
Automatic Release Notes Generation

Author

Mubashir Ali

FALL 2017 – MS-17 (CSE) 00000206994

Supervisor

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

ii

Automatic Release Notes Generation

Author

Mubashir Ali

FALL 2017 - MS-17 (CSE) 00000206994

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature:-__________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

iii

 DECLARATION

I certify that this research work titled “Automatic Release Notes Generation” is my own work

under the supervision of Dr. WasiHaider Butt and co-supervised by Dr. MuazzamKhattak. The

work has not been presented elsewhere for assessment. The material that has been used from

other sources it has been properly acknowledged / referred.

Signature of Student

Mubashir Ali

FALL 2017 - MS-17 (CSE) 00000206994

iv

 PLAGIARISM CERTIFICATE (TURNITIN REPORT)

The plagiarism of this thesis has been checked. Turnitin report approved by the supervisor is
attached.

Signature of Student

Mubashir Ali

FALL 2017 - MS-17 (CSE) 00000206994

Signature of Supervisor

Dr. Wasi Haider Butt

v

 LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Mubashir Ali
FALL 2017 - MS-17 (CSE) 00000206994

Signature of Supervisor

 Dr. Wasi Haider Butt

vi

 COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

vii

 ACKNOWLEDGEMENTS

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout this work.

Indeed this would not have been possible without his substantial guidance through every step,

and for putting me across people who could drive me though this work in a superlative manner.

Indeed none be worthy of praise but the Almighty. In addition, my admirations be upon Prophet

Hazrat Muhammad (PBUH) and his Holy Household for being source of guidance for people.

I would like to express my special thanks to my supervisor Dr. WasiHaiderButt and co-

supervisor Dr. MuazzamKhattak for his generous help throughout my thesis, and for being

available even for the pettiest of issues. My thanks for a meticulous evaluation of the thesis, and

guidance on how to improve it in the best way possible.

I am profusely thankful to Dr. ArslanShaukat and Dr. Urooj Fatima for an excellent guidance

throughout this journey and for being part of my evaluation committee.

It is indeed a privilege to thank my Mother, my father Zulfiqar Ali and my elder brother

Mudassir Ali for their constant encouragement throughout my degree and research period. The

sense of belief that they instilled in me has helped me sail through this journey. I would like to

thank my Family & friends.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance in this period.

viii

Dedicated to my exceptional parents, excellent siblings and my best friend whose
tremendous support and cooperation led me to this wonderful accomplishment. I

am truly indebted to you all.

9

 ABSTRACT

Release Notes (RNs) are one of the important artifacts in software development and

maintenance. RNs are required when a new release/version of a software project is planned to

deploy or launch. RNs are the documentation of all the changes made to the new project It

contains description of newly added features, bug fixes, improvements, removed functionality,

library changes etc. Generating these notes manually is very complex and time consuming task.

In this research we present an automatic approach for generation of RNs. The intention of this

research is to generate automatic RNs for Node JS project. The implementation of the proposed

approach is done in Python programming language. Our system extract changes from Git

repository, summarizes these changes, get deprecated features, library changes, fetches issues

from issue tracker and link these issues to code etc. The system hierarchically setup these

changes and produce an output in a word document. This approach is the state of the art

approach for node Js projects. We evaluate our results manually from 15 industry software

Engineers. The results obtained from our system shows that these RNs are very good and

accurate then ones produced manually.

Keywords— Software Release Notes; Software documentation; Software Maintenance;

Programming language processing; Natural Language Processing;

10

Table of Contents

DECLARATION ... iii

PLAGIARISM CERTIFICATE (TURNITIN REPORT) .. iv

LANGUAGE CORRECTNESS CERTIFICATE .. v

COPYRIGHT STATEMENT .. vi

ACKNOWLEDGEMENTS .. vii

ABSTRACT .. 9

List of Figures ... 12
List of Tables .. 13

CHAPTER 1: INTRODUCTION ... 15

1.1. Introduction .. 15

1.2. Problem Statement ... 16

2.3. Proposed Methodology .. 17

1.4. Research Contribution .. 18

1.5. Thesis Organization .. 19

CHAPTER 2: LITERATURE REVIEW .. 22

2.2. Methodology .. 24
2.2.1. Research Questions ... 24

2.2.2. Data Search ... 24

2.2.3. Inclusion and Exclusion Criteria ... 25

2.2.4. Data Collection ... 26

2.3. Research Findings .. 27

2.3.1. Research Algorithms and Techniques .. 27

2.3.2. Plugins and Libraries .. 28

2.4. Conclusions .. 30
CHAPTER 3: PROPOSED METHODOLOGY ... 32

3.1. Core Concepts Explanation .. 32

3.1.1. NLP ... 32

3.1.2. Abstract Syntax Tree (AST) ... 32

3.1.3. Control Flow Graph (CFG) ... 32

3.1.4. Def-Use Chain .. 33

3.1.5. Diff .. 33

11

3.2. Proposed Methodology .. 33

3.2.1. Changes Extractor ... 34

3.2.1.1. Source Code Analysis (diff of rn& rn-1) .. 34

3.2.1.2. Changes to Used Libraries .. 36

3.2.1.3. Changes to License .. 36
3.2.2. Summarizer ... 36

3.2.2.1. Method Summary: ... 36

3.2.2.2. Class Summary .. 39

3.2.2.3. Endpoints Summary .. 40

3.2.2.3. Libraries Summary .. 40

3.2.3. Issue Extractor .. 40

3.2.4. Doc Generator ... 40

CHAPTER 4: IMPLEMENTATION ... 42
4.1. Test Projects ... 42

4.2. Experimentation ... 42

4.2.1. Changes Extractor ... 42

4.2.2. Summarizer ... 44

4.2.3. Issues Extractor ... 46

4.2.4. Doc Generator ... 47

CHAPTER 5: RESULTS EVALUATION ... 50

5.1. Evaluation Metrics ... 50
5.2. Results and comparison .. 50

5.3. Evaluation ... 51

CHAPTER 6: DISCUSSION AND LIMITATIONS ... 58

6.1. Discussion .. 58

6.2. Limitations ... 58

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 60

6.1. Conclusion .. 60

6.2. Future Work ... 60

References ... 61

12

 List of Figures

Figure 1. Flow of Proposed Approach .. 17

Figure 2. Research Flow ... 18

Figure 3. Thesis Outline .. 20

Figure 4. Systematic Review Process (SRP) .. 27

Figure 5. System Architecture .. 34

Figure 6. Flow of Natural language Summary Generation ... 37

Figure 7. Change Extractor Code .. 44

Figure 8. Class Source code and our system generated Summary ... 45

Figure 9. Endpoint Source Code and Our System Generated Summary 45

Figure 10. Function Source Code and Our System Generated Summary 46

Figure 11. Issue Extractor Source Code ... 46

Figure 12. Doc Generator module Source Code ... 47

Figure 13. Our System Output (Release Notes) .. 48

13

 List of Tables

Table 1. Execution of Search String ... 25

Table 2. Identified Plugins and Libraries .. 29

Table 3. Proposed approach comparison with previous approach .. 51

Table 4. Developer’s Background .. 52

Table 5. Class Summary Evaluation ... 54

Table 6. Function’s Summary Evaluation .. 55

Table 7. Endpoint’s Summary Evaluation .. 55

14

Chapter 1

Introduction

15

 CHAPTER 1: INTRODUCTION

This chapter contains a brief introduction of the research performed. Section 1.1 explained

the release notes. The problem statement is stated in section 1.2.Section 1.3 includes the

proposed methodology and Section 1.4 provides a brief overview to our research contribution.

Lastly, the thesis organization is stated in Section 1.5.

1.1. Introduction
Software development life cycle has many steps. Different kinds of artifacts are associated

with them in these stages. One of these artifacts is RNs. RNs are generated when a new version

of a software project is planned to release. It aids developer in maintaining project. These notes

contain new features, improvements, changes to classes, libraries, methods etc. They are very

helpful for the developer to identify and classify different API changes [1].Usually these notes

are generated manually. Release manager or developers create these notes by analyzing the

changes made to project. Generating manually is very difficult and time consuming.

Continuous delivery methodology of software engineering improves the customer’s

satisfaction and product’s quality which are the most important factors in software development

[2], [3]. There was still a gap between user and developer. They need to communicate using a

document. RNs are these documents through which they communicate with each other and

exchange their progress and ideas with this. These notes are generated on every new

version/release of their project. Writing RNs on every release is difficult task for a developer.

Automation of these notes helps developer to focus on the quality of project. These notes contain

all the new changes made to the new version. Changes made to library, changes made to license,

newly added features, deleted features, fixes made to bugs etc are few of changes we are talking

about that RN contain. This document is very helpful for the developer to find bugs, very

meaningful to manager to learn more about the project, and if the project is handover to another

engineer it will aid the engineer to learn about the project very easily. Testers get advantage from

the document in testing.

Automation in software engineering enhances the whole lifecycle from requirements to

maintenance. Manual generation of RNs is very complex and time consuming task which slow

down the development. Every stakeholder has different types of concerns with these documents.

16

Developers are interested in structural changes like changes to functions, classes etc, end-user

read the document to learn what new feature has been added to the system and the tester needs to

know which part of the system is to test. It is very difficult and time taking to generate separate

notes for every types of stakeholders manually which generally took 8 hours [1]. In case of a

project where multiple developers working, manual generation of these notes are more complex

and difficult for the release manager because he/she does not know everything about the system.

Generating RNs automatically saves time and other resources. The notes generated

automatically are more accurate and concise than manual ones [4]. RNs at a different level of

granularity and in different formats can be generated easily. The problem in RN generation is

what types of changes (made to the new system) are to select and how to prioritize them in the

final documene. [5] Conducted a study in which they analyze RNs of multiple software projects

and evaluate them by looking at their features and how they present the final document. The

main output of their study is they discuss about the type of changes which should be in the RNs.

Discussion of different Machine Learning and Artificial Intelligence algorithms of RN feature

extraction is the part of their research too.

1.2. Problem Statement
Software automation changed the world of software development. Software RNs are

generated when deploying the new build of a project. It is very helpful for developers in

maintenance and further development. Generating these RNs manually are very complex and

time consuming. It takes 8 hours, on average, to generate these notes [4]. It is even more

complex and difficult if more than 1 developers working on the same project.

There are very limited research and algorithms available for automation of this process.

They have done very good work but needs a lot of improvement. The main limitation of these

tools and algorithms is that they only worked on JAVA projects. Our focus of research is node

JS. There is no research available that automate the release notes generation for Node JS.

To automate the release notes generation is the problem we want to solve through this

research. Automation of these notes save time, cost and other resources.

17

2.3. Proposed Methodology
In this research we proposed an approach based on NLP and heuristic rules to generate

these rules automatically. We analyzed the existing approach to highlight the standards used

generation of release notes. After studding the previous research we realized that there is need

for improvement in this research. Moreover every previously proposed research generate these

notes for JAVA programming language. There wasn’t any research done on JavaScript or any of

the JavaScript framework. We propose and developed a novel approach to get better results than

previous a state of the art systems for JavaScript project (specifically Node JS).

The Figure 1 shows the overall process of the proposed approach. There are four main modules

in the proposed system. Every step process some data and provide the output to the next step.

Figure 1. Flow of Proposed Approach

The entire research is done in a systematic way. Flow of the research is shown in Figure

2. First step is to identify the problem then the solution for the identified probloem is proposed.

The next step is to carry out a comprehensive Systematic Literature Review (SLR) which

becomes the foundation of the proposed solution. Researches related to the proposed solution are

analyzed and compared.

18

Figure 2. Research Flow

The proposed work includes a fully automated approach to generate the RNs. The proposed

methodology has been compared with the previous methodologies to compare the improvement.

1.4. Research Contribution
The main contribution made by our proposed research is to save time, cost and other

resources in software development life cycle and maintenance.

Some of the key contributions of our proposed research are listed below:

• We have performed anSLR on automated generationrelease notes. Through this literature

review, we identified different techniques used in past for this purpose from researches

reported in detail in Chapter 2. Similarly, our SLR has drawn the NLP algorithms used. The

concluded results show that our study would provide an advantage to the researchers in

future it is the very first systematic literature review carried out on automated release

notesgeneration. It will help practitioners in this field to overview the results to explore more

investigate maturity of this process.

• We provide a list of all the tools and plugins used in industry, for different platforms, for

generation of release notes generation.

• We compare all the tools and techniques used in this context.

19

• We have exploited text mining for the determination and development of a novel framework

more specifically rational expression for the transformation rules on basis of formal language

theory.

• We proposed a novel approach to generate release notes for JavaScript projects

• Industry projects are used to evaluate the results generated by our proposed approach.

Further, the results are validate from different industry developers of Node.js.

• The proposed approach is implemented in python.

1.5. Thesis Organization
Figure 3 shows how thesis are organized. The short description of every chapter is listed

below.

Chapter 1: Introduction offers a brief introduction containing the background study,

problem statement, research contribution and thesis organization. Chapter 2: Literature Review

provides the detailed literature review highlighting the work done in the domain of automated

bug report summarization. The systematic literature review is composed of three main sections.

First section is review protocol which gives details on the methodology using which the literature

review is carried out. Section two offers details on research works, whereas; section three

highlights the research gaps that we encountered. Chapter 3: Proposed Methodology covers the

details of proposed methodology used for identification of problem. How this approach works

and what are the main modules of this process. It will also discuss the module in detail with all

its architectural problems and solutions. Chapter 4: Implementation presents the detailed

implementation regarding the proposed tool. Chapter 5: Validation provides the validation

performed for our proposed methodology using nine important case studies. Chapter 6:

Discussion and Limitation contains a brief discussion on entire work performed along with

limitations to our research. Chapter 7: contains the Future Work and Conclusion.

20

Figure 3. Thesis Outline

21

Chapter 2

Literature Review

22

 CHAPTER 2: LITERATURE REVIEW

RNs play a vital role in software development. RNs are one of the essential artifacts about a

new release of the software. Despite their importance, RNs are usually generated manually.

Generating them manually prone to errors and time consuming as it contains a description of

new features, bug fixes, license changes, deprecated libraries, new Application Program

Interface (API), and other changes made to the software. There are different tools available to

generate RNs automatically from issue tracker and source code repositories. Researchers are

working on the automation of RNs from decades to enhance the software development process.

In this chapter, we present the algorithms published by different researchers, available plugins,

and tools in the market for this task. This survey of the past techniques used for the automation

of RNs is useful and will be more helpful for future researches regarding this problem.

Introduction

Software automation changed the world of software engineering by improving software

maintenance processes, methods, and tools[7]. These are the means of communication between

the developer and other stakeholders. RNs are usually generated when a new version of the

software system is planned to deploy. It contains information about the changes in new release

i.e., fixes of issues, new functionalities, deprecated libraries, and APIs. They are helpful for the

developer to identify and classify different API changes [1]. Different RNs are generated for

different types of stakeholders. Changes to code, structural changes, a new library, and

addition/removal of functions and classes are essential for developers while end-users concerned

with new features and bug fixes.

Usually, these notes are generated manually by the developer or release manager. Creating

these notes manually is a challenging and effort prone task, which generally takes 8 hours [8].

Emergency updates often occur in projects, especially in mobile applications, due to deployment

issues or other essential requirements/features [9]. Keeping track of these changes in such cases

is hectic. Most of the time, more than one developers work on a single software and creating

RNs, in this case, is very complicated as a different section of the software is developed by a

different developer. Creating RNs by a manager or single developer, in that case, is very limited

in its features as he/she won't have a thorough knowledge of all the changes and features.

23

Continuous delivery improves the quality of product and increases customer satisfaction

[10][3]. Still, there is a gap between customer feedback and the development of new features in

the continuous delivery method [11] as there is no way to generate RNs for every delivery.

Creating RNs for every stakeholder that matches the target group is another problem in RNs

generation, and it takes time. Every stakeholder have their own concerns with the RNs [12], e.g.

• Testers need to know which functionality to test

• Project manager concerns with the new features and bug fixes

• A developer wants to know the changes occur to code (structural changes, changes to

functions/class and API etc.)

Automatic RN’s generation enhance the quality of document and also it save other resources.

RNs at a different level of detail and in multiple document formats can be generated easily.

According to research [8], automatic creation of these notes are more precise and correct than

maunal generation.

Another main problem in RNs is which type of changes are to include in the final docment of

RN and how to prioritize them in the document. Abebe and his colleagues conducted a research

which compare different RNs and their fiearures [13]. They have discussed which changes to

include it RNs and which are not. Different machine learning models are mentioned in their

article which are used to identify type of changes and features for RNs. IT companies are shifting

towards continuous delivery and launch/relase their product on weekly or monthly basis [6]. In

this case automation is more helpful.

Many researchers devoted their studies and time to automate this process of RNs generation.

They achieved significant results in this area. Few algorithms fully automate the creation of these

notes while others work on semi-automation of this process. But there is a lack of some

systematic literature study of the past techniques that can give the overall understanding of the

future researcher that which technique is better and how it works. This paper explores different

research conducted since 2000 regarding these notes creation. A systematic literature review

provides an excellent quality assessment of a research study by using a reliable and accurate

methodology [14].

24

The rest of the chapter is structured as in section 2.2 we will discuss the methodology used

for this literature review, Section 2.3 is about different techniques, tools and plugins proposed

for this automation and their results and section 3.4 conclude the whole discussion.

2.2. Methodology
In [15], Evidence-based software engineering provides the standards by which the best of

evidence are addressed in regards to this research study with human values and practical

experiences in the process of decision making by just considering the software maintenance and

development. Systematic Literature Review (SLR) is our methodology in this paper. There are

four stages: Research Questions, Data Search, Inclusion and Exclusion Criteria, and Data

Collection.

2.2.1. Research Questions

We have developed the following research questions for conducting this systematic study of

literature:

• How many algorithms and tools are proposed since 2000 in this context

• What methodology and techniques used to automate the process of RNs creation

• Semi-automatic creation of RNs.

• What specific tools and plugins are available in the market for this task?

2.2.2. Data Search

For research articles searching from IEEE, Springer, Elsevier, and ACM databases, we selected

keywords: RNs, Natural Language Processing (NLP), Programming Language Processing,

Source code, deep learning, and Issues Linking. Keywords have been used with the number of

filters to find the research articles related to our topic and criteria. The four selected databases

are used for the searching research articles with different filters i.e. publication date (must be in

2008-2020) and combination of above keywords with AND/OR operators. Moreover, Table 1

contains the list of all searching keywords which are used with AND/OR operators and results of

their search. After performing with the above filtering and keywords we selected a total of 6183

research papers seems related to our research questions. Further, we have done deep analysis

and filtering on research articles by applying our inclusion and exclusion rules. The last filtering

25

is done on by reading and understanding their abstract, general study and publications. The

further process is depicted in Figure 4.

2.2.3. Inclusion and Exclusion Criteria

Criteria for research paper and tool selection is its relevance with our research questions and

result generated by the methodology. Inclusion criteria is:

• Included all those tools and techniques that directly or indirectly related to the

automatic/semi-automatic creation of RNs.

• Include research or tool which at least answer one of the research questions.

• Research conducted after 2000 will be included in the paper.

• Scientific databases used for research are IEEE, Springer, Elsevier,and ACM. Research

articles from these databases will only be selected.

Our exclusion criteria is:

• Exclude research study which is irrelevant to our research questions.

• Exclude research study which is repeated.

• Exclude the duplicate research study, if similar research is proposed in two research

articles, only the latest work will be included.

• Reject research studies proposed before 2000.

• All research must be in English language.

Table 1. Execution of Search String

Sr.
No. Keywords/ Search Terms Operators

Number of Research Papers

IEEE Springer ACM Elsevier

01 Release notes and NLP
AND 2 32 1 11
OR 3286 50451 164 18773

02 Release notes and Programming
Language Processing

AND 25 0 15 0

OR 15085 1825 164 1446

03 Source Code and NLP
AND 43 1873 42 499
OR 37912 118767 9238 64109

04 Release notes and Source code AND 39 356 18 138
OR 35120 73315 164 48278

05 Release notes and Deep Learning AND 8 17 2 4
OR 28942 36167 164 21205

26

06 Issues Linking and Release notes
AND 115 722 11 1
OR 10015 4555 5695 3512

2.2.4. Data Collection

We got many algorithms, tools, and plugins for the automatic creation of RNs. After

reviewing their proposed algorithms and their results after quality assessment, we selected a few

algorithms and tools. Quality assessment is an essential phase in research studies. We have

performed the inclusion and exclusion criteria to find research articles from databases and select

only those research articles that meet our criteria.

Firstly, we chose different research articles and tools through their titles and recorded their

Bibliographic data. Then start analyzing their abstract and select the most relevant researches. At

this phase, we excluded many research articles and chose the rest. After that, we study the

proposed algorithms, their methodology, results generated by their algorithms, and how they

evaluated their results and recorded their summaries. At this stage, few research articles are

rejected.

Results of our selected papers, algorithms, tools and plugins are discussed in the next section.

27

Figure 4. Systematic Review Process (SRP)

2.3. Research Findings
We have successfully got the target research algorithms and tools but didn’t find any

previous systematic research articles describing our research questions. We have seen very few

research articles regarding the automatic generation of RNs from our databases. We have also

spent our time in searching for different plugins and libraries used for this task from the search

engine. In our opinion, this study is the first systematic literature review of automatic RNs

generation. The found research algorithms and plugins are discussed below.

2.3.1. Research Algorithms and Techniques

Laura Moreno worked to create RNs between commits automatically from the versioning

system and issue tracker [8]. He extracts changes from the versioning system, converted these

changes to NLP sentences, and then link these changes to issue tracker. They summarize the

code changes and link it to information extracted from commit notes and issue trackers. They

used srcML toolkit [16] to parse source code and extract facts about file been added, removed,

deleted, etc. Summaries for java classes are generated by the technique proposed by Laura

Morenoa and her co-workers [17]. They conduct 4 case studies for completeness, importance,

industry developer level, and in the field study.

In[12], a semi-automatic approach is proposed for the creation of RNs. The focus of their

research is agile methodology and user-specific notes. According to their research, every

stakeholder has different concerns with RNs. They elicit information about a release from build

server, issue tracker, and version control system and then generate a list of changes for this

release. There should be a release manager who will review RNs, can edit it, and also customize

creation by filtering.

Reno [18] is a tool that is used for the generation of RNs. The generated are in a standard

format organized into the group's new features, bug fixes, known issues, etc. are also generated

automatically with this tool using source code. The release manager is responsible for generating

and providing these notes to developers.

In [19], researchers developed a model-based approach to generate automatically by

discovering patterns from different satellite projects. They perform an empirical study on a broad

28

set of satellite projects in order to classify entities of RNs. After that, patterns are defined for

these categories and at last generated by the discovery algorithm. Colored Petri Nets (CPN) is

used as a discovery algorithm in this project.

RNs are important as they identify what is delivered to users. [20]Chandrasekra proposed a

methodology in his research article for the generation of RNs automatically for Team Foundation

Server (TFS). They deeply study and inspect every steps of software methodology from

requirement to deployment and automate these note’s creation.

In [21], a technique is proposed to populate a release history database that combines versions

data with the bug report. In this way, they maintain a structured database. A full meaning data

can be extracted by querying this structured data. H. Gall and his colleagues extract

dependencies between modules and classes from change log and source code [22].

Generating natural language summaries of source code aid in the documentation of a project.

There are many algorithms proposed for generating summaries from source code [17],[23], [24]

and [25].

2.3.2. Plugins and Libraries

By using the Google search engine to find different plugins and libraries are used for the

creation of RNs automatically. Most of them just used a change log to create, and few also

considered other artifacts of software engineering i.e., issues, software requirements, etc. Table

2shows all these tools.

Atlassian generator [26], is a deployment plugin developed for Bamboo Server. It generates

in HTML format from the commit differences between two releases. It includes all the commits

between the current and the last commit. You have to configure it in a bamboo server.

Chronicler [27] is an open-source node.js that works with github repo. It will listen for pull

request events from Github Webhooks. When a pull request is merged, Chronicler will create a

new release draft OR edit an existing one with the new pull request info. Final output contains

the list all pull requests messsages.

 Azure pipeline generator [28] is a PowerShell task and only supported on windows. A

node.js version of this plugin is also available for multiple platforms. It generates files as part of

29

VSTS/TFS build or release pipeline. It works with both Azure Server and Azure DevOps

Services. There are multiple templates for RNs depends upon requirements. The power shell runs

each line of the template as command and generates output for RNs.

Another tool [29] we found is a python package used to generate RNs using pull requests. It

requires a GitHub access token. It gets the description for each pull request and put these data

into RNs.

Semantic generator [30] generates change log using conventional changelog. First will have

to configure it in a configuration file and add preset and keynotes to search. For every preset, the

corresponding conventional package must be installed.

Automated RNs generator [31] and Better PDF Exporter for JIRA [32] plugins are used with

the Jira server to automate RNs generation. Multiple formats are supported by the former one

i.e., pdf, JSON, markdown, etc. Scheduling RNs generation is also available. In the Better pdf

exporter, multiple pdf templates are available in this plugin to use. Jira Query Language (JQL) is

used to extract any information from any issue on Jira and inject it anywhere in the notes in both

plugins.

A Gitlab release note generator [33] that create RNs on the latest tag. It requires node.js or

Docker. It generates RNs between two tags of the same branch. It generates the changelog of

these two tags. It looks for the following labels in commits enhancement, breaking change,

feature, and bug.

Table 2. Identified Plugins and Libraries

Sr. No. Selected Plugins and Libraries Requirements

01 Attlassian Release Notes Generator Bamboo Server

02 Chronicler Node JS and Github

03 Release Notes Generator Github

04 Semantic Release Notes Generator Github

05 Azure Pipeline Release Notes Generator Power shell or Node JS and VSTS
or TFS

06 Automated Release Notes Generator JIRA Server

07 Gitlab Release Notes Generator Gitlab

30

2.4. Conclusions
Automation of artifacts in software engineering helps developers and managers to save time

and increase the quality of reports. RNs play a vital role in every new release of software for

every stakeholder. It takes time to generate and thorough analysis of source code, new features

and resolved issues. Many researchers spend their time to automate the creation of these notes. In

this paper, we investigate the efforts of different researchers and developers in this regards. All

these generate very good results but according to our knowledge and understanding, Arena [8]

algorithm and their result are the best one among all these tools. They evaluate their results from

developers and managers. [12] Proposed technique is also very good as their target software

methodology is agile development and they cover different stakeholders. It is concluded that

researchers and engineers have proposed very good algorithms for RN generation automatically

but there is still need for improvement.

Limitations of our study are that we limited our study to just include the of software projects.

We only considered the research articles related to automation of software and did not discuss

the formation of software. In the future work, we will discuss the formation of and their

structure.

31

Chapter 3

Proposed Methodology

32

 CHAPTER 3: PROPOSED METHODOLOGY

This chapter contains detail of the proposed methodology. Section 3.1 discusses the targeted

core concepts explanation, Section 3.2 provides the detailed proposed methodology.

3.1. Core Concepts Explanation

3.1.1. NLP

Natural Language processing usually referred as NLP is an Artificial Intelligence Branch.

This field is related to helping computers to interpret the human language, understand it and then

able to manipulate it [34]. Basically, Natural Language processing is actually a subfield of

Computer Science, Artificial Intelligence and Linguistics and it is related to the interaction

between human’s languages and computer. It’s about how to teach computers that how to

analyze and process the natural language. This field can be further breakdown in speech

recognition, natural language understanding, natural language summarization and natural

language generation etc. Natural language processing is used to help the developers to manage

and organize the work knowledge to perform their tasks like summarization, named entity

relationship, translation, information retrieval or relationship extraction, speech recognition and

topic segmentation etc.[35]. This field helps computers and create automated systems that can

understand and analyze a human languages like Arabic, Latin or English etc.

3.1.2. Abstract Syntax Tree (AST)

AST represents the syntactic structure of source code. It is used in interpreter and compiler to

generate machine code or evaluate expression[36]. It tells the interpreter how to interpret the

statement and compiler how to translate the code. It represents the code in a tree based data

structure. It contains different nodes. The node that is above the all is called root node, node with

one of more child node is called interior node and a node without any child is called leaf node.

We use AST to get the syntactic information from code i.e. functions/methods changes, new

classes, modified classes, endpoints etc.

3.1.3. Control Flow Graph (CFG)

CFG is a graphical representation of the flow of a program. It shows all the possible paths

that can be traversed during the execution of program[37]. We implemented this module to get

33

all the returns and non-return ending statements of functions. This module aid in developing the

natural language summaries of function.

3.1.4. Def-Use Chain

Def-Use chain is a data structure of a program that contains all the definition and uses of a

variable[38]. It is necessary in our system because we traverse back every selected variable

(fulfilled the rules). Without this, it is not possible to generate the exact natural language

summary for a statement or expression containing a variable.

3.1.5. Diff

Git diff is used to extract the changes between different artifacts. We use diff to extract the

changes of files.

3.2. Proposed Methodology
The overall architecture of the proposed approach for RNs creation automatically is shown in

Figure 5. Four main steps/modules of the system are:

• Extraction of changes

• Human language (English) sentence generation

• Extraction of issues

• Combined all information and generating final document

The first step is Changes Extractor which fetches the changes made to the new system in this

new version. Diff command of git provides us this information in versioning control system.

Newly added, deleted and modified files are extracted at higher level and on more detailed level

it split all these files into classes, functions and methods. Changes made to libraries and license

are also extracted.

Next we need to generate human language sentences for all these selected changes in the next

step. Generating English language summaries for them is the responsibility of this module. Then

all the summaries are attached to their original file in their original order.

Issues extractor used in this research is JIRA. All the issues reported in JIRA within the

timeline of release are selected and linked to the code is the job of this Issue Linker.

34

Figure 5. System Architecture

Doc Generator is the last step which processed all the data provided by previous step and

organized them in a specific way for final output.

3.2.1. Changes Extractor

The first step of the changes extractor is to select the commits of interest that will be included

in the new system. The system prompts the user to enter two dates for the two releases rn-1

(previous release date) and rn (new release date). The system extracts all the commits (c1,…, cn)

occurs in these two dates. The last/latest commit cn contains all the changes of the previous

commits. The last commit of latest release rn and last commit of previous rn-1 are provided to

further processing. The following are the steps of changes extractor.

3.2.1.1. Source Code Analysis (diff of rn& rn-1)

Now we have the commits of interests, the changes extractor extract different type of

information from these commits. Git provides diff command that keep track of all the files with

their changes. We can iterate through files using diff and different iterator types like “A”, “M”

etc. All the files are then converted to their respective Abstract Syntax Tree (AST) for extracting

changes. The following kinds of changes are extracted:

• Files added and files removed: Diff provides added and removed files of the new

version (latest commit). We can iterate through diff information for added files with

35

iterator type “A” and “D” for deleted files. It provides us the content of the file, path of

the file, author of the file, collaborator of the file etc. We will keep this information for

further processing. Next the system search for classes, functions and endpoints from these

files and keep these information. AST is the plays a vital role in this extraction. By

looping through its nodes we can easily find classes and functions.

• Files Modified: ”M” iterator type is used for extracting modified files. Diff provide two

versions of all the modified files (one contain content before changes and one contains all

the new changes). After converting both versions of all these files to their respective

ASTs, the system compares them and extracts all the useful information from these files.

The system keeps these information and categorize them into different types of changes

like

o Newly added classes

o Newly added functions

o Newly added endpoints

o Changed classes

o Changed functions

o Changed endpoints

o Deleted classes

o Deleted functions

o Deleted endpoints

• Classes added, removed and modified: Now we ASTs and other information about all

added, deleted and modified files, the system is able to deep dive and extract classes,

functions and endpoints. In modified files, if the class is present in new version and not in

previous version it will be marked as new class in modified file. If the class is present in

the last version and not in new version it will be marked as deleted file. If the classes is

present in both files and any function, parent classes, constructor, setter or getter of the

class in the new version is not matching to their respective method in the previous

version then it will be marked as changed class in the modified file.

• Functions added, removed and modified: If the function is present in the new version

and not in the previous version than it will mark as new function. If it is present in last

version and not in the new version than it will be marked as deleted function and if the

36

function is present in the both the files and body of the function is not matching then it

will be marked as changed/modified function.

• Endpoints added, removed and modified: In after extracting the endpoint from

modified the system check if the endpoint is exists in the new version of file and not in

previous version then it will be marked as new. If it is present in previous and not in new

changed version of file then it will be marked as deleted. If it is present in both versions

of a file and method, URL or body of the callback/middleware changed then it will be

marked as changed/modified.

3.2.1.2. Changes to Used Libraries

Libraries in node JS called packages and all these packages are listed in package.json file of

the root folder of the project. Package.json file is a simple json (Javascript Object Notaion) file.

The packages are listed under dependencies and devDependenceies keys. A library/package

needed for node.js project is installed with NPM (Node Package Manager) or yarn (dependency

manager for node.js). The system checks if the package.json file is changed in the new version or

not with iterator type “M”. If the package.json file is changed in the new version of the project it

will compare it with the package.json file of previous version.

3.2.1.3. Changes to License

Package.json file also contains license information. Comparing the package.json file of both

versions will provide the change of license, if any.

3.2.2. Summarizer

The output of the changes extractor (changed files, changed classes/functions/endpoints,

added classes/functions/endpoints, deleted classes/functions/endpoints, libraries, license) are

provided to summarizer. This module will generate Natural Language Summaries in English

language for these changes.

How this module generate summary for classes, functions, endpoints are discussed in detail in

below sections.

3.2.2.1. Method Summary:

37

Very few researchers’ worked on the automation of summary generation for methods. Some

semi-automatic techniques extracted un-commented and prompt the user to enter the summary

for that code snippet as their summary [39], [40]. Some of them worked on the generation of

comments for the method using high-level abstractions [41].

In Node JS a method can be written in multiple syntax formats i.e. simple functions with

function keyword, arrow functions, pure functions etc. It is more complicate to generate

summaries for methods in node JS as compare to other OOP (Object Oriented Programming)

languages. We have developed an approach inspired from the one proposed by [42]. In this

approach, the summary is generated by heuristic rules. Figure 6 shows how this approach works.

Figure 6. Flow of Natural language Summary Generation

Before all the steps this module constructs AST, Control flow Graph (CFG) and def-use

chain for the method. Then the identifier (name of the function) and parameters are extracted

next. The following are the steps used in generating summaries for method.

1) Selecting weighted Statements:

As we know that not all the statements are equally contributed to the method. Some of the

statements are very important and some are not like socket.emit(data) and console.log(). We

need to selected only important statements from the system and we called them weighted

statements. [43], [44] Proposed algorithms to extract Word phrases from the signature of

38

methods for different purposes. We did this step with heuristic rules inspired by [45] to select

these statements. The following are the conditions/rules for selecting statements:

• Ending statement: Ending statements are the exit points of a function. All the ending

statements are counted as weighted statements and can be extracted using CFG.

• Void-Return statements: The statement which does not return any values to a

variable/constant does something important and is selected.

• Data facilitating statements: Those statements that return some value and that is stored

in a variable and that variable is used in any other weighted statement are selected.

• Controlling statements: All the controlling statements which contain any other weighted

statements in their body will be considered as weighted statement.

We will select these statements in their original order in which they appeared in the method.

Unnecessary information will be omitted from the summary.

Algorithm 1 Rules for generating phrases
Result : Phrase for statement
Name = Split(input)
Class = getClass(input)
Arguments = getArguments(input)
phrase;
if name == 1 &&name == verb; then
 phrase = name + arguments
else
 if hasTrailingPastParticiple(name); then
 phrase = name
 else
 if hasLeadingPreposition(name); then
 phrase = class + name
 else
 if hasLeadingVerb(name); then
 verb = getVerb(name)
 else
 if objectName(name); then
 ext = getObject(name)
 end
 if hasPreposition(name); then
 prep = getPrepositions(name)
 for all prep p; do
 wb = getWordBeforePrep(name,p)
 wa = getWordAfterPrep (name,p)
 phrase = verb + wb + p + wa + class
 end

39

 else
 phrase = verb + ext + class
 end
 end
 end
 end
end

Now we have weighted statements, the next step is to generate phrases for all these

statements. The first step is to find if it is a Noun Phrase (NP), Verb Phrase (VP) or Preposition

Phrase (PP). E. Hill, L. Pollock and K. Vijay-Shanker proposed an algorithms in their research

for generating phrases [45]. Our algorithm is similar to that one but with little changes with. The

three main steps in this are:

• Split identifiers into space-delimited phrases

• Determine if the name is NP, VP or PP

• Identify the verb, direct object, preposition and indirect object of the verb

In splitting of identifier into space-delimited phrases the system check if the identifier is

camel case, Pascal, capital or small i.e. “addToJobs” is camel case, “AddToJob” is Pascal,

“addtojob” is small and “ADDTOJOB” is capital identifier. After splitting all of these will be

“add to jobs”. In the next step the system will look at the type of phrase it is. Algorithm 1

shows the rules developed for identifying the type of a phrase. At last it construct the final phrase

by adding parameters and phrase.

Finally all the information i.e. phrases, function name, path and parameters are combined to

create the summary.

3.2.2.2. Class Summary

Classes contain different properties/variables and functions/methods. The first step is to

extract name of the class and parent class (if it is inherited from any class). Other information

40

contains constructor, setters, getters and other methods. All these are methods and summary for

these methods are generated in the same way as for method summary module does. At last all

these information are combined to create final summary of the class.

3.2.2.3. Endpoints Summary

Endpoints contain URL, method, middleware and other callback functions. Using AST we

will extract the method for the endpoint i.e. POST, GET, PUT, DELETE etc and the URL of that

specific endpoint. The remaining are only middleware and callback functions. These both are

simple functions. The summary for these functions are generated with the same technique used

in the method summary module.

Now we have all the information i.e. URL, method, callback summaries, middleware

summaries. The module combined them in a specific format for the final summary of the

endpoint.

3.2.2.3. Libraries Summary

We have the information about the changed and newly added library (extracted in the

changes extractor step). The detail of the library scrapped from npm official website.

3.2.3. Issue Extractor

Issues tracker used in our research is JIRA. This module fetches all the issues from tracker

with different filtering options like tags and time. We extracted these issues along with their

detail with big fixes and check if the issues reported during this new version time period entered

by the user at start.

3.2.4. Doc Generator

Doc generator combines all the summaries created in the previous step and group them in file

level (summaries belongs to same file will be group together). Python-docx is a python library

that is used to generate word document in python. This module listed all the information under

their respective headings and sections.

41

Chapter 4

Implementation

42

 CHAPTER 4: IMPLEMENTATION

This chapter explain the implementation of the proposed methodology. The Python

programming language is utilized to implement the proposed approach. Section 4.1 explain the

projects used to test the system and section 4.2 gives detail about the experimentation.

4.1. Test Projects
We used two different projects for testing and development purpose. One project is a node.js

backend application for a mobile application which contains Rest APIs for the client side application. The

DB used in this application is mongoDB. The Express is used as node.js framework for that application.

Another project is a backend application for a health related project. It contains the implantation of

web sockets. Mongo DB is used as database for the application and Express as node.js framework.

4.2. Experimentation
The proposed algorithm is implemented on Anaconda. Anaconda is a standard platform for

Python data science and is leading in open source innovation for machine learning. Spyder used

as an editor to develop and test the code. Spyder is official editor with Anaconda. Spyder is an

IDE which is compatible and used with Anaconda for programming in python language. It is

available with anaconda distribution. We have tested the proposed algorithm on core i-3 with 8

GB RAM and CPU of 2 GHz.

We have 4 main modules in the proposed algorithms. The main modules of the system are

shown in Figure 1. The implementation of these modules are listed below.

4.2.1. Changes Extractor

The first and main step in this algorithm is extraction of source code changes of two version.

We provide the Uniform Resource Locator (URL) of the target node.js project to our system.

The system prompt for two dates. Our system used different libraries of python for the ease.

Gitpythonis one of them which is used to read git repository in python. The added, removed and

modified files are extracted by using the above library. We extracted the classes, methods and

endpoints from added files and removed files and saved them in an array.

43

In case of modified files the above mentioned library only give us the full content of the file

for both two versions. This is our system job to extract the changed artifacts from these two

versions, which is a little complex. We compare the same files of both versions and find whether

the changes are made to classes, methods or endpoints. For classes we check if the classes in

both files having same name but any/all of the following changed then the class is labeled as

modified class.

• The constructor

• Getter methods

• Setter methods

• Properties

• Other methods

• New method

Similarly for methods we checked:

• The list of arguments

• Content of the method (Expressions and Statements)

For endpoints we checked:

• The METHOD type (POST, GET, DELETE, PUT etc.)

• The return data

• The number of middleware used

• The content of all the middleware

• The content of the endpoint (Expressions and Statements)

Finding if any of the above is changed is done with the help of Esprima. Esprimais at the top

of list in these libraries. It is used to generate AST of JavaScript code. Figure 7 show the code

(small part of code) of the module:

44

Figure 7. Change Extractor Code

4.2.2. Summarizer

We have different sub-modules that are necessary for this step. We first parse every artifact

(class, library change, method, and endpoint) and select the basic information about it. The basic

information contains name of class, its methods, constructor etc. After that we feed this data to

another sub-module w-statements. The job of this module is to extract the weighted statements

according to the rules explained in previous section.

These selected statements are then provide to extract-phrases, which utilize the summery

generator module and create summaries for the selected statements, rearrange these phrases in

their original order (order in which they appear in source code) and combine simple phrases. The

last task of this module is to combine basic information about the artifact and its summary and

return the summary.

We have three main source code items i.e. classes, methods and endpoints. The source code

along with their summary are shown in figure 8,9 and 10:

45

Figure 8. Class Source code and our system generated Summary

Figure 9. Endpoint Source Code and Our System Generated Summary

46

Figure 10. Function Source Code and Our System Generated Summary

4.2.3. Issues Extractor

JIRA client library for python i.e. JIRA is used to extract the issues registerd in the selected

time perios. Figure 11 shows the code developed for extracting issues.

Figure 11. Issue Extractor Source Code

47

4.2.4. Doc Generator

The last step in this method is doc generator. The output of this system is a Microsoft Word

file with extension ‘.docx’. Python-docxlibrary is used for generating output. The source code of

this module is shown in Figure 12:

Figure 12. Doc Generator module Source Code

The output file generated by this system is shown in Figure 13:

48

Figure 13. Our System Output (Release Notes)

49

Chapter 5

Results Evaluation

50

 CHAPTER 5: RESULTS EVALUATION

This chapter deals with the results and evaluation of our algorithm. Section 5.1 discusses the

evaluation metrics to be used for the evaluation of our algorithm. Section 5.2 discusses the

results and comparison with the previously used techniques. In section 5.3 the results get from

evaluating the results from industry developers.

5.1. Evaluation Metrics
The evaluation metrics for this problem is the same which was used by other researchers in

their publications. The generated notes are evaluated manually by software developers in

previous papers. So we also used the same method to evaluate our results.

5.2. Results and comparison
Limited people worked and researched on the automation of these notes. There are also few

libraries and plug-ins which are used by engineer for this purpose. Table 3 compares the

proposed methodology with the existing algorithms and libraries. The comparison matrices are:

• Target Language:Language / Platform for which the corresponding algorithm/tool

intended to generate RNs.

• Category: This matric states the how they generate RNs. Different categories are:

o Manual

o Automatic

o Semi-Automatic

• Release Notes Type:It tells us about which type of information is extracted from the

source code. It can be syntactical information (Structural information i.e. functions,

classes, files, variables etc), semantically information (The intention of the source code)

or both.

• Release Notes Features:It means which type of features RNs provided. The different

release notes features are:

o New Features

o Improvements

o Bug fixes

o Deprecated Features

51

o License changes

o Library/Package changes

• Output: The output format of the generated notes.

• Pattern Matching (Extraction): Whether the algorithm/tool extract certain type of

information like Endpoints, DB queries etc.

• Evaluation: The evaluation matrices of the generated output.

Table 3. Proposed approach comparison with previous approach

S. No. 1 2 3 4 5 6 7

Algorithm / Tool ARENA
Semi-

Automatic
Approach

RENO

Attlassia
n Release

notes
Generato

r

Chroniclo
r

Modal
Based

Approach
Proposed

Target Language JAVA NA NA JAVA Node JS Satellite
system Node.JS

Category Automati
c

Semi-
Automatic

Semi-
Automati

c

Automati
c

Automati
c

Semi-
Automati

c

Automati
c

Release Notes Type
Semantic

and
Syntactic

Syntactic Syntactic Syntactic Syntactic Syntactic
Semantic

and
syntactic

R
el

ea
se

 N
ot

es
 F

ea
tu

re
s New Features ü ü ü ü ü ü ü

Improvement
s ü ü ü ü ü ü ü

Bug Fixes ü ü ü û û û ü
Deprecated

Features ü û û û ü û ü

License
Changes ü û û û û û ü

Library/Pack
age changes û û û û û û ü

Output HTML
file

Plain Text
,Markdow

n or
HTML

Standard
format

HTML
file NA NA

Word
file(.docx

)

Pattern Matching
(Extraction) No NO No

 No NO No Yes (End
points)

Evaluation Manually NA NA NA NA NA Manually

5.3. Evaluation
For evaluation we conducted a case study. “TowardJobs” is an android app, developed in

React-Native, which shows a list of available jobs in Pakistan. It has different advanced filters

for searching jobs. The admin panel for posting and controlling jobs in app is built in React JS.

52

The backend of both these android app and admin panel is built in node JS. It has 40+ commits

at all and 28 new commits in the new version of system. We provide this project to our algorithm

and generated the RNs for this version of application. The generate RNs are then evaluated by

the industry developers. The main and difficult part in this approach is human language sentence

generation for classes, bugs, function and endpoints. We evaluated all these summaries generated

by our system individually from different Software Engineers. The details of these engineers

involve in study are shown in Table 4.

Table 4. Developer’s Background

No. of Years Development experience

0 – 3 9

4 – 6 3

7 – 10 2

Total 14

We provide our test project to our system and generate result. After that we develop a

questionnaire that contains the source code of different artifacts and their corresponding

summaries and ask them to rate their correctness, conciseness and accuracy. The questions are:

1. Your full name

2. Total Experience in software Development

3. Experience in JavaScript or Node JS development

4. Your current or Last Organization

The next three questions are very important and repeated for different types of code artifact

(Source code and their natural language summaries). The different code artifacts are Functions,

classes and endpoints. These questions are:

5. Accuracy: How much the summary generated by the system is accurate

• Accurate

• Slightly Accurate

• Very Inaccurate

6. Content Adequacy: Check the summary content independent of the way it is presented, what

you say it is:

53

• Adequate

• Misses Some

• Misses Important

7. Conciseness: Check the summary content independent of the way it is presented, what you

say it is:

• Concise

• Slightly Verbose

• Very Verbose

The source code of a class is given below:

class User {

constructor() {

 this.id = '1234';

 }

set name(name) {

this._name = name.charAt(0).toUpperCase() + name.slice(1);

 }

get name() {

returnthis._name;

 }

contact() {

var y = abc.send(this._name)

socket.emit("data")

return y

 }

send(){

admin.send("data")

 }

 }

54

The summary of the above code is evaluated from developers and the results of their opinion is

show in Table 5.

Table 5. Class Summary Evaluation

Accuracy Content Adequacy Conciseness

Options Result Options Result Options Result

Accurate 71.4% Adequate 64.3% Concise 71.4%

Slightly Inaccurate 28.6% Misses Some 35.7% Slightly Verbose 21.4%

Very Inaccurate 0% Misses Important 0 % Very Verbose 7.1%

The notes generated by our system has many methods. One of the methods (source code) is

given below:

functionauthChecker(req,res,next){

var token = req.headers['x-access-token'];

if (!token) {

returnres.status(401).send({ auth: false, message: 'No token provided.' });

 }

jwt.verify(token, config.secret, (err, decoded)=> {

if (err){

returnres.status(500).send({ auth: false, message: 'Failed to authenticate token.' });

 }

else{

next()

 }

})

}

The summary of this method is:

“A new function authChecker() is added to to ‘auth.js’. If Token not exists sends data to res with
status 401 and return result. Verify jwt then if err exists, send data to res with status 500 and
return result, otherwise call next.”

55

The evaluation of the summary is shown in Table 5:

Table 6. Function’s Summary Evaluation

Accuracy Content Adequacy Conciseness

Options Result Options Result Options Result

Accurate 71.4% Adequate 85.7% Concise 57.1%

Slightly Inaccurate 28.6% Misses Some 14.3% Slightly Verbose 42.9%

Very Inaccurate 0% Misses Important 0 % Very Verbose 0%

The source code of an endpoint added to project in new version is given below:

router.post('/add',auth.authChecker, (req, res) => {

scholarshipModal

 .addScholarship(req)

 .then(data =>{

res.status(200).send(data)})

 .catch(err => { res.status(400).send('error'); console.log(err) })

})

The summary evaluation of the above endpoint is shown in Table 6:

Table 7. Endpoint’s Summary Evaluation

Accuracy Content Adequacy Conciseness

Options Result Options Result Options Result

Accurate 78.6% Adequate 64.3% Concise 57.1%

Slightly Inaccurate 14.3% Misses Some 28.6% Slightly Verbose 28.6%

Very Inaccurate 7.3% Misses Important 7.1 % Very Verbose 14.3%

56

The above tables shows that the result generated by our approach are very concise and accurate.

57

Chapter 6

Discussion and Limitations

58

 CHAPTER 6: DISCUSSION AND LIMITATIONS

This chapter discusses the overview of proposed research and limitations of this research.

Section 6.1 contains the Discussion whereas Limitations to research are mentioned in section 6.2.

6.1. Discussion
Automation in software development has revolutionized the process by reducing time and

enhancing quality. Natural language processing and programming language processing has

helped software engineer in every stage of software development and deployment. Software RNs

are important document in software deployment and helps in maintenance and testing. Most of

the time these notes are generated manually. The purpose of this research is to automate the

generation of these RNs. These notes are very important for a software developer, manager and

other stakeholders.

Very few researchers had worked in automation of RNs. All available algorithms automate

the generation for java projects. Node.js is widely used for the development of Rest APIs, Micro

services, SOAP APIs and other purposes. This approach is a first one to work on Node JS

project. We have compared our approach to previous algorithms and achieved very good results.

Results are also evaluated from developers.

6.2. Limitations
This is a novel approach for Node JS project. It still needs improvements in its results as

Node JS is very complex and divers in terms of its syntax. The approach used heuristic rules to

generate natural language summaries for source code items. This step can be done with Deep

Learning algorithms. We can do it with neural attention model of machine translation, but the

problem is that the data set of node JS source code is not available which limited us to used

heuristic approach. To create dataset by own will take a lot of time and more node JS developers.

As we discussed in the above paragraph that the node.js is very diverse and complex. It has

different frameworks and libraries. We were unable to cover all the frameworks and

libraries/packages at this time. The only framework which is supported by our system is

Express.js. It’s only tested on Express Framework.

59

Chapter 7

Conclusion and Future Work

60

 CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter concluded the research and discuss the future work. Section 7.1 shows

colclusion and 7.3 contains future work.

6.1. Conclusion

Generating release notes manually is a main hurdle in software development now a days. It

takes a lot of time and understanding of the code. In continuous delivery its generation is even

more complex. Automatically generating release notes save time, improves quality and enhances

software development process. Very little literature is available in this context.

This approach is a state of the art technique for Node JS projects. There is no other tool or

technique available for Node JS except Chroniclor [27]. The evaluation and case study shows

that the proposed approach is very good in its result for node JS projects. It is more accurate,

complete and concise than the release notes generated manually. The output of the system is a

Word document which is quite easy for a release manager to edit (update/deleted/add) it. This

technique is beneficial to software engineers in saving their time and other resources.

6.2. Future Work
In future work we will develop a proper GUI tool to generate release notes. We want to

generate output in multiple formats like Microsoft Word, pdf and html. We also want to improve

the quality of sentences generated from source code. The summarization is done with heuristic

rules. We want to automate the summary generation by using deep learning models like Neural

Attention model of Machine Translation and Tree based Convolutional Neural Network.

We can also add different new features to our existing approach like changes made to

deployment configuration, information about the authors etc.

61

 References
1. Kagdi, H., M.L. Collard, and J.I. Maletic, A survey and taxonomy of approaches for

mining software repositories in the context of software evolution %J J. Softw. Maint.

Evol. 2007. 19(2): p. 77-131.

2. Farley, J.H.D., Continuous delivery: reliable software releases through build, test, and

deployment automation. . 2010.

3. Chen, L., Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software,

2015. 32.

4. Moreno, L., et al., ARENA: An Approach for the Automated Generation of Release Notes.

IEEE Transactions on Software Engineering, 2016. 43: p. 1-1.

5. Abebe, S., N. Ali, and A.E. Hassan, An empirical study of software release notes.

Empirical Software Engineering, 2015.

6. Khomh, F., et al., Understanding the impact of rapid releases on software quality: The

case of firefox. Empirical Software Engineering, 2014. 20.

7. Kemerer, C. and S. Slaughter, An empirical approach to studying software evolution.

Software Engineering, IEEE Transactions on, 1999. 25: p. 493-509.

8. Moreno, L., et al., ARENA: An Approach for the Automated Generation of Release Notes.

IEEE Transactions on Software Engineering, 2017. 43(2): p. 106-127.

9. Hassan, S., W. Shang, and A.E. Hassan, An empirical study of emergency updates for top

android mobile apps. Empirical Software Engineering, 2017. 22(1): p. 505-546.

10. Farley, J.H.D., Continuous delivery: reliable software releases through build, test, and

deployment automation. 2010.

11. Rodríguez, P., et al., Continuous deployment of software intensive products and services:

A systematic mapping study. Journal of Systems and Software, 2017. 123: p. 263-291.

12. Klepper, S., S. Krusche, and B. Brügge. Semi-automatic Generation of Audience-Specific

Release Notes. in 2016 IEEE/ACM International Workshop on Continuous Software

Evolution and Delivery (CSED). 2016.

13. Abebe, S.L., N. Ali, and A.E. Hassan, An empirical study of software release notes %J

Empirical Softw. Engg. 2016. 21(3): p. 1107-1142.

14. Ba, K. and S. Charters, Guidelines for performing Systematic Literature Reviews in

Software Engineering. 2007. 2.

62

15. Kitchenham, B., et al., Systematic literature reviews in software engineering – A

systematic literature review. Information and Software Technology, 2009. 51(1): p. 7-15.

16. Collard, M.L., H.H. Kagdi, and J.I. Maletic. An XML-based lightweight C++ fact

extractor. in 11th IEEE International Workshop on Program Comprehension, 2003.

2003.

17. Moreno, L., et al. Automatic generation of natural language summaries for Java classes.

in 2013 21st International Conference on Program Comprehension (ICPC). 2013.

18. Teixeira, J. and H. Karsten, Managing to release early, often and on time in the

OpenStack software ecosystem. Journal of Internet Services and Applications, 2019. 10:

p. 7.

19. Khalfallah, M., Generation and Visualization of Release Notes for Systems Engineering

Software: Proceedings of the Ninth International Conference on Complex Systems

Design & Management, CSD&M Paris 2018. 2019. p. 133-144.

20. Chandrasekara, C., Effective Release Notes with TFS Release. 2017. p. 433-478.

21. Fischer, M., M. Pinzger, and H. Gall. Populating a Release History Database from

version control and bug tracking systems. in International Conference on Software

Maintenance, 2003. ICSM 2003. Proceedings. 2003.

22. Gall, H., K. Hajek, and M. Jazayeri, Detection of Logical Coupling Based on Product

Release History. 1998.

23. Iyer, S., et al., Summarizing Source Code using a Neural Attention Model. 2016. 2073-

2083.

24. Haiduc, S., et al., On the Use of Automated Text Summarization Techniques for

Summarizing Source Code. 17th Working Conference on Reverse Engineering, 2010.

25. Hu, X., et al., Summarizing Source Code with Transferred API Knowledge. 2018. 2269-

2275.

26. Ugubi.io. Release notes generator. Available from:

https://marketplace.atlassian.com/apps/1214154/release-notes-

generator?hosting=server&tab=overview.

27. Michael Strickland, A.C., Andrew Fischer, Andrew Canaday. Chronicler. Available

from: https://github.com/NYTimes/Chronicler.

63

28. Fennell, R. Generate Release Notes Build Task (PowerShell). Available from:

https://marketplace.visualstudio.com/items?itemName=richardfennellBM.BMVSTS-

GenerateReleaseNotes-Task.

29. Mmentele. release-notes-generator. Available from: https://pypi.org/project/release-

notes-generator/.

30. Stephan B¨onnemann-Walenta, C.W., Kim Brandwijk, Kepler Sticka-Jones, Pierre

Vanduynslager, Matt Travi. release-notes-generator. Available from:

https://github.com/semantic-release/release-notes-generator.

31. Ltd, A.T.P. Automated Release Notes for Jira. Available from:

https://marketplace.atlassian.com/apps/1215431/automated-releasenotes-for-

jira?hosting=cloud&tab=overview.

32. Kft, M.G.C. Better PDF Exporter for Jira. Available from:

https://marketplace.atlassian.com/apps/5167/better-pdf-exporter-forjira-pdf-

view?hosting=cloud&tab=overview.

33. Zhang, J. Gitlab Release Note Generator. Available from: https://github.com/jk1z/gitlab-

release-note-generator.

34. Khurana, D., et al., Natural Language Processing: State of The Art, Current Trends and

Challenges. 2017.

35. Gelbukh, A. Natural language processing. in Fifth International Conference on Hybrid

Intelligent Systems (HIS'05). 2005.

36. Kim, J. and Y. Lee, A Study on Abstract Syntax Tree for Development of a JavaScript

Compiler. International Journal of Grid and Distributed Computing, 2018. 11: p. 37-48.

37. Gold, R., Control flow graphs and code coverage. Applied Mathematics and Computer

Science, 2010. 20: p. 739-749.

38. Kennedy, K., Use-definition chains with applications. Computer Languages, 1978. 3(3):

p. 163-179.

39. Sridhara, G., et al., Towards automatically generating summary comments for Java

methods. 2010. 43-52.

40. Erickson, T., An automated FORTRAN documenter. 1982. 40-45.

41. Roach, D., H. Berghel, and J. Talburt, An interactive source commenter for Prolog

programs. Vol. 14. 1990. 141-145.

64

42. Moreno, L., et al., JSummarizer: An automatic generator of natural language summaries

for Java classes. 2013. 230-232.

43. Robillard, P., Schematic pseudocode for program constructs and its computer automation

by SCHEMACODE. Commun. ACM, 1986. 29: p. 1072-1089.

44. Maskeri, G., S. Sarkar, and K. Heafield, Mining Business Topics in Source Code using

Latent Dirichlet Allocation. 2008. 113-120.

45. Ohba, M. and K. Gondow, Toward mining "concept keywords" from identifiers in large

software projects. Vol. 30. 2005.

