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Abstract 

Cloud-based systems have become very popular these days, which consists of a server and 

node devices. These node devices are called edge devices or edge of the system. With ever 

increasing size of data and complex algorithms, the load on servers have increased many folds. 

Hence there is a requirement of shifting this load to the edge devices. Shifting load from server 

to edge nodes is called edge computing. Now Fuzzy C-Means (FCM) is an unsupervised 

machine learning algorithm that is used for data clustering. It is also called soft k-means or soft 

clustering as each data point can belong to more than one cluster. In cloud-based applications 

it can affect the performance of server due to its complexity. In edge computing systems 

workload is put close to the edge where data is being created, this helps improve response time 

and save bandwidth. FCM can be incorporated in various smart nodes-based devices by 

assigning data to relative clusters. Image segmentation is one of such applications that can be 

implemented using FCM. In proposed design FCM is implemented using multicore 

architecture, which consists of P processing units called Tiles. Each Tile process a chunk of 

data in parallel and final results are calculated by sharing of data between the Tiles. This 

improves the overall performance of the system by speed up as compared to the traditional 

sequential architecture. The proposed architecture can be used to design a smart edge 

computing-based system with high performance and better throughput. 

 

Key Words: Fuzzy C-Mean, Clustering, Soft Clustering, Edge Computing, Smart Edge Node, 

Image Segmentation, Parallel Architecture, Homogeneous Architecture, FPGA, FCM, Verilog 
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Chapter 1 : INTRODUCTION 

The modern technological revolution has profited human life in all fields of life, and the 

invention of computers is the panicle of the scientific age. In the start computers used to be 

bulky, hard to move, and weak in terms of computational power, but as time went by, they 

started to reduce in size and became more and more portable with greater processing speeds. 

This gave birth to the era of telecommunication via portable devices in the form of networks. 

Previously, computer networks faced many challenges, such as data accuracy, transmission 

speed, and security. However, one challenge that affected the network growth was the cost of 

data transmission. A lot of work has been done to reduce this cost and there are multiple 

solutions, however, one solution that can benefit the most in this regard is Edge Computing. In 

the past role of edge nodes in a cloud-based system was to collect and transmit the data to the 

main server, but after the invention of portable and smart processing devices processing load 

can be shifted from the server to edge devices. These devices can now process the input signal 

and generate preliminary data for further tasks. 

Multiple applications can benefit from the above-mentioned model like autonomous vehicle 

systems, security solutions, and video conferencing. However, we have focused on Healthcare 

solutions. Medical imaging has become very useful in the early diagnosis of numerous diseases 

such as cancer, Alzheimer's disease, and hippocampal atrophy, etc.  Image segmentation is 

used to slice the medical images into multiple portions to extract useful information and make 

the processing easier [1]. There are several image segmentation techniques but unsupervised 

machine learning algorithms have become popular for said process. Fuzzy C-Means Clustering 

(FCM) clustering algorithm and can be used to effectively segment monochrome medical 

images. 

FCM is a soft clustering algorithm where a data member can belong to more than one cluster. 

Cluster boundary is determined based on membership values that are assigned to every data 

point for each cluster. We can easily control its fuzziness by tweaking one variable which is 

FCM fuzziness factor[2]. This makes it very suitable for image clustering applications where 

you can tune the cluster boundaries by regulating the fuzziness of the algorithm. Despite all its 

benefits, FCM is a computationally extensive algorithm and it consumes significant processing 

time to converge. Therefore, there is a need to implement FCM in such a manner that it can 

perform faster with minimum hardware resources, to make it suitable for node devices in edge 

computing.  
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Homogenous Multiprocessor System on Chip (MPSoC) provides us with the best hardware 

architecture to implement FCM. Identical Processing Entities (PE) can work in parallel to 

achieve faster convergence of the algorithm. Similarly, data sharing can be helpful with 

optimum hardware utilization. 

We have implemented a parallel FCM algorithm for Image segmentation on an MPSoC 

architecture. We have achieved a significant boost in speed and reduction in hardware 

consumption compared to the original FCM.  To get the best performance we have tried 

different variants of the algorithm. We have conducted the implementation process in different 

phases. In each phase, we altered one parameter of the algorithm and kept others constant. 

These parameters are the number of PE, number of clusters, and number of fractional bits, and 

resolution of the image. This research provides a comprehensive solution for implementation 

of FCM algorithm on a parallel MPSoC architecture. 

1.1 Motivation 

With the arrival of new powerful sensors and portable processing devices, the amount of data 

generated at edge nodes and cloud-based systems has hit the roof. This has contributed to the 

ever-present problem of data transmission costs in network applications. Thus, there is a 

requirement for a smart solution for this problem. Machine learning algorithms provide an 

opportunity to solve the said problem by processing the data at the edge node and only transmit 

useful data for further processing. Successful implementation of smart algorithms on edge 

devices can significantly cut back on the operational cost of cloud systems. This can also 

contribute to increasing the reliability and efficiency of the systems as well. 

1.2 Problem Statement 

Performance enhancement of Edge Nodes by implementation of Parallel Architecture for 

clustering algorithms on MPSoC. 

1.3 Aims and Objectives 

Major objectives of the research are as follow:  

 To implement original FCM algorithm on a reconfigurable hardware.   

 Implementation of proposed parallel FCM algorithm on reconfigurable hardware. 

 Compute performance enhancement in terms of clock speed and area utilization. 
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 Establish the working similarity of both algorithms by comparison of results. 

 To test different versions of proposed parallel FCM by changing key parameters. 

1.4 Structure of Thesis 

This work is structured as follows: 

Chapter 2 covers the basics of Edge computing and image segmentation.  

Chapter 3 describes the literature and the important work done by other researchers in the field 

implementation of machine learning algorithms for edge devices. 

Chapter 4 consists gives and overview of original and proposed FCM algorithms, and working 

of both parts has been explained by examples. In addition to that pseudo code of original FCM 

is also provided for better understanding. 

Chapter 5 gives us complete understanding of MPSoC implementation of proposed FCM on 

reconfigurable hardware with complete description of all components. 

Chapter 6 provides the conclusion of the thesis and presents the way forward. 
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Chapter 2 : EDGE COMPUTING AND IMAGE SEGMENTATION 

Edge computing is an evolving technology that facilitates the processing of a large amount of 

data gathered by nodes devices in a networking application[3]. In a server-based network, 

devices or sensors collects information from the connected environment and share the said 

information to a central processing unit using a unified protocol. Previously cloud computing 

was considered the ultimate approach for fulfilling the requirements of network applications. 

However, cloud computing had its own limitations e.g., bandwidth restrictions, high latency, 

server downtime/server shop closed, etc.  

The challenges of cloud computing have paved the way for Edge computing that allows the 

applications/data processing to run at network nodes where the data is being produced or 

consumed instead of sending the data/information to a geographically distantly located central 

processing node. This is done so that data, especially real-time data does not suffer the latency 

issues caused by bandwidth limitations. Edge computing can also be beneficial in case of 

Internet of Things (IOT), as it addresses some of the basic issues faced by IOT.  

2.1 Challenges in Edge Computing 

The challenges of cloud computing were related to the main data server; however, edge 

computing challenges are mostly related to the management of the edge nodes. By allowing 

critical data and applications for processing of the data at the edge nodes introduce performance 

and scale challenges to be addressed.   

2.1.1 Hardware Limitations 

For an edge device to process, the data customization of the edge hardware may be 

required. However, an edge node may not be able to fit as much hardware as a full 

central data processing unit thus, keeping the hardware footprint of an edge node 

small/reduced may be a challenge[4].  

The solution for the hardware footprint constraint can be solved using a software 

approach/solution.  

2.1.2 Operational limitations 

Requirement of highly trained technical staff for installation and maintenance of edge 

devices on remote locations is one of the biggest challenges for edge computing[4]. 
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However, it can be solved by training of the personnel on regular basis and controlling 

the edge devices remotely. 

2.1.3 Security 

Placement of expensive hardware on remote locations is a security challenge that edge 

computing faces. Both hardware and data security is point of concern for the security 

of edge systems[5]. 

The solution for this challenge is the implementation of shielding measures for both 

hardware and data protection, for example automated threat alert systems and complete 

quick response mechanisms[5].     

2.1.4 Diverseness 

Possibility of edge computing usage in variety of fields also creates a challenge of 

heterogeneity, due to which communication between various systems becomes costly 

and cumbersome. This puts added pressure on scalability of the system. 

We can cater this problem by establishing unified protocols across all fields of potential 

edge computing applications. It will ensure a smoother integration of systems under the 

umbrella of edge computing[5].  

2.2 Benefits of Edge Computing 

There are a number of benefits of edge computing that can actually make a difference as 

compared to the cloud computing. Some of these advantages are produced below. 

2.2.1 Rapid response 

One of the most beneficial feature of edge computing is real time response of the 

system, as most of the necessary handling of data is being done close to the end user. 

Therefore these devices can now perform sophisticated operations without the help of 

central node, hence creating a rapid and efficient response to the user query[3].  

2.2.2 Cost effective 

As processing work is now shared between the edge devices and the main server in 

edge computing, therefore a large amount of data is not required to transmit over the 

network. This helps in reducing the network traffic, bandwidth and storage costs. 

2.2.3 Improved data security 
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Security of data is one of the biggest challenges in edge computing, but if handled 

correctly, it can become a big advantage. The key vulnerability regarding security in 

cloud-based applications is the transmission of data over the network. In edge 

computing most of the data handling is done at node, therefore reduced amount of data 

transmitted decreases the security risk as well. In addition to this encryption of small 

data is also relatively easy task[3]. 

2.2.4 Energy efficient 

According to latest research the amount of energy used by data centers is on the rise, 

and it is expected to increase by three times in the next decade[6]. Hence there is a 

requirement to select energy efficient technologies. Edge computing can help in this 

regard as well. As most of the computational tasks are done at the node level therefore 

energy at data center is also reduced by many folds.  

2.2.5 Low latency 

Edge computing offers computational resources closer to the users, resulting in delay 

free services[7]. This helps users to perform their computationally intensive tasks on 

powerful edge devices[7].   

2.3 Examples of Edge Computing 

2.3.1 Autonomous Vehicles 

According to a latest research a number of car manufacturers are working to introduce 

self-driving cars in near future, and it will be experimented first in the shared ride 

services[8]. Edge computing is going to play a major role in this regard. Route 

controlling can be done from a server but tasks like path determination, steering, 

obstacle avoidance and fuel management can only be done on the edge node. Therefore, 

autonomous vehicles are one of the key areas in the field of edge computing. 

2.3.2 Health care devices 

Area of health care devices can also benefit from edge computing. Connected medical 

instruments and machines can share work load of the main server to make an efficient 

Hospital management system. Some of health care facilities are placed at remote 

locations, therefore cannot afford a down time. Smart edge devices can fill this gap by 

efficiently managing the resources offline[9]. 
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In addition to this a number of medical diagnosis is done on the basis of medical 

imaging. Smart devices can diagnose a disease without sending a huge image to the 

server. 

2.3.3 Security Solutions 

One of the most important application of the edge computing is security setups. Smart 

edge devices can be used for biometric identification, image processing for threat 

detection and feature extraction. 

2.3.4 IoT Applications 

Edge computing has its main roots in IoT applications as widely spaced sensors can 

share the load of main controller. Industrial IoT is a big candidate for edge computing 

boom and applications such as wind power mils, oil rigs, HVAC systems and 

production control systems can benefit from it [4]. 

2.3.5  Edge Computing and 5G  

Mobile phone carriers across the world are installing 5G infrastructure, which is 

equipped with the power of high bandwidth and low latency. Instead of transporting all 

of the data to the cloud many operators are working on edge computing technology in 

5G infrastructure. This can help in offering real time reliable services to mobile users 

[10]. 

2.4 Clustering in Machine Learning 

Clustering is a field of unsupervised machine learning in which data is divided into smaller 

portions and members in each portion has similar properties. In supervised machine learning 

classification is done on the basis of a boundary, which is defined via training of algorithm by 

providing the know labels. However, in unsupervised machine learning the algorithm is 

allowed to discover patterns in data without any external help. It is also known as cluster 

analysis. There are a number of models that are used for clustering purposes. All of these 

models have several algorithms. Some of the popular models are “Connectivity-based 

clustering (hierarchical clustering)", "Centroid-based clustering", "Distribution-based 

clustering", "Density-based clustering" and "Grid-based clustering" [11]. FCM algorithms 

belongs to "Centroid-based clustering" algorithm model [11].   
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Figure 2-1: Cluster analysis 

2.5 Image Segmentation and Clustering 

Image segmentation is a technique that is used to partition an image into smaller sets [1].  Like 

pixels are grouped in each set. The basic purpose of this technique is to extract boundaries and 

objects from an image, and this is done by assigning a label to every pixel in the image. Pixels 

with identical labels lie in a segment[1]. It can be used on color as well as greyscale images. In 

this research we have used it on greyscale images only. 

Segmentation is a very important task in image processing as it separates the contents of an 

image from its background and form one another [12]. This separation of image contents is a 

very important step in tasks like object recognition and object tracking and other high level 

tasks [12].  

Image segmentation can be divided into two main classes. Traditional Image Processing 

Segmentation and Machine Learning bases Segmentation. In traditional segmentation the 

image contents are separated with the help of various techniques such as Thresholding, where 

pixels of an image are replace with white or black pixels depending upon their level [1]. Where 

as in machine learning segmentation clustering algorithms are used to separate contents of an 

image from one another, as clustering combines together similar elements in a group.   
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2.6 Multiprocessor Architecture (MPSoC) 

Multiprocessor System on Chip (MPSoC) is part Very Large Scale Integration (VLSI) systems 

which has become very popular in the last couple of decades [13]. It is a System on Chip (SOC) 

which is comprised of multiple processing units. Where SOC is an integrated circuit that 

consists of almost all components of a computer such as memory, processor and input/output 

devices interface [14]. There are mainly two types of multiprocessor architectures, i.e. 

heterogeneous and homogeneous MPSoC. The homogeneous systems are comprised of 

multiple similar processing units and work together to achieve better performance, whereas 

heterogeneous MPSoC consists of multiple processing units that are different form one another. 

Both of these types of MPSoCs have their own benefits and either of these designs is opted on 

the basis of its advantages over other for a specific application. 

2.7 Fuzzy C-Mean (FCM) Clustering 

FCM is a machine learning algorithm and it has gained a lot of popularity in the past two 

decades because of its usefulness in multiple fields of engineering. Its main application fields 

include Neural Network, Clustering and Classification, Image Analysis and Structural Analysis 

of Algorithms [15]. Its other fields are Video Segmentation Sonar returns, Speech recognition 

and ECG arrhythmias. FCM has seen numerous advancements and upgrades in past to improve 

its performance. L. Jain et al. has compiled a comprehensive review on FCM development, its 

applications and work done [15]. Its main structure and equations with an example are 

produced in Chapter 4 in detail.  
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Chapter 3 : LITERATURE REVIEW 

A lot of work has been done in the field of machine learning and MPSoC. In this section we 

will briefly discuss the previous work done and locate possible research gap that we are trying 

to fill.  

3.1 Clustering Algorithms Implementation on Hardware 

The idea of implementing clustering algorithms on reconfigurable hardware such as Field-

Programmable Gate Array (FPGA) is not new. People have designed hardware architectures 

to get the best of cluster analysis algorithms. As clustering processes consumes a lot of 

processing time therefore speed is the prime motivator for hardware implementation of such 

algorithms. In the following section an overview of clustering algorithms on hardware is 

provided with focus on performance enhancement. In hardware implementation the goal of 

high speed has been achieved via many techniques such as, pipelined circuits [16]–[19] and 

multiprocessor architectures [20]. The purpose of all these implementations is to get the 

performance in terms of speed and area efficiency. 

3.1.1 K-mean clustering algorithm on hardware. 

K-mean is one of the most popular centroid oriented clustering algorithms. "In k-mean, each 

cluster is represented by the mean value of objects in the cluster" [21]. It can be used to find 

unseen patterns in business data sets such as market trends etc. There are a number of K-mean 

hardware implementations such as Canilho et al. implemented "an embedded 

hardware/software architecture targeting the K-means clustering algorithm" [22]. The lowest 

hardware variant of their design performs 10 times better than the software counterpart, and 

the hardware designed can be scaled up to achieve even more speed [19]. Similarly in another 

implementation of K-mean on FPGA Kutty et al. have achieved three times faster-operating 

frequency than previous works [19]. They have attained these results with the help of both 

pipelining and parallelism [19]. 

Biomedical applications have a great deal of potential for benefiting from the k-mean 

clustering, and a number of researchers have put their efforts to benefit from this new field of 

science. For example many hospitals in the world generate a large amount of medical 

information data in the form of images such as X-ray, MRI and  ultrasound tests [23]. Machine 

learning algorithms are becoming very popular to extract useful information for early diagnosis 

and physician’s help [23]. Neshatpour et al. implemented a heterogeneous CPU+FPGA K-
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mean architecture for such image processing applications in the field of biomedical informatics 

[23]. Their design shows 72 times speed up for large images because the computational 

intensive operations are implemented on FPGA [23]. 

Similarly "Microarray is a technique used by biologists to perform many genome experiments 

simultaneously, which produces very large datasets" [24]. Hanaa et al. implemented 5 different 

parallel K-mean cores on FPGA to achieve 10.3 times the speed-up as compare to the software 

implementation [24]. 

3.1.2 Mean Shift algorithm hardware implementation 

Mean shift is another machine learning algorithm that is used for clustering. It converges to 

extract the maxima of the cluster. Like K-mean it is also computationally extensive and it can 

consume a large amount of time to converge; therefore, a number of people have attempted to 

decrease its convergence time with the help of modern hardware architectures. 

D. Trieu et al. implemented mean shift algorithm on FPGA for color image segmentation to 

reduce its computational cost [25]. They have accelerated the architecture by using a cache for 

parallel processing [25]. Similarly S. Craciun et al. also worked on the mean shift for image 

segmentation, and tried to improve its execution time [12]. They have tested their deigned on 

multiple hardware and achieve a low power architecture with better performance. In another 

example amna et al. proposed a simpler version of mean shift version with parallel architecture 

and better performance [20]. They have achieved impressive speed up with fix point designs 

with and without fractional bits.  

3.2 FCM Implementation on Hardware 

FCM algorithm has captured the attention of researchers in the past. People have benefited 

from this algorithm in various applications and domains. It can provide an alternate solution to 

the k-mean clustering algorithm.  

First of all W. Hwang et al. implemented the traditional version of FCM on FPGA and achieved 

the segmentation success rate of 94% with maximum 10 number of classes [26]. Their 

architecture is 10 times faster than its software counterpart [26]. They have tested their 

architecture compared to basic software version and a fast software implementation [27]. Their 

design is an evidence of the performance superiority of hardware over software. 

 Similarly in another research Yao-Jung Yeh et al. implemented a pipelined version of FCM 

with centroid and membership coefficient sharing, and achieved significant improvement in 

Area and computational performance [16]. FCM require large storage due to size of 
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membership matrix and it increases with the number of classes. They managed to exclude 

larger storage requirement by combining usual iterative process of matrix computation [16]. 

This shows that pipelined architectures serve the purpose of area management and performance 

enhancement. In another article Chien-Min Ou et al. used the same technique and reduced the 

requirement of large storage by combining the centroid calculation [28].  

When it comes to the handling of large data, FCM performs poorly due to the requirement of 

large storage for partition matrix. The scale of matrix increases with the amount of data and 

number of clusters. John F. Kolen and Tim Hutcheson devised a new method to eliminate the 

requirement of large storage [27]. They have implemented a software version of FCM and 

combined the two updates of cluster centers into one. This also removes the overhead of 

accessing the large storage repeatedly, hence increasing the speed by many folds.  

3.3 Parallel architecture MPSoC implementation for Clustering algorithms 

There are numerous examples of MPSoC architectures that are designed to benefit from 

parallelism.  Homogenous Tile architecture is a concept of dividing the work load among 

identical processing units to enhance the speed of the architecture. The data is shared between 

the Tiles through a shared bus. This concept has been implemented in the past to achieve 

improved speeds on K-Mean clustering algorithm [29], Mean-Shift clustering algorithm [20] 

and Partition around Medoids (PAM) algorithm  [30]. In all of above work the researchers have 

improved the performance of respective algorithms by many folds and this method has 

considerable potential to be implemented on other algorithms.     

3.4 Research Gap   

Keeping in view the discussion in the above section the Homogenous Tile architecture has not 

been implemented on FCM algorithms, therefore there is an opportunity to exploit the benefits 

of this architecture even more with FCM. It is best suited for Tiled architecture design due to 

its similarity with K-Mean clustering. Furthermore, edge computing field require fast, efficient 

and intelligent devices, hence Parallel MPSoC architectures offer a unique solution to this 

problem by shifting the load to multiple processors that can work together to achieve improved 

speed. Machine learning applications such as Image Segmentation and Video Segmentation 

can take advantage of real time processing on edge devices. This can help reduce the cost and 

improve performance of the system.  
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Chapter 4 : Proposed Parallel Algorithm 

4.1 FCM Algorithm 

FCM algorithms was originally proposed by J.C. Dunn in 1973[31] and later it was perfected 

by J.C. Bezdek in 1981[32]. It can be divided into three main steps. 

 Center’s calculation 

 Partition Matrix (PM) computation 

 Object Function (OF) determination. 

In the first step cluster centers are determined from the current PM and original dataset. After 

that the PM is updated with the mathematical computation of cluster centers and original data. 

In the third step object function is calculated with partition matrix, centers and dataset. These 

steps are best described in the form of following equations. The termination criteria are decided 

on the error value, which is calculated by subtracting current objective function from previous 

one. The mathematical model of FCM can be described with the help of following three 

equations. 

 

𝑐𝑗 =
∑ (𝑢𝑖𝑗

𝑚. 𝑥𝑖   )𝐷
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝐷

𝑖=1

                                                      (1) 

 

𝑢𝑖𝑗 =
1

∑ (
|𝑥𝑖 − 𝑐𝑗|
|𝑥𝑖 − 𝑐𝑘|

)

2
𝑚−1

𝑁
𝑘=1

                                       (2) 

 

𝐽𝑚 = ∑ ∑ 𝑢𝑖𝑗
𝑚

𝑁

𝑗=1

𝐷

𝑖=1

 ‖𝑥𝑖 − 𝑐𝑗‖
2                        

                      (3) 

 

Where m is the fuzziness coefficient and it controls the level of fuzziness in the algorithm, uij 

is the PM where i indicate the index of the data and j denotes the cluster number. xi is the ith 

element in the input dataset and cj represents the jth cluster center. Finally, Jm represents current 

object function. 
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4.1.1 FCM Pseudo Code 

Working of FCM can also be illustrated in the form of following pseudo code. 

FCM Algorithm 

Input: N (No of Clusters), x (Dataset with D elements), 
Outputs: C (Cluster Centers), u (Partition Matrix) 
Initialization: 

Fix m, 1 < m < ∞, (e.g., m = 2); 
Fix ε, (e.g., ε = 0.0001); 
Fix maxlerations, (e.g., maxlerations=200); 
Fix Jm, (e.g., =0); 
Randomly initialize uij 

Begin 
for t = 1 to maxIterations  

 
for j=1 to N 

for i=1 to D 
Calculate Cj using Eq. (1); 

end 
  end 
  

for i=1 to D 
for j=1 to N 

Calculate uij using Eq. (2); 
end 

  end 
 

for j=1 to N 
for i=1 to D 

Calculate Jm using Eq. (3); 
end 

  end 
 

if (abs (J tm - J t-1m) << ε) then 
break; 

else 
J t-1m = J tm; 

end if 
 

end 
End 
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4.1.2 Example of original FCM algorithm 

Working of FCM algorithm can be understood with the help of an example. Let us consider an 

example with dataset of 16 elements, which will be used to calculate membership matrix and 

centers for two clusters. Table 4-1 shows the input data elements. 

 

Input Dataset 

13, 5, 90, 84, 45, 209, 12, 34, 22, 222, 179, 250, 44, 3, 150, 120 

Table 4-1: Input dataset for Original FCM example 

 

 
 

 

xi 
|xi - Cj| |xi - Ck| 

(
|𝑥𝑖 − 𝐶1|

|𝑥𝑖 − 𝐶1|
)

2
𝑚−1

 
|xi - Cj| |xi - Ck| 

(
|𝑥𝑖 − 𝐶1|

|𝑥𝑖 − 𝐶2|
)

2
𝑚−1

 
∑ (

|𝑥𝑖 − 𝐶1|

|𝑥𝑖 − 𝐶𝑘|
)

2
𝑚−1

𝐶

𝑘=1

 
unewij 

j=1 k=1 j=1 k=2 J=1 

13 67.96775 67.96775 1 67.9678 101.6864 0.446765837 1.446765837 0.69119 
5 75.96775 75.96775 1 75.9678 109.6864 0.479681404 1.479681404 0.67582 

90 9.03225 9.03225 1 9.03225 24.68641 0.133867769 1.133867769 0.88193 

84 3.03225 3.03225 1 3.03225 30.68641 0.009764226 1.009764226 0.99033 
. . . . . . . . . 
. . . . . . . . . 

150 69.03225 69.03225 1 69.0323 45.65416 2.286353319 3.286353319 0.2074 

120 39.03225 39.03225 1 39.0323 75.65416 0.266183754 1.266183754 0.01819 
Table 4-3: Membership Matrix (PM) calculation 

 
Table 4-2 represents the first step of FCM algorithm where calculation of cluster centers is 

done with the help of equation (1).  

 
 

xi 

uij (uij
^m * xi) ∑ (uij

^m  * xi) ∑uij
^m Cj 

ui1 ui2 (ui1
^m * xi) (ui2

^m * xi) 
∑(ui1

^m * 

xi) 
∑(ui2

^m * xi) ∑u1
^m ∑ui2

^m C1 C2 

13 0.58813 0.11669 4.49667 0.177026 

526.59845 684.65903 6.5038 5.96983 80.9678 114.686 

5 0.89771 0.75128 4.02944 2.822113 

90 0.89153 0.23921 71.5344 5.150281 

84 0.81583 0.2548 55.9096 5.453792 

. . . . . 

. . . . . 

150 0.77524 0.67941 90.1506 69.23991 

120 0.03666 0.65078 0.16131 50.82267 

Table 4-2: Center’s calculation 
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|xi - C1|2 |xi - C1|2 x ui1 |xi - C2|2 |xi - C1|2 x ui2 ∑|xi - Cj|2 x uij Jm 

4619.61584 1597.91513 10340.1262 140.805923 1738.721053 

90601.42843 

5771.09994 4650.87137 12031.1088 6790.6308 11441.50217 

81.5814326 64.8431287 609.418916 34.874213 99.7173417 

9.19450399 6.11977717 941.655855 61.138046 67.25782317 

. . . . . 

. . . . . 

4765.45071 2864.05802 1247.04952 575.63739 3439.69541 

1523.51607 2.04801903 28.234221 11.957822 14.00584103 
Table 4-4: Object Function calculation 

4.2 Proposed Parallel FCM Algorithm 

Our proposed parallel algorithm is inspired by the famous divide and conquer method, where 

we divide that dataset into smaller slices. Each data slice is passed to homogenous Processing 

Entities (PE’s) of FCM algorithm. These PE’s work in parallel locally to compute local results. 

These results are then shared via a common bus to each other to compute the global results. 

200,34,44,81,4,22,99,52 ……… 6,123,88,9

200,34,44,81 4,22,99,52  6,123,88,9

PE 1 PE 2 PE n

FCM 
Operations

FCM 
Operations

FCM 
Operations

Data sharing

 

Figure 4-1: Working of a Parallel FCM Algorithm 

FCM main equations are restructured to describe the proposed parallel architecture. First of all, 

equation (1) is divided into three equations splitting the Numerator (Tpj) and Denominator (Bpj) 

into separate equations (4b) and (4c), where p denotes the Processing Entity (PE) number and 

j represents the cluster index. Like original FCM equations i denotes the data point index. Final 

values of cluster centers are calculated with equation (4a). 
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𝑐𝑗 =
∑ 𝑇𝑝𝑗

𝑃
𝑝=1

∑ 𝐵𝑝𝑗
𝑃
𝑝=1

                                (4𝑎) 

 

𝑇𝑝𝑗 = ∑(𝑢𝑝𝑖𝑗
𝑚  .  𝑥𝑖)                      (4𝑏)   

𝐹

𝑖=1

 

 

𝐵𝑝𝑗 = ∑ 𝑢𝑝𝑖𝑗
𝑚                                 (4𝑐)

𝐹

𝑖=1

 

Secondly the Partition Matrix is divided into sub matrices and final membership values are 

determined by appending all of the sub matrices as membership values can be calculated 

locally.  

 

𝑢𝑖𝑗 = ( 𝑢1𝑖𝑗| 𝑢2𝑖𝑗  | …  |𝑢𝑃𝑖𝑗 )                    (5𝑎) 

 

𝑢𝑝𝑖𝑗 =
1

∑ (
|𝑥𝑖 − 𝑐𝑗|
|𝑥𝑖 − 𝑐𝑘|

)

2
𝑚−1

𝐶
𝑘=1

                  (5𝑏) 

Finally, Object Function is calculated by summing all the local values computed at PE level 

from equation (6a). Local OF are calculated with equation (6b) 

𝐽𝑚 =  ∑ 𝐽𝑝𝑚

𝑃

𝑝=1

                                             (6𝑎)  

𝐽𝑝𝑚 = ∑ ∑ 𝑢𝑝𝑖𝑗
𝑚

𝑁

𝑗=1

𝐹

𝑖=1

 .  ‖𝑥𝑖 − 𝑐𝑗‖
2

              (6𝑏) 

4.2.1 Working Example of Proposed Algorithm 

Proposed FCM algorithm can best be understood with the help of an example. Let us consider 

the same dataset from original FCM example and solve one iteration for better understanding 

and validation of function similarity. Figure 4.2 (a) shows the same dataset that is used in 

section 4.2.2 and Figure 4.2 (b) shows equal division of data among the processing tiles. 
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Figure 4-2: (a) Input data set for example. (b) Equal division of data among PE 

As we have discussed earlier that FCM algorithm has three main operations. Figure 4.3(a) 

shows the step-1 of first phase of FCM, which is center calculation. 

 
Figure 4-3: (a) Step 1 of Centers Calculation. (b) Step 2 of centers calculation 
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Figure 4-5 Object Function calculation 

 

 

Figure 4-4: Partition Matrix determination for single Tile, single cluster 
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4.2.2 Pseudo Code 

Working of proposed FCM algorithm is described in the form of following pseudo code. 

Proposed Parallel FCM Algorithm 

Input: C (No of Clusters), x (Dataset with D elements), P (No of PE e.g 
P=8) 
Outputs: C (Cluster Centers), u (Partition Matrix) 
Initialization: 

Fix m, 1 < m < ∞, (e.g., m = 2); 
Fix ε, (e.g., ε = 0.0001); 
 
Fix maxIerations, (e.g., maxIerations=200); 
Fix Jm, (e.g., =0); 
M = Length(x), (e.g., M= 380928) 
F = M/P; (e.g L=47616) 
Randomly initialize upij 

Begin 
 
 

for t = 1 to maxlterations  
 
for p=1 to P 

for j=1 to N 
for i=1 to F 

Calculate Tpj using Eq. (4b); 
 
Calculate Bpj using Eq. (4c); 

end 
 
  end 

  end   
for j=1 to N 

for p=1 to P 
Calculate Cj using Eq. (4a); 

end 
  end 
  
  for p=1 to P 

for i=1 to F 
for j=1 to N 

Calculate upij using Eq. (5b); 
end 

  end 
 calculate uij using eq. (5a); 

 
  end 
   
  for p=1 to P 
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for j=1 to N 
 
for i=1 to F 

Calculate Jpm using Eq. (6b); 
end 

 
  end 
  Jm = Jm + Jpm;  
 End 
 

if (abs (J tm - J t-1m) << ε) then 

break; 
else 

 
J t-1m = J tm; 

end if 
 

end 
End 
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Chapter 5 Proposed MPSoC Architecture 

 

The MPSoC architecture of proposed FCM is consists of the three main units. The 

communication, processing entities and main controller. These units work together to create a 

homogeneous parallel processing architecture dedicated to implement the FCM algorithms. 

Visual depiction of the whole architecture is shown in the following figure. 

 
Figure 5-1: Visual depiction of proposed MPSoC architecture 

 

5.1 Communication Controller 

The communication controller is responsible for handling all of the information entering and 

leaving the architecture. It is the only interface to communicate with outside world. Its main 

objective is to pass on the input data to the system for image segmentation through clustering. 

The main inputs of the commination controller are produced below. Other inputs include 

number of clusters C, number of maximum iterations, minimum allowable error and a start  

Communication Controller

Processing 
Unit

Processing 
Unit

Processing 
Unit

Processing 
Unit

Controller
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processing bit.  

Similarly, the main output of the controller is the final state of the membership matrix as it 

defines the boundary of the clustering process. Its size is dependent on the number of clusters 

as it holds the membership value of every data element for every cluster. Other outputs include 

the stop flag to indicate completion of clustering process and number of iterations used to 

converge.  

5.2 Main Controller 

Main controller of our proposed architecture is responsible for implementation of the FCM 

algorithm in parallel. It controls the execution and flow of data from various entities of the 

architecture and ensures integrity of the data. Its main functions include generating control 

signals for the processing entities and computing the end criteria. 

5.3 Design of a Single Tile (PE) 

The parallelism offered in the proposed architecture is achieved due to processing entities of 

the architecture. They play a vital role in performance enhancement of the FCM algorithm, as 

they are mini FCM sequential machine running in parallel to achieve higher throughput.  

Each Tile is composed the following sections. 

 Tile controller 

 Tile memory 

 Partition matrix memory 

 Center’s calculation modules 

 Partition matrix and object function modules 

A tile processes its local part of data and create local results, which are shared with other tiles 

to compute the global results as explained in section 4.2.1. Communication between these tiles 

is controlled by the main controller of the architecture. Each tile has its own dedicated memory 

to store local data and other important variables required for the complete execution of the 

FCM algorithm. 

Portion of partition matrix is stored and calculated locally and it is not shared among the tiles. 

This is because it is not used to compute any parameter globally. It is just a membership of the 

data elements which is updated locally. The local object function and local centers are  

computed with the help of local partition matrix independent of the local partition matrix in 

other tiles. Figure 5-1 shows the inner structure of the tile. 
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Figure 5-2: Inner architecture of a processing entity (PE) 

5.4 Design of a single Tile 

A processing entity in our architecture is the most important element of the structure. It is 

further comprised of multiple processing units and memories. These units work together to 

calculate the parameters at tile level. It consists of the following major components. 

5.4.1 Tile Communication Controller 

Each tile has its own communication controller. Like the main communication controller its 

job is to control and regulate the flow of information in and out of the tile. Some of the main 

inputs of this module are input data, data from other tiles and start flag. Each tile starts its 

processing after getting a start flag from the main controller. 

The main outputs of the module are local numerator, denominator and local object function to 

be shared with other tiles. It places its data on a shared bus so that it can be read by other tiles 

for calculation of global results.  
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5.4.2 Tile Controller 

Like main controller the tile controller handles the operations inside a tile. Its main 

responsibility is to regulate the operation of calculating local parameters and then receiving 

them from other tiles to calculate the global results. It generates the control signals for partition 

matrix calculation and memory management. 

5.4.3 Tile Memory  

The tile memory is used to store the input data that is provided to the tiles in the beginning of 

the algorithm. This data is further used in every iteration to calculate the local centers, partition 

matrix and object function. 

5.4.3 Partition Matrix Memory 

The partition matrix memories are used to store the membership matrix. The size of this 

memory depends upon maximum allowable size of input data chunk and number of clusters. 

This module is actually a combination of few normal memories with a dedicated memory 

controller. This controller controls the allocation of data to the correct memory in the module. 

5.4.4 PM and Object Function Operations Module  

These modules implement the basic FCM equations and they are used to compute the local 

numerator, denominator and object function. These units perform all mathematical 

computations. They consist of adders and subtractors. 

5.4.5 Global and Local Centers Calculation Module 

After receiving local numerators, denominators and object functions they are added up in these 

modules to get the global values of above parameters. Numerator and denominators are solved 

to get the global centers, where as we get global object function after addition.  

5.4.6 Stop Criteria Module 

This module is used to determine the stop criteria of the whole system. If the error is equal to 

or less than the minimum allowable error then this module declares the end of clustering  

iterations. 
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Chapter 6 : EXPERIMENTAL RESULTS 

6.1 Dataset  

To fully understand the performance of our proposed architecture, we have selected image 

segmentation as a benchmark. Image segmentation is used to split a digital image into multiple 

portions to better analyze it.  The dataset consists of grayscale Optical Coherence Tomography 

(OCT) images, these images have been taken for Diabetic Macular Edema (DME) [33]. 10 

subjects were considered for the collection of data. Each subject is sampled 61 times, that 

makes total of 610 images in the dataset. The resolution of each image is 496 x 768 pixels. 

  

(a) Subject 1, Image 60 (b) Subject 03, Image 10 

  

(c) Subject 7, Image 33 (d) Subject 9, Image 47 

Figure 6-1 Original Images from selected dataset 

6.2  Experimental Setup 

6.1.1 Matlab Simulation 

Matlab is selected as the simulation software for performance verification and design 

validation. The hardware used for matlab simulation is a personal computer with Intel® core  
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i3 processor and 6 Gigabytes RAM. The matlab simulation is carried out in following phases. 

First of all, original FCM algorithm is implemented on matlab without using any built-in 

function so that it can be converted to a parallel algorithm. After that a parallel version of FCM  

is implemented for the verification of performance enhancement. 

 

 

(a) Subject 7, Image 10 (Original Image) 

  

(b) Cluster 1 (c) Cluster 2 
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(d) Cluster 3 (e) Cluster 4 

Figure 6-2: Original and segmented images after clustering 

In order to fully test and validate the performance enhancement Matlab simulation is conducted 

in four phases. There are four main parameters that can affect the performance of the proposed 

algorithm. These parameters are produced below. 

(i) Number of PE units P 

(ii) Number of Clusters C  

(iii) Image Scale 

(iv) Number of Fractional Bits q 

 

Phases Parameter Value 

Phase I 

Number of Cluster C 2 

Number of PE P 4,6,8,12,16 

Fractional bits  Floating Point 

Image Scale Original 

 

Phase II 

Number of Cluster C 2,4,8,12 

Number of PE P 8 

Fractional bits Floating Point 

Image Scale Original 

Phase III 

Number of Cluster C 3 

Number of PE P 8 

Fractional bits Floating Point 

Scaled Down {12.5%, 25%,37.5%, …87.5%} 

Phase IV 

Number of Cluster C 2 

Number of PE P 8 

Fractional bits Fixed Point {8,10,12} 

Image Scale Original 

Table 6-1: Parameter values for different phases of Matlab simulation 
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Table 6-1 shows different arrangement of parameter values for different phases of the matlab 

simulation 

6.1.2 Hardware Implementation 

Vivado HLS 2018.2 is used for the hardware implementation of the proposed parallel MPSoC 

architecture. The High-Level Synthesis (HLS) tool is developed by Xilinx to benefit the low 

time to market of C, C++ and System C languages for direct mapping of hardware for FPGA. 

Xilinx zynq xc7z020clg484-1 device is selected to implement both conventional and proposed  

versions of FCM with 2 clusters. For proposed model number of PE is set to 2. 

6.2 Performance Measures  

6.2.1 Clock cycles 

We selected the total number of clock cycles spent on the final convergence of the FCM 

algorithm for a particular input dataset is the most important parameter for performance 

enhancement. For simplicity we supposed that every basic mathematical operation consumes 

one cycle, therefore if there is a mathematical operation that has 2 additions and 1 division then 

it simply requires 3 clock cycles to execute. For example, following expression consumes 4 

cycles. 

𝑧 =  𝑎 ∗ 𝑏 + 𝑑𝑒 

6.2.1 Structural Similarity Index Measure (SSIM) 

Structural Similarity Index Measure (SSIM) that is considered as a parameter to determine the 

simila 

rity between two images. We have used it as a benchmark for similarity of output for original 

and proposed FCM algorithms. SSIM works on human perception of images therefore it 

considers the brightness and contrast for comparison. We used built-in matlab function to 

calculate SSIM.  

6.2.2 Area  

In FPGA implementation one of the key parameters is that researchers are concerned about is 

Area consumption. The lesser the area occupied by a design, the better it is and vice versa.  
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6.3 Matlab Simulation Results 

As discussed in section 6.1.1, matlab simulation is carried out in three phases, results of each 

phase are produced below. 

6.3.1 Phase-I Results 

In phase-I of our work, the original FCM algorithm was run on all 610 images of the data set 

for image segmentation. The number of cycles consumed with the number of iterations to 

converge was recorded. After that same images were tested on the proposed parallel FCM 

algorithm. In this phase the number of clusters is kept fixed whereas number of processing tiles 

P is varied according to the table 6-1. There was a significant increase in the clock cycles after 

the implementation of the parallel FCM algorithm. Figure 6.2 shows the comparison of speed 

improvement in the form of total cycles consumed by the original and different variants of the 

proposed algorithm. It is observed that by increasing the number of Tiles we can increase the 

speed of the system, as more and more work is done in parallel mode. 

 

Figure 6-3: Number of cycles consumed by original and proposed algorithms 

The average speed up against every simulation of the proposed architecture is displayed in 

following table.  
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S. No. Number of Tiles (P) Average Speed Up (%) 

1 4 61.91632872 

2 6 69.80974936 

3 8 72.05762335 

4 12 79.9781687 

5 16 82.33257561 

Table 6-2: Average speed up with different Tiles 

6.3.2 Phase-II Results 

In phase-II of the Matlab simulation every 5th image of all subjects is selected for 

implementation of Parallel and original FCM algorithms because of the computational intensity 

and huge time required for simulation to run. In this phase the number of tiles P is kept constant 

and number of cluster C is changed in every implementation. The number of cycles consumed 

by each implementation were recorded to compare/evaluate the performance of the parallel  

architecture. When number of clusters is set to 12, the convergence of the algorithm to specified  

minimum error became difficult. Table 6-3 shows the average speed up of different  

implementations of the FCM algorithm.   

S. No. Number of Clusters (C) Average Speed Up (%) 

1 2 76.568 

2 4 79.1391675 

3 8 83.3616812 

4 12 85.03519644 

Table 6-3: Average speed up with different number of Clusters 

Figure 6-4 shows the speed up of our model with different number of clusters. In figure 6.4(c) 

the cycles consumed by both algorithms generated a straight line, which shows that algorithms  

are unable to converge before maximum number of iterations allowed.  

  

(a) C = 2, P = 8 (b) C = 4, P = 8 
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(c) C = 8, P = 8 (d) C = 12, P = 8 

Figure 6-4 : Number of cycles consumed by different tests 

6.3.3 Phase-III Results 

The third phase of our simulation is focused on performance of proposed model under different 

scaling levels of the input dataset. We have scaled down the images under test by 8 different 

scale factors ranging from 1/8 to 8/8. The proposed algorithm showed a consistent performance 

under all above test scenarios. Figure 6-5 shows the performance comparison of phase-III 

simulation. 

  

(a) C = 3, P = 8, 12.5% (b) C = 3, P = 8, 25% 

  

(c) C = 3, P = 8, 37.5% (d) C = 3, P = 8, 50% 
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(e) C = 3, P = 8, 62.5% (f) C = 3, P = 8, 75% 

 

(g) C = 3, P = 8, 87.5% 

Figure 6-5: Performance comparison of phase-III simulation 

The average speedup of proposed algorithm in phase-III is produced in below table. The data 

shows that with reducing the number of input elements the average speed-up remains constant. 

 

 

S. No. Image Scaled Down  Average Speed Up (%) 

1 12.5 (%) 77.17209 

2 25 (%) 77.11426729 

3 37.5 (%) 77.5812 

4 50 (%) 76.58077808 

5 62.5 (%) 77.26645484 

6 75 (%) 77.15753219 

7 87.5 (%) 77.20587121 

Table 6-4: Average speed-up in phase-III 

6.3.3 Phase-IV Results 

Fourth phase of the matlab simulation is focused on the effects of fixed-point implementation 

on performance of the proposed architecture.  
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(a) C = 2, P = 8, 8 bits (b) C = 2, P = 8, 10 bits 

 

(c) C = 2, P = 8, 12 bits 

Figure 6-6: Performance comparison of phase-IV simulation 

Due to computational complexity of the FCM algorithm performance can vary with floating 

point implementation. The algorithm converges after different iterations with same input 

parameters depending on the number of bits used for its implementation. 

A comparison of average speed-up of all phases is shown in figure 6.7 
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Figure 6-7: Comparison of average speed-ups 

It is evident from above figure that the speed-up is highly effected by the number of bits used 

for the implementation of proposed architecture. 

 

6.3.4 SSIM calculation 

The structural similarities of resulted images were calculated in every phase of the matlab 

simulation for every run. Due to non-degradational nature of the proposed algorithm structural 

similarity between outputs of original and proposed FCM came to be 100% in first three phases. 

The value of every comparison is 1 as SSIM values may vary between 1 and 0.   

  

(a) Subject 1, Image 4, Cluster 1 

(Existing FCM) 

(b) Subject 1, Image 4, Cluster 1 

(Proposed FCM) 

Figure 6-8: SSIM comparison of phase I, II and III 

Highest match between two images is represented by 1 and lowest match is denoted by a 0. 

Figure 6-8 shows comparison of cluster images generated by original and proposed algorithms. 

46.2064086

137.8537595
149.1324106

0

20

40

60

80

100

120

140

160

180

8 10 12

A
v

e
ra

g
e

 S
p

e
e

d
 U

p
 (

%
)

No. Of Fixed Point Bits

Average Speed-up with Fixed Point

Average Speed Up (%)



    
 

36 

However, when we implement the fixed-point model to preserve area and gain speed a 

compromise has to be made on SSIM. In phase-IV of the simulation the SSIM varies due to 

different convergence points of the original and proposed algorithm.   

 

Figure 6-9: Average SSIM Value of Phase-IV with varying bits 

Figure 6-9 shows that the SSIM values are very low when we use 8 bits fixed-point 

implementation but gets better with 10 and 12 bits.  

6.4 Hardware Implementation Results 

The FCM algorithm is a resource hungry algorithm, therefore to have a better understanding 

of the hardware implementation phase we developed conventional FCM for Vivado HLS and 

noted its performance parameters. These parameters include Clock, Area and Latency of the 

architecture. After that the proposed version of the FCM algorithm is implemented and its 

results are noted for comparison.  

6.4.1 Clock 

First of all, clock of both traditional and parallel architectures turned out to be exactly same 

and its value is 9.514 nanoseconds. This shows the operational similarity of both algorithms. 
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6.4.2 Hardware Resources 

Following table shows the hardware resource utilization by both implementation of FCM 

algorithm. 

Parameter 
Original FCM Proposed FCM 

Available 
Used Utilization (%) Used Utilization (%) 

BRAM_18K 69 24 67 23 280 

DSP48E 197 89 200 90 220 

Flip Flop  23084 21 23836 22 106400 

LUT  21577 40 22790 42 53200 

Table 6-5: Hardware utilization comparison of both algorithms 

The data produced in above table shows that the proposed FCM algorithm consumed almost 

same hardware resources as the original algorithm. The conforms that the proposed model will 

not put any burden on the utilization of the resources of devices. 

6.4.3 Latency 

It is the most important parameter as it determines the overall speed-up of the proposed model. 

The latency of original FCM is measured to be 1484413 clock cycles, whereas the latency of 

the proposed model is 268630 clock cycles. This shows 81.9% increase the overall speedup of 

the system.  
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Chapter 7 : CONCLUSION & FUTURE WORK 

7.1 Conclusion  

FCM is a very useful and powerful algorithm and it has numerous applications in the field of 

unsupervised machine learning. One of the key applications is image segmentation. Now with 

ever-increasing technological advancements, demand for edge computing is also on the rise. 

Keeping in view above FCM can be used for the benefit of mankind by developing smart and 

intelligent devices that are capable of performing the necessary tasks onsite instead of sending 

the data to the cloud. Examples of such devices could be a smart drone monitoring the health 

of the crops or a self-driving car making critical decision on spot.  

 

Our proposed design can help achieve above goals. It can tackle the challenges confronted by 

a complex computational algorithm. We have successfully demonstrated that FCM algorithm 

can be implemented in a parallel way to reduce the execution time and increase the efficiency. 

Our work can be summarized in the following lines. 

 Implementation of parallel FCM algorithm. 

 Verification of performance enhancement. 

 Study of algorithm behavior by varying different parameters of the algorithm. 

 Data integrity verification by computing the structural similarity of the results. 

 MPSoC architecture implementation for hardware analysis. 

7.2 Contribution 

The following contributions to the field of embedded systems have been made as a result of 

our work. 

 An improved hardware implementation of the FCM clustering algorithm has been made 

that can be used to gain enhance throughput at fields.   

 A benchmark has been set for future researchers to test the performance of the FCM 

algorithm. 

 The edge computing field can benefit from our work and can improve the performance 

of the nodes. 

 The behavior of the FCM algorithm under parallel architecture is tested that can be 

beneficial for multiple fields of science. 
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7.3 Future Work 

There is always room for improvement in every system. Therefore, we would like to point few 

areas of improvement that can be exploited in the future.   

 Implementation of Network on Chip for improvement of parallel FCM architecture. 

 Performance enhancement by architecture optimization of Parallel FCM. 

 Implementation of our proposed architecture for various test cases and datasets to check 

its performance. 
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