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Abstract 

In transfer learning, a model is pre-trained on a large unlabeled dataset and then fine-tuned on 

downstream tasks. These pretraining and fine-tuning models are powerful and produced the 

best results on Natural Language Processing (NLP) tasks. These models are unidirectional but 

BERT introduced the first full deep bidirectional model which can read input from both sides 

of the input. BERT was pre-trained on Wikipedia and Book corpus dataset and fine-tuned with 

an extra layer. We present a replication study of BERT and provide a detailed analysis of the 

effect of hyperparameters during pre-training on downstream tasks. Due to the public 

unavailability of the Books Corpus dataset, we pre-trained the BERT from scratch on 

Wikipedia (2100M) and compares it with our model which trained on Wikipedia (531M). Our 

model Modified BERT “MBERT” achieves better results on GLUE (74.94) which consists of 

8 tasks excepts STS-B, SQuADv1.1(57.40/69.50) and SQuADv2.0(56.19/59.38) dataset while 

saving pretraining from 53 hours to only 17 hours, six times less computational power and was 

also trained on four times smaller dataset. We also present a detailed study of why MBERT 

achieves these results on the SQuAD dataset.  

 

Key Words: MBERT, BERT, bidirectional language modeling, language modeling, modified 

BERT, transformer. 
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CHAPTER 1: INTRODUCTION 

Language models are used in Natural Language Processing tasks. These models were trained 

on supervised data and then transfer knowledge to downstream tasks. Due to the limitation of 

human-labeled supervised datasets these models were trained on limited data and produce 

limited results on NLP tasks such as Question Answering, Classification, etc. Data is doubling 

which produced very big unsupervised datasets so these models started to train on these big 

unsupervised datasets like WIKIPEDIA, BOOKSCORPUS, etc, and then fine-tuned on a 

supervised data set. These new pretraining techniques revolutionize transfer learning and 

produced SOTA results. These pre-trained models were built upon RNN architecture stores 

limited memory so when a sentence goes big the memory required to store the relationship also 

goes big which makes the model very limited and slow. Transformer architecture 

revolutionizes the Pretraining of Language models because it removes the RNN and trained 

the model only on the Attention mechanism. All of these models were uni-directional which 

means these models can read from left-to-right or from right-to-left but BERT pre-trained the 

model bidirectionally by using Mask Language Model(MLM)[1] and outperform the existed 

unidirectional language models and produced SOTA results. This research presents a modified 

BERT language model. 

1.1 Background&Motivation 

The data volume is doubling every year and 79% of data is text data. Google is the most used 

Search Engine which performs the 92.6% of search and 10% of these searches gives out of 

context results because these searches cannot cover the context of a search. Previous techniques 

like word2vec and GloVe used very shallow models means very limited memory for 

information due to which Models did not take the context of a word into account. For example:” 

I am standing on the bank of the river” now the shallow model will confuse with a bank as the 

shore of a river or a financial institute. The result of queries changes when the context is taken 

into account. The bidirectional model increases the speed of search and gains a deeper context 

because it read the sentence from both ends which increases the speed and memory. The context 

matter in all the tasks like in Question Answering, text Classification, Semantic Analysis, and 

Machine translation much better than an average human. Shortage of training data because of 

a few thousand or a few hundred thousand human-labeled training data. We have a lot of 
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unsupervised data like Wikipedia. Train on many unsupervised data and fine-tune on specific 

data. The bidirectional model impacts 1 in 10 searches and works on complex queries. 

 

Transfer learning is a training of a model on a large text-corpus and transfers that knowledge 

to a downstream task[2]. Pre-training was done via supervised learning [3]but now it is done 

via a large corpus of unsupervised learning. Pre-training of language models has proved to be 

very effective such as Natural Language inference (NLI) [4, 5]and paraphrasing [6]at sentence-

level and Question Answering and entity recognition at token level [7]. Unsupervised pre-

training is very effective due to the abundance of data [8]like Wikipedia, Books corpus, News 

and some domain-specific dataset like PUBMED and PMC[9], Scientific[10] which, make 

models very effective for downstream tasks. Unsupervised learning with span [11], 

semantic[12-14], lexical [15], syntactic [16] information make models more effective on 

downstream tasks. A large pre-training objectives [17], unlabeled Datasets[18, 19], 

benchmarks [20, 21]and _netuning ,methods [22, 23]are available. Pre-trained models built 

upon transformer architecture have produced state of the art(SOTA)results due to better use of 

parallel computing. These models are also used in other domains specific [24]like the business 

[25], medical [26, 27], and science [28]. The performance of downstream tasks directly 

depends upon the re-training of the model. The pre-training of models contains the size of a 

dataset, batch size, step size, sequence size, parameters, layers, hidden layers, attention heads, 

cross-layer sharing, and diversity of dataset. 

Training of language models on large unsupervised datasets like Wikipedia, Books corpus and 

then use this gained knowledge on downstream tasks become an effective technique of Natural 

Language Processing. Almost all of these models were unidirectional and consist of RNN but 

with the introduction of the transformer, [29]developed a deep bidirectional model 

BERT.BERT reads the input from both left-to-right and right-to-left with a Masking Language 

Model (MLM). BERT outperforms the unidirectional models like ELMO[30]. 

Training of the BERT[29] model on a large unsupervised dataset is computationally very 

expensive and requires a lot of pretraining time. Training of BERT for 1M steps with smaller 

batch size and learning rate takes required more than 50 hours of training. BERT pre-trained 

with longer sentences make the pretraining very computationally expensive.BERT was deep 

but not enough as many other existed models showed that a deeper model generates better 

results. BERT pre-trained with bigger input layers that limit the number of hidden layers. 

Smaller attention heads reduce the performance because BERT works on transformer 

architecture which solely depends upon the attention mechanism. 
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Training of Language models on large datasets is computationally expensive. Trained models 

BERT, XLNET, XLM, ALBERT, ROBERTa,[18], etc. all trained on different datasets which 

means it is complicated to measure the performance of these models like BERT was trained on 

Wikipedia and Books corpus but ROBERTa which is a replication of BERT is trained on 160+ 

GB of different datasets which is 13 times more with no Next sentence prediction(NSP). 

Pretraining of BERT with different parameters could save a lot of time and computational cost 

and could produce the same or better results even on a smaller dataset. 

ROBERTa increased the batch size and decrease the step size and used a deeper model but 

ROBERTa was pre-trained on 13 times more and diverse datasets (160GB) which overshadow 

the effect of these hyperparameters. XLNet built upon transformer-xl architecture which used 

permutation of factorization, segment recurrence mechanism, relative encoding scheme, and 

trained on  126GB of the dataset.FreeLB used adversarial training to minimize the maximal 

risk for label-preserving input perturbation It created a virtual adversarial example embedding 

space and perform parameter updating. AlBERT introduced parameter reduction by factorized 

embedding parameterization and cross-layer parameter sharing and use inter sentence 

coherence loss. AlBERT used sentence order prediction (SOP) instead of NSP. Many papers 

used BERT model and pre-trained it on different data like Medical[26], scientific text [10], 

Chinese [31]. [11] used MLM at span level and some used distillation methods. 

Many models that used BERT were either trained on a bigger and diverse dataset and remove 

NSP. Some used BERT to pre-trained on domain-specific datasets. Paper used bigger batch 

and small step size produced better results but the problem is none of any paper which built 

upon transformer architecture and used BERT model analysis the effect of different parameters 

on BERT because these paper either used BERT as it is or trained it on bigger datasets and 

changed Settings like XLNet, ROBERTa and AlBERT. 

We present a new model which is a replication of BERT with different parameters. Unlike 

ROBERTa we trained our model on a smaller dataset Wikipedia (531M) while BERT on 

2100M from scratch. As the Books corpus dataset went private and is not publicly available so 

we trained both models on Wikipedia MBERT  (531M) and BERT(2100MM).our modification 

are as follows:(1) trained with longer batch size for smaller steps (2) more hidden layers (3) 

small input layers (IV) bigger attention heads (V) higher learning rate (VI)training on smaller 

sequences (VIII) trained with bigger vocabulary size (iX) task-specific fine-tuning. 

MBERT reduces the training size from 53 hours for BERT to just 17 hours on google collab 

tpu. Fine-tuning took the same time for both. MBERT produces a better result on GLUE dataset 
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where MBERT produces 75% against BERT (73%). MBERT faces difficulty on SQuAD (-

9.4) and SQuadv2(-3.4) which we assumed due to limitations of memory MBERT faced during 

pre-training as MBERT used feedforward 2H instead of 4H and max_positional embeddings 

512 from 1024. 

1.2 Problem Statement 

To Produce a robust deep bidirectional model for better sentence prediction with small training 

time and size using deep learning and modeling techniques. The purpose of this research is to 

explore the different settings for BERT and the Effects of these settings during pre-training on 

Downstream tasks. 

1.3 Aims and Objectives 

The major objectives of the research are as follow:  

• Pre-training of BERT model from scratch with different settings and compare them 

• Training the model on the smaller size but producing the same results 

• Reducing the computational power required for BERT 

• Reducing the Pre-Training Time for BERT 

1.4 Structure of the Thesis 

This work is structured as follows: 

Chapter 2 What is the Language model and how it works 

Chapter 3 Presents the Detailed Literature review and work of researcher on Language models 

Chapter 4 Consists upon Methodology 

Chapter 5 Consists upon the Experimental Setup and Results 

Chapter 6 Concludes the thesis and reveals the future scope of this research. 
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CHAPTER 2: LANGUAGE MODEL AND TRANSFORMER 

Language modeling is not a whole new field but it got attention in the previous decade because 

of the improvement in the computational power of computers. Language models first pre-

trained and then fine-tuned on downstream tasks with few parameters adding instead of training 

the whole model from scratch. Language models are pre-trained on a supervised, unsupervised, 

and semi-supervised dataset. Language models are of two types unidirectional and bi-

directional. Language models built upon RNN, CNN, LSTM, and Attention architecture. 

2.1 Language Model 

Language models are one of the most crucial components of Natural Language Processing 

(NLP). These language models are the backbone of Google Assistant, Amazon’s Alexa, 

Apples’ Siri. The language model learns to predict the probability of a sequence of words in a 

sentence using different statistical and probabilistic techniques. These models analyze the data 

to predict the words. These models are vital for machine translation, speech recognition, and 

spell checking. For example, we have a sentence in English and we want to predict it in Urdu 

language model will analyze the whole sentence and then translate every word in the sentence 

to Urdu respectively. It is a machine translation component of NLP and with language models, 

we are unable to use it. 

 English: “ I like Swimming” 

Urdu:     “ مجھے   ”ہے پسند تیرنا 

2.2 How Language Models work 

The language model predicts the words by analyzing the text data and then interpret this data 

by feeding to the algorithm which then makes the rules for the context in natural language. 

Language then applies these rules to natural language task to predict or produce sentences. 

These models learn the basic characteristics and features of basic language which helps these 

models to understand new phrases. 

 Many probabilistic algorithms depend upon the requirement and purpose of the model. The 

models also depend upon the size and type of data and math these models use in it. For example, 
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a model built to find the likelihood of the search queries and results of these queries has 

different requirements than a model used to generate automatic tweets for a Twitter boot. 

 

Figure 2.1: Language Model 

2.3 Types of language models 

2.3.1 N-gram 

 In the n-gram approach simple create a probability distribution for a sequence of ‘n’ where ‘n’ 

can be any number and can be letters, symbols, and words. It defines the size of the sequence 

of words by assigning the probability. If a gram is n=3 then it could look like “ I love 

swimming” and then the model assign probability using the sequence of n-size. Here the ‘n’ is 

the amount of text data that the model needs to consider like if n=2 it could be two words of 

sequence ‘please turn”. The n-gram models read the input in only one direction either from 

left-to-0right or from right-to-left. This is why these models are expensive to train because 

when a sentence size grows the computational power and memory requirements also grow that 

is why these models have limitations. It is very hard for these models to make a difference in 

a sentence where a word has the same context-free representation as a bank has the same 

context-free representation for “bank of river” and “bank account”. For example, we have a 

sentence “ I am standing at the bank of river” the n-gram models will start to read the input 

form ‘I’ then “am” but when it reaches the “bank”  these models would represent it by “I am 

standing on” but not from “of river” and will have to wait till the model read the whole 

sentence. The sentence in the example is short and if we had an example of a very long sentence 

then n-gram models will lose their ability as the sentence grows then the memory decreases 

and computational power required also increases. 
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Figure 2.2: N-gram model 

2.3.2 Unigram 

 Unigram is commonly used for information retrieval due to the simplicity of the model. It 

ignores conditioning context in its calculation because it evaluates each word independently in 

context. Unigram is used for the query likelihood model which finds the likelihood of query 

results on a document. The unigram takes one word in a sequence because here the value of 

n=1. For example, we have a sentence “I love swimming” then the unigram will evaluate each 

word separately. 

 

I love Swimming 

Unigram I Love Swimming 

 

2.3.3 Bidirectional  

Bidirectional models read the input from both directions which means these models can read 

from left-to-right and from right-to-left at the same time and unlike N-gram models these 

models can predict every word in the sequence which can bee seen in Figure 2.3. These models 

evaluate each word with every other word in the sentence. Due to the bidirectionality of these 

models more accurate than the N-gram models. For example, we have a sentence “I am 

standing on  bank of river” the bidirectional model will start to read the input both forward and 

backward size means from “I” and from “river” and will predict that the “bank” is actually a 

shore of the river, not an account. These bidirectional models do not grow with an increase in 

sentence size and their required memory remains low when compared to n-gram models. Due 

to the dependent evaluation of sequences these models can predict a word in sequence from 

each other word in a sentence. These type of models mainly use in machine learning as google 

search engine use these bidirectional models to predict the search results while user typing and 

also suggest search queries. 
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Figure 2.3: Bidirectional Model 

2.3.4 Exponential 

 Exponential models are also called maximum entropy models because they rely heavily on 

entropy. These models are built upon the entropy principle which means the probability 

distribution with most options will be most accurate and will be selected. A model will be more 

suitable if it is built upon chaos and with zero assumptions. This type of model is complex than 

n-gram where we only put input to some algorithms and then the model learns basic 

presentations but here in these models simply put the input sentence to an equation which then 

evaluates the text by combining n-grams and feature functions. This type of model leaves the 

parameters in an ambiguous form instead of sizing individual grams and specifies features and 

parameters for specific results. These models are used to design the maximum entropy which 

in results minimize the amount of statical choices need to be made and increases the trust level 

of the user by giving only related results. 

2.3.5 Continuous Space 

 The large datasets contain many unique and rarely used words and the presence of these words 

can create problems in linear models like n-grams.  This type of model is best suited to these 

types of problems because these models represent words in a sentence as a non-linear 

combination of neural network weights. These weights are assigning to every word and this 

process is called word embedding. In linear models’ presence of these unique words increase 

the size of the word sequence and weaken the pattern that informs the results. This problem is 

solved by weighting words in a non-linear distributed way which allows these models to learn 

more approximate words and can handle unknown words. One of the main advantages of using 

these models that understanding these models does not rag by immediate words. 
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2.4 Pre-training 

Pre-training of a model is like human training where a human first learn something from 

experience and then apply that experience to solve another task without learning from scratch. 

In pre-training, a model is trained on a dataset where it forms parameters which then use to 

solve other tasks. If we have a task of classification then train the model on some dataset where 

the model can form parameters and initialize the weights of the neural network randomly. 

These weights are random so that when the model optimizes and starts to make fewer mistakes 

than you can save it. For example, we have a classification task and we trained our model on 

some image dataset and when the model start to make fewer mistakes means low error rate 

then save it. 

Now apply this same model to a new and different task of image classification. Now we do not 

need to train this model from scratch, we just need to set some of its parameters and this model 

will be ready to perform the classification on this new task. We do not need to randomly 

initialize weights and can use that saved weight for this task and this will save a lot of training 

time and effort. The pre-training can be supervised, unsupervised, and semi-supervised. 

 

 

Figure 2.4: Pretraining 

2.4.1 Supervised pre-training 

Supervised learning is a type of learning where a model is trained on a supervised dataset. This 

labeled dataset has a ‘y’ value against every ‘x’ value which means every value has a target 

value. Models pre-trained on labeled data have the best accuracy as models learn during 

pretraining about the data and target values it is also the simplest type of pretraining and at the 

start of pretraining most of the models were pre-trained on labeled data. Models trained on 

supervised data produces best results but these models have limitation because of limited 
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supervised datasets available and size of these datasets as language models needs to train on 

very large dataset sets so that these models can perform on other subtasks but here we few 

thousand or few hundred thousand of labeled data. Shortage of supervised data is the main 

cause that these types of models can only use for small tasks and where training data is not an 

issue. Due to this reason few models use supervised pre-training. 

2.4.2 Unsupervised 

Due to limited labeled dataset available for pre-training of language models started to pre-train 

on unsupervised datasets. We have an abundance of unsupervised datasets like Wikipedia, 

Books corpus, news, and many more. The size of these datasets is so big that they easily cover 

the supervised datasets. In the unsupervised dataset we have inputs of values but we do mot 

have target outputs which means we have “x” but we do not have “y”. the models pre-trained 

on a large unsupervised dataset are able to perform better on another subtask because in this 

type of pretraining the models so much new and unique words and form parameters that can 

predict other unsupervised tasks. The unsupervised pretraining make the model more resilient 

to the unique inputs. 

2.4.3 Semi-supervised 

 Unsupervised learning is not unsupervised due to the supervision of weights that guide to the 

weights in neural networks which drive form data itself. Semi-supervised pre-training has both 

advantages of supervised and unsupervised pretraining because it pre-trained on both labeled 

and unlabeled datasets. This type of pretraining works in situations where a model needs to 

learn from both labeled and unlabeled data simultaneously. These types of models when learns 

both from supervised and unsupervised data then these models will be able to learn more and 

form parameters that can perform better on other downstream tasks. These models can be pre-

trained in situations where we have a lot of unsupervised data and some of the supervised data 

and we want our model to learn from both. There is very rare situations where we use a semi-

supervised datasets and few models pre-trained on semi-supervised datasets. 

2.5 Fine-tuning 

 When a model pre train on some data then it learns some weights and form parameters which 

we save for later use. When we apply a pre-trained model on other downstream tasks, we use 

these weights to train our model only for that task instead of pretraining from scratch. It saves 
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a lot of training time and the other advantage of this is that the model uses its previous 

experience on a new problems. 

 

 

Figure 2.5: Fine-tuning 

If we pre-trained a model on image datasets and pre-trained for an image classification task. 

Now the models initialize some weights and when the error starts to minimize due to self-learn 

from data we save this model. Now we can use this saved model on another task of image 

classification where we just need to change some parameters to adjust our model otherwise, 

we do not need to train the model from scratch and just need to train on a very small dataset 

for a specific task. 

2.6 Feature Base 

A feature-based approach is in which a model used task-specific architecture that includes pre-

trained representations as an additional feature. This type of approach is used where 

embeddings are not mapped from word but the context of its surroundings. A feature-based 

approach is used to generate contextual embeddings for downstream tasks. In fine-tuning a 

classification layer is added at end of the pre-trained model but in the feature-based approach 

extract, the specific feature from the pre-trained model makes it more suitable for a specific 

task. It is slow in the process because adding a classification layer of subtask and extracting 

very specific features from a very large pr-trained model is very difficult and slow as it required 

task-specific architecture. 
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Figure 2.6: Feature Based 

2.7 Transformer 

A model is built upon an architecture. Language models built upon convolutional neural 

network (CNN) [32],recurrent neural network (RNN) [33], long-short term memory 

(LSTM)[34], and attention [35]. 

2.7.1 RNN architecture 

 At the start, language models were built upon CNN  architectures but with the involvement of 

RNN and LSTM  and advancement of computer hardware, the use of neural networks increase. 

Most of the best performing language models before the introduction of Transformer 

architecture were built upon RNN. The RNN architecture reads the input of sentence form one 

direction either from left-to-right or from right-to-left. For example, we have an example “ I 

love you” and want to translate it in Portuguese then RNN will start reading from ‘I’ than’love’ 

and then ‘swimming’ and store it into Context vector which then gives it to the decoder to 

translate. 

 

Figure 2.7: RNN based encoder decoder 
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A context vector is a fixed size vector that is used to compress all the information store in ti 

which could result in information lost.  context vector takes all cells’ outputs as input to 

compute the probability distribution of source language words for each single word decoder 

wants to generate. By utilizing this mechanism, the decoder can capture somewhat global 

information rather than solely to infer based on one hidden state. RNN uses encoder decodes 

with an attention mechanism. Figure 2.8 to figure 2.11 shows how RNN works and how it 

remembers its previous values using the attention mechanism. 

 

 

Figure 2.8: RNN encoder-decoder with attention 

 

 

Figure 2.9: RNN encoder-decoder with attention(con) 
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Figure 2.10: RNN encoder-decoder with attention (Con) 

 

 

Figure 2.11: RNN encoder-decoder with attention (Con) 

2.7.2 Transfomer Architecture 

RNN heavily depends upon the size of the context vector which is also limited and when a 

sentence grows it becomes a problem for the context vector. One disadvantage of RNN in 

language models is that it is unidirectional which means it can read input from one-directional 

only which makes it really slow. When the size of a sentence grows the memory required for 

RNN increase drastically due to which RNN lost the relationship between words in a sequence. 
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For example, if we have an input of “I was standing on bank of river” RNN can find which 

bank it belongs to either to the shore of a river or financial institution will start sequentially 

from left “I” and sequentially compute till the end where it finds the word ‘river'. Then RNN 

can relate that the bank in this sentence belongs to the shore of the river. With an increase in 

steps, the computational cost of RNN also increases. To solve this problem a new architecture 

was introduced which wholly depends upon the concept of attention and remove the RNN 

shown in Figure 2.14. In the example showed in Figure 2.12 The transformer relates ‘it’ with 

‘animal’ and ‘street’ but maps it according to the animal due to the word ‘tired’ But in the 2nd 

example, it maps it according to ‘street’. 

 

 

Figure 2.12: English to French translation[36] 

As we encode the word ‘iI’, one head is focusing on the animal while the other focusing on the 

tired. The model representation of the word ‘It” bakes in some of the representation of both 

animal and tired shown in Figure 2.13 

 

 

Figure 2.13: English French Example[36] 
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In a transformer, a self-attention mechanism is being used that directly maps the relationship 

between all words in a sentence regardless of their respective position which means 

independence. A transformer can find in one step of the bank. The transformer compares the 

“bank” with every single word in the sentence and then assigns an attention score. How much 

a word is contributing to the next presentation of the bank. The attention score is fed to fully 

connected networks as the weight of the weighted average of all words to generate a new 

representation for ‘bank'. Reflecting that a sentence is referring to a river. Transformer 

architecture only depends upon the attention mechanism.  

 

 

Figure 2.14: Transformer without RNN 

Transformer model which eschewing recurrence and rely on attention to draw global 

dependence between inputs and outputs shown in Figure 2.15 & Figure2 .16. With 12 hours of 

training on p100 GPUs, we can achieve a better art of the state translation. 

 

Figure 2.15: One step matrix calculation 
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Encoder maps the input into a sequence of continuous representation. The decoder then 

generates an output sequence one element at a time. The model is autoregressive consuming 

the previously generated symbols as additional input when generating the next shown in Figure 

2.16. 

 

 

Figure 2.16: One step matrix calculation (con) 

Adding relative positional information to every input in both encoder and decoder like 

‘I’=001,study=0001 

PE(pos,2i)=sin(pos/10000 2i/dmodel) 

PE(pos,2+1i)=cos(pos/10000 2i/dmodel) 

 

Figure 2.17: Positional encoding 
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Figure 2.18 and Figure 2.19 presents the transformer model architecture. The encoder has six 

identical layers and each one of these layers has two sub-layers. A positional encoding is 

applied in it to remember the global positional of inputs so that encoder can remember the 

positions. Multi-head attention is used instead of a single function and in multi-head attention 

queries, keys and values are being linearly applied and an attention function apply which 

outputs d-dimensional values. These values are then concatenated and projected. 

 

Figure 2.18: Transfomer model architecture[35] 

Encoder-decoder attention layers queries come from the previous layer while the keys and 

values come from the encoder. It allows every position in the decoder at attending overall 

positions in the input sequence. The encoder contains self-attention layers which consist of the 

queries, keys, and values from the output of the previous layer. Each position in the encoder 

can attend all the positions in the previous layer of the encoder. Self-attention layers in the 
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decoder map each input according to the position. Use Multitasked attention to prevent future 

words to be part of attention. 

 

Figure 2.19: Inner working of Transformer[35] 

2.8 BERT 

BERT is a fir real deep bidirectional pre-Training unsupervised technique which uses the 

concept of attention (parallel computing) instead of RNN. BERT is naturally bidirectional that 

the model can be fine-tuned easily for downstream tasks. BERT models beat the state of the 

art results for many NLP tasks with no need for a special dataset BERT uses Wikipedia and 

Books Corpus. Pre-trained representations can be both contextual and context-free and 

contextual representation is unidirectional and bidirectional. For example, we have an example 

of “I was standing on the bank of river” the unidirectional models will generate a representation 

for each word, and for the word “bank”  it can use words “ I was standing on” to generate 

representation but will fail to understand the context of ‘bank’ till it read the word ‘river’ but 

here the bidirectional  BERT will  read the input from both sides simultaneously and in a short 

while will understand the context of the sentence because BERT read ‘bank’ and ‘river’ form 

both sides. 
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2.8.1 BERT, OpenAI, and ELMO 

 

Figure 2.20: BERT, GPT, and ELMO[29] 

BERT is bi-directional, OpenAI GPT is unidirectional and ELMo is shallowly concatenated 

both left-to-right and right-to-left to find out which bank we are referring to either shore of a 

river or financial institution. In unidirectional we have to read from left to right just to find it 

which means in this case we have to read the whole sentence but in bi-directional we can easily 

find it as a model is bidirectional. This is twice as expensive as a single bidirectional model 

this is non-intuitive for tasks like QA since the RTL model would not be able to condition the 

answer on the question this it is strictly less powerful than a deep bidirectional model since it 

can use both left and right context at every layer. BERT and OpenAI GPT are fine-tuning 

approaches, while ELMo is a feature-based approach. . In bidirectional training each would 

indirectly see itself.to solve this we masked 15% of the tokens. Cross entropy loss is used to 

predict the original values. A pre-trained model can tackle a broad task of NLP just by adding 

a classification layer which we called Fine-Tuning 

2.8.2 Pre-training and Fine-tuning BERT 

The main advantage of BERT is that we have to pre-train our model just once after pre-training 

we just need to update some parameters in Fine-Tuning and then we can apply it on task. Pre-

Training is a process in which the system is trained on large data from scratch but in fine-tuning 

which is the successor step of pre-training we just need to specify parameters and not from 

scratch means just change the values of some parameters. BERT model is first initialized with 

pre-trained parameters and all of the parameters are fine-tuned using labeled data from 

downstream tasks. [cls] is added into the input and  [SEP] is used to separate the sentences. 

like question and answer can be seen in Figure 2.21. 
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Figure 2.21: BERT Pre-training and Fine-tuning[29] 

2.9 Summary 

Language modelinig is a field in which a language model first pretrained on a large corpus of 

data and then it is fine-tuned for other similar task. Language models learns the knowledge 

during pretraining transfer this knowledge to downstream tasks just like we human do. In 

pretraining language models  analysize the text and then feed it to some algorithem and then 

make some language vocabulary and then apply vocabulary in understanding other tasks just 

like   human use previous experience in solving new problems which is called fine-tuning. To 

apply these pre-trained models on downstream tasks we have feature based and fine-tuninig 

methods but due to complexity  and size of models use of feature base is very limited and most 

of language models use fine-tuning in downstream tasks. We have three types of pre training 

supervised pretraining, unsupervised, and semi-supervised pretraining. Due to shoragfe of 

human labled dataset and complexity of semisupervised data almost all big models use 

unsupervised pretraining but for fine-tuning still supervised datasets are used. We have mahor 

five types of language models n-gram, uni-gram, bidirectional, exponential and continues 

space. N-gram and bidirectional models are most used and produces the best resulst among all 

these types of models. N-grams models read the input in sequence from one direction which 

could be left-to-right or right-to-left while bidirectional models can read from both sides of the 

input which make these models to better understand the context and more powerfull then 

unidirectional models.language models first built upon CNN but then nwith advancement of 

RNN and LSTM it shifted towards RNN.RNN used an attention mechanism and a contextual 

vector to read the inputs in sequence and all omdels built upon RNN were unidirectional. The 
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contextual power of the models were limited because these models can not understand context 

to words as length of sentence increase so the memory required by the models. Transfomer 

architecture removes the RNN and soly used attention mechanism which enable this 

architecture to work bidirectionally. BERT was the first deep bidirectional models as ELMO 

which called itself was not bidirectional as it read the data from both sides but then concatenate 

both inputs instead BERT read from both sides of input. BERT used  MLM which restrain the 

model to see both inputs and save it to make multilayer context. BERT also used NSP which 

allow BERT to better ubnderstabd the context and let it to make relationaship between 

sentences.     
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Chapter 3 

Literature Review 
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CHAPTER 3: LITERATURE REVIEW 

Language modeling has been an interesting field for researchers to do Natural Language 

Processing tasks. Training of language models on unlabeled(unsupervised text) and then fine-

tuned it on labeled dataset revolutionize the language modeling [37] [38].The advantage of 

using these techniques that we need to change a few parameters to fine-tune the pre-trained 

model on downstream tasks like [39] GLUE. There are different methods of pre-training and 

every method has been designed with an objective which includes machine translation[40], 

language modeling [37] [38], and masked language modeling (MLM)[29] [41]. Some models 

have used a different fine-tuning for each downstream tasks [38, 42], some used multi 

tasked[43]. Span prediction[11],entity embeddings[44] and different autoregressive 

pretraining[45-47]..Almost all of the earlier models were uni-directional which means these 

models can read the input from left-to-right or right-to-left. BERT[29] is a pioneer in 

bidirectional language modeling. BERT implemented the concept of MLM and NSP. before 

BERT ELMo[30] was called bidirectional model but it was not truly bidirectional as it 

concatenated the output of both right-to-left and left-to-right which doubles the data and also 

allowed the model to see itself which cause redundancy and also the computational power 

required for ELMo was much more then BERT. These language models were based upon 

Recurrent Neural Network (RNN) architecture.RNN has memory constraints which means 

when a sentence is big RNN loses the dependency due to a limit of context vector. [48] gives 

the concept of the only use of attention while training of model which removes the RNN which 

saves a lot of computational power and increase the memory of model which directly effect the 

better results on longer sentences.This new architecture can remembers sentence  for longer 

length. Most of the language models are built upon tranformer architecture and making changes 

in BERT and some are making models on only tranformer architecture. 

3.1 Models based upon RNN architecture 

Jeremy et al. [38] presented a Universal Language Model Fine-tuning a transfer method can be 

applied to any downstream task and introduced key techniques for fine-tuning. It used 

techniques of gradual unfreezing, discriminative fine-tuning, and slanted triangle rates to retain 

previous knowledge. It reduced the loss by 18-24% on six datasets. It achieved a performance 

of 100 labeled examples where other required 100+. 
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Matthew et al. [30] presented ELMo which is a deep contextualized word representation that 

models characteristics (syntax and semantic) of word-use and how these vary across linguistic 

contexts. It learned functions of hidden layers of deep bidirectional model pre-trained on a 

large dataset. It shows that it can be added to existing models and improve the overall results. 

ElMo is first deep bidirectional model. It achieved 71% on GLUE. 

Matthew et al. [49] presented a detailed study of how a choice of neural network (CNN, LSTM, 

and self-attention) of the bidirectional model affects the performance on downstream tasks. All 

models learn a contextual representation that outperforms word embeddings on four NLP tasks. 

biLMs is very useful for syntactic tasks due to the use of phrase representation. 

Peters et al. [50] introduced a semi-supervised approach that learns from relatively little labeled 

datasets. A model is pretra9ined on an unsupervised dataset and then at each level compute 

encoding of context and use it on supervising settings. Due to the use of the neural language 

model, it encodes the semantic and syntactic role of words in context. It achieved 91.93% FI 

on CoNL2003 and 96.37% FI on CoNL2000. 

Dai et al. [37] presented two approaches to using the unsupervised dataset to improve sequence 

learning with the recurrent network. First is the language model and the other is the use of 

sequence encoder which covert the input into vector form and then predict the sequence of 

input. These approaches are then used for supervised sequence algorithm means parameters 

from pretraining then use for training other supervised models. After pre-train with these two 

approaches, LSTM neural networks become more stable to train. The error rate is (7.24%) on  

IMBD, (16.7%) on Rotten Tomatoes, (15.6%) on20 Newsgroup, and (1.19%) on DBpedia. 

Radford et al. [8] introduced the concept of unsupervised pre-training and then supervised fine-

tuning due to the abundance of unsupervised data and limited labeled data. It also adds task-

specific inputs during the fine-tuning stage to limit the change required in architecture for 

downstream tasks. It achieved better results on 9 of 12 tasks including  8.9% improvement on 

Stories Cloze Test, 5.7% on RACE, and 1.5% on MultiNL. 

Shaojie et al. [51] presented a novel approach for modeling sequential data which uses root-

finding to find the hidden layers that converge to some fixed point in deep sequence models. It 

is like to run an infinite depth feedforward network which is very expensive in other cases but 

here it just required constant memory regardless of the depth of the network. It runs on two 

existing models and it reduces the memory required for these models and improves the 

performance. 
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3.2 Models based upon Transformer Architecture 

Dai et al[52]increases the memory power of the transformer beyond a fixed length by using 

context fragmentation, segment level recurrence mechanism, and relative positional 

encoding.it captures longer dependency and also resolves context fragmentation problems. 

Transformer-xl leaned 80%  and 450% more dependency than RNN and vanilla Transfomer 

respectively and it was 1800+ times faster than a vanilla transformer. Tranfomer-xl achieved 

BPC/perplexity of 1.08 on text8,18.3 on WikiText-103,0.99 on wiki8 and 21.8 on Billion word. 

Yang et al. [46] Yang et al built XLNet on transformer-xl architecture by integrating Segment 

Recurrence Mechanism and relative encoding scheme. XLNet is both an autoencoding and 

autoregressive model that used permutation of factorization which covers longer sentences and 

it also removes the pre-train finetuning discrepancy which occurs in BERT. XLNet 

outperforms BERT in Race(+7.6), SQuADv1.1(+3.6), SQuADv2.0(+7.0), GLUE(+3.94) on 

six tasks including MNLI two values. 

Lan et al. [53]used factorized embedding parameterization and cross-layer parameter sharing 

to reduce the model size during pre-training. The first one separates the hidden layers from the 

size of vocabulary and the second shares the parameters during pre-training. ALBERT also 

replaces the NSP with sentence order prediction (SOP). Sentence order prediction outperforms 

the next sentence prediction. Increasing width and depth beyond a specific limit degrade the 

performance. AlBERT produces much better results for GLEU(+7.3%),Race(+6.3%) and 

SQuAD(+18.4%).AlBERT has x18 fewer parameters and trained x1.7 faster. 

Zhu et al. [54] used adversarial training to minimize the maximum risk for label preserving 

input permutation. Create a virtual adversarial example embedding space and perform 

parameter updating. When implemented on fine-tuning of a transformer-based language model 

it freeLB improves BERTbase(+1.1), ROBERTa (+0.3), on ARC task 85.44% and 67.75%  and 

on Commence sense QA 72.5% to 73.1%.  

Raffel et al.  [55] it provides a unified language framework that converts language problems 

into text-to-text formate.it provides a way to convert an input into another output by converting 

the input into text-to-text formation. It also developed a very large dataset of  29TB which is 

called Colossal Clean Crawled Corpus.TS5 produced GLUE(89.9%), 

SQuADv1.1(90.06/95.64), and currently while writing this thesis TS5 is top of GLUE 

leaderboard. 
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3.3 BERT trained with different strategy 

There are many models built upon BERT architecture. Beltagy et al.  [10] pre-trained the BERT 

model on a scientific dataset instead of a general dataset like Wikipedia. It introduced the 

concept of in-domain vocabulary. And investigate the fine-tuning on frozen embeddings of 

subtasks. It achieved (79.27% ) on Bio, CS, and Multi fields which is (5%) improvement over 

BERTBase. 

Joshi et al. [11] used MLM at span level which uses a single contiguous segment and 

summarizes the intended span. It masks random spans instead of tokens like in BERT and used 

span boundary representations to predict the masked span without relying on a single token. It 

used the same training dataset of BERTlarge and gains (94.6% & 88.7%) on SQuADv1.1 and 

SQuADv2.0 respectively.(79.6%) on Onto Notes and 82.2 on GLUE task. 

Zhahg et al. [56] used a shelf-labeler that mapped the semantic labels into parallel embeddings 

and semantic integration which obtain a joint representation for downstream tasks. SemBERT 

left the NSP  and used BERTLarge model with a maximum input size of 128 and a learning rate 

of 2e2and achieved  82.9% on GLUE and (82.4/85.2) on SQuADv2.0. 

Sun et al. [16] introduced a pre-training framework which first builds the task incrementally 

and then uses a continual multi-task approach to extract semantic, syntactic, and lexical 

information from these tasks. It used BERTLarge model with 400K batch size for 4k steps with 

a 5e5 learning rate.It was pre-trained on English Wikipedia, Book corpus, Reddit, and discovery 

data and for chinses, it was collect data from an encyclopedia, news, and data from search 

engine.ERNIE2.0 outperforms the BERT and XLNet on 16 tasks including GLUE and Chines 

task. It achieved 80.6% on GLUE task.  

Liu et al. [18] replicate the BERT model by training it on five large datasets and remove NSP 

and trained it for a very large batch but small step size.in this paper, we are also replicating the 

BERT and explaining the effect of every hyperparameter on BERT because these changes in 

BERT can be applied to every model in a literature review which consists of BERT 

architecture. It achieved (88.9%) on GLUE, (88.9/94.6) on SQuADv1.1, and (86.5/89.4) on 

SQuADv2.0. 

Houlsby et al. [22] used adapter modules which only used 3% parameters of BERT in the 

downstream task and add very few additional parameters because it remembers its previous 

values which makes it a very compact and extensible model. It achieved 80% on GLUE tasks. 

Yu et al. [26] presented a novel model that consists of transformer architecture and had the 

same settings as BERT but was trained on a specific medical domain. It was the first domain-
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specific  BERT model and it was pre-trained on PubMed and PMC. It achieved better results 

when compared to BERT (0.62% FI) score on biomedical named entity recognition,(2.80% FI) 

on biomedical relation extraction, and (12.24%MMR) improvement on biomedical question 

answering.   

Wei et al. [31] Proposed a new pre-trained model trained on large Chinese corpus with 

functional relative positional encoding whole word masking strategy, LAMB optimizer mixed-

precision training, and length of the training sequence. It pre-trained on BERTLarge model with 

a batch size of 5K for 25K steps with a learning rate of 1.84 and maximum input size of 128. 

NEZHA used 10.8B tokens in pre-training. It achieved 88.7% on GLUE. 

Radford et al. [43] used a specific self-attention mask and shared transformer network to trained 

on sequential, unidirectional, and multi-directional tasks and then finetuned on language 

understanding and generating tasks. It pre-trained with BERTBase settings with no NSP,7680 

batch size for 0.5M steps,6e4 learning rate with 128 maximum input size. It achieved 87.3% 

on GLUE, (87.1/93.1) on SQuADv1.1, and (83.3/86.1) on SQuADv2.0.  

Wang et al. [57] pre-trained the model with a stacking algorithm. It transfers knowledge from 

shallow to deep model while observing self-attention on different layers and different positions 

which allow it to find local attention and start of sentence distribution. StructBERT pre-trained 

BERTLarge the model with 32 batch size for 1M steps and 512 maximum input size. It achieved 

86.7% on GLUE and (87/93) on  SQuADv1.1.  

Jiao et al. [58] used the transformer distillation method where linguistic knowledge is 

transferring to student from teacher BERT.it is a two stage learning framework which allow 

studentBERT to capture general and specific knowledge from teacherBERT by using 28% 

fewer parameters than teacherBERT. It used only 14.5M parameters with 256 batch size for 

1M steps with 128 maximum input size. TinyBERT used 3L,312H and 12A model which 

achieved (76.5) GLUE,(79.7/87.5) SQuADv1.1 ,and (69.9/73.4) on SQuADv2.0. 

Liu et al. [59]used cross-layer sharing and it learns from multiple tasks which allows it to learn 

general representation due to which adapts to new domains and downstream tasks. It benefited 

from a large amount of cross-task data and also general representations that adapt new tasks 

and domains. It used BERTLarge setting with no NSP and 128 maximum input size. It achieved 

86.4% on GLUE task. 

Jiang et al. [60] replicate the RoBERTo by implementing Smoothness inducing regularization 

and Bregman proximal point optimization on downstream tasks which removes the overfitting 

of the model during pre-training which usually results in memory loss. It was built upon 

ROBERTo setting with  103 learning rate with no NSP and it achieved 88.5% on GLUE. Like 
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ROBERTo it was also trained on 160GB of data and trained for 125K steps with 2K batch size 

and 512 maximum input size. It achieved 88.5% on GLUE. 

Su et al. [61] extract global learning between layers by squeeze and excitation methods.it 

captures the neighbor context in fine-0tuning by using  Guasing Blurring and used this model 

on HANS dataset where it adopted shallow heuristic instead of a generalization. It was pre-

trained on BERTBase settings with 32 batch size,2e5 learning rate, and 128 maximum input 

size. It achieved 81.3% on GLUE task. 

Clark et al. [62]masked the input with a plausible alternative during pre-training using a small 

genitor network which let it predict whether the every masked input is replaced by a generator 

sample or not which makes it four times faster than BERT.Electra was trained on 126GB of 

data with no NSP. It used BERTLarge setting with 2K batch size for 1.75M steps with 512 

maximum input size and 2e4 learning rate. It achieved (89.5) on GLUE,(89.7/94.7) on 

SQuADv1.1, and (88.0/90.7) on SQuADv2.0. 

Wang et al. [63] presented a small and compressed model that used deep self-attention 

knowledge.it followed the distillation method in which students trained on mimicking the self-

attention model which is used in the last layers of the larger Teacher model. It used BERTBase 

model with no NSP,1K batch size for 400k steps, a learning rate of 5e4 for 33M parameters. It 

also allowed a maximum of 512 input size. It achieved an 81.7 FI score on SQuADv2.0. 

Xu et al. [64] presented a progressive model that used compress parameters by dividing the 

BERT and build its compact substitute by increasing the replacing possibility during pre-

training. It allows for deeper interaction between original and compact models. It used the same 

BERTBase model settings and achieved 81.2% on the development set of GLUE and 78.5% on 

the test set of GLUE server. 

Goyal et al. [65] Presented a novel method to improve inference time of BERT with very little 

loss in performance. It eliminates the redundant vectors and benefited by redundancy 

pretraining to word-vectors. It builds a strategy to keep some word-vectors and discard some 

which are based upon attention mechanism and learn how many vectors are going to eliminate 

during pre-training. It used BERTBase model with 108M parameters,128 maximum input size, 

and no NSP. It achieved 79.1% on GLUE and 66% on the RACE task. 

Clark et al. [66] proposed a teacher annealing method that allows the multi-task model to learn 

from the teacher and surpass it. It used BERTLarge model with no NSP,128 batch size for 1M 

steps,128 maximum input size, and cross-layer parameter sharing.it achieved 82.3% on GLUE 

task. 
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Liu et al. [67] student model trained on an ensemble of teacher models by distilling 

knowledge.it applied the distill knowledge method on multi-task learning settings. For each 

task, a different trained a different teacher model outperformed the single model, and hen a 

student model is trained on this teacher model via multi-task learning to distill knowledge. It 

used BERTLarge model with no NSP and achieved 86.4% on GLUE. 

Chen et al. [68] used a differentiable neural architecture search to automatically convert BERT 

into task-specific models.it uses KD loss efficiency loss for search hint and searches constraints 

respectively.it added more context-to-query and query-to-context to BERT architecture by use 

of modified transformer encoder units. It used BERTLarege model with no NSP, 128 batch size 

for 50K steps, 512 maximum input size,3e5 learning rate, and only 9.5M parameters. It 

achieved 80.1% on GLUE. 

Bao et al. [69] proposed a pseudo-masked language training procedure. It is autoencoding and 

partially auto-Regressive. It follows BERT for encoding modeling. AE provides global, asking 

PAR and PAR to learn inter-relation between masked spans. PMLN learns long-distance 

context better than the BERT. UNILM pre-trained BERTLarge with 330 batch size for 777K 

steps and achieved 40.51 on ROUGE-L CNN/Daily Mail abstract summarization and 35.75 on 

Gigaword abstract summarization. It achieved 82.4 on CoQA,(80.5/83.4) on 

SQuADv2.0,22.12 on BLUE-4,2.67 on NIST-4 ,and 82.4 on GLUE. 

Lewis et al. [70] presented a denoising autoencoder to pre-train sequence-to-sequence models 

which trained by corrupting the text with arbitrary noisy function and then reconstruct the 

original text. It proposes a novel in-filling scheme.it is best to perform for generalization. It 

differs from BERT as additional cross-attention by decoders’ layers perform on the last hidden 

layer of the encoder. The BART contains 12L, 1024H, 12A,8K batch size for 500K steps. It 

achieved 88.4% on GLUE, (88.8/94.6) on SQuADv1.1, and (86.1/89.2) on SQuADv2.0. 

Chang et al. [71]Proposed X-BERT which finetune on extreme multi-label text classification 

X-BERT uses semantic label clusters to better model dependencies. It uses both label and input 

text to build label representation. It consists of semantic label indexing and ensemble ranking 

component. It achieved SOTA results on XMC benchmark.77.28% on  Wiki,68.70% on 

Parabel(linear),76.95% on  AttentionXML(neural), and 10.7% improvement on 

product2query. 

Shoeybi et al. [72] proposed a Megatron-lm pre-trained model which trained on Billions of 

parameters by using efficient intra0layer model parallelism .attention in the placement of layer 

normalization in BERT-style model increases the performance. It used a very big model with 

48L,2560H,40A,1024 batch size for 1M steps,3.9B parameters,160GB pre-training dataset, 
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and SOP. It achieved (95.5/90.0) on SQuADv1.1,(91.2/88.5) on SQuADv2.0, and 89.5% on 

Race. 

Chadha et al. [73]BERTQA use a set of modified transformer encoder units to add more 

focused query-to-context (Q2C) and context-to-query (C2Q) attention to BERT architecture. It 

also adds localized information to self-attention and skips connections in BERT. It pre-trained 

the model on BERTLarge settings with 6 batch size for 1M steps,1.5e5 learning rate with 512 

maximum input size, and no NSP. It achieved (83.42/80.53) on SQuADv2.0. 

Kao et al. [74] boost the BERT by duplicating some layer which makes BERT more deep 

without extra-training which increase the performance of BERT model in downstream tasks. It 

built upon BERTLarge model and achieved 91.84% on SNLI,93.62 on SST-2, and (81.20/84.44) 

on SQuADv2.0. 

Minh et al. [75] presented a method for fine-grained information extraction. It exploited the 

BERT to handle real scenario data and make BERT learn hidden representations for 

classification using Convolutional Neural Network(CNN). It was built upon BERTBase model 

with no NSP. It achieved 78.4% on GLUE. 

Bin et al. [76] presented a model that fuses the information across layers which helps to better 

sentence prediction. It replaced the BERT based word models with new sentence embedding 

using geometric analysis of space spanned. It used a model with 6L,  768H, 12A, 32 batch size 

for 1M steps,2-105 learning rate with 256 maximum input size, only used 66M, and no NSP. 

It achieved 81.2% on GLUE. 

Mehrad et al. [77]  presented a model that combines the structural power of BERT and Tensor-

Product Representation. It able to learn the shared structure between NLP datasets but BERT 

failed on it. It used BERTBase settings with a 5-10 learning rate and no NSP. It achieved 88.1% 

on GLUE. 

Table 3.1: Overall Data 

Paper  

 

Name Traini

ng 

Data 

Size 

Tok

ens 

Training 

Dataset Name 

Model 

Type 

Sentenc

e 

Learnin

g 

Cross-

layer 

Parameter 

Sharing 

[18] ROBERTa

(Large) 

160G

B 

-

2.2T 

BOOKCORPU

S+WIKIPEDI

A+CC-

NEWS+OPEN

Auto 

Encoding 

None False 
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WEBTEXT+S

TORIES 

[11] SpanBER

T 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[56] SemBERT 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[15] ERNIE, 9GB+ 4.5B

+14

0M 

English 

Wikipedia + 

wikidata 

Auto 

Encoding 

NSP False 

[79] ERNIE2.0 13GB

+ 

8B Encyclopedia+ 

Book Corpus+ 

Dialog+ 

Discourse 

Relation Data 

Auto 

Encoding 

None True 

[29] BERT(bas

e) 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

NSP False 

[80] XLNet 126G

B 

32.8

9B 

Bookscorpus+

Wikipedia+Gi

ga5+ Clue Web 

2012-B+ 

Common 

Crawl 

Autoencod

ing+ Auto 

regressive 

None True 

[81] UNILM 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

NSP True 

[22]  13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[82] STRUCT

BERT 

16GB 2.5B

+ 

English 

Wikipedia + 

Book Corpus 

Auto 

Encoding 

NSP  

[58] TINYBER

T 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

NSP False 

[59] MT-DNN 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

NSP True 
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[53] AlBERT(

XX-large) 

16GB  Books corpus + 

Wikipedia 

Auto 

Encoding 

Sop True 

[72] Megatron-

LM 

174 

GB 

 Wikipedia 

+CC-Stories+ 

Real News+ 

OpenWebtext 

Auto 

Encoding 

SOP True 

[74] AlBERT(x

xlarge-

ensemble) 

16GB  Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[55] T5 29TB 34B Colossal Clean 

Crawled 

Corpus 

Auto 

Encoding 

None True 

[60] SMARTRO

BERTa 

160G

B 

 BOOKCORPU

S+WIKIPEDI

A+CC-

NEWS+OPEN

WEBTEXT+S

TORIES 

Auto 

Encoding 

None False 

[54] FreelbRO

BERTa 

160G

B 

-

2.2T 

BOOKCORPU

S+WIKIPEDI

A+CC-

NEWS+OPEN

WEBTEXT+S

TORIES 

Auto 

Encoding 

None False 

[61] SESAME

BERT 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[83] Electra1.7

5M 

126G

B 

33B Bookscorpus+

Wikipedia+Gi

ga5+ Clue Web 

2012-B+ 

Common 

Crawl 

Auto 

Encoding 

None True 
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[63] MINILMa 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[64] SBERT-

WK 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[65] PowerBE

RT 

 

11B 3.4B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[66] Bam 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[78] StackBER

T 

11B 3.4B Books corpus + 

Wikipedia 

Auto 

Encoding 

None False 

[67] MT-

DNNkd 

13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[77] HUBERT 16GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[68]  AdaBERT 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None True 

[73] BERTQA 13GB 3.8B Books corpus + 

Wikipedia 

Auto 

Encoding 

None false 

[70] Bart(large) 160G

B 

2.2T 160GB+Wikip

edia 

Auto 

regressive 

None False 

[31] Nezha  10.5

B 

Chinese 

Wikipedia+ 

Baidu Baike+ 

Chinese News 

Autoencod

ing+ Auto 

regressive 

NSP True 

[69] UNILMv2 160G

B 

 BOOKCORPU

S+WIKIPEDI

A+CC-

NEWS+OPEN

WEBTEXT+S

TORIES 

Autoencod

ing and 

Partially  

Auto-

regressive 

None False 
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Table 3.2: Overall Hyperparameters 

Pape

r  

 

Batch 

Size 

Max 

Sequence 

Learning 

Rate 

Step 

Size 

Paramet

ers 

Laye

rs 

Hidd

en 

Attention 

Head 

[18] 2K 512 1e-6 125K 360M 24 1024 16 

[11] 256 128 1e-4 2.4M 340M 24 1024 16 

[56] 32 128 2e-5 1M 340M 24 1024 16 

[15] 512 256 5e-5 1M 114M 6 768 12 

[79] 400K 256 5e-5 4K 114M 24 1024 16 

[29] 256 128 1e-4 1M 110M 12 768 12 

[80] 2048 512 1e-5 500K 340M 24 1024 16 

[81] 330 512 3e-5 777K 340M 24 1024 16 

[22] 32 512 1e-4, 1M 330M 24 1024 16 

[82] 32 512 1e-4, 1M 340M 24 1024 16 

[58] 256 128 1 1M 14.5M 4 312 12 

[59] 256 128 1e-4 1M 340M 24 1024 16 

[53] 4096 512 0.00176 125K 233M 12  4096 128 

[72] 1024 128 1.0e-4 1M 3.9B 48 2560 40 

[74] 4096 512 0.00176 125K 233M 12  4096  64 

[55] 2048 128 0.01 2.1M 11B 12 768 12 

[60] 2K 512 103 125 K 356M 24 1024 16 

[54] 8K 512 1e-6 500K 360M 24 1024 16 

[61] 32 128 2e-5 

 

1M 340M 12 768 12 

[83] 2048 512 2e-4 1.75M 335M 24 1024 16 

[63] 1024 512 5e-4 400k 33M 12 768 12 

[64] 32 256 2 _ 10-5 1M 66M 6 768 12 

[65] 256 128 1e-4 1M 108M 12 768 12 

[66] 128 128 1e-4 1M 340M 24 1024 16 

[78] 256 128 1e-4 1M 110M 12 768 12 

[67] 256 128 1e-4 1M 340M 24 1024 16 

[77] 256 128 5 _ 10-5 1M 110M 12 768 12 
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Table 3.3: Results 

[68]  128 512 3e-4 50K 9.5M 24 1024 16 

[73] 6 512 1.5e-5 1M 340M 24 1024 16 

[70] 8000 512 1e-6 500K 400M 12 1024 12 

[31] 5120 128 1.8e− 4  25K 340M 24 1024 16 

[69] 7680 128 6e-4 0.5M 110M 12 768 12 

Paper  

 

Name GLUE SQuAD1.1(E

M/F1) 

SQuAD2.0 

(EM/F1) 

Race 

[18] ROBERTa(Lar

ge) 

88.9 88.9/94.6 86.5/89.4 83.2 

[11] SpanBERT 82.8 88.8 /94.6 85.7 /88.7 --- 

[56] SemBERT 82.9  82.4 /85.2  

[15] ERNIE, 79.1    

[79] ERNIE2.0 89.6    

[29] BERT(base) 79.6 80.8 /88.5 79.0/81.8 66.9 

[80] XLNet 87.4 89.0/94.5 86.1/88.8 81.7 

[81] UNILM 82.4  80.5/ 83.4  

[22]  80 /90:4 -  

[82] STRUCTBER

T 

86.7 87.0 /93.0   

[58] TINYBERT 76.5 79.7 /87.5 69.9 /73.4  

[59] MT-DNN 85.4    

[53] AlBERT(XX-

large) 

89.4 94.1/88.3 88.1/85.1 82.3 

[72] Megatron-LM  95.5 / 90.0 91.2 / 88.5  89.5 

[74] AlBERT(xxlar

ge-ensemble) 

  86.85 /89.99  

[55] T5 89.9 90.06 /95.64   

[60] SMARTROBERT

a 

88.5    
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3.4 Literature Summary 

BERT[29] is the first deep bidirectional models because ELMO concatenated representation 

from both sides of the input where BERT used MLM which stop BERT to see values of 

othersides and save it from producing multilayer contyext. There are many language models 

which built upon transformer architecture and improve the BERT results. Some of these models 

were trained on very large datasets likeROBERTa (160GB)[18] 

,XLNet(126GB)[46],T5(29TB)[55], and other big model can be seen  in Table 3.1 and results 

in Table 3.3, these models changes in BERT but because these models were trained on big and 

different datasets that is why the result of these model can not compare directly with BERT 

which was trained on only 13GB text data. Every model trained smaller dataset than BERT 

achieved bad results ERNIE [15], PowerBERT [65], StackBERT [78]. ERNIE2[16] which 

trained on different datasets but of same size produces much better then BERT but as ERNIE2 

was pre-trained on other domain specific datasets which adds some advantages to ERNIE2 

[54] FreelbROBER

Ta 

89.9   85.70 

[61] SESAMEBER

T 

81.3    

[83] Electra1.75M 89.5 89.7 /94.9 88.0 /90.6  

[63] MINILMa 83.1  81.7  

[64] SBERT-WK 81.2    

[65] PowerBERT 

 

79.1   66.0 

[66] Bam 82.3    

[78] StackBERT 78.4    

[67] MT-DNNkd 86.4    

[77] HUBERT 88.1(5)    

[68]  AdaBERT 80.1    

[73] BERTQA   83.42 /80.53   

[70] Bart(large) 88.4 88.8/94.6 86.1/89.2 - 

[31] Nezha 88.7    

[69] UNILMv2 87.3 87.1/93.1 83.3/86.1 - 
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over BERT.Some models use BERT setting  and same dataset but different methods during 

pretraining and improve results SpanBERT[11],SemBERT[12], and other can be seen in Table 

3.1. These models change the style of pretraining but wholly depends upon BERT settings that 

make these models an extension of BERT and if we have a better settings for BERT then the 

results of these dependent models will also incease. If a model is trained on smaller dataset 

with same settings of BERT it will achieve bad results and if a dataset pretrained on large and 

domain specific dataset it will achieve better result. A model built upon BERT but with 

different pre-training procedure will improve results but if the BERT improve then all these 

models will also improve. Many models remove NSP  which is very important component of 

BERT architectureathese models can be seen in Table 3.1. Many models that used BERT were 

either trained on a bigger and diverse dataset and remove NSP. Some used BERT to pre-trained 

on domain-specific datasets. Paper used bigger batch and small step size produced better results 

but the problem is none of any paper which built upon transformer architecture and used BERT 

model analyze the effect of different parameters on BERT because these paper either used 

BERT as it is or trained it on bigger datasets and changed one or two paramters like XLNet, 

ROBERTa and AlBERT. 
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Chapter 4 

Methodology 
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CHAPTER 4: METHODOLOGY 

In this section, we will explain how we built a new model and how we compared it with BERT. 

4.1 Dataset 

Original BERT pre-trained on Wikipedia and Books corpus dataset. Books corpus dataset is 

publicly unavailable so we pre-trained the BERT from scratch on only Wikipedia. Due to pre-

training on only Wikipedia results of BERT decreases on many tasks and to compare with 

MBERT we pre-trained MBERT on only Wikipedia.  

4.2 BERT 

We pre-trained the original BERT from scratch with two changes. First, we pre-trained it on 

only Wikipedia(2100M) and used a Sentence piece instead of a Word piece tokenizer section 

5.1.1  will explain it in detail. Section 5.1 explains all the changes and results of BERT model 

which is trained from scratch. 

4.3 MBERT 

MBERT is our purposed model which pre-trained on Wikipedia (529M). Section 5.2 explains 

all the changes we made in this model and compared it with BERT model we pre-trained from 

scratch. Figure 4.1 shows the methodology. 

 

Figure 4.1: MBERT 

4.4 BERT 

In this section, we will provide a brief overview of BERT pre-training and Fine-tuning and our 

choices we experiment in BERT 
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4.4.1 Setup 

BERT takes an input of two concatenated segments xi…. xN and yi….yM. These segments are 

represented as a single input sequence to BERT with special tokens (CLS),xi…xN,(SEP) 

,yi….yM,(EOS) delimiting them. M+N<T where T is maximum sequence length during 

training. BERT trained on an unsupervised dataset (Wikipedia+Bookscorpus) and Fine-tune 

on supervised datasets. 

4.4.2 Architecture 

BERT uses a transformer model that replaces the recurrent neural network (RNN) and only 

relies on attention. BERT uses the same transformer model as (VASWAni) which is why we 

will not discuss it here. We use transformer architecture with L layers, H hidden layers, and A 

attention Heads. 

4.4.3 Training Objectives 

BERT uses Masking Language Model (MLM) and Next Sentence Prediction (NSP) objectives 

during pre-training. 

4.4.3.1 Masking Language Model (MLM) 

MLM is a masking strategy in which a random token from the input sequence is being masked 

and replaced with specially taken. The objective of MLM to predict the id of masked tokens 

based on its context using cross-entropy. MLM fuse the left-right context which allows the 

model to train bidirectionally without seeing each other otherwise model predicts the word in 

a multilayer context. Due to this, we do not need to concatenate the right and left data like 

ELMO. 

BERT uses MLM as 15% of all the tokens are being masked and replaced 80% with (MASK) 

tokens,10% with randomly selected tokens and 10% remain unchanged. BERT uses cross-

entropy to predict these masked tokens. BERT uses random masking and replace ones at the 

beginning of training and Saved it during pre-training. Training data was duplicated 10 times 

so that over epochs each training sequence can see with the same mask 4 times during the 

training which avoids masking of the same tokens every time. 

4.4.3.2 Next Sentence Prediction 

BERT used NSP because many Question Answering (QA) and Natural Language Inference 

(NLI) required a relationship between a sentence for accurate results. NSP is a binary 

classification that predict6 that either both sentences are from the same document or not. For a 
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positive example, both sentences are taken from the same document and for negative examples, 

both sentences were randomly selected. The percentage for both examples is 50%. 

4.4.4 Optimization 

As Books corpus dataset is publicly unavailable so we pre-trained the BERT from scratch with 

following settings:B1=0.9,B2=0.999,E=1e-5 ,warmup-steps 10,000 ,weight decay 

0.01,attention drop-out 0.1,hidden dropout 0.1,batch size 256 with maximum tokens 128 to 

step size 1M,evaluation step size 128,Input layers L=12,hidden layers H=768 with feed-

forward 4H,Attention head A=12,Maximum position embedding 512,pooler input is 3,pooler 

size per head 128 and vocabulary of 32000. 

4.4.5 Data 

BERT (original) was trained on Wikipedia and Books corpus dataset(2500M+800M) 16GB of 

uncompressed text data but due to unavailability of Books corpus dataset we pre-train the 

BERT on Wikipedia(2100M) of 13 GB of uncompressed Text data. 

4.5 MBERT 

We introduced a modified BERT pre-trained model which unlike XLNet and ROBERTa uses 

a small dataset with comparison to BERT and trained for smaller steps. Both XLNet used 8 

times bigger batch size, half step size, big sequence size but the same learning rate. ROBERTa 

was trained on a 10 times larger dataset with 8 times bigger batch size and same learning rate.  

MBERT used a model configuration of (L=6, H=1536, A=24), unlike BERT which uses (L=12, 

H==768, A=12). MBERT is a deeper model (1536) which was trained on 4 times smaller data 

with smaller sequence size and used 4 times bigger batch size but 20 times smaller step size. 

MBERT was trained on a larger vocabulary with smaller input and larger attention heads. 

MBERT also used 2H feedforward instead of 4H used in BERT. Table 2 shows other settings 

we used to pre-train the MBERT model. We pre-trained the BERT model on T4 TPU of Google 

Pro with 8 cores. 
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Figure 4.2: MBERT Working Example 

 

Figure 4.3: MBERT Working Example 

4.5.1 Datasets 

4.5.1.1 GLUE 

GLUE dataset originally consists of nine natural language tasks. Some tasks are single-sentence 

classification and some are sentence-pair classification. GLUE provides split training and 

testing data, leaderboard, and server to test the performance of pre-trained models.it allows us 

to submit our submissions on the GLUE leaderboard and compare our evaluation results on 

private held-out test data[39]. 

4.5.1.1.1 QQP 

Quora Question Pair is a NLP task which determines that two question on Quora are 

semantically equivalent are not.it is a binary classification task[84]. 

4.5.1.1.2 QNLI 

Question Natural Language Inference is a binary form of SQuAD[7] task. It contains positive 

examples and negative examples. Positive examples contained questions and sentence with 

true answers while negative examples contain questions and sentences which do not exists in 

paragraph[39]. 
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4.5.1.1.3 MRPC 

Microsoft Research Paraphrase Corpus (MRPC)consists of sentence pairs from internet 

resources with human annotations. The task of MRPC is to check whether pair sentences are 

semantically equivalent or not[6]. 

4.5.1.1.4 MNLI 

Multi-Genre Language Inference (MNLI) is a crowed source entailment classification task 

which determines that from two sentences the second is an ailment, contradiction, or neutral to 

the first one[5]. 

4.5.1.1.5 SST-2 

The Stanford Sentiment Treebank is a binary classification task which consists of sentences 

extracted from Movie Review with human Annotation[85]. 

4.5.1.1.6 COLA 

Corpus of Linguistic Acceptability (COLA)   is a binary classification which checks whether 

the English sentence is linguistically acceptable or not[86]. 

4.5.1.1.7 RTE 

Recognizing  Textual Entailment(RTE) which determines one sentence according to the other 

just like MNLI[87]. 

4.5.1.1.8 WNLI 

Winograd Natural Language Inference (WINLI) is a small inference dataset that consists upon 

2 sentences that differ with only one or two words [88]. 

4.5.1.2 SQuAD 

Stanford Question Answering Dataset (SQuAD) provides a paragraph of content and a 

question. The task is to answer a question by extracting information from the span. The SQuAD 

has two versions SQuADv1.1 and SQuADv2.0.  

4.5.1.2.1 SQuADv1.1 

SQuADv1.1 contains 100k crowdsource Questions/Answers. It contains questions that are 

answerable from span. The task is to predict the answer span from Wikipedia. 

4.5.1.2.2 SQuADv2.0 

in SQuADv2.0 the questions are the general type which makes the task difficult because 

answers to these questions are not provided in paragraphs. It makes the problem more realistic. 
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Table 4.1: GLUE Sub-task 

Dataset Task Type Example Matric Size 

Train Dev Test 

CoLA Acceptability They made him angry. 1 = 

acceptable 

This building is than that one. 

0 =unacceptable 

Matthews 10K 1K 1.1K 

SST-2 Sentiment the movie as a whole is cheap 

junk and an insult to their 

death-defying efforts = .11111 

the movie is funny , smart , 

visuallyinventive , and most of 

all , alive . = .93056 

has both = .5 

Accuracy 67K 872 1.8K 

MNLI NLI Jon walked back to the town to 

the smithy.' b'Jon traveled 

back to his 

hometown.' = 1 = neutral 

'Tourist Information offices 

can be very helpful.' b'Tourist 

Information offices are never 

of any help.' = 2 = 

contradiction 

Accuracy 393K 20K 20K 

RTE NLI 'With its headquarters in 

Madrid, Spain, WTO is an 

inter-governmental body 

entrusted by the United 

Nations to promote and 

develop tourism.' b'The 

WTO headquarters is located 

in Madrid, Spain.' = 0 = 

entailed 

Accuracy 2.7K 600 3K 
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MRPC Paraphrase "Yesterday , Taiwan reported 

35 new infections , bringing 

the total number of cases to 

418 ." 

"The island reported another 

35 probable cases yesterday , 

taking its total to 418 ."label = 

1 

Accuracy 

/ F1 

4K 1K 1.7K 

QQP Paraphrase How can I be a good 

geologist? 

What should I do to be a great 

geologist? 

1 = similar 

Accuracy 

/ F1 

400K 6K 391K 

QNLI QA/NLI "How was the Everton FC's 

crest redesign received by 

fans?" b'The redesign was 

poorly received by supporters, 

with a poll 

on an Everton fan site 

registering a 91% negative 

response to the crest.' = 0 = 

Answerable. For not  

answerable =1 

Accuracy 108K 11K 11K 

WINLI Conference 

/ 

NLI 

The trophy didn’t fit into the 

suitcase because it was too 

[large/small]. 

Question: What was too 

[large/small]? 

Answer: the trophy / the 

suitcase 

 

Accuracy 706 100 146 
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Table 4.2: SQuAD Sub-task 

Dataset Example Matric Size 

Train Dev Test 

SQuADv1.1 Article contains information of super 

bowl. 

Where did Super Bowl 50 take place? 

Answer  starts from id=177, 

text=Denver Broncos 

EM/F1 

 

100K 21K Predictions 

SQuADv2.0 Q: What areas did Beyonce compete 

in when she was growing up? 

Answer=singing and dancing 

EM/F1 

 

150K 15K Predictions 

 

4.5.2 Performace parameters 

Many parameters affect the performance of the pre-trained model. The parameters which we 

use in MBERT are as follows: 

4.5.2.1 Vocabulary Size 

Vocabulary size defines the subset of different tokens that can be represented by input. If the 

input contains words that are out of this vocabulary then the model divides the word into 

subwords. 

4.5.2.2 Sequence Size 

If defines the maximum size of an input. If one increases the sequence size then it required a 

lot of computational power and resources. 

4.5.2.3 Batch Size 

Batch size is the number of examples that can be utilized in one iteration. 

4.5.2.4 Step Size 

 How many steps a program will run. It takes data points with respect to time. 

4.5.2.5  Learning Rate 

 Learning rate is hyperparameters used in neural networks during the training of the model. 

The learning rate has weights that update during the training. A large learning rate will take 

large steps and leans quickly for a large dataset but for small, it is required to be small. 
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4.5.2.6 Hidden Layers 

 Number of hidden layers in the transformer. Hidden layers are located in-between between 

input and out layers on which a function applies weights during execution. The more hidden 

layers we used the deeper model we get. 

4.5.2.7 Input Layers 

Number of hidden layers in the transformer. Input layers composed of neuron which brings the 

data into the system for initial processing and also send it for further processing by hidden 

layers. 

4.5.2.8 Attention Heads  

Attention Heads are the number of attention heads on each layer of the transformer model. 

4.5.2.9 Intermediate-Size 

Intermediate-size also termed as Feed-forward id the dimensionality of transformer encoder. 

Intermediate-size if of 4H in the standard. 

4.5.2.10 Maximum-position-embeddings 

It is the size of the maximum sequence which the model can ever have. It should be set large 

value (e.g. 512,1024) 
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Chapter 5 

Experimental Setup and Results 
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CHAPTER 5: EXPERIMENTAL SETUP & RESULTS 

5.1 EXPERIMENTAL SETUP FOR BERT 

In this section, we will present an experimental setup for pre-training of BERT from scratch. 

5.1.1 Implementation 

While pre-training BERT we follow same procedure as in Delvin BERT. We used Adam 1e-5 

learning rate and 128 Maximum sequence length unlike the BERT 90:10 ratio of BERT. A 

large sequence size consumes so many resources and did not add extra improvement. All other 

hyperparameters were the same as Delvin and could be seen in Table 5.1. 

We use SentencePiece tokens in the unigram model by setting indices to -1 because the 

Workpiece tokenizer which [29] uses is not open-sourced. The sentence piece adds [BOS] and 

{EOS} to vocabulary by default. Workpiece prepends sub word occur middle of the word with 

[##] and if sub word occurs both in beginning and middle then both words are added to the 

vocabulary. Sentencepiece replaces the Whitespaces ““with “_” and then this is segmented into 

small pieces. The words after white spaces are prepended with “-“ while others remain 

changed, due to which words occur in beginning and nowhere else are excluded.to make it 

compatible with BERT Architecture we just remove “_” from the sub-word and adds “##” to 

words that do not have “_”.We added BERT control symbols which are 

[PAD],[VNK\,[CLS\,[SEP\.[MASK]. 

We used a subsample of 25,00,00,000 to generate a vocabulary of 32000 with a num 

placeholder of 256 because generating vocabulary from the whole dataset would require very 

high RAM. We pre-trained the BERT model on T4 TPU of Google Pro with 8 cores. 

5.1.2 Data 

Delvn pre-trained BERT on two datasets Wikipedia and Books corpus. But at the time of 

writing this paper, the Books corpus dataset is not publicly available. we trained the BERT on 

only Wikipedia which is of 13GB of uncompressed text data. We download Wikipedia from 

the official website of Wikimedia and used wiki_extracter to preprocess the dump file. 

We did not use the different datasets because we did not want to train BERT on a new dataset 

which could affect BERT’s performance in Both ways, unlike ROBERTa which trained BERT 

on 5 English datasets of 160GB data we want to remain to original BERT as close as possible. 
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5.1.3 Evaluation 

We used to follow two downstream tasks to evaluate BERT. We used the same parameters as 

described in BERT paper. Batch size of 32 with a learning rate of 1e-5 for GLUE, batch size 

of 32 and learning rate of 5e-5 for SQuADv1.1 and 48 batch and learning rate of 5e-5 for 

SQuADv2.0 

5.1.3.1 GLUE 

Generalized Language Understanding Evaluation (GLUE) is a collection of 9 tasks. Some of 

these tasks are single-sentence classification and some are sentence-pair classification. GLUE 

is used to evaluate Natural Language systems. GLUE provides split training and testing data, 

leaderboard, and server to test the performance of pre-trained models.it allows us to submit our 

submissions on the GLUE leaderboard and compare our evaluation results on private held-out 

test data. 

BERT fine-tuned on 8 out of 9 tasks. BERT did not evaluate on STS except this model follows 

BERT paper fine-tuning settings. 

5.1.3.2 SQuAD 

Stanford Question Answering Dataset (SQuAD) provides a paragraph of content and a 

question. The task is to answer a question by extracting information from the span. The SQuAD 

has two versions SQuADv1.1 and SQuADv2.0. SQuADv1.1 contains 100k crowdsource 

Questions/Answers. It contains questions which are answerable from span but in SQuADv2.0 

the questions are the general type which makes the task difficult because answers to these 

questions are not provided in paragraph. 

Table 5.1: Hyperparameters 

Hyperparameter Values 

Vocabulary 32000 

Hidden layers 768 

Input layers 12 

Attention heads 12 

Maximum sequence size 128 

masking 15% 

Batch size 256 

Learning rate 1e-5 

Intermediate-size 3072(4H) 
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Pooler size per head 128 

Hidden dropout 0.1 

Initialize range 0.02 

Hidden dropout 0.1 

Maximum position encoding 512 

Step Size 1000000 

5.1.4 Results 

Table 5.2: Original vs replicated 
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Original BERT did not evaluate on WNLI but we fine-tuned it WNLI. Due to train on only 

Wikipedia, the results of BERT we pre-trained from scratch has 78.2 average of 7 task while 

BERT achieved 73.1 results on GLUE dataset. We trained the BERT from scratch so that we 

can compare our pre-trained model with it. Although this BERT was trained on only Wikipedia 

it still achieves better results on  COLA  and  QQP. MRPC, SQUADv1.1, and SQuadv2.0 were 

most affected. 

5.2 EXPERIMENTAL SETUP FOR MBERT 

In this section, we will present an experimental setup for our pre-trained model MBERT. 

5.2.1 Implementation 

We reimplement with primarily follow the same procedure as BERT(Delvin). We changed the 

hyperparameters. We used a subsample of 2500000 with a num placeholder of 256to generate 

a vocabulary of 52000 as 32000 used in BERT was not enough to produce meaningful tokens. 
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We also use Sentencepiece to generate tokens. we increase the batch size to 1024 and decrease 

the step size to 50,000 from 10,00,000(1M).decrease the input layers to L=6 which allows us 

to use a bigger attention head of A=24.MBERT is the deeper model as we used H=1536 hidden 

layers and Feedforward 3072.A high learning Rate of 2e-5.128 Maximum sequence size.Table 

5.3 shows other hyperparameters. We pre-trained the BERT model on T4 TPU of Google Pro 

with 8 cores 

 

Table 5.3: MBERT Hyperparameters 

Hyperparameter Values 

Vocabulary 52,000 

Hidden layers 1536 

Input layers 6 

Attention heads 24 

Maximum sequence size 128 

masking 15% 

Batch size 1024 

Learning rate 2e-5 

Intermediate size 3072(2H) 

Pooler size per head 128 

Hidden dropout 0.1 

Initialize range 0.02 

Hidden dropout 0.1 

Maximum position encoding 512 

Step Size 50,000 

 

5.2.2 Data 

We trained MBERT on Wikipedia of (530M) of 3GB of uncompressed text data. We used a 

small dataset because having a large dataset will not improve our model but a domain-specific 

dataset. But as the book’s corpus dataset is not publicly available and unlike ROBERTa which 

used a large dataset of 160GB we just trained on Wikipedia with 530M. 
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5.2.3 Evaluation 

We used the same downstream tasks GLUE and SQuAD mentioned in section 3.3. 

5.2.4 Results 

We evaluate our pre-trained model on GLUE and SQuAD datasets. 

5.2.4.1 GLUE 

MBERT fine-tuned with task-specific settings that produce better results on COLA (+.12), 

MRPC (+2), WNLI (+12.67), RTE (+6.53) and on QQP (-1.07), MNLI (-2.76), QNLI (-0.5), 

SST-2(-2.28). Overall MBERT achieves (+1.84) accuracy on GLUE. Table 5.4 shows the task 

of specific parameters for MBERT. the task with a larger dataset required a larger batch size 

compare to small tasks.  

 

Figure 5.1: Result 

  

Table 5.4: Fine-tuning setting 

Task Name Batch size Learning Rate 

COLA 16 1e-5 
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WNLI 16 2e-5 

RTE 24 1e-5 

MNLI 64 2e-5 

SST-2 32 1e-5 

SQuADv1.1 32 5e-5 

SQuADv2.o 48 3e-5 

 

5.2.4.2 SQUAD 

MBERT has trained on 50k steps which affect its performance on SQuADv1.1 which in 

section…. we fine-tuned MBERT on SQuAD 32 batch size and 5e-5 learning rate over 3 

epochs. Figure 5.1 shows that MBERT produced EM (-9.3) and F1(-7.6) on Squad. BERT fine-

tuned on SQuADv2.0 with a batch size of 48 and 3e-5 leaning for 3 epochs produced EM (-

3.21) and F1(-4.19).  

5.2.5 Result Analysis 

In this section, we will analyse the performance of MBERT on GLUE and SQuAD tasks. 

5.2.5.1 GLUE 

GLUE consists of 9 tasks in which Some of these tasks are single-sentence classification and 

some are sentence-pair classification. We evaluate MBERT on 8 downstream tasks except for 

STS-B which behave differently. We even Trained MBERT on the WNLI dataset and produced 

much better results than BERT.MBERT pre-trained for 50K steps achieves better results on 

COLA, MRPC, WNLI, RTE, and overall beats BERT.MBERT trained for large step size 

outperform BERT on COLA, MRPC, WINLI, RTE, and SST with an overall improvement of 

(+2.49) over BERT. 

 

Figure 5.2: GLUE Results 
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5.2.5.2 SQuAD 

On SQuADv1.1 (57.40/69.50) MBERT performs badly but performs relatively better on 

SQuADv2.0 (56.19/59.38) which is (-9.31/-7.6) and (-3.21/-4.19). the performance of MBERT 

on SQuADv1.1 is bad but it is relatively better on SQuADv2.0 which can bee seen in Figure 

5.3. 

 

 

Figure 5.3: SQuAD Results 

We proved in section 5.2.5 that SQuAD tasks are very dependent to step size but we also 

showed that other parameters like feedforward, step size, hidden layers, positional encoding 

affects the final performance of the pre-trained model on downstream task SQuAD. Due to 

memory limitations, we can not say the effect of input layers on SQuAD. 

5.2.6 Overall Analysis 

We pre-trained the BERT from scratch with the same setting as of BERT (paper) with some 

changes discussed in section #. the training time required for BERT was 53 hours with a 

computational cost of 256*128*1000000. BERT was trained on a dataset of 13GB of a clean 

uncompressed dataset which is 2100M. Books corpus dataset is not publicly available that is 

why we had to train BERT on only Wikipedia. BERT produced 73.1 on GLUE task, EM/F1 

66.71/77.10 on SQuADv1.1, and 59.40/63.57 on SQuADv2.0. 

We trained a modified BERT model with different parameters shown in table 3 and we called 

it MBERT.MBERT was trained on a small dataset of 3 GB of uncompressed Wikipedia text 
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hidden layers of 1536 while using feed-forward 3072(2H) due to hbm. MBERT was trained 

for 17 hours with a computational cost of 1024*128*50000 which is very small then compare 

to BERT. 

MBERT achieved 74.94 on GLUE.MBERT outperforms BERT on 4 tasks while performing 

very close to the other 4 tasks. On SQuADv1.1 (57.40/69.50) MBERT performs badly but 

performs relatively better on SQuADv2.0 (56.19/59.38). 

In Table 5.5  presented the pre=training setting of diffretn versions of MBERT. In Figure 29 

we presented results of Different MBERT models that pre-trained with the same 

hyperparameters except for one change which can be seen in Figure 5.4. We find out that the 

GLUE task is very sensitive to learning rate and hidden layers. As we can see in Figure 5.4that 

3 tasks perform well below MBERT which are MBERT_7, MBERT_12, and MBERT_13 on 

GLUE.MBERT_7 was trained with smaller hidden layers while MBERT_12 and MBERT_13 

were trained with 1e-5 and 3e-5 learning rates respectively. Other parameters also affect the 

performance which could be seen in Figure 29.To find out the settings for pre-trained models 

one can check Table 5.5 in which we presented the settings of parameters. 

 

 

 

Figure 5.4: GLUE Analysis 

Figure 5.5 and Figure 5.6 shows different pre-training settings for MBERT and the effect of 

these training on SQuAD results. BERT which trained for 1M steps produced the best results. 
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as we discussed that SQuAD task heavy; it depends upon step size. Other factors affect the 

MBERT’s performance on SQuAD tasks like batch size, input layers, hidden layers, attention 

heads, maximum position embeddings, and size of feedforward. SQuAD performance is most 

affected by the Step size. Client and RoBERTo produced better results compare to BERT with 

smaller steps 500k and 125k respectively but these models were trained on very large and 

different datasets while MBERT trained on 4 times smaller datasets than BERT. 

 In Figure 5.5 we can see that MBER_1, MBERT_2, and MBERT_3 which trained with the 

same setting but for different step sizes produced different results.MBERT_3 which trained for 

100K steps perform much better than MBERT_2 and MBERT_1 which trained for 75K and 

50K respectively.MBERT_4 which has bigger positional embeddings than MBERT_1 

produced better results which are even better for MBERT_2 which trained for 75K. Training 

with a smaller batch size affects the model as MBERT_5 trained with a smaller batch size and 

produced bad results than MBERT_1.MBERT_6 used a shallow model means fewer hidden 

layers with big batch size which affects the results very badly.MBERT_7 trained with large 

batch size 1344 but smaller positional encoding, feed-forward, and hidden layers and perform 

worst on SQuAD.MBERT_8 shows that a shallow model even with 4H feed-forward produced 

bad results. 

 

Figure 5.5: Result of different models on SQuAD 
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Figure 5.6: Result of different models on SQuAD 

MBERT_9 showed that step size important for the SQuAD task as it trained with smaller 

attention heads but for 75K steps and perform almost identical to MBERT_1 which was trained 

with 24 attention heads. Figure 5.6 shows that SQuAD depends upon many factors but the step 

size is most crucial as all models which trained for small step size produced bad results when 

compared to BERT which was trained for 1M steps although it has a smaller batch size, smaller 

attention head, smaller positional embedding, and shallow model because it was trained for 1M 

steps it performs best on SQuAD among all models. Even all models having a large step size 

than those which has a step size of 50K perform well on SQuAD. 

 

Table 5.5: Different Versions of MBERT 

Model step Batch 

size 

L H A M.P.E Feedforward L.R Vocabulary 

BERT 1M 256 12 768 12 512 3072(4H) 1e-5 32000 

MBERT_1 50K 1024 6 1536 24 512 3072(2H) 2e-5 52000 

MBERT_2 75K 1024 6 1536 24 512 3072(2H) 2e-5 52000 

MBERT_3 100k 1024 6 1536 24 512 3072(2H) 2e-5 52000 

MBERT_4 50k 1024 6 1536 24 832 3072(2H) 2e-5 52000 

MBERT_5 50k 960 6 1536 24 1024 4608(3H) 2e-5 52000 
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MBERT_6 50k 1152 6 1032 24 1024 4096(4H) 2e-5 52000 

MBERT_7 50k 1344 6 1008 24 512 3072(2H) 2e-5 52000 

MBERT_8 50k 1024 6 1320 24 1024 5280(4H) 2e-5 52000 

MBERT_9 75k 1024 6 1536 16 1024 3072(2H) 2e-5 52000 

MBER_10 50k 1024 12 768 24 512 3072(2H) 2e-5 52000 

MBERT_11 50k 1024 6 768 24 512 3072(2H) 2e-5 52000 

MBERT_12 50k 1024 6 1536 24 512 3072(2H) 1e-5 52000 

MBERT_13 50k 1024 6 1536 24 512 3072(2H) 3e-5 52000 

MBERT_15 125k 256 6 1536 24 512 3072(2H) 2e-5 52000 

MBERT_16 50k 1024 6 1536 24 512 3072(2H) 2e-5 32000 

 

5.3 TRAINING PROCEDURE ANALYSIS  

In this section, we will explore and quantifies which choices are important when pre-training 

BERT. MBERT has a different configuration of (L=6, H=1536, H12,25M params). 

5.3.1 Bigger batch size with a small step size 

5.3.1 Batch and Step Size 

Figure 5.7 shows the effect of batch size during pretraining and Figure 5.8 shows the effect of 

step size while keeping all other parameters constant. We can see that when batch size 

increase the results improve and when step drecrease the results also effects. But when 

MBERT incrases the batch size but decreases the step size the results improves which shows 

a relation and effect of batch and step size together.  

 

Figure 5.7: Effect of Batch Size 
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Figure 5.8: Effect of Step Size 

5.3.2 Deeper Model: 

BERT was trained with 768 hidden layers which are not enough and BERT could be trained 

with deeper hidden layers. 

 

Figure 5.9: Effect of Hidden Layers 
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6.67/6.69 in SQuADv2.0 improvement with an increase in hidden layers. 
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5.3.3 Small Input Layers 

Input layers and hidden layers are inverses which means if we increase one then we need to 

decrease the other due to limited High Bandwidths Memory (hbm). Having both bigger input 

and deeper hidden layers will defiantly improve the performance. 

 

Figure 5.10: Effect of Input layers 

Figure 5.10 shows that BERT_D has the same hyperparameters for pretraining as MBERT with 

one change. BERT_D has L=12 input layers that force it to reduce hidden layers to H=768 and 

feedforward to 3072(4H) while MBERT has L=6 input layers that allow MBERT to have a 

deeper model which is H=1536 but small feed-forward 3072(2H).BERT_D which has bigger 

input layers but shallow hidden layers did not improve any of the tasks of GLUE and SQuAD. 

Overall, BERT_D decrease the performance to 1.44 on GLUE and 5.53/5.18 on SQuADv1.1, 

and 2.92/2.88 on SQuADv2.0. 

5.3.4 Bigger Attention Head 

Change of attention had affected the performance of the pre-trained model and the same 

happened when the trained model with bigger attention head. 

 

Figure 5.11: Effect of Attention Heads 
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Figure 5.11  shows that when MBERT trained on bigger attention head then the performance 

increases as compare to when it trained with 12 attention heads. 

5.3.5 Higher Learning Rate 

Learning rate has very big effect on the performance of pre-trained model when evaluate on 

downstream tasks. 

 

Figure 5.12: Effect of Learning Rate 

All models shown in Figure 5.12 has same hyperparameters except one that they are trained 

with different learning rate. When step size decrease and batch size increases then the learning 

rate need to be increased.it is very crucial to increase the learning rate with these factors like 

all of these three models MBERT, BERT_F, and BERT_G has 1024 batch size for 50K steps. 

BERT_F trained with a smaller learning rate and BERT_G trained with a very high learning 

rate than MBERT. A small learning rate affects the performance but an extra high learning rate 

destroys the model’s performance. BERT_F which was trained with smaller learning rates 1e-

5 then MBERT produces GLUE (-3.22), SQuADv1.1(-11.41/-10.3), and SQuADv2.0(-

4.56/4.37) means worst results. BERT_G which is trained with a high learning rate 3e-5 then 

MBERT produces the worst on GLUE(-21.83), SQuADv1.1(-51.76/-59.93), and SQuADv2.0(-

6.13/-9.32).AS we can see that BERT_G which trained with a very high learning rate for 50K 

step perform well below the average on both GLUE and SQuadv1.1.Setting a learning rate with 

w.r.t batch and step size is very crucial while pre-training the model as it affects the model on 

downstream tasks.. 
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5.3.6 Training on Smaller Sequences: 

Having a larger sequence size required a lot of resources due to which one need to set other 

hyperparameters but these large sequences did not improve results much which can be seen 

Figure 5.13. 

 

Figure 5.13: Effect of Input Sequence Size 

BERT_H was trained on a bigger sequence size of 256 due to which we had to reduce batch 

size 256 from 1024 but increased the step size to 125K which MBERT trained on 128 sequence 

with 1024 batch size for 50k steps. BERT_H performs (-1.67) on GLUE, (+4.48/+3.21) on 

SQuADv1.1 and (+2.09/+2.92) on SQuADv2.0. We chose smaller sequences because we 

believe that the SQuAD task heavily depends upon steps and here BERT_H was trained for 

125K steps. Figure 38 shows that BERT which has 128 sequence size but trained for 1M steps 

produced the best SQuAD results which show SQuAD depends heavily on step size. 

5.3.7 Training with Bigger Vocabulary: 

Pre-training of language model with large vocabulary improves the results especially when 

training data is of English text. Original BERT was trained on 32000 vocabulary which we 

consider is very small for that large model which trained on Wikipedia and Bookscorpus 

(2500M+800M) of data.

 

Figure 5.14:Effect of Vocabulary Size 
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We trained MBERT with 52000 of vocabulary as our dataset is very small compared to both 

original BERT (Paper) (2500M+800M) and replication of BERT by us (2100M). Figure 5.14 

shows that MBERT achieves better results than BERT_I which has the same hyperparameters 

as MBERT but has a small vocabulary size of 32000.MBERT achieved (+1.57) on GLUE, 

(+2.28/+2.07) on SQuADv1.1 and (+0.43/+0.25) on SQuADv2.0. MBERT performs well on 

every single task of GLUE. 

5.3.8 Task-Specific Finetuning: 

Finetuning of a pre-trained model with the same settings on downstream tasks affects the 

performance as every task required specific finetuning. The fine-tuning settings of the pre-

trained model need to be according to pre-training. 

 

Figure 5.15: Effect of Task-specific Fine-tuning 

Figure 5.15 shows that MBERT which is task specific finetuned produced better results than 

BERT_J which fine-tuned same for all GLUE task.32 batch size with 2e-5 learning rate. 32 

batch size with 5e-5 learning rate on SQuADv1.1 and batch size with 5e-5 learning rate on 

SQuADv2.0.  MBERT produces better results on all task. On GLUE MBERT achieves (+2.17), 

SQuADv1.1 (+3.04/+3.19), SQuADv2.0(+3.04/+2.02). 
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Chapter 6 

Discussion, Conclusion And Future Work 
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CHAPTER 6: DISCUSSION, CONCLUSION AND FUTURE WORK 

Discussion 

We pre-trained the BERT(Paper) from scratch because the dataset which BERT used for 

pretraining is not publicly available. Wikipedia and books corpus were the datasets but books 

corpus is not publicly available which forces us to pre-trained the BERT from scratch using 

the same settings as of BERT(Paper) with one basic change and that was the use of sentence 

piece instead of workpiece we discussed in section#. 

We pre-trained the MBERT a modified BERT on a very small dataset of Wikipedia (531M) 

with compare to (2100M) for BERT in this paper. Training a deeper model with a bigger batch 

size for smaller steps with a high learning rate produced better results on GLUE tasks while 

performing badly on SQuADv1.1 but relatively better on SQuADv2.0. Section# shows that the 

SQuAD task heavily depends upon step size. 

High bandwidth memory played an important role while pre-training the MBERT due to which 

we had to reduce values of some parameters which we believe affects our model very badly. 

First of all, is the inverse relationship between batch size and size of hidden layers concerning 

Memory, not performance as when both batch size and hidden size increased then the results 

improve either parameter effects badly. Training of MBERT 50k steps produced almost 

identical results when trained for 100K steps which shows that only training for longer steps 

did not improve the performance of MBERT as much as when a change of other settings. but 

training for longer steps improve results on the SQuAD task but training for 25K more steps is 

as same as training for 320 additional positional encodings or feed-forward 3H instead of 2H. 

In MBERT we limited two parameters (1) positional encoding of 512 instead of 1024 (2) used 

small feed-forward 2H instead 4H. We showed in section# that if we used the same settings as 

of 1024 and 4H for MBERT then our results will improve. The learning rate also impacts the 

performance and need to be set according to the batch and step size. 

MBERT performs badly on SQuADv1.1 and except that it performs well for SQuADv2.0 and 

even beat the BERT on GLUE task. Training time required for BERT for 1M steps was 53 

hours of training with the computational cost of 256*128*1000000 while MBERT which 

trained for only 50K steps 20 times smaller step size and 4 time smaller dataset pre-trained for 

17 hours with the computational cost of 1024*128*50000 a much smaller and produced better 

results on GLUE which consists upon 8 tasks except STS-B which we leave and performed 

well on SQuADv2.0. 
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All of these experiments mean training and fine-tuning can be replicated with our setting on 

Google Collab which is free and provides free TPU. In the whole discussion, we ignore the 

shard which is used to save the dataset in GCP buckets to pre-train the model. If we consider 

that factor then BERT which trained on WIKIPEDIA (2100M) took almost 4 times more time 

than MBERT which rained on WIKIPEDIA (510M). 

Conclusion 

Due to the unavailability of BOOKS corpus, we were unable to compare our results with BERT 

(paper) which makes us pre-trained the BERT from scratch on only the Wikipedia dataset. We 

compare our results with BERT, unlike ROBERTo and XLNET we used a small dataset as 

BERT. Using the same dataset as for BERT will not improve our model much because with 

our modified setting use of different and domain-specific data is more important than 

Wikipedia which is plain text data. We pre-trained BERT on the Whole dataset of WIKIPEDIA 

because we want to keep BERT as close to BERT (paper) as possible with the same settings 

except the use of sentence pieces in place of Wordpiece. 

In future will train the MBERT deeper with bigger batch size but for the same steps 50K.with 

limited resource with were unable to trained MBERT with large positional embeddings and 

bigger feed-forward which we believe need to be 4H instead 2H which we had to use. Training 

of MBERT on different and especially domain-specific datasets will improve the performance 

of MBERT. A future direction is to find settings that improve the performance of MBERT on 

the SQuAD dataset because here MBERT performs badly. Setting choices, we made in 

MBERT can be used on other models which trained with BERT architecture and we believe 

their performance will improve like on BioBERT and SCIBERT because they used BERT 

(paper) architecture but trained on a domain-specific dataset and we discussed that training of 

MBERT on a domain-specific dataset will improve performance instead of for training for 

longer steps on the same dataset. 

  



71 

 

References 

 

1. Taylor, W.L., “Cloze procedure”: A new tool for measuring readability. Journalism 
quarterly, 1953. 30(4): p. 415-433. 

2. Mikolov, T., et al. Distributed representations of words and phrases and their 
compositionality. in Advances in neural information processing systems. 2013. 

3. Mahajan, D., et al. Exploring the limits of weakly supervised pretraining. in 
Proceedings of the European Conference on Computer Vision (ECCV). 2018. 

4. Bowman, S.R., et al., A large annotated corpus for learning natural language 
inference. arXiv preprint arXiv:1508.05326, 2015. 

5. Williams, A., N. Nangia, and S.R. Bowman, A broad-coverage challenge corpus for 
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017. 

6. Dolan, W.B. and C. Brockett. Automatically constructing a corpus of sentential 
paraphrases. in Proceedings of the Third International Workshop on Paraphrasing 
(IWP2005). 2005. 

7. Rajpurkar, P., et al., Squad: 100,000+ questions for machine comprehension of text. 
arXiv preprint arXiv:1606.05250, 2016. 

8. Radford, A., et al., Improving language understanding by generative pre-training. 
2018. 

9. Lee, J., et al., BioBERT: a pre-trained biomedical language representation model for 
biomedical text mining. Bioinformatics, 2020. 36(4): p. 1234-1240. 

10. Beltagy, I., K. Lo, and A. Cohan, SciBERT: A pretrained language model for scientific 
text. arXiv preprint arXiv:1903.10676, 2019. 

11. Joshi, M., et al., SpanBERT: Improving pre-training by representing and predicting 
spans. Transactions of the Association for Computational Linguistics, 2020. 8: p. 64-
77. 

12. Zhang, Z., et al. Semantics-aware BERT for language understanding. in Proceedings of 
the AAAI Conference on Artificial Intelligence. 2020. 

13. Feng, A., et al., Modeling Multi-Targets Sentiment Classification via Graph 
Convolutional Networks and Auxiliary Relation. Computers, Materials & Continua, 
2020. 

14. Yin, X., et al., Deep Entity Linking via Eliminating Semantic Ambiguity With BERT. IEEE 
Access, 2019. 7: p. 169434-169445. 

15. Zhang, Z., et al., ERNIE: Enhanced language representation with informative entities. 
arXiv preprint arXiv:1905.07129, 2019. 

16. Sun, Y., et al. ERNIE 2.0: A Continual Pre-Training Framework for Language 
Understanding. in AAAI. 2020. 

17. Logeswaran, L. and H. Lee, An efficient framework for learning sentence 
representations. arXiv preprint arXiv:1803.02893, 2018. 

18. Liu, Y., et al., ROBERTa: A robustly optimized BERT pretraining approach. arXiv 
preprint arXiv:1907.11692, 2019. 

19. Zellers, R., et al. Defending against neural fake news. in Advances in Neural 
Information Processing Systems. 2019. 



72 

 

20. Wang, A., et al. Superglue: A stickier benchmark for general-purpose language 
understanding systems. in Advances in Neural Information Processing Systems. 2019. 

21. Conneau, A. and D. Kiela, Senteval: An evaluation toolkit for universal sentence 
representations. arXiv preprint arXiv:1803.05449, 2018. 

22. Houlsby, N., et al., Parameter-efficient transfer learning for NLP. arXiv preprint 
arXiv:1902.00751, 2019. 

23. Peters, M.E., S. Ruder, and N.A. Smith, To tune or not to tune? adapting pretrained 
representations to diverse tasks. arXiv preprint arXiv:1903.05987, 2019. 

24. Iwasaki, Y., et al. Japanese abstractive text summarization using BERT. in 2019 
International Conference on Technologies and Applications of Artificial Intelligence 
(TAAI). 2019. IEEE. 

25. Sousa, M.G., et al. BERT for Stock Market Sentiment Analysis. in 2019 IEEE 31st 
International Conference on Tools with Artificial Intelligence (ICTAI). 2019. IEEE. 

26. Yu, X., et al. BioBERT based named entity recognition in electronic medical record. in 
2019 10th International Conference on Information Technology in Medicine and 
Education (ITME). 2019. IEEE. 

27. Jiang, S., et al. A BERT-BiLSTM-CRF Model for Chinese Electronic Medical Records 
Named Entity Recognition. in 2019 12th International Conference on Intelligent 
Computation Technology and Automation (ICICTA). 2019. IEEE. 

28. Inui, K., et al. Proceedings of the 2019 Conference on Empirical Methods in Natural 
Language Processing and the 9th International Joint Conference on Natural 
Language Processing (EMNLP-IJCNLP). in Proceedings of the 2019 Conference on 
Empirical Methods in Natural Language Processing and the 9th International Joint 
Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. 

29. Devlin, J., et al., BERT: Pre-training of deep bidirectional transformers for language 
understanding. arXiv preprint arXiv:1810.04805, 2018. 

30. Peters, M.E., et al., Deep contextualized word representations. arXiv preprint 
arXiv:1802.05365, 2018. 

31. Wei, J., et al., NEZHA: Neural contextualized representation for chinese language 
understanding. arXiv preprint arXiv:1909.00204, 2019. 

32. Kalchbrenner, N., E. Grefenstette, and P. Blunsom, A convolutional neural network 
for modelling sentences. arXiv preprint arXiv:1404.2188, 2014. 

33. Mikolov, T., et al. Extensions of recurrent neural network language model. in 2011 
IEEE international conference on acoustics, speech and signal processing (ICASSP). 
2011. IEEE. 

34. Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 
1997. 9(8): p. 1735-1780. 

35. Vaswani, A., et al., Attention is all you need. Advances in neural information 
processing systems, 2017. 30: p. 5998-6008. 

36. Google. Transformer: A Novel Neural Network Architecture for Language 
Understanding. 2017  [cited 2020 3 Dec]; Available from: 
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html. 

37. Dai, A.M. and Q.V. Le. Semi-supervised sequence learning. in Advances in neural 
information processing systems. 2015. 

38. Howard, J. and S. Ruder, Universal language model fine-tuning for text classification. 
arXiv preprint arXiv:1801.06146, 2018. 

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


73 

 

39. Wang, A., et al., Glue: A multi-task benchmark and analysis platform for natural 
language understanding. arXiv preprint arXiv:1804.07461, 2018. 

40. McCann, B., et al. Learned in translation: Contextualized word vectors. in Advances in 
Neural Information Processing Systems. 2017. 

41. Lample, G. and A. Conneau, Cross-lingual language model pretraining. arXiv preprint 
arXiv:1901.07291, 2019. 

42. Radford, A., et al., Improving language understanding with unsupervised learning. 
Technical report, OpenAI, 2018. 

43. Dong, L., et al. Unified language model pre-training for natural language 
understanding and generation. in Advances in Neural Information Processing 
Systems. 2019. 

44. Sun, Y., et al., Ernie: Enhanced representation through knowledge integration. arXiv 
preprint arXiv:1904.09223, 2019. 

45. Song, K., et al., Mass: Masked sequence to sequence pre-training for language 
generation. arXiv preprint arXiv:1905.02450, 2019. 

46. Yang, Z., et al. XLNet: Generalized autoregressive pretraining for language 
understanding. in Advances in neural information processing systems. 2019. 

47. Chan, W., et al., KERMIT: Generative insertion-based modeling for sequences. arXiv 
preprint arXiv:1906.01604, 2019. 

48. Vaswani, A., et al. Attention is all you need. in Advances in neural information 
processing systems. 2017. 

49. Peters, M.E., et al., Dissecting contextual word embeddings: Architecture and 
representation. arXiv preprint arXiv:1808.08949, 2018. 

50. Peters, M.E., et al., Semi-supervised sequence tagging with bidirectional language 
models. arXiv preprint arXiv:1705.00108, 2017. 

51. Bai, S., J.Z. Kolter, and V. Koltun. Deep equilibrium models. in Advances in Neural 
Information Processing Systems. 2019. 

52. Dai, Z., et al., Transformer-xl: Attentive language models beyond a fixed-length 
context. arXiv preprint arXiv:1901.02860, 2019. 

53. Lan, Z., et al., AlBERT: A lite BERT for self-supervised learning of language 
representations. arXiv preprint arXiv:1909.11942, 2019. 

54. Zhu, C., et al., Freelb: Enhanced adversarial training for language understanding. 
arXiv preprint arXiv:1909.11764, 2019. 

55. Raffel, C., et al., Exploring the limits of transfer learning with a unified text-to-text 
transformer. arXiv preprint arXiv:1910.10683, 2019. 

56. Zhang, Z., et al., Semantics-aware BERT for language understanding. arXiv preprint 
arXiv:1909.02209, 2019. 

57. Wang, W., et al., StructBERT: Incorporating language structures into pre-training for 
deep language understanding. arXiv preprint arXiv:1908.04577, 2019. 

58. Jiao, X., et al., TinyBERT: Distilling BERT for natural language understanding. arXiv 
preprint arXiv:1909.10351, 2019. 

59. Liu, X., et al., Multi-task deep neural networks for natural language understanding. 
arXiv preprint arXiv:1901.11504, 2019. 

60. Jiang, H., et al., Smart: Robust and efficient fine-tuning for pre-trained natural 
language models through principled regularized optimization. arXiv preprint 
arXiv:1911.03437, 2019. 



74 

 

61. Su, T.-C. and H.-C. Cheng, SesameBERT: Attention for Anywhere. arXiv preprint 
arXiv:1910.03176, 2019. 

62. Clark, K., et al., Electra: Pre-training text encoders as discriminators rather than 
generators. arXiv preprint arXiv:2003.10555, 2020. 

63. Wang, W., et al., MiniLM: Deep Self-Attention Distillation for Task-Agnostic 
Compression of Pre-Trained Transformers. arXiv preprint arXiv:2002.10957, 2020. 

64. Xu, C., et al., BERT-of-theseus: Compressing BERT by progressive module replacing. 
arXiv preprint arXiv:2002.02925, 2020. 

65. Goyal, S., et al., PoWER-BERT: Accelerating BERT inference for Classification Tasks. 
arXiv preprint arXiv:2001.08950, 2020. 

66. Clark, K., et al., Bam! born-again multi-task networks for natural language 
understanding. arXiv preprint arXiv:1907.04829, 2019. 

67. Liu, X., et al., Improving multi-task deep neural networks via knowledge distillation 
for natural language understanding. arXiv preprint arXiv:1904.09482, 2019. 

68. Chen, D., et al., AdaBERT: Task-Adaptive BERT Compression with Differentiable 
Neural Architecture Search. arXiv preprint arXiv:2001.04246, 2020. 

69. Bao, H., et al., UniLMv2: Pseudo-Masked Language Models for Unified Language 
Model Pre-Training. arXiv preprint arXiv:2002.12804, 2020. 

70. Lewis, M., et al., Bart: Denoising sequence-to-sequence pre-training for natural 
language generation, translation, and comprehension. arXiv preprint 
arXiv:1910.13461, 2019. 

71. Chang, W.-C., et al., X-BERT: eXtreme Multi-label Text Classification with using 
Bidirectional Encoder Representations from Transformers. arXiv preprint 
arXiv:1905.02331, 2019. 

72. Shoeybi, M., et al., Megatron-lm: Training multi-billion parameter language models 
using gpu model parallelism. arXiv preprint arXiv:1909.08053, 2019. 

73. Chadha, A. and R. Sood, BERTQA--Attention on Steroids. arXiv preprint 
arXiv:1912.10435, 2019. 

74. Kao, W.-T., et al., Further Boosting BERT-based Models by Duplicating Existing 
Layers: Some Intriguing Phenomena inside BERT. arXiv preprint arXiv:2001.09309, 
2020. 

75. Nguyen, M.-T., et al. Transfer learning for information extraction with limited data. in 
International Conference of the Pacific Association for Computational Linguistics. 
2019. Springer. 

76. Wang, B. and C.-C.J. Kuo, SBERT-WK: A Sentence Embedding Method by Dissecting 
BERT-based Word Models. arXiv preprint arXiv:2002.06652, 2020. 

77. Moradshahi, M., et al., HUBERT Untangles BERT to Improve Transfer across NLP 
Tasks. arXiv preprint arXiv:1910.12647, 2019. 

78. Gong, L., et al. Efficient training of BERT by progressively stacking. in International 
Conference on Machine Learning. 2019. 

79. Sun, Y., et al., Ernie 2.0: A continual pre-training framework for language 
understanding. arXiv preprint arXiv:1907.12412, 2019. 

80. Yang, Z., et al. XLNet: Generalized autoregressive pretraining for language 
understanding. in Advances in neural information processing systems. 2019. 

81. Dong, L., et al. Unified language model pre-training for natural language 
understanding and generation. in Advances in Neural Information Processing 
Systems. 2019. 



75 

 

82. Wang, W., et al., StructBERT: Incorporating Language Structures into Pre-training for 
Deep Language Understanding. arXiv preprint arXiv:1908.04577, 2019. 

83. Clark, K., et al. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than 
Generators. in International Conference on Learning Representations. 2019. 

84. Chen, Z., et al., Quora question pairs. 2018, Quora. 
85. Socher, R., et al. Recursive deep models for semantic compositionality over a 

sentiment treebank. in Proceedings of the 2013 conference on empirical methods in 
natural language processing. 2013. 

86. Warstadt, A., A. Singh, and S.R. Bowman, Neural network acceptability judgments. 
Transactions of the Association for Computational Linguistics, 2019. 7: p. 625-641. 

87. Bentivogli, L., et al. The Fifth PASCAL Recognizing Textual Entailment Challenge. in 
TAC. 2009. 

88. Levesque, H., E. Davis, and L. Morgenstern. The winograd schema challenge. in 
Thirteenth International Conference on the Principles of Knowledge Representation 
and Reasoning. 2012. Citeseer. 

 


