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Abstract 

Estimation of on tree mango maturity is essential for the prediction of harvest time. Dry matter 

(DM) is a useful index in deciding mango maturity, and post-harvest quality. Existing NIR based 

maturity meters employ machine learning regressors to predict a particular maturity index value 

(such as DM, oBrix, or etc.) and then impose a hard threshold on predicted value to estimate 

maturity state of the fruit. In this paper, a new non-destructive handheld maturity meter is 

developed for on-tree harvest maturity estimation. The developed maturity meter directly estimates 

the maturity state (mature/immature) using a classifier trained on maturity labels assigned through 

standard DM thresholds for investigated mango varieties. To develop the hardware of the device, 

a commercial-off-the-shelf development kit of NIR micro-spectrometer in the spectral range of 

400 - 1100 nm was employed with an intel compute stick, a micro-halogen lamp, a lithium battery, 

and a display. The application software (developed in C++) is designed to collect interactance 

spectra, noise removal, dimensionality reduction, and classification of maturity state. Performance 

of the developed device is evaluated by on tree test samples of mango fruit of different season. 

Comparison of both the literature reported indirect maturity estimation and proposed direct 

maturity classification is conducted. The test results show that the maximum accuracy achieved 

using indirect maturity estimation using hard thresholds is 55.9%. Whereas, direct maturity 

classification using KNN achieved 88.2% accuracy in predicting the maturity state 

(mature/immature) of the test mangoes. Overall results show that the developed DM mango 

maturity method has considerable potential to detect maturity state of mangoes in practical 

situations. 

Key Words: NIR Spectroscopy, Dry matter, Maturity Estimation, Maturity meter, Classification    
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CHAPTER 1: INTRODUCTION 

1.1  Motivation 

Pakistan produces approximately 1.8 million tons of mango (Mangifera indica L.)  fruit 

per year, equivalent to about 8.5 percent of the world’s total mango production.  Indeed, Pakistan 

is the fourth largest mango producer of the world. In years 2012-13 Pakistan exported 103,487 

tons of mangos, decreasing to around 65,000 tons in 2014-15. In 2014, Ministry of National Food 

Security and Research received warning from European Union for imposing ban on export of 

mango fruit due to poor quality mango fruit. The ministry then restricted the fruit export and only 

allowed registered user to export mango fruit that passed certain criteria. This helped to increase 

the export to approximately 84,000 tons in 2015-16 and more than 140,000 tons in this year. With 

this scale of activity in export markets comes a need to forward predict harvest volumes, to better 

co-ordinate harvest and market logistics. Harvest timing for mangos is critical, with longer time 

on tree giving more carbohydrate accumulation and better eating quality, but at the expense of 

post-harvest life which is critical for long distance export markets. Harvest timing and load 

information is also critical to farm management (of labor and packing consumables).  Another 

important factor is the time duration of harvest, which occurs within a few short weeks, at the 

height of summer. Further, the sap that spurts from a harvested mango is acidic and damaging to 

skin. These factors drive the need for automation of testing of fruit quality. Harvest time is very 

important for mango fruit quality, early harvest brings poor eating quality fruit to the market, while 

late harvest will bring over ripen fruit to the market. Standard optical tools are available in the 

precision agriculture domain that are used to quantify fruit quality, age and health by measuring 

dry matter content, chlorophyll, soluble solid contents, starch, and sugar levels. However, these 

tools are expensive and lack a decision support system that predicts fruit harvest time. 

Fruits are wellspring of nutrients, cancer prevention agents, polyphenols, and minerals, 

which have direct advantageous consequences for human wellbeing. It is significant to understand 

maturity-related biochemical, physiological, and structural processes to produce high-quality and 

healthy fruits. Such improved fruits ought to taste better and be outwardly appealing, however they 

should likewise contain bioactive compounds advantageous for consumers. The visual 

presentation of fresh fruits is one of the principal factors assessing the quality by a buyer whether 

he is a distributor, supplier, or consumer. Fruits are extremely perishable, with about 20%-40% of 
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fruits being wasted before they reach the customer. Roughly 2% are utilized for testing and 

production, while more than 25% is wasted on bad management and storage. [1]. Regularly, the 

fruit’s appearance is the most basic factor in the underlying purchase (despite cost) whereas the 

subsequent purchases may be progressively more associated with taste and texture. [2]. 

1.2 Fruit Maturity Estimation Parameters 

Mango (Mangifera indica L.) is one of the highly consumed fruits world-wide and is 

known as the ‘King of Fruits’. Its taste and quality cannot be assured by proper cultivation practices 

only, but also by deciding its optimal harvest time [3]. Estimation of mango fruit maturity on-tree 

is essential for the prediction of harvest time. During maturation on the tree, mango fruit 

accumulates starch. This starch is converted into soluble sugars during ripening, whether the fruit 

is on or off the tree. 

Fresh fruit is often manually harvested. The picker is responsible for determining if the 

fruit is sufficiently ripe. Storage life and quality of perishable fruits is highly dependent on the 

maturity stage at which it is harvested, which can affect the way they are cared for, marketed and 

transported [4]. Many fruits are differentiated from vegetables by a qualitative difference in the 

relationship between maturity and edibility. The eating quality of many fruits, such as mature (but 

green) bananas [5], will be much lower than optimal at maturity. Only after sufficient ripening has 

taken place does the fruit become edible. In comparison, optimal maturity correlates with optimal 

eating efficiency for most vegetables. 

1.2.1  Maturity Indices 

To identify whether a specific sample of fruit is mature, different measurements as maturity 

indices can be used.  These indicators are important for selling fresh vegetables and fruits for many 

reasons.  

Trade regulations: A declaration of the minimum (and sometimes maximum) maturity 

appropriate for a given product is often included in the regulations published by the state 

departments of agriculture. 

Marketing strategy: The laws of supply and demand in most markets establish price 

incentives for the earliest (or even the latest) shipments of specific goods. This allows farmers and 

shippers to speed up or postpone harvesting their crops to take advantage of premium rates. In 
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order to avoid the selling of immature or overmatured goods and the consequent loss of consumer 

trust, the minimum maturity statements in the grade requirements exist. Objective maturity indices 

allow growers to know if when the demand is buoyant, their product can be harvested. 

Efficient use of labor resources: For many crops, the need for labor and harvesting and 

handling equipment is seasonal. Growers need to forecast the expected start and completion dates 

for each commodity's harvest in order to schedule operations effectively. For accurate prediction 

of harvest dates, objective maturity indices are important. 

1.2.2  Maturity Index Characteristics  

Producers, exporters, and reseller requires maturity measures to be straightforward, 

promptly performed in the field or orchard, and requires generally cheap equipment keeping 

maturity index nondestructive. 

There will be two very distinct concerns discussed here. The first issue is how maturity can 

be assessed at the harvest or at a subsequent checkpoint. How to predict the time at which a fruit 

will mature is the second and more complex problem. Similar methods may be ideal for both 

problems, but the ways in which they are implemented vary.  

1.2.3 Maturity Index Development  

Acceptable maturity estimation has used number of different fruits’ features. Table 1 

provides examples of those that have been suggested or that are in use. Table 2 summarizes the 

broad variety of methods that have been designed to quantify these attributes. During Maturity 

index development, following strategies can be adopted: 

• Identify the changes in the fruit during its development.  

• Identify the features (firmness, color, size, etc.) whose changes associated with the 

development stages of the commodity.  

• Using taste panels and storage trials to decide the value (or level) of the maturity index that 

defines minimum acceptable maturity.  

• Assign an index value to the minimum appropriate maturity when the relationship between 

changes in the quantity of the maturity index and the product's quality and storage life has 

been identified. 
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• Ensure that the index value consistently reflects the quality of the harvested product, test it 

over a few years and in a few growing areas. 

1.2.4 Features used as Maturity Indices  

1.2.4.1 Chronological features 

Maturity may be described chronologically as days from plantation or as days from 

flowering in certain crops. Chronologic indexes are widely used for planning plantation, but they 

are barely ideal. The chronological method is refined for certain crops by measuring heat units that 

modulate the chronological index in accordance with the weather conditions of the growing season 

obtained during the growing period [6]. A variable whose changes during the creation of the 

product can be mathematically modeled to reveal a trend or pattern of change is a basic requirement 

for prediction. Once the measurement pattern is established, measurements taken at the early stage 

of the season can be compared with the pattern so that the minimum acceptable maturity of the 

commodity should be predicted. There are several requirements for the selection of the fruit to be 

harvested, [7] such as fruit size, dry matter, heat sum from blossom, exterior shape and colour and 

internal flesh colour. 

1.2.4.2 Physical features 

To test the maturity of different commodities, a wide variety of physical features are used.  

1.2.4.2.1 Shape, skin, and size characteristics 

Changes in fruit and vegetables' shape, skin and size characteristics are also used as 

maturity indices [7]. When vegetables, for example, exceed a marketable size and become too 

large, they are harvested in particular. In bananas, fingers’ diameter is measured in order to 

evaluate its maturity [5], whereas, surface gloss or waxiness changes are used as a handy method 

for harvesting few melons, such as hybrid honeydew [8]. 

Table 1: Different Indices of maturity of the selected fruit 

Fruit Indices of maturity 

Apple, Pear 
Elapsed days from full bloom to harvest, Size, Firmness, External color, 

Starch content, Sugar content, Internal ethylene concentration 
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Mango Shape, Pulp color, External color, Dry Matter, Sugar content, Firmness 

Grape Sugar Content, Surface morphology and structure 

Avocado Oil Content 

Citrus fruit Juice content, Acid content, sugar/acid ratio 

Kiwifruit Acid content, sugar/acid ratio 

Pomegranate Acid content, sugar/acid ratio 

Melon Acid content, sugar/acid ratio, Development of abscission layer, Shape 

Date, Persimmon Astringency (tannin content) 

Cherries Specific gravity 

1.2.4.2.2 Abscission 

On the pedicel, which bonds the fruit with the plant, a specific band of cells, the abscission 

zone [9] develops in many fruit during the later maturation and the beginning of maturation. The 

zone of abscission allows to separate the fruit from the plant. This zone (separation level) is 

possibly the oldest of all maturity indicators to measure progress. The force of abscission (force 

needed to pull fruit from the tree) is generally not a formal maturity index, but is used to assess 

maturity by the evolution of the abscess zone or slip in netted hybrid muskmelons [8]. 

1.2.4.2.3 Color 

A widely used maturity indicator is the color transition following ripening of several fruits. 

Expensive equipment are required for objective color analysis (Fig. 1) and even though the human 

eye cannot provide a reasonable one-color assessment, it is highly sensitive to color variations. 

Thus, techniques of color comparison are commonly used for fruit ripeness evaluation [10]. To 

assess external or internal color, color swatches can be used. Precise devices using cutting-edge 

electronics and optics now require objective color measurements. Since the price of such devices 

has dropped, comparison techniques have often been replaced. In the mechanically harvested 

production of tomatoes, for example, automated color analysis is being used [9]. 
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Figure 1: Colorimeter used to measure surface color of apples 

           

Figure 2: UC firmness tester 

  

 

Figure 3: Measuring soluble solid content with refractometer 
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1.2.4.2.4 Texture 

Fruits are often matured with softening; fibrous or hardy are often over ripe vegetables. For 

maturity determination [11], these textural characteristics can be used. They are measured using 

instruments that calculate the force required to shoot the sample through the flesh of the fruit or 

vegetable with a known diameter (Fig. 2). The authors [12] note that through the stages of 

senescence, growth and maturation, the textural properties of fruits and vegetables can be 

determined by the biochemical, physiological, and structural characteristics of the living cells and 

their changes over time. To test the textural properties of fruits and vegetables, destructive 

instrumental techniques were used [13], [14]. 

1.2.4.2.5 Chemical changes 

Fruit and vegetable maturation is often accompanied by drastic changes in its chemical 

composition. In maturity studies, many of these changes were utilized, but relatively few provided 

satisfactory maturity indicators as complex chemical analysis and destructive sampling typically 

are needed. A change in total soluble solids, calculated by refractometer (Fig. 3), a change in starch 

distribution of the product in flesh by calculating the reaction of starch-iodine is the chemical 

changes used for the measurement of maturity and is based on the titration of acidity and sugar-

acid ratio, which are used in the legal maturity index of citrus. Avocados' oil contents calculation, 

which was superseded by the determination of dry weight percentage due to the time-consuming 

and complexity in determination of oil, show the unsatisfactory existence of the testing for 

maturity. 

A fascinating method has been developed by French scientists to evaluate the maturity and 

quality of harvested melons. They extract slender fleshy cylinders from each melon and assess 

quickly their sugar content by calculating the juice refractive index [15]. The exterior of the 

cylinder is removed and on the basis of sugar reading, the melon may be accepted or refused. 

The development of near-infrared (NIR) techniques to investigate fruit and vegetables 

composition and of rapid sensor technology in order to determine volatile profiles in harvested 

products is examples of new opportunities in chemical analysis [16]. The former will evaluate SSC 

and DM in commodities in a non-destructive manner, and the latter will assess the in-field melon 

maturity rapidly. For example, researchers used NIR procedures to measure SSC in peaches 
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accurately [17]. The volatile aromas production increases dramatically as the melons mature. To 

make this rise in production an indicator of harvest readiness in melons, Allwood et al. [18] has 

developed an instrument.  

1.2.4.2.6 Physiological changes 

 As calculated by changing patterns of respiration and ethylene production, the maturation 

of commodities is correlated with changes in their physiology. The problem with the use of these 

characteristics in maturity evaluation is the inconsistency between similar individuals of the same 

commodity in absolute rates of ethylene development and respiration. The approaches are often 

difficult and costly to execute on a commercial scale. Nonetheless the ethylene output rate of a 

sample of apples is used by some manufacturers to assess the maturity of the apples [19], and is 

used in particular to classify those appropriate for long-term managed atmospheric storage. 

1.2.5 Predicting maturity  

It is more difficult to predict when a product will mature than to determine its maturity at 

or after harvest. A measurement hose shift during the production of the product can be 

mathematically modelled to display a trend or patterns of change is the fundamental prerequisite 

for prediction. Once the pattern of change for the measurement is established, measurements made 

early in the season can be compared with the pattern in order to predict the date on which the 

minimum appropriate maturity should be reached for the product [2]. 

The dry matter (DM) is considered as the most critical parameter in deciding fruit maturity, 

and post-harvest quality [20]. At maturity, most mango varieties are green, but external colour and 

firmness alone are not sufficient to suggest maturity. According to recent studies, DM content is a 

valid index for mango maturity classification, the DM percentage rises at a rate of 0.72 percent 

DM/week during maturity. In large and mature fruits, most of its weight is contributed by its pulp 

(pulp is 60% - 70% of total DM of mango fruit) [3]. This makes DM of pulp a strong maturity 

indicator for mango maturity classification. 
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1.3 Techniques of Maturity Estimation 

1.3.1 Destructive techniques  

It is possible to determine texture / firmness by determining the force needed to compress, 

penetrate, shear, or deform the product. The compression method measures the force required to 

compress a commodity a few millimeters. A Magness-Taylor firmness meter or other similar 

instruments [21] measure the force required for small diameter probe to penetrate a commodity a 

given distance. A cell such as the Kramer shear cell is used to measure the force required to shear 

a product. 

Sensory attributes which include taste, flavor or smell are difficult to determine objectively 

because of the poor understanding of how chemical components and their interactions affects these 

attributes. Sweetness is based on soluble solids or the brix content using a refractometer [22] and 

sourness is based on the standard base amount required to titrate juice of a sample to a given pH. 

However, because sourness and sweetness mask each other, in several products, the sourness and 

sweetness intensity are reliant on the sugar to acid ratio, or on the total content of sugars or acid in 

other products such as the tomatoes [23]. Distinctive aroma of the commodity is due to volatile 

compounds and in combination with taste sensation i.e. sweetness, sourness and bitterness, these 

compounds form the characteristic flavor of the commodity. Volatile compounds can be measured 

by a gas chromatograph combined with a mass spectra detector. In grapes, as many as 225 volatile 

components were separated with the gas chromatograph / mass spectrometer [24]. 

1.3.2 Non-Destructive techniques  

With the advancement of electronics technology, nondestructive methods are being 

developed to measure quality. To calculate quality attributes, these methods use techniques such 

as optical, electrical, vibrational, gas analysis and  nuclear magnetic resonant [21]. Optical 

characteristics can be calculated by diffuse reflectance, light transmittance, light reflectance and 

method of delayed light emission. It is currently used commercially to automatically sort oranges, 

apples, lemons and tomatoes for color, shape, and limited defects [25]. The method diffuse 

reflectance estimate the light reflected beneath the fruit skin. Upon illumination, light penetrates a 

few millimeters into the surface tissue, where a small portion of the energy is reflected. Fiber optics 

are used for these measurements and many of the measurements are now made in the near infrared 
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(NIR) region. The delayed light emission method measures the energy reradiated by a sample 

when illuminated briefly [26]. The reradiated energy is in the nanowatt range and persists only for 

3 to 5 seconds. Several factors such as wavelength and intensity of excitation, dark exposure prior 

to excitation, temperature and chlorophyll content affect the reradiated energy. Chlorophyll 

pigment is the main source of reradiated energy. 

In the past fifty years, the fruit maturity has been measured in a non-destructive method 

with the light transmittance techniques evolution. From that day forward, numerous non-

destructive techniques have been developed including visible imaging [25], colorimetry [26], 

VNIR spectroscopy [27], Computed Tomography (CT) scan [28], hyperspectral imaging [29], 

fluorescence imaging [30], multispectral imaging [31], acoustic impulse technique [32], Magnetic 

resonance imaging (MRI) [33], the electronic nose technique [34] and the acoustical vibration 

technique [35]. For estimation of maturity indices, these techniques has been applied by a number 

of researchers, as illustrated in Table 2. 

1.3.2.1 Color Measurement 

As the initial quality valuation, consumers use color and appearance of a fruit to critic the 

fruits acceptability. During fruits ripening, these criteria are identified with chemical and physical 

changes in a fruit [36], [37]. Chlorophyll degradation as well as increase in pigments’ 

concentration, are responsible for color change during ripeness of many fruits. For the relationship 

between color and maturity, few fruits have been studied including blueberries [38], cherries [38], 

guavas [39], mangoes [40], [41], nectarines [10], oranges [42], peaches [43], [44], pineapple [45], 

and tomatoes [46].  

1.3.2.1.1 Colorimeter 

In the fruit industry, fruit color is measure by using traditional non-destructive instruments 

such as colorimeters [46]. Colorimeters use CIELAB color space, which has better precision than 

visual appraisal of humans and gives unified estimations. CIELAB have three coordinates, a*, b*, 

and L*, which represents, values of green to red, blue to yellow ratios and lightness, 

correspondingly. Because of the uniform color distribution, CIELAB is nearby human color acuity, 

moreover, on its three-color coordinates, all the colors can be located that can be seen by human 

eye [95]. As the indicator of ripeness of fruits, few color indices have been developed. 
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Table 2: Summary of techniques used for non-destructively fruit maturity estimation 

Techniques Maturity Indices Fruits 

Colorimetry  Color Apple [47], Peach [48], Nectarine [43], Mango [10], Banana [49] 

Visible Imaging Color Apple [50], Banana [49], Pineapple [45] 

Spectroscopy 

Color Peach [48], Mango [10], Strawberry [51] 

Firmness 
Apple [52], Pear [53], Peach [54], Nectarine [55], Mango [56], 

Mandarin [57], Strawberry [51], Apricot [58], Kiwifruit [59] 

SSC 

Apple [60], Pear [61], Nectarine [55], Mango [62], Banana [63], 

Melon [64], Mandarin [65], Strawberry [66], Apricot [58], 

Kiwifruit [67], Persimmon [68], Grape [69], Pineapple [70], 

Dry Matter 
Avocado [71], Mango [62], Mandarin [72], Kiwifruit [73], 

Pineapple [74] 

Chlorophyll Apple [75], Peach [76], Banana [77] 

Starch Mango [78], Kiwifruit [67], 

Titratable Acidity Mandarin [79], Strawberry [66], Apricot [58] 

Fluorescence 

Firmness Apple [80], Peach [81], Nectarine [81], 

SSC Apple [80], 

Chlorophyll Apple [82], Grape [83] 

Hyperspectral Imaging 

Firmness 
Apple [84], Peach [85], Mango [29], Banana [5], Strawberry [32], 

Persimmon [86] 

SSC 
Apple [87], Pear [88], Mango [29], Banana [5], Grape [89], 

Strawberry [90], 

Dry Matter Avocado [91] 

Titratable Acidity Strawberry [90], Grape [89] 

Multispectral Imaging 
Firmness Apple [92], Peach [31], Strawberry [93] 

SSC Apple [94], Peach, Strawberry [93] 

 

In specific experiments, color change in fruits is correlated with only the a* value [39], [96], while 

it is reported that B* ripeness in peaches is correlated with b* value only [97]. To improves the 

evaluation of ripeness, more than one of the color components must be used. For tomatoes [98] 

and citrus [48], L* value along with a* and b* was correlated with the color models.  Commercially 

available portable [41] colorimeters can be used in the field. Nevertheless, single fruit calculation 

is limited in its application to map the fruit ripeness in the entire region. 

1.3.2.1.2 Visible Imaging 

The sampling area of the colorimeters is limited as compared to the size of fruit, due to 

which they are not enough capable to get illustrative color values [99]. 2D color imaging can 

overcome this constraint by converting photons to electrical signals, which are reflected from fruit 

skin and then captured by a camera having CMOS or CCD sensors, in it. Usually, light is received 
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by a sensor and then convert it to three channels, B (blue), R (red), and G (green). Whereas, 

illumination, internal characteristics of the camera and fruit samples are used to determined 

intensity values [100]. 

It is conceivable to break down fruit ripeness in RGB color space, because of its similarity 

with L*a*b* color space. According to Schouten et al., R values can be used at different stages of 

ripeness to explain the progressive color shift of tomatoes, and shifts in fruit firmness are often 

associated with R values [101]. Due to the constantly evolving ripeness phase, it is difficult to 

define the exact color boundaries between different ripeness stages, otherwise arbitrary thresholds 

must be given for each color channel. Klir and Yaun [102] reviewed and implemented fuzzy logic, 

which is a statistical analysis approach, on the ripeness evaluation of apples and mangoes [50], 

[103], to overcome the need for discrete thresholds. Whereas, by using the difference between B 

and R values, Goel et al. [104] achieved a precision of 94.3 percent in order to improve the 

classification of the different ripeness stages of tomatoes. 

1.3.2.2 Spectral Imaging 

1.3.2.2.1 Hyperspectral Imaging 

To obtain both spectral and spatial information of samples competently, the principles of 

computer vision and spectroscopy can be combined in the form of Hyperspectral Imaging (HI) 

[105], [106]. The spectroscopy shows plentiful spectral information while the imaging delivers 

rich spatial data. The spectral data acquired from each pixel sampling attributes on requisite pixel 

and spatial region. There are two types of wavelength scattering devices for the image acquisition 

of HSI, that are normally used for fruit quality assessment such as area scanning, and line scanning 

coupled with image sensor. Hyperspectral imaging can be implemented by using fluorescence, 

reflectance, scattering or transmittance modes [107].  

For the far-reaching analysis of food safety and quality, HSI has been recognized as an 

incredible technique [108]. Most as of late, Hyperspectral imaging was misused by applying Partial 

Least Square Regression (PLSR) approach in 450-998 nm spectral region to identify the mangoes’ 

quality attributes such as titratable acidity (TA), firmness, and total soluble solids (TSS). RMSE, 

R2 and bias have been analyzed to test the prediction models’ performance. A model with low 

RMSE and bias while high R2 values, is considered as best model. The best prediction model 
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achieved R2 of 0.81, RMSEV of 2.85N and bias of 0.20N for firmness, whereas, for TA, R2 of 

0.81, RMSE of 0.24%, and bias of -0.00% were recorded. Whereas, for TSS shows low prediction 

performance with R2 of 0.5, RMSEV of 2.0%, and bias of -0.0% [109]. Correspondingly, phenolic 

content in grapes, was analyzed with Support vector regression (SVR), PLSR, and principal 

component regression models, in the spectral range 865 – 1711 nm to confirm the ripeness of 

grapes. SVR model is the one who displayed the best performance except for tannins content 

analysis. For skin sample of grapes, SVR model attained R2 of 0.8960, RMSE of 0.1069 g/L for 

tannins, R2 of 0.8789, RMSE of 0.1442 g/L glucoside for anthocyanins, and for total iron-reactive 

phenolics (TIRP), achieved R2 of 0.9065, RMSE of 0.1776 g/L, although for seeds, RMSE and R2 

were 0.5190 g/L and 0.8790 for TIRP, whereas, 0.2401 g/L and 0.9243 for tannins, 

correspondingly [110].  

1.3.2.2.2 Multispectral Imaging 

As a form of HSI, multispectral imaging is a technique that, instead of scanning whole 

wavelength range, it only gathers data at explicit wavelengths. MSI scanning system uses CMOS 

or CCD sensors, coupled with Liquid Crystal Tunable Filter (LCTF). Based on preceding papers, 

Lu et al. [92] used ANN model to correlate the scattering profiles of five wavelengths, with the 

SSC and firmness of apples. For both quality traits, they attained a reasonably high correlation; R2 

= 0.77 and 0.87, correspondingly [92]. Instead of LCTF, a rotating filter wheel including some 

band pass filter, while having lower tuning speed than LCTF, is used by another low-cost MSI 

system. To predict the SSC and firmness of peaches, the above-mentioned device has been used, 

with the best combination of four wavelengths, and achieve high correlation coefficients; 0.97 and 

0.94, correspondingly [85]. The prediction by HSI was lower than the prediction for firmness [85]. 

Likewise, Liu et al., predict TSS and firmness of strawberries by using MSI with nineteen 

wavelengths. The best R values 0.83 and 0.94 were equated with ANN, PLS and SVM, 

correspondingly [111], with which HSI can be compared for prediction of TSS of strawberries 

[90]. 

For in-field measurements, MSI is one of the most favorable techniques that are mentioned 

above, for instance, it can be used to record high resolution images for the prediction of specific 

quality attributes, at most significant wavelengths. MSI imaging is low-cost and easy to convert 

into handheld devices, with a smaller output imaging dataset compared to HSI. A portable MSI 



 

25 
 

device has been developed, having four different wavelength sensors at 870, 750, 670 and 570 nm, 

along with four narrow-band light sources [112]. This device has achieved correct classification 

rate greater than 85% by using linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA), to classify different stages of oil palm ripeness with Mahalanobis distance 

classifiers [113]. 

1.3.2.3 Visible and Infrared Spectroscopy 

Light can be absorbed, reflected, or dispersed when it reaches the skin of the fruit. They 

depend on their chemical and physical properties and consequently on the  fruit maturity. The 

reflected light measured by VNIR reflectance spectroscopy, is ranging from 380 nm to 2500 nm, 

which depends on fruit’s light absorption and can be used to evaluate mostly organic compounds. 

VNIR spectroscopy, as a non- destructive rapid evaluation technique, has been utilized for 

estimation of several maturity indices [65]. The fruits NIR absorption spectrum is not conclusive, 

so it is challenging to choose the best wavelength associated with a particular maturity index. In 

order to solve this problem, multiple regression technique is applied on a spectrum pre-treated with 

first or second derivative. The wavelengths are not generally absorbed by the interest portion. 

As like colorimeter method [114], change in concentration of peel pigment can also be 

describe by spectral indices, nevertheless ripeness is not only be estimated by peel color. In VNIR 

spectroscopy, PLSR model has been widely used for fruit maturity prediction. An orthogonal 

factor set is extracted from latent variable, having the best predictive power, in order to achieve 

prediction. Similarly, as the second most regression model used for fruit maturity estimation, 

Principal Component Regression (PCR) correlates the quality parameters with the scores of 

principal components extracted from the latent variables [115]–[117]. In contrast with PLSR, PCR 

has a drawback of collecting the principal components without considering the dependent 

variables. 

In spectroscopic methods, the correlation for SSC prediction, is always higher than of the 

firmness of fruits. The prediction of SSC was easier than firmness, showed by Park et al. [118], 

because firmness was not identified by a single analyte. For the single fruit cultivar, the correlation 

of calibration model trained for both DM and SSC prediction, is higher than the use of mixed fruit 

cultivars, because the efficiency of the model is always cultivar dependent. Spectroscopic methods, 
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as compared to visible imaging and colorimeter, employ longer wavelengths, but like colorimeter, 

they cannot be employed as high-throughput tools for ripening estimation because of low spatial 

resolution. The sample temperature predisposed the internal quality measurement accuracy, which 

needs an extra calibration model to compensate it [119]. In the quality assessment of a large fruit 

variety, spectroscopy was used and portable commercial spectrometers were developed [52], 

[120], but research studies mostly concentrated on the indoor, and post-harvest fruit quality 

estimation. There have been erroneous performances with the models established with on-tree and 

indoor spectroscopy. For both  firmness and SSC prediction, on-tree PLS model showed the best 

correlation as compared to indoor spectroscopy [121]. Though, indoor spectroscop post-harvest 

model for nectarines showed best results than that of on-tree [122]. Consequently, a statistical 

model for the on-tree maturity evaluation of in-field spectroscopy should be established and 

environmental variables for spectral efficiency examined. 

1.4 Chemometrics 

Fruit maturity indices are generally measured by using spectroscopy in the Vis-NIR region 

because spectra in this range contains abundant information about C-H, N-H and O-H, vibration 

absorptions [123]. In this region, however, the spectrum is effectively regulated by water, as it 

highly absorbs NIR radiations [124]. In addition, there is a low signal-to-noise ratio (SNR) and 

high overlap of combination bands in the Vis-NIR range, complex fruit structure, instrumental 

noise and scattering of wavelength-dependent light. These all factors cause Vis-NIR spectrum 

convolution. Chemometrics are then applied to derive information from the spectral data 

concerning those quality attributes [125]. 

1.4.1 Pre-Processing Techniques 

1.4.1.1 Smoothing 

Smoothing is an efficient way to eliminate a spectrum of high-frequency noise and 

increase the SNR. Via the "averaging" or "fitting" of multiple points in a window, the basic 

concept is to obtain an optimum estimated value. The wider the frame, the smaller the spectral 

resolution. Therefore it is necessary to correctly select the window width. Sun et al. [126] showed 

that the most feasible pre-treatment approach for SSC prediction of navel oranges was moving 

average smoothing, and Roger and Bellon-Maurel [127] applied NIR spectra pre-treated by using 
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moving average smoothing for measuring SSC in cherry fruit. Though, in conjunction with other 

types of pre-treatment, such as Multiplicative Scatter Correction (MSC), smoothing is typically 

used. Liu and Zhou [128] reported that for predicting SSC in apples, the application of smoothing 

technique along with MSC and 1st derivative, was feasible to process NIR spectra in 

transmittance mode. 

1.4.1.2 Standard Normal Variate (SNV) 

The purpose of SNV, essentially the same as MSC, is to remove the deviations induced by 

scattering and particle size [129]. The strategy assumes that some unique distribution suits the 

absorption of each wavelength point in the spectrum, such as a Gaussian distribution. Each 

spectrum is calibrated based on this hypothesis. Firstly, the average value of a spectrum is 

subtracted from the original spectrum and then the effect is divided by the standard deviation (SD). 

For SNV effects on each spectrum alone the correction potential of SNV is typically larger than 

that of MSC. After SNV pre-treatment in the model developed by Shi et al, the relative standard 

deviation of prediction (RSDP) was reduced from 16.65 percent to 14.82 percent [130] to assess 

the apples' firmness. 

1.4.1.3 Derivative Correction 

The 1st and 2nd derivatives are implemented as a normally used pretreatment method to 

prevent scattering and drifting. Both derivatives can reduce intrusion in the background, 

differentiate superimposed peaks and increase spectral resolution and sensitivity. Direct finite 

difference and Savitzky-Golay (S-G) derivatives are two commonly used spectral derivative 

approaches. Smoothing should be applied prior to derivatization, as derivatives can extract 

differences from adjacent wavelength points and amplify spectral noise. Pissard et al. [123] proved 

that the best pretreatment technique was S-G 1st derivative processing, whereas Liu et al. [131] 

stated that the best was the 2nd derivative. 

1.4.2  Discriminant Methods 

1.4.2.1  Principal Component Analysis (PCA) 

A number of principal components (PCs) are obtained with the implementation of the PCA. 

The first PC includes the highest percentage of variance in data and in the subsequent PCs, the 
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variance decreases. These PCs are linear combinations, but not correlated with each other, of the 

original spectral data, endowing their ability to handle multicollinearity. In conjunction with other 

discriminating approaches, PCA is also used [132]. 

1.4.3 Calibration Methods 

1.4.3.1 Multiple Linear Regressions (MLR) 

MLR, at each wavelength level, predicts the dependent variables through spectral values’ 

linear combination. In the minimal square sense, the error between calculated and predicted 

values is minimized. Multicollinearity between the variables degrades the performance of MLR 

algorithms in spectral analysis. ElMasry et al. [90] and Peiris et al. [133] have used MLR 

successfully. However, Jaiswal et al. [63] documented a large gap between Rc and Rp in the MLR 

model they created, indicating unstable predictions. 

1.4.3.2 Partial Least Squares Regression (PLS)  

PLS regression predicts the dependent variables by extracting from the variables the 

smallest possible number of orthogonal factors with the greatest predictive capabilities. These 

orthogonal variables were grouped according to the value of the dependent variables to be 

predicted, called latent variables (LVs). PLS regression is particularly feasible in situations where 

there is multicollinearity between the variables and has usually less LVs than PCR regression, 

synthesizing the PCA background and MLR. Lu et al. [134] and Liu et al. [58] have been confirmed 

the PCA gain. Several researchers including Bureau et al. [135] and Shan et al. [136], have 

implemented PLS regression in their studies. 

1.4.3.3 Least Squares Support Vector Machine (LS-SVM) 

LS-SVM is an emerging statistical learning algorithm which enhances the generalization 

capacity of the learning machine based on the principle of structural risk minimization [137]. The 

input data dimension is not directly dependent on the support vector machine's computational 

complexity and performance. Thus, LS-SVM is extensively implemented in feature regression and 

pattern recognition for the benefit of feature regression, minimal over-fitting, strong generalization 

performance, high predictive reliability. For limited sample space modelling conditions, the LS-
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SVM is especially feasible. In the studies of Zhang et al. [138], Suykens and Vanderwalle [139], 

Liu et al. [140], and Pissard et al. [128], as best calibration model, LS-SVM has been applied. 

1.4.3.4 Artificial Neural Network (ANN) 

ANN, in NIR Spectroscopy, has been extensively implemented. Three neuron layers, 

which are the input layer, the hidden layer, and the output layer, are typically composed of an ANN 

model. Each neuron in the previous layer is connected to each neuron in the latter layer and there 

is a weight factor for each connecting line, the value of which is calculated using cross-validation 

based on a calibration set and continues to adjust with the flow of new information. The value of 

the neurons in the hidden layer is determined by means of a nonlinear equation using the weighted 

sum of the neuron values in the input layer, and the value output layer’s neurons is similarly 

calculated using the hidden layer’s neuron values. ANN model’s predictive performance, in some 

cases, may be excellent, but it also has few drawbacks including visualization difficulty, slow 

training speed, and over-fitting. ANN shown best results according to the experiments of Zhang et 

al. [141], He et al. [94] and Liu et al. [142]. These all calibration techniques have been used in this 

study. 

1.4.4 Classification 

The classification consists of predicting the particular outcome on the basis of the input 

given. Construction of classification models from input data is a systematic approach [143]. Two 

stages are involved in the process i.e. learning stage and classification stage. In the learning 

process, the unknown results are generated by training data analyzed by the classification 

algorithm. To estimate the accuracy of classification, test data is used. The input to generate the 

prediction is evaluated by this algorithm. In fruit maturity and variety classification, various 

classification techniques are used. 

1.4.4.1 Linear Discriminant Analysis (LDA) 

LDA, also referred to as Fisher's LDA (FLDA) after its founder's name, uses hyperplanes 

to distinguish the data classes represented in more than one dimension [58],[59]. The hyperplane 

distinguishing two classes of data vectors with LDA.  
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LDA assumes the data is normally distributed and all groups have equal covariance. The 

hyperplane separating the classes is obtained in such a way that the projection of information onto 

the plane minimizes the variance within the class and maximizes the variance between classes. If 

the number of classes exceeds two, more than one hyperplane (N>2) will be used for class 

separation. The "one verse rest" method is used for this approach by separating one class from all 

others for multi-class problems. LDA is a robust classifier with very low computational 

complexity. A regularized Fisher's LDA (RFLDA) has been proposed by Blankertz et al. to 

improve classification accuracy and error reduction. This model contains a regularization 

parameter C that makes or penalizes a training dataset classification error. If outliers are present 

in the data and demonstrate better generalization capabilities [60], the regularized qualified 

classifier shows better results.  

1.4.4.2 Support Vector Machine (SVM) 

In order to classify the groups, Linear-SVM often constructs a discriminating plane, but 

the hyperplane is chosen such that the margin with the nearest data point is maximized. This 

margin maximization increases the classifier's generalization capacity [59]. The hyperplane 

separating the two types of data vectors with SVM. 

1.4.4.3 K-Nearest Neighbours (KNN) 

The method of assigning the feature vector (unseen data point) to a dominant class among 

its 'k nearest neighbours within the training set is used by the K-NN classifier. The method of 

measuring metric distance for the determination of the nearest neighbours is used for fruit maturity 

and variety classification. A higher value of k' with appropriate K-NN training samples is capable 

of generating a non-linear classification decision boundary. The classification based on neighbours 

is a type of lazy learning as it does not attempt to create a general internal model, but merely stores 

instances of training data. Classification is determined from the k closest neighbours of each point 

by a clear majority vote. This algorithm is easy to implement, resilient to noisy training 

information, and efficient if there is a large amount of training data. The value of K needs to be 

calculated and the cost of computation is high as the distance of each instance to all training 

samples needs to be computed. 
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1.4.4.4 Ensemble Classifier 

Ensemble approaches use many learning algorithms in statistics and machine learning to 

achieve better predictive efficiency than could be achieved from any of the constituent learning 

algorithms alone [144]. A machine learning ensemble consists of only a concrete, finite set of 

alternative models, unlike a statistical ensemble in statistical mechanics, which is normally infinite, 

but generally allows for a much more versatile structure to exist among those alternatives [145]. 

As it can be trained and then used to make predictions, an ensemble is itself a supervised 

learning algorithm. Therefore the qualified ensemble reflects a single hypothesis. However, this 

hypothesis is not inherently included within the hypothesis space of the models from which it is 

constructed. Thus, in the roles they can represent, ensembles can be seen to have more versatility. 

In theory, this versatility can allow them to over-fit the training data more than a single model 

would, but in practice, some ensemble techniques (particularly bagging) tend to reduce issues 

related to over-fitting the training data.  

1.4.4.5 Decision Tree Classifier 

In several different application contexts, including energy-based applications, decision tree 

classifiers have a readable classification model that is theoretically accurate. By constructing a 

decision tree, the decision tree classifier constructs the classification model. Each node in the tree 

defines a test for an attribute, and each branch descending from that node corresponds to one of 

the attribute's possible values [146]. Each leaf reflects instance-related class labels. Instances in 

the training set are graded according to the results of the tests along the route, by navigating them 

from the root of the tree down to a leaf. Starting from the root node of the tree, according to an 

attribute test condition, each node splits the instance space into two or more sub-spaces. Then a 

new node is generated by moving down a tree branch corresponding to the attribute value. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Estimation of Fruit Maturity 

The physiological maturity of the fruits usually occurs before its harvest maturity. The 

commercial maturity of the fruits is the stage at which the fruit is consumed by the consumer. Fruit 

maturity is typically estimated using multiple indices such as TA, DM, SSC, chlorophyll, colour, 

and firmness. NIRS has been used for assessing the maturity indexes of various fruits, including 

peach, strawberries, plum, melon, apple, etc., in recent studies as one of the most sophisticated 

techniques. Some of the new research, against Mango fruits, have been discussed below.  

The DM of the mango fruit is determined by carbohydrate content, such as soluble sugar 

and fruit starch. Thus, DM is an important measure of the amount of fruit starch and sugar [147]. 

DM content is also well correlated to oBrix of fully ripened fruit in which all starch has been 

converted to sugar [148]. In addition, the fruit's DM is usually stable after harvest until fully ripe 

and has correlation greater than 80% with Brix, in case of mango fruit [149]. Consequently, fruit 

DM at harvest (the amount of starch and sugar in the fruit) is therefore an index of the oBrix of 

ripped mango and its eating quality, as suggested by Subedi et al. [150].  Earlier harvesting exploits 

the storage and transport time. Moreover, the best DM percentage at harvest varies for different 

varieties and regions. In [151] authors, observed fruit harvest maturity indicators for Pakistani 

export mango varieties i.e. Samar Bahisht (SB) Chaunsa, White Chaunsa and Sindhri [151]. It is 

reported that significant interaction was found between panicle emergence and harvest maturity 

regarding fruit pulp DM contents in investigated cultivars. SB Chaunsa takes mean 114 days from 

fruit setting to reach physiological maturity with mean cumulative heat units of 1630.2-degree 

days and under such growing condition it has 18-21% DM at the time of harvest maturity. While, 

White Chaunsa has an extended harvest window, starting around 10th August with DM values 22-

25% [152] under same growing conditions as of SB Chaunsa. 

DM can be measured destructively, but recent advances have developed spectroscopic 

[147], [150], [153] and handheld portable devices that estimate on-tree DM of the fruit precisely. 

Many earlier studies have shown the potential, as suggested by (Greensill and Walsh) [154], of 

using NIR spectroscopy to estimate Mangos fruits DM and SSC. NIR spectroscopy can be 

precisely used for on-tree estimation of DM of intact fruit . Guthrie and Walsh confirmed the use 
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of Multiple Linear Recession (MLR) with result of (R2 = 0.96 and RMSEP=0.79), whereas 

Saranwong et al. [155] reported that the single hard green mango cultivar can be predicted using 

PLSR predicted model with the results of (R2 = 0.89, SEP=0.41). 

Intact mango fruit’s diameter, length, and width can also be determined and correlated with 

weight of fruit without any grievance (R2=0.96, precision 0.1 g) [156]. On-tree fruit growth can 

be monitored continuously using these non-invasive techniques without any sampling errors 

associated with disruptive sampling. Nagle et al. [157] have however demonstrated a transition in 

Light Dissemination characteristics that would interrupt the measurement of fruit DM using NIR 

sprctroscopy by a shift in the intercellular spacing. The mango DM is estimated by a wavelength 

range (500 - 1050 nm), and a PLS regression during all maturity stages with (R > 0.75 and 

RMSECV > 0.70). For estimation of DM of mango fruit in the field and verification of harvest 

decision tool, handheld spectrometer has been used by Walsh and Subedi [147] with PLS 

Regression. 

Recent studies have demonstrated that consumer preference has a positive relationship with 

high DM in fruits, as DM is indicated as a good predictor of Brix of post-storage in apple fruits 

[159], [160]. Traditional method for DM evaluation involves fruit harvesting, sampling, drying, 

and weighing slices of fruit to eliminate water. Traditional methods for DM and oBrix 

measurements provide precise results and can be used for sampling detection only as these 

methods are destructive, and laborious. To find the optimal harvest time, the DM of developing 

fruits must be constantly monitored. Moreover, fruit should be measured non-destructively, to 

prevent crop waste as many fruits are measured each time. Hence, the most common technology 

used to estimate DM is non-destructive near-infrared spectroscopy (NIRS), which can be 

integrated into small handheld devices [161]. Up till now, NIRS, multispectral imaging [10,11], 

dielectric spectroscopy [164], hyperspectral imaging [13,14], and nuclear magnetic resonance 

[167] have been developed to measure fruit quality attributes. However, the most used technology 

is NIRS. Applications for mango maturity measurement, NIR spectroscopy is summarized in table 

4. DM and SSC are primarily used as maturity indexes in the literature for the calculation of mango 

maturity. PLS, MLR, PCR, SVM and ANN-designed models along with different pre-processing 

methods produce strong R2 performance. 
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Table 3: Summary of NIRS applications for estimation of maturity indices of Mango fruit varieties 

Cultivar 
Maturity 

Indices 

Spectral 

Range 

(nm) 

Mode 
# 

Samples 

Pre-

processing 

Prediction 

Model 
R2 Ref. 

Tommy 

Atkins 

SSC, 

firmness, 

Acidity 

1200 – 2400 Reflectance 80 
2nd 

derivative 

MLR, 

PCA, 

PLS 

0.93, 

0.90, 

0.95 

[56] 

Caraboa 
SSC, 

Dry Matter 
1100 – 2500 Reflectance 200 

MSC, 2nd 

derivative 

MLR, 

PLS 

0.96, 

0.97 
[117] 

Tommy 

Atkins 

SSC, 

Dry Matter, 

TA, 

firmness 

950 – 1650 Reflectance 400 

SG 

smoothing, 

SNV, 

EMSC 

PLS 

0.92, 

0.67, 

0.50, 

0.72 

[168] 

Osteen 

SSC, 

TA, 

firmness 

400 – 700 Reflectance 140 

SG 

smoothing, 

EMSC 

PLS 0.88 [169] 

Palmer 
SSC, 

Dry Matter 
306 – 1140 Reflectance 149 

SNV, 

1st derivative 
PLS 

0.87, 

0.84 
[170] 

Cogshall 

SSC, 

Dry Matter, 

TA 

800 – 2300 Reflectance 250 
SG 

smoothing 
PLS - [171] 

Kensington 

Pride, 

Calypso 

Dry Matter 300 – 1050 Reflectance 350 - PLS 0.82 [148] 

Palmer Dry Matter 699 - 981 Reflectance 200 
SNV, 

1st derivative 
PLS 0.75 [172] 

Sunshine pH 300 – 1000 Transmittance 120 

SG 

smoothing, 

MSC 

PLS 0.93 [173] 

Nam Doc 

Mai 
firmness 800 – 2500 Absorbance 85 

SNV, 2nd 

derivative 
PLS 0.71 [174] 

Chokonan, 

Rainbow, 

Kai Te. 

SSC 900 – 1700 Reflectance 80 EMSC 
SVM, 

PLS 

0.95, 

0.86 
[175] 
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Keitt 
Internal 

Browning 
400 – 1000 Reflectance 576 thresholding 

PLS, 

ANN 

0.53, 

0.57 
[158] 

Harumanis SSC 941 – 1685 Absorbance 30 

UVN, MSC, 

MSCCA, 

MN, 

MSCCO, 

PLS 0.98 [176] 

Kent 

SSC, 

TA, 

Ascorbic 

Acid 

1000 – 2500 Reflectance 58 

SNV, MSC, 

2nd 

derivative 

PLS, 

PCR 

0.66, 

0.95 

0.61 

[177] 

Caraboa 
SSC, 

Dry Matter 
470 – 990 Reflectance 1200 derivative PLS 

0.84, 

0.77 
[178] 

 

2.2 Fruit Maturity Instrumentation 

Researchers have recently developed portable systems to track fruit maturity using non-

invasive applications. Extensive study has been carried out in non-destructive calculation of fruit 

maturity using optical, acoustics, electrical, and ultrasonic properties, including image processing 

and analysis of response of impact force. Latest study has made non-destructive approaches 

considered the most effective tools to measure fruit maturity parameters efficiently and effectively  

[179]. A variety of NIRS prototypes have been developed in previous research using commercially 

accessible portable fruit quality assurance spectrometers. The following segment will address 

various established laboratory protypes and commercially available NIR-based spectrometer. 

2.2.1 Laboratory prototypes 

Dedicated instruments are normally lightweight and use filters with near-infrared (NIR) 

LEDs to calculate the quality parameters in specifically pre-selected wavelengths [180] of various 

commodities. Acceptable findings were found by researchers in non-destructive assessment of 

fruit maturity. The NIRS, as the most popular non-destructive technique, has been widely used for 

estimation of fruit maturity [181]. Although other methods are useful, like NIRS, farmers cannot 

use them easily. To use such non-destructive methods, it needs skills, experience, and expertise in 

application. Furthermore, farmers do not know fundamental methods of data processing. While  

these experiments can only be performed in laboratory.  While this is costly and time-consuming, 
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experiments of NIR must be performed in laboratory. In addition, the bench-top devices are not 

carried to fields or orchards due to their weight and large size [55]. Therefore, the demand for non-

invasive, cost-efficient, precise, fast portable and/or handheld devices for estimation of fruit 

maturity in industry, producers and consumers has been increasing in recent years [182]. 

Consequently, modern handheld and/or compact instruments were progressively designed and 

developed to evaluate fruit maturity non-destructively [183].  

Several portable non-destructive instruments for the quality detection of commodities were 

built on the basis of use of portable exchange spectrometers. It can be made much easier to create 

non-destructive mobile devices by using compact industrial spectrometers and merely 

incorporating additional components including processors, light sources, detectors and fibers. The 

biggest advantage of portable spectrometers is a wide spectrum range. Many items will also be 

subject to a range of calibration and experimental procedures. New prospects in chemical analysis 

have been opened up by developing rapid NIR sensor technology to determine the composition of 

fruits and volatile profiles [16]. The former will evaluate SSC and DM in commodities in a non-

destructive manner, and the latter will assess the in-field melon maturity rapidly. For example, 

researchers used NIR procedures to measure SSC in peaches accurately [17].  

An ultra-wireless handheld smartphone spectrometer for evaluation of apple maturity has 

been developed by Das et al. [186]. The spectrometer's key components were UV-LEDs with 

wavelengths of 360-380 nm that are used as a light source, along with an Arduino 

microcontroller, filters, mini-spectrometer, and Bluetooth. Using spectrometer prototype for 

apples authors have studied Chlorophyll UV fluorescence. The findings showed a strong 

correlation between chlorophyll and reflected light content. Sanchez et al. [121][51] has 

developed handheld microelectromechanical spectrometers in the 1,600 to 2,400 nm wavelength 

range in order to calculate the internal and external quality  parameters of mandarins. Volume, 

color, and weight were external parameters, whereas the internal parameters include pH, Brix, 

and TA. The authors concluded that this spectrometer can improve the estimation of quality 

indexes of Mandarin and thus farmers can predict the harvest date.  

Beghi et al. [187] used a handheld NIR spectrometer, worked in a range of 450 to 980 

nm, on the Golden Delicious and Stark Red Delicious apples for evaluation of ascorbic acid , 
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SSC, carotenoids, chlorophyll, and TA. The unit was focused on reflective properties of the 

material, with the most significant components being halogen, fibre-optic microscope, portable 

spectrometer, PC, batteries. It reveals in findings that the overall anthocyanin content of Stark 

Red Apples, complete flavonoids and non-anthocyanin flavonoids have been tested at a 

reasonable degree of accuracy on Golden Delicious apples, for TA, chlorophyll and SSC. 

A handheld Near-infrared spectrometer was proposed by Yu et al. [188], that was 

designed explicitly for measurement of internal quality parameters of fruits . In particular, 

development of a linear variable filter (LVF) module was a main feature of this spectrometer. 

The gun-shaped portable spectrometer, operated in the NIR wavelength range from 620 to 1080 

nm, in interactance mode. In interaction mode with the 620-1080 nm wavelength vs. NIR, the 

formed spectrometer device has a gun-shaped configuration. This device has been used on Crown 

Pear for the SSC measurement. The device can be operated wirelessly from tablet, laptop or a 

smartphone to analyze spectral data using the onboard prediction model. The findings have shown 

that this tool is very stable for the prediction of internal fruit quality. 

2.2.2 Commercial products for in-field Spectroscopy  

Many portable spectrometers, some of which are extremely compact, lightweight and cost 

effective, are being produced and commercialized over the past ten years, which turn the NIRS 

technology into in-field measuring tool, at packaging houses, production, distribution points, and 

markets [180]. While many small spectrophotometers need external sources of light and are 

handheld, their in-field use is limited, some of them has compact in size and weight. Many of these 

are based on micro-electro-mechanical systems (MEMSs) and all are fitted with sensors, light 

bulbs or LEDs, electronic control systems, displays and batteries necessary for the operation of 

self-sufficient equipment. Some vendors produce battery-operated handheld devices, have internal 

light sources and are compatible with Bluetooth-based communication technology. These devices 

are working independently and are known as "micro" instruments because of their light weight 

(about 100g) and compact scale. 

Recently, the portable system built by Viavi Solutions has been specially evaluated. A 

linear variable-interference filter (LVF) with 124 InGaAs sensors on a chip with an optical 

resolution of between 15 and 20 nm, is the integrated in the portable system [189]. This lightweight 
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device of approximately 100 g contains two small tungsten light sources which allow samples 

placed near the external window to reflectivity. Each sensor that LVF selects has spectral range 

between 950 and 1650. Commands can be sent by a laptop, tablet or even a mobile phone to the 

spectrometer and the spectral data is obtained through a Bluetooth or a USB port. The same 

spectral properties of the MicroNIR was developed for another micro-instrument called NanoNIR 

by Texas Instruments. However, the internal infrastructure varies significantly. This device 

includes two small filament lamps for reflective sample lighting. This system performs in 

standalone mode within the range of 900 – 1700 nm. Bluetooth, micro-SD card and a battery are 

included with this system. The Hadamard multiplexing method, as seen in the Phasir, the product 

of Thermo Scientific, also helps to increase the signal-to-noise ratio of the NanoNIR [190], [191]. 

The SCiO, developed by consumer physics, is a lightweight spectrometer with a palm size 

of 68 x 40 mm and a weight of 37 g [192]. It has a LED as a light source with a wavelength range 

of 740–1070 nm with a sampling interval of 1 nm. The system performs in mode of interactance 

that measures the light from the same side of the sample as the light enters. The Sunforest H-100C 

Instrument is a small, gun-shaped spectrometer and applies to kiwi and mandarins. With 2nm of 

delay, it can measure a range between 650 and 950 nm [193]. Its weight is around 420g without a 

head cap. The H-100C includes, as a light source, a small halogen lamp and an improved sensor 

CMOS spectrometer, designed for measuring the fruit on one side in interaction mode. A simple 

and convenient measurement tool for non-destructive quality estimation of fruit, developed by  

Felix Instruments is the F-750 Produce Quality Meter [194]. It is a spectrometer with a rectangular 

shape and the weight is around 1 kg. The F-750 is made up of diodes array (MMS1, Zeiss, VIS-

NIR). It is dynamic where a lead-sulphide detector and light source are on the same side of the 

sample. A halogen lamp in the base of instruments assails the fruit skin through the sample window 

of the diameter 30 mm. The spectrometer has a specimen range of 3,3 nm and an optical resolution 

of 8 to 13 nm in the wave-length range. Around 5s, including comparison calculation, is the 

average time to register a spectrum. In contact with chemical analysis, the F-750 incorporates NIR 

spectroscopy to estimates quality indices, including DM, acidity , SSC or brix, and other fruit 

quality indices. 

Over past decades, NIRS together with chemometrics, has been widely used as a reliable 

and rapid non-destructive technique for fruit quality estimation [195]. However, most of these 
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studies have been performed using bench-top instruments used in laboratory. Although, these 

instruments are fast and precise, in-field research applications, for instance on-tree fruit maturity 

estimation, are limited because of large mass and size [196]. In contrast, portable and hand-held 

spectrometers, having compact size, high robustness, and low development cost, have been 

developed and marketed. Consequently, these devices allow on-site quality evaluation of on-tree 

fresh fruit, during storage, in packing houses and even in super stores [197]. Recently, NIRS based 

several prototypes have been developed using spectrometer development kits for fruits’ DM and 

oBrix evaluation, including mango [198], apple [199], grape [200], apricot [58], and mandarin 

[201]. However, these devices are expensive, need calibration for local fruit varieties [202], and 

do not classify the fruit variety being tested. Moreover, these devices indirectly estimate the 

maturity state of fruits by predicting some maturity index value (e.g. oBrix, DM) using some 

regression technique and then applying hard thresholds on the predicted value.   

To the best of our knowledge all previous literature review suggests indirect maturity 

classification using estimated maturity index value. We argue that, proposed direct maturity 

classification of fruit based on reference maturity index (DM) has better accuracy as compared to 

indirect classification using estimated maturity index (DM) value. This study presents a new 

handheld NIR maturity meter that acquires spectral data, process the data to remove noise, reduce 

data dimensionality, and directly classify on tree mango fruit maturity. Performance of the 

developed device is evaluated by on tree test samples of mango fruit of different seasons.  
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CHAPTER 3: HARWARE AND SOFTWARE DEVELOPMENT 

3.1 Hardware development 

The handheld device is composed of a spectrometer development kit, a light source, a LCD 

display screen, two USB data cables, a computational device (Intel Compute Stick), a Bluetooth 

based light controlling circuitry and a battery (see Fig. 5). The light source emits radiation, which 

then enters the spectrometer after interacted from the fruit sample (see Fig. 5(a)). Bluetooth based 

controller circuit is used to turn on/off the light source. The acquired spectral data is sent to 

computational device to remove noise, reduce dimensions, and direct maturity classification. The 

total development cost of the presented handheld device is approximately 3,500 US Dollars. 

3.1.1 Micro-spectrometer 

A Vis-NIR spectrometer (model BIM-6002A, Hangzhou Brolight Technology Co., Ltd., 

China) with the Vis-NIR spectrum range of 400 – 1100 nm, optical resolution of 1 nm, and 

integration time  from 0.5 ms to 10s, was used for the collection of fruits spectra. The dimension 

of spectrometer is 91 mm × 60 mm × 34.5 mm and its weight is 300 g. This device supports 

windows-based operating system only and it is cost-effective as compared to micro-spectrometers, 

integrated in commercially available handheld NIR-based instruments. The cross Czerny-Turner 

optical system is used in this spectrometer. The system structure is simple and compact, as shown 

Fig. 4. The light transmitted from the fiber is collimated by the concave reflector M2 and reflects 

to the blazed grating G. The diffracted light beam will have different angles due to the wavelength 

difference. They are focused on the CCD by the concave reflector M1. The different wavelength 

light beam is converted into electric signals by the CCD and the spectrum information is shown in 

computer by the BSV software.  
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Figure 4: Working principle of the Brolight micro-spectrometer 

 
(a)  

 

 

(b) 
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Figure 5: (a) optical geometry diagram of NIR maturity meter (b) top view of spectrometer 

scanning section (c) in field usage of developed product 

  

3.1.2 Controller 

In the proposed hardware the computational device used is the Intel-Compute-Stick® 

(model STK1AW32SC, Intel Corporation, USA), which have the  dimensions of 122 mm x 38 

mm x 13 mm, has two USB ports, supports high definition HDMI display, Bluetooth, Wi-Fi and 

comes with a pre-installed Windows-10 32-bit operating system. This small computer has enough 

computational power to implement machine learning algorithms. 

3.1.3 Light source, Display, and battery 

Light source also plays a key role in developing fruit maturity meter because it decides 

whether stable spectrums can be achieved. A 12V/5W micro-halogen lamp is used as a light 

source. Warm up time of the lamp is about 100ms as illustrated in Fig. 6. A 7-inch HDMI touch 

display is used in fruit maturity meter for user interface. The display is connected to the compute 

stick through HDMI port. A rechargeable lithium battery with 20000 mAh is used to power the 

NIR maturity meter. 
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Figure 6: Timing diagram of calibration process 

3.2 Software development 

The graphical user interface (GUI) of custom software is developed for Windows operating 

system using Microsoft Visual C++. A system development kit (provided by Brolight) is used to 

control the spectrometer for parameter settings, calibration, and spectral data collection. The main 

function of device software is to get spectral information of each sample, convert it to absorbance 

spectra, remove noise, reduce dimensions, and direct maturity classification. It also saves the 

spectral data in CSV format. The main interface of the software is shown in Fig. 7).  

“Calibration” button is used to calibrate the fruit maturity meter using white Teflon disc 

(having 99% reflection ratio). Calibration is done by measuring reflectance spectra of white Teflon 

disc by turning off and on the light source, and then used it as a dark and white reference, 

respectively. The total time for calibration is 1 second, as illustrated in timing diagram (see Fig. 

6). For both dark and white reference, the integration time of the micro-spectrometer is about 

300ms. “Scan” button is used to predict maturity and variety of sample. To improve the spectral 

stability, equation (1) is used to correct the spectrum of each fruit sample. “Generate CSV File” 
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button is used to create a CSV file and then save current spectral data in CSV format at pre-defined 

directory.  

 

Figure 7: Main Graphical User Interface 

 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒 =  (
𝑆𝑎𝑚𝑝𝑙𝑒−𝐷𝑎𝑟𝑘

𝑊ℎ𝑖𝑡𝑒−𝐷𝑎𝑟𝑘
)        (1) 

 

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑐𝑒 =  𝑙𝑜𝑔 (
1

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
)        (2) 
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CHAPTER 4: MATERIALS AND METHOD 

4.1 Fruit samples 

In this study, 240 hard green matured mango fruits (Mangifera indica L. varieties ‘Samar 

Bahisht (S.B.) Chaunsa’ and ‘White Chaunsa’, each 120 fruits), were harvested from the Mango 

orchard located in Multan District, Punjab Province, Pakistan. In season 2019, 120 samples were 

harvested in three stages i.e. one week before estimated full maturity stage, on full maturity and 

one week after maturity stage (20 samples each variety for each stage). Likewise, in season 2020, 

120 samples were harvested. Samples harvested in August 2019 named as batch-A, were used for 

model calibration and samples harvested in July 2020, named as batch-B, were used for on-tree 

validation (prediction). Batch-B mangoes were marked and scanned on tree and then harvested for 

destructive testing. Harvested fruits were transported on the same day to the laboratory, located in 

Muhammad Nawaz Shareef University of Agriculture (MNSUA), Multan. 

4.2 Spectral acquisition and reference method  

The NIR maturity meter was calibrated by measuring reflectance spectra of white teflon 

disc by turning off and on the light source, and then used it as a dark and white reference, 

respectively. For spectra acquisition and reference analysis, the equatorial region of the mango 

fruit was selected as representative of the whole fruit for DM. Fruits were marked at the equator 

of the fruit, and then acquired spectra and reference cores from these marked locations. The 

reflectance spectra of each sample were then obtained by placing fruit on the lens of the NIR 

maturity meter. Three measurements were performed on each sample, and further analysis was 

carried out using the mean spectrum of the three measurements. At the end, 500 spectra were 

obtained for each variety with 324 data points each, recorded from 400 – 1100 nm. Reference DM 

values were determined by sampling a portion of 27 mm in diameter and 10 mm in depth from 

marked locations after removing the mango epidermis (1–2 mm thick) using a fruit peeler. DM 

content in a fan forced oven set at 65°C after 48h was measured by following drying to constant 

weight [203].  Schematic diagram of labeled mango sample is illustrated as Fig. 8. 
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Figure 8: Schematic diagram of the labeled positions for NIR spectral acquisition in Mango 

sample 

4.3 Chemometrics  

Both the indirect and direct classification (Fig. 9) of fruit maturity have been compared. 

To test indirect method of regression-based thresholding represented in Fig. 9, both linear and 

nonlinear multivariate calibration methods have been implemented and compared to build DM 

prediction models. For regression, linear calibration models including PLSR and multiple linear 

regression (MLR) while nonlinear methods include support vector machine (SVM) and artificial 

neural network (ANN) have been employed using NIR spectroscopic data [202]. For building 

direct classification models to identify mango variety and decide on-tree mango maturity state 

(Fig.4), various classification techniques are implemented. These techniques include supervised 

and non-supervised approaches such as tree, ensemble, linear discriminant analysis (LDA), SVM, 

K-nearest neighbor (KNN), and ANN.  

The Unscrambler software (version 11.0, CAMO, Oslo, Norway), chemometrics software 

package, was used for development of PSLR, MLR and SVM calibration model. In PLSR model 

development, the number of PLS factors, suggested by the Unscrambler chemometrics software, 

were used. For implementation of ANN calibration model and classification techniques, MATLAB 

(ver. R2018a) neural network toolbox and classification Learner toolbox was used, respectively. 

Results were compared in terms of correlation coefficient (R) and root mean squared error (RMSE) 

values. Cross-validation was performed using 10-fold with random selection of samples. The 

absorbance spectra, obtained by using equation (2), was further treated by different pre-processing 

techniques including smoothing using 3 point moving average filter, normalization by unit vector 

normalization, standard normal variate (SNV), Savitsky Golay (SG) first derivative and second 
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derivative using 9 points and 21 points windows, one at a time and results were compared. These 

all pre-processing treatments were applied within the spectral range of 729 – 975nm. After 

preprocessing, principle component analysis (PCA) was then performed on the resulting 

transformed spectra for dimensionality reduction. 

 

Figure 9: Block Diagram representing two different definitions of establishing maturity levels 
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CHAPTER 5: RESULTS AND DISCUSSION 

5.1 DM statistics 

Table-1 shows the statistics of DM for mango fruit samples of batch A1, A2, and A3 

(calibration set) and batch B1, B2, and B3 (prediction set). It shows no. of samples in each batch, 

harvesting period, and Min and Max DM computed using destructive testing.  

Table 4: Statistics of DM of Mango fruit in Batch-A and Batch-B 

Fruit 

Batch 

# of 

Sample 
Maturity Stage Min Max Mean ± Standard Deviation 

A1 40 One week before estimated harvesting date 14.8 20.8 19.5 ± 1.9 

A2 40 On estimated harvesting date 19.4 24.6 22.7 ± 1.2 

A3 40 One week after estimated harvesting date 23.6 25.9 24.6 ± 1.6 

B1 40 One week before estimated harvesting date 18.1 21.3 20.2 ± 0.9 

B2 40 On estimated harvesting date 20.6 24.9 23.2 ± 1.8 

B3 40 One week after estimated harvesting date 23.6 26.8 25.0 ± 2.3 

Total 240 --- 14.8 26.8 22.5 ± 1.5 

 

5.2 Spectral overview 

The mean absorbance spectra and the preprocessed spectra using SG smoothing second 

derivative of both mango fruit varieties are illustrated in Fig. 10. at 250 different wavelengths over 

the 500-1050 nm wavelength range. There are two high absorption peaks, located at around 680 

nm and 970 nm, over the entire wavelength spectrum of the raw absorbance spectra (Fig. 10). The 

first one is correlated with chlorophyll absorption, which was also found in the spectra of apricot, 

nectarine [204], apple [205], and kiwifruit [206], [207]. The second one occurs in the second 

overtone of O-H bands, especially those presented in water, and the second overtone of N-H [208]. 

On Several fruits, such as persimmon [183], apples  [209],  and pears [210], have also seen an 

absorption peak at around 960 nm. 



 

49 
 

 

Figure 10: Mean Absorbance and 2nd Derivative pre-processed Absorbance spectra of mango 

fruit Varieties. 

5.3 Modeling results 

5.3.1 Model Robustness – Indirect maturity estimation 

In calibration models, inclusion of non-informative wavelengths may reduce predictive 

efficiency. Previous research simply used a fixed spectrum, or compared two or three ranges of 

wavelengths at most [150]. The optimal wavelength range used for DM was 729 - 975 nm [148]. 

Performance comparison of DM prediction model built with PLSR, MLR, SVM and ANN 

regressors is presented in table 2. PCA is a fundamental part of PLS regression though, for other 

applied regression techniques, their performances have been compared using PCA enabled 

preprocessed spectral inputs. For all prediction models, first 15 principal components (PCs) were 

used.  SVM and MLR models were built using linear kernel while ANN architecture had input 

layer of 15 inputs, one hidden layer with 15 neurons and output layer having single output. Number 

of neurons and hidden layers are chosen heuristically. Overall, all investigated models gave better 
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performance while predicting independent test data. With prediction set, MLR performed 

relatively better with SG second derivative pre-processed spectral inputs with R = 0.92 and RMSE 

= 1.48, as compared to other pre-processing techniques. In contrast, with SG first derivative pre-

processed spectral inputs, PLSR have best performance for DM with R = 0.87 and RMSE = 1.25. 

Other prediction models also performed well. Such as SVM and ANN also shown good 

performance using PCA enabled spectral data with SG 2nd derivative treatment (R = 0.83 and 

RMSEP = 1.46) and (R = 0.80 and RMSEP = 1.58), respectively. Since, MLR model with SG 

second derivative preprocessed data has the best correlation coefficient among other models, we 

have embedded this model as DM estimation model in our developed device. 

Table 5: DM prediction model comparison for the input spectral range 729-975 nm 

 

 

Figure 11: Prediction results for a MLR based DM model using 2nd derivative spectra. 

 

Preprocessing 

Regression Model 

Calibration set Prediction set 
PLSR MLR SVM ANN PSLR MLR SVM ANN 

R RMSE R RMSE R RMSE R RMSE R RMSE R RMSE R RMSE R RMSE 

None 0.94 0.89 0.85 1.52 0.88 1.33 0.89 1.32 0.85 1.33 0.86 1.95 0.81 1.56 0.76 1.63 

Smoothing 0.93 0.96 0.85 1.53 0.86 1.39 0.87 1.33 0.85 1.36 0.86 1.96 0.80 1.59 0.74 1.70 

Normalization 0.95 0.80 0.88 1.40 0.89 1.25 0.84 1.40 0.84 1.39 0.85 2.00 0.81 1.57 0.71 1.80 
SNV 0.94 0.88 0.84 1.58 0.85 1.40 0.86 1.35 0.83 1.41 0.83 2.09 0.76 1.69 0.75 1.67 

SG 1st derivative 0.94 0.92 0.84 1.59 0.86 1.39 0.89 1.25 0.87 1.25 0.87 1.89 0.75 1.72 0.79 1.59 

SG 2nd derivative 0.91 1.22 0.90 1.29 0.91 1.14 0.91 1.19 0.85 1.33 0.92 1.48 0.83 1.46 0.80 1.58 
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Table 6: Performance comparison in terms of accuracy of different classifiers for binary 

class classification 

Preprocessing 

Classification Models 

Calibration set Prediction set 

Tree LDA SVM KNN Ensemble ANN Tree LDA SVM KNN Ensemble ANN 

None 72.2 76.5 81.7 77.4 83.5 81.2 73.5 67.6 70.6 70.6 73.5 70.3 

Smoothing 78.3 80.0 84.3 80.0 79.1 79.5 79.4 70.0 88.2* 88.2* 85.3 84.6 

Normalization 73.9 79.1 84.3 76.5 80.9 79.2 79.4 76.5 82.4 85.3 88.2* 81.1 

SNV 79.1 78.3 83.8 76.5 80.0 81.4 73.5 70.6 79.4 82.4 85.3 83.2 

SG 1st Deriv 68.7 79.1 82.6 80.0 80.0 79.0 67.6 79.4 79.4 76.5 79.4 79.1 

SG 2nd Deriv 74.8 76.5 80.9 80.0 80.0 78.4 75.0 77.5 85.3 79.4 85.3 82.2 

5.3.2 Model Robustness – Direct maturity estimation 

To predict mango maturity in terms of DM at harvest, binary class classification techniques 

were implemented. Classifier predictor inputs were PCA enable spectral absorbance values within 

range of 726 – 975 nm whereas the reference labels were based on DM values, provided as mango 

destructive maturity indices for investigated varieties [151]. The DM values at maturity for SB 

Chaunsa and White Chaunsa is 21-22%DM and 24-25%DM, respectively. The spectra of mango 

above 21% DM were labeled as mature for SB Chaunsa and below 21%DM were labelled as 

immature. Similarly, for White Chaunsa, below 24% DM was labeled as immature and above 

24%DM was labelled as mature mango. It is to be noted here that the labels were assigned based 

on DM values measured using standard destructive procedure to get precise and accurate labels. 

This maturity classification is totally independent of the predicted DM values by regression model 

of the developed device. PCA is applied on preprocessed spectra for performance optimization 

and first 15 PCs were selected. Several classifiers were implemented such as tree, LDA, SVM, 

KNN, and ensemble, using 10-fold cross validation for calibration sets. ANN architecture was 

implemented with input layer of 15 inputs, one hidden layer with 15 neurons and output layer 

having single output. Performance comparison of the explored classifiers in terms of accuracy is 

presented in Table 4. Among all classifiers, SVM, KNN and ensemble classifier have best 

performance i.e. 88.2% accuracy, with PCA enabled input spectra treated with 3-point moving 

average filter and unit vector normalization, respectively (Table 4.). ANN and tree classifier have 

depicted their best accuracies of 84.6% and 79.4% with 3-point moving average filter treatment 

and PCA enabled spectral input data, respectively. Using PCA enable spectra treated with SG 1st 

derivative as input data, LDA shown its best performance with an accuracy of 79.4%. From these 
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results, we have embedded KNN classifier model for maturity state classification in our developed 

maturity meter. 

5.3.3 Model Robustness – Fruit variety estimation 

In recent studies, NIRS has been employed for non-destructive discrimination of various 

fruit varieties such as apple [211],mango [212], pears [213], and peach [214]. Developed NIR 

maturity meter can also distinguish between the investigated varieties of mango. PCA enabled 

spectral input data has been used to investigate the performance of all classifiers for the 

identification of mango fruit varieties. Among all classifiers, LDA, SVM, ensemble and KNN 

depicted best performance with 100% accuracy with SG second derivative smoothed data as input. 

Therefore, our developed maturity meter employed KNN classifier model to identify the variety 

of mango sample being tested. 

Table 7: Performance comparison in terms of accuracy of different classifiers for mango fruit 

variety classification 

Preprocessing 

Classification Models 

Calibration set Prediction set 

Tree LDA SVM KNN Ensemble ANN Tree LDA SVM KNN Ensemble ANN 

None 82.6 97.4 98.3 95.7 95.7 89.5 76.5 91.2 94.1 85.3 85.3 91.6 

Smoothing 84.3 98.3 98.3 97.4 98.3 91.5 82.5 97.5 97.5 100.0 100.0 92.4 

Normalization 79.1 96.5 97.4 98.3 91.3 88.4 82.4 76.5 94.1 94.1 88.2 86.1 

SNV 94.8 98.3 99.1 96.5 99.1 91.2 76.5 100.0 100.0 94.1 100.0 93.1 

SG 1st Derivative 87.0 98.3 98.3 91.3 98.3 91.1 82.4 94.1 97.1 91.2 100.0 94.6 

SG 2nd Derivative 93.5 99.1 99.1 98.3 96.5 88.7 88.2 100.0 100.0 100.0 100.0 90.4 

5.4 Discussion 

5.4.1 Indirect vs direct maturity classification  

To quantify harvest maturity state, certain minimum, and maximum threshold levels for 

maturity indices of many fruits are locally known amongst the fruit cultivars and defined in 

literature[151]. It is observed that all existing NIR based spectroscopic devices use machine 

learning regression algorithms to estimate relevant maturity indices (e.g soluble solid content 

(oBrix), DM etc) of fruits [188], [198], [201], [204]. To further classify the sample based on harvest 

maturity, the predicted value of maturity index using NIRS is compared with the standard threshold 

value of maturity index. Which means that class labels are assigned based on ‘predicted’ value of 

maturity index. This procedure is termed as indirect maturity classification. All regression 
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algorithms have a certain prediction error associated with them hence the predicted value might 

be slightly different than the actual value of maturity index [125]. And defining maturity class of 

sample based on predicted values may result in wrong judgement.  

On the other hand, instead of predicting the maturity index value, direct maturity 

classification can be performed as proposed in this paper. In direct maturity classification, 

classification algorithm is trained by a set of spectra, where each spectra is assigned a class label 

by comparing actual value of maturity index (observed using destructive testing standard 

procedure) and the standard threshold value of the maturity index. The job of the classifier is to 

identify that the test sample belongs to which class using the trained classification model. Binary 

classification is relatively simple problem than multi class classification and normally gives good 

accuracy (unless there is significant overlap between the two classes in terms of features) [215].  

The quantitative results presented in the paper support these arguments that direct 

maturity classification (88.2% accuracy) is a better approach than indirect maturity classification 

(55.9% accuracy) to classify mango fruit in mature/immature fruits using DM as maturity index. 

5.4.2 DM as an index of mango maturity  

DM, which is a measure of fruit starch and sugar content, is considered a valid maturity 

index for mango fruit [20]. Moreover, optimum DM value at the time of harvest depends on mango 

variety and growing conditions. For the investigated mango varieties, optimum DM values as an 

indicator of harvest maturity have been reported by Amin et. al. [151] along with their growing 

conditions (e.g. daily heat units). The reported DM values [151]at the time of harvest have been 

used as DM thresholds to assign class labels in our classification model. Also, the proposed 

maturity meter has been trained under the same growing conditions as reported in [151].  

Our proposed device and direct maturity classification method can also be trained for other 

fruits. However, while training for other fruits, the class labels for training set can be assigned 

using any maturity index that is valid to estimate harvest maturity for that fruit. As each fruit has 

its own set of valid maturity indices e.g. for grapes oBrix and total acidity are used as maturity 

indices [202]. DM is used as maturity index in this research with reference to mango maturity 

classification. 
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5.4.3 Comparison of different classifiers  

Classification is a process of grouping objects into pre-defined categories based on by 

analyzing training data sets. There exist several types of classification algorithms and their 

application depends upon the dataset under consideration and desired output [216], [217]. For 

mango maturity classification, multiple classification algorithms i.e. ensemble, tree, LDA, SVM, 

KNN and ANN were tested in this work.  Ensemble classifiers are very effective generally when 

large amount of training data set is available [215]. Tree classifiers require less effort for data 

preprocessing, they do not require normalization and scaling of data, however, sometimes 

calculations can be far complex than other classifiers and there training is more expensive in terms 

of complexity and time. LDA is a simple and fast statistical method for binary classification. SVM 

is amongst the best classifiers with limited amount of training data however, if large training data 

sets are available ensemble and tree classifiers outperform SVM. KNN is the simplest, robust, and 

non-parametric classifier which does not explicitly build any model and tags new sample based on 

learning from historical data. Given its instance-based learning KNN adapts itself as new data is 

collected. Neural networks are slow to train but very fast to run and often perform very well [215], 

[216].  

For data set collected from investigated mango varieties, KNN, SVM and ensemble 

performed equally good with 88.2% accuracy each. Keeping in view the advantages of KNN over 

SVM and ensemble, KNN was chosen among all investigated classifiers for mango maturity 

classification. However, while training the device for other fruit’s maturity classification, KNN 

may not be the best one. Depending upon data set, other classifiers may outperform KNN in terms 

of classification accuracy.  
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

A new non-destructive handheld near infrared spectroscopy-based maturity meter was 

presented for mango maturity classification. The presented maturity meter employs classification 

algorithm to directly classify maturity of mango fruit as opposed to literature reported maturity 

meters which employ regression algorithms to estimate the maturity index value of fruits. To 

develop the hardware of the device, a commercial-off-the-shelf development kit of NIR micro-

spectrometer in the spectral range of 400 - 1100 nm was employed with an intel compute stick, a 

micro-halogen lamp, a lithium battery, and a display. Device software was developed to collect 

spectra (features), pre-process the spectra by smoothing, reduce dimensionality of features and 

perform classification.  

To perform classification, labels were assigned to training data set using actual dry matter 

(DM) content measured by destructive testing procedure and comparing it with reference DM 

value reported at harvest maturity. The developed maturity meter was trained for two local 

varieties of mango i.e. Samar Bahisht Chaunsa and White Chaunsa. Data was collected on two 

seasons i.e. summer 2019 data was used to train model and summer 2020 data was used as test 

data to validate model. Various classification algorithms were compared i.e. tree, ensemble, linear 

discriminant analysis, support vector machine (SVM), K nearest neighbor (KNN) and artificial 

neural networks (ANN). SVM, KNN and ensemble outperformed other classifiers with 88.2% 

accuracy on independent test data (samples of different season). Considering simple and robust 

nature of KNN classifier, it was selected to be used in our developed maturity meter. The proposed 

direct maturity classification was also compared with literature reported indirect maturity 

estimation method. For that, multiple linear regression (MLR), SVM, partial least squares 

regression and ANN regressors were compared to estimate DM value of mango samples. MLR 

performed better than other investigated regressors with correlation coefficient 0.92 and root mean 

square error 1.48 on independent test data. The estimated values of DM given by MLR model for 

test data were then compared with standard DM maturity value to classify the mangoes, which 

resulted in 55.9% correct classification. Hence, direct maturity classification was proven to be a 

better non-destructive quantitative measure as compared to indirect maturity estimation.  
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6.2 Future work 

Further work will be concentrated on validating the accuracy of the developed mango 

maturity meter for other commodities as well as to analyze the different factors that effects the 

performance of the developed maturity meter. 

 

Figure 12: Average second derivative spectra (725–975 nm) of mango fruit for fruit temperatures of 13, 17, 21, 26, 30, and 38 
°C, and the difference spectrum between 13 and 38 °C [219] 

Sample, instrument, and environmental factors i.e., temperature and humidity, can 

influence the prediction accuracy of an NIR system [125], [218]. In NIR spectroscopy fruit 

evaluation, the temperature of the samples varies greatly, as a fruit's spectrum is dominated by 

water features, and in DM evaluations the water content is mostly evaluated [219]. Temperature 

influences the water spectra due to changes in degree of H bond and an apparent transition to a 

shorter wavelength in the direction of water peaks with decreases of the temperature [220]. In order 

to compensate the influence of temperature, sample spectra at multiple temperatures are 

recommended during the development of training models. The program can ignore spectral shifts 

and changes that are not related to the desired feature when scanning the same fruit at 2-3 

temperatures. The model will autocorrect for temperature if the temperature variation for the same 

fruit is included in the model. The need for temperature compensation is minimal for certain 

applications, for example in controlled environment having constant temperature, but if the 

developed maturity meter is used for on-tree fruit maturity estimation with several types of 

variations, a training set needs to be built to accommodate the possible temperature range. These 
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variations might be in temperature, fruit variety, climate growth as well as season-to-season 

variation.  

Furthermore, if the calibration model is transferred to another developed maturity meter, it 

would introduce an error, which reduce the prediction acceptability. In order to cater this problem, 

the existing model will require to be tailored with 20% of the population of original samples. These 

20% samples will be collected using newly developed maturity meter and then the resulting model 

should be validated with additional samples. 
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