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ABSTRACT 

Human Activity Recognition has enabled state of art applications in medical healthcare, 

surveillance systems, digital entertainment and various other sectors. Therefore, prediction of such 

kind of movements remained an interesting aspect in the field of research. Wearable sensor and 

vision- based systems have been utilized for the detection of Activities of Daily Life (ADL), 

however suffer from various limitations including intrusiveness, lighting conditions and privacy 

issues. This study proposes a transfer learned, deep learning model for Frequency Modulated 

Continuous Wave (FMCW) radar-based system operating at a frequency of 5.8 GHz with 400 

MHz bandwidth for classification of human activities. Radars are highly sensitive to human body 

movements and can capture small variations as Doppler shift. I have designed and demonstrated a 

generalized deep learning classification system for the detection of ADL irrespective of the 

geographical location and the ages of the subjects based on data from FMCW radar-based system. 

I have utilized experimental public data from 99 participants consisting of 1453 micro-Doppler 

signatures, at nine different locations including five retirement homes and four laboratories. This 

study propose micro-Doppler images normalized for speed profile of individuals to obtain age 

group independent feature maps of human activities and engineer a deep convolutional neural 

network architecture with a high classification accuracy, sensitivity and specificity of 99.1%, 

99.2% and 100%, respectively. 

Key Words: Activity Detection, Radars, Data classification, Data preprocessing, Feature 

extraction, CNN model 
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CHAPTER 1. INTRODUCTION 

Human activity recognition (HAR) remained a well know part of research in computer vision and 

image processing domain. HAR has enabled state of art applications in medical healthcare, 

surveillance, digital entertainment and various other sectors [1]. Therefore, prediction of such kind 

of movements remained an interesting aspect in the field of research. Human activities are 

envisioned by introducing many sensor-based techniques such as gyroscope, accelerometer etc, 

having their own benefits and drawbacks. 

In a research field Human activity recognition (HAR) is a challenging and highly active topic. Its 

objectives are to identify several activities performed by an individual or a group of people that 

are based on sensors and observed data and also includes knowledge due to which the observed 

activities are carried out [2]. Moreover, an activity is recognized no matter in what environment it 

is taking place or who is the one performing the activity. 

1.1. MOTIVATION 

The number of publications has been increasing rapidly, specifically in the field of HAR since last 

decades. To determine the particular activity and to achieve specific goals in this domain, many 

researchers have proposed application domains. Many types of devices and sensors are needed 

such as body inertia sensors, video sensors and environment activities sensors to identify the 

various actions of human activities. Similarly, some other sensors are required to record or sense 

the human action. HAR systems have used many other sensors but the effect of outdoor activities 

and environment on them have limited their usage such as GPS receiver that is only useful for the 

outdoor environment [3]. 

Normally, HAR process consists of multiple steps including information collection from raw 

sensor data on human behavior to find conclusion as well about the currently performed actions. 

Following are the steps: (i) to remove noise, redundancy, to deal with incompleteness and 

performing data aggregation and normalization pre-processing is done. (ii) Segmentation involves 

the most important data segments. (iii) In feature selection process, the essential attributes of 

features are extracted like statistical moments and temporal and spatial information. (iv) Similarly, 

to improve the quality some features are lessened as well as to reduce the computational efforts 
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that is necessary for classification in dimensionality reduction process. (v) The given activity is 

determined through a core machine learning classification process. 

The essential objectives of HAR process is to successfully notice and evaluate the human actions 

and understand current events. Contextual data is retrieved and processed by HAR systems such 

as temporal, spatial, environmental etc to know the human actions using visual and non-visual 

sensory data. HAR concepts are explored and developed in various applications domain. These are 

divided into four categories; for smart homes, Active and Assisted Living (AAL) systems, and tele 

immersion (TI) applications, healthcare monitoring applications moreover, for indoor and outdoor 

activities there is a monitoring surveillance system [4]. Observing and analyzing human activities 

by a human operator was a traditional way. For example, monitoring patient health or in security 

and surveillance processes. However, this task becomes more cost intensive and much challenging 

for the operators with rapid growth of technical monitoring devices and camera views. Practically, 

personnel deployment for these tasks can become financially difficult for the scenario of home 

care. Therefore, the proficiency and efficacy of the observation and analysis process can be 

enhanced by replacing the human operator through HAR support in these fields. For example, 

HAR systems uses sensory devices to maintain the record of a patient health and informs health 

workers in any serious situation. 

1.2. PROBLEM STATEMENT 

Human Activity recognition is one of those topics which have large number of applications in 

different fields including health care, military systems, security related problems, smart home 

environment and monitoring driving activities. The problem is that the data collected for one 

certain field is not applicable for the other as well because of the difference of location and the 

subjects whose data was collected. To address this issue, I have proposed a solution which is 

independent of geographical location and the age of the participants. The dataset which i have used 

contains 1453 micro-Doppler signatures, collected at varios different locations including five old 

care homes and four laboratories, using Frequency Modulated Continuous Wave (FMCW) radar 

sensor. The preprocessing techniques will be caried out to achieve the good classification accuracy 

and deep learning algorithm (CNN) will be used for the classification purpose. 
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1.3. AIMS AND OBJECTIVES 

The major objectives of the research are as follow: 

• Develop algorithm for human activity recognition 

• Preprocessing of the local dataset 

• Classify data into six different activities 

• Improve response time of system 

• Offer low-cost, easy deployable and non-invasive activity detection 

• Develop a flexible and scalable wireless sensing system  

• work properly in the new environment independent of the location and age group 

 

1.4. STRUCTURE OF THESIS 

The structure of the thesis is as follows: 

Chapter 2: covers the introduction to the Human Activity Recognition System. 

Chapter 3: a review of the literature and the significant work done by researchers in the past few 

years for Human Activity Recognition. 

Chapter 4: consists of the proposed methodology in detail.  

Chapter 5: All the experimental results are discussed in detail with all desired figures and tables.  

Chapter 6: concludes the thesis and reveals the future scope of this research  
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CHAPTER 2. ACTIVITY RECOGNITION SYSTEM 

Activity is something that you do or something that is going on. Activities performed by the people 

for their living, profit motive, entertainment, mental peace, are known as human activities. For 

example: leisure, entertainment, industry, recreation, war, and exercise. Human activities are 

categorized into: 

• gestures 

• atomic actions 

• human-to-object or human-to-human interactions 

• group actions 

• behaviors 

• events 

2.1. HUMAN ACTIVITY RECOGNITION SYSTEM 

Human activity identification, or HAR, is a wide field of research that focuses on recognizing a 

person's individual behavior or behavior based on sensor data [5]. Indoors, common behaviors 

such as walking, chatting, standing, and sitting are examples of movements. They may also be 

more oriented tasks, such as those carried out in a kitchen or on a manufacturing floor. Cam, radar, 

or other wireless methods may be used to record sensor data from afar. Data may also be collected 

explicitly on the topic, such as by the use of custom hardware or mobile phones with 

accelerometers and gyroscopes [6]. The aim of HAR is to identify behaviors based on a set of 

observations of subjects' behavior and environmental conditions. Activity detection systems are a 

wide area of research and development, with a recent emphasis on sophisticated machine learning 

algorithms, hardware design advances, and lowering control costs while increasing protection. 

Smart home technologies, health care management applications, monitoring and surveillance 

services for indoor and outdoor sports, and tale -immersion applications are all examples of 

ambient assisted living (AAL) systems [7]. The technologies are categorized under these groups 

depending on the methodology used to recognize human activity, such as visual, non-visual, and 
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multimodal sensor technology. It's a difficult challenge to classify time series. It entails predicting 

a person's movement based on sensor data, and it historically entails deep domain knowledge and 

signal processing methods to correctly engineer functionality from raw data in order to match a 

machine learning model. Human-to-human contact and intimate relationships are aided by HAR 

[8]. It is difficult to extract because it contains details about a person's identity, appearance, and 

psychological condition. It's a fictitious device that represents some kind of human behavior. The 

structures are notional in that they are mental models rather than representations of concrete real- 

world behavior. There are many examples in the world of groups of human activities that are linked 

to create a whole (system). For example, the actions that make British Rail a human activity 

mechanism are linked to constructed physical structures such as the railway network, with its 

platforms, tracks, and so on. One of the major topics of research in the scientific fields of computer 

vision and machine learning is the human capacity to perceive another person's activities [9]. Many 

implementations, such as video monitoring devices, human-computer interaction, and robots for 

human behavior characterization, now include a multiple activity detection system as a result of 

study as shown in Figure 1. 

Two key questions emerge from different classification techniques: “What action?” and “How do 

I know?” (i.e., the issue of recognition) and “Where in the video?” (i.e., the issue of localization). 

When trying to identify human actions, one must first assess a person's kinetic states in order for 

the algorithm to recognize the action effectively. Human movements like "walking" and "running" 

occur spontaneously in everyday life and are relatively easy to identify. More abstract tasks, such 

as "peeling an onion," are, on the other hand, more difficult to recognize. Complex tasks can be 

broken down into simpler activities that are more easily recognized.  

Object identification in a scene will usually aid in better understanding human behaviors by 

providing helpful knowledge about the current event [11]. The aim of human activity identification 

Figure  1:  Multiple Activity Detection System 

[10] 
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is to look at events in video or static photographs. Human activity recognition systems are 

motivated by this fact, and their goal is to correctly identify input data into its underlying activity 

group. 

There are three major components of most activity detection systems are listed below and shown 

in Figure 2: 

• A low-level sensing module that collects sensitive information about activities in real time 

using microphones, accelerometers, light sensors, and other sensors 

• A feature processing and selection module that converts raw sensor data into features that 

can distinguish between activities 

• A classification module that uses the features to infer what task an individual or a group of 

people is doing, such as driving, cooking. 

2.2. HUMAN ACTIVITY RECOGNITION SYSTEM 

Many interesting technologies depend on activity recognition as a key component [12]. Action 

detection applications can be categorized based on their intended beneficial subjects: 

• Exercise tracking, wellness management, fall prevention, behavior-based context 

recognition, home and work automation, and self-managing systems are all applicable to end users. 

• Third-party applications such as targeted ads, data processing tools for testing, business 

administration, and accounting [13]. 

• Crowd and community applications, such as social networking and activity-based 

crowdsourcing. Examine some sample applications in this section. 

 DAILY LIFE MONITORING 

Applications for real life tracking are typically designed to serve as a handy reference for action 

recording or to aid in fitness and healthier lifestyles. These devices include embedded sensors such 

 Figure  2:  Level of Activity 
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as an accelerometer, gyroscope, and GPS that measure people's steps, stairs climbed, calories 

burned, hours slept, distance travelled, and sleep quality, among other things. Users will study data 

monitoring and visualization in reports using an online service. These instruments are more 

advanced than mobile phone sensors because their sensors are developed primarily for movement 

identification and monitoring. The disadvantage is that they are far more costly. In recent years, 

smartphone apps that use behavior detection strategies have emerged as a viable option. These 

apps typically perform the same functions as the above-mentioned specialized instruments. Users' 

motion records, such as jogging routes, steps taken, and sleep time, are tracked as shown in Figure 

3. They will be able to provide the user with a description of his or her lifestyle and report on 

sleeping efficiency by mining the logged data. 

 

Figure  3:  Different types of Activity 

 PERSONAL BIO-METRIC SIGNATURE 

The motion pattern of a subject is normally exclusive and one-of-a-kind. When people lift their 

hands, for example, it is almost impossible for two people's hands to have the same gesture 

patterns. Because of the distinctions between motion-related bones and muscles on human bodies, 

even in a good imitation, variations still remain. Sensors like accelerometers can detect these 

variations. Human biometric signatures of patterns in motion/gestures can be solved using 

behavior detection techniques. Pattern detection techniques are used in these applications to extract 

special motion patterns, which are then saved in a database. Because of the widespread use of 

mobile devices, it is both simple and possible. On the other hand, the motion signature could be 

used for malicious purposes. People may, for example, use the studied patterns to decipher users' 

behavior, such as tapping on a smart phone keyboard or other espionage activities as shown in 

Figure 4. 
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Figure  4: Biometric Signature 

 ELDERLY AND YOUTH CARE 

Because of the ageing of the baby boomer generation, there is greater need for elderly treatment 

(both physically and mentally). The development of emerging technology and software for elderly 

treatment is a main focus of ongoing studies in human activity tracking. These applications may 

be used to help avoid damage, such as detecting unsafe conditions in older adults. A mobile phone 

architecture is being designed with the aim of detecting users' falls. Elders could benefit from 

behavior detection and track sensors in a constructive manner, such as life routine reminders (e.g., 

taking medicine) and living activity tracking for a remote robotic assist. Another area that gains 

from behavior identification studies is youth care. Monitoring infants' sleeping patterns and 

anticipating their requests for food or other items are two examples of applications. Children with 

Autism Spectrum Disorder (ASD) are also detected using activity recognition techniques [14]. 

 LOCALIZATION 

Mobile phone activity recognition may aid context perception and, as a result, be used in 

localization. One explanation for using smartphone sensors instead of GPS for location is that GPS 

signals are usually slow inside buildings and underground [15]. Action detection techniques 

combined with mobile sensors, on the other hand, may aid in locating the location. Furthermore, 

GPS localization is a two-dimensional positioning system that does not take into account a user's 

altitude. Mobile phone activity recognition strategies may be able to fill this void. A common 

method is used for floor localization without the use of facilities. A third justification to use 

smartphone sensors for localization is that GPS precision degrades within cities surrounded by tall 

buildings. In this case, GPS-based localization may make the distinction between a movie theatre 
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and a restaurant, which may be only a few feet apart. By augmenting the roles with people's actual 

activity type, activity recognition-related apps may reduce these types of errors. 

 INDUSTRY MANUFACTURING, ASSISTING 

Staff may benefit from behavior detection strategies in their everyday jobs. Wearable sensors are 

used in this project. Wearable computing is a form of body extension that enables a worker to carry 

out exceptional tasks. Smart cameras that can recognize people's movements in the filming area, 

robot assistance in car manufacturing, and other applications focused on movement recognition as 

shown in Figure 5. 

2.3. HAR FEATURES 

Both HAR domain tasks necessitate the accurate recognition of human behaviors from sensor data, 

which necessitates the proper categorization and description of features extracted from sensor data. 

Following that, we'll go over some of the functionality that are found in the HAR domain. 

Although certain features may be derived from physical activity signals, more features do not 

always mean better classification precision since the features could be redundant or not class- 

specific: 

• Time domain features (applied to the amplitude and time dimensions of a signal, such as 

mean, median, difference, standard deviation, minimum, limit, and root mean square) are often 

used in many functional HAR systems since they are less computationally expensive and therefore 

can be derived in real time. 

• To differentiate between various human operations, frequency-domain features necessitate 

a higher computational cost. As a result, they may not be appropriate for real-time AAL 

applications [16]. 

Figure  5: Industry Manufacturing Assisting 
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• Physical characteristics are obtained from a basic understanding of how a particular human 

activity produces a particular sensor signal. Physical parameters of human motions are normally 

used to derive physical characteristics from different sensor axes. 

2.4. TECHNIQUES FOR HAR 

 IMAGING SENSOR 

An image sensor, also known as an imager as shown in Figure 6, is a sensor that detects and 

transmits data used to create an image. It accomplishes this by translating light waves' variable 

attenuation into signals, which are short bursts of current that carry information. Light or other 

electric radiation may be used as waves.  

  

Figure  6: Imager 

Image sensors are used in a variety of electronic imaging instruments, including digital cameras, 

camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision 

equipment including thermal imaging devices, radar, and sonar, among others. Electronic and 

digital imaging are increasingly replacing chemical and analogue imaging as technology advances. 

 WEARABLE SENSOR 

Wearable cameras are the most widely used for human behavior identification because they can 

directly and reliably capture body movements. Smartphones, watches, bands, and even clothing 

will all benefit from these sensors. With the miniature wearable sensors integrated, Wearable 

Technology (WT) provides new ways to actively track human behavior as shown in Figure 7. The 

analysis of human activity detection (HAR) using WT offers insight and interpretation of data 

gathered from the mining method, which aids in the improvement of wearable technology 

techniques and concepts [17]. Across sectors, it boosts performance, production, operation, and 

participation. Wearable sensor devices are gaining traction in the scientific community due to the 
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use of highly miniaturized electronic components with low power consumption, making them 

suitable for indoor and outdoor applications of human activity recognition. These apps enable users 

to perform any physical exercise in a natural manner while delivering excellent outcomes in a 

variety of practical applications, including health recovery, respiratory and muscular activity 

assessment, athletics, and protection. 

 

 

 

 

 

 

Figure  7: Wearable Sensor [18] 

 ACCELEROMETERS 

In cell phones, accelerometers are used to detect the orientation or to feel the acceleration case. 

The linear acceleration of travel is measured by an accelerometer. Three axes of predetermined 

paths are used in the reading. The raw data stream from the accelerometer is the acceleration. The 

raw data is represented by a series of vectors: Acci =, (I = 1,2, 3...). An accelerometer can reliably 

determine a device's directional acceleration, but it can't fix the lateral orientation or tilt during 

that shift. The measurements from the three axes are paired with a time stamp. Many existing 

accelerometers have a user interface that allows the user to experiment with different sampling 

rates in order to sample the frequency. Accelerometers, both single and multi-axis, detect the 

amplitude and trajectory of angular, rotational, and gravitational acceleration [19]. They can be 

used to provide basic motion sensing capabilities. For example, in a fixed state location, a system 

with an accelerometer may sense rotation from vertical to horizontal. As a result, accelerometers 

are mainly used in consumer electronics for basic motion sensor applications such as switching a 

mobile device's screen from portrait to landscape orientation. Its success stems from the fact that 

it tests a subject's physiology motion status directly. For example, if a consumer switches from 

walking to jogging, the signal form of the accelerated reading along the vertical axis will change 

abruptly. Furthermore, acceleration data may suggest a motion pattern within a specified time 

span, which is useful in recognizing complex activities. 
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Figure  8: MEMS S 

 GYROSCOPE 

The angular rate of rotational movement along one or more axis is calculated by gyroscopes. 

Unlike accelerometers, which can only monitor the fact that an object has shifted or is travelling 

in a certain direction, gyroscopes can precisely calculate dynamic motion in several dimensions, 

measuring the orientation and rotation of a moving object. Furthermore, unlike accelerometers and 

compasses, gyroscopes are unaffected by errors caused by external forces like gravity and 

magnetic fields as shown in Figure 9.

Figure  9: Subject Against Different Activites 
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As a result, gyroscopes significantly improve computer motion sensing capability and are used in 

sophisticated motion sensing applications in consumer electronics, such as absolute gesture and 

action tracking and simulation in video games. The tilt, pitch, and yaw movements of the Smart 

phones around the x, y, and z axes, respectively, are detected by the gyroscope, which determines 

the phone's rotation rate as shown in Figure 10. The axes, to be precise. The rate of rotation in 

rad/s (radian per second) along each of the three physical axes is the raw data stream from a 

gyroscope sensor: Rotation I = (i=1,2,3,...). The gyroscope is useful in navigation applications and 

some smart phone games that rely on rotation data. The gyroscope is used to assist the mobile 

orientation identification in activity recognition studies [20]. 

 

Figure  10:  Different Axes 

 RADAR SYSTEMS 

 

Radar has special characteristics as one of the sensors for human activity detection (HAR), such 

as privacy protection and contactless sensing. Human–computer contact, smart monitoring, and 

health evaluation have all benefited from radar-based HAR. The generalization capabilities of 

traditional machine learning approaches are constrained since they depend on heuristic hand- 

crafted feature extraction. Furthermore, manually scraping features is wasteful and time– 

consuming. Deep learning, which uses a hierarchical approach to automatically learn high-level 

functions, has outperformed HAR. 

2.5. RADARS 

Since radar is resistant to light and temperature, it can be used in rugged environments [21]. Radar 

has the potential to preserve visual privacy. Instead of catching the target's visual structure, the 

returned signals modulated by the target carry a wealth of time–varying activity range and velocity 
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information. Humans can be detected by radar via walls. As a result, radar-based HAR can be used 

in a wider range of situations. Radar systems do not need the attachment of a sticker on the human 

body, making them more user-friendly. As a result, radar has been increasingly used to detect 

human activity in recent years. Radar-based HAR networks have traditionally used traditional 

machine learning (ML) techniques as shown in Figure 11. These standard algorithms are based on 

scientific foundations, making them understandable and logically optimizable. Their complexity 

is also smaller than that of deep learning models, resulting in a lighter computing load. 

Radar is a kind of active sensing device that sends out radio waves and receives modulated signals 

from illuminated targets. In recent decades, it has mostly been used in remote sensing systems 

such as satellite remote sensing, air and terrestrial traffic control, and geophysical tracking. 

Furthermore, short-range radar for HAR activities has recently expanded. Since radar is insensitive 

to light and atmosphere, radar-based HAR approaches are more reliable than vision-based ones. 

Without any tag applied to the human body, they can sense human activity and behaviors directly. 

The speeds/Doppler frequencies of body parts differ with respect to the person's movement while 

he or she is driving. As a result, the distributions of these components are not continuous in time. 

The range, distance, and angle knowledge obtained by radar may be used to identify human 

activities. Radar is a viable human motion measuring technology because of its inherent 

advantages such as straightforward design, fast device integration, low cost, and penetration 

capabilities. Continuous-wave radar, ultra-wideband radar, and noise radar are among the radars 

used by HAR. 

 

Figure  11: Traditional Machine Learning 

(ML) techniques. [22] 
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2.6. BASIC FEATURES OF RADARS 

 Doppler radar:  

Doppler radar transmitting single-tone radio waves capable of acquiring target Doppler/radial 

velocity information as shown in Figure 12. 

 

 FMCW radar:  

It provides target range and speed information at the same time, making it ideal for situations with 

many targets as shown in Figure 13. 

 
 Figure  13: FMCW Radar 

 Interferometry radar: 

It obtains the target's angular velocity independent of the target's travelling position by cross-

correlating the output of two antennas as shown in Figure 14. 

Figure  12: Doppler Radar 

Figure  14: Interferometry radar 
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 UWB radar: 

It provides fine range precision, allowing the target's main scattering centers to be distinguished. 

2.7. DEEP LEARNING APPROACHES FOR HUMAN ACTIVITY 

RECOGNITION IN RADAR 

 Deep Learning Approaches in 3D Radar Echo 

Moving and micro-Doppler properties of targets are shown by range–Doppler frames. The 3D RD 

video series, which is made up of N time-sampled 2D range–Doppler frames, shows both spatial 

and temporal characteristics. Per RD frame contains range and Doppler information, while time 

information occurs within frames. The joint time–range–Doppler echoes comprise nearly half of 

the operation information that radar gets, compared to 1D and 2D echoes. It is necessary to develop 

models that can retrieve both temporal and spatial data. Since manually designing features from 

3D echoes is challenging, DL approaches are more feasible and desirable for 3D echo-based HAR 

due to their ability to automatically remove deep features. Additionally, the introduction of GPU 

allows DL models to process 3D data rapidly and efficiently. DL approaches on 3D echoes are 

promising for HAR, despite the fact that there are few DL algorithms proposed for 3D radar echoes 

to date. 

2.7.1.1. Deep Learning Approaches in 2D Radar Echo 

 

2D radar echoes, also known as time–Doppler maps, time–range maps, and range–Doppler maps, 

hold enough information about human activity as shown in Figure 15. Since 2D echoes are 

typically viewed as images, CNN has become the most widely used standard for 2D echoes, 

alongside the line of computer vision. As a result, 2D echo-based HAR is often repurposed as an 

image classification task. 

1. Doppler–time map 

2. Doppler–range map 

3. Doppler range map 

4. Hybrid 2D maps 
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2.7.1.2. Deep Learning Approaches in 1D Radar Echo 

1D radar echoes are basically time-series data, comparable to that collected from accelerometer 

and gyroscope sensors. As a result, several time series methods may be applied to 1D echo-based 

HAR. Because of the benefits of modelling sequential data, RNN is often used for 1D data. A. 

Graves et al., for example, suggested a speech recognition architecture that uses LSTM and the 

Connectionist Temporal Classification (CTC) algorithm to mark unsegment sequence data. This 

teaches us how to remember continuous events without having to manually annotate them 

beforehand. For the first time, A. Hamid et al. [23] applied 1D CNN to a hybrid NN-HMM 

paradigm for speech recognition and suggested partial weight sharing. DL methods have the ability 

to remove sequential features and produce successful classification results for 1D radar echoes, 

despite the fact that there are few DL-related studies for 1D radar echoes. 

2.7.1.3. Perspectives for the Future 

Despite the fact that radar-based HAR with DL algorithms has made significant strides, there is 

still a long way to go before it reaches maturity. It is critical for planned DL architectures to be 

capable of exploring activity information in radar echoes as much as possible as a method for 

feature extraction and activity detection. 

2.7.1.4. Radar-based human activity recognition in real-world scenarios. 

Most recent radar-based HAR methods are only valid in controllable settings, where a human 

subject performs a series of discrete and delegated tasks with minimal interference. Furthermore, 

Figure  15: 2D Radar Echo 
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the model's real-time computing power is not taken into account. However, some aspects must be 

closely considered before radar-based HAR can be used in real-world scenarios. 

Light-weight deep model design 

Training a deep learning model also necessitates a lot of computational power, so it's mostly done 

off-line with a small amount of data. In practice, behavior data is always received in a stream, 

necessitating extensive online and gradual learning. Traditional ML methods for real-world HAR 

are hindered by large feature engineering and hand-craft feature extraction, despite the fact that 

they are capable of processing and classifying data in real-time. As a result, for radar-based HAR, 

light-weight DL models must be created. Combining hand-crafted features with deep features and 

cooperating DL models with traditional ML algorithms are two concepts worth investigating [24]. 

Continuous activity segmentation and recognition: 

In real-life situations, people work continuously and freely rather than only doing their given tasks. 

It is critical to accurately segment and recognize the events that are of concern. There has been a 

recent pattern of approaching segmentation and identification together. To understand continuous 

complex hand signals, a Connectionist Temporal Classification (CTC) algorithm was used in. CTC 

allows gesture recognition without the need for overt pre-segmentation and simultaneously tackles 

segmentation and recognition. More algorithms aimed at jointly segmenting and identifying a set 

of behaviors are required in future research. 

Multi-target activity recognition: 

It's worth looking at how to classify different targets' behaviors or how to distinguish a target from 

a squad. The use of DL approaches for multi-target human gait detection was investigated. In the 

presence of several targets, an FMCW radar was used to distinguish and identify several assigned 

hand signals. Such strategies, on the other hand, frequently operate in less alarming situations, 

such as where a human object is making movements and an individual is heading toward the radar 

at the same time. Applying DL models to learn high-level functionality is critical in situations 

where radar echoes are modulated by multiple moving targets. For multi-target behavior detection, 

more complex DL models should be created
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CHAPTER 3. LITERATURE REVIEW 

Over the past two decades, activity recognition (HAR) has become a hot subject in research 

because of its potential uses in fields like fitness, remote control, gaming, protection and 

surveillance, and human-computer interaction. The ability to recognize/detect current behavior 

based on input obtained from various sensors is known as activity recognition [25]. Cameras, 

wearable sensors, sensors mounted to everyday objects, and sensors deployed in the atmosphere 

are all examples of sensors. Logging everyday activities has become very common and realistic as 

technology has advanced and computer costs have decreased. People are keeping track of their 

everyday habits, such as cooking, dining, resting, watching television, or the number of steps they 

take. Various techniques have been used to document these events. 

Because of the less price and innovation in technology using sensors, the majority of HAR study 

has moved to a sensor-based approach. Various sensors are used in the sensor-based approach to 

capture human activity as they conduct everyday life tasks. On the basis of sensor implementation, 

these solutions can be grouped into 3 main categories: I Wearable ii) Device based, and iii) Non-

Invasive [26]. In a wearable, the user would wear the device when doing some operation. Although 

there has been a lot of work done on movement detection using wearable devices, the main issue 

with this technique is that wearing a tag is not always possible. In the case of the old or ill people, 

for example, they can fail to wear the tags or refuse to wear it. Sensors are added to everyday 

objects with solutions that use an object-tagged approach. Different behaviors are remembered 

based on a user's contact with these objects. This is a device-bound approach, which ensures that 

apps must only use unique objects (tagged-objects). This solution, like the wearable approach, will 

not always be possible since it requires consumers to use tagged-objects. 

Researchers have been working on Non-Invasive solution in which consumers are not allowed to 

take any tags or devices with them for the past few years. The idea is to position sensors in the 

environment, and when a person participates in some activity, the data is collected by the device, 

which can then be used to detect the action or any movement. The gadget-free method is more 

convenient as it eliminates the need for the consumer to hold a device when engaging in some 
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tasks. However, there are certain drawbacks to this strategy, such as intrusion from the climate. 

The data collected by the sensors can be disrupted by the environment, resulting in data noise. 

As seen in Figure 1, human behavior identification is a complete mechanism that can be separated 

into four main types [26]. These steps are: I Selection of the Sensor and its deployment ii) 

Collection of the data from the devices, iii) Pre-Processing of the data and then selection of the 

features, and iv) Recognize human activities using machine learning algorithms  

3.1. TECHNOLOGIES FOR HUMAN ACTIVITY RECOGNITION 

Major study has been conducted in the field of behavior detection using technologies over the last 

decade. Accelerometers, motion sensors, biosensors, gyroscopes, friction sensors, contact sensors, 

and other sensors are among the most often utilized for behavior detection. Any of the sensors, 

such as RFID, are radio-based. This sensor can be found in a number of applications. They may be 

mounted to a variety of items, worn as sensors, or installed in the field. Many various types of 

inexpensive and compact sensors are now available that can detect and relay information over 

wireless networks. As seen in Figure 16, we include information on some of the technology used 

for human activity identification in this section. 

 

Figure  16: TECHNOLOGIES FOR HUMAN ACTIVITY RECOGNITION 

 Surveillance Cameras. 

Installing security cameras in the premises and monitoring human movements (as shown in Figure 

17) is the most common and conventional method of action identification. Monitoring can be 

performed manually (by a human monitoring the videos and photographs collected by the cameras) 
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or automatically. Various computer vision methods have been introduced to interpret camera data 

including videos and images and to identify events automatically. 

 Cameras 

The problems with conventional cameras are their reliance on sun, which means they can't operate 

in low light. The creation of depth cameras like Kinect, which can operate in complete darkness, 

solved this problem. Kinect can produce a variety of data sources [27]. It can gather data about the 

human body and build a simulated skeleton in 3D. Since various behaviors of the body (skeleton) 

are linked to behaviors, activities may be identified using this information. Apart from the 

complicated computation, depth cameras are costly, which is a downside to using them for action 

detection. 

 

 Wi-Fi 

There has been a paradigm change in human activity identification studies in the last decade, from 

device based to non-invasive approaches. Researchers have begun to use Channel State Information 

(CSI) for behavior identification after studying the properties of wireless networks [28] (as shown 

in Figure 18). Many Wi- Fi-based applications for translation, monitoring, and fall detection have 

Figure  17: General process of human activity recognition 

Figure  18: Ultra High Frequencies 
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been suggested. Wi-Fi has the advantage of being unobtrusive, and people do not need to take any 

computers with them. 

3.2. Sensors 

Major work has been performed in the area of technology in the twenty-first century, and several 

different types of sensors have been developed. These sensors are incredibly useful because they 

can detect the atmosphere and relay data wirelessly. The following are some of the sensors that 

are often used in activity detection studies. 

 Accelerometer: 

An accelerometer is an electromechanical instrument that tests the acceleration of a moving item. 

It has the ability to track movement in different directions. The accelerometer is equipped with 

multi-axis (i.e., x, y, and z) sensors to do this. A multi-axis accelerometer can concurrently 

calculate acceleration in the x, y, and z directions. The accelerometer is commonly used in motion 

recognition, pose recognition, fall detection, monitoring, ambient assisted living, activities of daily 

living, and other uses. 

 Motion Sensor: 

Motion sensors sense the movement or motion of a subject in a specific location. In the field of 

human behavior identification, motion sensors are often used in motion monitoring, tracking, and 

people counting. 

 Proximity Sensor: 

A proximity sensor is an electronic device that senses the location of adjacent objects without 

having physical interaction. In motion recognition, proximity sensors are commonly used. 

3.3. RFID 

In the last ten years, the field of radio frequency identification has exploded. This technology, 

which was originally designed for the purpose of military, has advanced dramatically in recent 

years [30]. It's commonly used in supply chain monitoring and recording. The range of this 

technology was originally very narrow, but it has since been significantly extended [31]. The 

reader and tags are the two key components of RFID technology. 
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A reader is a computer that reads tags and collects data from them. The reader has a radio antenna 

that sends out radio waves. RFID tags receive and modulate these radio waves with their content, 

such as ID. Via an antenna with tag detail, the reader can catch these backscattered signals. 

Tags are tiny chips that can be added to a variety of items. There are two kinds of tags: Active tag 

and the other is Passive tag. For active tags it has its own battery, on the other hand passive tags 

don't have one and focus on harvesting. Their electricity comes from the readers' radio waves. As 

compared to passive tags, active tags have a larger range. 

RFID has been implemented in a number of fields due to its passive existence, low cost, and 

unobtrusiveness. In human behavior recognition science, RFID is now widely used. RFID 

technology is being used by researchers for posture recognition, gesture recognition, mapping, 

localization, and behavior recognition, among other things. 

3.4. Related Work 

Over the past decade, a significant amount of study has been undertaken in the field of human 

behavior identification. Many surveys exist that summarize studies in the field of activity 

detection. These studies look at various approaches to activity detection and can be divided into 

four major groups, which are mentioned below. 

 Radio Frequency Based 

Scholz et al. [32] published a review of the literature on device-free radio-based behavior detection. 

The ongoing work in device-free radio-based localization (DFL) and device-free radio-based 

behavior detection is classified in this survey (DFAR). The authors cover a wide range of topics 

for DFL, including reliable presence detection, spatial coverage, adaptive machine learning, radio 

tomography, and mathematical modelling. Adaptive threshold-based DFAR, machine learning- 

based DFAR, and mathematical modeling-based DFAR are the three forms of DFAR in the 

literature. Wang and Zhou [33] presented a review of findings in the area of radio-based behavior 

detection. The current study is divided into four sections in this survey: I ZigBee radio-based, ii) 

Wi-Fi-based, iii) RFID-based, and iv) other radio-based (e.g., FM radio, microwave). The authors 

compare both of these approaches using metrics such as coverage, accuracy, operation types, and 

implementation costs. They also suggest some research topics for the future. This research is 

limited to a single device-free method focused on RFID. Cianca et al. [34] present a review of the 
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work done in the field of human behavior detection using RF signals. Presence detection, fall 

detection, movement detection, gesture and pose recognition, people counting, personal 

characteristic identification, breathe and vital sign detection, and human-object interactions are 

among the sub-categories identified by the authors. This research focuses on device-free passive 

sensing approaches and classifies them according to signal characteristics (bandwidth, carrier 

frequency, and transmission mode), method of measurement on the obtained signal (directly 

generated CSI or raw data from an SDR platform), and signal descriptor used. This survey paper 

gives a thorough overview of the RF signal behavior recognition work. Amendola et al. [35] 

published a survey that summarized the use of RFID technologies in health-related Internet of 

Things (IoT) implementations. Environmental passive sensors, such as volatile compound sensors 

and temperature sensors, as well as body-centric tags, such as wearable tags and implantable tags, 

are discussed in this paper. This paper also discusses several RFID applications of human behavior 

analysis, including tracking, gesture detection, and remote control. In the field of RFID science, 

the authors have research guidance. This paper addresses the potential use of RFID technologies 

in various applications, but it does not go into depth regarding the research that has been performed 

in those fields. Ma et al. [28] presented a brief overview of behavior detection studies using a Wi-

Fi-based approach. The paper provides a brief description of the core technologies in Wi-Fi-related 

work from the literature in order to devise a structure for a Wi-Fi-based behavior recognition 

scheme. Base signal collection, pre-processing, attribute extraction, and classification techniques 

are the main steps in this framework. There are three common types of base signals discussed: 

amplitude, phase, and phase difference. Outline elimination, irrelevant information removal, and 

redundancy removal are all part of the pre-processing phase. Space transformation and feature 

selection are part of the feature extraction step. Finally, two approaches are explored in the 

classification step: rule-based and machine learning-based. The literature on behavior 

identification is divided into two categories in this study: coarse-grained activities and fine-grained 

activities. This work only addresses Wi-Fi-based analysis, and there is no information about the 

given work. Instead of focusing on the steps involved in a Wi-Fi-based human activity recognition 

model, this survey focuses on the steps involved in a Wi-Fi-based human activity recognition 

model. 
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 Sensor Based 

Chen et al. [33] provided a comprehensive overview of sensor-based studies in the field of human 

behavior recognition. The current research efforts are divided into two sections in this survey I 

sensor-based vs. vision-based, and ii) data-driven vs. vision-based vs. a knowledge-driven 

approach. The first classification was based on the Sensor-based methods are the subject of the 

survey. Wearable sensors (such as accelerometers, GPS, and biosensors) and dense sensing are 

explored in detail. The literature in behavior identification is divided into data-driven and 

knowledge-driven categories in the second classification method comes into play.The writers talk 

about data-driven methods generative modelling and discriminative modelling techniques are 

developed further for knowledge-driven methods. There are three types of logic-based, ontology- 

based, and mining-based systems comes into play. The survey's primary priority is data-driven 

Techniques for recognizing activities. Wang et al. [36] conducted a survey that outlined the various 

deep learning techniques for human behavior detection using sensors. This paper organizes the 

behavior recognition literature by sensor modality, deep model, and application region. The 

literature is grouped into four categories based on modality: body-worn sensors, object sensors, 

environmental sensors, and hybrid sensors. Linked work is divided into three categories based on 

the deep model: discriminative deep architecture, generative deep architecture, and hybrid deep 

architecture. The related work is categorized as tasks of daily life, sleep, sports, and fitness in terms 

of the implementation field. This survey summarizes behavior recognition analysis, with a 

particular emphasis on the deep model used to process sensor data. 

 Wearable Device Based 

Cornacchia et al. [37] conducted a thorough review and divided the current literature into two 

categories: global body motion behavior (e.g., walking, jumping, and running) and local contact 

activity (e.g., moving the extremities) (e.g., use of objects). The type of sensor used and the 

location of the sensor on the human body, such as waist mounted and chest mounted, are also 

classified in this article. The authors address various strategies that use sensors such as gyroscopes, 

accelerometers, magnetometers, portable cameras, and hybrid sensors (which combine several 

sensors). Since many approaches use a cell phone (built-in sensors) for movement detection, some 

surveys often rely on mobile phone-based solutions for HAR. A survey of this kind is presented. 

Shoaib et al. [38] have an overview of the research work cellular phones. The work of Lara 
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&Labarador [39] in behavior recognition using wearable sensors was described. This survey covers 

a wide range of topics in HAR architecture, including sensor and attribute selection, data collection 

and procedure, recognition efficiency, processing methods, and energy consumption. This study 

divides current work into three categories: supervised online, supervised off-line, and semi- 

supervised off-line. The survey's key focus is on human activity recognition technologies that 

capture data using wearable sensors. 

 Vision Based 

Vrigkas et al. [40] conducted a review of recent studies on movement identification using vision- 

based methods and divided the literature into two categories: unimodal and multimodal 

approaches. Unimodal models use data from a single modality and can be categorized as 

stochastic, rule-based, space-time-based, or shape-based. Multimodal approaches draw on 

evidence from a variety of sources and are categorized into behavioral, effective, and social- 

networking approaches. This study focuses solely on vision-based movement detection methods. 

Herath et al. [41] presented a comprehensive review of the main studies in the field of action 

perception focused on vision. The overall work is divided into two sections in this survey: solutions 

based on representation and solutions based on deep neural networks. Holistic and local 

demonstrations, as well as aggregation processes, are two types of representation-based solutions. 

Multiple stream networks, temporal coherency networks, generative structures, and spatiotemporal 

networks are all examples of deep neural network solutions. This paper offers a thorough review 

of the work undertaken in the field of intervention identification. Many solutions for behavior 

detection using device-free RFID technology have been proposed recently as RFID technology 

has advanced. The specifics of these solutions were overlooked in previous surveys. There has 

been no prior survey that offers a systematic and informative overview of RFID-based device-free 

methods for behavior detection, to the best of our knowledge. 
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Table 1: Comparison of Already Existing Work 

 

 

 

Categories Paper Main Focus Future 

Directions 

Comparison of 

techniques 

RF-based Scholz et al. [32] Applicability of  radio 
sensors in  activity 

recognition 

Yes No 

RF-based Amendola et al [35]. Applications of RFID 

technologies in various 

fields 

Yes No 

RF-based Wang and Zhou et 

al. [36] 

Use of radio signals for 

activity recognition 

Yes Yes 

RF-based Ma et al [28]. Wi-Fi based techniques No No 

RF-based Cianca et al. [34] FM radio and Wifi based 

methods 

No No 

Sensor 

based 

Chen et al. [33] Data centric activity 

recognition technique 

Yes Yes 

Sensor 

based 

Wang et al. [36] Deep models for sensor- 

based approaches 

Yes Yes 

Wearable 

device based 

Lara & Labarador et 

al. [39] 

Wearable sensor-based 

approaches 

Yes Yes 

Wearable 

device 

based 

Shoaib et al. [38] Mobile phone-based techniques Yes Yes 

Wearable 

device 

based 

Cornacchina et al. Wearable sensor-based 

approaches 

No Yes 

Vision 

based 

Vrigkas et al. [40] Vision based approaches Yes Yes 

Vision 

based 

Herath et al. [41] Vision based solutions Yes Yes 



40 

 

3.5. RESEARCH GAP 

We provided an overview of the total work performed in various areas of behavior recognition, 

with an emphasis on device-free methods. Human behaviors have been recognized using a number 

of methods. We discovered that comparing these strategies is difficult for the reasons mentioned 

below. 

We discovered that comparing these methods is problematic for a variety of purposes. Action 

identification includes a number of sub-areas. We conducted a literature review on both of these 

sub-areas and discussed the various approaches proposed in each. The main focus of the work 

addressed differs, with some focusing on one sub-area and others concentrating on another. As a 

result, comparing both of these methods is challenging. It's difficult to compare a gesture 

recognition technique to an ADL recognition technique, for example. In gesture recognition, 

processing time is crucial, and the solution must produce results in original, whereas in Activity 

of Daily Living, time is less of a concern, but the results are more important. We have provided a 

comparison with radars with some common factors. 

Some methods, for example, rely on wearable electronics, while others do not; some rely on 

sensors connected to objects, while others rely on Wi-Fi. Furthermore, these implementations use 

a variety of classification techniques (machine learning tools).It's not straightforward to compare 

strategies that are based on entirely different methods. Every strategy has advantages and 

disadvantages, but comparing these methods to others is difficult. We did our utmost to provide 

the reader with a comprehensive contrast. 

There is no one-size-fits-all approach to testing these methods. The experimental setups used in 

various solutions vary from one another. Some solutions, for example, use devices that are 

wearable to conduct campaigns in room, while others use devices to conduct these campaigns. 

Since precision and other variables are dependent on the experimental context, comparing solutions 

with different experimental configurations is difficult. The table below summarize the approaches 

and define advantages and limitations of different methods. 
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Table 2: Comparison of different techniques 

Approach Technology Advantages Disadvantages 

Vision based Surveillance Camera High Accuracy High cost, Complex

 computation, 

Privacy issue 

Depth Sensor Kinect High Accuracy High cost, Privacy issue 

Wearable Sensor Gloves, Smart Watch Low cost Constraint to wear the device 

Object tagged Accelerometer, 
Ultrasonic Sensor, 

Microphone 

Low cost Device-bound 

RFID Passive RFID
 tags 

Arrays 

Low cost, 
Passive 

Environmental Interface 
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CHAPTER 4. METHODOLOGY 

The aim of the methodology part in the proposed study is to present the details and implementation 

of the Human Activity Recognition and the CNN model followed by data collection and data 

preprocessing steps. This is a supervised machine learning algorithm for classification. Here below 

we have the flow diagram of our proposed methodology as shown in Figure 19 which presents the 

flow of the steps which we will follow for the validation of our proposed methodology. 

First of all, we need to collect the data to validate our proposed methodology. Data has more 

importance because it depends on what we are trying to do mean in which field and about what 

problem. It depends on the aim of the study about which about what we are going to solve. After 

the dataset collection, there is some pre-processing which is compulsory to do to bring the data 

into an understandable form. Because data gathered from different resources and can be in different 

formats and could have many noises. So, the aim of the pre-processing is to remove the noise and 

unwanted data. After the preprocessing, the last step of our flow is to classify the data using the 

Figure  19: Proposed Framework 
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trained CNN model, and finally, we will compare their accuracy with the result which was 

collected from the generalized dataset. 

4.1. FMCW  

Electromagnetic waves are used by radar for object detection. Transceiver and Signal processing 

are the main components of a classic radar system. [42] RF signals are continuously disseminated 

by operated FMCW radar and waves are reflected to the receiving antenna by any object within 

the range of the system. In FMCW radar, the momentary transmission frequency changes linearly 

over the waveform, giving a broadly received arrangement for low-cost, brief to medium extend 

sensing application which also incorporates ADL [43]. FMCW radar provides benefits in terms of 

is its strength against outside narrow-band interference from other sources, less power at peak, and 

capability of recording micro-Doppler marks for recognition of targets [44]. Due to the above- 

mentioned desired qualities, we have used an FMCW radar sensor by Ancortek, the specifications 

of the radar are illustrated in Table 3. 

Table 3: C-band Ancortek Radar Parameters 

Radar Model SDR 580AD 

Waveform FMCW 

Operating frequency 5.6 to 6.0 GHz 

Bandwidth 400 MHz 

Sweep time 1 ms 

Transmitting power ~20 dBm 

Equation 1 gives the total number of signals that are transmitted by FMCW radar. 

 

𝑥(𝑡) = ∑ x(i) (t − iT)

𝑁𝐹−1

𝑖=0

 

(1) 

 

In equation 1, 𝑇𝐹 is the entire duration of a sweep, 𝑁𝐹 tells the full number of transmitted sweeps. 

The transmitted signal with 𝐿 number of chirps at the ith sweep can be computed as: 

 

𝑥(𝑡) = ∑ xo (t − iT)

𝐿−1

𝑖=0

 

(2) 
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In equation 2, FMCW chirp signal 𝑥0(𝑡) is composed as follow: 

 

 

x(t) = ∑   𝑒𝑓𝑡+
𝜇
2

𝑡)2𝜋𝑗

𝑖=1

𝑥

 

(3) 

In the above equations, 𝑓0 is the working or operating frequency, µ signifies alter in the 

instantaneous frequency of an FMCW signal. 

 

4.2. MICRO-DOPPLER SIGNATURE 

When the target moves [45] within the range of the radar, it actuates a recurrence tweak on the 

returned signal that creates sidebands proportional to the size of target’s Doppler recurrence move, 

called the “micro-Doppler effect” [46]. Any moving individual found in K moves with frequency 

𝑓 and displacement 𝐷, has a relocation work given as, D (𝑡) = (2𝜋𝑓v𝑡)𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛼𝑝). The 

mathematical expression for the received radar signal can be defined as: 

 

 
𝑠(𝑡) = 𝜌 (𝑒2𝜋𝑓𝑡+

𝑅(𝑡)
𝛼

𝑡)𝑗)
 

(4) 

 
 
In the above equation, 𝑓0 is the frequency of the carrier, 𝜆 is the carrier’s wavelength and 𝜌 denotes 

the backscattering. 

To summarize the equations, the micro-Doppler recurrence component is directly related to the 

speed of the displacement of the target's portion and the recurrence of the radar signal. Moreover, 

there's a reliance on the cosine of the perspective angles in azimuth and rise, in which the outspread 

component of the speed vector contributes to the micro-Doppler signature. With the presence of 

micro-Doppler marks, the extraction of such information from the reflected radar signal can play 

a crucial part in the activity detection framework. We will discuss the publicly available dataset 

that we utilised for our work in the next section. 

4.3. DATA COLLECTION 

The radar dataset utilised for this work was collected by University of Glasgow, United Kingdom 

(UK) as shown in Figure 20 and is publicly available at [46]. The data in [46] was obtained at three 
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different organizations including the University of Glasgow, North Glasgow Housing Association 

Residential Center, and Age UK West Cumbria Daily center. The data was collected for 10 days 

at 9 different locations in the organizations. The dataset contains 4 locations from the University 

of Glasgow, 3 from North Glasgow Housing Association Residential Center and 2 from Age UK 

West Cumbria Daily center (Figure 20). The data consists of a total of 99 participants from the 

University of Glasgow and North Glasgow Housing Association Residential Center. The ages of 

the participants range from 21 to 98 years. The dataset contains 56 participants from Age UK West 

Cumbria Daily center with majority of them above 50. 

 

 

Figure  20: Collection of Data 

The experiments consist of six different daily routine activities as shown in Figure 21. These 

activities include standing, sitting, walk in the forward and backward direction, pick up objects, 

drinking, and falling. All the activities are repeated three times for every subject except for some 

people of very old age. The activities are for the duration of 5 seconds except the activity of walking 

which is for 10 seconds. The details of the dataset in [46] are given in Table 4. The average 

information about data subjects including average age, average height and male to female 

distribution is given in Table 5. The overall average age and height of all subjects is 42.6 years 

and 173.8 cm, respectively. The male to female distribution is 75.24% males to 24.76% females 

in entire dataset. 
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Table 4: Details of the activity’s dataset [46]. 

Location ID No. of obs. Age Group Environment 

1 Dataset 1 360 Younger Participants Lab Environment 

2 Dataset 2 48 Younger Participants Lab Environment 

3 Dataset 3 162 Younger Participants Lab Environment 

4 Dataset 4 288 Younger Participants Lab Environment 

5 Dataset 5 141 Mature Participants Retirement Home 

6 Dataset 6 105 Mature Participants Retirement Home 

7 Dataset 7 60 Mature Participants Retirement Home 

8 Dataset 8 184 Mature Participants Retirement Home 

9 Dataset 9 105 Mature Participants Retirement Home 

The data in [46] is obtained from a deployable FMCW radar sensor [47] which is manufactured 

by Ancortek, the RF signal transmitted by it is of 400 MHz bandwidth at 1 kHz pulse repetition 

frequency and the transmitted power is nearly +20dBm. For transmission and reception of signals, 

two Yagis antennas have been utilised in [19], one as a transmitter and other as a receiver with 

gains equal to 17 dBi. The Universal Serial Bus (USB) is used to power the radar and its power 

consumption is limited by the USB standards. The C-band is used to operate the radar and the 

Figure  21: Six different Activities 
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signal is centered at 5.8 GHz. In case of the realistic scenarios, when it is deployed in real-time 

scenarios the radar should always be connected with a laptop or desktop for the acquisition and 

processing of the data. 

Table 5: Average information about data subjects [46]. 

Location  
ID 

Avg. Age 
(years) 

Avg. Height 
(cm) 

Male Percen t. 
(%) 

Female s Percen t. 
(%) 

1 Dataset 

1 

25.7 177.9 20 100.00 0 0 

 
2 

Dataset 

2 
 
25.0 

 
178.5 

 
4 

 
100.00 

 
0 

 
0 

 
3 

Dataset 

3 
 
26.6 

 
172.8 

 
7 

 
87.50 

 
1 

 
25.00 

 
4 

Dataset 

4 
 
27.3 

 
174.4 

 
15 

 
93.75 

 
1 

 
6.25 

 
5 

Dataset 
5 

 
30.5 

 
174.6 

 
15 

 
88.24 

 
2 

 
11.76 

 
6 

Dataset 

6 
 
57.6 

 
161.4 

 
8 

 
80.00 

 
2 

 
20.00 

 
7 

Dataset 
7 

 
65.6 

 
177.2 

 
5 

 
50.00 

 
5 

 
50.00 

 
8 

Dataset 

8 
 
67.5 

 
- 

 
4 

 
30.77 

 
9 

 
69.23 

 
9 

Dataset 
9 

 
57.9 

 
- 

 
1 

 
14.28 

 
6 

 
85.71 
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4.4. DATA PRE-PROCESSING 

Regarding human activities, the FMCW radar offers information in both range and Doppler. In 

this study, we have focused primarily on the Doppler information from the dataset in [48], since 

this information is enough for the detection of ADLs. For collection of data, participants are asked 

to perform activities within a short range of 1 to 3 m and the radar sensor in [46] is placed on a 

wooden table in all nine locations. To maximize the strength of the received signals, two antennas 

are placed in a way that would allow keeping the participants' torso in the center of the beam. In 

order to characterize spectrograms and produce micro-Doppler signatures, the data collected using 

the FMCW radar sensor in [46] was processed using the Short-Term Fourier Transform (STFT). 

To get the range profiles, radar signal is stacked in matrix form and then applied Fast Fourier 

Transform (FFT) algorithm on it. To characterise their micro-Doppler signatures, STFT is applied 

to the range cells containing the target signatures, in this case, moving subjects. STFT applies a 

series of FFTs with small, overlapping intervals over the total length of the reported data; the 

squared absolute value of the complex result is the spectrogram and represents a plot of moving 

body parts velocities (measured by Doppler effect) as a function of time. To eliminate the 

contribution of static targets near 0 Hz such as furniture, walls, ceilings, and floors, a notch moving 

target indication filter is applied. 

Figure 22 illustrates micro-Doppler signatures examples for six human activities such as standing 

walking back and forth, sitting, picking up an object, drinking, and a fall. The Doppler 

components’ positive values correspond to the radar sensor movements, whereas any movement 

away from the radar produces negative Doppler values. In Figure 22, in the walking activity: the 

main contribution (in red) comes from the torso as the subject moves back and forth in front of the 

radar, hence resulting in alternate values between positive and negative.  

An acceleration towards the ground is observed when examining the fall activity. The 

spectrograms for each activity were normalized in this figure as the distance varies between the 

radar sensor and subject. Figure 22 represents spectrograms for various subjects of different age 

groups, obtained at nine different locations such as four different rooms in the University of 

Glasgow, three at North Glasgow Housing Association Residential Centre, and two at Age UK West 
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Cumbria Daily Centre. Some of the participants could move quickly depending on their physical 

characteristics while few had limited walking capacity. For example, the spectrogram associated 

with Room 7 in Figure 5 was the slowest to move in backward and forward directions. Figure 22 

was generated using radar dataset [46] 

 

Figure  22: Scalograms collected for six activities 

We extracted the average body velocity, as the spectrogram mass core. This can be a proxy for 

subjects' overall mobility because decreased mobility and the risk of falling are typically 

associated. In addition, this shows that our radar-based system is capable not only of measuring 

the velocity of different body parts but also of presenting the average motion velocity. We used 

the velocity profiles to normalize the spectrograms for age group independent features for 

classification. 

4.5. DATA CLASSIFICATION 

Deep learning [49] has increasingly gained attention due to rapid improvements in algorithms and 

higher computation power delivered by state-of-the-art graphics processing units. Deep neural 

networks utilise multiple layers of neurons. This increases the complexity of the non-linear input- 

output relationship and the overall size of the network. The inputs are combined linearly and 

plugged into an activation function to simulate neurons in the deep network. Formerly, hyperbolic 

or sigmoid functions were used as activation function, but there were limitations on the network 
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size and appropriate training imposed by the vanishing gradient problem. During the 

backpropagation process, a gradient descent technique is used to train the neural network that helps 

in minimising the loss function of the network. However, as the input data flows through each 

layer step by step, the error rate gradually decreases leading to slow training with an increased 

number of layers. Nair et al. [50] has resolved this problem by using Rectified Linear Units (ReLU) 

as activation functions. The ReLU primarily has zero output for negative input values and positive 

values for positive inputs. When the network is arbitrarily initialised, ReLU enables a sparse 

representation of data. Furthermore, ReLU considers values between 0 and 1 to reduce the 

vanishing gradient problem substantially. ReLU activation functions have produced good results 

on huge datasets. An eight-layer architecture, AlexNet [51] won the visual recognition competition 

in 2012.  Later, the same challenge was won by a 16-layer deep network [35] namely VGG-Net 

[52] and 152-layer network architecture, ResNet [53]. Currently, the research works on deep 

learning algorithms includes processing and classification of millions of images into thousands of 

classes. This allows the researchers to experiment with deep networks to classify datasets of RF 

signals within the radar and healthcare community. However, the availability of limited data 

sets[54] to apply deep network algorithms to RF signals classification is a big challenge. In the 

applications of radar systems for monitoring and surveillance purposes, the RF data collection is 

relatively difficult, costly to perform, and time-consuming. Therefore, to obtain millions of micro- 

Doppler signatures for human activity recognition is impractical. To mitigate the effects of smaller 

datasets in RF detection, transfer learning has been proposed, which utilises pre-trained deep 

networks and fine-tunes the deep network with a smaller radar dataset at the training stage. This 

approach seems to perform better in biases of the network and random initialisation of the weights. 

 Transfer Learning: 

Transfer learning is a vital tool in machine learning and deep learning classification where 

insufficient data is available for training [55]. Figure 23 displays the architecture of Transfer 

learning. It predominantly provides the difference between target domains, tasks, and distributions 

of the training. This infers the accessible training and test datasets may utilize different distribution 

with the end goal that P(x) may follow different marking function P (y|x) which may have a diverse 

set of features for various classes. With regards to transfer learning, the datasets that utilize similar 

distributions having similar labels with similar capabilities are known as the source. The center 
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thought of utilizing transfer learning is to learn machine learning algorithms for classification 

dependent on the target datasets that principally advantage from the existing datasets began from 

different sources, for example, accessible data that comprises similar patterns yet don't need to be 

illustrative of the target datasets. We present one example of a transfer classifier that uses this 

same-and different-distribution training data for the neural network part, all followed by CNN. 

This means that It reuse the weights from a pre-trained network model into a new model, and then 

while training the model, either keep the weights fixed, fine-tuning them or adapt the weights 

entirely. It is pre-trained on a large related dataset and then transfer learns the knowledge from one 

trained model to the target model. [57] This prompts a critical positive effect on the issues where 

restricted datasets are accessible, such as in our situation and in numerous other automatic target 

classification problems based on radar systems. 

 Neural Networks 

The architecture of Neural Networks is inspired by the functionality of the human brain. Brain 

takes the input, on that input it does some processing, and based on that it gives an output. The 

neural network exactly works this way. The individual components or units in the neural network 

are the neurons. Two steps are vital for the complete training of the network i.e. backward and 

forward propagation. In forward propagation, the network takes the image as an input; these 

images are stored in the form of numbers at the input layer. These numbers are used to define the 

intensity of the image’s pixels. The hidden layer performs a mathematical operation on the input 

Figure  23: Transfer Learning Architecture Model. 
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layer based on certain parameters and gives a final answer which is directed to the output layer 

and thus, final prediction is made. When the prediction is done, the output is compared with the 

actual value, and error is computed. Then we check that how much deviation is there from the 

actual answer and based on which weights and parameters are updated. The output is generated 

again using the updated weights and parameters. The process is repeated until the maximum 

accuracy is achieved. 

In the neural network, the number of neurons is huge which makes the algorithm unmanageable. 

For instance, if there is an image of 224 x 224 x 1 dimensions than the required number of neurons 

will be 50176. This is a huge number which is very complex to manage and this makes the 

algorithm computationally inefficient. To overcome this problem, Convolutional Neural Network 

[58] was made. The main difference is that CNN extract the main features of the image and then 

reduce its dimensions without losing the useful features. In CNN, the image is represented by a 

three-dimensional matrix i.e. 224x224x3. The convolutional layer extracts the important features 

and reduces the dimensionality by applying the convolution. The dimensionality of 224x224x3 

image is condensed to 1 x 1 x 1000 which states that now only 1000 neurons are required in the 

first layer of feed-forward prorogation making it less complex and manageable. 

 Convolutional Neural Networks 

Deep convolutional Neural Network is a deep learning algorithm in which the image is taken as 

input and different weights and biases are assigned to them which is used for the classification and 

differentiates one image from the other. Convolutional Neural Network consists of a sequence of 

Figure  24: Architecture of CNN [56] 
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layers. [59]. Four main layers are used in the convolutional neural network architecture i.e. Input 

Layer, Rectified Linear Units layer, Convolutional Layer, Fully-Connected Layer, and a Pooling 

Layer. These layers are arranged in the form of a stack that forms a full convolutional neural 

network as shown in Figure 24. The number of layers can be increased as we go deep in the 

algorithm. Now we will discuss every single layer of Convolutional Neural Network in detail. 

4.5.3.1. Input Layer 

The input images are encoded into the color channels one of the most common is the red, green, 

blue (RGB) channel (W x H x D). When we have to transform the image in the pixel values than 

based on the intensity of these channels, we form three matrixes. Each matrix represents the 

intensity of the color at each point in the image. These three matrixes together form a tensor. 

4.5.3.2. Convolutional Layer 

Convolutional Layer is that layer where the features are extracted from the image, so it is also 

known as the feature extractor layer. The features are extracted by using the kernel convolution. It 

involves passing the kernel or filter through the image and in this way, image is transformed based 

on the values of the filter. The final output of this convolution is calculated using equation 5. 

 𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑∑ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘] (5) 

Here, f shows input image, h shows the filter, and m, n represents dimensions of the final output 

matrix. If the image dimension is (n, n) and the filter dimension is (f, f) then the output dimension 

can be calculated using equation 6. 

 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑂𝑢𝑡𝑝𝑢𝑡 = ((𝑛 − 𝑓 + 1), (𝑛 − 𝑓 + 1)) (6) 

The output of the convolutional layer is sent to the Rectified Linear Units layer (ReLU) which 

applies the activation function on the output. The activation function is given in equation 7. The 

images contain the non-linear features so this function is applied to decrease the non-linearity in 

the image. The function removes all the negative values from the output and keeps the positive 

values only. 

 𝑓(𝑥) = {𝑥 𝑤ℎ𝑒𝑛 𝑥 ≥ 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

4.2.1. Pooling Layer 
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The size of the image is quite and by running our image through different filters the size of the 

image keeps on increasing which makes our algorithm inefficient. To overcome this problem, we 

will stack the pooling layer after every convolutional layer. It benefits in reducing the image size 

drastically by replacing the pixel with min, max, or average of the pixel. The main idea is that we 

will take a pixel and replace it with soma some function (min, max, average). The most common 

is the max function that is also called max-pooling. In the max-pooling layer, the size of the image 

is reduced drastically as we move the filter by multiple pixels in such a way that each pixel is seen 

by exactly one filter position. It uses two hyperparameters, first is the stride S, and second is their 

spatial extent F. The input is in the form of W x H x D and the output of this layer can be calculated 

using equation 8, 9, 10. 

 
𝑊𝑛𝑒𝑤 =

𝑊 − 𝐹

𝑆 + 1
 

(8) 

  
𝐻𝑛𝑒𝑤 =

𝐻 − 𝐹

𝑆 + 1
 

(9) 

  𝐷𝑛𝑒𝑤 = 𝐷 (10) 

 

 
4.2.2. Fully Connected Layer 

The output from the pooling layer is first transformed into a vector and then given as an input to 

the fully connected layer. A fully connected layer is nothing but a simple feedforward neural 

network. The graphical representation of ANN is shown in Figure 25. 

Figure  25: Graphical Representation of model 
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After getting the summation result, the sigmoid function is applied to the output of the summation. 

Equation 11 is used for calculating the sigmoid function. 

 
𝑋 =

1

1 + 𝑒−𝑥
 

(11) 

In a fully connected layer, ReLu can also be used as the activation function. After passing from 

the fully connected layer the final layer used the softmax activation function which classifies input 

in the given classes based on the probability value. Softmax activation function. does the 

normalization to make sure that the sum of the output vector is equal to 1. This output vector tells 

that how much probability is there that the input will fall in the given classes. 

4.6. MICRO-DOPPLER SIGNATURE 

The CNN in our case takes 2D spectrograms as an input. The CNN layers are exploited to extract 

features from spectrograms and we do not further obtain hand-crafted features from the 

spectrograms. CNN is composed of various layers which are stacked upon each other. At the input 

layer, pixels are given as an input where the features are extracted and form a feature layer. Since 

we utilise the AlexNet architecture, so the input size 227 x 227 x 3 is dependent upon the 

architecture of the network. The inputs are convolved with pixels resulting in the convolutional 

layer output. We have used five convolutional layers followed by max pooling. In the first 

convolutional layer, 96 filters with size 11x11x3 are used. After the first two convolutional layers, 

a max-pooling layer is utilised to down sample the pixels and select the most relevant and useful 

features. The size of the pooling windows is 3x3 with a stride value of 2, which reduce the 

dimensions to 2x2. Next 3 convolutional layers i.e., third, fourth, and fifth are connected directly. 

The last convolutional layer is followed by a max-pooling layer and its output directly goes as in 

input into a series of two fully connected layers. The last fully connected layer feeds the output 

into a softmax classifier for multi-class classification. In fully connected layers, ReLU is used as 

the activation function to provide the normalization operation. Figure 8(b) gives the confusion 

matrix for the training dataset. We achieved a classification accuracy of 99.1% with only two 

samples misclassified. 
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4.7. SUMMARY 

The proposed solution has been explained in detailed in the above paragraphs. We proposed 

frequency–time spectrogram feature maps for training of the deep learning model normalized on 

speed profiles of individuals to provide robust classification independent of age groups. Our 

engineered deep CNN has higher layers than existing state-of-the-art solutions and achieves the 

highest accuracy through transfer learning on the proposed feature maps for classification of 

activities including walking, sitting down, standing up, picking up objects, fall and drinking water. 

We have utilized last two full connected layers for transfer learning and achieved above 99% 

results for activity detection. Furthermore, we presented a robust generalized solution for detection 

of activities, which provides better generalization for geographical locations because of the 

diversity of dataset utilized for training. 
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CHAPTER 5. RESULTS AND DISCUSSION 

This section discusses the results and analysis of data collected. The classification methods are 

divided into two main parts. Firstly, two conventional machine learning classifiers, namely 

Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) were used to classify activities. 

Secondly, transfer learning technique was used to extract features with one CNN (AlexNet) and 

train a machine learning/deep network model on the same features for classification. 

5.1. Performance Metrics for Classification 

In order to examine the performance of different classification algorithms, the performance metrics 

can be obtained from the true classification and misclassifications in a confusion matrix, as 

described in Table 6, as an example for a simple binary classification. The elements in diagonal 

show the correct classification for a specific class (class A in this case) and are termed as a True 

Positive and when the remaining classes which are not of interest are also correctly identified 

(Class B). The two terms namely False Positive and False Negative indicate ‘false alarm’ and 

‘missed identification,’ respectively. 

Table 6: Performance Metrics 

True/Predicted A B 

A True Positive False Negative 

B False Positive True Negative 

5.2. Classification Results 

This section presents the classification results obtained using different methods. Each of the 

method is discussed in details as follows: 

 Classification using Machine Learning 

Initially, we combined all available data sets (healthy individuals’ datasets from university lab 

environment and mature people datasets from residential and service care centers) and performed 

classification tasks to obtain some baseline results. Two conventional machine learning classifiers 

namely SVM and KNN were considered for classification of activities. The SVM uses features to
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produce a hyperplane margin that is based on the distribution of set of features for a particular 

class. This algorithm is already extensively used for human activity recognition in indoor settings 

and has been compared with other classifiers (Riazul Islam et al., 2015). The second classifier i.e. 

KNN is a non-parametric technique used for classification tasks. It compares the distance between 

an input test sample and the k nearest training samples in its features space, performing a majority 

vote between the closest neighboring points to assign the test sample to a specific class as shown 

in Figure 26. The training, validation, and testing processes were implemented using MATLAB. 

Different ways of calculating the distance between points or vectors in features spaces can be used, 

starting from the simplest Euclidean distance. The datasets obtained using FMCW radar for all 

nine locations and 1453 observations were divided into 70% (1017 observations) for training and 

30% (436 observations) for testing per class. The undesired biases found in the results are 

minimized using this deterministic method that would be encountered in imbalance datasets 

between training and test classes. Initially, we have selected the optimum features such as mean, 

root-mean-square, median, skewness, variance, standard deviation, and kurtosis of Centroid and 

Bandwidth extracted from micro-Doppler signatures for each activity. 

The KNN classification algorithm with optimized hyperparameters was obtained from estimated 

objective, distance and total number of neighbor’s functions as in Fig. 26. 

Figure  26: Objective function model 
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 The distance function namely, ‘Mahalanobis’ and the 10 nearest neighbors were used as optimum 

hyperparameters, where the value of the estimated objective function was 0.1971 and the estimated 

function evaluation time was 0.056 seconds. We have used ‘holdout cross-validation’ that splits 

the data into training and test parts where there were no common data points between the two. 

An example of a confusion matrix obtained from the 11th iteration for six human activities for all 

nine locations using KNN is shown in Table 4. A1, A2, A3, A4, A5, and A6 refers to walking, 

sitting down, standing up, pick up object. The test accuracy, in this case, is nearly 86%, where 

there was misclassification between picking up object from the ground and pick up glass from the 

table to drink water. These were similar activities; that is why the classifier was not able to fully 

discriminate between human actions. The average accuracy for all iterations was 81.18%, drink 

water and fall event, respectively. The comparable confusion matrix for the KNN is shown in 

Table 7. 

Table 7: Confusion Matrix for KNN 

Actual/Predicted A1 A2 A3 A4 A5 A6 

A1 47 0 0 0 1 0 

A2 0 47 0 1 2 0 

A3 0 0 45 1 3 2 

A4 2 2 1 41 0 0 

A5 0 2 4 7 43 1 

A6 1 0 0 0 2 26 

 

Figure 7 (orange) shows the percentage accuracy of KNN and SVM classification algorithms when 

training and testing were performed for 30 number of iterations. In this scenario, the training and 

test data (unseen to the classifier) were divided 30 times, and both procedures were performed 

using the same optimized hyperparameters.  
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Table 8 describes the confusion matrix for SVM algorithm. In this case, radial basis kernel function 

was used as the features were linearly non- separable after they were mapped to a high dimensional 

feature space. The maximum accuracy obtained was nearly 80% for iteration number 4, and the 

average accuracy was 77.71% as in Fig. 7 (blue). The misclassification rate between activity 4 

(picking up object) and activity 5 (drinking water) was higher than KNN classifier. 

Table 8: Confusion Matrix for SVM 

Actual/Predicted A1 A2 A3 A4 A5 A6 

A1 50 0 0 0 1 0 

A2 0 47 0 1 0 0 

A3 0 0 49 2 2 0 

A4 0 1 1 25 9 0 

A5 0 2 1 22 36 2 

 

 Classification using Convolutional Neural Network 

This section discusses the results of our proposed technique. For data classification, we utilized 

the pre-trained AlexNet architecture and transfer learned it on frequency-time feature maps

representing the Doppler shift for different activities. The frequency-time feature maps show the 

signal spectrogram in different colors. The blue color in spectrograms represents no movement 

Figure  27: Test accuracy for 30 iterations with combined datasets 
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and light green represents stationary background. The red color represents higher speed 

movements and yellow color represents moderate to low movement. The colors represent different 

movements and speeds and are utilized for training the deep learning network for classification of 

activities. Furthermore, we directly train a CNN with 5 convolutional layers, two fully connected 

layers and one SoftMax layer to compare with the transfer learned AlexNet and demonstrate the 

effectiveness of our proposed transfer learned model. A 5-fold cross validation technique is 

utilized in which the data is divided into 5 folds, 4 folds for training and 1-fold for testing. The 

process is repeated until all the data in 5 folds is used for testing. The final results are obtained by 

averaging over all the 5 folds. The multi-classification performance of 6 activities including falls 

is illustrated with the normalized confusion matrices in Figures 28(a) and 28(b). The overall multi- 

class accuracy of the proposed method is 98.4%, in comparison to a directly learned CNN which 

provides 79.5% multi-class accuracy. The proposed technique provides a fall classification 

accuracy of 99.1% with two fall samples misclassified as “standing up”. This is due to the 

resemblance between the spectrograms of “standing up” and fall as shown in Figure 22. In 

comparison, the directly trained CNN provides a fall accuracy of 82.4% with misclassification of 

falls as sitting down, standing up and picking up activities. Furthermore, the proposed model 

achieves a high classification accuracy for “picking up object” and “drinking water” at 96% and 

98.5%, respectively. The directly trained CNN provides relatively lower classification accuracy of 

78.1% and 80.6% for “picking up object” and “drinking water”, respectively. The spectrograms of 

both the activities “picking up object” and “drinking water” are nearly similar (Figure 22) and result 

in some misclassification between the two. The “walking and “drinking water” activities achieve 

a high classification accuracy of 100% and 99.7%, respectively as compared to the trained CNN, 

where the accuracies remain relatively low at 83.8% and 80.6% for “walking” and “drinking 

water”, respectively. Our proposed system generates false positives for standing up, picking up 

and drinking activities. However, the system does not generate false positives for falls as illustrated 

by the confusion matrix in Figure 28(b). However, the system produces false negatives for falls by 

classifying 0.9% of the falls as standing-up activity. The inference latency for our network with 5 

convolutional layers network is < 1ms. 
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Table 9, provides the comparison of state-of-the-art techniques with our proposed system and 

model. All the techniques use CNN except for [60] and [61], which utilize CNN with LSTM and 

recurrent auto encoder (RAE), respectively. Our proposed model utilizes a deeper CNN model as 

compared to the proposed CNN models and the RAE network. We achieve the highest 

classification accuracy of 99.1% for falls and an overall multiclass accuracy of 98.4%. The dataset 

sizes in [62] and [61] are much smaller at 201 and 50 (fall) samples. We have 6.4% higher accuracy 

and 8.3% higher specificity than [62]. While [61] has the second highest accuracy of 98%, the 

value is obtained for only 50 fall samples and the result suffers from low confidence and lacks 

reliability. Authors in [60] use overall 3060 samples, but utilize 600 samples for testing. We utilize 

bigger dataset for testing through 5-fold validation technique, which includes all the 1436 samples 

and have 6.1% higher accuracy than [60]. Furthermore, the problem is treated as a binary 

classification problem in [63], and provides lower accuracy than both our multi-classification and 

fall results. 

Table 9: Comparison of the state-of-the-art techniques with the proposed system. 

Reference IEEE Trans 

C&S’19 [60] 

ArXiv'20 

[61] 

IEEE 

Sensors'20 [62] 

Sensors'20 [63] Proposed 

Classification 

Model 

Figure  28: Normalized Confusion Matrix of (a) CNN and (b) Transfer Learned AlexNet. 
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Radar 

 
Ultra 

Wideband 

mmWave 
FMCW 

 
FMCW 

 
Ultra Wideband 

 
FMCW  

Frequency 5.9 - 10.3 GHz 77 GHz 2.425 GHz 4 GHz 5.8 GHz  

Bandwidth - 1.92 GHz 250 MHz 1.7 GHz 400 MHz  

Dataset Size 201 50 (falls) 4000 3060 1453  

Classificatio

n 

Multiclass Multiclass Binary Multiclass Multiclass 

 

Algorithm 

 

CNN 

 

RAE 

 

CNN 

CNN- 

ConvLSTM 

 

Deep CNN 

Sensitivity 
(%) 

 
93.4 

 
- 

 
- 

 
95.0 

 
99.2 

Specificity 

(%) 

 

91.7 

 

- 

 

- 

 

92.6 

 

100 

Accuracy (%) 92.7 98.0 95.0 93.0 99.1 

 



64 

 

CHAPTER 6. CONCLUSION & FUTURE WORKs 

This paper presented a micro-Doppler radar-based system for multi-classification of human 

activities. We proposed frequency–time spectrogram feature maps for training of the deep learning 

model normalized on speed profiles of individuals to provide robust classification independent of 

age groups. 

• Our engineered deep CNN has higher layers than existing state-of-the-art solutions and 

achieves the highest accuracy through transfer learning on the proposed feature maps for 

classification of activities including walking, sitting down, standing up, picking up objects, 

fall and drinking water. We have utilized last two full connected layers for transfer learning 

and achieved above 99% results for activity detection. 

• We presented a robust generalized solution for detection of activities, which provides better 

generalization for geographical locations because of the diversity of dataset [46] utilized 

for training. For better generalization, we utilized a diverse publicly available dataset at 

• [46] from nine different locations and 99 volunteer participants of different age groups. 

• Our solution provides the highest accuracy, sensitivity and specificity for different activity 

at 99.1%, 99.2% and 100%, respectively than existing solutions with an overall multi-class 

accuracy of 98.4%. 

• The proposed solution is deployable to new environments and has good generalization 

capability for robust and reliable classification independent of the age groups. 

In future, we will extend our work to higher ranges by utilizing multiple radar sensors operating 

at different frequencies to avoid interference between respective sensors. We will also increase 

different activities along with different kinds of postures. We intend to perform multiclassification 

for different kinds of other activities as well. 
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