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Abstract 

Technology today has revolutionized the world by replacing the manual system with 

automatic ones by deploying artificial intelligence, which enables the system to mimic human 

brain by making wise decisions on the basis of the past experiences. In this research, such computer 

aided design is proposed which is able to distinguish between pneumothorax and normal X-ray 

and also solves the class imbalance issue which is troublesome in most of the machine learning 

classification problems.  Such system will help in minimizing the risk of pneumothorax which is 

a life threatening disease.  The proposed CAD system consists of two modules, i.e. classification 

of chest radiographs as normal or pneumothorax and segmentation model for identifying the 

location of pathology. For pneumothorax classification, firstly existing approaches for class 

imbalance are experimented and after finding out that data-level-ensemble outperforms others, an 

ensemble model is proposed which is actually a model-level-ensemble of multiple data-level-

ensembles. The different models used in this framework are three different CNN architectures 

including VGG-16, DenseNet-121 and VGG-19. These architectures are used as fixed feature 

extractor and support vector machine is used as classifier. The proposed framework is 

experimented on two datasets: SIM ACR Pneumothorax dataset and Random Sample of NIH-

Chest X-ray dataset (RS-NIH). The model has achieved testing score of 86.0% Area under the 

Receiver Operating Characteristic curve (AUC) with 85.17% recall on SIIM dataset, while on RS-

NIH 95.0% AUC with 90.9% Recall is achieved with random split of data and 77.06% AUC with 

85.45% Recall is achieved with patient-wise split of the dataset. Our model has performed very 

well on both the datasets as the AUC achieved on RS-NIH is the best achieved so far, while for 

SIIM dataset, a direct comparison cannot be made as we are the first to use this dataset for 

classification. For identification of area of pathology in the CXRs, a two stage segmentation 

framework is proposed in which the main building block is U-Net architecture with EfficientNet-

B4 encoder. The images and corresponding masks are resized to 256 x 256 and 384 x 384 for 

training the first and second stage respectively, using the SIIM dataset. 84.56% dice score is 

obtained for the segmentation model. Our results prove that the proposed techniques can be 

generalized to any other medical imagining domain classification and segmentation problem. 

Key words: class-imbalance, chest x-rays, classification, deep learning, pneumothorax, 

segmentation.  
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CHAPTER 1: INTRODUCTION 

Technology has revolutionized the world by automating many processes which were 

human dependent earlier. Starting from the minimal device such as calculator to giant machines in 

factory, technology is everywhere. The machines are made to follow the set of 

instructions/commands in order to do the job without human supervision. With more advancement 

in technology Artificial Intelligence came to revolutionize the world beyond human imagination. 

By utilizing AI, the machines are taught to mimic the human brain by learning from experience.  

Like any other real life field, using AI in medical field has also become a topic of interest, and the 

first effort to make a Computer Aided Design (CAD) was made in 1960s. In the field of medicine, 

AI techniques have been deployed in order to automate the detection of several diseases like 

detection of cancer and identifying thoracic pathologies. Automatic detection of chest diseases 

form chest radiographs has become a hot topic and many researchers have contributed in this field 

by proposing several CAD systems. Such systems help the radiologist in identifying the diseases 

in lesser time and also act as a second opinion for the radiologist in making correct decision 

regarding the pathology. However in order to enable such systems to make unsupervised decision, 

transfer learning needs to be done which required large amount of data and it has been observed 

that most medical images dataset are imbalance in nature. So this research presents a CAD based 

automatic diagnosis of Pneumothorax from chest X-rays along with proposing a solution for class 

imbalance issue. 

 

1.1 Motivation 

Pneumothorax is a life threatening diseases which affects the lungs. According to a study 

[1], thoracic trauma is becoming one of the primary cause of death in developing countries. So 

early diagnosis of pneumothorax is important in order to save people from losing their lives. 

Moreover to carefully observe the presence of pneumothorax from chest radiograph is a 

cumbersome task as the area of pneumothorax range from small line to whole lung area. 

Additionally according to a survey almost 2 billion CXRs are taken per year and a single 

radiologist has to read 100 Chest X-rays per day so in order to lessen the work load on the doctor 

and to assist him in making decision, an automated system is needed which not only differentiate 
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between normal and pneumothorax chest radiographs but also identifies the location of the 

pathology. Secondly there is class imbalance problem in most of the medical images data and it is 

impossible to say which technique is better among all the existing techniques, as it is domain 

dependent [2]. Thus, designing an automatic detection system which learns from a class imbalance 

dataset and maximizes the truthfulness in identification of pneumothorax CXRs is the motivation 

behind this research. 

 

1.2 Problem Statement 

Timely diagnosis of pneumothorax is important in order to avoid more damage to the lung. 

To date, many CAD systems have been proposed for the said purpose however due to the non-

availability of the data used in those researches, further improvement can't be made. Moreover to 

date, most of the pneumothorax chest x-ray datasets are imbalance in nature. So the purpose of 

this research is to explore different AI techniques in order to propose an efficient diagnostic system 

while catering the class imbalance problem. 

 

1.3 Aims and Objectives 

Main objective of this research are: 

 Review and compare the existing work for the automatic diagnosis of pneumothorax and 

identification of location of pathology. 

 Study the different approaches to solve the class imbalance problem along with proposing 

a framework for differentiating between normal and pneumothorax chest x-rays. 

 Proposing a segmentation model for identifying the location of pneumothorax in the chest 

x-ray using artificial intelligence techniques. 

 

1.4 Structure of Thesis 

This report is structured as follows: 

Chapter 2 briefly describes the vital organ for respiration which are lungs and their anatomy. 

Furthermore, the details of pneumothorax and its treatment is also discussed. 
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Chapter 3 covers the review of the existing work done for the detection of pneumothorax by the 

researchers in past years 

Chapter 4 describes the proposed framework in detail. It consist of two main modules: 

classification of pneumothorax and segmentation of the area of pathology 

Chapter 5 gives the overview of the databases and the performance measures used for evaluation 

of the proposed framework. All the results are discussed in detail along with the tables and figures 

required. 

Chapter 6 concludes this research and presents the future scope of this thesis. 
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CHAPTER 2: PNEUMOTHORAX AND ITS RADIOLOGY  

In human body, there are five organs that are extremely crucial for survival, these are heart, 

brain, liver, kidney and lungs. The vital organ of respiratory system are lungs and the working 

mechanism is the exchange of carbon dioxide and oxygen between body and the air. In this chapter 

the anatomy and imaging techniques for lungs along with the brief introduction about 

pneumothorax will be discussed. 

 

2.1 Structure of Lungs 

The lungs are most important organ of the respiratory system, and are composed of tissues 

and muscles. These are located in the thoracic cavity of the chest between rib cage and the 

diaphragm. The lungs are divided in five subsections (lobes) and their job is to take-out carbon 

dioxide from the body and take-in oxygen into the body. The heart works in collaboration with 

lung in order to do the respiration process [3]. 

Thousands of thin tubes are present in the lungs and their ending are kind of sacs which are 

actually small air sacks known as alveoli.  Every single sac is covered with bunch of blood vessels 

connected to the system of arteries and veins which are used for circulating blood throughout the 

body. 

When a person breaths, huge amount of blood rich of carbon dioxide and zero oxygen level 

is brought by the pulmonary (lung) artery. This air enters the body through nose or mouth and 

travel through the pharynx to the trachea.  The air travels down till it reaches bronchi which 

connects the lungs to the trachea. The blood releases this carbon dioxide into the air and allows 

the oxygen molecules to enter from air into the body. Once the blood has adequate amount of 

oxygen and no carbon dioxide left in it, it is returned to the heart and then pumped to the body. 

The structure of lungs and thoracic cavity is shown in Figure 2.1.  

In order to expand and relax during the breathing process, lungs required several muscles 

which are described below: 
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 The diaphragm 

It is present between the lungs, and it is the most important muscle needed for breathing. 

Chest is separated from the abdominal cavities via diaphragm muscle and they also helps 

the lungs to inflate by contracting itself. 

 Intercostal muscles 

These are present between the ribs and help the lung during breathing process by expansion 

and contraction of the chest cavity. 

 

 Abdominal muscles 

The organs present in the abdominal cavity are compressed by these muscles in order to 

assist the lung in expansion and contraction during breathing process. 

 

 Neck and upper chest muscle 

These muscles are used when some lung damage or disease make it difficult for the person 

to breath.  

 

Figure 2.1: Structure of Lungs and Thoracic cavity [4] 
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2.2 Techniques to Analyze Lungs 

For medical analysis, medical imaging techniques are used for visual representation of body. 

The different medical imagining techniques available include X-rays, Magnetic Resonance 

Imagining (MRI), Computed Tomography (CT) scan and Ultrasound. X-rays are obtained by 

passing X-ray radiations through the body which produce an image on the x-ray file according to 

the density of the objects in the body with which it strikes. X-rays provide 2D view of the body 

part. CT scans are done via CT machines which generates 3D image of the body organ under 

consideration.  MRI provides visualization of the body by combining powerful magnetic field and 

radio ways with advanced computer technologies, without using any radiations. Ultrasound 

provide image of internal body parts by using sound wave which have higher frequency compared 

to human audible range. For analysis of lungs, mostly X-rays and CT scans are used however 

because of low cost of X-rays and relatively less amount of radiations as compared to CT scans, 

X-rays are more preferred by the doctors. Figure 2.2 shows the different Medical Imagining 

techniques for visualization of lung and thoracic cavity. 

(a) (b) 

(c) (d) 

Figure 2.2: Different Medical Imagining Techniques for lung visualization. (a) X-ray. (b) CT-scan. 

(c) MRI. (d) Ultrasound 
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2.3 Pneumothorax  

Pneumothorax is a disease in which lungs collapse. It occurs when the lung from inside of 

the lung is leaked into the space between lungs and the chest walls. The air exerts force on the 

outer walls of the lungs, and since the lungs have air present inside it as well, so this creates 

pressure and the lungs collapse. Pneumothorax can effect whole lung or only small portion of lung 

might be effected. In Figure 2.3 the right hand side lung is normal while lung on the left hand side 

is collapse and air is filled into the pleural space.  

 

 

 

2.3.1 Causes of Pneumothorax 

Some of the major causes of pneumothorax include chest injury or other lung diseases, 

however sometimes it may even occur without any obvious reasons. Some of the causes are 

discusses briefly in this section. 

 

Figure 2.3: Collapsed lung (pneumothorax) and Normal lung [5] 
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 Chest Injury 

A blunt or a certain injury penetrating the chest can be a reason of lung collapse.  Some of 

these injuries might happen during car crashes or physical assault, while some might occur 

during certain medical procedures in which needle is inserted into the chest. 

 

 Lung diseases  

A damaged lung tissue is more likely to collapse as compared to healthy one. The lung 

tissues damage might be caused by several underlying diseases including asthma, 

tuberculosis, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and 

whooping cough. 

 

 Raptured air blisters 

Small blebs (bubbles) can develop on the lungs which sometimes might burst. These busted 

blebs can allow the air to leak from inside of the lungs into the pleural space. 

 

 Mechanical ventilation. 

People who need mechanical assistance to breath may suffer from sever kind of 

pneumothorax. It occur because the ventilator can cause imbalance of air pressure inside 

the chest cavity. Thus the lung may collapse.  

 

2.3.2 Risk Factors 

Pneumothorax is more common in men as compared to women. It is more likely that people 

in between age 20 to 40 years, especially if they are abnormally tall and underweight might develop 

the type of pneumothorax which is caused by the reputed air blebs. 

Some of the risk factors include: 

 Smoking 

 Genetic issues 

 Previous pneumothorax 
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2.3.3 Symptoms of Pneumothorax 

Commonly known symptoms of pneumothorax include: 

 Sudden sharp pain in chest or shoulder which is worse if person has cough or breathing 

issues 

 Shortness of breath 

 Nasal flaring (widening of nostrils which occur from shortness of breath) 

More severe symptoms are observed in case of wide lung area collapse. These includes: 

 Bluish color of skin (occur because of lack of oxygen) 

 Feeling of becoming faint 

 Chest tightness 

 Fatigue 

 Rapid heart rate 

 Abnormal pattern of breathing 

 

2.3.4 Diagnosis 

 The doctor will suspect collapse lung by observing the breathing pattern and asking the 

patient about symptoms felt and medical history.  The health personnel will examine the patient 

by focusing on the vital signs including temperature, breath rate, pulse rate and blood pressure. 

Moreover visualization of lungs by means of medical imaging technique will also be done [6]. The 

doctor check following signs to declare if the person has pneumothorax or not. 

 Low blood pressure 

 Increased heart beat rate 

 Loss of normal breath sounds in the area of the chest where the lung is damaged 

 Low level of oxygen of oximeter 

 Hollow sound when fingers are tapped on the damaged part of the chest. 

The different medical imagining tests for pneumothorax detection might include Chest X-rays, 

CT scan, Arterial blood gases (blood test in which the blood from wrist artery is taken in order to 



10 

 

get detailed measurement of the oxygen and carbon dioxide in blood) and Electrocardiogram 

(ECG). However mostly the doctor prefer to recommend Chest X-rays because of its cheap cost 

and availability of X-ray machines in almost everywhere. The area of the chest affected by 

pneumothorax will appear dark black on the Chest X-ray which will confirm the lung collapse.  

 

2.3.5 Visual Identification of pneumothorax from Chest X-ray 

As mentioned earlier, usually X-rays are preferred in order to confirm the collapse lung.  

Figure 2.4 shows the labelled X-ray image of a healthy person. 

 

 

 In a normal CXR, the lungs appear black gray, the bones appear off-white while the heart 

appears light gray. If there is dense air or fluid present inside the pleural cavity (containing the 

lungs), then it appears dark black. Moreover there is a fine line which covers the boundary of the 

lung and it is not visible in a normal lung Chest X-ray.  

 

Figure 2.4: Labeled diagram of Normal Chest X-ray 
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In order to check if a person has pneumothorax or not, the doctor check two things [7]. 

 If there is some area which is dark black in the pleural cavity, as in normal cases, lung 

appear black gray however if some portion of whole lung appears dark black and there is 

noticeable difference between the appearance of the two lungs in terms of colors, then it is 

a sign of collapsed lung. 

 If a thin line outside the lateral aspect of the lung is visible or not. If the line is visible then 

the person should be given proper treatment. 

If either of the above two conditions fulfil, then it a guaranteed sign that the person is suffering 

from pneumothorax. Figure 2.5 shows the X-ray image with collapsed lung [8]. 

 

 

 

 

Figure 2.5: Chest X-ray with pneumothorax  
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2.3.6 Prevention 

Most of the different types of lung collapse can't be prevented however quitting smoke can 

reduce the risk of developing certain type of lung diseases. Avoiding activities that can cause chest 

injury can also reduce the risk of being affected by pneumothorax. 

 

2.3.7 Treatment 

Several ways of treating pneumothorax are present, which are suggested by the doctor 

based on the location and size of the collapsed lung and the medical history. 

The different treatments include: 

 Continuous observation of the patient's condition by the doctor to see if the collapse lung 

heals itself or not. 

 Using needle and syringe for the removal of air from the pleural cavity. 

 In case of large pneumothorax, the air is removed by inserting chest tube, which is a hollow 

plastic tube, between the ribs and attaching the suction device at the other end. 

If a person has sever pneumothorax, he may be admitted in hospital and will likely receive 

oxygen through mask or nasal prongs. The patient may be kept under observation for serval days 

in order to ensure that the collapse lung is normalized. In case the applied treatment is not 

positively effecting the collapsed lung then surgery may be advised in order to repair the lung and 

the pleural cavity. Traditional or old techniques needs the chest to be opened however with 

advancement in technology tiny cameras (thoracoscopy) are used which causes less scars and 

results in fast recovery.  

People who experience the pneumothorax over and over again may need to be treated in order 

to remove the root cause. Such treatments include: 

 Surgery to remove the air blisters or the injured area 

 An injection that fuse the chest wall and the lungs. 
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2.3.8 When to Consult a Doctor 

A person should call a doctor if he feels any symptom of pneumothorax, especially if a 

person is already suffering from a lung disease. Even if the symptoms appear to decrease, still 

consult a doctor as the symptoms may disappear while the lung is still not healed. 

 

2.3.9 Prognosis 

Once the pneumothorax is normalized, and the lung is healed and re-expanded to normal 

size, no side effects appear in the body however there are almost 50% chances that the collapse of 

lung occur again within next few months. To lessen this risk some precautions should be taken 

including: 

 Avoid smoking 

 Avoid areas which may lead to air pressure fluctuation, such as scuba diving or flying in 

an aircraft which is unpressurized. 
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CHAPTER 3: LITERATURE REVIEW 

Chest X-rays are one of the most common examination mean for detection of several 

diseases. There are some other means as well, like CT scan, however CT scan is an expensive 

screening method. In contrast, X-ray is more preferred by patients as well as doctors because of 

its cheap cost and availability of X-ray machine in almost every clinical setup. Using Chest X-

rays, different pathologies can be detected, including pulmonary nodules, cardiac abnormalities, 

pneumonia, pneumothorax etc. Large amount of information is present in the chest radiograph of 

the patient in terms of different organs of the thoracic region, so it is a challenging task for the 

doctor to analyze the radiographs. It is because of the complex overlapping structure of the tissues 

that makes it a challenge to interpret the Chest X-rays. The importance of Chest radiography can 

be noticed by observing the fact that over 2 billion Chest X-rays are taken every year throughout 

the world. [9]. With the advancements in computer technologies, a computer aided system (CAD) 

can help in better diagnosis of the disease from the chest X-ray as well as gives the radiologist a 

second opinion about their diagnosis. In past years, wide range of work has been done in the field 

of automatic detection of different pathologies including Pneumothorax using Chest Radiographs. 

Some of the researchers presented their work for classification of the pneumothorax, while few 

have designed segmentation models which efficiently identifies the area of lung with pathology.  

However it has been observed that most of the medical images datasets are imbalance in 

nature, i.e. the number of samples of each class in a dataset is not the same [10]. Even there are 

dataset available which contains very few samples of positive class as compared to negative class 

samples. So it is important to tackle this problem along with presenting a classification or 

segmentation model. This chapter summarizes the valuable work done in the domain of class 

imbalance problem and automatic detection of pneumothorax from chest Radiographs. 

 

3.1  Class Imbalance: 

Designing an automated way of disease diagnosis comes under classification category of 

machine learning. However it has been observed that most of the classification problem especially 

dealing with medical images dataset encounters class imbalance problem. So several researches 

have been published in which this problem has been studied by comparing different existing 

approaches. These approaches can be divided into two main categories [11].  Data level methods: 
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in which the dataset is altered in such a manner that each class has equal number of samples. 

Classifier level methods: in which different machine learning algorithms are adjusted by means of 

tune-able parameters. We will first describe these techniques and then brief overview of the work 

done in the said field is presented in this section. 

 

3.1.1 Class imbalances approaches: 

The different existing for solving the class imbalance problem are explained below: 

i. Weight balancing (Classifier Level Method): In this approach, whole training set is fed to the 

classifier as it is, however different weights are assigned to each class based on the frequency 

of occurrence of each class [12]. Thus while learning, the classifier gives more importance to 

the samples with more class weights. One of the way to assign weights is by using the formula 

given below: 

𝑐𝑙𝑎𝑠𝑠 𝑤𝑒𝑖𝑔ℎ𝑡 =  
𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ 𝑛𝑝. 𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡 (𝑦)
 (3.1) 

 

Here 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 represents sample size of the training set, 𝑛𝑐𝑙𝑎𝑠𝑠𝑒𝑠 denotes the total number of 

class in the dataset and 𝑛𝑝. 𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡 (𝑦) gives total count of the samples of each class. 

 

ii. Over-sampling (Data Level Method): As the name suggests, in this approach the total number 

of minority class samples is increased in such a way that it becomes equal sample size of 

majority class [13]. Some of the techniques for this approach include SMOTE [14], Cluster 

based oversampling [15] and Data-Boost-IM [16].  Another technique, also experimented in 

this research is Data Augmentation [17], by means of which the samples size of minority class 

can be increased. 

 

iii. Under-sampling (Data Level Method): This approach solves the class imbalance problem by 

reducing the total number of samples in majority class making it equal to sample size of 

minority class [18]. As enormous number of samples are discarded in this approach, it may lead 

to under-fitting, however it is still found to be effective in some cases.   
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iv. Ensemble (Hybrid approach): This method is the combination of multiple techniques from 

both or one of the above mentioned approaches. One of the data-level ensemble approach as 

described in [19] assumes equal distribution of samples in a dataset, and small subsets are 

created with the same class distribution as in the original dataset. The ensemble model 

approach, which is utilized in our research finds its root from [20], in which subsets of training 

data are created in such a way that each subset contains whole minority class samples and same 

number of samples from majority class. These subsets of training data which are now class 

balanced, can be utilized for training a machine learning algorithm. There are two famous 

Classifier level ensemble methods known as Bagging and Stacking-C [21]. In Bagging, 

different subsets of training data are created by randomly picking samples from training data 

and named as bootstrap samples, these samples are independently trained on different classifiers 

and then voting or averaging of the results is done in order to obtain a single prediction. Note 

that the different training subsets can be trained using either a single or different classifiers.  

Stacking-C is a classifier level ensemble in which whole training dataset is trained on different 

machine learning classifiers known as base classifiers and predictions are made individually by 

each base classifier on the validation set.  These predictions along with ground truth are fed to 

Meta level machine learning classifier which train itself in order to give predictions for the un-

seen test set. This method reduces overfitting. 

 

3.1.2 Existing Work: 

Several researchers have published their work in order to compared different approaches 

for class imbalance using commonly available datasets. Buda et al [11] made comparison of 

different existing approaches including oversampling, under-sampling and thresholding. The 

classifiers used were different CNN architectures. It was found that oversampling performed best 

of all the three approaches experimented for the class imbalance problem. Another important 

observation of this experiment was that in contrary to the machine learning algorithms, CNN 

doesn’t encounter the problem of overfitting when oversampling technique was used. The authors 

used three different datasets, MNIST CIFAR-10 and ILSVRC-2012 with three different CNN 

architectures LeNet-5, All-CNN, ResNet-10 respectively, for the experiment purpose. 

Raskutti et al [12] compared the two class imbalance approaches including weight 

balancing and under-sampling. The experiments were performed using two textual datasets which 
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include AHR data and Reuters data. The selected classifier was Linear SVM. The results of these 

experiments proved that under-sampling surpass weight balancing technique. 

Zhongbin [16] presented a novel ensemble technique while comparing the different 

existing approaches including sampling methods, bagging and cost sensitive learning techniques. 

The ensemble model presented in this research is designed by creating subsets of training data in 

such a manner that minority class samples are combined with equal instances of majority class and 

for each subset different machine learning algorithm was used as classifier. The classifiers 

employed in this research include Naïve Bayes, C4.5, Random Forest, SMO, RIPPER and IBK.  

The results from each classifier were then combined together by Max Distance Rule of ensemble 

modelling. The AUC was calculated for each experiment performed on different datasets of KEEL 

repository and it was found that proposed ensemble model performs better than other approaches 

compared. 

In [21] Salunkhe et al made comparison of oversampling and under-sampling approaches 

using KEEL repository datasets. For oversampling SMOTE technique was utilized to increase the 

sample size of minority class. K fold cross validation was used for experimentation purpose with 

K set to 5 and Classifier ensemble was created by utilizing three different classifiers which include 

J48, Logistic Regression and Bagging. Each classifier was fed with different fold of training data 

and it was found that this approach gave better AUC value as compared to a normal stacking 

ensemble in which single dataset is used for training purpose. 

Olivier [22] gave their contribution in the field of solving the class imbalance problem by 

experimenting two approaches including oversampling and under-sampling. Three different type 

of classifiers were used in order to determine which of the technique performed better. The selected 

classifiers were CNN, Radom Forest and SVM with performance measure chosen as F1. The 

research was carried out on COCO dataset and it was found that CNN performed better without 

any sampling technique. SVM gave equal performance with all the different sampling techniques 

while under-sampling was found to enhance the results in case of Random Forest classifier. 

Joffrey [23] published a survey of existing work on class imbalance problem. The 

summarized overview of the work done so far in this field along with the achieved results were 

presented in which it was found that data-level methods (i.e. sampling techniques) as well as 

classifier-level techniques performed best in different cases and none of the technique can be said 

as best one. 
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From the literature it has been observed that none of the research has been done using a 

CXR dataset, moreover no generic rule can be made regarding the class imbalance problem. The 

summarized literature review for the class imbalance problem is shown in Table 3.1. 

 

Table 3.1: Literature Review on Class Imbalance Problem  

Author Year Summary Dataset Result 

Buda [11] 2018 

 

Compared oversampling under-

sampling and  

thresholding. 

 

MNIST 

CIFAR-10 

ILSVRC-

2012 

Oversampling 

was found 

better 

Raskutti 

[12] 
2004 

 

Compared under-sampling and 

weight balancing.  

 

Textual Data: 

AHR-data 

Reuter-data 

Under-

sampling 

performed 

better 

Zhongbin 

[20] 
2014 

 

Proposed a novel ensemble model 

by creating subsets of data and 

training each data with a specific 

classifier. Results were combined 

with Max. distance ensemble rule. 

 

KEEL 

repository 

Ensemble 

performed 

better 

Salunkhea 

[21] 
2016 

 

Proposed a Classifier  

Ensemble in which different subsets 

of data were created after random 

sampling and different classifiers 

were used for different subsets of 

data. 

KEEL  

repository 

Classifier 

ensemble  

perform better 

than Stacking 

or Bagging 



19 

 

Olivier 

[22] 
2019 

Compared under-sampling and 

oversampling techniques using 

different classifiers 

COCO dataset 

All classifiers 

performed 

differently 

with different 

sampling 

approaches 

Joffrey 

[23] 
2018 

Survey of existing work on class 

imbalance 
N/A 

Class 

imbalance 

solution is 

dependent on 

dataset 

 

3.2 Classification 

 Like any other classification problem, for designing a medical image classification model, 

features are extracted from the dataset and a classifier is trained on those features in order to 

differentiate between normal and abnormal cases. In past years, several researches have been done 

in the field of chest pathologies detection including automatic diagnosis of pneumothorax from 

chest radiographs. The published work in this field is summarized below. 

 In [24] a model was presented in which features were extracted using local binary pattern 

and fed to SVM for training. These features were extracted after identification of lung region by 

utilizing multiscale intensity segmentation method. The proposed model was experimented on a 

local dataset obtained from Chung Shan Medical University Hospital, Taiwan. The dataset was 

comprised of 32 CXRs with pneumothorax and 52 CXRs with no pathology. The results with 5 

fold cross validation were presented with mean Accuracy of 82%. 

 In [25] experiments were performed in order to differentiate between normal and abnormal 

cases. Different thoracic pathologies were studied as binary classification problem. One of the 

pathology under consideration was pneumothorax. 78 Animal CXRS containing 39 normal and 39 

pneumothorax cases obtained from a database at local hospital were utilized in this research. Two 

different classification approaches were utilized, first one was features extraction by BoF (bag of 

features) technique and SVM as classification while second one was using CNN for feature 
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extraction and classification with soft-max classifier. It was found the CNN outperformed other 

approach with achieved result of 100% accuracy.  

 Park [26] proposed a pneumothorax detection model by training a YOLO-pre-trained 

model on a dataset containing 1596 Pneumothorax and 11137 normal CXRs obtained from local 

hospital. The class imbalance problem was solved by thresholding technique in which a prior 

probability is multiplied with the obtained probability value before outputting the final result. The 

model was evaluated on a test set containing 253 pneumothorax and 250 Normal CXRs and 

achieved result AUC of 90.8%. 

 In [27] classification model was designed using a dataset containing 1003 DICOM images 

obtained from University of Washington Medical Center. Three different classification models 

including CNN, Multiple Instance Learning (MIL) and Fully Convolutional Networks were 

utilized with different input sizes for each classifier separately. It was found that CNN performed 

best of all with AUC of 96% on a test set of 87 normal and 113 Pneumothorax CXRs. 

In [28], an eight layered CNN model was designed for automated diagnosis of 

pneumothorax and the model was trained on 280 CT scans from which 36×36 patches were 

extracted. The features extracted from the proposed CNN architecture were fed to SVM classifier, 

and evaluation was performed on the test set containing 160 CXRs with pathology and 40 normal 

CXRs. The model achieved 94% mean accuracy on the test set. 

 Tony [29] used thoracic ultrasound in B-mode video and M-mode images separately. Pre-

trained VGG-16 model was fine-tuned on the ultrasound images. The dataset was acquired from a 

local database. Different image processing techniques were used in order to enhance the image 

quality. The model performance was evaluated on validation set containing B-mode 4053 frames 

and 467 M-Mode images which obtained accuracy of 99.78% and 98.29% respectively.  

 In [30] texture analysis based technique was used to design an automated model for 

pneumothorax detection. Feature extracted by texture analysis technique from training set were 

fed to KNN classifier. The proposed model was tested on 41 Normal and 48 Pneumothorax CXRs 

and achieved sensitivity value of 81% and specificity of 87%. 

 In [31] Subrato designed a model named as VDSNet by combination of VGG, Data 

augmentation and spatial transformer network STN. Binary classification was performed in order 

to differentiate normal CXRs and abnormal CXRs from a dataset containing 14 different chest 

pathologies. Experiments were performed using Random Sample NIH Chest Xray-14 (RS-NIH) 
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dataset and full NIH Chest X-ray-14 (NIH) dataset. The model achieved Accuracy of 70.8% on 

RS-NIH dataset and 73% on full NIH CXRs dataset. Along with utilizing the image features, 

metadata including patient age, gender etc. was also used in training the model. 

 In [32] a classification model was designed for differentiation of normal and abnormal 

CXRs. 4479 Normal CXRs from NIH dataset were used for training a GAN (generative adversarial 

network) model. The main idea was to train the model on normal CXRs only. At test time, if the 

model perfectly recreated the input CXR, then it was assumed to be a Normal CXR else it was 

declared as abnormal CXR. AUC of 84.1% was achieved on a test set containing 667 normal and 

667 abnormal CXRs. 

 Qingji [33] proposed AG-CNN which was an attention guided convolutional neural 

network based on ResNet50 architecture for diagnosis of 14 chest diseases. The model was trained 

on global image as well as local image which contained the portion of pathology. These global and 

local images were fed to AG-CNN model for multi-label classification. The training was done 

using 70% samples from NIH dataset and tested on 205 CXRs. The proposed model achieved 

AUC of 92.1% on pneumothorax detection. 

 In [34] Pranav proposed a 121-layered DenseNet named as ChexNet, initially proposed for 

pneumonia detection while later it was extended to thee multiclass classification problem in order 

to diagnose 14 different pathologies from the CXRs. Training was done on 70% data samples of 

NIH while the proposed model was evaluated on a validation set containing 420 samples. The 

AUC achieved on pneumothorax detection was 88.87%. 

 Imane [35] proposed a multi-label classification model by training DenseNet-121 

architecture on NIH and CheXpert dataset separately. The training was done by keeping image 

size 224×224. Different approaches for tackling the multi-label classification were experimented. 

The model performance was evaluated on test set of both datasets separately. The proposed model 

achieved AUC of 92.9% on NIH dataset and 84% AUC on CheXpert dataset for pneumothorax 

detection. 

 In [36] automatic detection of multiple thoracic pathologies was done by fine tuning the 

pre-trained Xception mode. RS-NIH dataset was used for this purpose which was randomly split 

into 75-25, i.e. 75% was used for training purpose while 25% was used as test set. The images 

were down-sampled from 1024x1024 to 128x128. All 14 classes were considered in this 
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experiment. The obtained accuracy for overall test set was 88.76% however the AUC for 

pneumothorax was 54%. 

 In [37] Tae proposed an ensemble model created from three different trained models. 

ResNet-50 model was used with three different input resolutions. NIH dataset was used for the 

research. 80% of data was used for training the model and remaining 20% was used to evaluate 

the model. The proposed model achieved AUC of 91.1% on the test set. Table 3.2 summarize the 

existing work on pneumothorax classification. 

Table 3.2: Literature Review on Classification  

Author Year Dataset Technique Results 

Yuan [24] 2018 Local dataset LBP+SVM  Acc=82%  

Yoon [25] 2018 Local dataset 
BoF + SVM and CNN 

(Own architecture) 
Acc= 100% 

Park [26] 2019 Local dataset YOLO-Darknet19 AUC=90.8% 

Gooben [27] 2019 Local dataset 
Ensemble(CNN + FCN + 

MIL ) 

AUC= 96% 

 

Xiang [28] 2019 Local dataset CNN+SVM Acc=94% 

Tony [29] 2018 Local dataset CNN (VGG-16) Acc= 99.78% 

Geva [30] 2015 Local dataset Textual features + KNN 
Sens= 81% 

Spec=87% 

Subrato [31] 2020 
RS-NIH 

NIH 

VDSNet (VGG+ Data-

Augmentation + STN) 

Acc= 70.8% 

Acc= 73% 

Xing [32] 2019 NIH 
Generative Adversarial 

Network  
AUC=84.1% 
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Qingji [33] 2018 NIH AG-CNN (ResNet-50) AUC=92.1% 

Pranav [34] 2017 NIH ChexNet (DenseNet-121) AUC=88.8% 

Imane [35] 2019 
NIH 

CheXpert 
CNN (DenseNet-121) 

AUC= 92.9% 

AUC=84% 

Mondal [36] 2019 RS-NIH CNN (Xception) AUC= 54.0% 

Tae [37] 2018 NIH Ensemble (3x ResNet-50 ) AUC=91.1% 

 

  

3.3 Segmentation: 

Identification of location of pneumothorax is an important task for the automatic diagnosis 

of pathology. Several studies had been done in order to design an automated way of segmentation 

of pneumothorax area in a chest radiograph, however the main challenge is that the area of 

pathology is really small and there is no fixed shape. So segmentation task have imbalance problem 

in terms of CXR images as well as a CXR with pneumothorax contains very minimal amount of 

pixels in foreground as compared to the number of pixels in background. Appreciable work has 

been done by the researchers in this field which is briefly explained in this section. 

In [38] a segmentation model built on U-Net architecture comprising of encoder and 

decoder part was proposed for identifying the location of pneumothorax. The experiments were 

performed on CT scans obtained from Medical University of Vienna. The model training was done 

on pixel-level and volume level. For the pixel-level segmentation method 43 Chest CT scans were 

used while 9 CT scans were used for evaluation and for volume-level method 567 CT scans were 

utilized. The model achieved mean Dice coefficient score (DSC) of 94% with 98% mean AUC 

score. 

Gouting [39] presented a novel segmentation framework consisting of three modules.  The 

first being a fully convolutional DenseNet, second being a spatial and channel squeeze and 

excitation module (scSE) and third being a multi-scale module. The proposed model was tested on 
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2213 CXRs obtained from their institution's image database.  The model achieved Dice score of 

92±0.14% and mean pixel accuracy (MPA) of 93±0.13%. The important contribution was 

proposing a weighted binary cross entropy loss function in order to cater the pixel imbalance 

problem. 

In [40] concatenation operation in traditional U-Net was replaced with content-adaptive 

convolutional layers for reducing the number of parameters. The proposed model was trained and 

tested on SIIM Pneumothorax dataset containing total of 12047 CXR images and same number of 

masks. The images were down-sampled to 128x128 in this research. The pixel imbalance problem 

was solved by combining binary-cross entropy loss with soft dice loss. The proposed model 

achieved dice score of 76.04%.  

Ostap [41] proposed a segmentation model containing three modules. Firstly Class 

activation maps (CAM) were generated using GradCAM++ method on trained ResNet-50 CNN 

model. These class activation maps were processed with Inter-pixel Resolution (IR-Net) in order 

to improve the class boundary between different class objects of the image. Finally the output from 

IR-Network was trained on U-Net model with ResNet-50 backbone. The proposed model was 

trained on 10,675 CXR images from SIIM pneumothorax dataset, while 145 and 541 CXRs with 

no-pathology and with-pathology were used for validation. The results were reported for test set 

containing 145 Pneumothorax samples and 541 Normal samples. The achieved dice score for this 

proposed model was 76.7%. 

In [42] pneumothorax segmentation model was proposed by training images along with 

binary masks on a pre-trained U-Net model with ResNet backbone. The images were first 

preprocessed by means of resizing the data to 256x256 and contrast correction was performed. The 

training and testing was performed on SIIM pneumothorax dataset. The training was done with 

binary cross-entropy loss and model achieved dice score of 84.3% and IoU score of 82.6% on the 

test set. 

In [43], an ensemble model was presented for segmentation of pneumothorax. The 

ensemble model comprised of three LinkNet networks with three different backbones including 

se-resnext50, SENET154 and se-resnext101. These encoders were used with ImageNet weights 

for training process. The training was done using Cosine Annealing Scheduling Learning rate for 

first 40 and last 15 epochs, while CyclicLR scheduling was used for 40th -65th epochs. For solving 

the class-imbalance problem, non-empty sampling was done in order to select a mini-batch in such 
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a way that it has at least one positive sample. The ensemble was created by union of binary 

prediction from each backbone model. The training and testing was performed using SIIM 

pneumothorax dataset and results were reported for stage1 and stage2 test sets separately. The 

model achieved 88.21% and 86.14% dice score on stage1 and stage2 test set respectively. 

Syncho [44] presented a segmentation model for pneumothorax localization. Firstly 

preprocessing of images was done using Gaussian filter with Sigma equal to 0.5 in order to 

smoothen the images. Then fixed thresholding was applied in order to extract the thoracic region 

from the chest X-ray image. Morphological operations including erosion and dilation were 

performed on the threshold image in order to fill any holes in the image. After all this 

preprocessing, histogram was plotted in order to determine the threshold value to differentiate 

between lung tissues and the chest wall. In this way area of pneumothorax was identified. 137 CT 

scan images were used in this research and the proposed model performed with average error rate 

of only 1%.  

Abedalla [45] proposed a 2 stage segmentation model for extracting the region of pathology 

(pneumothorax) from the images.  The main architectural block was U-Net with ResNet34 

encoder. Basically the model was first trained for 100 epochs with image size 256 using ImageNet 

weights as initializer and then these tuned weights were utilized for training the model with image 

size 512 for 70 epochs. Adam optimizer with learning rate 0.001 was used. The proposed scheme 

was tested on stage1 and stage 2 test set of SIIM Pneumothorax dataset and achieved dice score of 

85.02% and 83.56% on stage1 and stage 2 test set respectively. Table 3.3 shows the existing work 

on pneumothorax segmentation. 

Table 3.3: Literature Review on Segmentation  

Author Year Dataset Technique Results 

Rohrich [38] 2020 Local dataset 
U-Net based (Own 

architecture) 

DSC=94% 

AUC=98% 

Gouting [39] 2019 Local dataset 
Fully Convolutional 

DenseNet 

DSC= 92±0.14% 

MPA=93±0.13% 
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Mostayed [40] 2019 SIIM dataset 
U-Net (with content 

adaptive conv.layers) 
DSC= 76.04% 

Ostap [41] 2020 SIIM dataset 

GradCAM + IR-

Network + U-Net with 

ResNet50 

DSC= 76.7% 

 

Jakhar [42] 2019 SIIM dataset 
U-Net (with pre-trained 

ResNet encoder) 

DSC= 84.3% 

IoU= 82.6% 

Groza [43] 2020 SIIM dataset 

LinkNet ensemble (se-

resnext50, SENet-154, 

se-resnext101) 

DSC= 88.21% 

Abedalla [45] 2020 SIIM dataset 

2ST U-Net (2 stage U-

Net with ResNet34 as 

encoder) 

DSC=85.02% 

 

3.4 Research Gaps 

Some of the research gaps in the existing literature are summarized below: 

 Many researchers used private dataset for classification purpose because of which further 

research in that work can’t be carried out. 

 From the literature, it can’t be inferred that which of the class-imbalance solving technique 

is best for the CXRs dataset, as these techniques have never been compared with a CXR 

images dataset. 

 Two major issues were found in the papers using openly available datasets like NIH Chest 

Xray-14 and CheXpert: 

o Most of the papers used Random split of dataset in which there are chances of 

patient-wise overlap in training and testing sets. 

o The papers in which patient-wise split was done, mostly have used random patient-

wise split instead of using the official split provided by NIH and CheXpert, while 

competitive results can only be claimed while using a standard test set. 
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o Some of the researchers didn’t explicitly explained the technique followed to solve 

the class imbalance issue which is present in both these CXRs dataset. 

 The datasets like NIH and CheXpert contains samples with multiple thoracic diseases, i.e. 

these are not dedicated to a single diseases, so the imbalance ratio between the CXRs with 

any pathology to the CXRs with No pathology is really high. For the NIH dataset there are 

only 5298 CXRs with pneumothorax while 60,412 samples with No finding. So the 

imbalance ratio is 1:11, i.e. for every 11 samples with No finding, there is just 1 sample 

with pneumothorax. On the other hand, in case of CheXpert dataset, although the 

imbalance ratio between samples with pneumothorax and samples with No-pathology is 

not very large, however the problem with CheXpert dataset is that there is a large number 

of CXRs with uncertainty-labels (i.e. the labeler of the CheXpert couldn’t properly 

interpret the pathology from the radiology report, hence the presence or absence of a 

pathology for which uncertainty label is assigned is just 50-50%.). So because of this 

Uncertainty label presence, the results of the researchers may vary depending on the 

technique followed to solve this issue. 

 In contrast, SIIM Pneumothorax dataset is the first openly available CXR dataset dedicated 

just for a single diseases, i.e. pneumothorax. Moreover the imbalance ratio for 

pneumothorax and No-pathology CXRs is relatively low (i.e. 3:1), so it will give more 

robust results for detection of pathology. In addition this dataset had never been explored 

for Classification purpose. 

 The most important point is that NIH and CheXpert were proposed with the aim to detect 

the presence of pathology. Identifying the location of pathology was not the main goal. So 

only image level labels were provided in these two datasets for the 14 common thoracic 

diseases. Although NIH provided bounding boxes for the localizing the pathology but that 

too, were only for limited number of CXRs. However it is well understood that detection 

along with localization of area of pathology is more effective in medical field. So the plus 

point for the SIIM Pneumothorax dataset is that it not only provide image level labels, but 

also provide pixel-level label information (i.e. it provided RLE masks) for identifying the 

location of pathology, thus proposing a framework for classification and segmentation 

using this dataset yield more reliable results.  
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CHAPTER 4: METHODOLOGY 

In this research, a classification and segmentation model is presented for the automated 

detection of pneumothorax from chest radiographs. We will first cover the classification 

technique followed by segmentation process. 

4.1 Classification 

As describes earlier, our proposed model not only detect the presence of pneumothorax but 

also solves the issue of class-imbalance which is troublesome in most of the classification 

problems. So a combination of model-level-ensemble [46] (i.e. ensemble of different CNN 

architectures used as feature extractor, with each architecture being fed with whole training data) 

and data-level-ensemble [20] (which is ensemble of different subsets of training data being fed to 

a single CNN architecture) is used in this research. The proposed model is a model-level-ensemble 

of three different data-level-ensembles. The CNN architectures used in this research for feature 

extraction purpose are VGG-16, DenseNet-121 and VGG-19 and, thus the model is named as VDV 

model. SVM is used as classifier. Figure 4.1 describes the basic work flow of the VDV model for 

predicting the class of any test image. The training and testing set were created using the data-

split-lists provided in the original dataset link. The details of the CNN architectures and SVM 

classifier are given in this section. 

 

Figure 4.1:  Basic Work flow of VDV model 
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Since we have first compared the existing approaches to tackle the class-imbalance issue 

for the classification model, so we will describe the experimental setup for comparison followed 

by explanation of VDV model. 

 

4.1.1 Convolutional Neural Network 

Convolutional neural networks are extremely popular in the field of Artificial intelligence. 

Because of their surprising ability to make unsupervised wise decision, deep learning has become 

one of the hot topics when it comes to utilization of AI in real life problems. The pioneer of CNN 

is Yann Lecon from New York who also work as director in Facebook's AI group. The structure 

of deep neural networks have resemblance with human neural system. Just like in human or 

mammal’s neural system, deep learning architectures learn things by a layered structure. This way, 

artificial neural networks were designed in order to make right decision at right time without 

human supervision [47]. The working mechanism of CNN find its roots from the work principle 

of Artificial Neural Network (ANN). ANN is comprised of multiple perceptron (also known as 

neurons) at different layers. The input weights from one layer are sent to the next one but are never 

propagated back. So it is also called Feed Forward Neural Network.  Moreover an ANN may or 

may not have hidden layer(s) but an input and output layer is a must. On the other hand CNNs 

have multiple hidden layers along with input and output layer containing several neurons. In CNN, 

the input and hidden layers are actually convolutional layers. The different layers can either be 

directly connected with each other or via pooling layer. The convolutional layers meant for 

extracting useful features of the image which is broken into several rectangles and then sent for 

non-linear processing. The structure of a typical CNN is shown in Figure 4.2.  

Figure 4.2: Typical CNN architecture. [48] 
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The detailed architecture and utilization of CNN are described in this section. 

Architecture 

A Convolutional Neural network is made up of input layer, hidden layers and an output layer. 

The hidden layer comprise of multiple convolutional layers, activation, pooling layers and fully 

connected layers (FC). The CNN consist of different number of convolutional, activation and 

pooling layers depending on the architecture.  The structure up to the hidden layer is utilized for 

feature extraction while the last Fully Connected (FC) layers are used for classification [49]. The 

main building blocks of a typical CNN are described below: 

 

 Convolutional layers: 

The convolutional layer consist of several independent kernels or filters and those filters 

are convolved separately with the input image.  The convolution process is done in such a 

way that the kernel/filter slides over the image and the dot product between each 

corresponding image pixel and the kernel is take. Random initialization of filters is done 

and these filter values are updated based on the subsequent learning by the network.  

Initially the starting layers look for the basic patterns like lines or corner. As the network 

continues to train, the filters are actually taking dot product of the neurons of the previous 

layers with the respective weights.   

 

 ReLU (Rectified Linear Units) layer: 

In CNN, it is convention to apply an activation layer or nonlinear layer immediately after 

the convolutional layer. The aim is to introduce non-linearity to the system that was 

performing only linear operations throughout the convolutional layers. ReLU basically 

speed up the training process of the network without causing a noticeable effect in the 

model performance. It also alleviate the vanishing gradient issue which occurs as the 

training process is very slow in lower layers of the network because the gradient decreases 

exponentially through the layers. The activation function used by ReLU is f(x)=max (0, x) 

which is applied to all values of the current layer outputs. In short, the ReLU convert the 

negative values to zero. This way it increases the amount of nonlinearity in the model 

without disturbing the receptive fields of the convolutional layer.  
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 Pooling Layer 

Pooling layers are also knowns as down-sampling layers, and their function is to reduce 

the spatial resolution of representation and ultimately lessen the network computation by 

reducing the number of parameters. There are several nonlinear functions available for 

implementing pooling such as average pooling, max pooling and L2 norm. However most 

commonly used is max pooling. The working mechanism is that the image is divided into 

several non-overlapping chunks and the non-linear function selects the maximum value 

from every chunk. This way the spatial size of the input is reduced.  The concept behind 

pooling function is that once the specific feature for a location is found that, then the exact 

location is not necessarily required. Thus there are two advantages of pooling. First one is 

that it reduces the computation by reducing the number of parameters. And secondly, it 

reduces overfitting. Figure 4.4 shows the example of Max and Average pooling. 

 Fully Connected 

Figure 4.3: ReLU Operation [48]. 

Figure 4.4: Max and Average pooling example [50] 
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In a typical CNN, after several convolutional, ReLU and pooling layers, Fully Connected 

(FC) layers are used for high level reasoning. The high level features in an image are 

extracted by the convolutional layers and those features can then be combined in a non-

linear fashion using FC layers.  The features from convolutional layers perform better when 

combined together by FC layer. The neurons in FC work on the mechanism same as normal 

artificial neural network (ANN) or multi-layer Perceptron (MLP). 

 

CNN based methods 

When using CNN for any classification problem, it can be done via two approaches shown in 

Figure 4.5. The first approach is known as "Learning from Scratch". In this approach the weights 

of the neurons are initialized with random values and the network is entirely dependent on the 

selected dataset for training. The other approach is known as Transfer Learning in which the 

trained parameters in terms of weights learned from some other dataset are used for initialization 

of network training for the selected dataset. Transfer learning can be applied in two ways. First 

one is Fixed Feature extraction [51] [52] and second one is Fine tuning. Following is the brief 

explanation for these two methods.  

 

 Fixed Feature Extractor 

Fixed feature extractor is a method of transfer learning in which the weights and bias 

learned from other big dataset are directly used for the classification problem of the 

specified dataset and there is no need to retrain the network on the selected/specified 

Figure 4.5: CNN based different Methods 
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dataset.  So it means that only the Feature extractor part of the CNN architecture is being 

used and features extracted by this mechanism can then be classified by using any classifier 

like linear SVM or softmax classifier.  

In our research we have used this approach of transfer learning and the features are send to 

SVM for training and classifying the chest radiographs as pneumothorax or normal CXR. 

 

 Fine tuning  

Fine tuning is implemented by retraining a part of network on the specified dataset. This 

means that we freeze the weights of some of the initial layers and train only few layers on 

the task specific dataset. So for doing this, first of all, the number of channels/neurons in 

the last layer (i.e. output layer) is set to the total number of classes in the dataset. After this 

the weights and bias values of freeze layers of the network are set according to the pre-

trained architecture. Then training parameters including total epochs, learning rate, batch 

size and optimizers etc. are defined and then training of the unfreeze layers is done in order 

to adjust the weights and bias values of those layers according to the task specific dataset.  

 

4.1.2 Pre-trained Models 

As mentioned earlier, we have used CNN pre-trained models are fixed feature extractor. 

The pre-trained models used in this research are VGG-16, DenseNet-121 and VGG-19. The 

detailed architecture of these models are explained in this section. 

 

4.1.2.1 VGG-16 

VGG-16 [53] is a convolutional neural network which was proposed back in 2014 by 

K.Simonyan and A.Zisserman in the paper "Very Deep Convolutional Networks for Large-Scale 

Image Recognition". The top test accuracy achieved by VGG-16 on ImageNet dataset was 92.7%. 

ImageNet is a large dataset containing around 14 million images which belong to 1000 different 

categories.  This model is an improvement in AlexNet architecture and it replaces the large size of 

kernel (11x11 and 5x5 in the first two convolutional layers) by 3x3 multiple kernels. 

The default input size of the image is 224x224x3, where 3 represents number of channels 

in the image. The image is passed through the convolutional blocks containing several 
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convolutional layer followed by maximum pooling layer. The maximum kernel size in any 

convolutional layer is 3x3.  Each of these filters slides over the image and extract corresponding 

features. Even in one of the convolutional layer, the filter size is just 1x1 which actually is a linear 

transformation followed by non-linearity. The stride in case of convolutional layers is fixed to 1. 

The padding is set in such a way that after each convolution the spatial resolution is preserved, so 

the padding value is set to 1.  It can be seen that max pooling layer is present after most but not all 

of the convolutional layers. The window size in case of max pooling is 2x2 with stride set to 2. 

Followed by stack of convolutional blocks (convolutional layers + max. pooling), there are 

three Fully connected Layers (FC). There are 4096 channels/neurons in first two FC layers while 

third have number of channels equal to the number of classes in the dataset. In case of ILSVRC 

competition, as the dataset (ImageNet) has 1000 classes, so the number of channels in VGG-16's 

last FC layer was kept equal to 1000.  It is to be noted that all the hidden layers (i.e. convolutional 

blocks) are equipped with ReLU, which is a non-linear activation function. This is used for 

reducing the computation [54]. The detailed architecture of VGG-16 is shown in Figure 4.6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Detailed Architecture of VGG-16 [54]   
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4.1.2.2 VGG-19 

The VGG-19 architecture is actually the extension of VGG-16, presented in the same paper 

[53] [55]. The only difference is that it contains 16 convolutional layers instead of twelve 

convolutional layers. Followed by the convolutional blocks are three FC layers. The number of 

channels in first two FC layers is 4096 just like in VGG-16. The last FC layer has 1000 neurons 

which is equal to the total number of categories in ImageNet dataset. Finally activation function 

(softmax) is applied which outputs the probability of each class separately.  The basic structure of 

VGG-19 is shown in the Figure 4.7.  

 

 Just like VGG-16, the default input size is 224x224x3. The image is passed to the stack of 

convolutional blocks, in which the window size of most of the convolutional layers is 3x3 with all 

the convolutional blocks followed by max pooling layer. The stride and padding in case of all 

convolutional layers is fixed to 1. The Max pooling is done using a window with 2x2 size with a 

stride of 2. Non-linear activation function ReLU is used in all the convolutional layers.  The total 

number of parameters is 20,024,384 with input size kept as 224x224.  

 

4.1.2.3 DenseNet-121 

DenseNet (Dense Convolutional Network) is an architecture presented in 2016 by Goa 

Huang [57]. This architecture was presented based on the concept that adding inter-layer 

connections other than the direct connection between adjacent layers increases depth, and 

performance of the network.  The DenseNet consist of dense blocks, in each dense block, every 

layer is connected to adjacent layer in a feed forward fashion as shown in Figure 4.8. Every dense 

Figure 4.7: VGG-19 architecture [56] 
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layer receives the feature maps from al the previous layers and concatenate them depth wise. This 

way, DenseNet can explicitly distinguish the information that is currently added to the network 

from the already present information. It results in increasing the discrepancy in the input of the 

subsequent layers and hence improve model performance.  

 

The main advantages of using dense connections are: 

 Less number of parameters are required as compared to conventional CNNs and relearning 

redundant features from previous layers is not required here. 

 Information and gradient flow is improved throughout the network and thus they are easy 

to train. 

 Some regularization effect is present in dense layers which reduces overfitting when 

trained on smaller training dataset. 

The typical DenseNet consist of: convolutional layers which are actually feature layers and 

captures low level features from the images, several dense blocks with transition layer between 

adjacent dense blocks and finally there is a classification layer. "Growth rate" is the depth of the 

output of dense block layer and it is denoted by k. Since the output from all the previous layers is 

received by every dense layer, the input depth for nth layer (𝐷𝑛) is given in Eq. 4.1 as:                                     

Figure 4.8: A 5-layer dense block with growth rate k=4  
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𝐷0 =  𝑘0 + 𝑘 ∗ (𝑛 − 1) (4.1) 

 

where 𝑘0 shows the number of channels present in the input or first layer. The name "growth rate" 

comes from the fact that although k output features are produced by each layer, however it has 

many more inputs. The depth of output keep on increasing linearly with adding more layers in the 

dense block. Let's assume that the initial growth rate is 40. If 100 more layers are added, then the 

depth will be around 4000. However this will exponentially increase the computations. To solve 

this problem, bottleneck layers (1x1 convolution) were used with the aim to reduce the depth of 

the feature maps. The bottleneck layer also ensures that the second convolutional layer has fixed 

depth of the input. It can be seen that throughout the dense layers, the size of feature maps remains 

fixed, which helps in stacking any number of dense layers in order to build a dense block. 

 In order to abstract higher level features, the output size of every layer decreases in a 

traditional CNN. In DenseNet, this task is performed by the intermediate transition layers, while 

the size and depth of the dense block remains the same. The transition layer is comprised of batch 

normalization layer (BN), convolutional layer with filter size 1x1 and average poling layer of size 

2x2 with stride set as 2 in order to reduce the size to half. The depth is reduced by the 1x1 

convolutional layer while the size (i.e. width and height) is reduced by average pooling layer. 

"Compression" was introduced in order to further decrease the depth by reducing the number of 

feature maps at the transition layers.  If m feature maps are present at the output of the dense block 

then the adjacent transition layer will generate Ө𝑚 feature maps, where Ө is the compression factor. 

The value of Ө is within the range 0 < Ө < 1. 

The detailed architecture of DenseNet is presented in Table 4.1 with different variants of 

DenseNet which are 121, 169,201 and 161 layers for the ImageNet dataset. For our pneumothorax 

classification purpose, we used DenseNet-121 as fixed feature extractor. 
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4.1.2.4 Support Vector Machines 

A machine learning algorithm that can be utilized for the purpose of classification as well 

as regression. SVM classification is performed by finding hyperplane in such a way that maximizes 

the distance between two closest points of the different classes in the training set, known as support 

vectors [58].  

 Consider we have a training set belonging to two classes (𝑥1, 𝑦1), … . . (𝑥𝑙, 𝑦𝑙) where 𝑥𝑖 € 

𝑅𝑛, and 𝑦𝑖  € {−1, +1} .  

The hyperplane is defined as  𝑤. 𝑥 = 𝑏 = 0. The support vectors are said to be separated 

optimally if the margin is maximum and error is minimum. The main parameters 𝑤 and 𝑏 for a 

canonical hyperplane have constraint: 𝑚𝑖𝑛𝑥𝑖 𝑦𝑖 (𝑤. 𝑥 + 𝑏 ) = 1. 

A separating hyperplane must satisfy the following condition 

𝑦𝑖 [(𝑤. 𝑥𝑖) + 𝑏] ≥ 1, 𝑖 = 1, … … .. (4.2) 

 

Table 4.1: DenseNet architecture for ImageNet [57]. The sequence in each "conv" layer 

is BN-ReLU-Conv. 



39 

 

The distance of any data point 𝑥 from the hyperplane can be found as: 

𝑑(𝑤, 𝑏; 𝑥) =  
|𝑤. 𝑥 + 𝑏|

||𝑤||
 (4.3) 

The margin of the hyperplane is  
2

||𝑤||
. So optimal hyperplane minimizes the following equation: 

𝜙(𝑥) =
1

2
 ||𝑤||2 (4.4) 

The solution to above equation is given by Lagrange equation, which has to be minimized with 

respect to 𝑏 . Lagrange equation is given as : 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
 ||𝑤||2 − ∑ 𝛼𝑖 

𝑙

𝑖=1

{𝑦𝑖 [(𝑤. 𝑥𝑖) + 𝑏] − 1} (4.5) 

Here 𝛼𝑖 is the Lagrange multiplier. Solving the above equations lead us to the equations of �̅� and 

�̅� given as following: 

�̅� = ∑ 𝛼𝑖𝑦𝑖𝑥𝑖  

𝑙

𝑖=1

 (4.6) 

�̅� = − 
1

2
�̅� [𝑥𝑟 +  𝑥𝑠] (4.7) 

 

where 𝑥𝑟and 𝑥𝑠 denotes the support vectors, satisfying the following condition 

𝛼�̅�, 𝛼𝑠̅̅ ̅ > 0 , 𝑦𝑟 = 1 , 𝑦𝑠 = −1 (4.8) 

So for now any new data point𝑥, the classification can be done using following expression 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤. �̅� + �̅� ) (4.9) 

The above equation is used for linear separation , However for the case of non-linear separable 

data, the data point 𝑥 of the input training set is mapped to point z in higher dimensional space, 

where 𝑧 = 𝜙(𝑥). The important thing is that mapping 𝜙(. )  should be such that the dot product of 

feature space 𝜙(𝑥). 𝜙(𝑦) can be written as Kernel function 𝐾(𝑥, 𝑦) 

The equation of decision surface is: 

𝑓(𝑥) = ∑ 𝑦𝑖𝛼𝑖 

𝑙

𝑖=1

𝐾(𝑥, 𝑥𝑖) + 𝑏 (4.10) 

 

Here 𝛼𝑖   and 𝑏 are the solutions of the quadratic problem. 
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The kernel function used in our experiments are linear and polynomial kernel function which can 

be defined as follows: 

Linear kernel: 𝐾 (𝑥𝑖 , 𝑥𝑗) =  𝑥𝑖. 𝑥𝑗 (4.11) 

Polynomial kernel: 𝐾 (𝑥𝑖, 𝑥𝑗) =  (𝑥𝑖. 𝑥𝑗 + 1)𝑑 (4.12) 

 

Here 𝑥𝑖 and 𝑥𝑗 represents the two different samples. Degree 𝑑 in case of polynomial kernel can be 

adjusted according to the problem statement. The separating hyperplanes in case of a linear and 

polynomial kernel can be shown by a simple 2D graph as in Figure 4.9. 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 Comparison of Class Imbalance Approaches 

In our research we first compared the existing approaches to solve the class imbalance problem. 

For this part, we used the SIIM pneumothorax dataset. For all these approaches VGG-16 was used 

as fixed feature extractor and Linear SVM was used as classifier. The different approaches 

experimented are: 

 Weight-balancing 

For experimenting the weight balancing approach, which is a classifier level technique, we 

used the whole training set as provided in the original dataset. 8296 Normal CXRs with 

2379 Pneumothorax CXRs were used for training purpose. The weights were assigned 

according to the Equation 3.1.  

Figure 4.9: Hyperplane examples for 2 class problem [59] (a) With Linear SVM. (b) With 

Polynomial Kernel SVM 

(a)     (b) 
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 Down-sampling 

The dataset was down-sampled in order to equalize the number of samples in minority class 

(pneumothorax) and majority class (Normal). So out of 8296 Normal CXRs, only 2379 

CXRs were used in combination with 2379 Pneumothorax CXRs. 

 

 Over-sampling 

Another data-level approach in which the aim is to make the number of samples equal in 

both classes, however here the number of minority class samples is increased. We used 

ImageAugmentation method in order to generate synthetic pneumothorax samples so we 

have 8296 Normal and 8296 Pneumothorax CXRs. 

 

 Ensemble 

The data-level-ensemble was created by dividing the majority class into three subsets so 

that each subset has same number of samples as in the minority class. Each subset of 

training data was trained separately on the Linear SVM classifier. In test phase, the features 

of the test image were passed to every single trained model and prediction was obtained. 

Final prediction was obtained by combining the predictions from each single trained model 

using Voting method (i.e. maximum occurring class was selected as final output). 

 

4.1.4 Proposed Model VDV 

Among the multiple class imbalance solving approaches experimented in our research, 

data-level-ensemble was found to be performing best of all, so based on this and the concept of 

model-level-ensemble, we propose a VDV model which is a doubly ensemble based architecture.  

The VDV framework is a model level ensemble of three different data-level-ensembles. The 

different models utilized are VGG-16, DenseNet-121 and VGG-19. Thus the name VDV is given 

to the proposed framework. All these pre-trained CNN models were used as fixed feature extractor 

and polynomial kernel SVM (C=100, gamma=0.02 and kernel=poly) was used as classifier. Like 

any machine learning based CAD system, the VDV model also consist of training and testing 

module. The block diagram for the training module is shown in Figure 4.10.  
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 The workflow of the training module is shown by a block diagram in Figure 4.10 (a). The 

training process utilized three different CNN architectures corresponding to each block. Block A 

refer to VGG-16, Block B refer to DenseNet-121 and Block C refer to VGG-19. Training set was 

sent to each block separately which generated three trained SVM models each. These trained SVM 

models were used for predicting the test sample class.  The internal working of each block is same 

except for using different CNN architecture as feature extractor. Figure 4.10 (b) shows the generic 

working of each block. As our aim is to use whole training data in such a way that class-imbalance 

problem is solved as well, so we first created data-level ensemble of the training data. This was 

done by creating subsets of training data in such a way that each subset was class balanced, i.e. 

each subset had equal number of samples from both the classes.  As the Normal CXRS (i.e. class 

0) are in majority so they were divided in such a way that each subset had n number of normal 

CXRs where n is the number of samples in minority class (i.e. class 1 which is pneumothorax 

class). Thus N subsets of class 0 are created where N is equal to the class imbalance ration between 

the two classes. As the imbalance ratio is SIIM dataset is 3.4:1 so 3 subsets of Normal class samples 

were created.  When subsets of Normal CXRs were created, they were combined together with 

whole minority class in order to make mini-training sets (referred as set1, set2 and set3 in the 

(a) (b) 

Figure 4.10:  Training Module.  
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Figure 4.10). Features were extracted from each mini-training set using the CNN architecture 

corresponding to each block and these extracted features were then trained using Kernel SVM. 

The block diagram for the test module is shown in Figure 4.11 (a). The trained SVM models 

generated during training process were utilized here.  For making class prediction for any test 

samples, it was sent to each block separately, which generated the class prediction. As we have 

three blocks, so three predictions were obtained. These class predictions were combined together 

by Voting Method, i.e. prediction with maximum frequency was selected as final output. In Figure 

4.11 (b), the internal generic working of each block for the test module is shown.  The test sample 

was sent to each block in which features were extracted from the CNN architecture with respect 

to each block. These extracted features were sent to the three trained SVM models (corresponding 

to set1, set2 and set3 of the training data).  Each SVM model generated a prediction and these 

predictions were concatenated via Voting Method. Note that this process was repeated for each 

Block separately. 

 

 

In our proposed model the input size for each of the Block (A, B and C) was kept as 

224x224. For VGG-16 and VGG-19 all of the extracted features (i.e. 25088) were used for training 

kernel SVM, however for DenseNet-121 the number of extracted features was 50176 which is 

(b) (b) 

Figure 4.11:  Testing Module.  
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huge number and difficult to train on SVM with 4758 samples, so the number of features was 

reduced using Principal Component Analysis (PCA), the number 50176 was reduced to 4758 and 

this number was obtained by using Singular value decomposition (svd) solver method [60]. 

Moreover instead of using 8296 samples we used 7137 samples of Normal CXRs in ensemble 

model, i.e. 3 times more than the number of samples in pneumothorax class. This was done in 

order to make the training subsets class balanced. 

For authentication of the proposed model we also evaluated the performance on publicly 

available Random Sample of NIH chest X-ray dataset, from which we selected normal and 

pneumothorax samples. The imbalance ratio between normal and pneumothorax samples is 11:1. 

So the only difference while performing experiments with this dataset was that here we made 11 

subsets of the training data instead of 3 subsets. The rest of the implementation was same just as 

describe above. 

 

4.2 Segmentation 

 The purpose of segmentation is to extract the region of interest from the image. In our case, 

the region of interest is the area of the lung affected by the pathology (pneumothorax). The size of 

the affected area may vary from patient to patient. This problem comes under the category of 

sematic segmentation which is sub-category of Image segmentation [42]. Here every pixel of the 

image is considered as a particular class, either foreground or background. So every class is 

assigned a different color. As our segmentation problem is a binary problem so we have black and 

white mask. Instance segmentation is slightly different from the semantic segmentation as in the 

instance segmentation problem, different objects belonging to same class can also be differentiated 

as those are given separate colors. Semantic segmentation can be performed using a Fully 

Convolutional Network FCN 

In this research, U-Net (FCN) was trained using the training images with the corresponding 

binary mask, in which white area represents the lung portion affected by the pathology while a 

whole black mask means that the corresponding X-ray image is of a healthy person. Figure 4.12 

shows the flow chart for the proposed segmentation model. Training was done twice, firstly with 

image size 256 × 256 and then image size was increased to 384 × 384. The detailed architecture 

of a typical U-Net model and EfficientNet along with the proposed model are described in this 

section. 
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4.2.1 U-Net  

U-Net is a popular architecture proposed by Olaf Ronneberger at al [61] for the purpose of 

Image Segmentation. It is a fully Convolutional Network in which all the layers are convolutional 

layers and there is no fully connected layer. U-Net is an Encoder-Decoder Network. Basically, 

spatial dimensions of the input image are gradually decreased by the Encoder (contracting path) 

while the depth of the image increases, this means that the Encoder part is trying to lean the 

information in the image however it loses the precise location of that particular information. On 

the other hand, the decoder (expansion path) gradually increases the spatial dimension to the 

original input's dimension and decreases the depth. In other words, it tries to recover the location 

of the information obtained by the encoder part. 

In a typical U-Net architecture, the image input size can be reduced to minimum possible 

resolution of 32 x 32. Like any other FCN, U-Net consist of Encoder and Decoder part. The 

encoder consist of stack of convolutional layer and max pooling layer. A dropout layer can also be 

added after max pooling layer in order to avoid overfitting. Thus the encoder takes the image as 

input, followed by two convolutional layers with 3x3 kernel size and padding of 2. Each of the 

two convolutional layer is followed by ReLU activation layer, the image is down sampled into half 

by a max pooling layer with window size of 2x2. The number of convolutional filters is doubled 

Figure 4.12:  Flow Chart of Segmentation Methodology.  
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after every max pooling layer. As stated earlier that encoder is a stack of convolutional layers, so 

several convolutional layers are piled up with the aim of getting maximum information from the 

input image while the spatial dimension reduces and depth of feature map increases.  The purpose 

of decoder is to recover the lost information about the location and to recover the size of the output 

to original spatial dimension. This is done by up sampling the feature map by using Transpose 

Convolutional layer. After up sampling Convolution is performed with a kernel size of 3 x 3 

followed by activation layer. The number of convolutional filters is reduced to half after every up 

sampling process. This process is repeated till the original spatial dimension of the input image is 

recovered.  The model of a typical U-Net architecture is shown in the Figure 4.13. 

 

 

4.2.2 EfficientNet 

With the evolution of Convolutional Neural Networks and the fact that Alex-Net performed 

best of all in 2012 ImageNet Challenge, several different architectures of CNNs have been 

Figure 4.13:  A typical U-Net architecture [61]. The blue rectangular boxes shows the multi-

dimensional feature maps. The x-y dimensions of each box is shown on the lower left edge while the 

number of filters of convolutional layers is shown at the top of each box. The white boxes shows the 

copied corresponding feature maps. 
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presented which mainly differ in terms of number of layers and intermittent connections. However 

one of the main issues in designing neural networks is model scaling, i.e. to decide the criteria for 

increasing model size in order to get better performance [62]. 

So the designing of a CNN is basically a hit and trial method until required results are 

obtained, this is both resource and time consuming. So in order to solve this issue, a paper was 

released by Google in 2019 that introduced new family of convolutional neural networks known 

as EfficientNet [63]. These models not only perform better in terms of accuracy but also reduces 

the number of trainable parameters and floating point operations per second (FLOPS) thus 

enhancing the efficiency of the models. In the said paper, a mobile-sized baseline architecture 

EfficientNetB0 was introduced. Also a "compound scaling" method was introduced as a rule of 

thumb to increase the model size for maximizing the model performance. 

The "Compound Scaling" method can be used for the existing CNN architectures as well, 

like Mobile Net and ResNet. However the choice of baseline architecture is an important decision 

as the compound scaling method can only increase the predictive capacity by replicating the 

convolutional operations of the base network. 

The EfficieintNet-B0 proposed in the paper achieved 77.3% accuracy with only 5.3M 

parameters and 0.39B FLOPS while ResNet achieved 76% with 26M parameters and 4.1 FLOPS. 

The architecture of EfficientNet B0 is shown in Table 4.2. Each row represents stage i with Layers 

𝐿𝑖 , and input resolution of 𝐻𝑖, 𝑊𝑖 and 𝐶𝑖 output channels. 

 

 

 

The main building block of EfficientNet is MBConv which is similar to the inverted 

residual blocks used in MobileNetV2, along with adding squeeze-and-excitation optimization, as 

Table 4.2: EfficientNet-B0 architecture 
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shown in Figure 4.14. These MBConv actually forms a shortcut connection between beginning 

and end of convolutional blocks. Initially the depth of feature maps is increased by expanding the 

input activation maps using 1x1 convolutions. Then reduction of number of channels in the output 

feature map is done by Depth wise and then Point wise convolution with 3x 3 filters. The narrow 

layers are connected by a shortcut connection while the wider layers are located between the skip 

connections. Thus, the presented structure minimizes the number of operations and the size of the 

model without compromising on model performance. 

 

 

4.2.2.1 Compound Scaling 

Scaling or increasing the size of the model can be done in three dimensions: depth, width 

and resolution. The depth of the network is associated with the number of layers, width correspond 

to the number of neurons in a layer or more precisely, the number of filters in the convolutional 

layer. The resolution is nothing but the width and height of the input image.  

Increasing the depth, i.e. stacking more convolutional layers enable the network to learn 

complex features however deeper the network, more chances of gradient vanishing problem and 

so it becomes difficult to train the model properly.  Although this problem is resolved by using 

skip connections and batch normalization however such deeper networks saturate quickly. For 

example, Resnet100 and Resnet1000 gives the same performance although the later one has more 

number of layers. 

Model scaling by increasing width of the network allows the network to learn fine grained 

features. Model scaling this way, has been utilized in Wide ResNet and MobileNet, however 

Figure 4.14:  MBConv-Inverted Residual block [62] 
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increasing only width disables the network to learn complex features, thus compromising on the 

performance 

Increasing the model input resolution increases the model performance by providing 

greater details about the image however this technique has its own limitations in terms of 

performance gain. Figure 4.15 shows the comparison of performance on ImageNet dataset while 

adopting different techniques of model scaling. In the right most figure, r=1.0 shows the input 

resolution of 224 x 224 while r=2.5 denotes the input size of 560 x 560. 

 

Thus it can be concluded that increasing only one dimension increases accuracy however 

this effect is diminished for the bigger models. So it can be inferred that scaling should be done by 

combination of all these three dimensions. Now the important thing is to decide how to balance 

these three dimensions, i.e. how many new layers to add (depth increase), how many neurons to 

add in any layer (width wise increment) and what input size be finalized. For solving this issue, 

scaling method was proposed in the said paper which will be explained in following section. 

 

4.2.2.2 Proposed Scaling Method 

A CNN can be visualized as a stack of different convolutional layers. The layers can be 

partitioned into different stages and the layers in each stage has same type of convolutional layers. 

E.g. ResNet has 5 stages of layers present. So a CNN can be represented as: 

Figure 4.15:  Baseline Model Scaling with different approaches [62]. (a) Width. (b) Depth. (c) 

Resolution. 

    (a)    (b)         (c) 
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𝑁 =     ʘ𝑖=1…𝑠𝐹𝑖
𝐿𝑖  (𝑋<𝐻𝑖 ,𝑊𝑖  ,𝐶𝑖>) (4.13) 

 Here N represents the network, i denotes the stage number, 𝐹𝑖  depicts the 

convolutional operation going on in i-th stage layers and 𝐿𝑖 shows the frequency of 𝐹𝑖  repeated in 

a particular stage. 𝐻𝑖 , 𝑊𝑖   and 𝐶𝑖   shows the input shape and input channels. It can be observed 

that the depth of network is controlled by 𝐿𝑖 , width by 𝐶𝑖   and input resolution is controlled by 

𝐻𝑖 and 𝑊𝑖. Now finding an accurate set of coefficients to scale these parameters is impossible as 

it would require infinite computation. So the authors presented some ground rules to set these 

parameters. 

 In a scaled model , all the layers will use the convolutional operation as present in the 

baseline network 

 Scaling to be performed uniformly with a constant ratio for all the layers. 

So equation can be parameterized as  

𝑁 =    ʘ𝑖=1…𝑠�̂�𝑖
𝑑.�̂�𝑖  (𝑋<𝑟.�̂�𝑖 ,𝑟.�̂�𝑖 ,𝑟.�̂�𝑖 >) (4.14) 

where d, w, and r are the coefficients for scaling the model with respect to depth, width and input 

image resolution. 

Effective scaling technique was proposed by the said authors using compound coefficient 

𝝓 for uniform scaling of depth width and resolution. 

depth:  𝑑 =  𝛼𝜙 

width:  𝑤 =  𝛽𝜙 

resolution:  𝑟 =  𝛾𝜙 

st   𝛼. 𝛽2. 𝛾2      ≈ 2,    𝛼 ≥ 1 𝛽 ≥ 1, 𝛾 ≥ 1 

(4.15) 

 

 𝝓 is a user defined variable which is a global scaling factor controlling the number of 

resources available, 𝝰, 𝝱, and 𝝲 decides how to assign the available resources to depth, width and 

resolution respectively. The FLOPS are directly proportional to 𝑤2, 𝑟2 and 𝑑, as doubling the 

depth will increase the FLOP two times, while FLOPS increase by four times while doubling the 

width and resolution.  
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In order to find parameters values (𝝰, 𝝱, and 𝝲) giving best results, grid search is used while 

setting 𝝲 equal 1. Once the parameters values are finalized, then 𝝓 can be increased to get larger 

and accurate model. This way EffiecientNet-B1 to EffiecientNet-B7 are formed with B indicating 

the compound coefficient value. 

 

4.2.3 Proposed Segmentation Methodology 

In this section, we will describe the model architecture for segmentation purpose in detail 

followed by description of training and testing module. 

 

4.2.3.1 Model architecture 

The main building block is a U-Net model which is used for segmentation purpose. As it 

contains encoder and decoder part, so for our experimentation, we created the encoder by removing 

the global average pooling layer and a fully connected layer from the end of the EffiicientNet-B4 

architecture. The decoder is comprised of five blocks, each block consist of up-sampling layer with 

a filter size of 3x3, followed by a convolutional layer and two residual blocks with LeakyReLU 

(alpha=0.1) activation layer. The structure of a residual block is shown in the Figure 4.16.  

 

Inside Each residual block, firstly LeakyReLU activation is applied to the input layer and 

then batch normalization is performed. This processed layer is fed to a convolutional block twice 

and the output is added with the output of another layer in which batch normalization is applied to 

Figure 4.16:  Residual Block 
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the input layer of the block. The structure of convolutional block is shown in Figure 4.17. It consist 

of a convolutional layer with 3x3 filter size, batch normalization and LeakyReLU activation layer.   

 

 

In the first four blocks of the decoder, concatenation is applied to the up sampled layer and 

the feature map of the same size from the encoder part.  Lastly, after the fifth block convolution 

with 1x1 filter size is performed with sigmoid activation. At the end of the encoder and after each 

block of the decoder, a dropout layer is introduced to avoid overfitting. Basically dropout is a 

probability value at which output of the node/ layer is retained. The dropout value is set to 0.5. 

The detailed architecture is shown in Table 4.3. 

 

 Table 4.3: U-Net with EfficientNetB4 Encoder 

Layer name Layer detail Encoder/Decoder 

Input layer Input to EfficintNet-B4 model Encoder 

Middle block 

 Convolutional layer 

 Residual block × 2 

 Leaky ReLU 

--- 

Generic Decoder 

block 

 Up-sampling (convolution Transpose) 

 Concatenate Output from layer number N 

of EfficientNet-B4 

 Dropout 

 Convolutional layer 

 Residual block × 2 

 Leaky ReLU 

 

Decoder 1 Generic decoder block with N=342 Decoder 

Figure 4.17:  Convolutional Block 
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Decoder 2 Generic decoder block with N=154 Decoder 

Decoder 3 Generic decoder block with N=92 Decoder 

Decoder 4 Generic decoder block with N=30 Decoder 

Decoder 5 

 Up-sampling (convolution Transpose) 

 Dropout 

 Convolutional layer 

 Residual block × 2 

 Leaky ReLU 

Decoder 

Output layer Convolution of Decoder 5 output Output 

 

 

4.2.3.2 Training module 

The proposed framework for segmentation finds its root from [45]. The main building 

block is U-Net architecture with EfficientNet-B4 encoder which is described in detail in the above 

section in Table 4.3. The framework consist of 2 stages. The detailed block diagram for training 

module is shown in Figure 4.18.  

 

 

Figure 4.18: Segmentation Model - Training Module 
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The dataset contains images and corresponding binary mask in PNG format. Each image 

has resolution of 1024 x 1024. The images were resized to 256 x 256 and 384 x 384 for the 2 stages 

of training process. In the binary masks, the pixel value 0 shows the area without pneumothorax 

and the pixel value 1 shows the area with pneumothorax. 

Data augmentation using the “albumentation library” was applied in both stages of the 

training module in order to reduce overfitting, since data augmentation increase the amount of 

training data and introduce diversity in the training data.  Four groups of data augmentations were 

applied to images and binary mask including horizontal flip, one of random gamma, random 

contrast and random brightness, one of grid distortion, elastic transform and optical distortion, and 

random size crop. The pixel values of the masks were normalized so that the pixel values lies in 

the range of 0 to 1, by dividing each pixel value with 255. 

In both the stage, Binary Cross Entropy and Dice loss were combined to make a combined 

loss function named as BCE-DICE-Loss. Cosine annealing scheduling was used to decay the 

learning rate with each epoch. 

For the first stage, images and masks were resized to 256 x 256 and data augmentation was 

applied. The preprocessed images and masks were fed to the U-Net model with EfficientNet-B4 

encoder and trained for 20 epochs. The initial weights were set to the ImageNet weights. Adam 

optimizer with initial learning rate 1e-3 was used. 

For the second stage, images and were resized to 384 x384 and whole process of first stage 

was repeated except that here we trained the model for 25 epochs and the initial weights were set 

to the model's weights obtained from the first stage. Finally the trained model was saved for 

predicting binary masks of the test images. 

 

4.2.3.3 Testing Module 

For predicting the area of pneumothorax, i.e. generating binary mask for the test image, the 

images were resized to 384 x 384 resolution. Then test time augmentation (TTA) was done by 

applying horizontal flip to the test images. After that the average of predicted mask (without TTA) 

and predicted masks (with TTA) was considered as final predicted mask for any test image. The 

block diagram for the test module is shown in Figure 4.19. 
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4.3 Combining Classification and Segmentation  

After obtaining the results of classification and segmentation, we combined their results by 

means of class prediction. Since classification module give class prediction from the VDV 

framework. The proposed two stage segmentation framework generates binary mask. Now in the 

generated mask, if a mask has white area, it shows the presence of pneumothorax.  

We performed a different kind of experimentation by predicting class of an image from the 

generated mask. For this purpose, we counted the number of white pixels in every generated mask. 

If a mask has even a single white pixel, we say that the mask belongs to an image with 

pneumothorax present. This way we had class predictions for all the images using the segmentation 

results. The flow chart for obtaining class prediction from the predicted mask is shown in Figure 

4.20. 

Once we got the class prediction, we combined these prediction with those generated by the 

classification VDV framework by two different methods, i.e. Union and Intersection 

 Union: For any image, if the predicted class by classification OR segmentation module is 

“1”, i.e. pneumothorax, then we say that the image belong to Pneumothorax Class. 

 Intersection: For any image, if the predicted class by classification AND segmentation 

module is “1”, i.e. pneumothorax, then we say that the image belong to Pneumothorax 

Class, else it belong to Normal Class. 

Figure 4.19: Segmentation Model - Testing Module 
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Figure 4.20: Flow chart for predicting class from the generated mask. 



57 

 

CHAPTER 5: EXPERIMENTAL RESULTS 

5.1 Databases 

The proposed methodology in this research is evaluate on two openly available datasets, 

namely SIIM ACR Pneumothorax dataset (SIIM) and Random sample of NIH Chest X-ray dataset 

(RS-NIH). The details of these datasets are given in this section. 

 

5.1.1 SIIM ACR Pneumothorax dataset: 

SIIM ACR Pneumothorax Segmentation dataset is gathered by Society for Imagining 

Informatics in Medicine (SIIM) with the aim to contribute towards automated diagnosis of 

pneumothorax from the chest radiographs. A competition was held on Kaggle in order to develop 

a robust segmentation model using the training and testing set provided in this dataset. The dataset 

provides 12047 chest X-ray images and corresponding masks in Run Length Encoding (RLE) 

format, divided into training and testing set.  This dataset is also available with masks converted 

into Portable Network Graphics (PNG) format. In our research we have utilized the same dataset 

available on Kaggle [64] with CXR images and binary masks in .PNG format, and stage-1 testing 

set. Each image and mask has resolution of 1024×1024 with 8 bits depth per image. The details of 

this dataset as used for experimentation is given in Table 5.1.  

 

Table 5.1: Overview of SIIM dataset  

Resolution 1024 x 1024 

Dataset size 12047 

No of classes 2 

Training set 
N 8296 

P 2379 

Testing set 
N 1082 

P 290 

N: Normal CXRs, P: Pneumothorax CXRs 
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5.1.2 Random Sample NIH Chest X-ray dataset 

The Random Sample NIH Chest X-ray (RS-NIH) dataset is sample version of full NIH 

Chest X-ray-14 (NIH-CXR) dataset provided by NIH itself and also available on Kaggle [65]. This 

dataset is 5% of the NIH-CXR dataset. Just like the full NIH Chest X-ray-14 dataset, the RS-NIH 

contains total of 15 class, 14 classes representing different thoracic diseases and 15th being the 

Normal class. The resolution of each image is 1024×1024. The sample dataset contains 3044 

images of No-finding, Infiltration:967, Effusion:664, Atelectasis:508, Nodule:313, Mass:284, 

Pneumothorax:271, Consolidation:226, Pleural Thickening:176, Cardiomegaly:141, 

Emphysema:127, Edema:118, Fibrosis:84, Pneumonia:62 and 13 images of Hernia. The dataset is 

divided into 80% training and 20% testing data. The details of the dataset as used in this research 

are given in Table 5.2. Note that for RS-NIH dataset we performed the experiments twice. First 

with completely random split of dataset (as followed in most of the literature) and second with a 

patient-wise split of data (i.e. there was no overlap of patients in training and testing set). 

 

Table 5.2: Overview of RS-NIH dataset  

Resolution 1024 x 1024 

Dataset size (with 14 classes) 5606 

No of classes chosen 2 

Training set 
N 2379 

P 216 

Testing set 
N 609 

P 55 

N: Normal CXRs, P: Pneumothorax CXRs 
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Some of the sample images from the afore-mentioned datasets are shown in Figure 5.1. 

 

Figure 5.1: Samples from dataset. (a) SIIM ACR Pneumothorax. (b) RS-NIH  

 

5.2 Performance Measures 

In our research, as we have carried out two tasks, which are classification and segmentation. 

For classification the main performance measures are Recall (Sensitivity) and Area under the 

Receiver Operating Characteristic curve (AUC). Besides we have also reported the results in terms 

of other performance metrics including Accuracy, Specificity, Precision, F1 score, F2 score and 

G-mean. 

In order to calculate AUC the area under ROC curve is calculate, where ROC is defined in 

terms of False positive rate (FPR) and True Positive Rate (TPR) [66]. F1 and F2 are calculated by 

using 𝐹𝛽 expression in which 𝛽 is assigned value depending on the problem statement. If the aim 

is to design a model which avoids classifying negative class sample as positive one, then 𝛽 is given 

value 0.5. If importance is given to recall, i.e. aim is to never miss a positive class sample, then 𝛽 

is assigned value equal to 2. If both recall and precision are to be given equal importance then 𝛽 

      

(a) 

      

(b) 
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is set to 1 [31]. The expressions for calculating the above mentioned performance metrics are given 

below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 (5.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 (5.3) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.4) 

𝐹𝛽 = (1 + 𝛽2) 
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝛽2. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.5) 

𝐺 𝑚𝑒𝑎𝑛 = √𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  (5.5) 

 

In all of these expressions True Positive (TP) and True Negative (TN) denotes the total 

number of correctly classified positive class samples and total correctly classified negative class 

samples respectively.  False Positive (FP) represents the total number of negative class samples 

misclassified as positive ones, while False Negative (FN) is the number of positive class samples 

wrongly classified as negative class. 

For segmentation, the performance measures used is Dice coefficient score (DSC) while 

during experimentation Intersection over union (IoU) score was used as performance measure. 

These are calculated as follows: 

 

 

𝐷𝑆𝐶 = 2 ×
  𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 × 𝑈𝑛𝑖𝑜𝑛  

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑈𝑛𝑖𝑜𝑛 
 

(5.6) 

 

𝐼𝑜𝑈 =
  𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 × 𝑈𝑛𝑖𝑜𝑛   

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑈𝑛𝑖𝑜𝑛 
 

 

(5.7) 
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In the above two equations, intersection is calculated by counting the total number of 

mutual foreground pixels in predicted and original binary masks and union is calculated by the 

total number of foreground pixels in predicted and original masks. 

 

5.3 Results 

As this research is comprised of three parts, i.e. comparing existing Class Imbalance 

approaches, designing a classification model and a segmentation model. The results for each part 

are describe separately in this section. 

 

5.3.1 Class Imbalance approaches 

The existing class imbalance approaches were compared using SIIM ACR Pneumothorax 

dataset. The total number of training and testing samples with respect to each class, utilized for 

each approach are shown in Table 5.3. For all these experiments, VGG-16 with ImageNet weights 

was used as fixed feature extractor and Linear SVM was used as classifier. The results show that 

a data-level-ensemble model outperforms other existing approaches, with highest AUC of 80.02% 

and Recall value equal to 79.65%. 

 

Table 5.3: Comparison of existing Class-Imbalance approaches  

ACC: Accuracy, REC: Recall, SPE: Specificity 

Technique 
No of Training Samples ACC 

(%) 

REC 

(%) 

SPE 

(%) 

AUC 

(%) 
Normal Pneumothorax 

Weight balancing 8296 2379 79.08 48.96 87.15 78.8 

Under-sampling 2379 2379 72.15 68.62 73.10 77.67 

Over-sampling 8296 8296 77.7 50 85.20 77.76 

Ensemble 
2379 (in 

each subset) 

2379 (in each 

subset) 
75.22 79.65 74.09 80.02 
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5.3.2 Classification 

In this research, the proposed classification model VDV was tested on SIIM ACR 

Pneumothorax dataset and Random Sample of NIH Chest X-ray dataset. The results of individual 

data-level-ensemble with each CNN architecture (i.e. VGG-16, VGG-19 and DenseNet-121) 

separately are reported for SIIM dataset only along with the performance of proposed VDV model 

on the same dataset in Table 5.4. The results prove that the proposed VDV model performs better 

than single CNN architecture in a data-level-ensemble in terms of all performance metric reported 

here. For RS-NIH dataset we have reported the performance of VDV model in Table 5.5. 

Table 5.4: Performance of proposed model on SIIM dataset 

 
ACC 

(%) 

REC 

(%) 

SPE 

(%) 

PREC 

(%) 

F1 

(%) 

F2 

(%) 

G-

mean 

(%) 

AUC 

(%) 

VGG-16 77.55 83.79 75.87 48.21 61.2 73.01 79.73 86±0.01 

VGG-19 77.04 82.06 75.69 47.5 60.17 71.64 78.8 86± 0.01 

DenseNet-121 76.32 80.68 75.04 46.4 58.94 70.31 77.81 85±0.00 

Ensemble(VDV)  78.27 85.17 76.43 49.2 62.37 74.3 80.68 86±0.00 

PREC: Precision, F1: 𝐹1 score, F2: 𝐹2 score. 

 

Table 5.5: Performance of proposed model on RS-NIH dataset. 

 
ACC 

(%) 

REC 

(%) 

SPE 

(%) 

PREC 

(%) 

F1 

(%) 

F2 

(%) 

G-mean 

(%) 

AUC 

(%) 

RANDOM SPLIT OF DATA 

Ensemble (VDV) 82.68 90.9 81.93 31.25 46.5 65.78 86.3 95 ±0.01 

PATIENT-WISE SPLIT OF DATA 

Ensemble (VDV) 69.12 85.45 67.65 19.26 31.4 50.64 76.03 77 ±0.06 
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The confusion matrix for the classification results on SIIM dataset and RS-NIH dataset are 

shown in Table 5.6 and 5.7 respectively 

Table 5.6. Confusion Matrix for SIIM data 
 

Table 5.7. Confusion Matrix for RS-NIH data 

 Predicted Class   Predicted Class 

Actual Class Normal Pneumothorax  Actual class Normal Pneumothorax 

Normal 827 255  Normal 499 110 

Pneumothorax 43 247  Pneumothorax 05 50 

 

The results in terms of ROC plots are shown in Figure 5.2. On left hand side image, the 

plots for individual architectures on a data-level ensemble are shown along with the ROC curve 

for the proposed VDV model on SIIM dataset. On right hand side image, ROC graph for VDV 

model on RS-NIH dataset is plotted for both type of data splits experimented in this research.  

  

We have also presented the comparison of our results for both datasets with existing 

literature. In case of SIIM dataset, although a direct comparison can’t be made as we are the first 

one to use to this dataset for classification however we have tried to compare our results with the 

already present work on pneumothorax detection in Table 5.8. In the table the total number of 

Figure 5.2: AUC plot for proposed VDV model. a) On SIIM dataset. b) On RS-NIH dataset. 

(a) (b) 
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class-wise samples in training and testing set for each research is mentioned. The sub-column B 

denotes that if the training or testing set is class balance in nature or not. It can be seen from the 

table that most of the work done has used local dataset and there is minimal ratio of imbalance. 

And if otherwise (i.e. data is imbalance in nature) then only single technique has been used instead 

of comparing multiple class imbalance techniques. Moreover in most of the cases, the training as 

well as testing data is small as compared to our SIIM dataset which is openly available, has high 

imbalance ratio and large number of samples in both training and testing set. So our proposed 

model performance surpass the existing work on pneumothorax detection with AUC of 86.0%. 

Table 5.8: Comparison of existing work for SIIM dataset 

Author 

Training Set Testing Set 

Description 

D
a
ta

se
t 

p
u

b
li

c 

Results (%) 

N P B N P B 

Yuan 

[24] 
36 22  16 10 

Ignored the 

minimal IR 
 ACC= 82.20 

Yoon 

[25] 
24 24  15 15 

Completely 

balanced 
 

ACC=96.60 

REC=100 

SPEC=93.8 

S.Park 

[26] 
10887 1343  250 253 

Down-sampling 

for class balance 
 

REC=89.7 

SPEC=96.4 

Andrea 

[27] 
350 453  87 113 

Ignored the 

minimal IR 
 AUC=96.2 

Xiang 

[28] 
30 50  40 160  Ignored the IR  

ACC=96.5 

REC=100 

SPEC=82.5 

Andrew 

[67] 
7095 2214 1553 437 

Down-sampling 

for class balance 
 

REC=55 

PREC=90 

AUC=82 

Propose 

model 

(VDV) 

8296 2379 1082 290 

Comparison of 

multiple 

approaches and 

ensemble was 

chosen based on 

performance 

 

ACC=78.27 

REC=85.17 

PREC=76.4 

AUC=86.0 

B: Class Balance, IR: Imbalance Ratio 
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The performance of our proposed model on RS-NIH can be compared with existing work 

in which RS-NIH dataset has been used for multiple thoracic pathologies detection, as summarized 

in Table 5.9. We have referred only that paper in which RS-NIH dataset was used for multiple 

thoracic pathologies detection while the papers in which binary classification (without considering 

any specific pathology, i.e. normal and abnormal CXRS) was done were ignored while comparing 

the results. It can be clearly seen that the AUC achieved in [36] (for pneumothorax detection) is 

only 54% which is very less as compared to our achieved results with both types of data split.  

 

Table 5.9: Comparison of existing work for RS-NIH dataset 

Author Data-set Description Results (%) 

Modal[36] RS-NIH 
Multi-label classification of 14 

thoracic diseases 
AUC= 54.0 

Random split of data 

Proposed 

model  
RS-NIH 

Binary classification (normal and 

pneumothorax CXRs ) 
ACC=82.68 

AUC=95.0 

Patient-wise split of data 

Proposed 

model  
RS-NIH 

Binary classification (normal and 

pneumothorax CXRs ) 
ACC=69.12 

AUC=77.06 

RS: Random Samples of NIH Chest X-ray dataset  

 

 

5.3.3 Segmentation  

The proposed segmentation framework was trained and tested on SIIM Pneumothorax 

dataset using the official split as described in Table 5.1. The validation set was kept same as the 

testing set. During training process, Intersection over Union (IoU) was taken as performance 

measure with BCE-DICE Loss. While after generating predicted masks for the test set, Dice score 

was measured for every generate mask, where dice score is the measure of correctly identified area 

of pathology with respect to the ground truth mask. 

Since we performed our experiments with two different sizes of images and mask, the 

selection of initial size (i.e. 256 x 256) was done randomly. However the size 384 x 384 was 

selected based on the concept of resolution given in [63]. In the paper a graph was given which 

shows that increasing resolution by factor “r” increases the performance of the CNN architecture, 
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so we took r=1.5 which yields 256*1.5=384, so for our second stage of the proposed segmentation 

framework we resized to images to 384 x 384 resolution.  

 

5.3.3.1 Selection of dropout value 

Firstly we performed two sets of experiments with image size 256 x 256. We tried two 

different values of dropout in the U-Net architecture. As discussed earlier, dropout layer is added 

in order to avoid overfitting. So we experimented with two different values which are 0.25 and 

0.5. The reported results in Table 5.10 are on a small subset of test data containing 300 images and 

300 corresponding masks. These results were obtained after training the first stage of proposed 

framework (i.e. U-Net model with Efficinet-B4 encoder after preprocessing and data 

augmentation) with whole training set containing 10675 images and 10675 corresponding binary 

masks for 20 epochs. The binary threshold was kept 0.5 for training and testing purpose. 

Table 5.10: Comparison of dice score with different dropout values 

Dropout 
Threshold 

Epochs 
Dice Score (%) 

Train Test Whole Normal Pneum 

0.25 0.5 0.5 20 83.04 95.43 36.47 

0.5 0.5 0.5 20 83.7 94.69 42.4 

Pneum: Pneumothorax.  

 

For fair comparison we calculated the dice score class wise (i.e. Normal and 

Pneumothorax) along with the dice score of whole test set (reported as “Whole” in Table 5.10). It 

can be seen that although the Whole dice score is not increased to a considerable value when 

dropout is changed from 0.25 to 0.5, however the dice score for pneumothorax increased by 5.93% 

which is good progress as our main aim is to identify the presence and location of pneumothorax.  

So we chose 0.5 for the rest of experimentation. 

Note that for all the experiments, the default setting was: initial learning rate of 0.001 with 

Adam optimizer and binary threshold of 0.5. The learning rate was decayed in every epoch using 

cosine annealing scheduling. ImageNet weights were assigned to the U-Net architecture as initial 

weights. Dropout value was selected as 0.5 after comparing the two different values. Default 

resolution was 256 x256 except for the second stage in which resolution was set as 384 x 384. 



67 

 

 

5.3.3.2 Selection of Number of Epochs 

After selection of dropout value, we first generated the predicted masks of the whole test 

set using the trained model from Section 5.3.3.1 with dropout value 0.5. The performance is shown 

in first row of Table 5.11.  Then we trained the model with default experimental settings for 45 

epochs and masks were predicted for the test set. The dice score of the whole test set along with 

class wise dice scores are reported in second row of Table 5.11. 

Table 5.11: Comparison of dice score with different epochs 

Dropout 
Threshold 

Epochs 
Dice Score (%) 

Train Test Whole Normal Pneum 

0.5 0.5 0.5 20 82.14 93.64 39.23 

0.5 0.5 0.5 45 82.2 96.7 28.4 

 

Although the overall dice score increases a little bit with more number of epochs, however 

better results in terms of dice score of pneumothorax were achieved with less number of epochs, 

i.e. 20 epochs.  

 

5.3.3.3 Two stage segmentation model 

As the first stage of the proposed 2 stage segmentation model give better result with 20 

epochs, so we loaded the weights of trained model with 20 epochs for the second stage, i.e. initial 

weights for training the U-Net Model with EfficientNet-B4 encoder with resolution of 384 x 384 

were obtained from the trained model with resolution of 256 x 256 with 20 epochs. In the second 

stage the number of epochs was set to 25. The results of both the stages along with the experimental 

settings are summarized in Table 5.12. 

 

 

 



68 

 

Table 5.12: Dice score for two stage segmentation model 

Label Res BS Init Wt Epc DO 
Threshold Dice Score (%) 

Train Test Whole Nor Pnu 

Set 1 256 x 256 16 
Image-

Net 
20 0.5 0.5 0.5 82.14 93.64 39.23 

Set 2 384 x 384 8 

Weight 

from Set 

2 

25 0.5 0.5 0.5 83.76 93.09 48.9 

Res: Resolution. BS: Batch size. Epc: Epochs. Init Wt: Initial Weights.  

DO: Dropout. Nor: Normal. Pnu: Pneumothorax. Set: Setting 

 

It can be seen that when the image and mask size is increased to 384 x 384, the overall dice 

score increase by 1.62% and the dice score of pneumothorax increase by 9.67% which is a huge 

improvement. The increase in overall dice score is not as greater as compared to that of 

pneumothorax samples, it is because there are very few samples of pneumothorax as compared to 

normal CXR in the training and testing set, so even an increase of almost 10% doesn’t increase the 

overall score to a noticeable value. 

The plot for training process of both stages is shown separately in Figure 5.3. As stated 

earlier, the performance measure during training process was IoU. Although the IoU score is not 

changed to a noticeable value in the right most graph, however this can be justified by the induvial 

results reported in Table 5.12 which proves the effectiveness of increasing the resolution of images 

and masks. 
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5.3.3.4 Test Time Augmentation 

Test time augmentation (TTA) is a process similar to Data augmentation done during 

training phase. Here, instead of showing the trained model only a cleaned, preprocessed version 

of test image, we will feed it with augmented images of testing image, final result is obtained by 

averaging the predictions for the original test image and the augmented test image.  

In our experimentation, we performed two sets of TTA on the results obtained after the 

second stage of segmentation framework, first being a horizontal flip. Second being a combination 

of horizontal flip and one of Elastic Transform, Grid Distortion and Optical Distortion. The 

individual results are shown in Table 5.13. 

Table 5.13: Comparison of different sets of TTA 

TTA 
Dice Score (%) 

Whole Normal Pnu 

Horizontal flip 84.56 94.44 47.72 

Horizontal flip & One of Elastic Transform, 

Optical Distortion and Grid Distortion 
83.9 95.2 41.9 

Nor: Normal. Pnu: Pneumothorax. 

 

(a) (b) 

Figure 5.3: Training and validation IoU score with respect to number of epochs. (a) With 

resolution 256 x 256. (b) With resolution 384 x 384. 
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As results in Table 5.12 and Table 5.13 show that better results in terms of dice score of 

pneumothorax are achieved without TTA, so to conclude we can safely say that if the aim is to 

increase the precise identification of location of pathology then prediction of mask without TTA 

gives better result. However, in the literature, class wise dice scores have not been presented and 

only the overall dice scores are reported so we will report the overall dice score achieved after 

TTA as our final result. 

Figure 5.4 shows some of the predicted masks against the ground truth mask for the test 

set of SIIM pneumothorax dataset. 
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The comparison of existing work for the segmentation of region of pneumothorax on SIIM 

dataset is presented in Table 5.14. Although our obtained results are less than those reported in 

[43], however we hope that with more resources available, our proposed framework can achieve 

better results if trained on greater image resolution. 

Table 5.14: Comparison of existing segmentation techniques 

Author Year Dataset Technique Results 

Mostayed [40] 2019 SIIM dataset 
U-Net (with content 

adaptive conv.layers) 
DSC= 76.04% 

Ostap [41] 2020 SIIM dataset 

GradCAM + IR-

Network + U-Net with 

ResNet50 

DSC= 76.7% 

 

Figure 5.4: SIIM Pneumothorax Segmentation Results.  

      (a) Original CXR          (b) Original Mask         (c) Predicted Mask       (d) Mapped Predicted  

   Mask on CXR image. 



72 

 

Jakhar [42] 2019 SIIM dataset 
U-Net (with pre-trained 

ResNet encoder) 

DSC= 84.3% 

IoU= 82.6% 

Abedalla [45] 2020 SIIM dataset 

2ST U-Net (2 stage U-

Net with ResNet34 as 

encoder) 

DSC=85.02% 

Groza [43] 2020 SIIM dataset 

LinkNet ensemble (se-

resnext50, SENet-154, 

se-resnext101) 

DSC= 88.21% 

Our method 2020 SIIM dataset 

2 stage U-Net model 

with EfficientNet-B4 

encoder 

DSC=84.56%  

 

 

 

5.3.4 Combining Classification and Segmentation modules 

The confusion matrix of the class predictions obtained from the generated masks as 

discussed in Section 4.3 is shown in Table 5.15.  

 

Table 5.15: Confusion matrix of class predictions from segmented masks 

 Predicted Class 

Actual Class Normal Pneumothorax 

Normal 1021 61 

Pneumothorax 54 236 

 

Here it can be seen that greater number of samples are correctly classified as Normal class, 

this can be justified by the fact that the segmentation framework was trained with the original Class 

Imbalance dataset in which almost 70% of the data is comprised of Normal CXRs. 

The results obtained after combining the class predictions by classification and 

segmentation framework, as discussed in Section 4.3, in terms of confusion matrix are shown in 

Table 5.16 and 5.17. The results in Table 5.16 are obtained from the Union of classification and 
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segmentation predictions, while the results in Table 5.17 are obtained from the Intersection of 

classification and segmentation predictions. 

Table 5.16: Confusion Matrix for Union 
 

Table 5.17: Confusion Matrix for Intersection 

 Predicted Class   Predicted Class 

Actual Class Normal Pneumothorax  Actual class Normal Pneumothorax 

Normal 815 267  Normal 1033 49 

Pneumothorax 16 274  Pneumothorax 81 209 

 

The results of combining classification and segmentation predicted class in terms of other 

performance measures including accuracy, recall, precision and specificity are shown in Table 

5.18. The results shows that although accuracy is greater in case of Intersection of predictions, 

while recall (i.e. sensitivity) increases in case of Union of predictions, so we conclude that 

combining results by union is better as compared to intersection. It is because in the field of 

medicine, false positive is better than false negative. 

 

Table 5.18: Performance of different class prediction approaches on SIIM dataset 

Exp.No 
Technique (Class prediction 

by) 

ACC 

(%) 

REC 

(%) 

PREC 

(%) 

SPEC 

(%) 

1 Classification (VDV framework) 78.27 85.17 49.2 76.43 

2 
Segmentation (Two stage 

framework) 
91.6 81.37 79.46 94.36 

3 Union of 1 and 2 79.37 94.44 50.6 75.32 

4 Intersection of 1 and 2 90.50 72.06 81.0 95.47 

Exp No: Experiment Number. 
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CHAPTER 6: CONCLUSION & FUTURE WORK 

6.1 Conclusion 

The results proves that convolutional neural networks are excellent tool for designing an 

automatic pneumothorax diagnosis and segmentation system. Learning from the training data may 

take time but once the model is trained, it generates prediction in no time. For classification, the 

main issue was class imbalance while the existing class imbalance approaches have never been 

tested in chest radiography domain, so first task was to come up with the best technique. After that 

we were able to design a doubly ensemble model by combining the concepts of model level and 

data level ensembles. The results show that a doubly ensemble model perform better than a single 

data-level ensemble. The results achieved on SIIM dataset will serve as baseline as no one has yet 

used this data for classification purpose. Moreover the results obtained on RS-NIH dataset also 

authenticate the performance of our model. Additionally our proposed segmentation model 

achieved competitive performance on SIIM dataset for generating binary masks for the test 

samples, which is helpful in identifying the area of pathology. Moreover, based on the generated 

mask, a decision can be made if the CXR has pathology or not. Thus a combination of these 

predictions and the ones obtained during classification process give better results in terms of 

sensitivity, thus increasing the capability of automated detection of pathology.   

6.2 Contributions 

 Comparison of existing class imbalance approaches for classification model. 

 Using the first openly available CXR dataset dedicated for pneumothorax identification. 

 Automated pneumothorax classification system from model-level-ensemble of multiple 

data-level-ensembles. 

 Reproducing the experimental results obtained in [45] for segmentation of the region of 

interest. 

 Combining the classification and segmentation results. 

6.3 Future Work 

As a future work we can propose: 
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 Experimenting the proposed framework for other class-imbalance medical images dataset 

and for bigger chest X-rays datasets like full NIH Chest X-ray14 dataset, CheXpert and 

MIMIC dataset. 

 Exploring different CNN architectures as feature extractor for the proposed VDV 

framework. 

 Exploring the effect of higher input resolution and different types of encoder in U-Net 

architecture for the two-stage-segmentation-model. 

 As mostly researchers had used U-Net architecture for segmentation purpose so there is a 

huge scope for exploring other segmentation models like LinkNet, Feature Pyramid 

Network (FPN) and Pyramid Scene Parsing Network (PSPNet) for medical images 

segmentation. 
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