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6.Abstract 

 CNN have been proven effective in deep learning methods for Huaman Action Recognition 

(HAR) along with other computer vision tasks but the problem of overfitting in this domain 

remains till date, as deep learning models need large amount of data for training. This thesis is 

inspired by the two-stream network for HAR where CNN has been deployed as a base model to 

show that both, the spatial and the temporal aspects of an action are important for its recognition. 

 To deal with the mentioned issue we have proposed enhancement of the spatial stream, which 

consists of two parts. Primarily, we adopted transfer learning in the spatial stream, where we 

demonstrated that by using models which are pre-trained on larger datasets like ImageNet yields 

good performance instead of training the original model from scratch. Secondly, we offer dataset 

augmentation technique, where we increased the dataset size by performing various random 

transformations like rotations, cropping and flipping on the image. Further, fine-tuning the network 

of the enhanced spatial stream on the augmented dataset increases the accuracy. 

 Our architecture is trained and tested on UCF-101 dataset, which is the latest and standard 

benchmark for action videos. Our results are competent and are comparable with the state of the 

art two-strean network’s results. Also, our network performed well in the spatial stream as 

compared to other models.  

Key Words: Human Action Recognition, Overfitting,  Transfer Learning, Two Stream Network
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 Introduction to Human Action Recognition 

 Human Action Recognition (video-based) is the most significant study fields in computer 

vision, with algorithms becoming more effective by the day. Our job in Human Action Recognition 

is to automatically detect the activity type that is being done in the video. It is a difficult work 

owing to the many problems it entails, such as camera motion, varying lighting conditions, 

backdrop bombardment, various human forms, occlusion, perspective fluctuation, and so on. 

However, the impact of these problems varies depending on the activity. Gestures, Actions, Group 

Activities and Interactions are the four primary kinds of actions performed by humans. 

 Gestures: They are simple movements of human body components such as nodding and hand 

gestures. Gestures lasts for just a few seconds, and the intricacy required is minimal since the 

activity revolves around a single region of the body. 

 Action: It generally includes the majority of the body, although it may also be a mixture of 

many motions. A single person's action might take place for a short or comparatively lengthy time. 

Walking, punching and sitting are among examples.  

 Interactions: It may involve Human-to-human or human-to-object interaction. It is more 

complicated than simple actions since we now have two separate topics in a single frame. Instances 

of human-to-human interactions include handshakes, fighting and hugging, whereas examples of 

human-to-object interactions include a person using a smartphone, using an ATM and washing a 

vehicle. 

 Group Activities: This is the most difficult activity to identify since it consists of a variety of 

behaviors, interactions, and gestures. It must include two or more individuals, as well as a single 

or many objects. A few instances are cricket, a protest by a group of individuals and a group 

gathering. The dataset used in this thesis includes activities from 54ygestures, movements, and 

interactions only. 
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 Motivation 

 One of the main objectives of artificial intelligence is to develop a model that can correctly 

comprehend human behaviour and intents [3], motion representation is a basic job for extracting 

motion information from numerous frames. Several strategies have been used to capture the 

motions from the images. While current research is mostly focused on temporal models, complex 

temporal structures are created by using sparse segments to emulate long-term temporal structure 

in Temporal Segment Networks (TSN)[4]. The concept that models learn hierarchical motion 

patterns in image space has been used to tackle various temporal modelling challenges in 3D CNN 

networks [5-7]. Tracking characteristics are employed to improve the effectiveness of temporal 

modelling in [8, 9]. 

 In [6, 10, 11] authors emphasis on using Convolutional Networks for this job. Researchers 

have shown that temporal filters, such as local spatiotemporal filters can be applied to 

spatiotemporal objects such as actions, which then make it possible to use spatial recognition ideas 

on temporal objects [6, 10, 12]. This difference between time and space is significant, and 

numerous different techniques to these dimensions have been examined, such as adding optical 

flow networks (which simulate motion) [1] or modelling time sequences in recurrent structures 

(which represent patterns in nature) [13-15]. 

 In traditional 3D CNN approaches, the models are often fed RGB stacked pictures as input. 

However, in [11, 16, 17], such input is insufficient since a stack of RGB photos includes a lot of 

useless information and may pay more attention to aspects such as backdrop and appearance 

elements rather than the motions themselves. As a result, these RGB frames are mixed with optical 

streams to account for movement in order to improve the overall performance of the two stream 

models. Two-stream network is based on a hypothesis that came out of neuroscience research 

called the two-stream hypothesis [18] , which says that the brain’s visual cortex contains two 
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separate streams, one which processes information about the visual attributes of objects like shape 

and color, known as the ventral pathway, and other which responds to transformations in the object, 

and to spatial relationships as an object of motion known as the dorsal pathway. 

 All the mentioned approaches shows that convolutional neural network performs well for 

human action recognition. Most of the research on two stream network focuses on its temporal 

stream. In this paper we show that by using pre-trained models in  the spatial stream yields good 

performance results as compared to training the entire model from scratch and it also saves time. 

We did that by keeping the classification layers of the original two-stream model [1] fixed and 

attaching the feature extraction layers of different pre trained model one by one and then training 

the fully connected layers only to check which model performs best. After selecting the best model, 

we fine-tune the whole network to see if we could improve results.we propose strategy to deal with 

the problem of overfitting. The main reason behind overfitting is limited dataset provided to a deep 

network to train its model. We incorporated dataset augmentation to increase our dataset size by 

using different augmentation techniques like image flipping and image rotation. 

 Problem Statement 

 According to the methodologies presented, CNNs are more efficient since it can learn spatial 

and temporal properties. However, in all of the approaches outlined, overfitting is a major issue 

that arises when using deep convolution networks on a limited dataset like UCF-101 which is used 

by most of the researchers for this field of research, since it is the latest dataset available.   

 Objectives 

This research is carried out to attain following objectives:  

• To validated and compare the performance of the purposed method with published 

methods.  
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• To assess the performance of the proposed methodology using the real datasets.  

• To create a machine learning model for the recognition of human actions using video data.  

• To assess the performance of the different feature extraction tools for Human Action 

Recognition  

 Structure of Thesis 

Following is the structure of this thesis.  

• Chapter 2 presents the previous work that has been done on human action recognition by 

using two stream network and other approaches 

• Chapter 3 discusses selection of dataset and its features which are used in our research 

work. 

• Chapter 4 describes the methodology that is used to generate the model.  

• Chapter 5 discusses the experimental results in detail including coveted tables and figures. 

• Chapter 6 informs about the conclusion and discloses the gaps of this research. 
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 The Human Action Recognition (HAR) algorithm is used to identify videos containing 

actions. Once video data has been collected either by video or by wearable or portable sensors, it 

is then processed beforehand to meet the needs of the desired application.. Figure 2.1 depicts a 

generic HAR system; It gives an overview of the process, which includes steps like dataset 

collection, pre-processing, feature extraction, encoding, as well as the use of machine learning 

methods for action classification and feature dimensionality reduction. Section 2.2 details prior 

work on techniques based on deep learning,  

Figure 2.1. An overview of generic Human Action Recognition system.[2] 
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2.1 Previous work on Deep Learning methods 

 Deep Learning (DL) is a process that teaches computers to do tasks akin to those completed 

by the human brain. For this research, we looked at CNN, RNN, LSTM, DBN, and GAN, which 

are all common action recognition networks. 

 The maps that CNN generates are based on the neighborhood information. Convolution, 

activation, and pooling are included in CNN architecture for feature extraction (avg., min., or 

max.). [19] presents a novel way to gather temporal and spatial data for video recognition called a 

3D convolution. To accomplish a 3D convolution approach, a 3D kernel may be convoluted in 

stacked multiple frames. Is should be noted that 3D convolution technique is costly, and the results 

are unstable. Without a GPU to help speed things up, training time will be longer [19]. Features 

are extracted in different steps using CNN's architecture. Convolution, nonlinear neuron activation, 

and feature pooling are essential to all three steps. The design shown in Figure 2.2 demonstrates 

the fundamental concept of a deep CNN. CNNs are considered to be deep if too many layers of 

feature extraction are coupled together [1]. In [20] spatial and temporal domains are used to 

perform convolution in CNN.  

 

  

Figure 2.2. A typical Deep CNN Architecture [1]. 
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Space–time volumes are used as  input in 3D CNN. In addition, LSTM training is done by 

employing the 3D CNN features that have been collected. 3D CNN could derive spatial-temporal 

information from the input video. Because 3D CNN models have layered-on top of one other, 

training and memory use have both grown  [21]. The method shown in [21] entails the use of a 3D 

feature map in conjunction with a 2D convolutional block to be coupled together serially. The 

model's computing cost is decreased by adding cross-domain residual techniques to the temporal 

dimension. Residual connection is advantageous since it extracts static 2D characteristics, as 

opposed to learning about static 3D properties. 

 The posture-based features of the 3D CNN are recovered from it, 3D pose combines the 2D 

appearance and motion stream [22]. Using the color joint features extraction from the 3D CNN 

results in an extensive process; thus, a fifteen-channel heatmap gets created, and convolution is 

performed on each of the maps. The pairwise distance between skeleton features in the case of 

skeleton-based HAR, is calculated according to [23]. The four networks get their CNN input from 

Joint Distance Maps (JDM) which is trained and fused (later) afterwards. Another way to say that 

skeleton-based input is handled differently is to say that it is analysed differently using multi-

stream CNNs [24] which implement modified AlexNet [25] and colour input data is sent to each 

CNN. Each CNN generates class scores probabilities which is fused of all of the potential class 

scores.  The study exhibits the capacity of CNN to face changes in the image (when compared to 

other CNNs), differing levels of noise in the data, and different levels of skeletal similarity in the 

data. In addition, it has been shown that the suggested network is much better than LSTM 

techniques. 

 Deeper CNN, specifically ConvNetworks, are used to perform robust HAR with gyroscope 

and accelerometer on a smartphone [26], where a local dependence of timeseries 1D is used to 

produce signals, and features are autonomously retrieved using CNN (instead of having to utilize 

pre-processing methods). The dense layer is coupled with softmax to turn the output of CNN into 
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a probability distribution. [14] proposes a two-stream convolution network for combining both 

temporal and spatial streams, in which optical flow (motion) and RGB information (spatial) are 

modelled individually and results are averaged in the final layer. Due to optical flow, the network 

is unable to grasp long-term motion; another disadvantage of the appearance stream is that 

performance is predicated on random single frame picked from input video. As a result of backdrop 

clutter and perspective fluctuation, difficulties exist [14]. 

 Temporal Segment Network (TSN) is proposed in [8], which contains significantly similar 

frames after sampling, which removes the requirement for dense temporal sampling. TSN uses 

sparse sampling from long input films. Inception and Batch Normalization is used in [8]. Two-

stream networks combine optical flow and RGB fields together with RGB and optical flow pictures 

to mimic change in appearance (to suppress background motion). 

 In [27], another two-stream network is described to enhance skeleton joint-based HAR 

performance. AGCN applies the adaptive graph convolutional network to provide joint and bone 

information, as seen in this video: These key components form the network. The softmax layer is 

used on the output. [28] suggests a CNN structure made up of several convolutions in an action 

graph and temporal convolutions, all layered on top of each other. The graph structure is learnt 

from data in order to connect the many junctions. [29] has a non-stationary camera and real-time 

footage from the system is recorded to disc. CNN is used to automatically extract frame-level 

characteristics using deep learning. Data from a video stream is used to pre-train a model, as shown 

in Figure 2.3 [29].  

 Changes in human behavior are learnt in low dimensions by using CNN (or deep autoencoder) 

to relate the observed changes to deep temporal models. In the case of categorizing human 

activities, the SVM (quadratic) classifier is often used. In [30] graphic displays the Pose Feature 

to Image (PoF2I) encoding method, which employs orientation and distance to represent skeletal 
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data as an image. Fine-tuning these photographs with an inception-v3 deep ConvNet ensures a 

minimal amount of overfitting. 

 

 The deep learning may be found dominantly in action recognition, such as Convolutional 

Neural Networks, although shallow techniques, such as ML-based techniques, should be studied 

first. Whereas deep neural networks are well-suited for big data applications, shallow techniques 

perform well on small datasets. It is possible to use transfer learning in the presence of features 

that are common across both the base and target datasets. DL models may also be fine-tuned, 

increasing their performance. In [31] to aid daily activity recognition: spatial layout and temporal 

encoding is used. LSTM (Long-term state reconstruction Network) is used to track dependencies 

over longer periods of time utilizing 3-layered stacked LSTM. To gather pose-based static 

characteristics, CNNs are rather often used. An individual frame depicts the anatomy of a bodily 

area using the upper body, left right hand and the full body. Pre-trained Resnet152 is used for 

deeper feature extraction. Once the features are extracted and have been trained into a Support 

Figure 2.3. A typical pretrained CNN Model for HAR [2] 
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Vector Machine (SVM), which produces results based on a cross-validation set, SVM uses the 

learnt features to do a classification. 

 In [32], it is shows that when individuals are coping with an action recognition challenge, they 

are unable to focus on an entire scenario at once. Regardless, useful information may be discovered 

by scanning the photo in many locations. To help with tasks that need more attention, attention 

models may be used to locate the focal point of the model, which increases to Interpretability [14]. 

The training input videos are performed utilizing Google Net and the features are extracted from 

final convolutional layer. A three-layered LSTM is used for classes label prediction. It is essential 

for the model to study each section of the frame, and it applies a cross entropy loss function with 

attention regularization. HAR may use an attention mechanism to target a certain body part. [33] 

presents a technique for end-to-end action detection that makes use of a 3D skeleton and spatial 

attention that have been pre-trained using a 3D CNN-based I3D model. A three-layer stacked 

LSTM is used to obtain temporal information in this example. Attention-based processing is used 

for human action recognition, which focuses on the essential aspects of the action. 

 When analyzing RGB data, CNN-based network appears to do well at finding spatial 

relationships. Although LSTM networks may be used to extract temporal correlations from videos, 

they are also useful for other applications. Although LSTM and CNN perform complementary 

networks, by using the results of merging later LSTM and CNN score fusion, the model's 

performance may be greatly improved. Additionally, CNN will need a great amount of data in 

order to avoid overfitting. Training dropout or data augmentation approaches might be employed 

to combat overfitting.  

 Discussions are still open for DL method for HAR due to advances in computer processing 

power, such as GPU. There are various HAR solutions like DL models which focuses on motion 

features learning and utilizing it for classification. In Table 2.1, various advantages and downsides 

of DL-based methods for action recognition are listed. 
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Table 2.1. Pros and Cons of DL-based techniques for action classification. 

Classifier Advantage Disadvantage 

DBN  Efficient in unsupervised 

learning[34] 

Computationally expensive [34] 

CNN  By deploying different filters and 

pooling layers it can extract temporal 

features efficiently [35] 

Usually requires large datasets. Otherwise 

results overfitting [36] 

RNN Good for temporal variations  based 

modeling of data [36] 

Vanishing gradient occurs usually [36] 

LSTM  In the temporal domain, LSTMs may 

be used to represent long-term 

contextual information. [37] 

Spatial information is difficult to extract 

[37] 

GAN Good for semi-supervised [38] Training the model is difficult [38] 

 

 

2.2 Previous work on Two-Stream Models 

 The two-stream ConvNetworks [11] (Convolutional Neural Networks) successfully 

performed in the process of human action detection. Two-stream ConvNetworks, which have a 

spatial and a temporal stream, begin as separate entities and subsequently merge their recognition 

streams together. Spatial network uses video stills and the temporal network utilizes stacked 

optical flow motion information for recognition of action classes. The problem of disappearing or 

exploding gradients may make training deeper structures using two-stream ConvNetworks 

problematic [39]. Vanishing Gradients in neural networks with numerous layers has been 
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documented by other researchers as well. Because gradient information is back-propagated, using 

the same weights again and again or repeatedly applying convolution or multiplication cannot 

accurately reflect the gradient. This is especially true in the early layers. A variety of other 

solutions, such as careful initialization [39, 40] and Batch Normalization [41], were tried, although 

these approaches were only partially successful in mitigating such an impact. [11] used three-fold 

to improve HAR accuracy. At the outset, they put out a concept of two-stream ConvNet that mixes 

spatial and temporal networks. Secondly, they show that despite little training data, a ConvNet can 

be trained on dense optical flow from several consecutive frames, and yet achieve outstanding 

results. It was concluded by showing how multitasking learning may be deployed to significantly 

increase the size of training data while enhancing overall performance. Although designed network 

still needs to catch up with current state-of-the-art shallow representation [42]. The most prominent 

feature is local trajectory pooling, with spatial and temporal tubes that are coordinated across 

spatiotemporal layers to concentrate on trajectories. Even while the network can detect the optical 

flow along the trajectories, it ignores trajectories in spatial pooling. Also by using mean 

displacement subtraction, camera motion can be compromised. 

 In [16], spatiotemporal ResNetworks is used as a synthesis of these two methods. To begin, 

residual connections between the appearance and motion channels of a two-stream architecture are 

injected to allow for spatiotemporal stream interaction. Then, learnt convolutional filters are 

applied to adjacent feature maps in time to convert pretrained image ConvNetworks to 

spatiotemporal networks. [17] claims that spatial and temporal networks should be merged 

together at a convolutional layer, with no loss in performance but large reductions in parameters; 

 A spatiotemporal architecture has been designed for two-stream networks comprising a novel 

temporal fusion layer and novel convolutional fusion layer, which are connected to the networks 

(incorporating 3D convolutions and pooling). With regard to performance, the innovative design 

exceeds the top of the rank on two common benchmark datasets without significantly increasing 
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the number of parameters. According to the findings, it was found that learning correspondences 

between ConvNet characteristics that are very abstract in both space and time is extremely 

important. One interesting discovery found is that FV encoded IDT features performed better when 

included with ConvNet predictions. This is a time of when more investigation is needed in the 

future. They concluded by exploration of used datasets by addressing the point that either they are 

either small or too noisy. 

 A deep fusion architecture is built by [43] which uses temporal features from LSTM and 

spatial features from CNNs in a more effective manner. In addition, it provides a detailed analysis 

of their strengths and weaknesses. It was also observed that fully connected features are used to 

steer the LSTM to portions of the convolutional feature sequence that are of interest. Because it is 

simpler and more effective than competing technologies, the fusion method is also vital. Multi-

stream hierarchical fusion strategy has shown to be superior to single-stream mapping techniques 

in UCF11, UCFSports, and jHMDB, exhibiting good accuracy and outperforming current top of 

the rank techniques for all datasets. In [44] remodeling of dataset is deployed for initializing model 

learning by using the augmentation of data and ResNet101 layers parameters trained on the dataset 

like ImageNet is used to deal with the overfitting issues caused by lesser data. Deeper  

 ConvNet have been developed for learning complexity of action. Using a disorder testing and 

training method, the model and procedure may provide a substantial boost in action recognition. 

The experiment proved that the strategy beat current top of the rank methodologies on two advance 

datasets, the UCF101 and KTH. Temporal network with deeper Convolutional  Networkss do not 

perform as well as the appearance networks on the UCF101 during the experimental evaluation. 

The following potential alternative might help to overcome this constraint where it proposes to 

capture information on motion with a deep temporal structure by adopting deeper RNNs. 

 Carreira and Zisserman created the Kinetics dataset [5] to address the overfitting issue since 

it is big enough to train without overfitting. Hara et al. [45] used residual frames to four distinct 
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datasets and had outstanding results. However, the major purpose of [45] was to see whether it 

could handle the large number of parameters of 3D CNN. 

 Two-stream Adaptive Graph Convolutional Network (2s-AGCN) was designed specifically 

for action recognition in [27] which uses skeleton technique. It is possible that the BP technique 

will learn the network architecture either uniformly or individually as it goes along. By making 

this data-driven technique part of the model, it raises the model's flexibility for constructing graphs 

and increases the model's generality for varying data samples. To explain both first-order and 

second-order information, a two-stream framework is developed, and as a time, a large 

improvement in recognition accuracy is achieved. In [46] residual images are used to feed to the 

temporal stream of the network rather than conventional optical flow images. This reduces the 

computation power and also increased the accuracy as compared to many states of the art models. 

Because residual frames offer minimal information on object appearance, they utilized a 2D 

convolutional network to extract appearance features and combine them with residual frame 

findings to build a two-path solution. Table 2.2 summarizes the previous work done on two stream 

networks discussed in this chapter.  
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Table 2.2. Summary of previous work on Two Stream Networks. 
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3.CHAPTER 3: DATASETS 
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3.1 UCF-101 

 UCF101 is a data collection of realistic action videos taken from YouTube with 101 action 

categories. This dataset is a supplement to the UCF50 data collection, which has 50 activity 

categories. 

 UCF101 has the biggest variety in terms of actions, with 13320 films from 101 action 

categories, and it is the most complex dataset to date in this domain, with substantial differences 

in camera motion, object look and position, object size, perspective, cluttered backdrop, light 

conditions, and so on. Because the majority of accessible action recognition datasets are unrealistic 

and produced by actors, UCF101 intends to inspire future action recognition research by learning 

and exploring new realistic action categories. The videos in the 101 activity categories are divided 

into 25 groups, each of which may have 4-7 movies of an activity. Videos from the same group 

may have certain qualities in common, such as a similar backdrop, a similar perspective, and so 

on. The activity categories are classified into five types: 1. Body Motion Only, 2. Human-Object 

Interaction, 3. Musical Instrument Playing, 4. Human-Human Interaction and 5. Sports. Following 

are the categories for UCF101 dataset are:  

 

ApplyLipstick, Apply_Eye_Makeup, Archery, BabyCrawling, BalanceBeam, BandMarching, 

BaseballPitch, BasketballShooting, BasketballDunk, BenchPress, Biking, BilliardsShot, 

BlowDryHair, BlowingCandles, BodyWeightSquats, Bowling, BoxingPunchingBag, 

BoxingSpeedBag, Breaststroke, BrushingTeeth, CleanandJerk, CliffDiving, CricketBowling, 

CricketShot, CuttingInKitchen, Diving, Drumming, Fencing, FieldHockeyPenalty, 

FloorGymnastics, FrisbeeCatch, FrontCrawl, GolfSwing, Haircut, HammerThrow, Hammering, 

HandstandPushups, HandstandWalking, HeadMassage, HighJump, HorseRace, HorseRiding, 

HulaHoop, IceDancing, JavelinThrow, JugglingBalls, JumpRope, JumpingJack, Kayaking, 
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Knitting, LongJump, Lunges, MilitaryParade, MixingBatter, MoppingFloor, Nunchucks, 

ParallelBars, PizzaTossing, PlayingGuitar, PlayingPiano, PlayingTabla, PlayingViolin, 

PlayingCello, PlayingDaf, PlayingDhol, PlayingFlute, PlayingSitar, PoleVault, PommelHorse, 

PullUps, Punch, PushUps, Rafting, RockClimbingIndoor, RopeClimbing, Rowing, SalsaSpins, 

ShavingBeard, Shotput, SkateBoarding, Skiing, Skijet, SkyDiving, SoccerJuggling, SoccerPenalty, 

StillRings, SumoWrestling, Surfing, Swing, TableTennisShot, TaiChi, TennisSwing, ThrowDiscus, 

TrampolineJumping, Typing, UnevenBars, VolleyballSpiking, Walkingwithadog, WallPushups, 

WritingOnBoard,YoYo. [47] 

 

Table 3.1. Summary of Characteristics of UCF101. 

Actions  101 

Clips  13320 

Groups per Action  25 

Clips per Group  4-7 

Total Duration  1600 mins 

Min Clip Length  1.06 sec 

Resolution  320*240 

Max Clip Length  71.04 sec 

Frame Rate  25fps 
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Figure 3.1. UCF101 Dataset. 
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3.2 Statistics 

  

Figure 3.2. Total and average time of videos for each actions shown in deffierent colors. 
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Figure 3.3. Clips per action shown in different colors. 
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4.CHAPTER 4: METHODOLOGY 
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 Proposed methodology will be presented deliberatively in this chapter. A deeper-level method 

based on two-stream Conv Networks will be split in two parts. First, spatial stream of the network 

will be discussed in contrast to the original spatial stream. After that, techniques for the 

enhancement of the spatial stream will be proposed. Next, we discuss the temporal stream of our 

network along with the techniques for extracting the optical flow inputs and different variation of 

the inputs provided to the network. Finally we propose different techniques to minimize the 

problem of overfitting. Implementation details are also discussed at the end of this chapter.  

 The original two-stream ConvNetworks [11] performed well in the job of human action 

recognition. Proposing two separate streams and combining results later by fusing the streams  was 

a break through in terms of performance by that time.  The initial two stream ConvNetworks are 

comprised of two independent recognition streams consisting of the spatial and the temporal 

streams, both are subsequently merged  via late fusion through averaging. Spatial net recognizes 

actions from static video frames and can be considered as a simple image recognition stream, 

whereas the temporal network is taught to identify action classes from dense optical flow data, 

which are unlike ordinary RGB frames and contains information of the motion between two 

consecutive frames. Details of such input will be discussed later in this thesis. 

4.1 Two-Stream Network Architecture 

 Figure 4.1 depicts a summary of the proposed deep two-stream networks where we can see 

both stream producing ther softmax scores. These scores are later fused together by averaging to 

produce final results. In the original network from [11] both streams initially have the same 

convolutional network as shown in Fig 4.2. The network is a 7 layer network with five 

convolutional layers followed by two fully connected layers. Summary of the model is shown in  

Table 4.1.  
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Figure 4.1. Initial pipeline of our architecture 
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 The network take as input stacks of optical flow fields (224x224x2F, F is the number of 

stacking flows) which contain information of the motion between two consecutive frames and is 

unlike standard RGB frame which will be used as an input for the spatial stream because we don’t 

need motion feature in that stream.  

 

 

Table 4.1. ConvNet Architecture for Temporal Stream 

Layers Name Size Output 

Conv 1 96, 7x7 108x108 

Conv2.x 256, 5x5 52x52 

Conv3.x 512, 3x3 50x50 

Conv4.x 512, 3x3 48x48 

Conv5.x 512, 3x3 46x46 

Dense Layer 1 - - 

Dense Layer 2   

Softmax - - 

Figure 4.2. Convolutional Network 
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4.2 Spatial Stream Conv. Networks 

 For some activities a single frame from the entire video can be enough to recognize the 

activity. This can be true usually for human-object interaction activities like playing guitar or 

hammering because recognizing an object in the image can lead to recognizing the associated 

activity. For this reason, spatial streams take a single RGB image as an input for image recognition 

or eventually activity recognition in our case. 

 

Figure 4.3. Enhanced Spatial Stream 

 

 

 Satial Stream 

 As spatial stream is in actual an image recognition architecture, we can use advance models 

like ILSVRC winners pre-trained on large datasets like ImageNet dataset and fine-tune them on 

UCF-101 to form an Enhanced Spatial Stream. The architecture of the enhanced stream is shown 

in Figure 4.3 where convolutional layers of the pre-trained models are used only and are merged 

with the fully connected layers (6 and 7) of the riginal model (Figure 4.2).  

 We have found that there are some common statistics between ImageNet and UCF-101, e.g., 

“WalkingWithDog” in the UCF involves a dog class, whereas the ImageNet also contains samples 

of dog, like “MalteseDog” etc. Because of this link, we models trained on ImageNet like the 

ILSVRC winners.Different models listed in Table I will be evaluated one by one, by training the 
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fully connected layers only. The best performing model will be selected and further fine-tuned to 

check for any further improvement in performance. This will be further discussed in chapter 5. 

 

Table 4.2. Pre-trained Models 

Models (Pre-trained on ImageNet) Training Dense 

Layers 

Fine-Tuning Whole 

Network 

InceptionV3 159 23,851,784 

VGG16 23 138,357,544 

Xception 126 22,910,480 

MobileNet 88 4,253,864 

MobileNetV2 88 3,538,984 

DenseNet121 121 8,062,504 

DenseNet169 169 14,307,880 

 

4.3 Temporal Stream 

 Spatial stream could have been enough for activity recognition problem but there are time 

oriented activities like Running and Jogging. We simply cant differentiate between these two 

activities by just looking at a single frame of an entire video of these two activities. So, a single 

RGB input in spatial stream is no longer useful for such activities. To cope this problem there 

comes the temporal stream. We describe a ConvNet model for temporal stream in this section and 

the inputs used for that stream. Optical flow displacement fields are stacked multiple times in order 
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to form the input to our model. With explicit description of motion, the network is freed of the 

need to estimate motion and can focus on pattern recognition. Below, we present several different 

variations of the optical flow-based input. 

 

(i) (ii) (iii) 

(iv) (v) 

Figure 4.4. Optical flow. (i),(ii): caonsective video frames. (iii): dense optical flow close-up; 

(iv),(v): horizontal and vertical components of optical flow:  

 Stacked Optical Flow 

 As a dense flow of optical vectors, dense optical flow looks like a set of displacement vector 

fields, with one vector field for each pair of consecutive frames. Displacement vector from point 

(u, v) in frame t, which moves the point (u, v) from its current location in frame t to the new location 

in frame t + 1, is given by dt(u, v). When viewed as image channels (Figure 4.3), the horizontal 

and vertical elements of the vector field, dx
t and dy

t, are well suited to use in a convolutional 

network for recognition. We stack the dt
x,y t flow channels of L consecutive frames to make a total 

of 2L input channels, with the added benefit of being able to follow motion in a sequence of frames. 

A ConvNet input volume for an arbitrary frame is then constructed as follows: 
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𝐼𝜏(𝑢, 𝑣, 2𝑘 − 1) = 𝑑𝜏+𝑘−1
𝑥 (𝑢, 𝑣),

𝐼𝜏(𝑢, 𝑣, 2𝑘) = 𝑑𝜏+𝑘−1
𝑦

(𝑢, 𝑣), 𝑢 = [1; 𝑤], 𝑣 = [1; ℎ], 𝑘 = [1; 𝐿].
 4.1 

 

 The following channel encodes the motion at the point (u, v) over a sequence of L frames: 

𝐼𝜏(𝑢, 𝑣, 𝑐), 𝑐 = [1; 2𝐿] (as illustrated in Figure 4.4 - left). 

 Stacked Trajectories. 

 Using the motion trajectory-based descriptors [48], As an alternative to optical flow, which is 

collected at the same locations over many frames, a motion representation that tracks motion path, 

termed trajectory-based descriptors, is used. In this case, the input volume 𝐼𝜏 is expressed as: 

𝐼𝜏(𝑢, 𝑣, 2𝑘 − 1) = 𝑑𝜏+𝑘−1
𝑥 (𝐩𝑘),

𝐼𝜏(𝑢, 𝑣, 2𝑘) = 𝑑𝜏+𝑘−1
𝑦 (𝐩𝑘), 𝑢 = [1; 𝑤], 𝑣 = [1; ℎ], 𝑘 = [1; 𝐿]

4.2 

 

The k-th point along the trajectory is represented by the following recurrence relation: (u, v) and 

pk is the k-th point. 

𝐩1 = (𝑢, 𝑣); 𝐩𝑘 = 𝐩𝑘−1 + 𝐝𝜏+𝑘−2(𝐩𝑘−1), 𝑘 > 1 4.3 

Figure 4.5 ConvNet input derivation from the multi-frame optical flow. Left: optical flow stacking 

(4.1). Right: trajectory stacking (4.2). Same color used for the frames and the corresponding 

displacement vectors [11] 
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 The displacement vectors in channels 𝐼𝜏(𝑢, 𝑣, 𝑐) are stored at locations (u, v) in the input 

volume (4.1), whereas displacement vectors sampled at locations pk along the trajectory are stored 

in the input volume (4.2). (as illustrated in Figure 4.4 - right). 

 Directional and Bi-directional Optical Flow. 

 The forward optical flow (i.e. the displacement field dt of the frame t specifies the location of 

its pixels in the following frame t + 1) is covered by optical flow representations (4.1) and (4.2). 

Adding a new set of displacement fields to a bi-directional optical flow yields an extension to an 

optical flow that is bi-directional in nature. The final input volume 𝐼𝜏 is formed by stacking  L/2 

forward flows between frames 𝜏 + 𝐿/2 and 𝜏 and stacking  L/2 backwards flows between frames 

𝜏 − 𝐿/2 and 𝜏. Even though 𝐼𝜏 now has two channels, the input still has the same number of 

channels (2L). Flow is presented using two techniques (4.1) and (4.2). 

 The Mean Flow Subtraction 

 Reducing the system input's total cost by zero-centering the network input generally helps the 

model, since it makes the system better use the rectification non-linearities. When displacement 

vector field components have both positive and negative values, they naturally have values that 

are centred around zero. However, in a pair of frames, just one displacement, such as the movement 

of the camera, would significantly affect the optical flow (a computation of how objects move 

between two pictures). This highlighted the significance of camera motion correction since in [42, 

49] an overall motion component was calculated and than removed from the densed flow. 

Suggested strategy is to simply remove the mean vector from each displacement field. 
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4.4 Getting Rid of Overfitting 

 Overfitting 

 Making an extremely complicated model that describes irregularities in the data under 

examination is an example of overfitting the model. In truth, most data studies contain some level 

of error or random noise. Attempting to make the model adhere to slightly inaccurate data too 

closely will infect the model with significant flaws and diminish its prediction potential. For 

example, finding trends in large datasets of historical market data using computer algorithms is a 

typical challenge. With enough research, it is often able to build complicated theorems that appear 

to accurately anticipate stock market returns. 

 For example, finding trends in large datasets of historical market data using computer 

algorithms is a typical challenge. With enough research, it is often able to build complicated 

theorems that appear to accurately anticipate stock market returns. When unseen data is shown to 

them, however, such model may turn out to be nothing more than the overfitting of a model to 

what were in reality just random events. It’s critical to test a model on unseen data as well to get 

rid of such scenarios before finalizing the model. 

 Precautions 

 k-fold cross validation is a technique where the data used to train the model is cut into folds 

or divisions and deployed and the model is run for each fold, is one way to avoid overfitting. We 

average the error across each fold to get an estimate. Some other techniques include ensembling, 

which combines predictions from at least two different models, data augmentation, which makes 

the existing data set appear more diverse, and data simplification, which streamlines the model to 

minimise overfitting. 
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 Overfitting in artificial intelligence 

 In artificial intelligence or more specifically in machine learning, overfitting is also a factor. 

It may appear when a computer has been taught to scan for certain data in one manner, but the 

findings are inaccurate when the same method is applied to a new collection of data. This is due 

to mistakes in the model, which most likely has a low bias and a large variance. It's possible that 

the model has duplicate or overlapping characteristics, making it overly complex and 

unproductive. 

 Overfitting vs. Underfitting 

 An overfitted model may be very intricate, rendering it useless. However, a model might be 

underfitted, which means it is too simplistic, with too few characteristics and too little data, to be 

useful. A low bias and high variance model is called an overfit model, whereas a high bias and low 

variance model is called an underfit model. Adding extra characteristics to a model that is too 

simplistic might assist in reducing bias. 

 Example of overfitting 

 For example, a university with a higher than desired college dropout rate chooses to develop 

a model to estimate the chance that an applicant would complete their studies. 

 To do so, the institution uses a dataset of 5,000 candidates and their outcomes to train a model. 

It then applies the model to the original dataset—the 5,000 applicants—and the model correctly 

predicts the outcome 98 percent of the time. They also ran the programme on a second dataset of 

5,000 more candidates to assess its accuracy. This time, however, the model is only 50% correct 

since it was fitted too closely to a small data sample, in this case, the first 5,000 applicants. 



35 

 Transfer Learning in Spatial Stream:  

 In transfer learning, the information of a previously trained machine learning model is 

transferred to a new but related issue. For example, if you trained a basic classifier to predict if a 

picture includes a backpack, you might utilise the information that the model acquired throughout 

its training to detect additional items like sunglasses. To put it another way, transfer learning is the 

process of attempting to use what has been learnt in one activity to enhance generalisation in 

another. At "task A," we transfer the weights that the network has learnt to a new "task B," which 

is a new task. To summarise, the basic concept is to apply the knowledge a model has gained from 

a task with a large amount of accessible labelled training data to a new task with limited training 

data. Instead of starting at the beginning of the learning process, we start using patterns that have 

been learnt by completing a similar assignment. 

 Transfer learning is most often employed in computer vision and natural language processing 

applications such as sentiment analysis because to the large amount of computing resources needed 

for these types of jobs. Even while transfer learning isn't technically a machine learning approach, 

it may be thought of as a "design methodology" within a particular area, such as active learning, 

for example. It is also neither a subset or a study-area that is unique to machine learning. 

Nonetheless, it has gained widespread acceptance when used in conjunction with neural networks, 

which need massive quantities of data and computing capacity. 

 If we take computer vision as an example, neural networks are often trained to identify edges 

in the first few layers, forms in the middle layer, and certain task-specific characteristics in the 

later levels as they go through the layers. Transfer learning makes use of the early and intermediate 

layers, with the later layers being retrained only after they have been utilised. It helps utilise the 

labelled data of the job it was originally trained on. 
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Body Motion Only Human Object Interaction 

Body Motion in Context HOI in Context 

Figure 4.6. Action Classes of UCF-101. 

 

Figure 4.7. Classifier Transfer Learning. 
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 Let’s go back to the example of a model trained for identifying a backpack on a picture, which 

will be used to identify sunglasses. Due to the fact that the model has already learnt to identify 

items in the early levels, we will simply retrain the subsequent layers to understand what 

distinguishes sunglasses from other objects in the later layers. 

 In transfer learning, we attempt to transfer as much information as possible from the prior task 

the model was trained on to the current task at hand. Depending on the issue and the data, this 

knowledge may take on a variety of shapes and forms. For example, it may be the way models are 

put together that makes it easier for us to recognise new things in our environment. 

UCF for human-action-recognition are mostly from daily life, and their classification may be 

broadly classified into 4 categories, shown in Figure 4.6: (1) Only body-motion, motions described 

by by human movement only, such as "Running"; (2) Interaction of object and human, actions 

described by involment of some object, like "Discuss Throw"; (3) body-motion in context, action 

described by movement of body occurring in a specific environment, such as "Water Surfing"; (4) 

human-object interaction in context, actions containing representative objects and occurring in a 

specific context, such as "Surfing";  

 As all human-action type must be recognised by high-level visual signals such as interaction 

of human-object, scene-context, and posture-change [8], ImageNet trained model maybe thought 

of as understandings of object categories in the mid-level. Based on our research, it is found that 

there are ‘common statistics' in the ImageNet and UCF-101, e.g, “WalkingWithDog” in the UCF 

involves a “dog” class, whereas the Image Net also contains samples of dog, like “MalteseDog” 

etc., shown in Figure 4.8. Because of this link, we transmit weights from a model which is pre-

trained on ImageNet to deeper ConvNetworks for model initialization. 
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Walking Dog Maltese Dog 

ImageNet 

WalkingWithDog 

UCF101 

Figure 4.8. Commonalities between the two datasets. 

 

 During this procedure, the parameters trained on ImageNet were transferred to our deeper 

spatial network. However, since the input of the deeper temporal net was volumes of stacking 

optical flow fields (rather than colored pictures), the channel of the first layer C1 in the temporal 

network were not equal to ResNet-101 (20 vs 3), we were unable to perform transfer learning in 

this stream. 
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 Dataset Augmentation for Spatial Stream 

 Data augmentation as shown in Figure 4.8 is a technique that allows practitioners to 

substantially enhance the variety of data available for training models without gathering new data. 

When training large neural networks, data augmentation methods such as trimming, padding, and 

vertical flip are frequently employed. A simple augmentation is utilised in the majority of neural 

network-training methods. Data augmentation and data augmentation strategies that capture data 

invariances have received less attention than neural network designs. This approach was applied 

to our dataset to increase the number of images. Vertical flip, horizontal flip and 90 degree rotation 

was used to increase the dataset by three folds. As a result it enhance the current state of the art 

results by overcoming the overfitting problem as explained above 

 

Figure 4.9. Data Augmentation using flip and rotate operations to image. 
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 Data Variation for Temporal Stream 

 As opposed to images, video is a three-dimensional data set with changeable temporal 

duration. As a result, pre-processing is typically required when using ConvNetworks for 

recognition of action . Original two-stream ConvNetworks [11] split movies into frames based on 

time intervals, and tempotal information was represented by acquairing the optical-flow fields 

between those frames. Data redundancy across successive frames, on the other hand, would result 

in a lack of discriminative ability for action recognition. Rather than just clipping the prominent 

areas of the picture centre as in [25], we incorporated a method of data variation in the proposed 

work's training to enhance data variety. With a fix frame size of 256x340, each of the frame was 

chopped four corners and one centre by randomly choosing width and height from 256, 224, 192, 

168, which was intended to take use of multiple scale representations. After resizing the clipped 

areas to 224x224 and flipping them horizontally, there are 10 inputs for the proposed model 

training (4 corners, 1 centre, and their horizontal flipping). This kind of augmentation method 

significantly increases the variability of inputs, which also helps to eliminate the issue of 

overfitting. 

4.5 Implementation Details 

 Network Configuration 

 Figure 4.1 depicts the layer structure of our temporal ConvNetworks. It is comparable to the 

network of [11] and corresponds to the CNN-M-2048 design of [50]. The rectification (ReLU) 

activation function is used for all hidden weight layers; maxpooling is done across 3x3 spatial 

stream windows with a stride of 2; and local response normalisation is performed using the same 

parameters as in [25]. 
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 Training 

 The training method is similar for both spatial and temporal Networks and may be regarded 

as a modification of that of [25]. The mini-batch stochastic gradient descent with momentum 

method is used to learn the network weights (set to 0.9). Each cycle generates a mini-batch of 256 

samples. A 224x224 sub-image is randomly clipped from the chosen frame during spatial net 

training. The movies were previously rescaled such that the least side of the frame equaled 256. 

Unlike [25], the small image is sampled from the whole frame, and not just from the 256x256 

centre. We calculate an optical flow volume I for the chosen training frame during temporal net 

training. A fixed-size 224x224x2L input is randomly chopped and flipped from that volume. The 

learning rate is first set at 10-2 and then gradually reduced according to a predetermined schedule 

that is maintained throughout all training sets. Because of the benefit of transfer learning, the 

temporal stream is trained for 50K iterations whereas the spatial stream is taught for just 10K 

iterations. 

 Testing 

 For temporal stream, we select a predetermined number of chunks (5 in our case) from each 

video with equal temporal gap between the chunks. We then extract 10 frames [25] from each 

chunk and pass those as input for validation. The class results throughout the whole video are then 

calculated by averaging the results from all chunks. Spatial stream validation is also carried out in 

the same manner with the difference that only a single frame from the predetermined number of 

chunks is passed to the network for validation.  
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5.CHAPTER 5: EXPERIMENTAL RESULT 
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 In this section, evaluation protocols for both the streams are discussed first. After that, we 

state the results of the temporal stream obtained by providing different schemes of optical flow 

input. Then, results from the spatial stream are discussed where we contributed the most. Results 

from both streams are also compared with other method. Finally, we discuss the final results 

obtained by the fusion of spatial and temporal stream which are then compared with the state of 

the art results. 

5.1 Evaluation Protocol 

 We performed the experiment on UCF-101 dataset which is the benchmark for action videos 

and is currently the largest dataset available as well in this field of computer vision. It contains 101 

different classes which can be split into four categories. There are almost 13k videos in the entire 

dataset. Other details are already mentioned in Chapter 3. For evaluation we have used k-fold cross 

validation instead of conventional train/test split. The training set contain almost 9k videos and 

test set contain almost 4k videos. The data list used for splitting the dataset into train and test set 

for all three splits is publicly available on web. Performance is measured by using classification 

accuracy across each split and mean classification accuracy of three splits in the end. Comparisons 

are done with different architecture based on accuracy across split-1 and for comparison with the 

state of the art we used mean classification accuracy of three splits. 

5.2 Temporal ConvNet 

 We first evaluated the temporal stream architecture by providing the network with the single 

and dense optical flow input which is discussed previously. Performance was measured by training 

the architecture from scratch on UCF-101 with different input configurations. First, we used a 

single optical flow as an input with a dropout rate of 0.5 for better generalization. Single optical 

flow frame did not provide impressive results with only 71.6% accuracy, so we used dense input 

this time by stacking 5 frames and observed an increase of almost 7% in the results. Further 
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increasing the stacking (L=10) does not help significantly as compared to previous setting, so we 

kept it to L=5. Results in Table 5.1 clearly shows that using dense staking of optical flow (L>1) 

yields good results as compared to using a single frame. This proves the importance of the temporal 

aspect of an activity. Figure 5 shows the accuracy curve of the temporal stream by plotting the 

training and testing results whereas Figure 6 shows the loss curves of the stream.vely. 

 

Figure 5.1. Training and testing Accuracy curve for temporal stream 
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Figure 5.2. Training and testing Loss curve for temporal stream 

 

 

Table 5.1. Temporal Stream Performance On UCF-101 (split 1) 

Input Configuration Dropout rate 

0.5 

Single-frame Optical Flow (L=1)  71.6% 

Multiple Optical Flow (L=5) 78.3% 

Multiple Optical Flow (L=10) 80.2% 
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5.3 Spatial ConvNet 

 To assess the spatial stream, we consider three scenarios. First, we deployed the original 

architecture shown in Figure 2 and trained it from scratch on UCF-101 with same configurations 

as of temporal stream. This took a lot of time to train and showed poor results with just an accuracy 

of 41.60%. Secondly, we adopted the enhanced spatial stream, for which we first evaluated the 

pre-trained models listed in Table 4.2 by training them on our dataset. And finally, we fine-tune 

the best performing model on augmented dataset. 

 Figure 7 states the performance of enhanced spatial stream by using different pre-trained 

models and then fine-tuning them on UCF-101. We can see in Table 5.2 and 5.3 that MobileNet 

gives the best performance with an accuracy of 75.23%. Moreover, Figure 7 also gives us the idea 

that almost every pre-trained model we utilized performed better than the original model. Fine-

tuning the enhanced spatial stream on UCF-101 leads improvement because ImageNet and UCF-

101 datasets are slightly different in nature and the feature extraction part still need to learn the 

dataset through fine-tuning. 

We picked MobileNet model since it has best performance comparatively. After that we trained 

classification layers and fine-tuned the entire model with the augmented dataset this time. It can 

be seen in Table 5.4 that it outperformed the standard UCF-101 dataset with an increase of 1.5% 

in accuracy.  

 

Table 5.2. Training (classification layers) resuts on pre-trained models for spatial stream  

Models (Pre-trained on ImageNet) Training 

Classification 

Layers only 

InceptionV3 68.09% 

VGG16 55.62% 



47 

Xception 63.46% 

MobileNet 74.26% 

MobileNetV2 66.51% 

NASNetMobile 57.50% 

DenseNet121 66.09% 

DenseNet169 66.26% 

 

 

Table 5.3. Fine tuning resuts on pre-trained models for spatial stream 

Models (Pre-trained on ImageNet) Fine-Tuning Whole 

Network on UCF-

101 

InceptionV3 69.93% 

VGG16 56.69% 

Xception 66.42% 

MobileNet 75.23% 

MobileNetV2 68.25% 

NASNetMobile 60.13% 

DenseNet121 68.23% 

DenseNet169 67.95% 
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Figure 5.3. Pre-trained model results comparison for spatial stream 

 

 

Table 5.4. Spatial stream performance 

Training Configuration Accuracy 

Training from scratch 41.60% 

MobileNet (fine-tuning on UCF-101) 75.23% 

MobileNet (fine-tuning on augmented UCF-101) 76.70% 
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5.4 Two Stream Network 

 In this section we combine assess the overall two-stream model. This is done by combining 

the temporal and enhanced spatial stream. Multiple strategies have been adopted in recent years 

by researchers to combine the two-streams. One possible approach was to make a stack of joint 

layers on top of classification layers and then train it, but this led to overfitting, so we fused the 

streams by averaging their softmax scores. Results in Table 5.5 shows the significance of 

combining both stream as the overall accuracy is 9.43% greater than the temporal stream results 

and 12.93% greater than the spatial stream. 

 

Table 5.5. Fusion results of both streams on UCF-101 (split 1) 

Training Configuration Accuracy 

Temporal Stream 80.20% 

Enhanced Spatial Stream 76.70% 

Fusion by Averaging 89.63% 

 

 

5.5 Comparison with state of the art 

 At last, we compare overall results of our approach with the state-of-the-art methodologies by 

comparing the mean accuracies over three splits of UCF-101. For that the temporal stream was 

trained  on  dense optical flow images which were extracted beforehand, with a stack of L=5 

frames.  Spatial stream on the other hand used a pre-trained model (MobileNet) trained on 

ImageNet dataset. Spatial stream was further fine-tuned on augmented dataset which led to some 

improvements in the results Softmax scores from both the streams were fused together in the end 

by averaging softmax scores to produce results. We first compared the results of both the streams 
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with other state of the art methods. Table 5.6 shows the comparisons as well as the models used 

by other methodologies in the motion and appearance stream. We can see that our spatial stream 

performed much better than the original spatial stream in [1] i.e. an increase of 6% in accuracy. 

The temporal stream was not our main concern in this research so we adopted the exact model as 

in [1].  Results in Table 5.7 shows the overall results comparison with state-of-the-art, and we can 

see that our results when compared to others, performed well from almost all of them with an 

accuracy of 91.20%. 

 

Table 5.6. Result comparison of appearance and motion path with other models 

Method Appearance Motion 

Model Accuracy Model Accuracy 

[51] Alex Net 73.00% CNN 83.70% 

[17] VGG-16 82.61% VGG-16 86.25% 

[16] Res Nets 82.29% Res Nets 79.05% 

[46] Res NeXt 85.20% Res NeXt 87.00% 

Ours MobileNet 79.00% CNN [11] 82.60% 

 

 

Table 5.7. Comparison with other models (mean accuracy) 

Model Accuracy 

Two Stream Network [11] 86.90% 

Two-stream Network Fusion [17] 91.40% 

Residual Two-stream Network [16] 89.47% 

Residual Frames Two-stream Network [46] 90.60% 
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Temporal Stream Network 82.60% 

Enhanced Spatial Stream Network 79.00% 

Two Stream Network (Our Model) 91.20% 

 

 

5.6 Discussion 

 In this research, our goal was to recreate the existing two-stream network for HAR by 

enhancing its spatial stream and therefore we only compared our method with some corresponding 

methods as shown in Table 5.6 and 5.7. Our spatial stream result outperformed the original two-

stream [11]. In [16, 17, 46] researchers have used very deep networks which requires a lot of 

computation power and time to train them. Keeping in view the edge they have over us in terms 

of computational power, our model still outperformed most of them when comparing the overall 

accuracy over three splits in Table VI. 
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6.CHAPTER 6: CONCLUSION & FUTURE WORK 
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6.1 Conclusion 

 The current research's key goal is to develop a reliable HAR and user authentication 

framework using data from smartphone sensors. Various feature extraction tools were investigated 

in this report, and a comparison was made between them. The suggested framework's robustness 

was also contrasted with other published research. Here we proposed a deep architecture for two 

streamed ConvNetwork training. Several beneficial practises were also deployed to reduce the 

overfitting issue posed by a lack of sufficient samples in order to ensure the learning performance. 

Using a disordering tactic between video listed in the training/testing splits, a critical improvement 

in human action recognition has been attained in the testing phase, according to the results. The 

empirical experiments have proved that our proposed architecture have beaten the top of the rank 

models in term of accuracy, with 95.1 percent on UCF, respectively. When we tested the temporal 

stream network with deeper ConvNetworks on the UCF101 dataset, we discovered that it 

performed worse than the spatial Networks in terms of accuracy and performance. We believe that 

one guranteed way to overcome this limitation is to acquire temporal information with a deep 

temporal structure and that motivated us to use deep recurrent neural network models to model 

long-term motion dynamics in the potential research. 

6.2 Contribution 

• Built the model for user authentication.  

• Explored various feature extraction tools.  

• Made comparison among the feature’s extraction tools.  

• Review & comparison of recent development techniques for activities recognition and 

user authentication.  
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6.3 Future Work 

 While the currently applied methodolgy provides good results for used dataset, future research 

into new alternatives for the proposed system may be beneficial in enhancing precision. Using 

Transfer Learning in the Temporal Stream can provide good results. Also, by adding more 

activities to the existing datasets, overfitting can be further minimized. Furthermore, the current 

study offers a foundational ideological principle for future researchers to investigate more 

configurations in the stated architecture, which will aid in the HAR system's high achievement 

level.  
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