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Abstract 

Daily life of thousands of individuals around the globe suffers due to physical or mental 

disability related to limb movement. The quality of life for such individuals can be made better 

by use of assistive applications and systems. In such scenario, mapping of physical actions 

from movement to a computer aided application can lead the way for solution. Surface 

Electromyography (sEMG) presents a non-invasive mechanism through which we can translate 

the physical movement to signals for classification and use in applications. Keeping this in view, 

this study propose a machine learning based framework for classification of 20 physical 

actions. The framework looks into the various features from different modalities which 

contribution from time domain, frequency domain and inter channel statistics. Next, we 

conducted a comparative analysis of k-NN and SVM classifier using the feature set for multiple 

normal and aggressive activities. Effect of different combinations of feature set has also been 

recorded. Finally, the SVM classifier gives an accuracy of 100% for 10 normal actions and 1-

NN for a subset of features gives an accuracy of 98.91% for 10 aggressive actions respectively. 

Additionally, we use both SVM and 1-NN to propose a hybrid approach to classify 20 physical 

actions. The hybrid classifier gives an accuracy of 98.97% respectively. These finding are 

useful for algorithm designer to choose the best approach keeping in mind the resources 

available for execution of an algorithm. 

 

Key Words: Segmentation, Feature extraction, Time domain, Frequency domain, Feature 

concatenation, Surface Electromyography, Support Vector Machine, K-Nearest Neighbor, 

Hybrid Classifier, Physical Activities
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CHAPTER 1: INTRODUCTION 

In the modern day, physical disabilities present a major problem to the daily life. The main 

reason behind this is the various factors that contribute to these disabilities. These factors 

include gait disorder or limb impairment due to aging process [1], occupational injuries or 

trauma such as sports accidents which hinder the quality of life. Stroke is another major cause 

of limb disabilities in adults [2]. Most of these sufferers may require partial limb support or 

prosthetics limb to elevate their daily suffering. Apart from these factors, neurological 

disorders are also a leading cause of accidents [3]. Epilepsy, a major neurological illness, is 

caused by irregular nerve cell activity in the human brain [4, which effects almost 50 million 

of people around the globe [5]. This brings to light the immense need for a system that can 

categorize the physical signals for either prosthetic limb design or timely notification of 

epileptic attacks for injury prevention. 

In this regard, a possible solution is to somehow sense the intended motion and take decisions 

accordingly. Surface Electromyography (sEMG) has been characterized as the best non-

invasive performer for activity analysis [6]. Electromyography (EMG) refers to the electrical 

activity recordings, which are produced as a result of skeletal muscles. Figure 1. shows a side 

by side comparison of sEMG signals collected against normal and abnormal activities such as 

clapping and elbowing respectively. These signals represent the biomarkers for analysis of 

physical action or movement of humans. This make sEMG useful in the identification of 

muscular system’s ailments, improvement in the interaction between human and computer, 

clinical and biomedical applications discussed in [3, 10]. These signals can be examined to 

detect medical anomalies [7, 8], emotion detection [9], prosthetic arms, hand and lower limbs 

control [10].  

Various methods includes preprocessing, feature extraction, feature selection, signal 

classification of an EMG signal i-e; discrete wavelet transform, empirical mode decomposition, 

principal component analysis etc. have been recommended by different investigators to analyze 

EMG signal. Commented [SGK1]: Start a new paragraph where you link 
analysis of EMG signals for various possible applications  
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Figure 1-1: Raw sEMG for Normal and Aggressive activities signifying the difference 

In this thesis, we investigate sEMG signals collected against 20 physical actions from a set of 

5 subjects. The physical activities are divided into 2 sub-groups depending on the nature of 

action as aggressive or normal. We then investigate various signatures of the sEMG signals 

that can be used to differentiate between the 20 actions. Using these signatures we propose a 

new classification framework which can identify multiple physical actions using sEMG 

signals. In the proposed approach, a window of raw sEMG signal is initially pre-processed to 

enhance the variability between signals of normal and abnormal activates. The processed 

window is then forwarded to feature extractor where, among the well-known features for EMG, 

Time domain statistics, inter channel statistics (correlation and covariance) and frequency 

based signatures for classes are also calculated. The features from different modalities are then 

concatenated to make a feature vector which is then subjected to and is finally fed to a 

classification model that is comprises of optimized KNN and optimized SVM classifier to 

provide us with the output label of the signal. The proposed methodology results in high 

classification accuracy even with use of a simple classifier and lower number of features as 

compared to previous methods. 

1.1 Motivation 

Currently, Physical impairments become problematic in the world because of several reasons. 

For example, the getting old takes along difficulties such as abnormality in the way of walking 

and limb impairments leading to decrease the quality of life. Next various kinds of severe 

accidents like occupational based trauma and sport based injuries commonly make the 

individuals either fully or partially disabled. According to World Health Organization, around 

15% of the population around the globe survives with various form of disability, of which 2–

4% people experience major complications in working. This brings to light the immense need 

for a system that can categorize the physical signals for either prosthetic limb design or timely 
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notification of epileptic attacks for injury prevention. In this regard, a possible solution is to 

somehow sense the intended motion and take decisions accordingly. Therefore, this effective 

technique might help the specialists in defining aggressive activities to observing patients. This 

can support in the field of healthcare to develop activity monitoring on EMG Signals. 

1.2 Problem Statement 

Physical activity recognition, which is a key component in developing an exoskeleton robot 

control system, prosthetic arm controls and to identify certain deformities of the 

musculoskeletal system. However, the challenge is aimed at making use of digital signal 

processing and machine learning in the identification of physical activities based on surface 

EMG signal. The aim of this study is to plan an effective algorithm for the classification of 

multi-class physical actions. 

1.3 Aims and Objectives 

Following are the objectives of this study as shown below: 

 To use signal processing for processing of raw signals and noise removal 

 To analyze EMG signals using signal processing techniques to extract useful features 

 To use machine learning to develop a complete system intended for the investigation 

and classification of EMG signals  

1.4 Structure of Thesis 

The remaining research work is organized in the following manner: 

Chapter 2 covers the analysis techniques regarding human muscles 

Chapter 3 gives review of the up-to-the-minute algorithms proposed by researchers for 

detection of physical activity using EMG signals. 

Chapter 4 consists of the proposed methodology in detail. It includes dataset explanation, 

feature extraction of EMG signals followed by their classification 

Chapter 5 introduces the database used for assessment purpose. All the experimental results 

are discussed in detail with all desired figures and tables.  

Chapter 6 concludes the thesis and reveals future scope of this research  
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CHAPTER 2: MUSCLES ANALYSIS TECHNIQUES 

Human muscle is the tissue of the body which essentially has the capacity as a source of control. 

Muscles permit an individual to move, talk and chew. They control pulse, digestion, and 

breathing. Other apparently irrelevant capacities like temperature controls and vision too 

depends upon the muscular system of the human body. The muscular framework contains more 

than 600 muscles that work together to empower the total working of the body.  

2.1     Types of muscles: 

There are three types of muscles: 

2.1.1 Skeletal muscle 

Skeletal muscles are the muscles that are related to the skeletal development of the body and 

can be controlled deliberately. They are connected to bones, and contracting the muscles causes 

development of those bones. Some physical activities include running, standing, seating, 

walking etc. are the examples of use of these muscles. These muscles are regularly existing in 

sets, whereby one muscle is the essential mover and other act as the auxiliary mover. In 

addition, once you twist your arm, your biceps contracts whereas your triceps is relaxed. When 

your arm returns to the stretched situation it is the triceps that contracts and the biceps relax as 

shown in Figure 2. 

 

Figure 2-1: Skeletal muscle, voluntary [11] 
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 (a) Flexion of human arm                                 (b) Extension of human arm 

Figure 2-2: An example of skeletal muscle [12] 

2.1.2 Smooth muscle 

Smooth muscle lines the interior of blood vessels and organs, such as the stomach, and is 

additionally known as visceral muscle. It is the weakest kind of muscle but has a fundamental 

part in moving nutrition along the stomach related tract and retaining blood circulation through 

the blood vessels. Smooth muscle acts automatically and it contracts slowly and rhythmically. 

 

Figure 2-3: Smooth muscle, involuntary [11] 

2.1.3 Cardiac muscle 

This muscle is situated merely in the heart, it pumps blood everywhere in the human body. 

Cardiac muscle invigorates its own contractions that frame the pulse of human body. Signals 

from the nervous system regulates the level of contraction. This sort of muscle is strong and 

acts unwillingly. 
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Figure 2-4: Cardiac muscle, involuntary [11] 

2.2      Techniques to Analyze Muscles 

Human muscles can be analyzed using different techniques:         

2.2.1 Imaging techniques 

Historically, imaging techniques include Magnetic Resonance Imaging and Computed 

tomography plays an important role to diagnose and monitor the diseases which are related to 

muscles such as myopathies and muscular dystrophies. Figure-6 shows the musculoskeletal 

MRI that protects the overall body which contain joints, bones, and soft tissues. 

 

Figure 2-5: musculoskeletal MRI of sportsman foot [13] 

2.2.2 Mechanomyography 

Mechanomyography (MMG) has been mostly connected in clinical and experimental practice 

to examine the muscle characteristics including the functionality of muscle, prosthesis and/or 

switch control, signal processing, medical rehabilitation, and physiological workout. It is the 
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technique which is used for evaluating and recording the mechanical signal from the muscle’s 

surface when the muscle is contracted.  In [14] the sensor was placed on the muscle. Figure-7 

shows that the device’s (which is utilized for measuring the acoustic waves created by 

contracting muscles strands) lodging is filled with fluid as the transmitting medium to convey 

the MMG signal powerfully. 

 

Figure 2-6: Conceptual view of Mechanomyogram [14] 

2.2.3 Electromyography 

Electromyography is a procedure that is used for measuring and recording the electrical action 

produced by skeletal muscles to recognize the variations between the nerves and muscles. It is 

implemented using a tool known as Electromyograph, to generate a record called an 

electromyogram. In qualitative analysis of EMG signal graphical examination of the record is 

concerned whereas amplitude, duration, frequency, power spectrum analysis takes place in the 

quantitative analysis of EMG signal. The EMG apparatus comprises of electrodes (can be skin 

electrodes or needle electrodes), an amplifier of high gain having 10-5000Hz which is attached 

to an oscilloscope and EMG is best prepared in an extraordinary constructed protected room to 

avoid intrusion. EMG is applicable in the clinical diagnosis of myopathies, neuromuscular 

disorders, human machine interaction, prosthesis control, kinesiology etc. 

 

Figure 2-7: Electromyography 

Electromyography is divided into two types: 
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2.2.3.1 Surface Electromyography 
Surface EMG is a procedure in which electrodes are positioned on (not into) the skin spread 

over the surface of the muscle to identify the electrical movement of the muscle. It is also 

named as Intermuscular electromyography. It has various striking features like it does not 

include penetrating the skin and does not wounded. The main advantage of surface EMG is 

that it is quick, easy to apply and no medical supervision or certification is required. It is 

generally used only for superficial muscles.   

 

Figure 2-8: Surface electromyography 

2.2.3.2 Intramuscular Electromyography 
Intramuscular EMG signals are identified with needles or cables injected into muscles. With 

regard to non-invasive methods, intramuscular electromyography has great discrimination for 

person’s motor unit action potential (MUAP) and is therefore used to measure motor unit 

activity. The main advantage of intramuscular electromyography that it is extremely sensitive, 

access to deep musculature, little cross talk concern and record single muscle activity. On the 

other hand, it requires medical personnel and certification and detection area may not be 

representative of the entire muscle.  

 

Figure 2-9: Intramuscular electromyography 

2.3      Muscles diseases 

2.3.1 Cerebral Palsy 
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Cerebral palsy is a brain damage causing decreased muscle control and usually occurs in young 

children. Characteristics contain muscle stiffness, involuntary activity, impaired speech and 

frequently paralysis. Figure 11 shows that the person suffering from cerebral palsy faces 

difficulty in using a mouse or keyboard.  

 

Figure 2-10: This person affected with cerebral palsy [15] 

2.3.2 Muscular Dystrophy 

Muscular dystrophy is a hereditary disorder that causes dynamic feebleness and damage of 

muscle mass. In this illness, irregular genetic factor (mutations) interfere with the generation 

of proteins required to form healthy muscles. It can influence individuals at any age, but is 

most common in children. Assistive equipment include head wands, voice recognition 

software, mouth stick, adaptive keyboards etc.  

 

Figure 2-11: Progression of muscular dystrophy [16] 

2.3.3 Multiple sclerosis 

Multiple sclerosis is a possibly disabling syndrome of the human brain and spinal cord. It 

dissolves myelin (a layer of fatty tissue that encompasses nerve strands), blocking nerve fiber 
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from conveying signals from the CNS to the muscles of the body. It impacts include tremors, 

feebleness, lack of feeling, slurred speech, unsteady walking, muscle tightness, disabled 

memory, and intermittent loss of motion.  

 

Figure 2-12: Multiple sclerosis [15] 

2.3.4 Amyotrophic lateral sclerosis 

Amyotrophic lateral sclerosis is a degenerative syndrome that stops neurons from sending 

impulses to the muscles. The muscle deteriorates over time, affecting ability in operating a 

mouse or keyboard and the situation may in the long run affects the muscles required for 

breathing, resulting in death. It symptoms include sluggishness in either movement or speech. 

Figure 14 differentiates between the normal nerve cell and the nerve cell that is affected with 

the ALS disease.  

 

Figure 2-13: Amyotrophic lateral sclerosis [18] 

2.3.5 Epilepsy 

Epilepsy is a neuromuscular condition caused by the abnormal activity (abnormal firing of 

neurons) in the brain. Seizures take place when cluster of nerve cells in the brain signal 

unusually, which may temporarily change a person's awareness, movements or activities. There 

are numerous types of epilepsy (includes Nonappearance seizures, Tonic seizures, Clonic 

seizures, Tonic-clonic seizures, Myoclonic seizures, Atonic seizures etc.) which range in 
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severity and each individual with epilepsy encounters it in an unexpected ways. Infectious 

diseases, Genetic influence, Head trauma, Pre-birth injury, Brain illnesses, developmental 

disorders are the various causes of epilepsy. Other risk factors include past head injuries, 

dementia, Brain infections, Stroke, seizures in childhood etc. Electroencephalogram (EEG) and 

different neurological imaging studies includes functional MRI, Magnetic Resonance Imaging, 

Positron emission tomography, Single-photon emission computerized tomography and 

Computed tomography are the tools used for the diagnosis of this ailment. 

2.3.6 Parkinson’s disease 

This disease is a progressive brain clutter that leads to shivering, firmness, and trouble with 

walking, stability, and coordination. One strong possibility for Parkinson’s is age. It causes 

wild tremors and/or unbending nature within the muscles. The condition considerably hinders 

keyboard and mouse use. Once in a while, the voice is affected as well, to the point that voice 

acknowledgement program is not an alternative. The analyst of King’s College London 

suggests that changes in the brain serotonin (a substance which have various purposes in the 

brain including, cravings, disposition, cognition, prosperity and development) levels comes to 

begin with -and seem act as an early caution sign portrays in Figure 15 

 

Figure 2-14: Brain scans shows a fall in serotonin (blue/black area) as Parkinson's growths [19] 

 

 

 

 

 

CHAPTER 3: LITERATURE REVIEW 
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The recent years have gotten an improvement in the categorization of EMG Signals in the field 

of exoskeleton robot control, prosthesis control, human machine interaction, diagnosis of the 

muscular diseases etc. For this purpose, researchers have applied machine-learning techniques 

for solving different problems related to physical activities. This chapter reviews some of the 

valuable contributions that have been made to this field. 

Surface electromyography is a procedure that studies or identifies the electrical activity 

produce by human muscles to be familiar with the variations between the nerves and muscles. 

sEMG signal is an electrical action generated when nervous and muscular actions are recorded 

from the surface of human body using electrodes, which can redirect the real-time working of 

neuromuscular framework. By the way, how to expertly exact features from EMG signals to 

recognize correct examination of proceedings is the main problem to get precision of 

rehabilitation therapy or treatment and production of EMG-controlled prostheses. 

Akhundov et al. [31], evaluates the quality of surface EMG signal by performing comparison 

of five different classifiers. They used both supervised and unsupervised artificial neural 

networks. Supervised classifiers includes adaptive neuro fuzzy inference system and 

probabilistic neural network whereas, Convolutional neural network, Alex-Net and ResNet50 

were used as unsupervised classifiers. In this study, feature extraction takes place using discrete 

wavelet transform (DWT) in order to get root mean square, variance, mean absolute value, 

power spectrum ratio for the supervised learning algorithms. For all three CNNs they take an 

envelope extraction of an EMG signal and then transformed it to an Image for further 

processing. In the end, it was concluded that unsupervised ANNs perform better classification 

accuracy as compared to supervised artificial neural networks. They got the accuracy more 

than 98% based on unsupervised ANNs.  

Duan et al. [32], elaborates the gesture motion recognition, the collection of EMG data takes 

place for 10 different hand gestures using Myo arm band. They introduced multi task learning 

and multi label classification concepts to increase the generalization ability for motion 

recognition system. On comparing both CNN and SVM, CNN performs better classification 

accuracy of 94.06% than SVM, it reveals good translation invariance. Subsequently, the 

spectrogram images attained by assessing SEMG signals which is used as an image to 

Convolutional Neural Networks. 

Sezgin et al. [20], describes that EMG signal was analyzed using bispectrum (higher order 

spectra). The binary class EMG dataset (normal action or aggressive action) was taken from 

UCI machine learning repository. First they analyzed EMG signals based on bispectrum and 

after that QPCs of each EMG segment was calculated. Next, the features of the analyzed EMG 
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signals were put into learning machines classifier in order to classify the EMG signals as either 

belonging to normal activity or aggressive activity. The performance comparison was based on 

artificial neural networks, linear discriminant analysis, logistic regression, support vector 

machine, and an extreme learning machine classifiers. The train-test ratio for ELM was 

randomly selected as 50:50 from the features extracted using EMG data. But, ELM is more 

efficient and gives higher classification accuracy of 99.75% as compared to conventional 

learning machines. 

Mishra et al. [21], demonstrates the improved EMD (empirical mode decomposition) method 

in which traditional EMD technique followed by median filter to remove the impulse noise 

from intrinsic mode functions. Amplitude modulation bandwidth, spectral band power, 

frequency modulation bandwidth, and first derivative of instantaneous frequency are the 

features extracted from improved IMFs for the classification of ALS affected EMG signals and 

Normal EMG signals.  

Jana et al. [23], discussed the discrimination of aggressive actions from normal actions based 

on ANFIS (adaptive neuro-fuzzy inference system). In this work, discrete wavelet transform is 

used for the extraction of features from EMG signals. The EMG signals decomposed using 

DB-4 (Daubechies) wavelet with level 5 and extracts the coefficient approximation. 

Approximate coefficients from the signals were used as input to the Adaptive Neuro Fizzy 

Inference System to classify the physical activities. They used the training testing ratio as 

70:30. The classification accuracy of proposed method using features was found to be 98% for 

binary class problem.  

Alaskar et al. [22], presented a novel approach in which three convolutional neural networks 

are assessed using the two time-frequency illustrations. The spectrogram and scalograms 

images are produced from surface EMG signals as the input dataset of CNNs. From the 

analysis, it can be proven that EMG signal representation affects the performance of CNNs. 

Time-frequency images are used as the input dataset to the convolutional neural network in 

order to distinguish between normal and aggressive action. As a result, this algorithm achieved 

the accuracy of 94.61% for a binary class problem. 

Classification of physical actions as normal and aggressive actions using bispectrum analysis 

of an EMG signal. QPCs (quadratic phase coupling) are extracted and fed into the developed 

artificial neural network and the acquired accuracy of 86.25% is described in [27].  

Turlapaty et al. [24], proposed an improved classification framework for the classification of 

multi-classes. The EMG dataset has been taken from ML repository. The dataset is composed 

of 20 physical activities i-e 10 normal actions and 10 aggressive actions. The ten normal actions 
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includes bowing, hand shaking, hugging, clapping, etc. whereas the ten aggressive actions 

includes elbowing, hammering, headering, slapping, etc. The classification framework 

includes probabilistic neural network and subspace KNN. The features are extracted from 

different modalities includes time domain, inter channel correlation, improved frequency 

moment based features, and local binary patterns. After that, sequential forward feature 

selection technique is used to lessen the dimensions. The classification is performed using 

multiple classifiers like subspace KNN, probabilistic neural network, cubic SVM, gaussian 

SVM, functional KNN, Bagged trees and LDA with the selected subset of features. But, 

subspace KNN gives highest accuracy of 93.91% for 20 physical actions.  

Sukumar, et al. [25], performs identification of ten normal physical activities like bowing, 

clapping, walking, waving, jumping, etc. of sEMG signal based on variational mode 

decomposition for the analysis of musculoskeletal syndrome. VMD decomposes the signal into 

several modes. These modes are used for the extraction of statistical features like coefficient 

of variance, zero crossing rate, standard deviation, entropy, mean and negentropy. Next, the 

extracted features are put in to multi class least square support vector machine with RBF kernel 

for the discrimination of 10 normal activities and the system achieved an accuracy of 98.17% 

as compared to existing methods.  

Subasi, et al. [27], proposed an EMG pattern recognition system for the exoskeleton robot 

control and rehabilitation purpose. In this study, multi-scale principal component analysis is 

used for the de-noising of various EMG signals. The discrete wavelet transform based 

statistical features includes mean absolute value, Mean power, Standard deviation and mean 

absolute ratio have been extracted. The extracted features are then fed into the SVM with 

gaussian kernel. The experimental results shows that the proposed system got an accuracy of 

92.27% for 10 normal classes.  

Sravani, et al. [29], discussed an extreme learning machine (ELM) classifier based on flexible 

analytic wavelet transform (FAWT) for the classification of multi-class problem. FAWT 

decomposes EMG signals into eight sub bands. The following features includes negentropy, 

mean absolute value, variance, modified mean absolute value, Tsallis entropy, simple square 

integral, waveform length, integrated EMG are extracted from each sub band. After that these 

features are fed into the ELM classifier for the identification of 10 normal activities and the 

proposed algorithm achieves an accuracy of 99.36%.  

Demir et al. [28], discussed another approach in which time-frequency Image is utilize as an 

input to pre-trained convolutional neural networks. Deep feature extraction is performed using 

Alex Net and VGG-16 whereas SVM is used for the classification of EMG based Physical 
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activities. The highest accuracy of 99.04% for 10 normal activities includes bowing, 

handshaking, clapping, standing, seating, waving, jumping, hugging and walking etc. is 

achieved by the deep feature concatenation of fully connected layers of both Alex Net and 

VGG-16. 

Table 3-1: Literature review summary of features extraction and classification techniques 

 

 

Year Author Methodology No. of 

classes 

accuracy 

IEEE 

(2019) 

Turla paty et 

al. [25] 

EMG signal segmentation->Feature extraction-

>concatenation->feature selection-

>classification 

Feature extraction: 

TD Statistics, Inter channel correlation, Log 

spectral moments, Burg spectral features, LBP 

Features 

20 PNN->93% 

sKNN-> 

94% 

IEEE 

(2018) 

Sukumar et 

al. [26] 

EMG Signal decomposition->feature extraction 

of modes->classification (MC-LS-SVM with 

RBF kernel) 

Feature extraction: 

Entropy, Coefficient of variation, Mean, 

Negentropy, Zero crossing rate, Standard 

deviation 

10 

normal 

98.17% 

2019 Saravani et 

al. [30] 

FAWT->Feature extraction->ELM classifier 

Feature extraction: 

IEMG, MAV, MAV1, SSI, VAR, Negentropy, 

Tsallis entropy, Waveform length 

10 

normal 

99.36% 

 

IEEE 

(2017) 

Sahenbegov

ic et al. [27] 

Bispectrum analysis of EMG signal to extract 

non-linear interactions-> analyze QPCs in order 

to detect and distinguish signal non linearity-

>estimation of QPCs->ANN 

2 86.25% 

IEEE 

(2017) 

Jana et al 

[24] 

DWT->ANFIS 2 98% 
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2015 Anil kumar 

et al [22] 

EMD->Feature extraction->classification(LS-

SVM) 

Feature extraction: 

Mean frequency estimation, Singular values 

computation 

2 99.03% 

 

2019 Demir et al. 

[29] 

Spectrogram->Feature extraction->Deep feature 

concatenation->classification(SVM) 

Feature extraction: 

Alex-net, VGG-16 

2 99.04% 

98.65% 

2012 Sezgin et al 

[21] 

Bispectrum analysis-> QPC->ELM classifier 2 99.75% 
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CHAPTER 4: METHODOLOGY 

In our proposed methodology, we stated the problem of Multi-class classification of physical 

activities which is based on the information of C-channels of sEMG signals. The proposed 

methodology, in this regard, is divided into pre-processing of RAW sEMG signals, feature 

extraction, feature concatenation and classification into M-classes. The system level flow 

diagram representing the proposed strategy is presented in Figure 4-1. 

 

Figure 4-1: System flow diagram of proposed methodology 

4.1    Dataset Information 

This EMG data of Physical Activities has been taken from UCI machine learning repository 

[45]. The table 4-1 shows the class summary of this dataset. The details of dataset have been 

discussed in the results section. 

Table 4-1: Class Information of UCI ML Dataset 

Physical Activities 

Normal Aggressive 

Bowing Elbowing 

Handshaking Front-kicking 

Hugging Hamering 

Jumping Headering 

Running Kneeing 

Seating Pulling 

Standing Punching 
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Walking Pushing 

Waving Side-kicking 

Clapping Slapping 

 

4.2    Data Preprocessing      

4.2.1 Segmentation 

The first step in our proposed methodology is to pre-process and segment out each channel of 

sEMG signal. In order to enhance the interclass variation between aggressive and normal 

actions W-length of windows has been taken. The length “W” of the window is controlled by 

the sampling frequency through which the concerned signal is acquired. Note that after 

segmentation now each C-channel sEMG signal is converted to Ns samples of length W having 

C-channels. Now feature extraction is performed on each of the sub-windows from every 

pattern. 

Each signal is of approximately 10s with fs as 1kHz. The segmentation of signal is based on 

window (Rectangular) length of 1 second with an overlap of 25 milli seconds as shown in 

Figure 4-2. 

 

Figure 4-2: A segment of an EMG signal 

For interclass variation (all aggressive and all normal) mean EMG signals are shown below.  
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Figure 4-3: Mean Signal of Normal and Aggressive Action 

4.3    Feature Extraction 

The feature vector for our proposed methodology contains signatures from various modalities 

including Time Domain, Frequency Domain (Power spectral density and Log moment of 

Fourier spectra) and Inter-Channel Correlation and Covariance. In the subsections we elaborate 

on these features 

4.3.1 Time Domain features 

One of the most frequently used signatures is time domain analysis of an EMG signal. This 

modality shows that how a signal changes its parameters or shape with time as presented in the 

Figure 4-4.  

 

Figure 4-4: Time based analysis of an EMG signal 

Following are the time domain features calculated for a surface EMG signal:   

a. Amplitude 

The maximum amplitude of the signal can be expressed as 
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b. Root Mean Square 

The RMS takes the square root of the mean power of an EMG signal for a certain period of 

time. 

 

Whereas, ‘L’ is the segment’s length and ‘x’ is the value of signal amplitude. 

c. Variance 

Variance of an EMG signal is used for evaluating the power of a signal, and it can be stated as  

 

d. Waveform length 

Waveform length states the aggregated variation of the EMG that can point toward the level of 

variation related to the EMG signal [34]. 

 

e. Mean Absolute Value 

This is one of the most common EMG feature, and it is defined as the mean of the integration 

of absolute value of EMG [34].  

 

f. Simple Square Integral 

It is termed as the integration of square values of the amplitude of an EMG signal [34].  

 

g. Zero Crossing 

This counts the intervals that the signal changes its sign from positive to negative [29]. The 

two given contiguous sEMG amplitude samples xk and xk+1 the zero crossing can be 

calculated as ZC=∑ f(x) 

 

h. Slope Sign Change 
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This counts the intervals that the slope of the signal changes its signs [34]. Given three 

contiguous amplitude samples of an sEMG xk-1, xk, xk+1, the amount of slope sign varies is 

given by SSC=∑ f(x), where 

 

i. Willison Amplitude 

It is the number of counts for each change of the amplitude of sEMG signal between two 

contiguous samples that go beyond a defined threshold [34]. 

 

j. Integrated EMG 

Integrated EMG (IEMG) is for the most part utilize as a pre-activation record for muscle action. 

It is the area under the curve of the EMG signal [34]. IEMG can be defined as the integration 

of the absolute values of the amplitude of an EMG. 

 

k. Log detector 

It is a characteristic of an EMG that is used for the estimation of the exerted force on muscles 

[34]. 

 

l. Myopulse percentage rate 

This rate is the average of the output of Myopulse in which the absolute value of EMG signal 

go beyond the given threshold [34]. 

 

Where, x is the wavelet’s coefficient, L is the coefficient’s length and T is the threshold value.  

m. Difference absolute standard deviation value 

It is another commonly used feature of an EMG signal [34]. 

 

n. Enhanced Mean Absolute value 

It is a feature that is used for the estimation of the exerted force [34].  
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o. Enhanced Wavelength 

In enhanced wavelength the parameter p is utilize to recognize the impact of sample present in 

the signal. A more prominent number of p is utilized for 20% to 80% of sections of enhanced 

mean absolute value and enhanced wavelength. This is because by support the information 

content at the intermediate region, more profitable data can be obtained. In this way, the worth 

of features can be enhanced. Besides, it is seen that EMAV and EWL were the extension of 

MAV and WL with some sort of changings, and hence no more extra computational time is 

required during assessment [34] 

 

Where, x is the coefficient of wavelet, T is the value of threshold and L is the coefficient’s 

length.  

p. Modified Mean Absolute Value 

It is an expansion of mean absolute value feature by using the weight window function [34]. 

 

q. Modified Mean Absolute Value 2 

This is another expansion of mean absolute value feature by using the continuous weight 

window function [34]. 

 

Where, x is the coefficient of wavelet and L is the coefficient’s length. 

r. Maximum Fractal Length 

This is a newly established technique for capturing low-level muscle activation. When the 

smallest scale is set to one, the definition of MFL takes a modified form of waveform length 

by combining the root mean square and logarithm functions [35] 
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Average amplitude change is the approximation of the waveform length feature, excluding the 

mean of wavelength [36].  

 

t. Kurtosis 

This is a time domain based feature that defines the shape of a signal. It is the statistical 

technique that used to define the distribution and a characteristic that isolates the tendency of 

peak data [37]. 

u. Skewness 

This is another one of the time domain feature of an EMG signal. It is expressed as the 

predisposition of data distribution. The data information is said to have a normal distribution 

when the position of the mean value, the median value and mode value on a line within the 

curve if these values are not found in one line within the bend, happens the skewness [37].  

After calculating the above mentioned time domain features for each channel, all features are 

grouped to form a feature vector f(TDS). As the number of channels are eight so 8x21 will 

gives us the feature vector of length 168. 

4.3.2 Inter Channel Statistics (Correlation and Covariance) 

The figure 4-5, figure 4-6 presents some similar patterns between the channels of both 

aggressive and normal activities. In this way, the correlation and covariance between the 

channels has great impact on the variations between the classes. 
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Figure 4-5: Channel visualization of a Normal activity 

 

Figure 4-6: Channel visualization of an Aggressive activity 

The subgroup of features based on maximum cross correlation and covariance [24] among the 

corresponding segments of two channels a and b of an EMG signal and is defined as 

 
     lslsCc ba

ba ,max, 
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The above equation represents the maximum correlation between the segments of two channels 

sa and sb of an EMG signal and is shown in Figure 4-7. The Table 4-2, represents the pairing 

of different channels. 

 

Figure 4-7: Graphical representation of Inter channel correlation 

Table 4-2: Representation of channel-wise pairing 

Channel-wise pairing 

(1,2) (1,3) (1,4) (1,5) (1,6) (1,7) (1,8) 

(2,3) (2,4) (2,5) (2,6) (2,7) (2,8) 

(3,4) (3,5) (3,6) (3,7) (3,8) 

(4,5) (4,6) (4,7) (4,8) 

(5,6) (5,7) (5,8) 

(6,7) (6,8) 

(7,8) 

 

As we have 8 channels so we can get 56 values after performing the maximum correlation and 

covariance between corresponding channels i.e. 28 values for the correlation and 28 values for 

the covariance between the channels then these features are assembled into feature vector 

f(ICS). 

4.3.3 Logarithm of moments of Fourier spectrum 

The frequency based moments and their ratios by taking their logarithms are calculated for the 

EMG segments based on [38]. Fourier transform of a segment of each channel of an EMG 
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signal was computed and is shown in figure 4-8. After that, they took the square of the 

magnitude frequency spectrum. The i-th frequency based moment is defined as [39]  

The total 17 log moment ratios were calculated for each channel described in the table 4-3. 

Hence, 17x8 gives us total 136 values of Log moment based features of each segment of each 

channel of an EMG activity. 

 

Table 4-3: Log moment of Fourier spectra of each channel 

LOG MOMENT RATIOS 

ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 

𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 𝑓𝑗(1) 

𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 𝑓𝑗(2) 

𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 𝑓𝑗(3) 

𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 𝑓𝑗(4) 

𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 𝑓𝑗(5) 

𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 𝑓𝑗(6) 

𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 𝑓𝑗(7) 

𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 𝑓𝑗(8) 

𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 𝑓𝑗(9) 

𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 𝑓𝑗(10) 

𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 𝑓𝑗(11) 

𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 𝑓𝑗(12) 

𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 𝑓𝑗(13) 

𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 𝑓𝑗(14) 

𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 𝑓𝑗(15) 

𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 𝑓𝑗(16) 
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𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 𝑓𝑗(17) 

  

For the C channels, the features mentioned in above equations are combined into the feature 

vector f(LMF).  

 

                                        (a)                                                                              (b) 

Figure 4-8: Frequency based analysis of an EMG signal (a) FFT spectrum of clapping activity (b) FFT 

spectrum of slapping activity 

 

 

                                  (a)                                                                              (b) 

Figure 4-9: Spectrogram view of an EMG signal (a) STFT of clapping activity (b) STFT of slapping 

activity 

4.3.4 Power Spectral Density (Burg’s Algorithm) 

The spectral band power signatures were proposed for the identification of an EMG signals in 

previous studies [40]. In the proposed technique, the spectral features were extracted. For each 

and every channel of an EMG signal, supposing a model order 4, the model coefficient {ai} are 

estimated using the Burg’s estimation discussed in [41].  



    
 

33 

Finally, the spectral band power features are evaluated by splitting the spectrum into Nb bands 

and calculating the corresponding energy in those bands as shown in Figure 4-10.  

 

Figure 4-10: Division of frequency spectrum into N bins for calculating the energy response of each bin 

And the feature vector created of these bins for all bands and channels. Hence the features 

extracted from above method are combined into feature vector f(PSD).  

4.4    Feature Concatenation 

After performing the extraction of features of the segment of each channel we need to 

concatenate the features from various modalities to make a single feature vector.  

feature vector = [f(TDS),  f(ICS),  f(LMF),  f(PSD)] 

As a result, the length of concatenated feature vector will be of 440. 

Table 4-4: Feature count from different modalities 

Feature characteristics Count 

f(TDS) 168 

f(ICS) 56 

f(LMF) 136 

f(PSD) 80 

Total features 440 

4.5    Classification 

Classification of physical activities are performed by means of K-Nearest Neighbor (KNN) 

and Support Vector Machine (SVM). 

4.5.1 Support Vector Machine Classifier (SVM) 
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A support vector machine (SVM) is a supervised machine learning algorithm which is used 

for both regression and classification problems. SVM is a fast and reliable classification 

technique that performs well with a limited amount of data to analyze. Herein, each data sample 

is plotted as a point in an N-dimensional space whereas N indicates the number of dimensions. 

For the classification of data SVM finds the hyperplane that does not only separates the two 

classes but also maximizes the margin (i-e the distance between the margin and the closest data 

point of each class). Figure 4-11 shows how the algorithm identifies the best hyper-plane [42]. 

In Figure 4-11-(a), hyper-plane B is selected as the right hyper-plane as it divides the two 

classes better. In Figure 4-11-(b), all the hyper-planes (A, B and C) are separating the classes 

accurately. In this case the hyper-plane having the maximum margin from the closest data point 

will be selected, therefore, hyper-plane C will be preferred. In figure 4-11-(c), apparently, B 

may be a way better classifier but SVM selects the hyper-plane that classifies the classes 

precisely earlier to maximizing border. Later, the right hyper-plane is A, as it has no 

classification error. SVM can also ignore the outliers (noisy data points) and maximize the 

margin as shown in Figure 4-11-(d). Until now, we have only visualized the linear kernel but 

SVM can also solve a linearly non-separable problem using complex kernels e.g. radial basis 

function (RBF) kernel, polynomial of higher degree, Gaussian, Sigmoid, hyperbolic tangent, 

Laplace RBF etc. Figure 4-11-(e) shows a circular hyperplane for the data that is not linearly 

separable. For physical actions categorization, linear SVM is used to project ensemble features 

to a bigger dimensional space and then finding the best hyperplane. 

 

                                     (a)                                                                (b)  

 

                                     (c)              (d) 

https://monkeylearn.com/machine-learning/
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(e) 

Figure 4-11: Hyper-plane examples for different data using SVM [42] 

In order to classify the normal actions the SVM performs better classification as compared to 

KNN. The hyper parameters of SVM includes the ‘Quadratic’ kernel function, ‘One vs. all’ 

multi-class method and 5-fold cross validation is used in this study.                   

4.5.2 K- Nearest Neighbor Classifier (KNN) 

K-NN is one of the foremost simple and easy-to-implement supervised machine learning 

algorithm used for both classification and regression problems. It is widely used to recognize 

patterns, intrusion detection and data mining. According to this classifier the value of data point 

is determined by the data points around it or based on the majority voting principle. The 

mechanism of KNN is to find the distances (i-e, Euclidean, Manhattan, Minkowski, hamming 

etc.) between a new data point and all the neighbor examples in the training data, selecting the 

specified number neighbor examples (K) closest to the new data point, then votes for the most 

frequent label in classification problems. Figure 4-12-(a), represents the two class data and 

need to find k closest data point in order to classify new data point. Figure 4-12-(b) shows the 

calculation of distance of new data point with the k nearest data points. Figure 4-12-(c) 

indicates three nearest neighbors in which two data points are from triangle class and one data 

point is from star class. Hence new data point with be classify as triangle class because triangle 

class has maximum votes. For regression problems, KNN takes the mean of k nearest data 

points.  
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(a) Initial data                                                         (b) Calculate Distance 

 

(c) Finding neighbors and voting for labels 

Figure 4-12: KNN Classification example [43] 

In our proposed methodology, SVM and KNN are used for the classification of physical 

activities. The hyper parameters of KNN includes the value of K=1 whereas the distance metric 

is set as Manhattan distance which is also known as city block distance. It is the sum of absolute 

differences between points across all the dimensions. Following is the generalized formulae 

for an n-dimensional space: 

𝐷𝑚 = ∑|𝑝𝑖 − 𝑞𝑖|

𝑛

𝑖=1

 

4.5.3 Hybrid Classifier for 20 class problem 

In our proposed methodology, we ensemble both SVM and KNN classifier in hierarchical 

manner to classify the 20 different physical actions. First of all, we trained three different 

models using SVM and KNN classifiers. The Binary class model is trained using KNN which 

is based on 440 features, as it classifies the data into either normal or aggressive class. Another 

SVM based model uses the features from different modalities (i-e; 440 number of features) in 

order to classify the 10 normal actions. The KNN based model uses the subset of features (i-e 
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272 features from Inter channel correlation and covariance, Log moment of Fourier spectra and 

power spectral density domains) for the classification of 10 aggressive activities. The workflow 

of hybrid classifier is shown in figure 4-13. 

 

Figure 4-13: Multi Classification using Hybrid classifier 
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CHAPTER 5: EXPERIMENTAL RESULTS 

In this chapter, the performance of the proposed hybrid classification algorithm is evaluated 

using MATLAB 2020a. We perform experimentation based on different subset of features and 

over all features using SVM and KNN classifiers separately. It is observed from the 

experimentation that SVM performs better for categorizing normal activities whereas KNN 

gives better classification results for aggressive activities. As a result, both SVM and KNN are 

ensemble to perform classification of 20 actions. 

5.1   Dataset 

The dataset of interest is taken from machine learning repository.  

5.1.1 UCI Machine learning repository 

This EMG data of Physical activities has been taken from UCI machine learning repository 

[45]. These EMG signals have been recorded using Delsys EMG apparatus on 4 subjects (3 

males and 1 female) while they performed 20 different physical actions including 10 normal 

activities and 10 aggressive actions as mentioned in table 5-1. Each individual repeats the 

physical activity 15 times. There were eight EMG electrodes positioned on biceps and triceps, 

thighs and hamstrings. Each channel contains approximately 10,000 values. 

Table 5-1: Summary of Physical Action Dataset 

Data set description 

Subjects (3 males, 1 female) 

Number of electrodes 8 electrodes, 8 channels 

Ch1- right bicep 

Ch2- right triceps 

Ch3- left bicep 

Ch4- left triceps 

Ch5- right thigh 

Ch6- right hamstring 

Ch7- left thigh 

Ch8- left hamstring 

Sampling frequency 1000Hz 
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Number of classes 10 Normal Actions  

10 Aggressive Actions 

Length of EMG 

signals 

~ 10000 samples 

5.2   Performance Measures  

With the aim of, validate the performance of our proposed methodology we have computed 

various parameters from confusion matrix including precision, sensitivity, specificity, kappa 

coefficient, false positive rate, f-measure etc. The details of these parameters is discussed in 

the next subsections as follows: 

5.2.1 Confusion Matrix 

Confusion Matrix is an easiest way for measuring the performance of a classifier whereas the 

output can be of two or more classes. It is basically a table that gives the information of “actual 

class” vs. “predicted/ class”. It contains the following parameters called as “True positive 

(TP)”, “True Negative (TN)”, “False positive (FP)”, ” False Negative (FN)” as shown in Figure 

below 

 

Figure 5-1: Confusion Matrix [44] 

TP specifies the number of samples the classifier predicted positive were actually positive 

TN specifies the number of samples the classifier predicted negative were actually negative 

FP specifies the number of samples the classifier predicted positive were actually negative 

FN specifies the number of samples the classifier predicted negative were actually positive 

5.2.2 Sensitivity 

Sensitivity is known as the true positive recognition rate: (i-e, the number of samples the 

classification model predicted were positive that were actually positive). Mathematically, it 

can be calculated as follows 
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

It is also termed as recall. 

5.2.3 Specificity 

Specificity is known as the true negative recognition rate: (i-e, the number of observations the 

model predicted were negative that were actually negative). Mathematically, it can be 

calculated as follows 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

5.2.4 Miss classification rate 

Miss classification rate is defined as the overall, how often is the classifier incorrect. It is also 

known as false positive rate (FPR). Mathematically, it can be calculated as   

𝑀𝐶𝑅 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

5.2.5 Precision 

Precision is defined as the when a positive value is predicted, how often is the prediction 

correct. Mathematically, it can be calculated as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

5.2.6 F measure 

F measure is the harmonic mean of precision or recall 

𝐹𝛽 =
(1 + 𝛽2)(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)(𝑟𝑒𝑐𝑎𝑙𝑙)

(𝛽2)(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
  

𝜷 is commonly 0.5,1 or 2 

5.2.7 Cohen’s Kappa 

Cohen’s Kappa coefficient calculates the dependability of two raters that are rating the same 

thing, adjusted for how frequently that the raters may agree by chance. The range of this 

coefficient is between 0-1. It is used for measuring both multi-class and imbalanced class 

problems. 

𝜅 =
𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
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According to above equation, Po is the likelihood of agreement whereas Pe shows the likelihood 

of random agreement. 

5.3   Result and Discussion 

This section details with the experimental structure and analysis of the proposed methodology 

for classification of 10 aggressive actions and 10 normal actions individually and as a combined 

20 class problem. The first step in our proposed demands the segmentation of signal into 2 

seconds segments having 25% overlap. Thus each activity can be subdivided to get a healthy 

sample space, having 600-900 segments which depends on signal length. The segment from 

this sample space is subjected to feature extractor, which extracts a feature vector of length 440 

as discussed in section 4.4. Finally, the feature vector is fed to KNN, SVM and hybrid classifier 

for analysis. Furthermore, to perform evaluation at feature level, we have used each modality 

and their combination to calculate the accuracy for KNN and SVM classifiers to choose the 

best available feature subset. 

5.3.1 Classification Results 

The classification accuracy of different physical actions using simple K-Nearest neighbor. 

KNN calculates accuracy for all 440 features, which are composed up of various modalities 

includes time domain features (TDS), Inter channel correlation and covariance (ICS), Log 

moment of Fourier spectra (LMF) and power spectral density (PSD) whereas the value of k is 

from 1 to 10 for the different values of k as shown in Table 5-2. In Table 5-2 bold values shows 

that when the value of k is equal to 1 than KNN gives the maximum accuracy for 10 normal 

actions which is equal to 97.929%, for 10 aggressive actions accuracy is equal to 87.780% and 

for 20 classes the accuracy is 92.710%. It concludes that we should keep the value of ‘k’ equal 

to one in order to achieve the highest classification accuracy. 

Table 5-2: KNN based classification of physical actions considering all features 

All features 

(Channel wise) 

10 Normal actions 10 Aggressive actions All 20 classes 

K=1 97.929 87.780 92.710 

K=2 96.894 86.965 90.759 

K=3 97.515 85.132 91.375 

K=4 96.687 86.558 91.170 

K=5 96.066 85.336 90.143 
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K=6 96.480 86.150 90.246 

K=7 95.652 84.317 89.630 

K=8 96.273 84.521 88.193 

K=9 94.824 84.114 87.577 

K=10 93.581 83.095 86.659 

The classification accuracy of different physical actions using K-Nearest neighbor. This time 

the value of k=1 for different subsets of features is shown in Table 5-3. In Table 5-3 the subset 

of ICS, LMF, PSD feature vector, a combination of features from time domain statistics, inter 

channel correlation and covariance and power spectral density, gives the maximum 

classification accuracy of 98.136% for 10 different normal activities. The same subset gives 

the accuracy of 89.613% for 10 different aggressive activities whereas by considering all 

features from TDS, LMF, ICS and PSD of each channel we achieve maximum classification 

accuracy of 92.710% for 20 different activities. 

Table 5-3: 1-NN based classification for physical activities with different set of features 

Subset of features 10 normal 10 aggressive All 20 classes 

All features (Channel wise except 

TDS(Mean wise)) 

97.722 89.409 92.710 

ICS+LMF( Channel Wise) 97.515 85.743 90.759 

ICS+LMF+PSD 98.136 89.613 91.991 

ICS+PSD 97.929 85.132 91.478 

LMF+PSD 97.722 86.558 91.478 

TDS+ICS 96.273 86.761 90.965 

TDS+ICS+LMF 97.722 88.798 91.273 

TDS+ICS+LMF (TDS Mean Wise) 97.308 86.558 92.094 

TDS+ICS(TDS Mean Wise) 85.921 80.040 79.979 

TDS+ICS+PSD 96.687 86.965 91.375 

TDS+ICS+PSD(TDS Mean Wise) 92.132 85.539 88.090 

TDS+LMF 96.894 85.336 89.835 

TDS+LMF(TDS Mean Wise) 97.101 87.169 89.322 

TDS+LMF+PSD 97.722 86.965 87.782 

TDS+LMF+PSD(TDS Mean Wise) 96.687 87.780 89.014 

TDS+PSD 95.445 83.095 89.219 

TDS+PSD(TDS Mean Wise) 90.062 78.615 83.059 
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The classification accuracy of different physical actions using linear kernel of Support vector 

machines (SVM) and based on different features of subset is shown in Table 5-4. Table 5-4 

shows that by taking the all features of each channel for the classification of 10 normal actions 

achieves a maximum accuracy of 99.585% for 10 normal activities whereas for the 

classification of 10 aggressive activities KNN performed better as compared to SVM as it gives 

the accuracy of 86.761%. For the classification of 20 different classes, first takes mean of all 

eight channel and then extract 21 Time domain features and concatenate it to the features 

extracted from ICS, LMF and PSD channel wise. It achieves an accuracy of 92.299%. 

Table 5-4: SVM based classification of physical actions for different set of features 

 10 Normal  10 Aggressive All 20 classes 

All features(CW) 99.585 86.761 91.067 

All features(TDS MW) 98.757 84.725 92.299 

ICS+LMF( Channel Wise) 98.343 79.633 89.630 

ICS+LMF+PSD 98.964 84.317 91.478 

ICS+PSD 96.066 83.299 87.577 

LMF+PSD 98.136 75.967 87.371 

TDS+ICS 98.343 81.466 91.273 

TDS+ICS+LMF 99.378 85.743 91.683 

TDS+ICS+LMF (TDS Mean Wise) 97.308 82.892 89.527 

TDS+ICS(TDS Mean Wise) 91.304 67.006 77.310 

TDS+ICS+PSD 98.343 86.150 91.170 

TDS+ICS+PSD(TDS Mean Wise) 96.066 82.077 88.193 

TDS+LMF 98.550 82.484 89.014 

TDS+LMF(TDS Mean Wise) 98.136 76.171 85.318 

TDS+LMF+PSD 98.343 84.114 90.759 

TDS+LMF+PSD(TDS Mean Wise) 98.550 79.226 88.706 

TDS+PSD 98.136 82.688 89.014 

TDS+PSD(TDS Mean Wise) 96.066 74.338 84.702 

The classification accuracy for physical actions using SVM’s polynomial kernel of order 2 

based on different subsets of features is shown in Table 5-5. Polynomial kernel gives minimum 

accuracy for 10 normal activities, 10 aggressive activities and 20 classes for different feature 

subsets as compared to 1-NN and SVM with linear kernel as shown in above tables. 
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Table 5-5: Polynomial SVM based classification with different set of features 

 10 Normal  10 Aggressive All 20 classes 

All features(CW) 96.273 86.558 88.501 

All features(TDS MW) 96.480 87.169 89.014 

ICS+LMF 97.101 84.725 88.398 

ICS+LMF+PSD 96.480 85.743 89.014 

ICS+PSD 90.890 83.706 82.751 

LMF+PSD 94.409 82.484 88.295 

TDS+ICS 97.101 86.965 88.603 

TDS+ICS+LMF 96.687 86.354 88.809 

TDS+ICS+LMF (TDS Mean Wise) 96.687 83.706 88.911 

TDS+ICS(TDS Mean Wise) 90.476 73.727 79.568 

TDS+ICS+PSD 96.894 85.743 88.603 

TDS+ICS+PSD(TDS Mean Wise) 94.616 84.114 86.960 

TDS+LMF 96.273 83.706 87.474 

TDS+LMF(TDS Mean Wise) 96.066 82.077 87.679 

TDS+LMF+PSD 96.687 83.910 87.885 

TDS+LMF+PSD(TDS Mean Wise) 96.273 82.892 88.295 

TDS+PSD 96.480 81.059 86.447 

TDS+PSD(TDS Mean Wise) 92.546 74.541 82.956 

 

On the basis of above experimentations, it is observed that 1-NN performs better classification 

for aggressive actions as compared to SVM whereas the SVM gives better classification results 

for normal activities as compared to KNN. In order to perform classification of 20 class 

problem, SVM and KNN are ensemble to form a hybrid classifier which is already discussed 

in section 4.5.3.  

5.3.1.1 Confusion matrix (Binary class): 
The confusion matrix is obtained by performing 80:20 split on 974 observations of binary class 

(Normal and Aggressive) using KNN classifier (whereas the value of K=1) with 5-fold cross 

validation on considering features from all modalities. The resultant model has been trained on 

780 samples whereas has been tested on 194 samples. Hence, the model gives us the average 

testing accuracy of 100% as shown below. 
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Figure 5-2: Confusion Matrix of binary class using 1-NN 

5.3.1.2 Confusion matrix (10 Normal classes): 
The confusion matrix is obtained by performing 80:20 split on 483 observations of 10 normal 

physical activities using SVM classifier with 5-fold cross validation on considering features 

from all modalities. The resultant model has been trained on 393 samples whereas has been 

tested on 90 samples. Hence, the model gives us the average testing accuracy of 98.89% as 

shown below. 

 

Figure 5-3: Confusion Matrix of 10 normal actions using SVM 

Now, the classification of 10 normal activities performed with the same above mentioned 

parameters but using optimized SVM it improves the average accuracy up to 100%. 



    
 

46 

 

Figure 5-4: Confusion Matrix for 10 Normal activities using optimized SVM 

5.3.1.3 Confusion matrix (10 Aggressive classes): 
The confusion matrix is obtained by performing 80:20 split on 491 observations of 10 

Aggressive actions using KNN classifier (whereas the value of K=1) with 5-fold cross 

validation on considering the subset of features from the modalities include Inter channel 

statistics, Log moment of Fourier spectra and Power spectral density. In this classification, 

Time domain features are not considered. The resultant model has been trained on 399 samples 

whereas has been tested on 92 samples. Hence, the model gives us the average testing accuracy 

of 84.78% as shown below. 

 

Figure 5-5: Confusion Matrix of 10 aggressive activities using 1-NN 
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Now, the classification of 10 aggressive activities performed with the same above mentioned 

parameters but using optimized KNN it improves the average accuracy up to 97.771% by 

running the script 20 times. 

 

Figure 5-6: Confusion matrix of 10 aggressive activities using optimized KNN 

The summary of performance parameters of binary, 10 normal actions and 10 aggressive 

actions is discussed in the following Table 5-6. 

Table 5-6: Classification results statistics for different classes 

Class Testing 

acc. 

Training 

acc. 

Sen Spec Precision FPR F1-score kappa 

10 normal  0.9889 99.5% 0.9889 0.9988 0.9900 0.0012 0.9889 0.9383 

10 

aggressive 

0.8478 100% 0.8505 0.9831 0.8564 0.0169 0.8466 0.1546 

2 class 1.00 100% 1.00 1.00 1.00 0 1.00 1 

 

5.3.1.4 Confusion matrix (20 classes) Hybrid model: 
The confusion matrix is obtained by testing 194 observations of 2 class using KNN classifier 

(whereas the value of K=1) with 5-fold cross validation on considering the features from all 

different modalities. As a result, optimized KNN classify the samples into either normal class 

or aggressive class. The samples classified as Normal are fed into the optimized SVM classifier 

(trained using all features) whereas the samples classified as aggressive are fed into the 

optimized KNN classifier which are trained on the subset of features from the modalities 

include ICS, LMF and PSD. Hence the 20 class classification is performed by training two 
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different classifiers in hierarchy. The model gives us the average testing accuracy of 99.015% 

as shown below. 

 

Figure 5-7: Confusion matrix of 20 physical actions using hybrid classifier 

The following Table 5-7 represents the performance parameters of multi-class classification 

problem. The average accuracy is taken by running the script 20 times. 

 

Table 5-7: Parameter calculations for 20 class 

Class Avg acc. Sen Spec precision FPR F1-score kappa 

20 class 98.97% 0.9906 0.9995 0.9906 5.4651e-04 0.9906 0.8915 

The performance comparison of our proposed method with the latest research work is shown 

in Table 5-8, Table 5-9 and Table 5-10. The obtained features from different modalities for 

each segment gives a good response to the classification of 20 physical actions of sEMG. It 

provides robustness to the variation between classes. This result shows that the hybridization 

of SVM and KNN models provides better performance for automatic identification of surface 

EMG signals.  

This table shows that by increasing the feature set from different modalities in our proposed 

framework improves the accuracy of 20 EMG based physical actions from 93.91% to 98.97%.  

Table 5-8: Performance comparison of Hybrid classifier with for 20 class  

Author Method and classifier Accuracy. (%) 

20-class 



    
 

49 

Turla paty et 

al, 2019 [24] 

Feature extraction (time domain, Inter channel correlation, 

LMF, PSD, LBP), feature selection (SFS), PNN and sKNN 

classifier  

93.91% 

Proposed 

methodology 

Segmentation, Feature extraction(Time domain, Inter channel 

correlation and covariance, LMF, PSD), SVM and KNN 

classifier 

98.97% 

 

According to below mentioned table, optimized SVM gives better accuracy as compared to 

previous research works along with feature set from different modalities 

 

Table 5-9: Performance comparison of optimized SVM model for the classification of 10 Normal class 

Author  Model and classifier Accuracy (%) 

10-class normal 

Sukumar et 

al, 2018 [25] 

 

Variational mode decomposition (VMD), feature extraction 

(Coefficient of variation, Zero crossing rate, Entropy, 

Standard deviation, Mean, Negentropy,), Multi-Class Least 

Square SVM with RBF Kernel. 

98.17% 

Demir et al, 

2019 [28] 

 

Time frequency image(STFT), deep feature extraction( 

CNN (Alexnet and Vgg-16), SVM classifier and Transfer 

learning 

Alexnet->99.04%  

VGG-16->98.65% 

 

Sravani et al, 

2020 [29] 

 

Flexible analytic wavelet transform (FAWT), feature 

extraction (IEMG, absolute mean, modified absolute mean, 

SSI, Variance, Negentropy, Tsallis_entropy, Waveform 

length), Extreme Learning Machine classifier 

99.36% 

 

Proposed 

methodology 

Segmentation, Feature extraction(Time domain, Inter 

channel correlation and covariance, LMF, PSD), SVM 

100%  

 

 

Our proposed binary class model, split the EMG signal into either aggressive or normal activity 

using 440 set of features. The binary class model gives the maximum accuracy of 100%  

Table 5-10: Performance comparison of KNN model for the binary classification 

Author  Model and Classifier Accuracy (%) 

2 class 
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A. Swetapadma et 

al. [23]. 

2017 

DWT->ANFIS 98% 

H. Alaskar et al. 

[22] 

2018 

Time-frequency representation->CNN  

 

94.61%  

 

A.Kumar et al. [7] 

2015 

EMD->Feature extraction->LS-SVM 

 

99.03% 

Proposed 

methodology 

 

Segmentation, Feature extraction(Time domain, Inter 

channel correlation and covariance, LMF, PSD), SVM 

100%  
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CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1 Conclusion  

In this study, we have proposed a multi class classification framework based on SVM and KNN 

to classify the physical activities utilizing the features extracted from eight channels of the 

surface EMG data. A set of 440 features were extracted from various modalities including the 

time domain, frequency domain moments and the inter channel cross correlation and 

covariance, the mean band power of power spectral density estimates using Burg’s calculation. 

The results show that the SVM performs better for the classification of ten normal classes 

whereas KNN improves the accuracy for the ten aggressive classes. In case of 20 class 

classification, adopting hybrid approach by combining SVM with KNN models improves the 

accuracy especially if the dataset is low. The classification results of proposed method shows 

better performance in terms of accuracy as compared to other existing methods 

6.2 Contribution 

The suggested method can be beneficial for the diagnosis of musculoskeletal disorders by using 

physical activity recognition of surface EMG signals in clinical application.  

Review & comparison of our proposed methodology with the literature and physical activity 

recognition systems. 

6.3 Future Work 

The future plans for this research domain have two significant directions. The primary is to 

investigate deep learning methods or convolutional neural networks to increase the 

classification accuracy. A second direction is to conduct actual experiments to acquire the 

EMG estimations for various applications includes an orthotic exoskeleton for an upper limb 

control, rehabilitation, robot control, and prosthetic arm control need distinguishing physical 

activity of sEMG signals. Finally, the overall goal is to find the best combination of learning 

algorithms and control techniques for upper limb exoskeletons. 
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