
Biasness of World Leaders: A Sentiment
Analysis of World Leaders’ Twitter Data

By

Samir Khan

Fall-2019-MS-CS 00000319113 SEECS

Supervisor

Dr. Shah Khalid

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters

of Science in Computer Science (MS CS)

In

School of Electrical Engineering & Computer Science (SEECS) ,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(July 2023)

THESIS ACCEPTANCE CERTIFICATE

Signature: _________________________________

Name of Advisor: ___________________________

Date: _____________________________________

Date: _________________________________

Signature (Dean/Principal): ___________________

Date: ____________________________________

HoD/Associate Dean:________________________

Online Printing Date & Time: Thursday, 06 July 2023 19:46:56

Certified that final copy of MS/MPhil thesis entitled "Biasness of World Leaders: A
Sentiment Analysis of World Leaders’ Twitter Data" written by SAMIR KHAN, (Registration
No 00000319113), of SEECS has been vetted by the undersigned, found complete in all
respects as per NUST Statutes/Regulations, is free of plagiarism, errors and mistakes and
is accepted as partial fulfillment for award of MS/M Phil degree. It is further certified that
necessary amendments as pointed out by GEC members of the scholar have also been
incorporated in the said thesis.

04-Jul-2023

Dr. Shah Khalid

Publish Date & Time: Tuesday, 04 July 2023 , 13:39:33PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

i

Approval

Signature: ______________________

Date: __________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Signature: ______________________

Date: _________________________

Online Printing Date & Time: Thursday, 06 July 2023 19:47:20

It is certified that the contents and form of the thesis entitled "Biasness of World
Leaders: A Sentiment Analysis of World Leaders’ Twitter Data" submitted by SAMIR
KHAN have been found satisfactory for the requirement of the degree

Advisor : Dr. Shah Khalid

04-Jul-2023

Committee Member 1:Mr Bilal Ali

04-Jul-2023

Committee Member 2:Prof. Hasan Ali Khattak

04-Jul-2023

Publish Date & Time: Tuesday, 04 July 2023 , 13:39:33PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

ii

Dedication

This thesis is dedicated to me.

iii

Certificate of Originality

Student Signature: ______________

Online Printing Date & Time: Thursday, 06 July 2023 20:19:40

I hereby declare that this submission titled "Biasness of World Leaders: A Sentiment
Analysis of World Leaders’ Twitter Data" is my own work. To the best of my knowledge it
contains no materials previously published or written by another person, nor material
which to a substantial extent has been accepted for the award of any degree or diploma at
NUST SEECS or at any other educational institute, except where due acknowledgement
has been made in the thesis. Any contribution made to the research by others, with whom
I have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis. I
also declare that the intellectual content of this thesis is the product of my own work,
except for the assistance from others in the project’s design and conception or in style,
presentation and linguistics, which has been acknowledged. I also verified the originality of
contents through plagiarism software.

Student Name:SAMIR KHAN

Publish Date & Time: Tuesday, 04 July 2023 , 13:39:33PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

iv

Acknowledgments

In the name of Allah, the most beneficent and merciful. First of all, I would like to

thank Allah Almighty for his countless blessings and my parents who were always there

for me.

I would like to express my sincere gratitude to Dr. Shah Khalid and Dr. Bilal Ali for

supervising, motivating, and guiding me; to Dr. Hasan Ali Khattak for his support and

his valuable suggestions.

I would also like to thank Mr. Shaida Muhammad for his support.

Samir Khan

v

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Problem Statement . 3

1.3 Contributions . 4

1.3.1 Dataset . 4

1.3.2 Tweets Classification . 4

1.4 Thesis Organization . 5

2 Literature Review 6

2.1 Twitter Sentiment Analysis . 6

2.2 Lexicon Based Sentiment Analysis . 8

2.3 Machine Learning Based Sentiment Analysis 8

2.4 Sentiment Analysis of SDGs . 9

2.4.1 Summary . 10

3 Methodology 11

3.1 Machine Learning . 12

3.1.1 Decision Tree . 12

3.1.2 Logistic Regression . 16

3.1.3 K-nearest Neighbor . 17

3.2 Deep Learning . 20

vi

Contents

3.2.1 Feed-forward Neural Network . 20

3.2.2 Long short-term memory (LSTM) 24

3.2.3 Transformers . 26

4 Dataset 33

4.1 World Leaders . 33

4.2 Dataset Creation . 34

4.3 Tweets Preprocessing . 35

4.4 Dataset Labeling . 37

5 Results & Discussion 40

5.1 Experimental Setup . 40

5.2 Results . 41

5.2.1 Decision Tree . 42

5.2.2 Logistic Regression . 42

5.2.3 K-nearest neighbour . 42

5.2.4 FFNN . 43

5.2.5 LSTM . 44

5.2.6 BERT . 46

5.3 Summary . 46

6 Conclusion and Future Work 47

6.1 Conclusion . 47

6.2 Future Work . 48

vii

List of Abbreviations and

Symbols

Abbreviations

ML Machine Learning

DL Deep Learning

SA Sentiment Analysis

TSA Twitter Sentiment Analysis

SDG Sustainable Development Goal

viii

List of Figures

1.1 Sustainable Development Goals. Source https://sdgs.un.org/goals 2

2.1 Sentiment Analysis Taxonomy . 7

2.2 Literature comparison . 10

3.1 Abstract architecture diagram . 13

3.2 Architecture diagram . 14

3.3 Technology to layer mapping . 15

3.4 Log Loss cost function graph . 17

3.5 K-nearest Neighbor . 18

3.6 Euclidean Distance . 19

3.7 Manhattan Distance . 19

3.8 Gradient Descent . 23

3.9 Gradient Descent: Small vs Large learning rate 23

3.10 LSTM Cell . 24

3.11 LSTM Network . 25

3.12 Transformers: Encoder and Decoder . 27

3.13 Self-attention mechanism . 28

3.14 Multi-head self-attention . 29

3.15 How Residual Layers works . 30

3.16 Transformers: A detailed look . 30

ix

List of Figures

3.17 BERTbase and BERTlarge . 31

4.1 Tweets Distribution By World Leaders 36

4.2 Before Cleaning . 37

4.3 After Cleaning . 37

4.4 Tweets with Labels . 38

4.5 Tweets with Encoded Labels . 39

4.6 SDG Distribution . 39

5.1 SDG Distribution . 41

5.2 FFNN training loss: 500 epochs . 43

5.3 FFNN: Train vs Test loss . 44

5.4 LSTM: Train vs Test loss . 45

5.5 LSTM: Train vs Test exact accuracy . 45

5.6 BERT: Train vs Test exact accuracy . 46

x

List of Tables

4.1 World Leaders on Twitter . 34

5.1 System Information . 40

5.2 All models results . 41

xi

Abstract

The United Nations’ Sustainable Development Goals (SDGs) are a set of 17 goals that

were adopted in 2015 as a blueprint for a better and more sustainable future. The goals

are interconnected and address diverse global challenges such as poverty, inequality,

climate change, peace, and justice. World leaders play an integral role in creating

awareness and establishing policies that support attaining the goals. Understanding the

opinions of world leaders towards the SDGs can help the United Nations (UN) identify

areas of support and potential barriers to achieving the goals. Furthermore, it can be

used by policymakers to design strategies to accelerate progress toward the SDGs.

Twitter is a widespread social media platform founded in 2006 that allows users to send

short messages called "tweets" containing up to 280 characters. It has over 350 million

monthly active users as of 2023. Sentiment analysis on Twitter data can help researchers

understand public opinions, attitudes, and emotions toward a particular viewpoint or

an event. Researchers have been using Twitter data for multiple research purposes such

as sentiment analysis due to its popularity and public availability. For instance, stock

prices predictions, and public sentiments toward Covid19 outbreak

This study aims to classify world leaders’ sentiments on the 17 Sustainable Development

Goals (SDGs) using machine learning algorithms. English language Twitter data of

world leaders has been collected from January 2015 to February 2023 and then labeled

with SDGs ontologies. As per our research, there are no SDGs labeled world leaders’

Twitter data datasets publically available. We used a Python-based tool, SNScrape

library to fetch world leaders’ Twitter data. There are other procedures to label a

dataset but we prefer the ontology-based for this study since it is time efficient. This

study performs an empirical comparison of different machine learning algorithms and

evaluates effectiveness in classifying tweets based on their relevance to the 17 SDGs.

The results provide a comprehensive picture of world leaders’ views and opinions on the

xii

List of Tables

SDGs, as expressed on social media, which can be used to inform decision-making and

drive progress toward achieving the SDGs.

xiii

Chapter 1

Introduction

In 2015, the United Nations General Assembly established a set of 17 Sustainable Devel-

opment Goals (SDGs) to be achieved by 2030, aiming to encourage a more sustainable

and prosperous future for humanity. Despite the significance of these goals, there is

currently a scarcity of research examining the biasness or sentiment of Twitter users in

relation to the SDGs. Given that world leaders and heads of state possess the potential

to drive awareness and contribute to the attainment of these goals, it is essential to

investigate their biases or sentiments toward the SDGs. Twitter serves as a platform

where world leaders express their perspectives, and their tweets can be associated with

specific SDGs.

Sustainable Development Goals (SDGs) are a set of 17 interrelated goals, as seen in Fig-

ure 1.1 (the image is retrieved from [7]), and 169 targets, they encompass a wide range

of economic, social, and environmental dimensions, aiming to eliminate poverty, reduce

inequality, promote inclusive economic growth, ensure environmental sustainability, and

promote peace and justice. These goals build upon the Millennium Development Goals

(MDGs) and incorporate new dimensions such as climate change, sustainable consump-

tion and production, and peace-building. By setting targets to be achieved by 2030, the

SDGs provide a roadmap for governments, international organizations, civil society, and

other stakeholders to align their efforts and work collectively toward a more sustain-

able future. These goals also promote a participatory and multi-stakeholder approach,

encouraging partnerships and collaboration among governments, businesses, academia,

and civil society organizations.

Twitter sentiment analysis (TSA) refers to the examination of bias or sentiment ex-

1

Chapter 1: Introduction

Figure 1.1: Sustainable Development Goals. Source https://sdgs.un.org/goals

pressed in tweets towards a specific viewpoint. Given that tweets are concise and limited

in length, proper preprocessing techniques are necessary to prepare the data for analysis.

This preprocessing stage typically involves tasks such as removing irrelevant informa-

tion (e.g., URLs, hashtags, and mentions), tokenization to break the text into individual

words or tokens, removing stop words, and handling special characters and emoticons.

Preprocessing ensures that the tweet data is transformed into a suitable format for

subsequent sentiment analysis algorithms. Sentiment analysis is a field within natural

language processing that involves classification of text into various categories based on

the sentiments and opinions expressed by users. A sentiment or biasness can be quan-

tified as positive or negative. Text data for sentiment analysis is commonly collected

from social media platforms such as Twitter, Reddit, and others, where users express

their opinions on diverse topics. These platforms attract individuals from various do-

mains, including politics, business, sports, technology, and education, who utilize social

networks to share their views and publish news. Twitter in particular, is a widespread

social media platform founded in 2006 that allows users to send short messages called

"tweets" containing up to 280 characters1. It has over 350 million monthly active users
1https://developer.twitter.com/en/docs/counting-characters

2

Chapter 1: Introduction

as of 20232. Sentiment analysis on Twitter data can help researchers understand public

opinions, attitudes, and emotions toward a particular viewpoint or an event. Researchers

have been using Twitter data for multiple research purposes such as sentiment analysis

due to its popularity and public availability.

1.1 Motivation

The sentiment and biasness of world leaders have the potential to significantly influence

public opinion and shape policy decisions. [22] In the context of social media platforms

like Twitter, world leaders utilize these platforms to communicate their perspectives,

initiatives, and stances on various issues such as Sustainable Development Goals (SDGs).

However, there is a lack of comprehensive understanding regarding the sentiment and

biasness exhibited by world leaders through their Twitter data. The analysis of world

leaders’ Twitter data can provide valuable insights concerning the SDGs is of crucial

importance for the United Nations (UN) as it enables the identification of areas requiring

support and potential barriers that may hinder the achievement of these goals. Such

understanding can inform policymakers in the development of targeted strategies aimed

at accelerating progress toward the SDGs

1.2 Problem Statement

The sentiments expressed by world leaders have the potential to influence policy-making

processes about the Sustainable Development Goals (SDGs). However, there exists a

significant knowledge gap in comprehensively understanding the sentiments of world

leaders, particularly those that are publicly expressed. In this study, we leverage Twit-

ter, one of the prominent social media platforms, to gather data from world leaders

and conduct sentiment analysis specifically related to the SDGs. By analyzing their

sentiments, we aim to determine any baisness exhibited by world leaders towards the

SDGs.
2https://www.statista.com/statistics/303681/twitter-users-worldwide

3

Chapter 1: Introduction

1.3 Contributions

This thesis makes two significant contributions.

1.3.1 Dataset

In this study, we collected Twitter data from world leaders using a Python library -

SNScrape 3, and subsequently processed the data to remove unnecessary information,

including URLs and emojis, utilizing another library. More about dataset creation and

labeling will be discussed in the Dataset chapter.

1.3.2 Tweets Classification

To classify the tweets based on the 17 Sustainable Development Goals (SDGs), we

trained various machine learning and deep learning models, including Logistic Regres-

sion, K-Nearest Neighbor, Decision Tree, Feedforward Neural Network, Long Short-Term

Memory (LSTM) [4], and Bidi-Directional Encoder Representations from Transformers

(BERT) [11].

For the Logistic Regression classifier, we trained 17 binary classifiers, each corresponding

to a specific SDG category. The classifiers output probabilities indicating the association

between the tweet and the particular SDG.

The Decision Tree model employed the Gini algorithm [3] to construct the tree by

iteratively splitting the data based on the input features’ embeddings. The leaf nodes

determined the assigned categories for the input features, with GloVe embeddings used

for this model. The K-Nearest Neighbor (KNN) model calculated distances between the

tweets and the training examples, predicting the categories based on the closest training

tweets using a voting system.

The Feedforward Neural Network model learned a complex function between the input

features and the output categories. Training involved the backpropagation algorithm

and the Adam optimizer to update the weights and minimize the model’s loss function.

The LSTM model processed input text sequentially, word by word, taking into account

grammatical and structural information. It utilizes the Adam optimizer and backpropa-
3https://github.com/JustAnotherArchivist/snscrape

4

Chapter 1: Introduction

gation algorithm to obtain optimal weights. BERT, a transformer-based model, captured

word dependencies using self-attention mechanisms. It processed the input in parallel

while preserving structural information through positional embeddings.

To evaluate the models, we employed four different metrics: exact accuracy, macro

average accuracy, macro average precision, and macro average recall. These metrics

provided insights into the performance of the models in accurately classifying the tweets

based on the SDGs.

1.4 Thesis Organization

The thesis document is divided into the following six chapters.

1. Introduction: Provides motivation, problem statement, and contributions.

2. Literature Review: Summarizes recent related work.

3. Methodology: Explains machine learning and deep learning models.

4. Dataset Creation and Labeling: Describes data collection and labeling process.

5. Results and Discussion: Presents implementation details and experimental results.

6. Conclusion and Future Work: Concludes the thesis and suggests future research.

5

Chapter 2

Literature Review

The literature review for this study is structured into the following four sections.

2.1 Twitter Sentiment Analysis

Due to the abundance of easily accessible public data on Twitter, researchers have been

using Twitter data for a wide range of analyses. For instance, researchers collected 16

million tweets between September and October of 2019 to analyze the impact of Brexit

(a portmanteau of "British exit") on Britain currency exchanges and stock markets [19].

The team used Latent Dirichlet Allocation (LDA) based topic modeling along with the

VADER Python library to perform sentiment analysis. Latent Dirichlet Allocation is

one of the most commonly used topic modeling techniques. It is an unsupervised ma-

chine learning-based approach in nature. The team used human judgment to test model

performance. Another group of researchers collected 1.6 million tweets to analyze user

opinions about US Presidential Election 2020[24]. They collected the data using Twit-

ter API and then used Bidirectional Long Short-Term Memory (BiLSTM) to perform

sentiment analysis. In this paper [9] biasness of talk show hosts is identified regarding

their response to Panama Leaks in Pakistan. The dataset was created via the Twitter

Streaming API of Pakistani top 5 television shows’ hosts. Researchers used Support

Vector Machine and Naïve Bayes and got 71.4% and 65.6% accuracy on both models,

respectively. [23] used Twitter data to analyze mental diseases i.e. depression, anxiety,

bipolar disorder, ADHD, and PTSD. Twitter Sentiment Analysis (TSA) has also been

used for a variety of case studies to better understand product feedback and brand loy-

6

Chapter 2: Literature Review

alty ([10] [21]). These datasets are used in most of the recent studies to study product

feedback.

• Stanford Sentiment140 [2] - 1.6 million tweets

• US Airline [6] - 14,640 tweets

• IMDB Movie Reviews - 25,000 tweets

• Stanford’s IMDB Movie Reviews dataset - 50,000 tweets

• Cornell Movie Reviews [5] -10,662 tweets

Figure 2.1 shows different techniques currently used for sentiment analysis.

Figure 2.1: Sentiment Analysis Taxonomy

7

Chapter 2: Literature Review

2.2 Lexicon Based Sentiment Analysis

The lexicon-based sentiment analysis is conducted with a help of a word dictionary where

each word is annotated with polarity score - semantic orientation. The dictionary can

be manually and automatically created from seed words, which are mostly adjectives.

Seed words are a set of words with strong polarity. For the sake of discussion, we can

assume that in lexicon-based sentiment analysis, the text is represented as a bag of

words. Polarity is assigned to each word and phrase in the text and then a combining

function is used to find the sentiment of the whole text. One of the main advantages

of lexicon-based sentiment analysis is, one doesn’t need a dataset to perform it. This

type of sentiment analysis cannot perform well for novel vocabulary and contextual

information. One of the most commonly used lexicons is SentiWordNet [1], it has 6300

words and each word has a score from -100 to +100, representing the positive to negative

spectrum.

This [14] study has used lexicon-based sentiment analysis to examine people’s feelings

about Diabetes. The researchers collected 67421 tweets and used SentiStrength, a

lexicon-based open-source software to detect the polarity of tweets. Emojis - small

digital images for expressions have not been removed in pre-processing. The sentiment

analysis tool detected polarity in tweets text and emojis separately. The emojis are

given high weightage, such that a positive tweet with negative emoji will be considered

a negative sentiment.

2.3 Machine Learning Based Sentiment Analysis

The machine learning-based sentiment analysis starts with feature extraction and feature

representation using known algorithms. Machine learning algorithms can be broadly

categorized as supervised, unsupervised, and semi-supervised. Supervised learning is

generally used for classification tasks and requires a labeled dataset. Some of the com-

monly used supervised machine learning algorithms are SVM, Naive Bayes Maximum

entropy (NB-ME), K Nearest neighbor (KNN), and decision tree (DT). Creating a la-

beled dataset can be a tiresome task and unsupervised learning techniques resolve this

issue by clustering similar text for classification tasks. Semi-supervised learning is the

hybrid form of supervised and unsupervised learning techniques. A comprehensive study

8

Chapter 2: Literature Review

[8] has been done on sentiment analysis using machine learning techniques where the

researchers compare the performance of most commonly used classifiers on multiple

datasets. One of the key challenges the researchers have observed is finding or creating

a labeled dataset. Creating such datasets can be expensive and time-consuming. That

is why researchers have moved to unsupervised learning-based approaches.

Recently, researchers have been performing sentiment analysis using deep learning mod-

els. Deep learning models are different in nature than machine learning models in

such a way that they have more inner layers. Some of the most used deep learning

models are Recurrent Neural networks (RNN), Convolutional Neural Networks (CNN),

Long Short-Term memory networks (LSTM), and transformer-based models. Term Fre-

quency, Inverse Document Frequency (TF-IDF), and word embedding are used as input

features for Natural Language Processing (NLP) based deep learning model tasks. Sev-

eral studies, for instance, this [12] have shown that deep learning models outperform

the traditional machine learning models for example Naive Bayes and Support Vector

Machines. The researchers experimented with two different datasets and the results in-

dicate that context knowledge is important in sentiment analysis because it gives a deep

understanding of the problem. Another comparative study on deep learning models for

sentiment analysis is confirming the same claim [18]. The study reviews the latest re-

search papers on sentiment analysis using deep learning models(They are 32 in number).

The researchers collected the eight most commonly used datasets for sentiment analysis

and used them to train DNN, CNN, and RNN models - the most used deep learning

models. They also used different preprocessing methods for preparing inputs to study

their influence on the results: namely, word embedding and TF-IDF. The comparison

is not straightforward and depends on preprocessing and datasets but the accuracy has

been reported higher than those of traditional machine learning models.

2.4 Sentiment Analysis of SDGs

A study conducted by A. Ramesh [26] analysis of tweets from Indian politicians focusing

on SDG 16, which pertains to peace and harmony, was conducted. The study used the

BERT model to analyze tweets from eight prominent political leaders, achieving an

accuracy of 0.99%. The data collection process utilized the Tweepy library, resulting

in a total dataset of 504 tweets. However, one limitation of the study is the relatively

9

Chapter 2: Literature Review

small size of the dataset, which can impact the generalizability of the findings.

Figure 2.2: Literature comparison

This study [27] aimed to gain insights into the progress of SDGs, particularly regarding

climate-related sentiment. A large-scale dataset containing 3 million live tweets was

collected using the Twitter Open API. The data collection process involved searching

for 47 keywords specifically related to three Sustainable Development Goals (SDGs):

SDG-7, SDG-11, and SDG-13. A small subset of the dataset was manually labeled as

either negative or positive sentiment. To analyze the sentiment of the collected tweets,

pre-trained BERT, lexicon-based, and NLP techniques were used. The evaluation of

these models delivered an accuracy of 69%.

2.4.1 Summary

In this chapter, we conducted a comprehensive literature review focusing on three main

areas: sentiment analysis, sentiment analysis using Twitter data, and Twitter sentiment

analysis on SDGs. We examined recent studies, their findings, limitations, and high-

lighted the unique aspects of our research in comparison to existing work. Additionally,

we explored the taxonomy of sentiment analysis in detail. The next chapter will dis-

cuss details of the machine learning and deep learning models that will be employed for

training on the dataset.

10

Chapter 3

Methodology

The methodology of the thesis involved several steps. Firstly, a dataset was created

by collecting tweets from world leaders on Twitter. These tweets were gathered using

the SNScrape Python library. Once the dataset was collected, it was labeled using

SDGs (Sustainable Development Goals) ontology. The SDGs provide a comprehensive

framework for addressing global challenges and achieving sustainable development. The

ontology consists of a set of predefined keywords or concepts related to each SDG, allow-

ing for the classification and labeling of tweets based on their relevance to specific SDGs.

More on this is discussed in Chapter 4. After labeling the dataset, machine learning

and deep learning models were trained using various algorithms. These included deci-

sion trees, K-nearest neighbors (KNN), logistic regression, BERT (Bidirectional Encoder

Representations from Transformers), LSTM (Long Short-Term Memory), and a feed-

forward neural network. Each model was trained using the labeled dataset. The models

were optimized through parameter tuning and cross-validation techniques to improve

their performance and generalization abilities. The trained models were then evaluated

using appropriate evaluation metrics such as accuracy, precision, and recall. These met-

rics provided insights into the effectiveness of each model in classifying tweets based on

their alignment with specific SDGs. More on this is discussed in Chapter 5.

The layered architecture, depicted in figure 3.1, comprises three primary layers: the

application layer, business logic layer, and data management layer. A more detailed

representation of this architecture can be found in figure 3.2. The architecture diagram

is further categorized into two sections: the offline process and the online process. The

offline process involves dataset creation and labeling, while the online process is utilized

11

Chapter 3: Methodology

to analyze sentiments in social media data using the trained models. Within the applica-

tion layer, three components are present. The Social API Linker establishes connections

with social media platforms to fetch relevant data. The Output Dispatcher component

displays meaningful outputs, such as tweet labels. The Social Media Loader component

serves a similar purpose to the Social API Linker, but is specifically designed to retrieve

smaller amounts of recent data compared to the latter, which can fetch large volumes of

data. The data management layer is responsible for dataset creation and labeling. The

Social Media Data component gathers data from Twitter and passes it to subsequent

components for Twitter preprocessing and labeling, resulting in a labeled dataset. This

dataset is then stored locally or in Google Drive for training the models. In the Busi-

ness Logic Layer, the Data Loader fetches data from Google Drive or local storage, and

the Data Encoder encodes the data in a format suitable for machine learning and deep

learning models. The Real-time Data Loader module retrieves data from social net-

works to analyze sentiments related to SDGs using the Social Media Loader component.

The Stream Manipulator component removes hashtags and URLs from the text data,

followed by selecting an appropriate model through the Model Storage component to

determine the sentiment of the text. Figure 3.3 illustrates the mapping of technologies

into the layered architecture.

3.1 Machine Learning

We used three famous algorithms on our dataset: Logistic Regression (LR), K-

nearest Neighbor (KNN), Decision Tree (DT).

3.1.1 Decision Tree

Decision Trees (DTs) are widely used algorithms for regression and classification prob-

lems. DTs are non-parametric algorithms. DTs work by learning some simple rules from

the data and classifying new examples based on those rules. The simplicity of Decision

Trees algorithms makes them easy to interpret and visualize. Logistic Regression and

other parametric machine learning algorithms require data to be normalized to work

well. DTs don’t need any normalization. DTs are also capable of performing multi-label

classification. A generic problem with the DTs is overfitting when the tree becomes

over-complex.

12

Chapter 3: Methodology

Figure 3.1: Abstract architecture diagram

There are various Tree algorithms to be used. We used CART (Classification and

Regression Trees) which uses gini impurity.

Algorithm 3.1. Training data: {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Trained deci-

sion tree model Calculate GloVe word embedding of all words Calculate tweets embed-

ding by averaging word embedding of text Split dataset for training and testing 85:15

CARTCART FnFunction: data all samples in data have the same label a leaf node with

label as the common class stopping criterion is met a leaf node with the most frequent

label in data Find the best split attribute and value based on Gini impurity Split data

into two subsets: dataleft and dataright Create a decision node with the split attribute

and value Set the left child of the decision node as CART(dataleft) Set the right child

of the decision node as CART(dataright) the decision node

TrainCARTTrainCART FnFunction: training_data training_data

{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}

13

Chapter 3: Methodology

Figure 3.2: Architecture diagram

14

Chapter 3: Methodology

Figure 3.3: Technology to layer mapping

15

Chapter 3: Methodology

3.1.2 Logistic Regression

LR is a linear classifier that uses a logistic function on top of Linear Regression.

LR(z) = 1
1 + e−z

(3.1.1)

Equation 3.2.2 is referred to as the sigmoid function. In 3.2.2, e is Euler’s constant

whose value is 2.71828. z is the output of linear regression function from equation

3.1.2. The output of a sigmoid function is a probability distribution whose values are

between 0 and 1.

z = β0 + β1X1 + β2X3 + β3X3 + ... + βmXm (3.1.2)

B are the parameters are linear the linear function while X are the features in the input

data. Logistic Regression utilizes the Log Loss function to compute the cost.

Log Loss = 1
m

∑
(x,y)∈D

−y log(y′) − (1 − y) log(1 − y′)

Algorithm 3.2. Training data {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Trained logistic

regression parameters θ

Dataset preprocessing Tokenize text with gensim tokenizer Calculate GloVe word em-

bedding of all words Calculate tweets embedding by averaging word embedding of text

Split dataset for training and testing 85:15 Initialize parameters θ randomly or with

zeros Set the learning rate α Set the number of iterations N

i = 1 to N Compute the hypothesis: hθ(x) = 1
1+e−θT x

Compute the cost function:

J(θ) = − 1
n

∑n
i=1

(
y(i) log(hθ(x(i))) + (1 − y(i)) log(1 − hθ(x(i)))

)
Compute the gradi-

ents: ∂J(θ)
∂θj

= 1
n

∑n
i=1(hθ(x(i)) − y(i)) · x

(i)
j Update parameters: θj = θj − α · ∂J(θ)

∂θj

for all j

trained parameters θ

LR is a binary classifier that distinguished between two classes. The loss function

calculates the distance between actual labels in data and the prediction of the model.

The prediction of the model is a value between 0 and 1. The closer prediction gets to

the actual value, the lower the cost gets, and vice versa. see figure 3.4

LR is a binary classification algorithm i.e. it can be used to classify objects in two

classes only. We are dealing with multi-class problems. Our problem consists of 17

16

Chapter 3: Methodology

Figure 3.4: Log Loss cost function graph

mutually exclusive classes which makes it a multi-label classification problem. We use

the one-vs-rest (OvR) strategy to make the algorithm capable of dealing with multi-label

classification problems. We use the L2 regularization penalty to overcome the overfitting

problem. The loss function becomes 3.1.3 after adding the L2 regularization penalty.

Loss regularized = (1
m

∑
(x,y)∈D

−y log(y′) − (1 − y) log(1 − y′)) + λ

2m

∑
i=1

βi) (3.1.3)

The regularized loss function is used to train the model.

3.1.3 K-nearest Neighbor

K-nearest Neighbor (KNN) is another widely used machine learning algorithm mainly

used for classification problems. KNN works by calculating the distance between test

data points and all training data points. KNN decides the class of a data point by

looking at its nearest point. The number of closest points to look at is called K and

is decided before starting the algorithm. The value of K is a hyperparameter and its

optimum value can be calculated by the hit-and-trial method.

Keeping the value of K very small tends to be under-fitting. The higher value of K

tends to overfit. Thus an optimum value is required. If the value of K is selected as n

then the class of the data point is decided by majority vote among the classes of nearest

n points.

In 3.5, the green point needs to be classified. The number of K is the radius of the

17

Chapter 3: Methodology

Figure 3.5: K-nearest Neighbor

circle. If we take the value of k as 3 then the point is classified as a triangle based on

majority votes. If the value of k is selected as 5, then the predicted class for the data

point is square.

Various distance functions can be used to calculate the distance. Two widely used

distance functions with KNN are Euclidean Distance 3.1.4 and Manhattan Distance

3.1.5.

d (p, q) =

√√√√ n∑
i=1

(qi − pi)2 (3.1.4)

The Euclidean Distance finds the straight distance between two points p and q. See

figure 3.6.

The Manhattan Distance can be calculated by equation 3.1.5

d (p, q) =
n∑

i=1
|qi − pi| (3.1.5)

The Manhattan Distance block-wise distance between two points p and q: see figure 3.7.

There is no training process in the KNN. The KNN just remembers all training examples

18

Chapter 3: Methodology

Figure 3.6: Euclidean Distance

Figure 3.7: Manhattan Distance

19

Chapter 3: Methodology

and predict new example by calculating the distance between training examples and new

example.

Algorithm 3.3. Training data: {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Unlabeled test

data: xtest Predicted class label for xtest: ŷtest

i = 1 to n Compute the distance between x(i) and xtest

Sort the distances in ascending order and select the top 5 nearest neighbors Count the

frequency of each class label among the 5 nearest neighbors ŷtest = the class label with

the highest frequency

3.2 Deep Learning

Deep learning methods are well-suited algorithms for solving complex supervised and

unsupervised problems. In supervised learning, deep learning models learn a mapping

function from input data to the labels by minimizing some objective function. Deep

learning models achieve it by iterating through data. Mathematically speaking, it be-

comes an optimization problem.

We apply different deep learning techniques to our dataset including feed-forward neural

network, LSTM, and Transformer based state of the art models.

3.2.1 Feed-forward Neural Network

Feed-forward neural network (FFNN) is a parametric type machine learning algorithm.

In supervised machine learning, FFNN learns a complex mathematical mapping from

input data to data labels. In an unsupervised setup, the algorithm tries to learn the

underlying data distribution of input data. FFNN performs this learning by continuously

optimizing a set of weights W in the network.

FFNN consists of two passes: forward pass and backward pass. In the forward pass, the

input data is fed as a real value vector to the input layer of the FFNN.

a(l) = σ
(
W al−1 + b

)
(3.2.1)

In equation 3.2.1, the W represents the weights/parameters of the network, b is bias and

a represents the activation of neurons. l represent the current layer and σ represents

20

Chapter 3: Methodology

the activation function. In the first layer (input layer), the activations a becomes the

data x. In the remaining layers, the activation a of the previous layer is multiplied by

the weight matrix of the current layer and added with the bias of the current layer.

Algorithm 3.4. Data: {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Trained FFNN model

parameters

Initialize the weights and biases of the FFNN randomly

epoch = 1 to num_epochs (x(i), y(i)) in training_data Compute the activations of hidden

layers and output layer using current parameters Compute the loss or cost function based

on the prediction and true label Update the weights and biases using backpropagation

and gradient descent

Tons of activation functions are proposed in machine learning literature. These acti-

vation functions are problem-specific and layer-specific in the network. For example,

ReLU 3.2.4 is used in all layers except the final layer instead of sigmoid 3.2.2 and tanh

3.2.3 function because empirically ReLU works really well on the middle layers. The

activation function of the final layer is task specific. For example, for binary classifica-

tion tasks, sigmoid is preferred, or sometimes there is no activation function at all on

the final layer.

sigmoid(z) = 1
1 + e−z

(3.2.2)

tanh(z) = ez − e−z

ez + e−z
= 1 − e−2z

1 + e−2z
(3.2.3)

ReLu(z) = max(0, z) (3.2.4)

In the forward pass, the last step is calculating the loss of the network. The loss is the

difference between the actual labels and the predicted labels. Loss functions are also

task-specific. A common choice for regression problems is Mean Square Error (MSE)

3.2.5.

MSE = 1
n

n∑
i=1

(ŷi − yi)2 (3.2.5)

21

Chapter 3: Methodology

In equation 3.2.5, n represents a number of examples in the batch, ŷ is the prediction

and y is the actual class label. And a common choice for classification tasks is Cross

Entropy Loss 3.2.6.

CEL = −
C∑

i=0
yi.log(ŷi) (3.2.6)

The cross-entropy loss function calculates the difference between two probability dis-

tributions: the actual class labels and the predicted class probabilities for each class.

The predicted class probabilities are calculated by applying a softmax function on the

output of the network.

σ(zi) = ezi∑K
j=1 ezj

for i = 1, 2, . . . , K (3.2.7)

e is Euler’s constant and K represent the number of classes. The softmax function

calculates the probability distribution of all classes for each example. The second phase

of the FFNN is the backpropagation algorithm. The backpropagation algorithm finds

the contribution of error of each weight and bias parameter. The backpropagation

combined with an optimization algorithm like gradient descent, Adam, etc., updates the

weights of the network by backpropagating the error through the network, starting from

the cost/loss function till the weights of the first layer.

There are various optimization algorithms available. The simplest one is gradient descent

3.2.8.

wnew = w − α
δL

w

bnew = b − α
δL

b

(3.2.8)

In gradient descent, updated weights wnew are obtained by subtracting the error contri-

bution of the weight w to loss. The error rate of the weight w is also multiplied by the

learning rate α which caused the weight to be updated gradually toward its optimum

value.

The α decides the step size of the network toward the optimal weights: see figure 3.8.

The value of the α should be chosen very carefully as a large value causes the network

to miss the optimum value and a small value slower down the convergence: see figure

3.9.

22

Chapter 3: Methodology

Figure 3.8: Gradient Descent

Figure 3.9: Gradient Descent: Small vs Large learning rate

23

Chapter 3: Methodology

The FFNN can contain any arbitrary number of layers. More layers mean more complex

functions to learn. But as the number of layers increases, the network faces a vanishing

gradient problem. When the network faces a vanishing gradient, the weights in the

earlier layer are not updated and the network does not optimize. If we keep fewer

number of layers in the network, the model learns a very simple function which may not

be the ideal model for the problem. choosing the optimal number of layers and number

of neurons in each layer are difficult tasks and they can be achieved by trial and error

method.

3.2.2 Long short-term memory (LSTM)

LSTM is a type of Recurrent Neural Network (RNN) where the network uses memory

cells to retain long-term information. Even though RNNs are designed to capture pre-

vious context and dependency but simple RNNs can’t remember long-term information.

It loses information as the size of the input increases. The LSTM tries to tackle that

issue by introducing memory cells. The memory cells work really well to capture all

previous dependencies. As the input size increases in simple RNNs, the network also

faces vanishing and exploding gradient problems. LSTM is also good at avoiding that

issue up to some context.

Figure 3.10: LSTM Cell

An LSTM network is made up of multiple LSTM cells 3.10. An LSTM cell takes

information from the previous LSTM cell, performs some operations, and forwards it to

24

Chapter 3: Methodology

the next LSTM cell in the network: see figure 3.11.

Figure 3.11: LSTM Network

An LSTM cell is made up of multiple components called gates. The gates are used to

add/remove/update information in the LSTM cell.

ft = σ(Wf • [ht−1, xt] + bf)

it = σ(Wi • [ht−1, xt] + bi)

C̃t = tanh(WC • [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

(3.2.9)

The forget gate removes irrelevant information from the cell state. The cell state is

updated in the next cell in the network. The sigmoid function does this task in the

cell by updating the values of the cell state between 0 and 1. 0 means that particular

information needed to be removed completely. 1 means the information has to be kept

there as it is necessary information and needed to be passed on to the next cell. The

input gate selects new candidate information to be added to the memory cell. The

update gate updates information in the network. The LSTM cell has limited memory so

it removes the irrelevant information from the network and adds relevant information

from the current input and it goes on till the last timestamp of the network.

Algorithm 3.5. Data: {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Trained LSTM model

parameters

Initialize LSTM model parameters: weights and biases Set the learning rate α Set the

number of epochs N

25

Chapter 3: Methodology

i = 1 to N (x(i), y(i)) in training_data time step t in input sequence x(i) Perform forward

pass through the LSTM layer Compute the predicted output ŷt Compute the loss or

cost function based on ŷt and y(i) Perform backward pass through the LSTM layer

using backpropagation and gradient descent Update LSTM model parameters using the

computed gradients and learning rate

3.2.3 Transformers

Transformers are a type of deep neural network where a self-attention mechanism is

applied to capture long-term dependency on context. Transformers have the ability to

process the information in parallel, not like RNNs, which enables the transformers to get

full advantage of GPU parallel processing. Moreover, the self-attention mechanism is

better at dependency capturing as it only focuses on the relevant word in a very long sen-

tence. Transformers possess long-term memory. Theoretically speaking, the attention

mechanism can capture infinite dependency of the input, thus transformers-based model

i.e. BERT has been used for stock market sentiment analysis [16], the impact of Coro-

navirus on social life [25], Twitter sentiment analysis[20] and other Natural Language

Processing (NLP) based tasks [17].

Transformers are made up of two components: Encoder and Decoder. see figure 3.12.

The encoder works as a feature extractor for transformers and the decoder uses those

features to generate output domain sentences. Hence we are working on the classifica-

tion problem, we will be using the encoder part as a feature extractor to perform text

classification. The encoder is made-up of different parts. First of all the input text is to-

kenized with WordPiece tokenizer. Word-Piece uses a sub-word tokenization technique

where the sentences are split into words and words are further split into sub-words if

needed. Those small words or sub-words are called tokens. Each token in the vocabulary

has its own numeric id. The tokens are replaced with their respective numbers in the

vocabulary and fed into the input layer of the encoder. The numeric ids are called Input

Embeddings.

The transformers process input embeddings in parallel which causes the transformers to

lose the sequential information of the input sentence. This problem can be addressed by

positional encodings. Positional Encoding 3.2.10 uses sin and cos functions to achieve

this.

26

Chapter 3: Methodology

Figure 3.12: Transformers: Encoder and Decoder

27

Chapter 3: Methodology

PositionalEncodingpos,2i = sin(pos/100002i/dmodel)

PositionalEncodingpos,2i+1 = sin(cos/100002i/dmodel)
(3.2.10)

i is the index of the target dimension in the input vector. The sin function is used

for even index numbers, cos function is used for odd number index to calculate the

positional encodings. The positional encodings vector is added to input embeddings to

calculate the final input. The input is fed to three different feed-forward networks to

generate three distinct vectors called Query, Key, and Value.

Figure 3.13: Self-attention mechanism

The Query and Key values are multiplied to get the attention scores matrix. The score

matrix is scaled down by the square root of the dimension of the query/key vectors to

avoid exploding gradient problems due to large multiplications. The scaled attention

score shows how much attention each token in the input sentence gives to each token

in the Finally the scaled attention scores are converted to probabilities by applying

the softmax function and finally multiplying those probabilities with a value vector to

complete the self-attention mechanism. All these operations can be written as equation

28

Chapter 3: Methodology

3.2.11.

SelfAttention(Q, K, V) = softmax(QKT

√
d

) ∗ V (3.2.11)

Multiple self-attention heads are parallelly grouped together to form a multi-head at-

tention mechanism: see figure 3.14. Each attention head in self-attention has its own

Query, Key, and Value matrices.

Figure 3.14: Multi-head self-attention

Outputs of all heads are concatenated and applied a pointwise feed-forward network to

it in the next step. Residual Layer (RL) 3.15 is applied to output at this step and input

embeddings at this stage. RL helps in stabilizing the training and reducing the training

time significantly. RL is followed by Layer Normalization where the output is further

normalized. A couple of linear layers with ReLU 3.2.4 activation function is applied to

further process the information. Finally, another RL is applied which takes the output

of the previous layer and the output of the pointwise feed-forward network and followed

by final Layer Normalization to get the meaningful extracted features from the input

text.

There are various models that use Transformers Encoder, Decoder, or Both to perform

29

Chapter 3: Methodology

Figure 3.15: How Residual Layers works

Figure 3.16: Transformers: A detailed look

30

Chapter 3: Methodology

certain tasks. We will be using the BERT encoder to classify this work. BERT stacks

multiple layers of encoders. BERT has two variations: BERTbase and BERTlarge.

Figure 3.17: BERTbase and BERTlarge

BERTbase stacks 12 encoder layers while BERTlarge stacks 24 encoder layers. The

hidden size of BERTbase is 768 and BERTlarge is 1024. The attention heads used by

BERTbase are 12 while BERTlarge uses 16 heads. Each attention has an output size of

64. BERTbase has 110 million trainable parameters while BERTlarge has 340 million.

We will be using Google Colab for our experiments that have a finite amount of GPU

memory. It is not possible to train BERTlarge due to a large number of parameters

so we will be training the BERTbase model only at the expense of a small margin of

accuracy.

Algorithm 3.6. Data: {(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))} Trained BERT model

Initialize BERT model architecture Initialize model parameters with random weights

Set the learning rate α Set the number of training epochs N

i = 1 to N (x(i), y(i)) in training_data Tokenize the input text x(i) and convert it to

input IDs Generate attention masks and segment IDs for the input Perform forward

pass through the BERT model Compute the predicted output ŷ Compute the loss or

cost function based on ŷ and y(i) Perform backward pass through the BERT model

31

Chapter 3: Methodology

using backpropagation and gradient descent Update BERT model parameters using the

computed gradients and learning rate

32

Chapter 4

Dataset

Chapter 4 of the thesis presents a comprehensive overview of the dataset utilized for

conducting experiments. It describes the procedures involved in dataset creation and

labeling, providing insights to ensure the dataset’s quality and relevance to the research

objectives. We will also discuss the cleaning and preprocessing techniques applied to

the dataset.

4.1 World Leaders

The selection of world leaders for the research posed a significant challenge following the

understanding of their influence on SDGs. To address this challenge, three prominent

surveys conducted by Statista and Twiplomacy for the year 2020 1, 2021 2 and 2022
3 were utilized. These surveys focused on identifying the most followed world leaders

on Twitter. For the purpose of inclusivity and diversity, the union of all surveys was

considered, resulting in a compilation of the top 15 world leaders, as seen in 4.1. It

is important to note that the term "world leaders" in this context refers specifically to

country heads.
1https://www.twiplomacy.com/twiplomacy-study-2020
2https://www.statista.com/chart/17898/world-leaders-with-the-most-followers-on-twitter/
3https://www.twiplomacy.com/top-50-world-leader-power-ranking

33

Chapter 4: Dataset

S.No World Leader Twitter ID Followers Country

1 Narendra Modi narendramodi 88.6M India

2 Joe Biden JoeBiden 37.2M USA

3 Recep Tayyip Erdoğan RTErdogan 20.5M Turkiye

4 Pope Francis pontifex 18.8M Vatican

City

5 Joko Widodo jokowi 19.5M Indonesia

6 Imran Khan ImranKhanPTI 19.2M Pakistan

7 Jair Bolsonaro jairbolsonaro 11.3M Brazil

8 Mohammed bin Rashid

Al Maktoum

HHShkMohd 11M UAE

9 Rania Al Abdullah QueenRania 10.1M Jordan

10 Volodymyr Zelenskyy ZelenskyyUa 7.2M Ukraine

11 Gustavo Petro petrogustavo 6.7M Colombia

12 Justin Trudeau justinTrudeau 6.4M Canada

13 Nayib Bukele nayibbukele 5.1M El Salvador

14 Nicolas Maduro NicolasMaduro 4.5M Venezuela

15 Gabriel Boric gabrielboric 1.9M Chile

Table 4.1: World Leaders on Twitter

4.2 Dataset Creation

In this research, we utilized the SNScrape Python library 4 to extract tweets from Twit-

ter. SNScrape offers a range of functionalities for scraping user profiles, posts, hash-

tags, and other relevant information from various social media platforms. Specifically,

SNScrape allows fetching data from the following platforms:

• Public posts from Facebook profiles and pages.

• User profiles, hashtags, and locations from Instagram.

• User posts and subreddits from Reddit.

• Tweets, hashtags, and profiles from Twitter.
4https://github.com/JustAnotherArchivist/snscrape

34

Chapter 4: Dataset

One of the notable advantages of SNScrape is its independence from additional special-

ized libraries during installation. It seamlessly integrates with Python version 3.8 or

higher, automatically managing the installation of its necessary dependencies. In our

data collection process, we supplied the usernames of world leaders’ Twitter accounts

and specified the timeframe from 2015 to 2023. SNScrape efficiently downloaded data

for each user individually and stored it in separate CSV files. Subsequently, we consoli-

dated these files to create a comprehensive dataset encompassing the data of all world

leaders.

Our data collection efforts resulted in a total of 50,270 tweets from world leaders. To

ensure a robust evaluation of our models, we partitioned the dataset into two distinct

subsets: a training set and a testing set. The training set accounted for 85% of the data,

while the remaining 15% constituted the testing set. This division allowed us to train

our models on a substantial portion of the dataset while maintaining an independent

set of tweets for evaluating their performance. By adhering to this division, we aimed

to accurately assess the effectiveness and generalization of our models on unseen data.

4.3 Tweets Preprocessing

Data collected from Twitter using the SNScrape library contained various elements such

as links, emojis, and other irrelevant information. It is essential to preprocess the data

by removing these elements as they can potentially impact the performance of machine

learning models. By eliminating links and emojis we aim to focus solely on the textual

content of the tweets. This preprocessing step helps streamline the analysis process and

enhances the accuracy and reliability of the machine learning models used for sentiment

analysis and bias detection.

In our data preprocessing pipeline, we utilized the tweet-preprocessor library 5, a Python-

based tweet processing tool specifically designed for cleaning tweets. By incorporating

this library, we were able to streamline our text cleaning process effectively. To re-

move unwanted elements from the tweets, we configured the parameters of the tweet-

preprocessor library to eliminate links, emojis, and smilies. Additionally, we imple-

mented a custom function that replaced the "@" and "#" symbols with an empty string,

ensuring that usernames and tags were included in the final text. This preprocessing step
5https://github.com/s/preprocessor

35

Chapter 4: Dataset

Figure 4.1: Tweets Distribution By World Leaders

36

Chapter 4: Dataset

was consistently applied to both the training and test examples, ensuring a standard-

ized and cleaned dataset for further analysis and model training. Retaining usernames

and hashtags in tweet preprocessing can offer valuable insights and preserve important

contextual information.

Here is a sample tweet from the dataset that contains hashtags and a link.

Figure 4.2: Before Cleaning

After the cleaning, the above tweet looks like this.

Figure 4.3: After Cleaning

4.4 Dataset Labeling

Labeling a large dataset of over 50,000 tweets manually requires substantial human

resources and time. To streamline the labeling process, we utilized an ontology dataset

consisting of 4,116 keywords to label the dataset automatically. This dataset is created

by Bautista-Puig and Mauleon (2019) [13]. Each tweet was searched for these keywords,

and if a keyword was found, the tweet was flagged as relevant to the corresponding

Sustainable Development Goal (SDG).

To encode the labels, an array of 17 labels, representing the 17 SDGs, was created. Each

tweet was assigned a single or more labels based on its association with the respective

SDG. A value of 1 was placed in the corresponding SDG column if the tweet contained

37

Chapter 4: Dataset

keywords related to that specific SDG; otherwise, a value of 0 was assigned. It is impor-

tant to note that a tweet can be related to zero or more SDGs, and multiple SDGs can be

represented by a single tweet. As a result of this labeling process, a dataset was generated

where each tweet was labeled with one or more of the 17 SDGs. The encoded labels are

represented by an array of 0s and 1s, such as [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1], where

each element corresponds to an SDG from 1 to 17. A value of 1 in a specific cell indicates

that the corresponding tweet contains keywords associated with that particular SDG.

A few examples of labels and encoded labels are shown in ??, and ??, respectively.

Figure 4.4: Tweets with Labels

In our analysis, it was observed that a significant proportion of the tweets (23%) is

focused on a single Sustainable Development Goal (SDG). This finding indicates that

world leaders often prioritize and emphasize a specific SDG in their discourse. Approxi-

mately 17% of the tweets addressed another SDG, while 10% touched upon seven SDGs.

About 1.3 percent of the tweets are not labeled, since they don’t belong to any of the

SDGs. For a comprehensive overview of the distribution, refer to Figure 4.6. The im-

balanced distribution of SDGs in the dataset presents a significant challenge, increasing

the complexity of addressing the issue.

38

Chapter 4: Dataset

Figure 4.5: Tweets with Encoded Labels

Figure 4.6: SDG Distribution

39

Chapter 5

Results & Discussion

This chapter explains the experimental setup, and results and discusses the results in

detail.

5.1 Experimental Setup

We carried out all the experiments on Google Colab. Google Colab provides us with

a free GPU having 12-16GB of CPU and GPU memory, respectively. All machine

learning experiments are performed on CPU while GPU was used for deep learning-

based approaches i.e. feed-forward neural network, LSTM, and BERT. The overall

relevant system information is logged in table 5.1.

Architecture x86_64

CPU(s) 2

Model name Intel(R) Xeon(R) CPU @ 2.20GHz

CPU MHz 2199.998

L1d cache 32K

L2 cache 256K

L3 cache 56320K

Memory 12.985 GBs

Table 5.1: System Information

The GPU information is provided in Figure 5.1.

40

Chapter 5: Results & Discussion

Figure 5.1: SDG Distribution

5.2 Results

We logged 4 evaluation metrics of the test set on all techniques: exact accuracy, average

accuracy, average precision, and average recall. The confusion matrix is not logged as

there are 17 categories and we have a multi-label problem. For multi-label problems,

independent confusion matrices are recorded for each category. It becomes challenging

to include or analyze 17 confusion matrices. The exact accuracy checks whether all

17 predicted labels are the same as all 17 true labels. Average accuracy calculates the

independent accuracy of each class on the test set and then calculates the average of it.

Average precision calculates the independent precision of each class on the test set and

then calculates the average of those values. The same goes for average recall [15]. All

model evaluation results on the test set are recorded in table 5.2.

Model Exact Accuracy Average Accuracy Average Precision Average Recall

Logistic Regression 47.9% 95.3% 69.2% 32.1%

K-nearest neighbour 45.1% 94.8% 68.9% 30.8%

Decision Tree 22.9% 90.4% 14.9% 17.3%

FFNN 51.2% 95.8% 63.3% 45%

LSTM 86.04% 99% 91.1% 83.6%

BERT 91.6% 99.4% 87.9% 97%

Table 5.2: All models results

Transformer-based BERT model outperforms all other models on all 4 evaluation met-

rics.

41

Chapter 5: Results & Discussion

5.2.1 Decision Tree

We trained Decision Tree models with different hyperparameters to get the best accuracy

but looks like DT is the worst choice for our problem. We empirically get the lowest

accuracy among all other models. We used Gini impurity to split the tree. The average

precision and average recall values are very low which indicates that the model often

selects 1’s as 0’s and 0’s as 1’s. The average accuracy is 90.43% but the exact accuracy is

only 22.91%, the reason for this could be because of the high imbalance in our dataset.

5.2.2 Logistic Regression

We trained LR with different hyperparameters and logged the best results. We used the

L2 penalty to regularize the model to avoid overfitting. LR can not handle multi-label

classification natively. We train 17 different models for all categories. Each model is

a binary classifier. All models are trained individually. The test set is passed through

all the models and evaluations are combined in one set. LR performs better than other

machine learning models on all evaluation metrics. Even it outperforms simple FFNN.

5.2.3 K-nearest neighbour

We trained different KNN models with different hyperparameters. The accuracy of

KNN heavily relies on a number of neighbors’ hyperparameters. We tried out a different

number of neighbors and found out that we get the highest accuracy when the number

of neighbors are 7. We used Minkowski distance with the value of p as 1, 2, and 3.

We found out that euclidean distance i.e. when p value is 3 empirically works well on

our problem. KNN supports multi-label classification inherently so we don’t need to

train 17 different models for each category. KNN performs better than Decision Tree on

all evaluation metrics. Also, KNN outperforms FFNN on exact accuracy and average

accuracy but is unable to defeat it on average precision and average recall. The reason

is that our dataset is highly imbalanced and most of the labels are 0. So the model

often predicts 0 even if it encounters 1 label in a category. Another proof is the average

precision and average recall values. Average precision is relatively higher as it indicates

that the model is exact at predicting 1 label. The model often predicts 1 when the actual

label is 1. Low average recall indicates that mostly 1’s are predicted as 0’s. The model

42

Chapter 5: Results & Discussion

does not take the risk of predicting a category in the input text which is not present.

5.2.4 FFNN

We perform different experiments with different numbers of layers and numbers of neu-

rons and tried to figure out the optimal number of layers and neurons in each layer. We

designed a three-layer neural network where the input layer size is 300 (from GloVe em-

beddings), 2nd layer with a dimension of 256, and 3rd layer with a size of 128. Finally,

we have 17 1-layer 128x1 FFNN. All 17 networks are having a Sigmoid unit on them

for binary classification. We connected the first network which has 3 layers to all the

other 17 networks and trained it jointly. We trained the model for 500 epochs to see

which checkpoint gives us the best accuracy. We choose Adam optimizer over Stochastic

Gradient Descent (SGD) as empirically it works well for any problem in comparison to

SGD. The model converges very smoothly due to the selection of the optimizer.

Figure 5.2: FFNN training loss: 500 epochs

We recorded training and testing loss at each epoch and compare them in figure 5.3. The

model converges at different epochs, similarly, the train and test loss meet at different

epochs. At the 52 epoch, we get the best accuracy. After that, the test loss is increasing,

indicating that the model is overfitting now. We did not use any regularization with our

FFNN.

We choose the batch size of 1024 due to the specification of our system hardware limi-

43

Chapter 5: Results & Discussion

Figure 5.3: FFNN: Train vs Test loss

tation. The exact accuracy metric was not good but the average accuracy, the average

precision, and the average recall were better than Decision Tree. It also beat the LG

and KNN with average recall.

5.2.5 LSTM

We trained a simple LSTM model with a single layer. We trained the model for 100

epochs with Adam optimizer.

The training loss converges at the 2nd epoch on training data. The test decreases to 9

epochs. After epoch 10th, the test loss increases slowly which indicates that the model

is now overfitting. We avoid overfitting by introducing dropout with a probability of

0.5.

The exact accuracy 5.5 is not decreasing after the 4th epoch due to the dropout regular-

ization. Also, further training will lead the model to be around the same accuracy. The

model achieves better exact accuracy, average accuracy, average precision, and average

recall than LR, KNN, DT, and FFNN models due to the sequential input processing

nature of LSTM. As the English language is written from left to write and the words on

the left side of a word have a greater impact on the meaning of that word. That’s the

reason that we get better accuracy than the previous models. We kept the batch size

44

Chapter 5: Results & Discussion

Figure 5.4: LSTM: Train vs Test loss

Figure 5.5: LSTM: Train vs Test exact accuracy

45

Chapter 5: Results & Discussion

as 1024 instances per training iteration.

5.2.6 BERT

BERT is from the family of transformers models which makes it relatively bigger than

all previous models. We keep the batch size as 16 examples per training iteration due

to memory limitation. We train the model for 10 epochs and test the model after each

epoch. We get out optimal results on 2nd epoch. BERT achieves the highest exact

accuracy of 91.66%, an average accuracy of 99.44%, average precision of 87.88%, and an

average recall of 97%. BERT utilizes a self-attention mechanism that takes the past and

future context of words into consideration which makes it better in terms of accuracy

than all other models. A large number of parameters increases the training time of the

model. It also increases the model size on the disk and inference time as well.

Figure 5.6: BERT: Train vs Test exact accuracy

5.3 Summary

In this chapter, we provided an analysis of the results obtained from six machine learning

and deep learning models trained on our dataset. A thorough comparison of the model

performances is presented, along with a discussion on the factors influencing their re-

spective outcomes. In the next chapter, we will conclude our thesis and outline potential

future research.

46

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Our research is based on predicting the labels of the tweets of world leaders which will

help in finding the intent of world leaders in Sustainable Development Goals (SDGs)

based on their tweets. For this purpose, we created a dataset by collecting tweets of

world leaders from Twitter. We labeled the dataset with ontology by finding the relative

keywords to each SDG and classified the Tweets based on those keywords. This makes

our problem a multi-label classification problem i.e. each tweet can contain zero or more

categories. Zero means that the tweet does not talk about any SDG whereas one or more

categories means that the tweet is about those SDGs.

We trained 3 machine learning and 3 deep learning-based models on our dataset to pre-

dict the categories of tweets. Machine Learning based models are Logistic Regression,

K-nearest neighbor, and Decision Tree whereas Deep Learning based models are Feed-

Forward Neural Network, LSTM-1-layer, and BERT (transformers based). Machine

Learning based and Feed-Forward Neural Network uses GloVe 300 dimension word em-

beddings for converting tweets to their numerical representation where LSTM-based

models and BERT get their own word embedding during training. LSTM-based models

use 100 tokens as input size whereas BERT uses 128 tokens as input. Machine Learning

based models, FFNN, and LSTM-based model tokenizers are based on spaces between

words in the sentence whereas BERT uses WordPiece tokenizer which is a sub-word-

based tokenizer.

The performance of these models was tested against each other in terms of exact accu-

47

Chapter 6: Conclusion and Future Work

racy, average accuracy, average precision, and average recall. The experimental results

show that BERT performs better than all other models in terms of exact accuracy and

average recall at 91.6% and 97%, respectively. LSTM performs better than all mod-

els except in terms of average accuracy at 99%. The reason for the performance of

the BERT model is the self-attention mechanism. LSTM models incorporate previous

words with current words during the processing of tweets to perform better than FFNN,

Linear Regression, KNN, and Decision Tree.

6.2 Future Work

1. This work can be expanded by gathering data from other Twitter users to study

their sentiments toward Sustainable Development Goals (SDGs). A larger and

balanced dataset will also improve the performance of deep learning-based models.

2. Applying unsupervised machine learning models for labeling the dataset instead

of relying solely on ontologies has the potential to improve the results.

3. Exploring the training of the latest transformer-based models like XLNet and

RoBERTa could be a valuable research endeavor, as these models have the poten-

tial to surpass the accuracy achieved in this thesis.

48

Bibliography

[1] Fabrizio Sebastiani and Andrea Esuli. “Sentiwordnet: A publicly available lexical

resource for opinion mining”. In: Proceedings of the 5th international conference

on language resources and evaluation. European Language Resources Association

(ELRA) Genoa, Italy. 2006, pp. 417–422.

[2] Stanford. “Sentiment140”. In: (2009). url: http://help.sentiment140.com/

home.

[3] Heum Park and Hyuk-Chul Kwon. “Improved Gini-index algorithm to correct

feature-selection bias in text classification”. In: IEICE transactions on information

and systems 94.4 (2011), pp. 855–865.

[4] Alex Graves and Alex Graves. “Long short-term memory”. In: Supervised sequence

labelling with recurrent neural networks (2012), pp. 37–45.

[5] Bo Pang and Lillian Lee. “Cornell Movie Review Data”. In: (2012). url: https:

//www.cs.cornell.edu/people/pabo/movie-review-data/.

[6] “Twitter US Airline Sentiment”. In: (2015). url: https://www.kaggle.com/

datasets/crowdflower/twitter-airline-sentiment.

[7] “United Nation Sustainable Development Goals”. In: (2015). url: https://sdgs.

un.org/goals.

[8] Ebru Aydoğan and M Ali Akcayol. “A comprehensive survey for sentiment anal-

ysis tasks using machine learning techniques”. In: 2016 International Symposium

on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. 2016,

pp. 1–7.

[9] Sidra Ijaz et al. “Biasness identification of talk show’s host by using twitter data”.

In: 2017 13th International Conference on Emerging Technologies (ICET). IEEE.

2017, pp. 1–6.

49

http://help.sentiment140.com/home
http://help.sentiment140.com/home
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
https://www.kaggle.com/datasets/crowdflower/twitter-airline-sentiment
https://sdgs.un.org/goals
https://sdgs.un.org/goals

Bibliography

[10] Paramita Ray and Amlan Chakrabarti. “Twitter sentiment analysis for product

review using lexicon method”. In: 2017 International Conference on Data Man-

agement, Analytics and Innovation (ICDMAI). IEEE. 2017, pp. 211–216.

[11] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for lan-

guage understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[12] Ahmed Sulaiman M Alharbi and Elise de Doncker. “Twitter sentiment analysis

with a deep neural network: An enhanced approach using user behavioral infor-

mation”. In: Cognitive Systems Research 54 (2019), pp. 50–61.

[13] Nuria Bautista. “SDG ontology”. In: (Nov. 2019). doi: 10.6084/m9.figshare.

11106113.v1. url: https://figshare.com/articles/dataset/SDG_ontology/

11106113.

[14] Elia Gabarron et al. “Diabetes on Twitter: a sentiment analysis”. In: Journal of

diabetes science and technology 13.3 (2019), pp. 439–444.

[15] Brendan Juba and Hai S Le. “Precision-recall versus accuracy and the role of

large data sets”. In: Proceedings of the AAAI conference on artificial intelligence.

Vol. 33. 01. 2019, pp. 4039–4048.

[16] Matheus Gomes Sousa et al. “BERT for stock market sentiment analysis”. In: 2019

IEEE 31st international conference on tools with artificial intelligence (ICTAI).

IEEE. 2019, pp. 1597–1601.

[17] Ian Tenney, Dipanjan Das, and Ellie Pavlick. “BERT rediscovers the classical NLP

pipeline”. In: arXiv preprint arXiv:1905.05950 (2019).

[18] Nhan Cach Dang, Marıa N Moreno-Garcıa, and Fernando De la Prieta. “Sentiment

analysis based on deep learning: A comparative study”. In: Electronics 9.3 (2020),

p. 483.

[19] Sardar Haider Waseem Ilyas et al. “Analyzing Brexit’s impact using sentiment

analysis and topic modeling on Twitter discussion”. In: The 21st Annual Interna-

tional Conference on Digital Government Research. 2020, pp. 1–6.

[20] Marco Pota et al. “An effective BERT-based pipeline for Twitter sentiment anal-

ysis: A case study in Italian”. In: Sensors 21.1 (2020), p. 133.

50

https://doi.org/10.6084/m9.figshare.11106113.v1
https://doi.org/10.6084/m9.figshare.11106113.v1
https://figshare.com/articles/dataset/SDG_ontology/11106113
https://figshare.com/articles/dataset/SDG_ontology/11106113

Bibliography

[21] Sudhir Kumar Sharma, Mohit Daga, and Bhawna Gemini. “Twitter sentiment

analysis for brand reputation of smart phone companies in India”. In: Proceedings

of ICETIT 2019: Emerging Trends in Information Technology. Springer. 2020,

pp. 841–852.

[22] Purva Grover et al. “Influence of political leaders on sustainable development

goals–insights from twitter”. In: Journal of Enterprise Information Management

(2021).

[23] Ankit Murarka, Balaji Radhakrishnan, and Sushma Ravichandran. “Classifica-

tion of mental illnesses on social media using RoBERTa”. In: Proceedings of the

12th international workshop on health text mining and information analysis. 2021,

pp. 59–68.

[24] Dhruval Shah, Yanyan Li, and Ahmad Hadaegh. “Twitter based sentiment analysis

of each presidential candidate using long short-term memory”. In: International

Journal of Computer Science and Security 15 (2021), pp. 87–96.

[25] Mrityunjay Singh, Amit Kumar Jakhar, and Shivam Pandey. “Sentiment analysis

on the impact of coronavirus in social life using the BERT model”. In: Social

Network Analysis and Mining 11.1 (2021), p. 33.

[26] Ashwini Ramesh. “" SDG 2030: Analysis of Political Tweets Using Deep Learning

Approach”. In: Global Media Journal: Indian Edition 14.2 (2022).

[27] Emelie Rosenberg et al. “Sentiment analysis on Twitter data towards climate ac-

tion”. In: (2023).

	Introduction
	Motivation
	Problem Statement
	Contributions
	Dataset
	Tweets Classification

	Thesis Organization

	Literature Review
	Twitter Sentiment Analysis
	Lexicon Based Sentiment Analysis
	Machine Learning Based Sentiment Analysis
	Sentiment Analysis of SDGs
	Summary

	Methodology
	Machine Learning
	Decision Tree
	Logistic Regression
	K-nearest Neighbor

	Deep Learning
	Feed-forward Neural Network
	Long short-term memory (LSTM)
	Transformers

	Dataset
	World Leaders
	Dataset Creation
	Tweets Preprocessing
	Dataset Labeling

	Results & Discussion
	Experimental Setup
	Results
	Decision Tree
	Logistic Regression
	K-nearest neighbour
	FFNN
	LSTM
	BERT

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

