGG-16 Architecture  

 

Gradient stochastic descent SGD is used as optimizer. We have used Adaptive drop out and L2 

regularization in order to minimize the over fitting [82]. 

 

Table 4.3: Raw pixel accuracies for different datasets when VGG-16 is employed 

Dataset Raw Pixel Accuracy 

CIFAR 10 91.6% 

CIFAR 100 70.3% 
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4.3 Classification from Important DCT Coefficients 

In this section we have used purposed Deep Neural Network models for classification of 

important DCT coefficients extracted from each 8x8 and whole image. DCT coefficients 

containing the important information about the image are being extracted using the zigzag 

scanning method in both case. After selection of important coefficients inverse zigzag was 

performed and resultant matrix was given to Neural Network for classification purpose.  

4.3.1 CNN Classification Results Using Whole Image as input to DCT 

 

Table 4.4: MNIST Classification Results Calculation for DCT Based CNN Model  

Num. of 

DCT 

coefficients 

Maximum Validation 

Accuracy (%) MNIST 

1024(100%) 98.69% 

820(80.34%) 98.45% 

520(50.7%) 98.23% 

90(8.7%) 98.09% 

80(7.8%) 97.66% 

70(6.8%) 97.60% 

60(5.8%) 97.50% 

50(4.8%) 96.89% 

40(3.9%) 96.30% 

 

Table 4.4 shows the classification accuracy on MNIST dataset when using 32x32 as input to 

DCT network. It can be seen in the table that only by using 90 coefficients we can achieve 

around 98% accuracy in our purposed model. Table 4.5 depicts the classification accuracy on 

CIFAR-10 and CIFAR-100 datasets.  
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Table 4.5:  Results using Conventional CNN, DCT of the image taken as a whole 

Percentage of DCT 

Coefficients utilized 

Dataset 

 CIFAR 10 CIFAR 100 

3072 (100%) 75.88% 48.83% 

2700 (87%) 75.80% 48.68% 

2100 (68%) 75.76% 48.42% 

1920 (62.5%) 74.81% 47.68% 

1536 (50%) 73.12% 46.32% 

 

 

Figure 4.2: Classification Accuracy using only 90 DCT Coefficients in MNIST Dataset 
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Figure 4.3: Loss Calculation by using only 90 DCT Coefficients in MNIST Dataset 

 

4.3.2 VGG-16 Classification Results Using Whole Image as input to DCT 

 

Table 4.6: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based VGG-

16 Model (Whole Image) 

 

Num. of 

DCT 

coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) 

CIFAR-100 

3072(100%) 80.74% 53.89% 

3060 80.36% 53.54% 

3000 80.54% 53.31% 

2850 80.66% 53.24% 

2700 80.19% 53.11% 

2640 80.30% 53.23% 

2460 80.28% 53.07% 
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2100 79.46% 53.02% 

2007(65%) 78.50% 52.60% 

 

 

 

 

Figure 4.4: CIFAR-10 Classification Accuracy using 2007 DCT Coefficients from 3072 
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Figure 4.5: CIFAR-10 Loss Calculation using 2007 DCT Coefficients from 3072 

 

4.3.3 CNN Classification Results Using 8x8 Block as input to DCT 

 

Similar to section 4.3.1.1, here we have presented the classification results of all three MNIST, 

CIFAR-10 and CIFAR-100 datasets when using 8x8 block of image as input to DCT. We have 

performed the series of experiments on all three datasets.  Table 4.7 shows the classification 

results on MNIST dataset by taking 8x8 block of data as input and then doing classification on 

the most important DCT coefficients using zigzag and performing inverse zigzag on retaining 

DCT coefficients. Table 4.8 presents the classification result of CIFAR-10 and CIFAR-100 

datasets.  
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Table 4.7: MNIST Classification Results Calculation for DCT Based CNN Model (8x8 Input 

Size) 

 

Num. of 

DCT 

coefficients 

Maximum 

Validation Accuracy 

(%) MNSIT 

64(100%) 98.78% 

50 98.75% 

40 98.62% 

30 98.44% 

20 98.30% 

15(23%) 97.5% 

 

 

 

Figure 4.6: Classification Accuracy by using only 15 important DCT coefficients in MNIST 

Dataset 
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Figure 4.7: Loss Calculation by using only 15 important DCT coefficients in MNIST Dataset 

 

Table 4.8: CIFAR-10 and CIFAR-100 Classification Results Calculation for DCT Based 

CNN Model (8x8 Input Size) 

 

Num. of DCT 

coefficients 

Maximum Validation 

Accuracy (%) 

CIFAR-10 

Maximum Validation 

Accuracy (%) CIFAR-

100 

64(100%) 80.05% 52.73% 

 

50 80.48% 52.52% 

40 78.07% 51.36% 

30(46%) 78.13% 51.23% 
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In this section, we have used VGG-16 model for classification of important DCT coefficients 

extracted from each 8x8 and 32x32 (equal to image size) block of data. DCT coefficients 

containing the important information about the image are being extracted using the zigzag 

scanning method in both cases. After selection of important coefficients inverse zigzag was 

performed and resultant matrix was given to V-166 for classification purpose.  

 

4.3.4 VGG-16 Classification Results Using 8x8 Block as input to DCT 

 

Table 4.9: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based VGG-

16 Model (8x8 Input Size) 

 

Num. of selected  

DCT coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) CIFAR-100 

64(100%) 84.73% 60.07% 

50 84.48% 60.04% 

40 83.43% 59.59% 

30(46%) 82.13% 59.03% 
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Figure 4.8: CIFAR-10 Classification Accuracy using 64 DCT Coefficients from each 8x8 

Block 

 

Figure 4.9: CIFAR-10 Loss Calculation using 64 DCT Coefficients from each 8x8 Block 
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Figure 4.10: CIFAR-10 Classification Accuracy using 30 DCT Coefficients from each 8x8 

Block 

 

 

Figure 4.11: CIFAR-10 Loss Calculation using 30 DCT Coefficients from each 8x8 Block 
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4.4 Classification from Low Resolution Images 

CNN and VGG-16 have been used as a classifiers to perform classification on the low 

resolution images which we have already compressed using by selecting the important DCT 

coefficient and discarding the least important coefficients. As discussed in the methodology 

part we have implemented this approach in both 8x8 block and also on whole image.  

 

4.4.1 CNN Classification Results using Whole Image as input to DCT 

Table 4.5 shows the classification accuracy on MNIST dataset when using 32x32 as input to 

DCT network. It can be seen in the table that only by using 50 coefficients we can achieve 

around 98% accuracy in our purposed model.  

 

Table 4.10: MNIST Classification Results Calculation for DCT Based CNN Model (Whole 

Image) 

Num. of 

DCT 

coefficients 

Maximum Validation 

Accuracy (%) MNIST 

1024(100%) 98.88% 

90 98.74% 

80 98.66% 

70 98.54% 

60 98.66% 

50 97.89% 

40 97.30% 

30(3%) 95.28% 

 

Following Table 4.6 shows the classification accuracy on CIFAR-10 and CIFAR-100 

datasets. As we can see from the results that instead of using all 3072 coefficients we can 

achieve the same accuracy of 87% with around 2000 important DCT coefficients.  
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Table 4.11: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based CNN 

Model (Whole Image) 

Num. of 

DCT 

coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) 

CIFAR-100 

3072(100%) 87.74% 60.79% 

3060 87.36% 60.54% 

3000 87.54% 60.68% 

2850 87.66% 60.34% 

2700 87.19% 60.71% 

2640 87.30% 60.12% 

2460 87.28% 60.57% 

2100 87.46% 60.40% 

2007 86.50% 59.20% 

1920(62%) 86.32% 59.15% 

 

 

4.4.2 VGG-16 Classification Results using Whole Image as input to DCT 

In this section VGG16 has been used as a classifier to perform classification on the low 

resolution images which we have already compressed using by selecting the important DCT 

coefficient and discarding the least important coefficients. As discussed in the methodology 

part we have implemented this approach in both 8x8 block and also on whole image.  

Table 4.12: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based VGG-

16 Model (Whole Image) 

Num. of 

DCT 

coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) 

CIFAR-100 

3072(100%) 91.74% 70.79% 

3060 91.36% 70.54% 

3000 91.54% 70.68% 

2850 91.66% 70.34% 
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2700 91.19% 70.71% 

2640 91.30% 70.12% 

2460 91.28% 70.57% 

2100 91.46% 70.40% 

2007 90.50% 69.20% 

1920(62%) 90.32% 69.14% 

 

Figure 4.12: CIFAR-10 Classification Accuracy using 2100 DCT Coefficients from 3072 
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Figure 4.13: CIFAR-10 Loss Calculation using 2100 DCT Coefficients from 3072  

 

4.4.3 CNN Classification Results Using 8x8 Block as input to DCT 

In this section, we have presented the classification results of all three MNIST, CIFAR-10 and 

CIFAR-100 datasets when using 8x8 block of image as input to DCT. We have performed the 

series of experiments on all three datasets.  Table 4.3 shows the classification results on 

MNIST dataset by taking 8x8 block of data as input and then doing classification on low 

resolution images achieved after selecting the most important DCT coefficients using zigzag 

and performing the inverse DCT transform and inverse zigzag on retaining DCT coefficients.  

 

 

Table 4.13: MNIST Classification Results and Loss Calculation for DCT Based CNN Model 

(8x8 Input Size) 

Num. of DCT 

coefficients 

Maximum 

Validation Accuracy 

(%) 

Loss 

64(100%) 98.7% 0.08% 
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50 98.6% 0.08% 

40 98.4% 0.08% 

30 98.3% 0.08% 

20 97.9% 0.1% 

15(23%) 97.8% 0.1% 

 

Table 4.4 shows the classification accuracy on low resolution images in case of CIAFAR-10 

and CIFAR-100 datasets. Same approach was used as mentioned for MNIST dataset except 

that each process was repeated for three times as CIFAR-10 and CIFAR-100 are RGB image 

datasets. 

 

Table 4.14: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based CNN 

Model (8x8 Input Size) 

Num. of DCT 

coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) CIFAR-

100 

64(100%) 87.50% 60.32% 

50 87.64% 60.04% 

40 86.45% 59.59% 

30 86.39% 59.35% 

20(31%) 85.69% 59.46% 
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4.4.4 VGG-16 Classification Results by Using 8x8 Block as input to DCT 

 

Table 4.15: Cifar-10 and Cifar-100 Classification Results Calculation for DCT Based VGG-

16 Model (8x8 Input Size) 

Num. of selected  

DCT coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) CIFAR-

100 

64(100%) 91.73% 70.32% 

50 91.64% 70.04% 

40 90.45% 69.59% 

30 90.09% 69.01% 

20(31%) 89.69% 68.32% 

 

 

Figure 4.14: CIFAR-10 Classification Accuracy using 50 DCT Coefficients from each 8x8 

Block 
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Figure 4.15: CIFAR-10 Loss Calculation using 50 DCT Coefficients from each 8x8 Block 

 

  
Figure 4.16: CIFAR-100 Classification Accuracy using 50 DCT Coefficients from each 8x8 

Block 
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Figure 4.17: CIFAR-100 Loss Calculation using 50 DCT Coefficients from each 8x8 Block 

 

4.5 Prediction Model Results 

Classification accuracy of low resolution images containing DCT coefficients predicted from 

proposed Prediction Model is depicted in Table 4.16. 

Table 4.16: Classification Accuracy on Low Resolution Images using VGG-16 (Input Size 

8x8) 

Num. of selected  

DCT coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) CIFAR-

100 

64(100%) 91.50% 70.66% 

50 90.84% 69.84% 

40 90.45% 69.59% 

30(31%) 90.39% 69.03% 

 

Classification accuracy using DCT coefficients predicted from proposed prediction model is 

shown in Table 4.17 
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Table 4.17: Classification Accuracy on Predicted DCT Coefficients using VGG-16 (Input 

Size 8x8) 

Num. of selected  

DCT coefficients 

Maximum Validation 

Accuracy (%) CIFAR-

10 

Maximum Validation 

Accuracy (%) CIFAR-

100 

64(100%) 84.05% 60.3% 

50 83.48% 60.5% 

40 82.46% 59.3% 

 

30(31%) 82.24% 58.8% 
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                                            Chapter 5                                          

Discussion and Limitations 
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CHAPTER 5: DISCUSSION AND LIMITATIONS 

 

5.1 Discussion  

This study presents the approaches to detect the important DCT coefficients from CIFAR-10 

and CIFAR-100 RGB images. After extracting the important DCT coefficients needed to 

describe the image we have performed classification on remaining coefficients first by using 

low resolution images (after performing inverse discrete cosine transform on  important DCT 

coefficients) and secondly by using those DCT as it is for classification tasks.  Both approaches 

were tested initially by dividing each image in to equal 8x8 RGB blocks as an input to DCT 

module and then by using block size equal to image size (32x32) i.e. by taking DCT of whole 

image and discarding the redundant information (high frequency) information from each 

approach. A series of experiments have been performed using CNN and VGG-16 as classifiers 

and after performing a series of experiments on proposed CNN and VGG-16 we have found 

the promising accuracies using VGG-16 model. As it can be seen in following figures that as 

the number of DCT coefficients increases there is a slight increase in the recognition accuracy. 

As it can be seen in Figure 5.1, the best accuracy for CIFAR-10 achieved is 91% with only 40 

DCT coefficients extracted from 64 DCT vector and same 91% can be achieved in with using 

only 2100 important DCT efficient extracted from each 3072. This is the same accuracy which 

we achieve after classification of raw pixel data of CIFAR-10. 
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Figure 5.1: CIFAR-10 Classification Accuracy using VGG-16 for different number of DCT 

coefficients retained 

 

As depicted in Figure 5.2, best accuracy achieved in case of CIFAR-100 is around 70% by 

using 40 important DCT coefficients from each 64 DCT vector and same accuracy is achieved 

by we take only 2100 significant DCT coefficients out of 3072 that is the same as raw pixels. 

 

Figure 5.2: CIFAR-100 Classification Accuracy using VGG-16 for different number of DCT 

coefficients retained 
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5.2 Limitations 

As Convolution Neural Networks are majorly used for image classification and only accept the 

4D array as input (batch size, height, width, depth). Therefore, in order to get the original size 

of the image we had to perform the zero padding in place of discarded DCT coefficients which 

is limitation to reduce the training time.  
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                                             Chapter 4                                          

Conclusion and Future Work  
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion  

In this thesis, we have purposed an approach for implementing the convolution neural networks 

to learn from the frequency representation of data with motivation to reduce the bandwidth and 

storage cost required to transfer the large visual size data. By implementing this approach, we 

have contributed in the edge computing domain whose works on increasing the speed of data 

processing which in turns helps in lowering the dependency on cloud. For this purpose, a 

comprehensive study of literature was performed in order to identify the different image 

compression approaches and the use of convolution neural networks in the field of image 

compression tasks.  After the detailed literature review, we have taken the advantage of 

Discrete Cosine Transform coefficients which is widely used in JPEG compression techniques. 

We have performed a series of experiments by taking the significant DCT coefficients. After 

achieving the important DCT coefficients from images we have also applied the classification 

models on the compact representation of Grey scale and RGB datasets (MNIST, CIFAR-10 

and CIFAR-100). We have used VGG-16 and purposed CNN architecture for classification 

purpose. Our approach depicts that after discarding the redundant frequency components 

present in the bottom right of each DCT transformed block and by utilizing the low level 

features in DCT domain we can achieve almost the same accuracy which we were attaining 

from raw pixel data. The evolution of the results showed by using only the important DCT 

coefficients, an accuracy of the around 98% in MNIST, 91% in CIFAR-10 and 70% in CIFAR-

100 is achieved on the classification problem which is the same as raw pixel data.  
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6.2 Future Work 

Future work includes the more generalization of these neural networks to support the more 

image datasets. Also it will be focused on extending the proposed framework to more deep 

learning networks. In addition to that, compression of video data can also be achieved by 

extending these deep neural networks to video processing domain.   
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