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Abstract

Linkedin is used by recruiters in the recruitment industry to find candidates for jobs.

Recruiters search for candidates, select potential candidates (prospects) and send job

advertisement/invitation messages. The messages sent by recruiters to prospects should

receive maximum responses/replies from prospects in order to select quality candidates.

For maximum responses, the message must contain some quality features like call-to-

action, personalization, incentives for connecting, job/company credibility, etc. We used

Natural Language Processing techniques to classify the message if it contains quality

features. To classify the message, we trained different machine learning and deep learn-

ing models. In response to the recruiter’s message, the prospect asks some questions

about the job, for example the job location, salary, benefits, company information, etc.

which the recruiter has to answer manually. In this work, we employed the RASA

[68] conversational AI framework to develop natural language understanding and con-

versation models that allow for automated communication between recruiters and job

prospects. This automation frees up the recruiter’s time by eliminating the need for

them to individually respond to each inquiry about the job.

Keywords: Conversational AI, Text Classification

xii



Chapter 1

Introduction

The advancement of conversational systems has enabled the development of computer-

human communication in a more human-like manner, using languages such as English

in both spoken and written form. These systems have evolved significantly over time,

starting as rule-based systems and eventually becoming more sophisticated through the

incorporation of machine learning techniques. These systems are able to comprehend

user queries and provide appropriate responses, and can be broadly classified into two

categories: open domain and closed domain.

Open-Domain conversational systems are designed to be more general in nature, al-

lowing users to interact with them as if they were human. These systems are generative,

meaning that they generate responses to user queries based on the conversation his-

tory and are trained on large datasets of conversations. One notable advancement in

open-domain conversational systems is ChatGPT, which has demonstrated promising

performance in this area.

ChatGPT is an open-domain conversational system that is capable of conducting a

wide range of conversations with users. It has been trained on a large dataset of human-

human conversations and is able to generate responses that are natural and coherent

in context. Some examples of the types of conversations that ChatGPT can engage in

include casual chit-chat, answering questions about various topics, and engaging in more

in-depth discussions on specific subjects. ChatGPT is an exciting development in the

field of conversational AI and has the potential to greatly improve the way that humans

interact with computers.

Closed-Domain, in contrast to open-domain conversational systems, which are de-

1



Chapter 1: Introduction

signed for general communication, closed-domain systems are specialized for specific

tasks and are able to communicate with users within a specific domain. These systems

are often task-oriented, meaning that they are designed to perform a specific set of

actions or provide information on a specific topic. For example, a closed-domain con-

versational system might be designed specifically for booking tickets and would not be

able to handle inquiries outside of that domain. Because these systems are focused on

a specific task, they typically require less data to be effective compared to open-domain

systems. Closed-domain conversational systems can be either retrieval-based or machine

learning-based. Retrieval-based systems select responses from a pre-defined set of re-

sponses based on predetermined rules or policies, while machine learning-based systems

use data to train a model to generate responses. Both types of closed-domain systems are

able to effectively communicate with users within their defined domain but may strug-

gle to handle inquiries outside of that domain. Closed-domain conversational systems

are composed of various components that work together to enable effective communica-

tion with users within a specific domain. These systems typically consist of two main

components: natural language understanding (NLU) and natural language generation

(NLG). The NLU component is responsible for interpreting user queries by predicting

the user’s intent and extracting relevant structural information. The NLG component

then selects an appropriate response from a predefined set of responses and presents it

to the user. In some cases, there may be an intermediate step between NLU and NLG in

which an API call or database query is made to perform a specific task. The dataset for

closed-domain conversational systems typically includes user queries labeled with their

intents and structural information (such as named entity recognition tagging) as well as

conversations between users and the system (also known as conversation stories).

Conversational systems have a wide range of applications across various domains, in-

cluding online customer service, entertainment, education, personal assistants, and in-

telligent quiz systems. In this work, our focus is on the development of an intelligent

conversational system for the recruitment domain.

Many companies utilize social and professional networks, such as LinkedIn1, to hire

employees for open positions. LinkedIn, in particular, is a highly popular platform with

over 830 million members in more than 200 countries worldwide. When a recruiter posts

a job advertisement on LinkedIn, they often receive responses from potential candidates
1https://www.linkedin.com/

2



Chapter 1: Introduction

expressing interest, disinterest, or no response at all. In an ideal scenario, the recruiter

would receive a response from all prospects, enabling them to interview a larger pool of

candidates and increase the chances of finding the best employees for the job.

Our goal is to develop a conversational system that can assist recruiters in this process

by automating certain aspects of communication with potential candidates.

Many social and professional networks, including LinkedIn, are plagued by spam and

bot messages, which can make it difficult for recruiters to effectively reach potential

candidates. As a result, prospects may not respond to job advertisements or may view

them as spam. One contributing factor to this issue is the low quality of the job ad-

vertisement message. In order to maximize the number of responses from prospects, it

is important for the recruiter’s message to possess certain key qualities. These quality

features are call to action, common ground, establish personal or company credibility,

incentives, and personalization that are defined by the domain experts. To ensure that

the job advertisement message will be effective in eliciting a response from prospects,

it is necessary to evaluate the quality of the message beforehand. We approached this

problem as a multi-label classification task, in which advertisement messages are labeled

based on five key qualities that are likely to make them more appealing to prospects.

In order to train machine learning models to accurately predict the quality of an adver-

tisement message, we utilized a range of different models, including transformer-based

models such as BERT, RoBERTa, and XLNet. By using these models, we aimed to de-

velop a system that could accurately assess the quality of an advertisement message and

identify those that are likely to be most effective in getting responses from prospects.

In order to streamline the recruitment process and save time for recruiters, we have

developed a machine learning-based conversational system that can automate the com-

munication between recruiters and job prospects. When a recruiter sends a job adver-

tisement message to a large number of people, it can be challenging to keep up with

the volume of responses, especially if the message is of high quality and generates a

large number of replies. To facilitate this process, our conversational system allows the

recruiter to pre-populate certain fields in advance and then handles the conversation

until it is completed or hands control back to the recruiter when necessary. We imple-

mented this system using the RASA open source framework, which is a powerful tool

for building conversational AI systems. RASA includes a suite of tools and libraries for

3



Chapter 1: Introduction

natural language understanding, dialogue management, and more, making it an ideal

choice for the development of our intelligent conversational system.

The RASA framework is a popular open source toolkit for building conversational AI

systems. It includes a range of components and libraries that work together to enable

the creation of intelligent chatbots and other conversational systems.

One key component of RASA is the natural language understanding (NLU) module,

which is responsible for interpreting and extracting meaning from user inputs. This

module includes a number of sub-components that perform tasks such as entity recog-

nition, intent classification, and dialogue state tracking. The NLU module is able to

process inputs in a variety of languages and can be customized to understand domain-

specific terminology and context.

Another important component of RASA is the dialogue management module, which

controls the flow of the conversation and determines how the system should respond to

user inputs. This module makes use of machine learning algorithms to predict the next

best action for the system to take based on the current context and the user’s previous

inputs.

RASA also includes a natural language generation (NLG) module, which is responsible

for generating appropriate responses for the system to present to the user. The NLG

module can be customized to produce responses in a specific style or tone, and can make

use of templates or machine learning models to generate more sophisticated responses.

The RASA framework provides a comprehensive set of tools and libraries for building

intelligent conversational systems, making it a popular choice for developers in a wide

range of domains.

4



Chapter 2

Literature Review

2.1 Message Classification

Message classification is a text classification task where we classify text into 5 different

categories, call-to-action, common-ground, establish-credibility, incentive-for-connecting,

and personlization.

2.1.1 Machine Learning based approaches

Machine learning based text classification broadly consist of two steps: Feature Ex-

traction and Classification Algorithm.

Feature Extraction

Natural language is unstructured. It should be converted to a numerical structured

representation so that it can be fed to machine learning algorithm. This numerical

representation is known as feature vector or word vector. Different techniques are used

for generating feature vectors some of them are One-hot vector, Bag of Words (BOW),

TF-IDF etc.

One-hot encoding is a simple and intuitive approach for generating feature vectors

from natural language data. In this approach, a dictionary of size V is created for the

text dataset, with each unique word in the dataset being assigned a corresponding index

number. Feature vectors of size V are then generated for all words in the vocabulary, with

each one-hot vector containing all zeros except for a single 1 at the position corresponding

5



Chapter 2: Literature Review

to the index of the word in the dictionary. One major drawback of one-hot encoding

is that the resulting feature vectors do not contain any information about the context

or meaning of the words. Additionally, the distance between words in this encoding

cannot be calculated, making it difficult to infer relationships between words. Another

issue with one-hot encoding is that the size of the feature vectors is directly proportional

to the size of the vocabulary, which can make this approach memory inefficient when

working with large datasets. Finally, the resulting one-hot vectors are often very sparse,

which can further contribute to the inefficiency of this approach.

The sparsity problem was solved with a new technique know as word co-occurrence

matrix. This technique is also know as Bag of Word (BoW). The word co-occurrence

matrix is simply a VxV size matrix that contain word vectors. The word vectors are

obtained by looking the words around the desired words and count the appearances of

other words and put that value in the specified cell. A context window is defined to for

the neighbourhood. The bigger the context window size, the more semantics the feature

vectors gets. These vectors has the same size of one-hot encoding but it’s size can

be reduced via dimensionality reduction algorithms like Principal Component Analysis

(PCA), Singular Value Decomposition (SVD), Linear Discriminant Analysis(LSA), and

t-Distributed Stochastic Neighbor Embedding (t-SNE). Co-occurrence matrix takes local

information around word into account but doesn’t account for global information on

whole text documents.

Another technique known as Term Frequency-Inverse Document Frequency (TF-

IDF) [5] was introduced which take care of the global context as well as the local context.

TF-IDF perform this by in two steps: Term frequency (TF) [2] and Inverse Document

Frequency (IDF) [4]. TF is simply the count of how many documents contain the word

tft,d = count(t, d). It gives us a matrix where columns represent documents and rows

represent the words. The formula is modified a bit for normalization and hence we use

tft,d = log10(count(t, d) + 1). The IDF term can be calculated by idft = log10(N/dft)

where N is total number of documents and and dft is the document frequency of term

t. The IDF term is used to focus on less occurred word that can be meaningful. Finally,

TF and IDF score are multiplied to get the final word vector matrix: wt,d = tft,d ∗ idft.

Other deep learning based approaches like Word2Vec [36], GloVE [48], Doc2Vec [47]

etc. are used for feature extraction. They are discussed in details in section 2.1.2

6
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Classification Algorithm

A classification algorithm takes labeled data as input and train a model on it. Training

data is represented by X = {x1, x2, x3, ..., xm} and y = {y1, y2, y3, ..., ym} where X is

set of training examples and y is the corresponding set of labels. xi is the ith training

example which is an n-dimensional vector and yi is the label of ith training example.

The labels belongs to predefined k classes {1, 2, 3, ..., k}. The machine learning algorithm

tries approximate a function f(x) which tries to label any new unseen data.

In text classification, training data is set of documents X = {d1, d2, d3, ..., dm} where

each document d consist of l words i.e. d = {w1, w2, w3, ..., wl}. The word vectors are

obtained by applying a feature extraction algorithm. The word vectors are summed or

averages to obtain the document vector. Document level vectors can also be obtained

by applying document level feature extraction algorithm like Doc2vec. After generat-

ing feature vectors from text document, a classification algorithm is applied to feature

vectors to predict the class of text document.

Logistic Regression (LR) is one of the simplest classification algorithm. Logistic

Regression is the modified version of Linear Regression. Linear Regression hypothe-

size that class predictions are the weighted sum of the components of feature vector:

ŷ(i) = θ0 + θ1x
(i)
1 + . . . + θlx

(i)
l . LR uses logistic function logistic(η) = 1

1+exp(−η) which is

a function of the output of Linear Regression: P (y(i) = 1) = 1
1+exp(−(θ0+θ1x

(i)
1 +...+θlx

(i)
l

))
.

LR gives the probability score between 0 and 1 for example xi. LR is trained by min-

imizing the negative log likelihood (NLL) 2.1.1 loss function over training examples

m:

J(θ) = 1
m

[
m∑

i=1
−y(i)log(hθ(x(i))) + (1 − y(i))log((1 − hθ(x(i)))] (2.1.1)

Logistic Regression model can be efficiently trained. It is also fast at inference. But It

also has some limitations. LR model often overfit when the number of features is greater

than the number of examples in the dataset. It draw linear boundaries in the feature

space but real world data is highly non-linear and requires non-linear models. Despite of

simple nature, LR is used in many text classification tasks including text categorization

[62], tweets classification [18], toxic comments classification [76], text-based emotion

classification [81], intent classification in chatbot [77], sentiment analysis [70] etc.

Naïve Bayes (NB) is another ML classifier used for classification tasks. NB uses

Bayes Theorem [1] which was formulated by Thomas Bayes between 1701–1761 which

7
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is described as equation 2.1.2.

P (x|y) = P (y|x)P (x)
P (y) (2.1.2)

Naïve Bayes makes an assumption that features are independent from each other which

makes it simpler and efficient to train. Given a document d the NB classify the document

into set of classes C = {1, 2, 3, ..., c} and return the predicted class ĉ. Naïve Bayes can

be written as equation 2.1.3 for document classification.

ĉ = arg max
c∈C

P (d/c)P (c) (2.1.3)

Naive Bayes algorithm is used in many areas of text classification which includes spam

email classification [19], document classification [50] etc.

One of the simplest and well know multi-class non-parametric classification algorithm

is K-Nearest Neighbour (KNN). KNN 2.1.4 makes an assumption that an unseen

example x can be classified by looking at the feature space of training data. The class

labels of k nearest data points in training data will decide the class label of x. The

distance between x and training example d can be measure via dot product Dot(x, d) =∑n
i xidi, cosine similarity Cosine(x, d) = x·y

|x||d| , Euclidean distance
√∑n

i=1(xi − di)2, or

any other vectors similarity metric.

f(x) = arg max
j

Score(x, Cj)

=
∑

di∈KNN

sim(x, di)y(di, Cj)
(2.1.4)

f(x) is used to predict the class label of new example. KNN requires no training time as

it is a lazy learning algorithm. KNN doesn’t learn any mapping function during training.

The training data is stored and computations are performed at inference time only. New

labeled data points can be added anytime to the dataset to improve accuracy. KNN

also comes with some limitations. The inference time of KNN is directly proportional

to the size of dataset i.e. number or data points and number of dimensions of data

points. If the size of dataset it huge, then it would take a lot of time and computation

resource for inference which makes it unfeasible to use. Feature vectors should be scaled

to produce more accurate results. KNN is sensitive to noisy data so training data

must be cleaned before use. Also, it is very difficult to select the value of k. KNN is

used for text categorization [51] along with TF-IDF, BBC news text classification [89]

where it gets 92% accuracy. KNN is also used for short text classification [31] (tweets,
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comments, news headlines etc.) with Pearson Correlation distance where KNN gives

better accuracy than NB and SVM.

Support Vector Machine [3] in a non-linear binary classification algorithm that works

well when data is high dimensional. SVM does classification by finding a hyperplane in

n-dimensional feature space. There could be many hyperplanes between two classes on

feature space. Even though all hyperplanes can classify training data but SVM chooses

the one that is best suited for unseen data/ SVM chooses hyperplane which has maxi-

mum marginal distance. Data points on different sides of the hyperplane are classified

into their respective class i.e. 1 or 0. The key point in SVM is support vectors. Sup-

port vectors are used to pick the right hyperplane by maximizing the marginal distance.

SVM uses hinge loss function hingeloss(y, f(x)) = max(0, 1 − y.f(x)) to compute the

cost and optimize the model weights. SVM was tried out on news classification [17],

web text classification [73], Sentiment Analysis [67], emotional classification on news

headlines [27], fake news detection [88] etc. SVM can also be applied to non-linear data

by using a kernel function. Kernel function takes n-dimensional non-linearly separable

data and convert it to m-dimensional linearly separable data.

Decision Tree (DT) [7] is another well known non-parametric classification algorithm.

DT learns understandable decision rules from features of training data by recursively

splitting the features. Unlike SVM, KNN, and LR, DT also works on categorical features.

DT start constructing the tree by selecting a feature as root node and then drawing other

nodes from it. DT can be used for multi-label/multi-output problems. DT doesn’t

require scaling of features and fast to compute. DT can overfit easily. Overfitting can

be avoided by using pruning or selecting tree depth in advance. DT is also very sensitive

to noisy data. The accuracy of DT can be improved by an ensemble technique Random

Forest (RF) [6]. RF generates multiple t random trees in parallel. Each tree predict a

label for x and then final label ŷ is decided on votes. The number of trees influence the

accuracy of model. Also, the number of trees is directly proportional to the inference

time. If the number of trees increase, the inference time increases as well. So the number

of tree can also be chosen wisely. DTs are applied on text data for classification e.g.

product-review classification [69], arabic text classification [32], sentiment classification

of Roman-Urdu [61], restaurant review [80] etc.

9
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2.1.2 Deep Learning based approaches

Machine Learning based text classification approaches were considered quite successful

before the arrival of Neural Networks. Feed-forward neural networks were used as feature

extractors to get the numerical representation of the text. Each word in the text gets a

vector representation with these models.

Word2vec was introduced in [36] where two approaches i.e. CBOW (continues bag of

words) and Skip-gram were taken into account to calculate the word vectors or word

embedding. Word2vec is a two layer Feed-forward neural network where input is one-

hot encoding of vocabulary of size V . In CBOW, given a context windows who’s size is

pre-defined and a word inside the context window is predicted. A context window of size

two means that two past and two future words i.e. [Wt−2, Wt−1, Wt+1, Wt+2] are given

as input to the model and the model has to predict Wt the center word. The input to

the model is the average of one-hot vectors of context words. This Feed-forward network

is trained to maximize the likelihood of the center word, given the context window C as

shown in equation 2.1.5:

arg max
θ

P (Wcenter/C; θ) (2.1.5)

In Skip-gram, given the center word Wt and the model has to predict the context

words C. In case of context window of size two C = 2, for Wt, the model will predict

[Wt−2, Wt−1, Wt+1, Wt+2]. Softmax function is used on final layer to convert raw scores

into probabilities and then a simple loss function of ypred − ytrue is used to compute the

loss for each context word. The losses are then added to computer overall loss.The skip-

gram network is trained to maximize the likelihood of context words given the center

word as shown in 2.1.6:

arg max
θ

P (C/Wcenter; θ) (2.1.6)

As a two layer neural network, these models has two weight matrices, W1 and W2. These

two weight matrices are concatenated [W1 W2] and used as word-embeddings. These

models generate word embeddings in a way that semantically closer words are closer to

each other in n-dimensional space. The authors of [36] trained word vectors on Google

News corpus which contains about 6B tokens and evaluate the model on Semantic-

Syntactic Word Relationship test set. Multiple word vector models were trained with

different 50, 100, 300, and 600 dimensional vectors and different size dataset. The

authors [36] found out that accuracy is directly proportional to the dimensions of word
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Dimensionality / Training words 24M 49M 98M 196M 391M 783M

50 13.4 15.7 18.6 19.1 22.5 23.2

100 19.4 23.1 27.8 28.7 33.4 32.2

300 23.2 29.2 35.3 38.6 43.7 45.9

600 24.0 30.1 36.5 40.8 46.6 50.4

Table 2.1: Semantic-Syntactic Word Relationship test set accuracy

Model

Architecture

Semantic-Syntactic Word Relationship test set MSR Word Relatedness

Test Set [20]Semantic Accuracy [%] Syntactic Accuracy [%]

RNNLM 9 36 35

NNLM 23 53 47

CBOW 24 64 61

Skip-gram 55 59 56

Table 2.2: Semantic-Syntactic Accuracy compare to other models

vectors and dataset size. The high dimensional vectors trained on higher dataset size

tends to have greater results: see Table 2.1 The accuracy of Word2vec models are

better than previous word-embedding models trained on the same dataset with 640

dimensions: see Table 2.2. Word2vec models take local statistics into account to train

word-embeddings.

The GloVe model, introduced in the seminal work [48], incorporates both global and local

statistics to generate word embeddings, resulting in superior performance compared to

other widely-used models. In particular, when evaluated on the word analogy task [36]

and word similarity task [34] using various datasets and word embedding sizes, GloVe

consistently outperforms models such as SG, CBow, SVD variations, and LBL variations.

GloVe’s performance has been extensively compared to previously trained models on

tasks such as named entity recognition (NER). When pitted against models like Discrete,

SVD variations, HPCA, HSMN, CW, and CBow, GloVe consistently emerges as the top

performer. These comparisons were made against well-known models proposed in [26]

and [20], demonstrating GloVe’s superiority in capturing semantic information and its

applicability to various natural language processing tasks. By leveraging both global and

local statistics, the GloVe model offers a comprehensive approach to generating word
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embeddings that excel in capturing subtle relationships between words. Its impressive

performance on tasks such as word analogy and word similarity highlights its ability to

effectively represent word meanings and contextual nuances. Glove’s superiority over

previously trained models on the challenging NER task further solidifies its position

as a leading word embedding model in the field of natural language processing. The

GloVe model was trained on huge corpus including Common Crawl, Wikipedia dump,

and Gigaword5 with a total of 42B tokens and 400,000 vocabulary size. In GloVe, co-

occurrence matrix X is created with a context window of size 10. GloVe gives two set

of word-embeddings W and W̃ that is added to get the final word-vectors.

These pre-trained word-embeddings are used as input to different models. The Deep

Average Network (DAN) [55] uses the 300-d of GloVe pre-trained word vectors. The

DAN does sentiment analysis by taking text document as input, tokenize it, and then

average the embeddings of all tokens in the text. Feed the average embeddings to a sim-

ple Feed-forward neural network with multiple hidden layers and perform classification

on final layer. DAN takes less time per epoch during training and perform comparable

accuracy with other sophisticated models including Neural Bag-of-words (NBOW), Re-

cRNN, TreeLSTM etc. that takes the syntactic information of text into account which

requires more training time.

The Doc2vec [47] word-embeddings framework was proposed which learns embeddings

on sentence/document level instead of word level. The architecture of Doc2vec is almost

the same as Word2vec where given a context and the model predicts the center word.

The Doc2vec takes complete document/paragraph as input and generate sentence level

embeddings. Two variations of Doc2vec were trained, Distributed Memory (PV-DM)

and Distributed Bag-Of-Words (PV-DBOW). PV-DM model is somehow the extension

of CBOW. PV-DM takes some random words from document, treat it as context and

tries to learn the center word of those random words. The context words vectors are av-

eraged/concatenated and given as input to the model along with paragraph/document

ID vector which in unique ID for each document in training set. The PV-DBOW model

is somehow similar to Skip-gram model. The PV-DBOW model takes the document id as

input and tries to produce the randomly selected words from paragraph/document. The

trained embeddings were then applied to sentiment analysis classification and informa-

tion retrieval tasks. Classification was performed on two datasets: Stanford sentiment

treebank [38] and IMDB dataset [22] where it outperformed all other state-of-the-art
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approaches on test set.

Recurrent Neural Networks (RNNs) based models along with Long Short-Term Mem-

ory (LSTM) were used which takes sequence information and word dependency into

account for classifying sequences of text. Vanilla RNNs are effected from vanishing gra-

dient problem. LSTM take care of vanishing gradient problem by introducing memory

cell. LSTM also has three gates: input, output, and forget gate which regulate the flow

of information from and into the cells of LSTM. LSTM model is good at representing

sequential information but it is not good at keeping the syntactic and semantic infor-

mation. Tree-LSTM [58] was introduced to keep the syntactic information of natural

language intact while performing classification. Tree-LSTM was tested out on Stanford

Sentiment Treebank [38] dataset for sentiment classification where it performed better

than different variants of RNNs, LSTMs, and other different models on fine-grained

classification task and comparable accuracy on binary-classification.

Even though LSTM has memory cells and tries to carry information from initial input

tokens to final timestamps but often perform poor on very long texts. Multi-Timescale

LSTM (MT-LSTM) [56] was introduced to capture very long term dependencies with

the help of grouping the hidden states of LSTM with 3-times faster training. MT-LSTM

outperform other RNN, CNN, and LSTM based models on Stanford Sentiment Treebank

(SST) [38] fine-grained task, TREC [9], and IMDB [22] dataset. Also, get comparable

results on SST binary classification task.

Recurrent Nets are good at sequences where the class of the sequence depends on the

complete sequence i.e. the class depends on global semantics. The RNNs carries infor-

mation from time. The CNNs carries information from space. CNNs are good where the

class of the sequence depends on local semantics of the sequence. Thus CNNs were also

used for text classification. Dynamic Convolutional Neural Network (DCNN) [45] takes

the text input embeddings as matrix, performs wide convolution on input matrix and

then use dynamic k-max pooling to convert variable length input to fix length feature

map for further processing by next convolutional layer. Finally, a fully connected layer

is used as classification head. DCNN is tested on SST, TREC and Twitter sentiment

dataset where it performed better than baseline models including Naive Bayes, SVM,

NBOW, etc.

A simple CNN [46] was used for text classification with different word-embeddings ap-
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proaches: random, static (word2vec), non-static (word2vec with training) and multi-

channel (two word2vec vectors). The architecture is pretty simple, convolutional layer

followed by max-over-time pooling and then a fully connected head for classification with

softmax function to calculate probabilities for each class. The model achieve better ac-

curacy than other models on MR [14], SST-2, CR [11], and MPQA [16] dataset. The

model also achieve comparable accuracy on SST-1, Subj [12], and TREC [9] dataset.

Character-level CNN [60] is another variant of CNN where the input to the model is one-

hot encoding of characters in the sequence. The input length in fixed at 1014 characters.

If sequence length is more than 1014 then the first 1014 character would be taken and the

remaining will be truncated. If sequence length is less than 1014, then zero vectors are

added to the input sequence to make it 1014. Character-level RNN has 6 convolutional

layers along with pooling layers and 3 fully connected layers along with dropout layers

are stacked to perform text classification. Two networks of the same architecture but

with different size of feature maps and different number of hidden nodes are trained on

eight different datasets. These models empirically outperform previous machine learning

based models, LSTM and word-level CNNs.

Although CNNs perform well by stacking convolutional, pooling and fully connected

layers together but sometimes due to pooling operations, CNN lost important spatial

information which causes the model to mis-classify text. The information lost in pooling

layer issue was addressed by a new type of neural network called Capsule Neural Network

(CapsNets) [71]. An activity vector of a capsule represent the attribute of an object. The

length of activity vector describes if the object is present and the direction specifies the

features of that object. Capsules take the information takes information from different

layers till last layer so that no information is lost. CapsNets for text classification were

used by [85, 79] where the model performed better than LSTM and CNN based models

on MR, Subj, CR and AG dataset.

The RNNs, LSTMs and GRUs were designed to capture long-term dependency in text

sequence but it often failed when sequence goes too long. Attention mechanism [44] was

introduced to overcome the long-term dependency problem of RecurrentNets. Attention

mechanism let the model focus on important areas in the input sequence. The attention

mechanism was originally designed for sequence to sequence (seq2seq) problems where

the encoder part tries to capture the information of input in a vector called context
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vector. The decoder part takes the context vector and tries to produce the output

sequence. Attention mechanism was used in Hierarchical Attention Network [65] for

text classification. The focus of this work was to classify long sequence of text which

consist of multiple sentences. The network consist of a word-based and a sequence-

based encoder. The network take the words in the sequence as input, pass it through

Bi-directional GRU encoder which acts as word-based encoder and generates attention

vectors. The sequence is broken down into sentences and each sentence in the sequence is

given to another Bi-direction GRU based encoder along with the attention scores from

the previous word-based encoder. The sequence-based encoder has its own attention

vectors which helps the model focus on relevant sentences in the sequence. The model

perform better on BOW, SVM, CNN, and LSTM based models on Yelp review, IMDB

reviews, Yahoo answers and Amazon reviews dataset.

The RecurrentNets including LSTM and GRU takes input sequence word by word.

The next word is dependent on the information from the previous word. This makes

RNNs unsuitable for parallel computation which causes inefficient utilization of the

modern GPU. Transformer [72] architecture was introduced to address the parallelism

issue. Transformer architecture takes the complete sequence for computation and uses

positional embedding mechanism to remember the position of words in the sequence.

Transformer introduced new type of attention mechanism known as self-attention. Self-

attention tries to focus on the dependency and relevance of words in the input sequence

with each other. Transformer is encoder-decoder model and was trained for WMT-141

machine translation task and it outperformed all previous state-of-the-art models with

a better margin of BLEU score on WMT-14 task. The encoder part of Transformer can

be used for text classification task.

BERT [74] i.e. a transformers based model set new state-of-the-art performance on dif-

ferent tasks including Question/Answering, Named Entity Recognition (NER) and text

classification task. Two variations of BERT was trained: BERTBASE and BERTLARGE.

BERTBASE consist of 110M parameter with 12 layers with a hidden size of 768 and

12 self-attention heads. BERTLARGE is relatively bigger model which has 24 layers

with hidden size of 1024 and 16 self-attention heads. BERT models are trained in two

phases. (1) pre-training (2) fine-tuning. Pre-training step performs a masked-language

modeling task on unsupervised data. Fine-tuning step takes the weights of language
1https://www.statmt.org/wmt14/
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model and train it for downstream tasks. BERT perform better than all other previous

state-of-the-art models including OpenAI GPT-1 [75]. XLNet [86], another transformer

based model with the same architecture as BERT but trained on 113GB of data that

helps the model perform better than BERT on all tasks but with the expense of 5-times

more training time than BERT and hardware resources. Another extension to BERT

known as RoBERTa [83] was trained. RoBERTa perform better than both BERT and

XLNet on different tasks. RoBERTa was trained on 160GB of data that is bigger than

both BERT and XLNet. See figure 2.1

Figure 2.1: BERT vs XLNet vs RoBERTa evaluation on different tasks

These models can be fine-tuned on custom datasets. BERT, RoBERTa, and Distil-

BERT were fine-tuned for text classification on legal domain dataset [82] where they

performed better than attention-based LSTM and GRU baseline models [82]. RoBERTa

and DistilBERT dominated BERT model on different accuracy metrics.

In our work, we will be fine-tuning BERT, RoBERTa, XLNet and DistilBERT for mes-

sage classification on our dataset and will produce baseline results on message classifi-

cation dataset.

2.2 Conversational Systems

There are two majorly two types conversational systems: Task-oriented and Non-task

oriented.

Non-task oriented conversational systems are often called chatbots. They are open

domain systems where user can ask any query. Two approaches are taken into account.

(1) A generative based network [24, 63, 78] where the diverse utterances are generated.
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Book a flight to London for 16-December-2022 at 9:00AM

Slots/Entities O O O O GPE O DATE O TIME

Intent order_flight

Table 2.3: NLU system

Previous dialogues are given as context. (2) A retrieval based system [39, 33] where the

utterances are selected from predefined set of utterances.

Task-oriented conversational systems are domain specific conversational systems. These

systems are end-to-end systems and are made-up of a few components. (1) Natural

Language Understanding (NLU) parse the query received from the user into some

semantic pieces. (2) Dialogue State Tracker (DST) keeps track of the current state of

dialogue along with the history states. (3) Dialogue policy learning decides the next

action based on current dialogue state. (4) Natural Language Generation (NLG)

maps the selected action to its surface and generates the response.

NLU is conversational systems is performed via two tasks: intent detection, and entity

extraction. Intent detection [25, 28, 52, 30, 49] is text classification task where the

user query/utterance is classified into pre-defined classes. The intent of user query

inform the system that what the user is asking about i.e. what is the intention of the

user. Entity extraction or Slot filling is named entity recognition task where the

semantic information from user query are collected into structured format. Entities are

also pre-defined like intents. NER is treated a sequence labeling problem where each

word in the user utterance is assigned a tag. Conditional Random Fields (CRF) [90]

models are used to set baselines for Entity extracting. However, Deep Believe Networks

(DBNs) [25] tends to perform better than CRF based baseline models. RecurrentNets

[35, 53, 42] were also used for NER tasks. A user query which says Book a flight to

London on 16-December-2022 at 9:00AM gives an intention of booking a flight which

means that user is asking for a pre-defined intent book_flight. The Entity extractor

will extract London as location from the text. Table 2.3 shows how the user query is

interpreted by NLU system. Geopolitical entity London, Time entity 9:00AM, Date

entity 16-December-2022 are extracted with the intent order_flight that helps the NLU

system understand the what the user actually wants. The outputs are given to DST for

further processing.
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Dialogue State Tracking (DST) component keep track of the dialogue state Ht at

time t. The user goal might change from the initial settled goal to a new one or the

initial goal might be slightly modified due to some reasons caused by the system or user

himself. For example, when the system receive the above user utterance, the state of the

system is to order book flight to specific location on specific date and time. But if no

tickets are available and the system replies that "sorry there are not tickets available for

9:00AM, would you like to book for 10:00AM" then depend on the user next utterance the

state should be changed. If the user says "yes", then the system state would be changed

accordingly and ticket booking should pursue further. If the user says "no, cancel it

then the system state would change accordingly and the ticket book should be stopped.

These states were managed through rule based systems where the user has to follow

specific patterns in querying the system. E-form [8] algorithm was introduced where

the user doesn’t have to follow specific pattern. The Dialog State Tracking Challenge

(DSTC) [41] was introduced to evaluate state tracking systems. A rule-based system

[40] that used some domain independent rules with probability and was tested out on

DSTC where it gets comparable accuracy with other machine learning based models.

CRF was used [37] where the model outperformed 1-best tracking approach. A Feed-

forward network [29] with 3 hidden layers was used with a sliding window to output

some sequence of probability distributions for state tracking where the model achieve

comparable performance. RecurrentNets based model [57] was trained on dataset from

multiple domains. Regardless of the data available for a specific domain, the model get

state-of-the-art results.

Dialogue Policy decides next action based on the output of DST. Dialogue policies

are learned using rule-based system, supervised learning or reinforcement learning [43,

54] methods are used. In the case of book_flight example, if the ticket flight is available

at the user required time, the system would perform an action of booking a flight ticket

for the user. These actions are in some form of abstract symbolic representation.

These actions are converted to natural language utterances through Natural Lan-

guage Generation (NLG) component. A natural language utterance must convey

the desired meaning [15]. The utterance must be syntactically correct. The utterance

should have no ambiguity in the context. The actions are converted to intermediate

representation and then utterance is generated through surface realization [13, 10]. A

conditional LSTM was trained [59] for NLG where the slot values are used as input in
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the form of one-hot encoding to the model and the model generates natural language

utterance. LSTM based generated utterances have more variety and are more natural.

The LSTM based approach achieved better BLEU score than rule-based and other al-

gorithms. Context Aware CA-LSTM [66] encoder-decoder sequence-to-sequence model

was used to get state-of-the-art results. CA-LSTM uses attention mechanism to better

capture the dependency. CA-LSTM gets better on human and quantitative evaluation.

An end-to-end system [64] was proposed where the model takes dialogue history as input

ans product new utterance based on that. An LSTM-based intent network generates a

distributed representation and belief trackers handles slot-value pairs. Database oper-

ator generates database query from belief states. A system action vector is generated

from belief state and intent representation by policy network. Finally, an attention

based LSTM network is used to generate the natural language utterance conditioned on

action vector.
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Methodology

The system architecture is designed to incorporate message classification and a conver-

sational agent as its key components, as depicted in Figure 3.1. This holistic approach

ensures a comprehensive and integrated system that effectively handles the entire con-

versational process. The message classification component is responsible for accurately

categorizing incoming messages, enabling the system to understand the intent and con-

text of user inputs. Meanwhile, the conversational agent component utilizes advanced

techniques to generate meaningful and contextually appropriate responses. By com-

bining these components, the end-to-end system architecture creates a seamless and

intelligent conversational experience for users.

Figure 3.1: Complete System Architecture
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3.1 Message Classification

Message classification components shows the strength of message sent from the re-

cruiter to the prospect. Message classification is multi-output classification problem

where a text sequence x is assigned a zero or more classes from a set of 5 classes

Y = {call − to − action, common − ground, establish − credibility, incentive − for −

connecting, personlization}. A message having all these five classes available is consid-

ered high quality message. In this work, we have tried out different Machine Learning

and Deep Learning based approaches on message classification task.

3.1.1 Machine Learning Algorithms

We have trained 6 famous machine learning algorithms on our dataset: Decision Tree,

Linear SVM, Logistic Regression, Gaussian Naive Bayes, K-Nearest Neighbor, and Ran-

dom Forest. We have used 300 and 100 dimension GloVe word embeddings. We calcu-

lated sentence embeddings as average/mean of word vectors in the sentence.

Decision Tree

The Decision Tree algorithm stands as a stalwart of supervised learning, adeptly ad-

dressing both classification and regression tasks. It operates by constructing a tree-like

model, leveraging the provided data features to guide its decision-making process. By re-

cursively partitioning the data based on feature conditions, this algorithm navigates the

intricacies of the problem space, yielding insightful outcomes for prediction and pattern

recognition. With its versatility and intuitive structure, the Decision Tree algorithm

stands as a reliable tool in the repertoire of machine learning, empowering practitioners

to extract meaningful insights from complex datasets. The goal is to create a model that

can make predictions based on the features of a given data point by following the path

through the decision tree. The algorithm starts at the root node of the tree and evaluates

the available features to determine which branch to follow. It continues this process un-

til it reaches a leaf node, which is where the prediction is made. The tree is constructed

by splitting the data into subsets based on the most significant attributes/features. The

splitting is done in a way such that the purity of the subset increases with each split.

The measure of purity is typically the entropy or the Gini index.
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Entropy is a measure of impurity, or the amount of randomness in the data. If the

data is completely pure, the entropy is zero. If the data is equally distributed across

all classes, the entropy is at its maximum value. The Gini index is a measure of how

often a randomly chosen element in the set would be incorrectly labeled, assuming that

the labels are randomly distributed among the elements. The Gini index ranges from 0

(perfectly pure) to 1 (not pure at all). The splitting of data continues until we reach a

leaf node or a node where the entropy or the Gini index is zero or until a pre-defined

stopping condition is reached.

The decision tree algorithm has several advantages:

• It is easy to understand and interpret, as the tree structure is visually appealing

and the decision tree itself is easy to understand.

• It is a white box type of algorithm, meaning that the decision tree model can be

easily explained to humans.

• It can handle high dimensional data and large datasets, as it is not necessary to

normalize the data or to transform it in any way.

• It can be used to identify the most significant features in a dataset.

However, decision trees also have some disadvantages:

• They can be prone to overfitting, especially if the tree is allowed to grow too deep.

• They can be unstable, meaning that small changes in the data can result in a

completely different tree being generated.

• They can be biased if the data is not evenly distributed among the classes.

Linear SVM

Linear Support Vector Machines (SVMs) are a type of supervised learning algorithm

that can be used for classification and regression tasks. The goal of a linear SVM is to

find the hyperplane in an N-dimensional space (where N is the number of features) that

maximally separates the classes. The algorithm starts by finding the hyperplane that

has the greatest distance (also known as the margin) between the nearest points of the

two classes. This distance is known as the margin, and the hyperplane is known as the
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maximum-margin hyperplane. The optimization problem tries to find the values of w

and b that minimize the Euclidean norm of the weight vector while ensuring that the

points are correctly classified (i.e., the distance between the hyperplane and the nearest

points is greater than or equal to 1).

To solve this optimization problem, the algorithm uses the "hinge loss" function, which

measures the distance between the predicted label and the true label. The hinge loss is

defined as:

L(y, f(x)) = max(0, 1 − yf(x))

Where y is the true label and f(x) is the predicted label. The optimization problem is

then solved using an optimization algorithm such as gradient descent or the primal-dual

method.

Linear SVMs have several advantages:

• They are efficient and scale well to large datasets.

• They are effective in high-dimensional spaces, and they are particularly good at

classifying datasets with many more negative than positive examples.

• They are easy to interpret, as the weight vector and bias term can be used to

explain the decision boundary.

However, linear SVMs also have some disadvantages:

• They can be sensitive to the scaling of the features, and it is recommended to scale

the features before training the model.

• They are not suitable for data that is not linearly separable, as the maximum-

margin hyperplane will not be able to accurately classify the data points.

• They do not provide probability estimates, which can be useful in some applica-

tions.

Logistic Regression

Logistic Regression is a supervised learning algorithm that can be used for classification

tasks. It is a linear model that is used to predict a binary outcome (i.e., a outcome
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that can only have two possible values, such as 0 or 1). The goal of logistic regression is

to find the parameters (also known as weights or coefficients) of the linear model that

best predict the probability of a given data point belonging to a particular class. The

probability that a data point belongs to a particular class is calculated using the logistic

function, which is defined as equation 3.1.1:

f(x) = 1
1 + e−(wT x+b) (3.1.1)

Where p is the probability of the data point belonging to the positive class, w is the

weight vector, x is the feature vector of the data point, and b is the bias term. The

weight vector and bias term are learned during the training process by minimizing the

error between the predicted probabilities and the true labels of the data points. The

error is typically measured using the cross-entropy loss function, which is defined as

equation 3.1.2:

L = −(y log(p) + (1 − y) log(1 − p)) (3.1.2)

Where y is the true label (either 0 or 1) and p is the predicted probability. The cross-

entropy loss function is used because it is a continuous, smooth function that is easy

to optimize using an optimization algorithm such as gradient descent. The logistic

regression algorithm has several advantages:

• It is a simple and fast algorithm that is easy to implement.

• It is highly interpretable, as the weights and bias term can be used to explain the

decision boundary.

• It provides probability estimates, which can be useful in some applications.

However, logistic regression also has some disadvantages:

• It is a linear model, so it cannot capture non-linear relationships between the

features and the target.

• It can be sensitive to the scaling of the features, and it is recommended to scale

the features before training the model.

• It can be prone to overfitting if there are a large number of features relative to the

number of data points.
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Gaussian Naive Bayes

Gaussian Naive Bayes is a classification algorithm that uses Bayes’ theorem to make

predictions. It is called "naive" because it assumes that all the features are independent

of one another, which is rarely the case in real-world data. Despite this assumption,

the algorithm often performs well in practice. The goal of the Gaussian Naive Bayes

algorithm is to predict the probability of a data point belonging to a particular class,

given its features. This is done using Bayes’ theorem 3.1.3, which states that:

P (y|x) = P (x|y)P (y)
P (x) (3.1.3)

Where P (y|x) is the posterior probability of the class (y) given the features (x), P (x|y)

is the likelihood of the features given the class, P(y) is the prior probability of the class,

and P(x) is the prior probability of the features. In the case of the Gaussian Naive Bayes

algorithm, the likelihood of the features is assumed to be a Gaussian distribution. This

means that the probability of a given feature is calculated using the mean and standard

deviation of the feature in the training data. The algorithm then makes predictions

by calculating the posterior probability for each class and choosing the class with the

highest probability.

The Gaussian Naive Bayes algorithm has several advantages:

• It is easy to implement and run, as it only requires a small amount of training

data to make predictions.

• It is fast and efficient, as it only requires a small amount of computation to make

predictions.

• It can handle a large number of features, as it assumes that all the features are

independent of one another.

However, the Gaussian Naive Bayes algorithm also has some disadvantages:

• It assumes that the features are independent, which is rarely the case in real-world

data.

• It is sensitive to the scaling of the features, and it is recommended to scale the

features before training the model.

25



Chapter 3: Methodology

• It can perform poorly on datasets with categorical features, as the algorithm as-

sumes that all features are continuous.

K-Nearest Neighbor

K-Nearest Neighbors (KNN) is a classification algorithm that is based on the idea of

identifying the K data points in a training set that are closest to a given data point and

using those data points to make a prediction. It is a type of instance-based learning,

as it does not learn a model from the training data but simply stores the training data

and makes predictions based on the stored data.

The algorithm works as follows:

1. The training data is stored in memory.

2. When a prediction is needed for a new data point, the distance between the new

data point and all the stored data points is calculated using a distance metric such

as Euclidean distance.

3. The K data points that are closest to the new data point are identified.

4. The prediction is made based on the majority class of the K nearest neighbors.

The value of K is a hyperparameter that is chosen by the user and controls the number

of neighbors that are used to make the prediction. A larger value of K will result in a

smoother decision boundary, as more data points will be considered when making the

prediction. However, a larger value of K can also result in a slower prediction time, as

more distance calculations are needed.

KNN has several advantages:

• It is simple to implement and understand.

• It does not make any assumptions about the data, so it is flexible and can work

with a wide variety of data types.

• It can handle large datasets, as the prediction time is independent of the size of

the dataset.

However, KNN also has some disadvantages:
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• It can be computationally expensive, as the distance between the new data point

and all the stored data points must be calculated.

• It can be sensitive to the scaling of the features, and it is recommended to scale

the features before training the model.

• It can be sensitive to the choice of K, as a poor choice of K can result in poor

performance.

Random Forest

Random Forest is an ensemble learning algorithm that is used for both classification

and regression tasks. It is an improvement over bagging (bootstrapped aggregation)

algorithms, as it decorrelates the trees by training them on different subsets of the data.

The algorithm works as follows:

1. A number of decision trees are trained on different subsets of the training data.

2. The data is split into subsets by selecting a random sample of the features for each

split.

3. Each decision tree is trained on a different subset of the training data, and the

predictions of the trees are combined to make a final prediction.

4. The final prediction is made by either taking the majority vote (for classification

tasks) or the average of the predictions (for regression tasks).

Random Forest has several advantages:

• It is a fast and accurate algorithm that is easy to implement and tune.

• It can handle a large number of features, as it selects a random subset of the

features for each split.

• It is resistant to overfitting, as the decorrelation of the trees reduces the variance

of the model.

• It provides a good approximation of the feature importance, as it calculates the

feature importance by averaging the feature importance of all the trees in the

forest.
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However, Random Forest also has some disadvantages:

• It can be sensitive to the scaling of the features, and it is recommended to scale

the features before training the model.

• It can be difficult to interpret, as the decision trees in the forest are not easily

explainable.

• It can be computationally expensive, as a large number of decision trees must be

trained.

3.1.2 Deep Learning Algorithms

A feed-forward neural network is a type of artificial neural network that is used for both

classification and regression tasks. It consists of an input layer, one or more hidden

layers, and an output layer. The input layer receives the input data, and the output

layer produces the predictions. The hidden layers process the data and transmit it to

the next layer. The network is trained using an optimization algorithm such as gradient

descent, which adjusts the weights and biases of the network to minimize the error

between the predicted output and the true output. The error is typically measured

using a loss function such as mean squared error (MSE) for regression tasks or cross-

entropy loss for classification tasks.

The feed-forward process can be described mathematically as follows:

The input data, x, is transformed using the weight matrix W , and the bias vector b with

equation 3.1.4:

z = Wx + b (3.1.4)

The transformed data is passed through an activation function, f , which is used to

introduce non-linearity into the model as equation 3.1.5:

a = f(z) (3.1.5)

The output of the activation function is passed through the output layer 3.1.6 to produce

the final prediction, y:

y = g(a) (3.1.6)

Where y is the predicted output, a is the output of the activation function, and z is the

transformed data. The activation function, f , is typically a non-linear function such as
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sigmoid, tanh, or ReLU, and the output function, g, is typically a linear function such

as the identity function or the softmax function.

The weights and biases of the network are adjusted during the training process by mini-

mizing the error between the predicted output and the true output using an optimization

algorithm such as gradient descent. The weights and biases are updated according to

equation 3.1.7 and 3.1.8:

w = w − α∇wL (3.1.7)

b = b − α∇bL (3.1.8)

We have trained simple feed-forward neural networks with different hyperparameters

configuration settings. We have tried out 100 and 300 dimensions of GloVe word em-

beddings. The sentence embeddings are calculated as component wise mean of word

embeddings in the sentence. The network contains five head for each classification cat-

egory. We used ReLU activation function (see Figure 3.2 and equation 3.1.9) on each

layer as empirically it is empirically proved to work well. ReLU is also simple and fast.

ReLU(x) = max(0, x) (3.1.9)

The derivative function (see Figure 3.2 and equation 3.1.10) of the ReLU is also simple

but it is undefined when x = 0. When x = 0 derivative is considered as 0.

d

dx
ReLU(x) =


0 if x < 0

1 if x > 0
(3.1.10)
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0-2 2

2

2

Figure 3.2: ReLU function and ReLU derivative

Each classification head in the network is a binary classifier having sigmoid function (see

Figure 3.3 and equation 3.1.11) as loss function. The cumulative loss is the sum of the

loss on all classification heads.

Sigmoid(x) = 1
1 + e−x

(3.1.11)

0-4 4

Figure 3.3: Sigmoid function and Sigmoid derivative
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The derivative of sigmoid function 3.1.12 is calculated as:

dSigmoid(x)/dx = Sigmoid(x)(1 − Sigmoid(x)) (3.1.12)

We used dropout with probability 0.5 on different layers of the network. Dropout helps in

regularizing the network. Dropout simply drops neuron from the network with specified

probability, see the comparison of standard network and dropout network in figure 3.4

Fully connected network Dropout applied

Figure 3.4: Standard Network vs Dropout applied Network

We used Adam optimizer to optimize the weights of the network. Adam is the combi-

nation of RMS Prop and Momentum algorithms.

We also trained transformer based models that are RoBERTa, BERT, and XLNet.

Transformer based model uses transformer blocks as basic component. Transformer

block uses self-attention mechanism to give attention to relevant parts of the sequence:

see Figure 3.5 utilized the Adam optimizer to optimize the weights of the network. Adam

is an optimization algorithm that combines the concepts of RMSprop and Momentum.

RMSprop is a technique that adapts the learning rate based on the moving average of

squared gradients, while Momentum helps accelerate gradient descent in the relevant

direction.

In addition, we trained transformer-based models including RoBERTa, BERT, and XL-

Net. Transformer-based models employ transformer blocks as fundamental components.

The transformer block incorporates a self-attention mechanism, enabling it to focus on

relevant parts of the sequence. This mechanism allows the model to capture dependen-

cies and relationships effectively, leading to improved performance in various natural

language processing tasks. Refer to Figure 3.5 for an illustration of the transformer

block architecture.
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Figure 3.5: Transformer Architecture

Transformer has an encoder and a decoder network. For our task, we only use the

encoder part of the network.

The first layer of transformer-based models is the input embedding layer, which takes

in the input ids of the input text from the vocabulary of the tokenizer. These input ids

correspond to the unique identifiers for each word in the vocabulary. During training, the

input embedding layer learns the embeddings for each word in the vocabulary, allowing

the model to represent the meaning and context of the words in a numerical form.

One notable difference between transformer-based models and other types of neural

networks, such as recurrent neural networks, is that the input text tokens are processed

in parallel by the input embedding layer rather than being processed in a sequential

manner. To maintain the sequence information of the input, the transformer-based

model includes additional components such as self-attention layers that are capable of

capturing the dependencies between the tokens. The position information for each token

in the sequence is calculated by equation 3.1.13 and 3.1.14.

PE(pos,2i) = sin(pos/100002i/dmodel) (3.1.13)
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PE(pos,2i+1) = cos(pos/100002i/dmodel) (3.1.14)

To incorporate positional information into the input representation of transformer-based

models, we can use positional vectors that have the same dimensions as the token em-

beddings. These positional vectors encode the relative or absolute position of each token

within the sequence. By concatenating the positional vectors with the target token em-

beddings, we can generate positional input embeddings that include both the semantic

information of the tokens and their position within the sequence. This allows the model

to more effectively capture the dependencies between the tokens and understand the

context in which they appear. The use of positional input embeddings can therefore

improve the performance of transformer-based models on various natural language pro-

cessing tasks.

After encoding the positional information to each token, the input matrix X (text as

sequence of tokens with positional information) is converted to query, key, and value

matrix. Each row in the query, key, and value matrix correspond to the tokens in the

sequence. Query, key, and value matrices has their own weight matrices that are learned

during the training process by backpropagation. see equation 3.1.15, 3.1.16, and 3.1.17.

query = X × Wquery (3.1.15)

key = X × Wkey (3.1.16)

value = X × Wvalue (3.1.17)

The attention score is calculated by equation 3.1.18 from query, key, and value matrices.

Zi = softmax(QiKi√
dk

)Vi (3.1.18)

The attention scores describes that how much attention each token in the text sequence

will give to every other token in the same text sequence. The query, key, value matrices

and attention score combined is called self attention mechanism. The self-attention

mechanism can be converted to multi-head attention by using more than one query,

key, and value matrices and their own corresponding weight matrices. The output of

each head is concatenated to get output vector. A linear layer is applied to the output

vector. The linear layer combined with multiple self-attention heads is called multi-head

attention.
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The output vector of multi-head attention is point-wise added to positional input embed-

dings to for Residual Connection. The Residual Connection helps in faster convergence

and tackle vanishing gradient problems by skipping some layers and feeding the input

directly to the later layers in the network: see Figure 3.6.

Residual ConnectionNormal FFNN

Figure 3.6: Simple Feedforward Network vs Residual Connections Feedforward Network

The output of residual layer is passed through a Layer Normalization. The Layer Nor-

malization takes the output/activations xi having K dimensions, of each individual

training example and normalize it to mean 0 and standard deviation 1 by using equa-

tion 3.1.20, 3.1.20 and 3.1.21 and convert it to yi vector having dimensions K.

µi = 1
K

K∑
k=1

xi,k (3.1.19)

σ2
i = 1

K

K∑
k=1

(xi,k − µi)2 (3.1.20)

x̂i,k = xi,k − µi√
σ2

i + ϵ
(3.1.21)

After normalization, the normalized activations are passed through a linear layer with

learnable parameters γ and β: see equation 3.1.22.

yi = γx̂i + β ≡ LNγ,β(xi) (3.1.22)

The Layer Normalization is used to stabilized the training process.
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The output of previous step is passed though a point-wise feed-forward neural network

which is basically layer of two stacked linear layers applied to each position in the

sequence. The output of the first linear layer is also passed through ReLU activation

function: see equation 3.1.23

FFN(yi) = max(0, yiW1 + b1)W2 + b2 (3.1.23)

The point-wise feed-forward component is used to process the information further. The

point-wise feed-forward layers also uses the residual connection and layer normalization

to stabilize the training process and help the model in quick convergence.

All these components combined are collectively called the encoder of transformer-based

models. Classification heads are attached to the output of this layer. In our case, a

classification head with 5 heads is connected for each different category. The classifi-

cation head consist of a linear layer. We use BERT, RoBERTa, and XLNet that are

transformed-based architecture on our task.

BERT

BERT (Bidirectional Encoder Representations from Transformers) 3.7 is a powerful

transformer-based model that has achieved state-of-the-art results on a wide range of

natural language processing tasks. BERT is designed to process sequential data by

considering the context from both the left and the right sides of a token, allowing it to

capture the dependencies between the tokens in a more effective manner than models

that only consider a single context. To achieve this bidirectional context, BERT makes

use of self-attention layers that are capable of attending to any position in the input

sequence.

One key feature of BERT is its use of transformers, which are a type of neural network

architecture that is particularly well-suited to processing sequential data. Transformers

use self-attention mechanisms to calculate the relationships between the tokens in the

input sequence, allowing them to capture long-range dependencies and attend to relevant

contextual information. This makes them an ideal choice for tasks such as language

translation, question answering, and language modeling.

In addition to its use of transformers and self-attention layers, BERT also includes a

number of other innovative features that contribute to its effectiveness. For example, it is
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trained using a special masking technique that allows it to make predictions for masked

tokens based on the context provided by the surrounding tokens. This pre-training

procedure allows BERT to learn general-purpose language representations that can be

fine-tuned for specific tasks. Overall, BERT is a highly effective and widely-used model

for natural language processing, and has been successful in a range of applications.

Figure 3.7: BERT

RoBERTa

RoBERTa (Robustly Optimized BERT Pretraining Approach) is a transformer-based

model that was developed to improve upon the BERT model. It was introduced in a

paper by Facebook AI in 2020 and has since achieved strong results on various natural

language processing tasks.

Like BERT, RoBERTa is trained on a large dataset of unannotated text and is designed

to learn general-purpose language representations that can be fine-tuned for specific

tasks. However, RoBERTa differs from BERT in a number of key ways that are intended

to improve the model’s performance.
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One key difference between RoBERTa and BERT is the size of the dataset used for

pretraining. BERT was trained on a dataset of approximately 3.3 billion words, while

RoBERTa was trained on a much larger dataset of approximately 160 billion words.

This larger dataset allows RoBERTa to learn more comprehensive and robust language

representations, which can improve its performance on various tasks.

Another difference between RoBERTa and BERT is the way in which the models are

trained. BERT uses a masking technique in which it is trained to predict the identities

of randomly masked tokens based on the context provided by the surrounding tokens.

RoBERTa, on the other hand, uses a different masking strategy in which it is trained

to predict the next sentence given a sequence of tokens from the current sentence. This

training approach allows RoBERTa to better capture the relationships between sentences

and improve its performance on tasks that require understanding of the broader context.

RoBERTa also includes a number of other modifications that are designed to improve

the model’s performance. For example, it uses a larger batch size and longer sequences

during training, and applies a dynamic masking strategy that adjusts the masking prob-

ability based on the length of the input sequences. These and other modifications help

RoBERTa to learn more effective language representations and achieve strong results on

various natural language processing tasks.

RoBERTa is a powerful transformer-based model that builds upon the successes of the

BERT model and introduces a number of improvements that are designed to enhance its

performance. It has demonstrated strong results on various natural language processing

tasks and is widely used by researchers and practitioners in the field.

We add a classification head for both BERT and roBERTa to use it as a classifier. see

Figure 3.8
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Figure 3.8: BERT

RoBERTa

XLNet

XLNet (eXtremely Large Neural Network) 3.9 is a transformer-based model that was

developed to improve upon the performance of existing language models such as BERT

and GPT-2. It was introduced in a paper by researchers at Carnegie Mellon University

and Google in 2019 and has since achieved strong results on a variety of natural language

processing tasks.

One key feature of XLNet is its use of a novel attention mechanism called permutation

language modeling. In traditional language models, the goal is to predict the next word

in a sequence given the previous words. However, in permutation language modeling,

the model is trained to predict any word in the sequence given all of the other words in

the sequence. This allows XLNet to better capture the dependencies between the words

in the sequence and improve its performance on tasks such as language translation and

question answering.

Another important feature of XLNet is its use of autoregressive modeling, which means

that the model is trained to predict each word in the sequence based on all of the previous

words. This is in contrast to the masked language modeling approach used in BERT, in

which the model is trained to predict a masked word based on the surrounding context.

Autoregressive modeling allows XLNet to capture more comprehensive dependencies

between the words in the sequence, which can improve its performance on various natural
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language processing tasks.

In addition to its use of permutation language modeling and autoregressive modeling,

XLNet also includes a number of other innovations that are designed to improve its per-

formance. For example, it uses a variant of the transformer architecture that is optimized

for autoregressive modeling, and includes a number of modifications to the self-attention

mechanism that are intended to improve the model’s ability to capture long-range depen-

dencies. These and other features help XLNet to learn effective language representations

and achieve strong results on a range of natural language processing tasks.

Overall, XLNet is a powerful and innovative transformer-based model that has demon-

strated strong performance on a variety of natural language processing tasks. It builds

upon the successes of previous models such as BERT and GPT-2 and introduces a num-

ber of new features that are designed to further improve its ability to understand and

process natural language. One key difference between XLNet and BERT and RoBERTa

is the way in which the models are trained. BERT and RoBERTa are trained using

a masked language modeling approach, in which the models are trained to predict the

identities of randomly masked tokens based on the context provided by the surrounding

tokens. XLNet, on the other hand, is trained using a permutation language modeling

approach, in which the model is trained to predict any word in the sequence given all of

the other words in the sequence. This allows XLNet to better capture the dependencies

between the words in the sequence and improve its performance on tasks such as lan-

guage translation and question answering. Another key difference between XLNet and

BERT and RoBERTa is the use of autoregressive modeling. In autoregressive modeling,

the model is trained to predict each word in the sequence based on all of the previous

words. This is in contrast to the masked language modeling approach used in BERT

and RoBERTa, in which the model is only trained to predict a masked word based

on the surrounding context. Autoregressive modeling allows XLNet to capture more

comprehensive dependencies between the words in the sequence, which can improve its

performance on various natural language processing tasks.
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Figure 3.9: XLNet

3.2 Conversational System [RASA Framework]

RASA (Open Source Dialogue Engine for Conversational AI) is a powerful and flexible

framework for building intelligent conversational systems. It allows developers to create

chatbots and other conversational systems that can understand and respond to user

input in a natural and human-like manner. The RASA Open Source 3.10 has two big

components: NLU Pipeline and Dialogue Policies. At the core of RASA, NLU Pipeline,

is a set of machine learning-based components that handle tasks such as natural language

understanding and generation. These components are trained on data annotated with

information about the user’s intentions and the structure of the input text. This allows

RASA to understand the user’s intent and respond appropriately, even when the user’s

input is ambiguous or contains errors. The Dialogue Policies takes next action according

to the context of conversation. In addition to its machine learning-based components,

RASA also includes a number of tools and features that make it easy for developers to

build and deploy conversational systems. These include a visual interface for creating

and managing conversations, support for a wide range of popular messaging platforms

and channels, and integration with other tools and services.
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Figure 3.10: RASA overall architecture

3.2.1 Components

Components in RASA are integrated in a single pipeline for understanding of the users

input. Components can be defined for different tasks. For example, MITIE [21] can be

used for feature extraction and entity extraction in the pipeline. MITIE comes with pre-

trained language models, however it can be fine-tuned on custom datasets. SpacyNLP

can be integrated into the pipeline to perform certain functions. Different Tokenizers

can be integrated into the pipeline, for example, WhitespaceTokenizer, JiebaTokenizer

(specifically for Chinese language), MitieTokenizer, and SpacyTokenizer. Featurizers

component helps RASA to convert text to word-vectors. Featurizer can be either sparse

and dense. Certain featurizers can be used with RASA. Some dense featurizers are

MitieFeaturizer, SpacyFeaturizer, and ConveRTFeaturizer. Some sparse featurizers are

RegexFeaturizer, CountVectorsFeaturizer, and LexicalSyntacticFeaturizer. A featurizer

can either return word-vector or sentence-vector for an input text. The LanguageMod-

elFeaturizer can be used to get word-vectors with BERT, GPT, XLNet, RoBERTa etc.

from HuggingFace 1 models.

Intent Classifiers can be defined as a component of the pipeline. Certain classifiers can
1https://huggingface.co/
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be added including MitieIntentClassifier [21], LogisticRegressionClassifier [23], Sklearn-

IntentClassifier [23], KeywordIntentClassifier, DIETClassifier [87], and . Some classifiers

uses their own embeddings, while other used embeddings defined in the pipeline. Each

classifier has its own training settings which can be configured as of user or task require-

ments.

Entity Extractors can be integrated into the pipeline to extract structural information

such as names, locations, date, time etc. from the user utterance. MitieEntityExtractor

[21], SpacyEntityExtractor, CRFEntityExtractor, DucklingEntityExtractor, DIETClas-

sifier for entity extraction, and RegexEntityExtractor can be used as entity extractors.

EntitySynonymMapper can be used to map entities to their synonyms. EntitySyn-

onymMapper requires entity to be extracted by an entity extractor beforehand.

Response selection is a critical component of any conversational AI system, as it deter-

mines the appropriate response to a user’s input. In the RASA framework, the Response

Selector is a module that selects the best response from a set of candidate responses

based on the context of the conversation and the user’s input. The Response Selector

uses a machine learning model to score and rank the candidate responses, and selects

the one with the highest score as the final response. This model is trained on a dataset

of conversation examples, which includes both the user’s input and the appropriate re-

sponse for each example. There are several factors that the Response Selector takes into

account when scoring and ranking the candidate responses. These include the relevance

of the response to the user’s input, the tone and style of the response, and the context

of the conversation. One of the key challenges in response selection is handling out-of-

scope inputs, which are inputs that the system is not trained to handle. In these cases,

the Response Selector may need to fall back on a default response or ask the user for

clarification.

3.2.2 Policies

Policies decides at each step that which action should be taken by conversational AI

system in contrast to each utterance of a user. RASA uses different approaches for

this tasks. A deep learning based model called Dialogue Transformers [84] can be used

to train TEDPolicy and UnexpecTEDIntentPolicy to pick the next action. Dialogue

Transformer 3.11 is a transformers based architecture.
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Figure 3.11: Dialogue Transformers Architecture

First, the user inputs and actions are featurized and given to the transformer encoder

along with the previous system actions in dialogue history. Dialogue Transformer decides

how much attention to put on each dialogue turns in the dialogue history. The model

is trained to maximize the dot product similarity of system actions.

Memoization Policy predict next action by remembering the stories of the training data.

If the conversation follows the same story pattern as given in the data, the Memoization

Policy will predict the same next action with probability 1. If conversation does not

follow the same pattern of training data then Memoization Policy will predicting nothing.

A Rule-based Policy is a type of machine learning policy that uses a set of hand-coded

rules to determine the appropriate action to take in a given dialogue state. The rules

are defined by the developer, and may be based on a variety of factors such as the user’s

input, the context of the conversation, and the available actions. Rule-based policies

can be useful for simple dialogue systems, or for handling specific, well-defined tasks.

However, they can be difficult to maintain and scale as the complexity of the dialogue

system increases. Additionally, rule-based policies may not be able to adapt to new or

unexpected input, as they are limited to the rules that have been explicitly coded by the
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developer. For example, If a user say "Good Bye" then the system would definitely say

"Good Bye" or something related but never something like "Hello" or "How can I help

you?" etc. RASA uses Rule Policy for these cases in conversation where the conversation

follow strict patterns.

3.2.3 Actions

In the RASA framework, actions are responses that the conversational AI system can

take in response to user inputs. Actions can take many different forms, including simple

text responses, API calls, database queries, or the presentation of forms to the user.

One of the key benefits of using actions in a conversational AI system is that they allow

the system to perform a wide range of tasks beyond simply generating text responses.

For example, actions can be used to retrieve information from external sources, update

databases, or interact with other systems. This makes it possible to build sophisticated

and highly functional conversational AI systems that can provide a wide range of services

to users. There are several types of actions that are supported by the RASA framework,

including: Text responses: Simple text responses are the most basic type of action, and

are used to provide information or replies to user inputs. Text responses can be static

or dynamic, depending on the needs of the system.

API calls: Actions can be used to make calls to external APIs or systems, which can be

useful for retrieving or updating information or interacting with other systems.

Database queries: If the conversational system has access to a database, actions can be

used to retrieve or update information stored in the database.

Forms: Actions can be used to present forms to the user and collect information from

them. This can be useful for gathering data from the user or gathering feedback. RASA

forms are utilized to gather structured information from users. These forms enable the

specification of a series of questions that a chatbot should ask in a specific order until

all required information has been collected. RASA forms are particularly useful when a

significant amount of structured information needs to be gathered from users or when

the format of the collected information is crucial. For instance, a RASA form could be

utilized to gather a user’s name, address, phone number, and email address. To utilize a

RASA form, it must first be defined in the form of a configuration file or through code.

Once defined, the form can be triggered and used to gather the desired information
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from the user. RASA forms are implemented with the RASA NLU (Natural Language

Understanding) and Core libraries, which are open-source libraries for building chatbots

and conversational AI. RASA forms are an essential component of the RASA framework,

a set of tools and libraries for building and deploying chatbots and conversational AI

applications. A form must be activated before in rules or stories. For example, a specific

intent will trigger the form. When all slot values are filled, the form is automatically

deactivated.

RASA form validation is a feature that allows to verify that the user has provided the

required information when filling out a form within a RASA conversational system.

This can be useful for collecting specific pieces of information from the user, such as

their name, email address, or phone number. To implement form validation in RASA,

it requires to create a form within the conversational flow. This can be done using the

Form Action class, that allows to define the fields that the user has to fill out and the

types of responses that is expected to receive. For example, one might create a form

with fields for the user’s name, email address, and phone number, and specify that a text

based response is expected to receive for each field. Once the form is defined, validate

method can be used to verify that the user has provided the required information.

This method takes a dictionary of user responses as input and returns a dictionary of

validation results. If the required fields are filled out correctly, the validation results

will be True. If any of the required fields is not been filled out or filled out incorrectly,

the validation results will be False. Form validation results can be used to control the

flow of the conversation. For example, if the validation results are True, the next step in

the conversation will be proceed. If the validation results are False, the user is required

to provide the missing or incorrect information before continuing. Form validation is a

powerful tool that ensure to receive the necessary information from the user in order to

provide the best possible service.

Slots: RASA slots are a crucial aspect of the RASA framework for building chatbots

and conversational AI applications. They are used to store information that is gathered

during a conversation with a user and to track the state of the conversation. In the

context of chatbots, slots can be used to store a wide range of information, including

user input, conversation history, and the results of calculations or other processing. For

example, a chatbot that is designed to help users book flights may use slots to store

the destination, departure date, and number of passengers that the user has specified.
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One of the key benefits of using slots is that they allow chatbots to maintain context

and to remember important information across multiple turns in a conversation. This

is important because it enables the chatbot to provide a more natural and seamless

conversation experience for the user. There are several types of slots that can be used in

the RASA framework, including categorical slots, float slots, and text slots. Categorical

slots are used to store information that belongs to a finite set of categories, such as

the names of cities or the types of products that a chatbot can offer. Float slots are

used to store numerical values, such as prices or quantities, and text slots are used to

store free-form text input from the user. In addition to these types of slots, the RASA

framework also provides a range of tools and features for managing and manipulating

slots, such as the ability to set default values for slots and to reset the values of slots at

specific points in a conversation.

Custom actions: Developers can also define custom actions that perform specific tasks

or perform actions that are not supported by the built-in action types.

If a user says "Hello", the system will reply with something like "Hi, how are you?".

The action returned by system is a simple text. A response text can have place holders

from slots. For example, a user utters that "Hello, I’m John". The system can extract

John from the user utter and reply with a custom response like "Hello John, how can I

be of service?". A response can have multiple messages. RASA can be integrated into

different channels like Slack, Facebook messenger, Twitch etc. so different messages for

each channel can be added as a response. Rich responses can be produced by adding

buttons to the response message. Images can be added as response message along with

text. Date pickers can be sent to user as response to select a date from it rather than

typing. A response can also be called from custom action functions.

Custom Actions are used when the action needs some custom logic to be performed

before returning the response to the user. For example, If a user ask about weather of a

location, then the system will call some weather API to fetch the weather information

of the specified place. Or if a user ask to add something to his calendar then the

conversational system will perform some database query to insert data into the database.

If a user needs to check his bank balance, then conversational system will call the bank

API to check his balance.

There are also some default actions with the ability to be customized in RASA which
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helps user in many situations. Some examples of default actions are action_listen,

action_restart, action_session_start, action_back, action_unlikely_intent etc. These

default actions can be modified as of system requirements.

3.2.4 Integration by Input/Output Channels

There are several ways in which the RASA conversational system can be integrated into

an existing application or platform with Input/Output Channels 3.10. One option is

to use the RASA chat widget, which allows users to interact with the system directly

from the application interface. Another option is to use the RASA X utility, which pro-

vides a web-based graphical user interface through which users can access the system.

In addition, RASA can be integrated with custom chat widgets using the REST chan-

nels. Alternatively, RASA can also be integrated with popular social and professional

networks, such as Facebook Messenger, Slack, Telegram, Twilio, and Google Hangout

Chats, as well as RocketChat. This versatility allows RASA to be used in a wide range

of contexts and environments, making it a powerful tool for building sophisticated con-

versational systems.

3.2.5 RASA Action Server

The RASA action server is a tool that allows RASA Open Source to execute custom

actions. When the action server receives a request, it processes the provided conversation

information, such as the conversation ID and tracker data, and performs the requested

action. This action could involve performing a database query, making an API call,

or any other form of processing. The action server can be implemented using any

programming language, and the RASA SDK 3.10 is included with the RASA installation,

although other action servers can be used as long as they support the required API. The

action server is an essential part of the RASA Open Source system and allows it to

perform a wide range of custom actions in order to better serve the needs of the user.

3.2.6 Tracker Store

Tracker Store component of figure 3.10is used for storing the users conversations. By

default, RASA uses InMemoryTrackerStore mechanism that stores the conversations in

the memory. When the Bot is restarted or the conversation time ends, the conversations
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are removed from memory, and no records if left. It works in some scenarios but some-

times permanent storage of conversation is required. RASA provides SQLTrackerStore,

RedisTrackerStore, MongoTrackerStore, and DynamoTrackerStore where a simple con-

figuration helps to connect to the database for conversations. Besides that, custom

conversation trackers can also be created.

3.2.7 Lock Store

Rasa incorporates a mechanism known as the "ticket lock" to maintain the accurate

sequencing of incoming messages associated with a given conversation ID. This system

serves the purpose of upholding conversation integrity and consistency, particularly when

multiple Rasa servers operate concurrently as replicated services. The "ticket lock" ap-

proach functions by temporarily securing conversations during the active processing of

messages. Upon the arrival of a message tied to a specific conversation ID, Rasa ensures

its proper order of processing by acquiring a lock specifically assigned to that conversa-

tion. This precautionary measure prevents potential disruptions to the conversation’s

sequence caused by simultaneous message processing. Through the implementation of

the ticket lock mechanism, Rasa effectively expands its scalability by operating multiple

server instances in parallel and distributing the workload among them. Moreover, this

mechanism empowers clients to transmit messages pertaining to a particular conversa-

tion ID to any server instance with the assurance that the messages will be processed

in the correct order, irrespective of the server responsible for handling them.

3.2.8 File System

RASA maintains a proper Filesystem 3.10 for training data and models. The training,

testing, and validation data are given in the YAML file format. The models can be stored

on local disk, on a local disk, on a remote, or cloud server. The models can be accessed

via HTTP from a URL from a server with a small configuration in endpoints.yml. RASA

is compatible with AWS S3, Azure Blob Storage, and Google Cloud Storage with a

setting a few environment variables.
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3.2.9 RASA X

RASA X 2 is a graphical interface designed to support Conversation-Driven Development

(CDD). It is built on top of the open-source RASA framework and helps developers

gather data from users in order to build more effective chatbots and conversational AI

systems. One of the primary challenges of building conversational systems is that it is

impossible to predict with 100% accuracy what a user will say or ask. RASA X helps

developers overcome this challenge by providing a tool that makes it easy to collect data

from users and use it to improve the performance of their chatbots. In this way, RASA

X helps developers build more effective and engaging conversational systems that are

better able to meet the needs of their users.

2RASA X is no longer an Open Source Product.
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Experiments & Results

Different experimental setups were used for message classification and conversational

system.

4.1 Message Classification

In this section, we present the dataset, experimental setup, and classification algorithms

results.

4.1.1 Dataset

Message classification dataset has 97,710 messages with their labels for 5 classes. Each

message can have labels call to action, common ground, establish credibility,

incentive for connecting, and personlization.

Call to action means that the prospect will most likely reply to this message.

Common ground means that the recruiter and the prospect might have worked in

the same company before, or having some common educational background, or same

hobbies, or same favorite things. It can be anything which is common between both the

recruiter and the prospect.

Establish credibility means that the recruiter established credibility for his work, or

the company for which he is hiring candidates, or the role/job.

Incentive for connecting means that the recruiter writes about the incentives and

benefits that the company will be giving him for his role.
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Personalization shows that how much the message is personalized. For example, If the

recruiter writes his name, the prospect name, or mention his current/previous company,

or job experience then it is a personalized message. The following message is a direct

example from the dataset which is having call to action, establish credibility, incentive

for connecting, and personalization labels.

this is (firstname) from (my_company), the only data science solutions

provider in the region. i think given your work experience at (their com-

pany name) you should be a part of this revolution. are you connected to

the (my_company). our company is growing itś team each day and we would

like to add to it even more. how about if i discuss this role further with you?

The message is basically a templated message and values can be filled from the Linkedin

API. The sentence piece how about if i discuss this role further with you? is majorly

responsible for call to action label. The (firstname), (my_company) and i think given

your work experience at (their company name) makes the message personalized. The

sentence piece the only data science solutions provider in the region gives credibility to

the company. our company is growing itś team each day adds somehow incentives to

the prospect.

There are total 332 unique sentence pieces in the dataset. Also, there are total 723

unique words when we tokenize all messages with gensim tokenizer 1. Number of unique

sentence pieces and unique words are small which makes the data distribution condensed

in the dataset. This makes the problem very easy for us and we always get close to 100%

accuracy when when train any model on it. To overcome this problem, we added some

newly annotated data with diverse distribution to the test set. We made the test set

smaller so that the model generalizes well on new data. 94,010 data samples goes to

train-set and 3,700 becomes part of the test set. It means that 4% data becomes part

of the test-set while the remaining goes into training set. The newly annotated data is

taken from real world recruiters is kept into the test-set.
1https://tedboy.github.io/nlps/generated/generated/gensim.utils.tokenize.html
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4.1.2 Experimental Setup

We used Google Colab for all machine learning and deep learning experiments. Google

Colab 2 is a cloud platform provided by Google Research. As the time of this research,

google provide three different plans for colab: Colab free, Colab Pro pro, and Co-

lab Pro+. We used the free version of colab for training our models. Even though the

specification for free version of colab changes with time and also depends on the avail-

ability of the CPU, however, the hard disk space 4.1, memory information 4.3, CPU

information 4.2, and GPU information 4.1 is as follows.

Space Used Available

On CPU 108GB 39GB 70GB

On GPU 79GB 39GB 40GB

Table 4.1: Google Colab: Disk space information

Model name CPU MHz cache size CPU cores

CPU: 0 Intel(R) Xeon(R) CPU @ 2.20GHz 2200.162 56320 KB 1

CPU: 1 Intel(R) Xeon(R) CPU @ 2.20GHz 2200.162 56320 KB 1

Table 4.2: Google Colab: CPU information

MemTotal MemFree MemAvailable

∼13.30 GB ∼10.61 ∼12.46

Table 4.3: Google Colab: Memory (RAM) information

2https://colab.research.google.com/
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Figure 4.1: Google Colab: GPU Information

We could turn the GPU on or off in our colab environment. The CPU and memory

specifications are same if we turn GPU on or off, however, Disk space specifications

changes with turning on or off the GPU.

4.1.3 Results

We performed multiple experiments with machine learning and deep learning based

algorithms with different sets of hyperparameters and logged the best empirical accuracy

score.

Machine Learning Algorithms

The results of the experiments are given in table 4.4.
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Algorithm Input Size Word_embeddings Accuracy %

DecisionTree 300 GloVe 53.05

DecisionTree 100 GloVe 53.35

LinearSVM 100 GloVe 85.19

LinearSVM 300 GloVe 90.92

LogisticRegression 100 GloVe 83.97

LogisticRegression 300 GloVe 89.78

GaussianNB 100 GloVe 28.73

GaussianNB 300 GloVe 29.84

KNeighborsClassifier 300 GloVe 76.59

RandomForest 100 GloVe 71.22

Table 4.4: Machine Learning Algorithms Results

LinearSVM with 300-dimension embeddings size gives the best accuracy of 90.92%.

Feed-forward Neural Networks

We performed multiple experiments with Feed-forward networks with different hyper

parameters but we also kept some hyperparameters constant in all experiments. Table

4.5 shows the hyperparameters of FFNN.

Word

Embeds
n_layers n_neuron ActFunc

Batch

size

Loss

function
Optimizer LR

Glove 4 [32,64,128,256] ReLU 1024 Sigmoid Adam 0.001

Table 4.5: Feed-forward Neural Network: fixed hyperparameters

These hyperparameters are kept fixed as their counter parts works almost the same.

Keeping these hyperparameters also reduce our search space. We used GloVe embed-

dings as it generally gives best results over other embedding algorithms like Word2vec.

Generally, a neural network with large number of layers results in better performance

but we have data where data distribution is smaller so we have to keep minimum number

of layer. We heuristically select four hidden layers in our network. Empirically speaking,

research shows that ReLU works best as activation function in hidden layers. Sigmoid
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loss function is better a option when we have 2 number of classes. Adam optimizer is

the gold standard of all optimization algorithms and learning rate is selected as 0.001

arbitrarily.

The result of Feed-forward neural networks experiments are in table 4.6.

Epochs Input Size Accuracy % Dropout

10 100 79.73 No

10 300 85.73 No

30 100 72.22 on layer (1,2,3,4)

30 300 87.13 on layer (1,2,3,4)

30 100 89.03 on layer (2,3,4)

30 300 92.76 on layer (2,3,4)

30 100 89 on layer (3,4)

30 300 92.67 on layer (3,4)

30 100 90.54 on layer (4)

30 300 92.24 on layer (4)

Table 4.6: Feed-forward Neural Networks: Results

The larger number of embedding size means more information. This is the reason

that 300 dimension embeddings perform better than their 100 dimension counter part

experiments. Applying dropout on the final layers increases the accuracy and prevent

the model from overfitting.

Long-short Term Memory (LSTM)

LSTM models with different hyperparameters are trained and logged the accuracy. Some

hyperparameters are kept constant (see table 4.8) as it does not have significant impact

on the accuracy of the model.

Epochs Input Size n_neuron ActFunc
Loss

Function
Dropout Optimizer LR

Gradient

Clipping

10 100 512 ReLU Sigmoid Yes Adam 0.001 Yes [5]

Table 4.7: LSTM: fixed hyperparameters
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Different experiments were performed and found that the 10 number of epochs are

enough for our task. Messages in out dataset are shorted so we keep the input size to

100 tokens to tackle all input sizes. Number of neuron in hidden layers are selected as

512 as the problem in hand is not that complex so we do not need any extra neurons as

it will increase the training time and the risk of overfitting. ReLU is used as activation

function as research shows that it empirically converges faster. We also used the Dropout

with probability 0.5 to overcome the problem of overfitting. Adam optimizer is chosen

as it helps the model to converge faster and overcome local minima problem up to great

instinct. Learning rate is selected as 0.001 arbitrarily. We used gradient clipping because

the LSTM models are often faces exploding gradient problem due to its backpropagation

in time nature during parameters optimization. If gradient size on a neuron gets bigger

value than 5 then that gradient value will be cut down to 5. If gradient value is smaller

than 5 then it will remain the same. We do not use any word-embeddings here, the

model learn the embeddings during training itself.

num_LSTM_layers Bi-Direction Batch_size Accuracy %

1 No 1024 89.94

2 No 1024 93.97

3 No 1024 94.03

4 No 1024 93.95

1 Yes 1024 36.21

2 Yes 512 93.08

3 Yes 512 91.59

4 Yes 512 94.14

Table 4.8: LSTM: Results

We trained simple LSTM and Bi-directional LSTM networks with different number of

layers and the result are logged in Table 4.8. We used 1024 batch size when the network

was relatively smaller but when the number of parameters increased due to increasing

number of layers or changing the nature of the network to bi-directional, we used 512

batch size as we have limited amount of memory on our experimental environment.

Increasing the number of layers increased the capacity of the model which increases the

accuracy. We get our best accuracy score of 94.14% when number of layers are 4 and
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the network is bi-directional. The bi-directional nature of the model give the ability to

look for the context from the future words in the sentence as well. The simple LSTM

just look for the context and relationship in the previous words in the sentence.

Transform based models

We trained three famous transformer based models: BERT, RoBERTa, and XLNet.

Model Epochs Input Size Batch_size Accuracy % training time GPU

RoBERTa 1 128 tokens 8 94.84 3 h 49 m 05 s K80

BERT 1 256 tokens 8 95.67 4 h 34 m 57 s K80

XLNet 1 256 tokens 8 95.35 1 h 01 m 51 s T4

Table 4.9: Transformed Based Models: Results

We trained transformer based models i.e. RoBERTa, BERT, and XLNet for 1 epoch

and the model converged due to the simplicity of the problem. The messages lengths

are shorter so we kept the input token size as 128 or 256. We kept batch size as 8

because these networks have millions of parameters and we only have 12GB of memory

available for our model and data. Initially, we were assigned the K80 GPU when we were

training RoBERTa and BERT models which is slower than the T4 GPU. When we were

training the XLNet, the Google Colab has assigned T4 GPU for it hence the training

time of XLNet is around 4 times shorter than the training time of BERT and RoBERTa.

Result are logged in Table ?? for comparison. Accuracy of these models are closer to

each other. All models uses attention mechanism to better capture the context and

semantic relationship between words. We get highest accuracy of 95.67% from BERT

model but the training time is slightly higher than RoBERTa which are trained on the

same K80 GPU. Our best model from the accuracy point of view is BERT among all

other machine learning and deep learning based models.
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4.2 Conversational AI System

4.2.1 Dataset

There is no such dataset available for conversation system of our work, so we created our

own dataset. The dataset of conversational system contains two types of data: NLU

data and Conversation stories.

NLU data contains prospects text messages examples with their intent (class) and en-

tities. There are total 35 intent classes. Some of them are ask_salary, job_requirements,

meeting_schedule, company_info, role, etc.

ask_salary means when the prospect ask for salary information. Some examples from

dataset are:

- What’s the salary for this role?

- what is the expected salary for this job?

- may I know about the salary for this opportunity?

- may i ask about the salary?

- it would be good if i get the idea about the salary for this job.

job_requirements intent means that when the prospect ask about the requirements of

the job. Some example from the dataset are:

- can you share the requirements for this Post?

- what are the job requirements?

- what is the required qualification?

- what is the required experience?

- minimum required experience?

meeting_schedule intent means that when the prospect schedule a meeting with the

recruiter. Some example from the dataset are:

- I’ve schedule it for Wednesday 13th this week.

- Sure. I have set the time on Friday from 10:00 PM to 10:30 PM. Can you

please tell me about the company and its background for the better context?

- I just noticed that there isn’t any options for 3pm, so I picked 9:30pm for

May 19,2021
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- What about May 19, 2021 at 3PM Pakistan time?

- Hi let’s connect at 9 pm on Tuesday May 18 if you have that slot open.

In the company_info intent, the prospect asks about the company. Just like that, in the

role intent the prospect asks about the job/position/role? There are total 783 number

of examples in the dataset. Some of the examples are human written while some are

generated using Machine Learning with the help of paraphrasing by using pre-trained

paraphrase model Pegasus 3.

Conversation stories are conversations patterns between the prospect and the re-

cruiter. A typical conversation starts with greetings and ends with goodbye message.

The simplest conversation story is when the recruiter sends job advertisement/offer mes-

sage to the prospect and the prospect is not interested in the offer due to some reasons:

see the following story from dataset.

- story: not interested path

steps:

- intent: not_interested

- action: utter_share_oppurtunity

The first message received by the conversational system from the prospect is classified

as not_interested intent. Then the system takes an action and message the prospect to

share the job opportunity with others. A more complicated conversation story would

be like, when the recruiter sends job offer/advertisement message to the prospect and

the prospect accept the offer but ask for complete job description. The conversational

system send the job description and the prospect affirms it. The conversational system

ask about meeting time and the prospect suggest a time slot. Conversational system

confirms the meeting. The conversational system ask the prospect if she/he has other

question to ask, the prospect reply with a deny message and the conversation ends with

a good bye message from the system. See the story below which is taken from the

dataset:

- story: Affirm and meeting schedueled

steps:
3https://huggingface.co/tuner007/pegasus_paraphrase
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- intent: interested+job_description

- action: action_job_description

- intent: affirm

- action: utter_ask_meeting_time

- intent: meeting_schedule

- action: action_meeting_confirmed

- action: utter_anything_else

- intent: deny

- action: utter_goodbye

We have defined total of 14 conversation stories in our stories dataset which is enough

for our work.

4.2.2 Experimental Setup

We use a Laptop with the following specifications for our experiments. CPU information

4.10 and RAM 4.11 information are as follows.

CPU Intel(R) Core(TM) m3-7Y30 CPU @ 1.00GHz

Base speed: 1.61 GHz

Sockets: 1

Cores: 2

Logical processors: 4

Virtualization: Enabled

L1 cache: 128 KB

L2 cache: 512 KB

L3 cache: 4.0 MB

Table 4.10: Local Setup: CPU Information
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Memory 8.0 GB

Speed: 1600 MHz

Form factor: Row of chips

Hardware reserved: 116 MB

Table 4.11: Local Setup: Memory Information

The software tools in 4.12 are used:

Rasa SDK Version 4 3.1.1

PyCharm 5 2022.1 (Community Edition)

Python Version6 3.8.13

Operating System Windows-10-10.0.19044-SP0

Duckling 7

Table 4.12: Local Setup: Software Requirements

The conversational system is trained with these resources.

4.2.3 Results

RASA trains two models for conversational system. An NLU model for intent classifica-

tion and a core model for stories in conversations. We calculated the accuracy, precision,

recall, and f1-score of the model: see table 4.13.

Accuracy Precision Recall F1-score

Macro 0.99 0.99 0.98 0.98

Micro 0.99 0.99 0.99 0.99

Weighted 0.99 0.99 0.99 0.98

Table 4.13: Intent Classification: Results

The confusion matrix of intent classification model is shown in 4.2.
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Figure 4.2: Intent Classification: Confusion Matrix

The model achieves a very good accuracy, precision, recall, and f1-score. The conver-

sation between recruiter and prospect is often limited to the domain. This causes the

problem to be relatively easier to solve for the model. Also, majority of the data is

generated with machine learning which also causes the model to achieve high scores.

The core model is trained on stories. Core model also achieves better results: see table

4.14.

Precision Recall F1-score

Macro 0.88 0.87 0.87

Micro 0.96 0.92 0.94

Weighted 0.94 0.92 0.92

Table 4.14: Stories: Results
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Chapter 4: Experiments & Results

The confusion matrix of the story model is shown in figure 4.3.

Figure 4.3: Intent Classification: Confusion Matrix

The stories models also achieves better evaluation scores as the domain is not very

broader. The conversations are not very sparse and hence stories are closer to each

other.
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Chapter 5

Conclusion and Future Work

This research is focused on maximizing the throughput of recruiter by automating the

conversation between the candidate and recruiter by an end-to-end conversational AI

system. The end-to-end conversational system is developed using RASA Open Source

framework. The conversational system consists of two major components: Natural

Language Understanding (NLU) and Natural Language Generation (NLG). The NLG

components understands the users (candidate) messages and the NLG system responds

to those messages.

This research also covers another important aspect of this system that is increasing the

chance to get high quality candidates for the open position in company by measuring

the quality of advertisement message.

The work done in this thesis is extensively broader where from determining the quality

of a message till the scheduling meeting on Google Calendar is performed automatically.

But this work can be extent to add additional functionality to the system. In our system,

the first message (advertisement message) sent by the recruiter is written manually. The

future work can include a system where the first message should be generated by AI

system and the recruiter won’t have to write it. The recruiter would just fill a form which

contain the job name, company name, and other required field etc. and the system will

generate custom messages for each individual prospect.
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