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ABSTRACT 
 

 

This study presents a hybrid brain computer interface (BCI) system that achieves better accuracy 

based on event related potential signals. Following system based on the P300-SSVEP hybrid 

sequential BCI system to decode six reactive brain commands using ensemble classifier. The 

device which we are using for the record of EEG data only displays the signal on the computer 

screen and does not decode the signal into some readable file. So in order to get EEG readable 

signal, we convert signal images into digital form using image processing techniques. Based on 

the proposed algorithm of signal conversion, we have evaluated on previous EEG dataset and 

results are encouraging. P300 signal is evoked by oddball paradigm using stimuli of images flicker 

in random order. For P300 we have used already recorded six images stimulus dataset. The feature 

vector is extracted from the denoised waves after filtered through least mean square (LMS) filters. 

Extracted feature samples are fed into ensemble classifier model for classification. To achieve high 

accuracy, output from ensemble classifier trigger respective SSVEP frequency stimulus. On 

computer screen, triggered SSVEP stimulus begin to flash. A person is asked to focus on the 

stimulus for several seconds. EEG signal on occipital region is recorded. After classification of 

SSVEP signal command is sent to drive quadcopter. For BCI application, a virtual quadcopter 

environment is created and controlled by proposed hybrid BCI system. 

 

Key Words: SSVEP, P300, Hybrid BCI, Ensemble classifier 
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CHAPTER 1: INTRODUCTION 
 

 

The development of a control channel and communication between the human brain and 

robots has evolved into one of the rapidly growing regions of scientific speculation. 

People’s activities, expressions to surroundings are controlled by signals in the brain. Some 

people can’t do the muscular activity but their brains are still generating signals like a 

normal person. Brain-computer interface (BCI) gives a way to control one’s environment 

without using the normal neuromuscular output pathways. A BCI acquires the 

electrophysiological or other signals of the brain, interpret them, and translate them into 

commands that accomplish the intent of the user.  The most common use of such 

technology is to perform a useful function for disabled people having neuromuscular 

disorders. Its future achievements will depend on the convenience of hardware i.e. portable 

and able to function in all environments and real-time reliability of natural muscle-based 

function. This emerging field of BCI technology brings hope to people by restoring basic 

communication capabilities. In short, the dream of controlling one’s surroundings through 

thoughts has become true. 

BCI technology is the tool of communication, which can be categorized into non-invasive, 

invasive, and semi-invasive. In invasive BCI, electrodes are directly placed into the cortex. 

In the case of semi-invasive electrodes are placed on the exposed surface of brain tissue 

whereas in non-invasive, electrodes are attached to the patient scalp. Most researches focus 

on non-invasive electroencephalography (EEG) signals due to better temporal resolution 

as compared to other non-invasive methods.  

 

1.1   Electroencephalography (EEG) 

 

EEG is the electrical activity recorded as a result of ionic current flows within neurons and 

correlated with the mental process. A reactive BCI is a subtype of BCI which generates 
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output form brain activity in response to external stimulation. There are several mental 

processes and stimulations fulfill the requirements of corresponding strategies of brain 

signals. The most commonly used design for the creation of the BCI system is event-related 

potentials (ERP). The technique of extracting evoked potentials signals such as visual, 

auditory, or somatosensory is one of the oldest applications of BCI. Practically most 

applications use visual evoked potentials to decode brain activity. It is initiated by visual 

stimuli, display on the screen and the signal is recorded from the occipital cortex of the 

brain. 

 

Figure 1 : EEG Electrode placement 

 

 

1.2   Steady-State Evoked Potential (SSVEP) 

 

In SSVEP based evoke potential subjects are allowed to choose a target command using 

eye gaze. For capturing SSVEP, target stimuli are flickered at some distinctive frequency. 

When subject gaze at target stimuli, a series of potential waves are observed which is of 

the same frequency as that of the target stimuli. So that response frequency content is 
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determined from the stimulus frequency. A reliable SSVEP signal requires a continuous-

time window of few seconds as SSVEP response is periodic. SSVEP is confined to a set of 

specific frequencies, so it is extracted by analyzing the EEG signal in the frequency domain 

instead of the time domain. SSVEP-based BCI system provides reliable responses by 

achieving a high information transfer rate. 

 

1.3   P300 

 

P300 is the form of event-related potential, which is elicited by the occurrence of some 

surprising event. It is usually evoked by using an oddball paradigm when subjects 

recognize unusual stimuli from a normal chain of standard stimuli. As a result of this 

activity, positive deflection occurs about 300ms in the EEG signal after a target stimulus 

is delivered. Its latency varies within the range of 250 to 750ms. The prominent P300 

responses are observed over the parietal region of a brain. 

 

Figure 2: P300 Wave 
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1.4   Hybrid BCI 

 

Conventional BCI systems have their pros and cons. Due to the unavailability of high 

accuracy  and low information transfer rate, two systems can be worked in series or parallel 

to improve the performance of BCI systems [1]. This new approach increasing advantages 

and reducing disadvantages from different brain signals by combining the advantage of 

each system with different brain activity patterns [2]. A hybrid BCI is categorized into two 

types: In sequential hybrid BCI, two systems are connected in series such that the output 

of one systems is used as the input to drive the other system. To increase number of 

commands then systems are processed in parallel, it is known as simultaneously hybrid 

BCI. 

 

1.5   Current problems and solutions 

 

In recent years, research in BCI has undergone explosive growth.  Nowadays, the spectrum 

of research and technology in the BCI field is broad by using a variety of brain signals, 

signal extraction signal features, translational algorithm, and classification model. P300 

based BCI is one of the widely used system to increase the number of commands. New 

advances in P300 based paradigm designs are the source of reliability as they could give 

us a way to communicate by evoking potential in the brain. The conventional P300 based 

speller was introduced by Farwell and Donchin in 1988, which is known as the Row-

Column (RC) paradigm. It consists of a 6x6 matrix that randomly flickering the 

row/column. The subject is asked to focus on the number of flashes of the target character 

[3]. Recent trends have focused on the improvement of the standard oddball paradigm by 

introducing new ways of flickering stimulus, changing colors, and characters to enhance 

the signal response [4] [5]. Other poplar spellers are Single-Character (SC), Checkerboard 

(CB) speller, and Region-based (RB) speller. These above paradigms only evoke a P300 

signal. In RC and CB spellers, the user has to pay attention to the number of flashing of 

character by counting them. Moreover, due to continuously flickering of columns and rows 
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may causing vision tiredness. To overcome this problem we are using an oddball paradigm 

of inverted and rotating image stimuli to evoke ERP components P300, N170, and vertex 

positive potential (VPP). N170 and VPP components are generated due to the configuration 

of the face image. 

To improve the accuracy of the BCI system, we are creating P300-SSVEP based hybrid 

sequential BCI system [6] [7].  In most existing BCI, the decoding of output from EEG 

relies on the classification algorithm. These algorithms estimate the class of data by using 

a feature vector extracted from the signal. Recently used classifiers are Linear Discriminant 

Analysis (LDA), Baysian Linear Discriminant Analysis (BLDA), Logistic Regression, 

Support Vector Machine (SVM), and Artificial Neural Networks (ANN). Several Hybrid 

EEG modalities have been implemented in the BCI field to improve accuracy by using 

simple machine learning algorithms. Research on the classification of hybrid ERP/SSEVP 

with ensemble method is limited Ensemble classifier is also used in BCI domain to identify 

the class of output. It is used to improve accuracy by combining multiple models. It has 

better accuracy, higher consistency, and reduce bias and variance errors. For P300 

detection we need a strong classifier and more training. The problem with a single classifier 

is that it may cause over-fitting over extra training. So we used ensemble classifiers to 

reduce overfitting [8].  

The extraction of the EEG signal is a cumbersome task. The device which we are using for 

the record of P300 only displays the signal on the computer screen and does not decode the 

signal into some readable file. So we also decode the EEG signal display on the computer 

screen into tabulated form. Using image processing techniques, signals form images are 

translated into digits. 

 

1.6   Objectives 

 

The overall research objective is to design and develop the Hybrid ERP/SSVEP system 

that will generate four commands accurately and improve classification accuracy by using 

ensemble machine learning. 
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1.7   Expected Outcomes 

 

This research will increase the recall rate of algorithm and improve BCI system efficiency 

which is designed for assisting people with disabilities in their daily house life. The Oddball 

paradigm of inverted and moving image stimuli can generate a strong ERP signal as 

compared to the conventional speller. 

 

1.8   Applications 

 

In our country, individuals who are severely disabled by disorders such as spinal cord 

injuries, brainstem stroke, and muscular dystrophies might benefit from BCI. This 

technology allows paralyzed people to control prosthetic limbs with their brains [9]. 

Improvement in such a system improves the quality of life for a person who is unable to 

perform body movements [10]. Other applications include the control of BCI smart home, 

Wheelchair control, Prosthetics, Quadcopter control, Robotic Augmentation [11]. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

2.1  Hybrid Reactive BCI (P300/SSVEP) 
 

A BCI enables a direct pathway for communication for those special users who cannot function 

their peripheral parts via normal communicating channels. A BCI equipped system can send a 

direct command that can be govern by performing some the brain activity and distinguished by an 

electroencephalography EEG features [12].    

Based on the patterns of EEG brain activity, BCIs can be further sub divide into four distinguished 

groups: event–related desynchronization/synchronization (ERD/ERS) which is elicited by some 

reactive stimulus [7], P300 component of event related potentials (ERPs) evoked by oddball event 

[13], Slow cortical potentials (SCPs) , steady state visual evoke potentials (SSVEP) generated as 

a result of flickering stimlus [14]. Each modality has its own embedded advantages over others, 

but disadvantages are also incorporated in their functionality. Such as SSVEP-based systems have 

higher information transfer rate (ITR) and better accuracy than SCP and P300-based BCI systems 

which have advantages in other applications where SSVEP BCI not implementable. SSVEP BCI 

produces better results where training time is short and fewer EEG channels available [15]. In 

recent times, SSVEP systems faced several challenges while implementing in current application. 

Besides these pros and cons, required training time and information transfer rate are the two main 

features of all BCI modalities. 

One of the main approaches for BCI systems is based on Event related potentials (ERPs). 

Capturing and interpreting the externally evoked brain responses to specific cognitive, sensory, or 

motor events are classified as Event Related Potentials (ERPs) [16]. P200, P300 and P700 are the 

most used components of ERP as they are the prominent peaks in entire signal. The target stimulus 

in an oddball paradigm can produce a positive deflection at the occipital region in the EEG, 300ms 

after onset of the stimulus. The reactive stimulus can be provided either auditory, somatosensory, 

or visual medium. The evoked response at 300msec classified as P300 ERP component [17]. 

Temporally, the typical range of P300 amplitude in the range of 2 to 5 µV in the signal while its 

duration of 150 to 200ms in time domain as shown in Figure. 
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Figure 3:  Temporal pattern of P300 component [17] 

 

This modality has been widely used in BCI systems since 1988. Better accuracy, higher portability, 

inexpensive hardware manufacturing and new advancements in these systems make it possible to 

carry this technology outside the laboratory and implement in real-life applications. P300 based 

BCI system have the potential to enhance the quality of life as it can assist the specially enabled 

persons to maneuver by controlling wheelchair, creating commands for virtual keyboard to spell 

and type and interact with computers. 

Besides other types of external stimulus, increase in neural activity elicited by gazing at a stimulus 

as demonstrated by various Electrophysiological and neurophysiological studies. Visual evoked 

potentials are evoked when some reactive visual stimuli is given. If reactive stimulus is repetitive 

visual stimuli would lead to same stimulus frequency voltage harmonics pattern in EEG that is 

called SSVEP [18]. Although, the fundamental mechanism of how SSVEP function is still 

unknown, generally SSVEP is considered as a continuous visual cortical response produced as a 

result of repetitive stimuli flickering with a constant frequency on the central retina. SSVEP 

contains as same fundamental frequency as external stimulus when waveform oscillates sinusoidal, 

having some harmonics of fundamental frequency [19]. 



9 
 

SSVEP regarded as the basis for BCI systems. It has found its applications for the diagnosis of 

visual pathway and brain mapping impairments in clinical systems. In recent times, SSVEP BCI 

gained much attention in BCI paradigms continuum because of the newly discovered possibilities 

of its implementation in various domains, especially in those application areas where some major 

necessities are required to perform functionality. Some examples are as follow: 

• BCI commands are required in large numbers 

• Highly reliable and accurate recognition is compulsory 

• Very limited scale of training available 

• An enhancing performance is required  

Irrespective of the advancement in this technology, still number of obstacles limits its 

implementation in routine life. Some of the hurdles are BCI illiteracy, uneven and unsatisfactory 

accuracies for different subjects, and low information Transfer Rate (ITR). The elimination of 

these factors can develop a sustainable implementation environment and they can be eliminated 

by removing their disadvantages and enhancing the existing capabilities. One way is to combine 

the various modalities in one system and an extensive amount of work in BCI has been done based 

on combination of different types of BCI systems in series or parallel in order to improve the 

system performance, or BCI and non-BCI, called hybrid BCI systems. Hybrid BCI has the 

capability to overcome the disadvantages and limitations of conventional individual BCIs. In 

recent year, hybrid BCI becomes the main potential in this field. 

Among all EEG-based BCI modalities, SSVEP and P300-based BCIs have many clinical 

applications because of their conveniently high information transfer rates (ITRs) [20]. In P300-

based BCI, a speller board presents the instruction commands on display screen and randomly 

intensifies the commands. The rare intensifications of the user’s intent commands will elicit P300 

responses of the brain. The evoked potentials at 300 ms are identifies by the BCI system and 

translate these potentials to commands [21]. SSVEP has been extensively studied in the fields of 

engineering and neurosciences [1]. SSVEP is a response elicited by the visual stimulus modulated 

at a constant repetitive rate, normally higher than 6 Hz, and is characterized as a stationary periodic 

oscillation with a dominant spectral content, consistent with the stimulus temporal frequency [22]. 
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SSVEP-based BCI systems has developed by the researchers that can achieve the ITR of 124 bits 

min−1 at peak.  

Hybrid BCI seems a potent approach to improve the performance of the system. Several studies 

also reported about the combination of features of P300 with the features of SSVEP [23]. An 

synchronous system has been developed by Panicker et al which utilized P300 for command 

selection while simultaneous recognition of control state has done with SSVEP module.  In current 

pure hybrid BCI systems, potentials at multiple EEG channels translates into multiple commands 

in such a way that different channels produce different commands wholly used in one system as 

one unit. This phenomenon uses the specific channels to generate associated commands via that 

modality which ensures the better performance [24]. This will enhance the overall performance of 

entire system with better accuracy. Compatible modalities can combine in one system for hybrid 

BCI. P300 and SSVEP modalities are two outstanding candidates to combine in one system for 

mental control tasks. Higher efficiency can be achieved by combining them. The combination may 

demand some elaborated design of the system to detect same brain activity due to the different 

characteristics of both BCIs. Time-locked P300 BCI has a temporal response of only few hundred 

milliseconds while phase-locked SSVEP signal needs several seconds to find its specified spectral 

response. 

 

2.2  Available Data Sets 
 

Data sets which are available are of three different types which are used in BCI competition [25]. 

The data set of P300 spelleer was developed by Farewell and Donchin which are of character 

recognition. It contains 36 characters which are in a 6x6 matrix, whose columns and rows are 

arranged randomly. Since this data set consists of two data subjects which are classified as subject 

A and subject B which involves 85 training and 100 testing characters respectively. These are the 

arrangement for Dataset BCI Competition III. For Dataset BCI Competition II, they have 42 

training and 31 testing characters in database. The task of these dataset is to have full attention on 

desired characters as indicated by investigator. The flashing rate for this is 5.7 Hz. The paradigm 

is on the 100 ms and it will show blabkness till 75ms. Signals are collected from 64 channels with 

a filter cut-off frequency 0.1-64Hz and digitized at 240 Hz. 
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Another dataset which is used for SSVEP is presented in [26] . The most recent for this is going 

on unmanned vehicle where this is controlled by brain activity. Brain data is get by using the 

BioSemi Active two EEG system with a desired sampling rate at 512 Hz. Signals are recorded by 

locating it at over nine different positions. Two reference electrodes are connected at the left and 

right mastoids. This whole system is operated by ROS with wireless network control. The data 

from nine channels were preprocessed by using two electrodes at left and right. 

In another research Hybird model of EOG and EEG is presented. It works in two modes: an EOG 

for eye movements such as blinks, and an EEG mode detects oddball signals like P300. In this 

study, they designed an algorithm that could detect four types of eye movements including 

blinking, blinking, looking, and blurring. An oddball paradigm with stimuli of inverted faces is 

used to evoke P300, N170, and VPP [27] [28]. 

 

2.3  Features Extraction Methods 
 

From the past experiments it is observed that the peak for P300 will appear after 300 ms of the 

visual stimuli [29]. The assumption taken for it is 667ms, which is adequate for P300 classification. 

The chebyshev Type 1 band pass filter is deployed which has a cut-off frequency from 0.1-10Hz. 

Which will be further used to down sample in accordance with high cut-off frequency of filter 

[30]. After visualizing it, a single channel consist of 14 samples. For BCI Competition II and III 

there are 64 channels, the data are gathered according to the channels available. Due to the 

difference in design, the database is not homogeneous. It compromises of five times more P300 

signals as compared to the P300 signals [31]. Due to this reason, classifier may not perform well 

as expected. For the classifier to perform the data should be homogeneous [32]. 

For the process of feature extraction the auto encoder is used. This process does not require any 

label data to construct the model. According to study, it requires two layers one is input layer other 

is hidden layer. The input layer dimension should be equal to feature dimension of input data 

whose feature are to be extracted. It also includes the reconstruction layer. To get the minimum 

error, the input layer replicate the reconstruction layer. 
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There are many different things that have been tried to design BCI such as EEG signal amplitude 

values, Band Powers (BP), Power Spectral Density (PSD), Autoregressive (AR) and Adaptive 

Autoregressive (AAR) parameter, Time-frequency features and inverse features for the model. 

A lot of other techniques are used for feature extraction and artifact removal [33] such as time-

frequency image fusion, adaptive filtering, kalman filtering, linear regression, independent 

component analysis (ICA), canonical correlation analysis (CCA), independent vector analysis 

(IVA), surface laplacian transform (SLT), morphological component analysis (MCA), wavelet 

decomposition (WD), empirical mode decomposition (EMD), multivariate empirical mode 

decomposition (MEMD), singular spectrum analysis (SSA) and other variants of them. 

 

2.4   Classification Algorithms 
 

The accuracy for the discussed data sets which we considered above show two types of features 

which are presented here [34]. One consists of feature extraction with feature set of SAE features 

combined with temporal features. The other consist of SSAE features along with temporal features. 

In this experiment two layers of SSAE features are chosen empirically for SSAE model. All the 

models are implemented in MATLAB platform. In BCI Competition III, the hidden layer nodes 

are chosen 450 and 460 for the two subjects A and B [35]. They are along with the deep features 

of classification. The character recognition of these two combined features are calculated with 

SVM and ESVM [36]. Single SVM model is trained and the character recognition are extracted 

from SVM and ESVM. The presented SVM models give accuracy of 74.5% , 90% and 97.5% after 

5, 10 and 15 epoch respectively. The combined effect of SAE-ESVM with the feature trained gives 

the accuracy of 92% , 99% , 75% after the 5 , 10 and 15 epoch respectively. The proposed SAE-

SVM and the proposed SSAE-SVM provide better performance. They helped to balance the 

training database and classifier integration to reduce variant variability. In Linear analysis 

discriminant (LDA) was used to distinguish the main focus of the topic. Other approaches are 

Bayesian Linear Discriminant Analysis (BLDA) used to prevent overfitting to high dimensional , 

ANN [37] [38], SVM, Logistic Regression etc [39]. 
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2.5 Applications 
 

P300 is suitable for the purpose of selection applications. In our country, individuals who are 

severely disabled by disorders such as spinal cord injuries, brainstem stroke, and muscular 

dystrophies might benefit from BCI. This technology allows paralyzed people to control prosthetic 

limbs with their brains. Other than this, it has the most common application in smart home 

controlling. BCI modalities are also used to control the wheelchair [40], navigation of robot, flight 

of quadcopter [41]etc. 
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CHAPTER 3: METHODOLOGY 
 

 

3.1  Experimental Setup and Procedure 
 

3.1.1 P300 Dataset 
 

The following dataset of P300 was recorded by Hoffmann [28]. In this experiment user were asked 

to focus on the screen containing six images stimulus. The stimulus were images of a television, a 

lamp, a window, a telephone, a door and a radio. The images were flashed in random order such 

that one image at a time. Stimulus flashed for 100ms and in next 300ms none of the images was 

flashed. The total inter stimulus interval (ISI) was 400ms. The data was recorded at 4048 Hz 

sampling frequency from 32 electrodes according to 10-20 system. 

  

 

 

Figure 4: 32 electrodes placement for P300 detection using 10-20 system.[1] 
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Figure 5:  Six object images stimulus [1] 

A. Subjects 

The experiment was performed with four disabled and four healthy. The disables 

subjects had limb muscle control abilities and all were wheelchair bound.  Some 

disabled subjects had varying communication and some are suffered from 

dysarthria. The healthy subjects were Ph.D. students and none of them had any 

neurological deficits. 

B. Experimental Procedure 

The dataset contained four session for each subjects. Each sessions was consist of 

six runs such that one run for each of the six stimulus. The following steps are 

followed:   

• Subject was asked to focus on one image and count how often a focused 

image was flashed.  

• After four seconds a warning tone was issued and a random sequence of 

flashes was started such that every image was flashed. 

• The flashed sequence after warning tone was block-randomized which 

means that after six flashes each image was flashed once. 

• The number of blocks was randomly chosen between 20 to 25. Each block 

represented one target trial of P300. 
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• In each run there are 20 to 25 target trial and 100 to 125 non-target trial. 

• EEG was recorded when block stimulus sequence was started to flash. 

• The time duration of one run was one minute. One session comprised of 

total 810 trials and for one subject, the whole data consisted on average of 

3240 trials. 

 
Figure 6: P300 data recording 

 

3.1.2 SSVEP Dataset 

 

The dataset which we are using for SSVEP classification is AVI SSVEP dataset recorded by Vilic 

[42]. The data was taken on six flickering stimulus and recorded by placing electrodes at Oz for 

signal, Fz as reference and Fpz as ground using the 10-20 system. The hardware setup was consist 

of LCD monitor and BenQ XL2420T, with refresh rate of 120 Hz. 
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Figure 7 : Hardware Setup [2] 

 

 

Figure 8 : Electrode placement on the scalp of SSVEP dataset[2] 

 

A. Subjects 

The experiment was performed with five subjects, two are females and three are males. All the 

subjects were healthy and did not have any neurological issue. 

B. Experiment Procedure 

 Six choice flickering stimulus panel was used for collection of dataset. Each stimulus flash with 

multiple frequencies of 6Hz, 6.5Hz, 7Hz, 7.5Hz, 8.2Hz, 9.3Hz. Following protocol was followed 

for experiment: 

• A subject was seated at the distance of 60cm from the stimulus screen. 
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• Six stimulus with different frequencies were starting to flash. 

• A subject was asked to focus at one of the flickering target, which changes color quickly 

from black to white. 

• The data was recorded in two sessions for each of the subjects. 

• Each session had ten trials of sixteen seconds. 

 

 

Figure 9: SSVEP flickering stimulus paradigm 

 

 

Figure 10 : SSVEP data recording scenario 
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3.2  Signal Acquisition and Preprocessing 

 

3.2.1 Signal Acquisition of P300 and SSVEP 

 

P300 signals generated as a result of tasks performed by the subjects were acquired by the 

electrodes placed on the scalp of the subjects using 10-20 system. The amplification and analog to 

digital conversion of the EEG signals was done by Biosemi Active Two amplifier. EEG data was 

sampled at 2048Hz sampling rate. Whereas for SSVEP was recorded on BenQ XL2420T, with 

refresh rate of 120 Hz. 

 

3.2.2 Preprocessing of P300 and SSVEP Signal 

 

Before features extraction, several preprocessing operations are applied on the raw EEG signal. 

For P300, dataset of 32 electrode is given. Channel T7 and T8 are used as a reference. In our 

experiment we are using four electrodes as a signal electrodes Fz, Cz, Pz, and Oz. Data is down 

sampled from 2048Hz to 265Hz. To reduce noise from the raw data, channels are filtered by 

Butterworth bandpass filtered with the cut-off frequencies are 1Hz to 20Hz [43]. Signal is recorded 

at the starting of flicker of an image and excuted at 1000ms. As P300 is detected in 300ms after 

the onset of stimulus so 1 sec of window is extracted for a single trial. To reduce the effect of 

possibly artifacts which act as outliers such as eye blink, heartbeat, respiratory and other motion 

artifacts, the bandpass data from each channel is windsorized. In windsorizing method, for each 

trials the 10th percentile and 90th percentile are calculated. Amplitude values lying out of the 

mentioned range of percentile are replaced by the respective percentiles. The samples are further 

normalized to the interval [-1, 1].  
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Figure 11: four electrode placement for P300 signal [2] 

 

 

 

Figure 12: Preprocessing steps of P300 

 

Preprocessing of SSVEP is quite simple as compared to P300. SSVEP is detected in frequency 

domain and range of stimulus frequencies are known. According to stimulus frequencies value, 

the EEG raw signal is filtered by bandpass filters between 4Hz to 11Hz. The filtered output which 

is in time domain signal is converted into frequency domain by taking Fast Fourier Transform 

(FFT). By analyzing the power spectrum of the FFT signal, the dominant frequency having 

maximum amplitude is consider as the frequency of the stimulus on which the subject has focused 

on.     

 

 

Figure 13: Preprocessing steps for SSVEP 
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Figure 14: Bandpass signal result for SSVEP detection 

 

 

Figure 15: Power Spectrum of the signal followed by FFT 
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3.3 Feature Extraction 
 

3.3.1 P300 Features 

 

The feature extractions intends to extract the important information from brain signals. The 

statistical measurement should decode the desired commands related to the specific task according 

to mental activity. Features should not contain any noisy factor that can manipulate the results of 

classification. P300 preprocessed signal is used to extract the relevant information. We have used 

Adaptive Least Means Square (LMS) filters to extract the P300 features [44].  By using 

preprocessed signal, LMS changes its filter coefficient based on the desired or reference signal by 

reducing the least mean square error. In our case desired reference signal is known noise signal. 

This delayed version of the noisy signal is extracted by finding common signal between target and 

non-target signal of P300. The algorithm tries to find the common noise in both the reference signal 

and filter output signal, estimates the error between the two. In Fig. x(k) is the one trial signal of 

1000ms, y(k) is the filtered output, d(k) represent the reference signal. The whole process is 

repeated for M channels and N trails. 

y = w × x (1) 

e = d - y (2) 

w = w +  (µ× e×x) (3) 

 

Where  y = output 

x = input 

e = error 

µ = learning rate 
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Figure 16: Least Means Square filter 

 

When error gets minimized output y, which is noisy signal is subtracted from the initial input 

signal. The LMS filtered signal then analysis by statistical methods. Following statistical 

measurement are computed: 

• Positive Peak 

• Positive Peak Latency 

• Negative Peak 

• Negative Peak Latency 

• Peak to Peak 

• Peak to Peak latency  

• RMS 

 

Figure 17 : Filtered output form LMS filter for target and non-target P300 
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3.3.2 SSVEP Features 
 

As SSVEP is a periodic response generated when subject has focused on some repetitive stimulus. 

It is confined to a specific set of stimulus frequencies, so instead of time domain it is analyze in 

frequency domain. So power spectrum of a signal is taken followed by FFT. The frequency having 

highest power respective to their amplitude is consider as a feature for classification process. 

  

 

Figure 18: SSVEP Feature 

 

 

3.4  Work flow 

 

We have implemented sequential hybrid P300/SSVEP system that generates six commands. Six 

images stimulus oddball paradigm is used to generate the P300 signal. After filtration followed by 

preprocessing, features are extracted and feed into ensemble SVM model. Classified output trigger 

the SSVEP paradigm and frequency respective to ensemble output starts to flicker. EEG signal for 

SSVEP detection is recorded. After signal acquisition and filtering, extracted features are classify 
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by simple LDA algorithm. Generated output is used to control the virtual quadcopter on MATLAB 

simulation.    

 

 

Figure 19 : Proposed Methodology of sequential hybrid P300/SSVEP  

 

3.4.1 Ensemble classification for P300 
 

Average of trials is needed for the appropriate P300 signal detection. As P300 is difficult to detect 

in single trial, so strong classifier is needed for classification. We are using ensemble SVM for 

classification of P300. A good surface decision can be made by using ensemble SVM, if the input 

features are well organized. We have 3240 samples of the single subject. After shuffling and 

normalization, data is divided into training and test data in the ratio of 4:1. Training data is further 

split into three equal division by the method of Bootstrap Aggregation commonly called bagging. 

In this method samples from observation is selected randomly with replacement.  
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Figure 20 : Bootstrap Aggregation  

https://en.wikipedia.org/wiki/Bootstrap_aggregating 

 

After the splitting of training data into three subset, SVM model is developed from the each 

concatenated features dataset.  SVM model with polynomial kernel of order two is used for 

training.   

G(xj,xk)=(1+xj′xk)q (4) 

 

 

The output from all the standalone models of same types is gathered. The final prediction is based 

on the aggregation of prediction of each base models. For testing and validation, the test data is 

passed through each three trained models of SVM and predicted. By voting method, final 

prediction can be made.  

Y = max(prediction(M1,M2,M3),x) (5) 

 

Where M1,M2,M3 are the trained models of SVM and x is the test sample. 
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Figure 21: Ensemble SVM Model  

 

 

3.4.2 SSVEP Classification 

 

SSVEP Classification is done by Linear SVM. It is easy to detect, so with little training of data 

can give remarkable results. In AVI SSVEP dataset, we have 100 samples, 80 random samples are 

separate out for training.  

 

 

Figure 22: SSVEP Classification 
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3.4.3 SSVEP/P300 Combine Algorithm 

 

P300 dataset is composed of six images stimulus. If target P300 is detected by ensemble classifier 

e.g. an oddball signal is generated in response to stimulus 1 then on SSVEP paradigm, stimulus 

listed on the position one starts to be flickered with its mentioned frequency. SSVEP signal is 

further classified by the SVM model and command is generated. The final output is fed to 

quadcopter in visual environment.   
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CHAPTER 4: APPLICATION 

 

Brain Computer interface (BCI) provides a way of communication using robotics. Flight control 

of quadcopter is one of the application of BCI. The classified command decoded from sequential 

hybrid BCI system is transmitted with a fixed time interval to the quadcopter [45]. In MATLAB 

Stimulation 3D virtual environment is created with quadcopter. When P300 is detected, it trigger 

the SSVEP stimulus. After SSVEP classification final command is generated which is given to 

quadcopter for flight [46] [47]. Graphical User Interface (GUI) is developed. Which display the 

flight of quadcopter and other control parameters such as start, trajectory and stop buttons.  As we 

are using six commands to drive the applications, display panel on the GUI show the respective 

commands for all the six outputs generated from the hybrid model. 

 

 

Figure 23 : Graphical User Interface for quadcopter 
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CHAPTER 5: IMAGE TO SIGNAL 

CONVERSION 
 

 

5.1  Background 

 

Signal Acquisition form EEG devices required some special tools such as file format converter. 

Mostly signal devices import their files in csv. or mat. Format. Which are easy to process in 

computational software’s such as MATLAB, PyCharm etc. Most standard EEG-processing 

toolboxes can deal with a wide range of EEG data formats. Number of EEG devices which are 

mostly utilized for clinical or monitoring purposes are only display the signal on computer screen 

and unable to give file in some process-able format. One solution is to purchase the license of these 

devises but they are little bit expensive. For academic purpose such devices are useless if they 

don’t import data into readable file. 

 

Figure 24: Clinical monitoring EEG device 

https://www.medicalnewstoday.com/articles/325191#uses 
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5.2 EEG Device 
 

ARC Essentia is an EEG device manufactured by Cadwall company. It gives good quality 

performance in cerebral monitoring of patients. It is 32 channel EEG device with offers 250 and 

500 Hz storage rates and streaming data. The integrated EEG device package includes a remote 

input headphone with secure cable connectors that ensures easy setup and integrity recording. The 

unique design of Arc Essentia hardware ensures high quality EEG signals, or in noisy 

environments. Its rough and water-resistant design will withstand the use and abuse of real-life 

practice. With following pros, it has one disadvantage. It don’t decode the file in mat. or csv. file 

format.  

 

Figure 25: ARC Essentia EEG device 

https://www.medicalexpo.com/prod/cadwell-industries/product-110929-874403.html 
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5.3  Proposed Solution 
 

To solve the data importing problem, we have presented the Image to Signal Conversion 

algorithm. Images of the display screen is captured and converted into signal vector my using 

image processing technique. Flow chart of the algorithm is given below. 

 

Figure 26: flow chart of Image to Signal Conversion 

 

5.4  Implementation 

 

When EEG device display the signal on the computer screen, it is recorded in the form of video. 

As recorded video is basically consist of multiple frames. When we split video in frames, we have 

obtained images of the EEG display which is processed by image processing techniques. In 

proposed solution, input consists of input video or image, scaling parameters and number of 

channels. The algorithm is made on MATLAB with the help of image processing toolbox. 
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Figure 27: Display of ARC Essnetia EEG device  

Implementation steps are explained below: 

1. Firstly we have to extract area, where only signal waves are displayed. By using crop 

command in MATLAB, unwanted area is separated from the image. As show in Figure. 

 

Figure 28 : Cropped EEG signal area 

 

2. When signal area is chopped off from the display image, channels are estimated by 

analyzing the left hand column using gradient change approach.  
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3. For estimated channels, draw a baseline or a reference line from the center of each signal 

wave. This baseline act as a x-axis or the signals. 

 

Figure 29 : Baseline implementation 

4. Next step is to separate the channels into multiple images. 

 

Figure 30 : Channels separation 
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5. Separated channel images are then undergo a pixels extraction process. Image is converted 

to binary image by setting threshold level such that only signal lines appear in black and 

background remains in white. Locate the black signal pixels position in reference to the 

baseline. Each pixel act as a signal point in signal vector. 

 

 

Figure 31 : Pixels to point extraction 

 

6. As extracted points are scaled according to the cropped image dimensions, so they are 

rescaled according to the device scale. 

 

5.5  Validation 

 

5.5.1 EEG Data Images 

Previous EEG data of eight subjects for P300 detection is used for validation of algorithm. For 

each subjects trial samples are extracted with the channels of Cz, Pz, Oz. By using subplot in 

MATLAB, following channels are plotted. Images of the plots are saved. Image to signal 

conversion approach is applied on these saved images 
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Figure 32 : Input signal image 

For validation, testing procedure such as filtration and power spectrum are applied on the extracted 

results. 

 

5.5.2 Detection of SSVEP signal from images 

Due to covid, we are unable to record as much data for the validation. We have required EEG 

data using emotive epoch head set for a single person. SSVEP signal is extracted for two 

stimulus frequencies i.e. 7Hz and 8 Hz. Four channels data is recorded that are Fz, Cz, Pz,Oz. 

In addition to display the signal, Emotive head set also import the data in csv file. We record 

the signal video during activity and also import its csv file for comparison. 

 

Figure 33 : Epoch headset Image to signal conversion  
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For SSVEP detection, reconstructed signal is preprocessed by using bandpass filter of 6-9 Hz. 

Then signal is converted into frequency domain by taking FFT. When power spectrum of a signal 

is taken, prominent peak is obtained at the desired frequency. 

 

Figure 34: 7Hz SSVEP signal 

 

Figure 35: 8Hz SSVEP signal  
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CHAPTER 5: RESULTS 
 

 

5.1  P300 Signal Processing 

 

P300 is a week signal. It required the average of several trials for target detection. In proposed 

method preprocessing step includes channel selection, windsorizing, normalization and LMS 

filter. The filtered output for eight subjects with target and non-target P300 results are shown 

below. 

 

 

Figure 36 : P300 Preprocessing results 

In results, target signal is shown in blue whereas non-target signal is in red. The positive deflection 

of P300 signal of target stimulus is observed in results. 
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5.2 Ensemble Classifier  

 

The ensemble SVM classifier is used for classification purpose. We have implemented the three 

models of SVM and final prediction is made by the aggregation of the prediction form each model. 

Receiver operating characteristic (ROC) curve plots are used to analyze the threshold value for 

classifier. It illustrates the performance of classification model at all classification threshold.  

 

Figure 37 : ROC plots for SVM models 

The accuracy for eight subjects using eSVM model is relative higher than 90%. Subject 5 achieved 

minimum accuracy of 94% and subject 7 achieved highest accuracy among all subject with the 

percentage of 97.84. The comparison of all subjects with eLDA model and eSVM model are 

represented in a graph. 
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Figure 38: eSVM Accuracy plot 

   

5.3   SSVEP signal Processing 

 

SSVEP data consist of six stimulus frequencies. The raw data is of single channel Oz. Its 

preprocessing is done by bandpass filtering. The figure shows the result of bandpass filtering, 

power spectrum followed by the FFT for all six frequencies. 

 

Figure 39 : SSVEP Preprocessing at 6Hz, 6.5Hz, 7 Hz 
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Figure 40: SSVEP Preprocessing at 7.5Hz, 8.2Hz, 9.3 Hz 

The red marked point represent the maximum power of the frequency in the signal. It is used as a 

feature for classification 

 

5.4  Classification Accuracy 

 

Classification of SSVEP is simply done by linear SVM. Total training example for a subject is 80 

and 20 are test. The average accuracy for all subjects is reported on test set as 94.6% . Confusion 

matrix are shown below.  
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Figure 41 : Confusion matrices 

 

 

 

5.5  Image to Signal Conversion Results 

The output image form EEG device is reconstructed by image to signal conversion method. The 

final result in comparison to output display is shown in figure. 

 

Figure 42 : EEG device reconstructed signal 

 

We have also check algorithm on the ECG signal its resultant image is shown below. 
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Figure 43 : ECG image signal conversion 

 

The validation results for EEG dataset along with their testing is shown below. Blue lines 

represents the original signal plot and red line represents the reconstructed signal. 

 

Figure 44: EEG signal conversion results  
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Figure 45: Filtering of reconstructed signal 

Statistical analysis of data proves the validation of algorithm. The t-test average score is 196.36, 

Mean square error for all subjects is reported as 1.049%. The p-value is less than 0.05 which 

represent that there is minimum significance difference between the original signal and 

reconstructed signal. Other accuracies graphs are given below. 

 

 

Figure 46 : t test results 
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Figure 47: Mean Square Error results 

 

 

Figure 48: Variance results 
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Figure 49: Root Mean Square Error results 

 

Table 1 

Image to 

Signal 

Conversion 

Ttest P-Value Mean Square 

Error % 

Variance % Root Mean 

Square % 

Subject 1 167.1188 5.35E-223 1.090625 1.388125 10.28063 

Subject 2 143.9738 2.97E-217 1.054375 1.7125 10.105 

Subject 3 176.5581 1.53E-160 0.999375 1.5775 9.706875 

Subject 4 209.86 2.88E-241 0.61625 0.800625 7.7925 

Subject 5 191.81 5.28E-248 0.896875 1.118125 9.39 

Subject 6 149.6803 7.00E-165 1.415 2.05 10.46875 

Subject 7 165.1675 1.30E-214 1.393125 1.505625 11.63063 

Subject 8 150.7388 1.77E-222 0.933125 1.50625 9.52875 
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5.6  Quadcopter flight 

Multiple trajectories are executed using virtual quadcopter.  

 

Figure 50 Quadcopter Trajectory 1 

 

Figure 51: Quadcopter Trajectory 2 
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Figure 52: Quadcopter Trajectory 3 
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 DISCUSSIONS 
 

In the following research we have implemented sequential hybrid EEG for reactive BCI system, 

which have improved the accuracy for six command BCI system. Due to covid and unavailability 

of EEG device we have used previous recorded dataset of P300 and SSVEP. P300 dataset is 

composed of six images stimulus. If target P300 is detected by ensemble classifier e.g. an oddball 

signal is generated in response to stimulus 1 then on SSVEP paradigm, stimulus listed on the 

position one starts to be flickered with its mentioned frequency. SSVEP signal is further classified 

by the SVM model and command is generated. The final output is fed to quadcopter in visual 

environment. In the results P300 signal classification accuracy is enhanced by using ensemble 

learner. Moreover LMS filter helps to prominent the P300 wave. SSVEP required less training for 

its detection. If we combine these two modalities there is less chance of false detection.  

Table 2 

Average Accuracy Reported in Literature 

Kunda et al.[31] 95.5% (P300) 

Katyal et al.[48] 92.30 % (P300/SSVEP) 

Merino et al. [22] 85%(SSVEP) 

 

The image to signal conversion algorithm shows remarkable results with the p-value of 1.92e-161. 

Previously, there is no research reported on this unique method of signal extraction. It provides a 

new way of signal acquisition for unlicensed devices. 
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CONCLUSION 

 

We have implemented sequential hybrid P300/SSVEP system that generates six commands. Six 

images stimulus oddball paradigm is used to generate the P300 signal. After filtration followed by 

preprocessing, features are extracted and feed into ensemble SVM model. Classified output trigger 

the SSVEP paradigm and frequency respective to ensemble output starts to flicker. EEG signal for 

SSVEP detection is recorded. After signal acquisition and filtering, extracted features are classify 

by simple LDA algorithm. Generated output is used to control the virtual quadcopter on MATLAB 

simulation. The collective accuracy for Hybrid Model achieved using ensemble classifier was 

96.98%, relatively improved than other conventional classifiers. Image to signal conversion 

approach gives encouraging results with the p-value of 1.92e-161. 

 

FUTURE WORK 

 

In the future research, the scope is widened to include modeling of neuronal activity in different 

region according to the acquired and extracted EEG-P300/SSVEP signals as an input and output, 

respectively. The objective is to improve efficiency of the BCI system using adaptive filtering to 

investigate the mechanisms that shape evoked EEG-P300 responses, and hybrid modalities. This 

generative model is a neural mass model of hierarchically arranged of two BCI system. Image to 

signal conversion approach gives a new direction in the research field of signal extraction.  
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