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Abstract

This thesis presents an in-depth examination of traffic light control optimization using

Reinforcement Learning (RL) techniques. The research focuses on two specific RL algo-

rithms: Deep Q-Learning (DQN) and Double Deep Q-Learning (DDQN), investigating

their ability to reduce wait times at a four-way traffic intersection. The RL agents’

learning process is driven by a reward function based on waiting times, designed to

guide the agents towards minimizing these times. A transition phase is implemented

in the model, allowing for flexibility and responsiveness to changing traffic conditions.

Deep Neural Networks (DNNs) are used as function approximators, facilitating the un-

derstanding of the association between state-action pairs. The architecture comprises

five fully connected hidden layers, providing an effective means of approximating the Q-

values for the state-action pairs. Training data for the DNN is stored in an Experience

Replay Memory, which is effectively a history of state, action, reward, and subsequent

state. The study concludes that both DQN and DDQN agents demonstrated an in-

creasing proficiency over time, indicating the successful application of RL techniques

in traffic light control systems. This research contributes to the ongoing efforts to em-

ploy advanced RL techniques in optimizing traffic flow, with potential applications in

intelligent transportation systems, smart cities, and autonomous vehicle navigation.

xvi



Chapter 1

Introduction

1.1 Background

Increasing world population, particularly within urban areas [8], has increased the de-

mand for road transportation, necessitating the efficient movement of people, goods, and

services. The increased numbers of vehicles, however, are contributing to increasingly

serious traffic congestion issues, especially in densely populated urban areas and cities.

This congestion is not only problematic for individual commuters and the transport in-

dustry, but it also leads to increased fuel consumption, elevated levels of CO2 emissions,

and wasted time. This not only affects the environment, but makes travel costly in

terms of money and time.

Several factors contribute to these traffic challenges, including the large number of vehi-

cles on the road, outdated or poorly designed traffic infrastructure, and inefficient traffic

light control systems. While it’s unrealistic to curb the number of vehicles people pur-

chase or embark on large-scale infrastructure overhauls without burdening the economy,

it’s crucial to explore feasible solutions to these pressing issues.

One promising strategy is focused on optimizing green signal timing at traffic signal at

intersections. Traditional traffic light systems often run on a predetermined traffic light

sequence program that allocates a fixed duration of green time for each direction at an

intersection, regardless of real-time number of vehicles at the intersection. While this

static approach works relatively well under low traffic conditions, it tends to break down

during periods of high traffic flow, such as during popular events, and peak school or

working hours.

1
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An interesting observation has been made when these automated systems fail due to

technical or other issues: a human traffic officer often takes over control at the inter-

section. These officers, based on their experience and real-time assessment of the traffic

situation, dynamically adjust the signal timing for each direction of the intersection.

This ability to adapt to the situation on the ground makes human traffic controllers

remarkably effective. However this approach is not scalable and sustainable in the long

run.

A feasible solution, therefore, is to develop and deploy advanced traffic control systems

that can mimic this human ability to adapt to real-time traffic conditions. Using machine

learning and artificial intelligence algorithms, these systems could analyze traffic flows,

anticipate traffic patterns, and dynamically adjust signal timings to optimize traffic

flow at intersections. This approach could significantly enhance the efficiency of our

road transport systems, mitigating traffic congestion and its associated problems.

1.2 Problem Statement

As emerging economies continue to grow and urbanize, the infrastructure, specifically

traffic and road systems, are undergoing significant transformations. The continuous

reshaping and upgrading of road networks often result in the alteration of previously

established traffic patterns. Such drastic changes can inadvertently increase traffic con-

gestion issues, impacting mobility and efficiency.

Traditionally, efforts to alleviate these congestion issues have relied heavily on the pre-

setting of green light durations, established according to historical traffic data. However,

this approach often fails to yield the desired results.[69] The primary reason is its inabil-

ity to account for fluctuations in traffic demand, which are frequent but unpredictable,

given the changing nature of road networks and urban population growth.

An alternative approach has been to employ inductive loop detectors, which are sensors

designed to control traffic signals. Despite their usefulness, these sensors come with

notable drawbacks. They often lack precision in detecting smaller vehicles, and are prone

to damage from regular wear and tear of the roads, leading to reliability and maintenance

issues. They also require significant changes to the road’s physical infrastructure.

What’s clearly needed is a more dynamic, intelligent, and adaptable system that goes

2
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beyond merely managing traffic flow at intersections. Such a system should be able to

learn and adjust to new control policies based on evolving traffic behaviors and changing

road conditions.

In the last few years, machine learning has emerged as a domain that can address com-

plex tasks such as object detection, recognition and classification. These complex tasks,

however, rely heavily on the availability of extensive training examples. Unfortunately,

in traffic light control scenario, this kind of training examples is seldom available. Un-

doubtedly, even though data may be accessible, it’s important to recognize that the

characteristics of this data will be distinctive for each traffic light controller throughout

the city.

One potential solution to this challenge lies in a specific machine learning domain known

as Reinforcement Learning (RL).[4] RL operates on the principle of learning through

interactions with agent’s environment and receiving feedback on its actions in terms

of rewards or punishments. Unlike other learning models, RL does not necessitate a

comprehensive understanding of physics of the environment beforehand.

Initially, the Reinforcement Learning (RL), the agent navigates traffic environment by

executing actions in a seemingly random manner. It then observes the impact of these

actions on traffic flow, learning from the improvements or regressions that ensue. This

iterative trial and error process gradually enables the RL agent to comprehend and

enhance the efficiency of traffic control at intersections.

Given the dynamics traffic flows and the constantly evolving road networks in developing

nations, employing reinforcement learning could be a promising way forward. Through

continued learning and adaptation, such a system could help manage the complex task

of traffic control effectively, making our urban road networks more efficient and less

congested.

1.3 Research direction

The fundamental objective of our research dissertation is focused on the applicability

and effectiveness of deep reinforcement learning (DRL) algorithms within the field of

traffic flow control. It aims to identify and compare various reinforcement learning

methodologies, with the goal of enhancing the flow of traffic movement at intersections.

3
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The outcome will involve selecting the most efficient algorithm for potential practical

deployment. Additionally, the research will explore various sensor technologies and

methods to implement these reinforcement learning algorithms practically.

This work will focus on following Deep Reinforcement Learning algorithms:

• Deep Reinforcement Learning with Q Learning (DQN) [25]

• Deep Reinforcement Learning with Double Q Learning (DDQN) [33]

These particular algorithms have been chosen due to their significant contributions to

the field and their potential applicability to the traffic control problem.

Main objectives of this research are outlined below:

• Implement a traffic light control system for a single intersection using above listed

DRL algorithms. This objective aims to explore the practical application of these

algorithms in a controlled setting, understanding their operations and impacts on

traffic control.

• Conduct a comparative analysis of the reinforcement learning algorithms’ perfor-

mance. By doing this, we can evaluate their effectiveness and suitability for the

specific demands of traffic control.

• Performance evaluation of reinforcement learning agents in varying traffic flow

settings. This objective will test the versatility and adaptability of the algorithms

under different conditions, highlighting their robustness or lack thereof.

• Identify the hyperparameters that significantly influence the performance of the

reinforcement learning agent. This analysis will help optimize the learning process,

allowing the system to operate at its highest potential efficiency.

• Propose a viable method to implement a reinforcement learning agent in a prac-

tical setting using existing sensor technologies. This objective will bridge the gap

between theoretical and practical application, offering a tangible solution for real-

world traffic control challenges.

By fulfilling these objectives, this research aims to contribute significantly to the field of

traffic control, potentially offering a viable, intelligent solution to the persistent problem

of traffic congestion.

4



Chapter 2

Literature review

This chapter will provide a fundamental understanding of learning agents and rein-

forcement learning, alongside a review of past research efforts aimed at resolving traffic

control problems.

2.1 Agent

Drawing on work of Russell and Norvig [30], a learning agent can be described as any

entity capable of perceiving its environment through sensors and interacting with it using

actuators. The agent’s actions, driven by these actuations, result in changes to current

state of environment. An agent’s decisions to actions to take can be based either on the

current environmental state or a series of past environmental states. Agent’s behavior is

essentially determined by state action pairs, which correlates a sequence of past states

with a particular action.

A rational agent is one that makes the optimal decision at every environmental state.

However, the action function does not provide feedback on the correctness of actions. To

enable agent to distinguish between beneficial and detrimental actions, a performance

measure is necessary. This measure provides feedback to agent by analyzing resultant

state of the environment after an action has been taken. In the field of reinforcement

leaning, this performance measure is known as “reward”.

Based on their complexity, agents can be categorized as follows:

5
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Types of Agents

Simple Reflex Agents

Model-Based Reflex Agents

Goal-Based Agents

Utility-Based Agents
Learning Agents Multi-Agent Systems

Intelligent Virtual Agents

Figure 2.1: Type of agents

2.1.1 Simple reflex agent

A simple reflex agent operates only on given current state of environment, disregarding

any historical sequence of states. This agent adheres to a condition-action rule – "if

condition, then action." However, its effectiveness is reduced as it operates in a fully

observable environment. In other words, this agent may make optimal decisions if the

entire state of given environment is partially or fully observable. Moreover, the agent

has no ability to adapt to the environment. [66]

Percept

Rule-BasedCondition-Action Pairs

Action

Figure 2.2: Simple reflex agent

2.1.2 Model-based Reflex Agent

A model-based reflex agent increase the capabilities of the simple reflex agent. It pos-

sesses an internal structure, referred to as the environment model, which describes

physics of the environment which is not fully observable. This model enables the agent

6
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to handle environments that are only partially observable, thus improving its decision-

making abilities. [18]

Percept

Model

Rule-BasedCondition-Action Pairs

Action

Figure 2.3: Model-Based Reflex Agent

2.1.3 Goal-based Agent

Goal-based agent broadens the limits of a model-based agent by incorporating infor-

mation about the goals it seeks to achieve. This goal-oriented information allows the

agent to make strategic decisions that bring it closer to achieving its set goals. As such,

the agent’s decisions are not only driven by current conditions but also guided by the

desired outcomes.[11]

Percept

Goal

Model

Decision-Making

Action

Figure 2.4: Goal-Based Agent
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2.1.4 Utility-based Agent

While goal information may enable an agent to accomplish a task successfully, it does

not necessarily guide it towards the most efficient way of doing so. For instance, consider

a scenario where an agent is presented with two routes to a goal, as shown in Figure

2-1. The blue path represents the optimal route, yet the agent chooses the red path.

Despite both paths leading to the same goal, they entail different costs. A utility-based

agent, thus, incorporates a performance measure that give preference the selection of

the optimal path, balancing the goal with the cost of actions taken to achieve them.[12]

Percept Model

Utility Function Decision-Making

Action

Figure 2.5: Utility-Based Agent

2.1.5 Learning Agent

A learning agent consists of four components, as depicted in Figure 2.6. These include:

• The learning element, responsible for improving the selection of actions.

• The performance element, which determines the desired actions. The performance

element is the whole agent discussed in previous sections since it receives the state

and performs the action.

• The critic component receives the state, compares the agent’s performance against

a predefined standard, and provides feedback to the learning element. This feed-

back aids in enhancing future actions.

• The problem generator suggests the performance element to carry out some ran-

dom actions, aiming to generate new and informative experiences.

The learning agent is the most complex yet useful type of rational agent. Various

8
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techniques and algorithms have been developed to implement learning agents in rein-

forcement learning, which will be discussed in upcoming later sections.[7]

Environment

Percept

Learning Algorithm

Action

Knowledge

Figure 2.6: Learning Agent

2.1.6 Reinforcement Learning Approach

Reinforcement learning (RL) is a subfield of machine learning, primarily focused on

determining the optimal sequence of actions for a software agent in a given environment,

all with the aim to maximize the cumulative reward over time. This learning paradigm

symbolizes a dynamic and interactive methodology. In this scenario, an agent evolves

within its environment, aiming to establish the most effective behavior through active

engagement and reciprocated feedback, typically framed as rewards or punishments.

Sutton2018.

In the standard RL paradigm, an agent performs actions within an environment, tran-

sitioning between various states. For each action taken, the environment provides the

agent with a corresponding reward (or penalty). The agent’s objective is to learn an

optimal policy, which is essentially a strategy or set of rules, that will maximize the

cumulative reward over time.[5]

The RL approach can be broken down into the following components:

• Agent: The learner and decision maker.

• Environment: The physics with which agent interacts with.

• State: A configuration of the agent and environment at a given time.

9
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• Action: Choices that the agent makes.

• Reward: Feedback from the environment following an action.

• Policy: The agent’s strategy or the method of selecting actions.

Figure 2.7: Reinforcement Learning Agent

A typical reinforcement learning cycle starts with agent observing current state (s) of

environment. Based on this observation, the agent then selects an action (a) to perform.

The environment transitions to next state (s′) following the action, and the agent gets

reward (r) that reflects feedback of action taken. This reward might be immediate or

delayed. The agent uses this reward as a signal to update its policy, improving its

decision-making process over time.

RL has been effective in addressing various complex problems across numerous domains.

DeepMind’s AlphaGo, for instance, used RL and deep learning to defeat the world

champion in Go, a complex board game [35] [31]. In robotics, RL algorithms have

been used to teach robots to perform intricate tasks that would be challenging to hand-

engineer, like manipulating objects or locomotion [40]. In traffic light signal control, RL

algorithms are employed to optimize signal timings, leading to improved traffic flow and

reduced congestion. [21]

Despite its remarkable achievements, reinforcement learning remains an engaging area

for ongoing research. Numerous challenges continue to demand attention, such as man-

aging vast state and action spaces, navigating multi-agent environments, mastering

transfer learning, and addressing safety and ethical concerns associated with RL systems.
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2.1.7 Markov Decision Process (MDP)

Reinforcement learning employs the methodology of a Markov Decision Process (MDP),

an analytic structure used to represent decision-making contexts in which results are

partially stochastic and partially dictated by the decision-maker. The defining feature of

an MDP is that the likelihood of moving to any specific state depends only on the current

state and action, rather than the sequence of preceding events. This characteristic is

known as the Markov property.

Mathematical Framework of MDP

In the MDP model, the following elements are typically present: [19]

• States (S): A set of states S, where each state is denoted by s, and s belongs to

S. A state represents a condition of the environment at a given time.

• Actions (A): A set of actions A, where each action is denoted by a, and a belongs

to A. An action represents the decision made by an agent in a given state.

• Transition Probability (P (st+1|s, a)): This illustrates the likelihood of transition-

ing from the existing state s to a succeeding state st+1 when an action a is un-

dertaken. Frequently, these transition probabilities are delineated via a transition

model.

• Reward Function (R(s, a, st+1)): This function gives an immediate reward after

transitioning from state s to state st+1 through action a. The reward indicates

the goodness of an action taken in a state.

• Discount Factor (γ): The discount factor, ranging from 0 to 1, gauges the signif-

icance of upcoming rewards. A steeper discount factor denotes a scenario where

imminent rewards hold equivalent importance to those expected in the future.

The agent’s goal within an MDP is to find an optimal policy π∗, which is a function

defining the best action to take in each state so that the cumulative future reward

is maximized. This reward is often discounted over time, giving more importance to

immediate rewards over distant future rewards.
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RL Problem formulation as MDP

The process of reinforcement learning in an MDP can be described as follows:

• The agent selects an action a according to the current policy π(s).

• The environment transitions to a new state st+1 following the transition probabil-

ities P (st+1|s, a).

• The reward function generates an immediate reward r according to R(s, a, st+1).

• The agent receives the new state st+1 and the reward r.

This cycle goes on until a concluding state is arrived at, signifying the termination of

the episode. The aim is to gradually optimize the policy π in a way that the anticipated

cumulative discounted reward is maximized. [44]

Over the years, many algorithms have been proposed to solve MDPs, ranging from

traditional methods like value iteration and policy iteration to more recent techniques

using deep learning like Deep Q-Learning mnih, Advantage Actor-Critic methods [34],

and many more.

2.1.8 RL Algorithms

Reinforcement Learning (RL) algorithms are classified into following:

Model-based vs Model-free Algorithms

Model-based Algorithms: These algorithms utilize environment’s model, which de-

scribes the dynamics (physics) of the environment. This model predicts next state and

corresponding reward based on the give current state and action. The model can either

be provided a priori or learned from agent’s interaction with the environment. This class

of algorithms uses this model to plan by considering future possibilities before taking an

action. Examples of model-based algorithms include Dyna-Q, Monte-Carlo Tree Search

(MCTS), and various forms of Planning by Dynamic Programming (DP).[50]

Model-free Algorithms: These algorithms do not require a model (physics) of the

environment. Instead, they learn solely from the experience gained by interacting with

the environment. They typically require more samples to learn effectively compared
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to model-based methods. Q-learning, State–action–reward–state–action (SARSA), and

Deep Q Network (DQN) are well-known examples of model-free algorithms.[47]

Value-based vs Policy-based Algorithms

Value-based Algorithms: Value-based methods learn "value function", which is a

measure of how suitable a particular state or action is. The policy, which determines

behavior of agent, is derived from the value function. In other words, the agent policy

is to choose action that maximizes the value function. Prominent examples include

Q-learning and DQN.[62]

Policy-based Algorithms: These algorithms directly parameterize and learn pol-

icy without explicitly learning the value function. Policy gradient methods like RE-

INFORCE and actor-critic methods like Advantage Actor Critic (A2C) and Proximal

Policy Optimization (PPO) fall under this category.[39]

Actor-Critic Algorithms: These methods have strengths of both value-based and

policy-based methods. They have two components: an actor that maintains a policy

(how the agent should behave) and a critic that estimates the value function (how good

the chosen action is). The critic informs the actor how to update the policy.[41]

On-policy vs Off-policy Algorithms

On-policy Algorithms: On-policy methods learn the policy’s value used to choose

actions based on give states. In other words, data used to update the policy must be

collected using the current policy. Examples of on-policy algorithms include SARSA

and A2C.

Off-policy Algorithms: Off-policy methods can find optimal policy regardless of the

policy used to gather the data. They can learn from actions taken by an exploratory or

even a random policy. This property makes off-policy methods more flexible and widely

used in practice. Q-learning and DQN are examples of off-policy methods.

Each category of RL algorithms has its strengths and weaknesses, and the choice between

them depends on the specifics of the task at hand, including the complexity of the

environment, the availability of a model, dimensionality of the action and state, and

computational resources available.[28]
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2.1.9 RL Algorithm Considered In This Work

In this work, we consider different variants of RL algorithms such as Deep Q-Learning,

and Double Deep Q-Learning for traffic light control signal timing optimization. These

algorithms demonstrate their ability to adapt to real-time changes and make more in-

formed decisions, thus enhancing the overall traffic flow.

Q-Learning

Q-Learning is a form of model-free reinforcement learning, introduced by Watkins in

1989. It provides a way to find an optimal policy for an agent interacting with an

environment modeled as a Markov Decision Process (MDP). The objective of Q-Learning

is to learn a policy that allows the agent to maximize the expected total reward over all

successive steps, starting from the current state.[1]

Q-Learning uses a table, the Q-table, to store Q-values. The Q-value, or action-value,

Q(s, a), denotes the expected return or future reward for taking action ’a’ in state ’s’

following a given policy π. The Q-value essentially answers the question: "What is my

expected reward, given I am in a certain state, and I take a specific action?"

The Q-value is learned through iterative updates, making use of the Bellman equation

as follows:

Q(s, a)← Q(s, a) + α[R(s, a) + γ max
a′

Q(s′, a′)−Q(s, a)] (2.1.1)

Where:

• α is the learning rate, which determines to what extent the newly acquired infor-

mation overrides the old information.

• R(s, a) is the immediate reward for taking action ’a’ in state ’s’.

• γ is the discount factor, determining the importance of future rewards compared

to immediate rewards.

• maxa′ Q(s′, a′) represents the estimate of optimal future value, given the next state

’s’ and all possible actions ’a’.
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Algorithm 1 Q-Learning
Set values for learning rate α, discount factor γ, and initialize the reward matrix R.

Initialize Q(s, a) to zeros for all states s and actions a.

for each episode do

Select a starting state s randomly.

for each step of the episode do

Choose an action a from state s using policy (e.g., ϵ-greedy or Boltzmann).

Execute action a, obtain reward r from R, and observe the next state s′.

Update Q(s, a) using the Q-learning update rule:

Q(s, a)← Q(s, a) + α[r + γ maxa′ Q(s′, a′)−Q(s, a)].

Update the current state: s← s′.

end for

Continue until s is a terminal state.

end for

Q-learning algorithm, in its simplest form, is a table-filling method where the agent fills

up a Q-table over a large number of episodes, by taking actions, observing rewards, and

updating Q-values. Once the table is reasonably accurate, the agent can start to use it

for decision making by simply choosing action with highest Q-value in any given state.

Deep Q-Learning

While Q-Learning is highly effective for environments with lower dimension state and ac-

tion spaces, it encounters scalability issues for higher dimensional state and action spaces

because of difficulty in maintaining and updating a Q-table. Deep Q-Learning (DQN),

first introduced by researchers at DeepMind, overcomes this limitation by replacing the

Q-table with neural network that approximates the Q-value function. Therefore, it is

suitable for environments with high dimensional or even continuous state and action

spaces.[56]

In DQN, deep neural network is used to approximate our optimal Q-value function.

This network takes environment’s state as input and outputs estimated Q-values for all

agent’s actions. By using a neural network, DQN can generalize Q-values over many

states, bypassing the need for a lookup table.

The neural network is trained to lower the difference between the predicted Q-value and
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the target Q-value, given by the Bellman equation. This is achieved through backprop-

agation and an optimization method, for example stochastic gradient descent (SGD),

RMSprop or Adam. The loss is given by:

Loss = 1
N

∑
(R(s, a) + γ max

a′
Q(s′, a′, θ)−Q(s, a, θ))2 (2.1.2)

Where:

• N : number of training samples.

• R(s, a): immediate reward.

• maxa′ Q(s′, a′, θ): It represents the estimate of optimal Q value, given next state

s′ and all possible actions a′, following the current policy parameterized by θ.

• Q(s, a, θ): Predicted Q-value of the action a in the state s.

Algorithm 2 Deep Q-Learning
Initialize deep Q-network Q(s, a, θ) with random weights θ.

Initialize target Q-network Q(s, a, θ−) with weights θ− = θ.

for each episode do

Initialize state s.

Preprocess initial state to obtain the corresponding input for the network x1.

for each step of the episode do

Choose action a from state s using policy derived from Q (e.g., ϵ-greedy).

Execute action a in emulator and observe reward r and next state s′.

Preprocess state s′ to obtain the corresponding input xt+1.

Store transition (xt, a, r, xt+1) in replay memory D.

Sample random minibatch of transitions (xj , aj , rj , xj+1) from D.

Set yj =


rj for terminal xj+1

rj + γ maxa′ Q(xj+1, a′, θ) for non-terminal xj+1

Perform a gradient descent step on (yj − Q(xj , aj , θ))2 with respect to the

weights θ.

Every C steps reset Q(s, a, θ−) = Q(s, a, θ).

end for

end for
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Double Deep Q-Learning

While Deep Q-Network (DQN) significantly improved reinforcement learning agents

ability to handle large or even continuous state and action spaces, it has a significant

drawback known as the overestimation bias. This bias arises because DQN tends to

estimate higher Q-values than the true Q-values due to its use of the maximum operator

in the Bellman equation for updating estimates of Q-value.

Double Deep Q-Learning (Double DQN or DDQN), proposed by [33], presents a solution

to mitigate the overestimation bias inherent in the standard DQN. The key insight

behind Double DQN is to decouple action selection from action evaluation process during

estimation of Q-value, thereby reducing overoptimistic Q-value estimates produced by

DQN.

In DDQN, one network (usually referred to as the online network) is used for action

selection, and another network (typically the target network) is used for evaluation of

Q-value of that selected action. This results in new target for the Q-value update:

Loss = 1
N

∑
(R(s, a) + γQ(s′, arg max

a′
Q(s′, a′, θ), θ′)−Q(s, a, θ))2 (2.1.3)

Here:

• arg maxa′ Q(s′, a′, θ) chooses the action that maximizes Q-value in next state s′,

as estimated by the online network.

• Q(s′, arg maxa′ Q(s′, a′, θ), θ′) estimates Q-value of the chosen action in next state

s′, as estimated by given target network.

By decoupling action selection and evaluation, DDQN reduces overestimation of Q-

values and tends to provide more accurate and stable learning than DQN. It’s worth

mentioning that, similar to DQN, DDQN also utilizes techniques like experience replay

and target network for stabilizing learning process.

2.2 Survey of related work

The problem of traffic flow optimization is a longstanding challenge within the field of

transportation research. Over the past several decades, numerous methods have been
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Algorithm 3 Double Deep Q-Learning
Initialize deep Q-network Q(s, a, θ) with random weights θ.

Initialize target Q-network Q(s, a, θ−) with weights θ− = θ.

for each episode do

Initialize state s.

Preprocess initial state to obtain the corresponding input for the network x1.

for each step of the episode do

Choose action a from state s using policy derived from Q (e.g., ϵ-greedy).

Execute action a in emulator and observe reward r and next state s′.

Preprocess state s′ to obtain the corresponding input xt+1.

Store transition (xt, a, r, xt+1) in replay memory D.

Sample random minibatch of transitions (xj , aj , rj , xj+1) from D.

Set yj =


rj for terminal xj+1

rj + γQ(xj+1, arg maxa′ Q(xj+1, a′, θ), θ−) for non-terminal xj+1

Perform a gradient descent step on (yj − Q(xj , aj , θ))2 with respect to the

weights θ.

Every C steps reset Q(s, a, θ−) = Q(s, a, θ).

end for

end for
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proposed to tackle this issue, with varying degrees of success. Despite the ongoing

development of new strategies, the complexities and unpredictable nature of traffic flow

patterns presents this a very complex area of study.

Webster [16] was one of the pioneering figures in traffic optimization, employing math-

ematical methods to calculate optimal phase time, which at that time represented a

significant leap forward. However, as traffic volumes increased at intersections, Web-

ster’s approach needed adaptations and improvements, prompting Robertson [9] to make

modifications to the original methodology.

The advent of advanced sensor and computing technologies ushered in a new era of

solutions. Fuzzy control methods [14] and genetic algorithms [60] emerged as promis-

ing approaches for traffic control systems. These solutions, reliant on historical data,

experienced deteriorating performance when confronted with changing traffic patterns.

Hence, the need for a traffic control system capable of learning from changes in traffic

behavior became apparent.

Reinforcement learning has become a key area of focus for traffic optimization researchers

in recent years [67]. The work by [22] provides a comprehensive overview of reinforce-

ment learning techniques applied to traffic control from 1997 to 2010. These techniques

employed Q-tables and linear functions to determine Q-values. Various algorithms, state

spaces, action spaces, reward functions, and simulation software have been suggested in

context of reinforcement learning for addressing traffic light control challenges.

2.2.1 State Space Representation

One key aspect of reinforcement learning solutions for traffic light control lies in the

representation of state space. There are three general categories of state space repre-

sentations utilized in traffic control research to date.

The first category employs features hand-engineered by human experts. These features

could be queue lengths of vehicles on the incoming roads at an intersection [64] or a

discretization of incoming lanes into individual cells [54]. Each lane cell is then mapped

onto a vector cell that indicates presence of a vehicle (1) or its absence (0).

Second category uses vector encoding for the positions and relative velocities of vehicles.

Some researchers have even included the traffic light phase in their state representation
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along with the positional and relative velocity data [48].

The third category uses image-based features to represent the state [57]. This approach

involves taking a snapshot of the intersection’s current state. In some cases, four sequen-

tial images are stacked together to represent the state and to provide a sense of motion.

For a more comprehensive state representation, queue length, accumulated waiting time,

current and next light phase, and an image of the intersection can all be combined, as

demonstrated in the work by [65].

Understanding these categories of state space representations helps to create a roadmap

of how different research approaches have been utilized and could be improved upon in

future traffic control systems.

2.2.2 Defining Action Spaces

The definition of action space in reinforcement learning varies based on degree of flexi-

bility allowed to the agent. These variations lead to different degrees of responsiveness

and adaptability to changing traffic conditions.

In a lower-flexibility action space, the reinforcement learning agent operates within a

predefined set of traffic light phases [58]. The agent merely selects from these predefined

phases, and each phase is active for a fixed duration. This rigidity limits the system’s

adaptability to fluctuating traffic conditions.

Medium-flexibility action spaces offer more adaptability. In this setup, the agent decides

whether or not to change the current phase [37]. While the cycle of phases remains fixed,

each phase duration can vary based on the current state. This flexibility allows for more

responsive traffic management, though the fixed phase cycle still places limits on the

system’s adaptability. In this case, agent can also choose sequences of traffic light signal

sequences that are not feasible for a real life scenario.

High-flexibility action spaces provide the most dynamic environment. In this case, the

agent can select not only which phase to activate but also how long that phase should

last [10]. This full control over both phase selection and duration allows the system to

respond most accurately to real-time traffic conditions.
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2.2.3 Reward Function Formulation

The reinforcement learning agent gets feedback from environment in form of rewards

after taking an action in given state. This reward function is typically defined based on

performance measures such as vehicle wait time, queue length, and throughput.

Many recent studies have used the cumulative vehicle delay between the two actions

as a reward function [52] [27]. The delay is measured as the number of seconds that a

vehicle remains stationary at an intersection, effectively capturing the inefficiencies of

traffic light phasing.

In contrast, other researchers have used the cumulative waiting time as a reward function

[64] [43]. The cumulative wait time can be defined as sum of wait times for all vehicles

entering the network, providing a more holistic view of the traffic system’s efficiency.

In some cases, researchers employ a reward function that seeks to balance the queue

lengths on all sides of an intersection [27]. This balance-focused reward function aims

to ensure fair distribution of delays across all traffic directions.

Each approach to defining the reward function provides its unique perspective and em-

phasis on different aspects of traffic management, influencing the behavior and effective-

ness of the reinforcement learning agent.

2.2.4 Reinforcement Learning Approaches

Recent research in the field of traffic control optimization has been based on various

reinforcement learning algorithms, each with different artificial neural network architec-

tures. Their common goal is to ensure high-performing traffic control systems.

Deep Q-learning is one of most widely used algorithms used in this domain. It employs a

deep neural network for approximation of Q-values for a given state, enabling RL agent

to learn optimal behavior [26] . Depending on the type of state representation, different

architectures of neural networks can be used. For instance, Artificial Neural Networks

(ANNs) have been used for vector representation of states [24] , while Convolutional

Neural Networks (CNNs) are being utilized for image-based state representations [20]

[29] .

Researchers like Gao et al. [36] and Gender and [68] implemented CNNs to extract

features from a matrix representation of vehicle position and velocity. The CNN output
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was fed into a fully connected layer that was also fed with with the current phase

information. This layer, in turn, was connected to an output layer yielding Q-values

for all potential actions. The performance of these approaches significantly outpaced

traditional traffic control systems.

Mousavi, Schukat, and Howley [38] presented two alternative methodologies to address

traffic control: value-based and policy-based approach. In the value-based approach,

the action values were estimated by minimizing the error of Q-values. In contrast, the

policy-based approach updated policy parameters to learn the policy. Both approaches

used a CNN as a function approximator to extract features from intersection images.

The outcome was either Q-values for actions (value-based approach) or a probability

distribution over actions (policy-based approach). Both methods achieved commendable

performance without stability issues.

Li Li [42] proposed a novel method using deep stacked autoencoders (SAEs) to determine

the appropriate action in the current state. Autoencoders are neural networks that aim

to set the target output identical to the inputs. This approach employed a specific loss

function to quantify the error between predicted Q-values and the target Q-values, with

the aim for minimizing this error using an optimizer. The results suggested that the

deep stacked autoencoder approach surpassed traditional traffic light control systems.

2.2.5 Convergence in Q-Learning

One of the main challenges in Q-learning is ensuring that the Q-values converge to

stable values. This lack of convergence can occur when agent fails to explore entire

state space or when the neural network’s weights are not properly updated. Various

hyperparameters, such as learning rate, batch size, and exploration rate, also influence

this convergence problem. [32]

Several solutions are proposed in the literature to address this issue. Notably, these

include (1) experience replay, (2) use of a target network, and (3) epsilon-greedy ex-

ploration policy. Experience replay employs random sampling of training examples to

eliminate correlation between states. The target network approach uses two neural

networks: one for training and the other for predicting Q-values. The epsilon-greedy

exploration policy sets an exploration rate that permits random action at the start of

training to explore a more extensive state space [53] .
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Wei et al.[59] suggested a technique that utilized multiple memory containers for storing

training examples. Each memory container stored training examples based on a specific

phase-action pair. During training, an equal number of training examples are sampled

from all containers, thereby maintaining training stability.

2.2.6 Simulation software

Traffic simulation software tools are crucial for developing and testing reinforcement

learning models in traffic management. Here are some widely-used ones:

Simulation of Urban MObility (SUMO): SUMO is a free and open source traffic

simulation suite which is highly portable and allows for microscopic, mesoscopic,

and macroscopic simulations. It is well-regarded in the research community. It

supports multiple simulation scenarios and can integrate with other applications

using its robust API. It’s also frequently updated, thus benefiting from continuous

improvements and features. [17]

Green Light District (GLD) simulator: GLD is a simple and open-source software

primarily focused on simulating traffic lights. Being open-source, it’s free to use

and modify. Its simplicity also makes it easy for beginners to use.[13]

CORSIM: CORSIM is a paid microscopic simulation software that simulates surface

street and freeway networks. It is known for its detailed simulation and analysis

capabilities and includes a broad array of features for traffic analysis.[6]

CityFlow: CityFlow is an open-source traffic simulation framework specifically de-

signed for reinforcement learning scenarios. It is built for large-scale city traffic

scenarios and supports multi-agent reinforcement learning. It is also designed to

be more efficient than traditional simulators.[55]

PTV Vissim: PTV Vissim is a comprehensive traffic simulation software that allows

for multi-modal traffic modeling. It offers detailed and realistic simulations and is

suitable for various traffic engineering, planning, and operational analysis tasks.[63]

Paramics Discovery: Paramics Discovery is a paid software used for microscopic traf-

fic and pedestrian simulation. It offers comprehensive and realistic modeling of

various transport modes, including cars, cyclists, and pedestrians.[23]
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Aimsun: Aimsun is a comprehensive modeling platform for traffic management and

planning. It supports multi-resolution modeling (macroscopic, mesoscopic, and

microscopic) and is well-suited for large-scale projects.[15]
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Design of the Reinforcement

Learning Agent

This research employs artificial intelligence techniques to examine potential improve-

ments in traffic flow at intersections. The study will utilize traffic simulation software,

in which a reinforcement learning (RL) agent, following specific rules and decision-

making abilities, seeks to optimize the flow of traffic. To train this agent to select the

most effective action under any traffic conditions, specific learning techniques grounded

in reinforcement learning and deep learning theories are utilized.

To properly design a reinforcement learning agent, certain key components must be

defined and understood. These components include environment, state space, action

space, reward function, and learning mechanism itself. This chapter provides an in-

depth discussion of these elements. Table 3.1 outlines all the notations used throughout

this chapter for quick reference.
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Table 3.1: Notations used in Chapter 3

Notation Meaning

IT L Intersection of Traffic Light

s Individual State

a Individual Action

r Individual Reward

ts Sampling Time Step

A Set of Possible Actions

ql Queue Length

hl Hidden Layer

The Intersection Traffic Light (IT L) represents RL agent in the environment, where

RL agent interacts with traffic conditions and controls traffic signals. An individual

state (s) captures current state of environment, including such information as vehicle

positions and traffic signal statuses. An action (a) denotes a decision made by the agent

that can affect the environment, for example, changing a traffic light from green to red.

Rewards (r) provide feedback to the agent based on the results of its actions, with better

outcomes leading to higher rewards.

The sampling time step (ts) is the interval at which the agent takes actions and receives

feedback. The set of possible actions (A) includes all actions that agent can perform in

response to given state. The queue length (ql) represents count of vehicles waiting at

traffic signal intersection, and hidden layer (hl) is a part of the neural network used by

the agent for learning.

In the following sections, each component will be described in more detail. Each expla-

nation will also be accompanied by relevant references to research papers to provide a

comprehensive overview of these components within the context of reinforcement learn-

ing.

3.1 Problem Definition

In the given research problem, the agent’s environment consists of an intersection with

multiple incoming and outgoing lanes. Each incoming road is regulated by traffic lights
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(ITL) controlled by an intersection controller that manages the phase sequence of traffic

light controller.

For this research work, the term ’reinforcement learning agent’ or simply ’agent’ signifies

that the intersection controller has been replaced by a reinforcement learning algorithm

responsible for controlling the traffic lights. However, the term ’Non RL agent’ indicates

that intersection controller is replaced by a fixed traffic light controller, where all phases

have a predetermined sequence and duration.

The agent interacts with its environment through a state ’s’, takes an action ’a’, and

gets a reward ’r’. The simulation operates in time steps, each corresponding to a one-

second duration. Following a certain number of simulation steps, the agent’s sampling

timestep ’ts’ occurs. During each sampling timestep, agent interacts with environment,

attains the state ’sts’, and calculates the reward ’rts’. Based on the current state ’sts’

and prior knowledge, traffic light

3.2 Environment

The environmental setting in which the reinforcement learning (RL) agent operates is

fundamental to understanding its function and performance. As previously explained, in

the context of this research, the environment is composed of intersections, with multiple

intersections forming a network. Networks can include a single agent or multiple agents,

with the latter scenario referred to as a multi-agent environment. For this research, we

focus on both these configurations to provide a comprehensive analysis of the RL agent’s

performance.

3.2.1 Single Agent Environment

Visualized in Figure 3.1, a single-agent environment is shown as a standard four-way

intersection with four access points in the four cardinal directions. These intersection

arms are central to the simulation, each equipped with four lanes that vehicles can utilize

to approach and subsequently leave the intersection.
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Figure 3.1: Single Agent Environment

The length of each arm is set to 750 meters, measured from the origin point of a vehicle

to the intersection’s stop line. This measurement mirrors typical urban road scenarios,

thus providing a practical context to our simulations.

The single-agent environment introduces an element of uncertainty with vehicles being

randomly introduced in any incoming lanes, each with a standard initial speed of 10 m/s.

Upon approaching a given intersection, the vehicle determines the preferred lane based

on its pre-programmed destination. Adhering to left-hand driving rules, the possible

routes that vehicles can opt for at the intersection include:

1. Right turn: Vehicles intending to make a right turn choose the right-most lane.

2. Go straight: Vehicles moving straight ahead select one of the middle two lanes.

3. Left turn: Vehicles turning left opt for the left-most lane.

Building the single agent environment is made possible by the Simulation of Urban
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MObility (SUMO) version 1.2.0. This open-source software is highly valued for its

microscopic, multimodal, and continuous traffic simulation capabilities. It provides a

realistic portrayal of traffic at intersections and within broader networks, while allowing

the user to tweak minute network and traffic generation details.

The intersection encompasses 12 distinct traffic lights, as illustrated in Eq. 3.1. The

subscript within the equation symbolizes the position of each traffic light. For instance,

tlnl signifies the traffic light situated on the west side of the intersection, regulating

traffic intending to make a left turn. In a similar fashion, tlns denotes the traffic light

on the east side of the intersection, overseeing traffic aiming to proceed straight. This

rule applies uniformly to all traffic lights as delineated in Eq. 3.1.

ITL = {tlnl, tlns, tlnr, tlwl, tlws, tlwr, tlel, tles, tler, tlsl, tlss, tlsr} Eq. 3.1

Each traffic light can adopt one of three potential states, as displayed in Table 3-2.

Description Traffic Signal Character

Green light g

Yellow light y

Red light r

Table 3.2: Traffic Light States

In SUMO, the key component of traffic flow regulation is the traffic light system. Each

lane on the road features a separate traffic light. The status of these traffic lights at

each sampling timestep ’ts’ is visually represented by colors on stop line.

The operational logic of traffic lights follows a set of rules:

• The transition of traffic light colors follows the sequence: green-yellow-red-green.

• There cannot be a scenario where all traffic lights at the intersection are red

simultaneously.

• Only one side of the intersection can have all traffic lights in a green or yellow

state at any given time.

• The yellow light’s duration remains constant at 4 seconds.
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• The green light duration varies, fixed at 30 seconds for the turn-based agent and

variable for the time-based agent.

These rules help define the concept of a ’phase,’ which is the combination of all traffic

light states for a fixed interval. This is integral to traffic light schedules and thereby to

the overall traffic flow.

Vehicles in this environment are generated randomly, each carrying unique attributes and

following distinct driver behavior models. This diversity adds realism to the simulation,

further contributing to the reliability of the research outcomes.

The attributes of the vehicles are as follows:

Attribute Value

Length 5 m

Width 1.8 m

Minimum gap 2.5 m

Maximum speed 25 m/s

Maximum acceleration 1 m/s2

Maximum deacceleration 4.5 m/s2

Table 3.3: Vehicle Attributes

The Krauss model and the LC2003 model guide the vehicles’ driving behavior.

3.3 State Representation

The agent’s state representation is an important component in reinforcement learning,

representing the environmental status at a specified sampling timestep ts, denoted as sts.

The formulation of the state has a substantial impact on the efficacy of the RL agent.

Although the state in traffic control scenarios is continuous, it can be made discrete by

sampling at discrete time intervals. This research employs the measure of queue lengths

at traffic junctions as a representation of the state space.

The term "queue length" refers to the aggregate count of vehicles that are at a standstill

at the intersection. With regards to an agent operating on a turn-based system, the state

is defined by gathering queue lengths from each side of the intersection. The number
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of queue lengths taken into account is contingent upon the number of sides that the

intersection has. For example, in the case of an intersection with four roads converging,

the state would be composed of four queue lengths. On the other hand, the state for

the time-based agent is the queue length of one intersection side as its role is to alter

the phase duration of that specific side based on the queue length.

Various state types are used in the literature to optimize traffic flow at intersections. One

such widely used state representation is the image-based state. These states are better as

compared to the state representation used in this research because they do not require

any human-crafted feature. However, this approach is not chosen due to practicality

concerns, as it’s unrealistic to obtain top view images of real-world intersections (it is

also difficult to simulate this state). Instead, the state used in this thesis can be easily

procured using a set of cameras at the intersection but integrating a vehicle counter.

Nonetheless, the scalar state acquired is unrefined and not ideal for training the RL

agent. To establish a connection between state-action pairs, the use of a deep neural

network becomes necessary. Training this network with scalar inputs is difficult due to

the low input dimensions. Therefore, human-crafted features such as binary encoding

are used to increase the state’s dimension and facilitate training.

Different types of binary encodings are employed to find the optimal state representation

that enhances agent performance. Key elements of each encoding include the encoding

size and encoding weights. The encoding size refers to the count of cells present in the

encoding matrix, while encoding weights signify the least count of vehicles necessary to

fill a cell in the encoding matrix with 1’s.

The pseudo-code in Algorithm 1 delineates each procedure to populate the encoding

matrix. For instance, consider Figure 3-9 (which will be included in the actual thesis).

This figure shows a type-1 encoding matrix with specific encoding weights for each cell.

This particular matrix is capable of handling up to 492 vehicles on a single side of the

intersection. When the queue length on one side reaches 492 vehicles, every cell in the

encoding matrix for that side would be filled with 1’s. Conversely, when no vehicles are

present, all cells within the encoding matrix will be populated with 0’s.
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Algorithm 4 Finding State Encoding
1: procedure GetStateEncoding

2: Initialize the state matrix with zeros: M ← zeros(4, 12)

3: Initialize the encoding weights matrix: E ← EncodingWeights(4, 12)

4: Find the queue length: ql← QueueLength

5: for j = 1 to M.columns do

6: for i = 1 to M.rows do

7: C ← E[i, j]

8: if ql ≥ C then

9: ql← ql − C

10: M [i, j]← 1

11: end if

12: end for

13: end for

14: return M

15: end procedure

This discussion implies that the encoding matrix’s first columns are populated first,

reflecting real-world traffic scenarios where drivers prioritize filling empty spaces at the

intersection first. The state representation design also extends to type-2, type-3, type-4,

and type-5 encoding matrices, which have their own unique capacities and bit sizes. In

the end, the encoding matrices for all directions at the intersection, pertaining to the

turn-based agent, are gathered and merged to form a unified vector. This consolidated

vector characterizes the intersection’s state, serving as a vital input for agent training.

1 2 8 12 16 24 28 32

1 2 8 12 16 24 28 32

1 2 8 12 16 24 28 32

1 2 8 12 16 24 28 32

Table 3.4: Figure 3-9: An encoding matrix with a 32-bit capacity, capable of managing up to

492 vehicles.
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1 1 2 4 8 10 12 14

1 1 2 4 8 10 12 14

1 1 2 4 8 10 12 14

1 1 2 4 8 10 12 14

Table 3.5: Figure 3-10: An encoding matrix with a 32-bit capacity, capable of managing up to

200 vehicles.

1 2 4 8 12 14 16 20

1 2 4 8 12 14 16 20

1 2 4 8 12 14 16 20

1 2 4 8 12 14 16 20

Table 3.6: Figure 3-11: An encoding matrix with a 32-bit capacity, capable of managing up to

300 vehicles.

1 1 1 2 2 2 4 4 8 8 8 10

1 1 1 2 2 2 4 4 8 8 8 10

1 1 1 2 2 2 4 4 8 8 8 10

1 1 1 2 2 2 4 4 8 8 8 10

Table 3.7: Figure 3-12: An encoding matrix with a 48-bit capacity, capable of managing up to

200 vehicles.

1 1 2 2 4 4 8 8 10 12 12 12

1 1 2 2 4 4 8 8 10 12 12 12

1 1 2 2 4 4 8 8 10 12 12 12

1 1 2 2 4 4 8 8 10 12 12 12

Table 3.8: Figure 3-13: An encoding matrix with a 48-bit capacity, capable of managing up to

300 vehicles.

3.3.1 Action Space

In reinforcement learning, an action signifies the task performed by the agent in the

environment. In the context of the traffic management system, undertaking an action
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equates to triggering the green light phase for one direction at the intersection, lasting

for a predefined period. Analogous to the state, an action is also executed at a sampling

timestep, ts.

For this thesis research, we are focusing on a turn-based agent. The turn-based agent’s

action space comprises selecting which side of the intersection receives the green phase.

The number of potential actions for the turn-based agent depends on the intersection

sides and thus varies accordingly. For instance, the turn-based agent will have three

actions available for a three-way intersection, and four actions for a four-way intersection.

To illustrate, consider the action space of a turn-based agent operating on a four-way

intersection, represented as:

Aturn = {NG, WG, EG, SG}

In the equation above, the actions are defined as follows:

• North-Green (NG): This refers to the activation of the green signal for automobiles

positioned at the north end of the crossroads, aiming to continue forward or veer

right.

• West-Green (WG): Here, the green phase is engaged for cars at the west end of

the intersection with the intention to carry on straight or execute a right turn.

• East-Green (EG): This indicates the operation of the green phase for vehicles

located at the east side of the junction, planning to drive straight ahead or take a

right turn.

• South-Green (SG): This refers to the illumination of the green light for vehicles at

the south portion of the crossroads, intending to move forward or turn right.

The visual representation of these actions for a turn-based agent at a four-way intersec-

tion is shown in below diagrams showcasing each potential action (North Green, West

Green, East Green, and South Green).
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Figure 3.2: Potential actions for a turn-based agent at a four-way intersection

In a non-reinforcement learning environment, a transition phase, represented by the

activation of the yellow light at the intersection for a duration of 4 seconds, takes place

following every green phase.In the model governed by the turn-based agent, a transition

phase is introduced only when the agent’s selected action differs from the preceding one.

For instance, suppose the action picked by the agent at sampling timestep ts is a0 and

aligns with the action carried out at the former timestep ts−1, then no transition phase

transpires. However, should the agent select a different action at sampling timestep

ts + 1, a transition phase will take place.
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3.3.2 Reward Function

In reinforcement learning, the reward function serves as a crucial feedback mechanism,

allowing the agent to discern the efficacy of an action executed in a given environment.

After an action is taken, the agent acquires a reward, effectively indicating the qualitative

aspect of the action, i.e., whether it was beneficial or detrimental. This feedback informs

the agent’s model updates for future decision-making, rendering the reward integral to

the agent’s training process. Typically, rewards can be either positive or negative, with

positive values signaling a favorable action and negative ones indicating an unfavorable

action.

This work primarily seeks to enhance traffic flow at intersections. Consequently, the

reward function ought to derive from performance measures that can potentially influ-

ence traffic flow. Contemporary research has explored various reward functions, and the

following are some prominent examples:

Queue Length Reward

This reward is computed from the difference in queue length at two distinct timesteps,

qlts−1 (previous timestep) and qlts (current timestep). A positive reward indicates a

decrease in stationary vehicles at the intersection due to effective action by the agent.

Conversely, a negative reward signals an increase in stationary vehicles due to a poorly

chosen action. The calculation of the reward using queue lengths is represented as

follows:

rts = qlts−1 − qlts

Density and Speed

This function uses both vehicle density and mean vehicle speed to compute the reward.

Positive rewards reflect a decrease in vehicle density and an increase in mean speed,

while negative rewards suggest the opposite. The reward function is given as:

rts = k(α(dts−1 − dts) + β(vts − vts−1))

where k is a constant, α and β are weights, d denotes vehicle density on all roads, and

v signifies the sum of mean speeds on all roads.
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Wait Time Reward

This function determines the reward based on the accumulated waiting times of vehicles

that are stationary at the intersection. Here, awt signifies the total wait time, computed

by adding the wait times of all vehicles halted at all junction sides. The reward rts is

derived by deducting the accumulative wait time of the current timestep from that of the

preceding timestep. This function is designed to reward favorable actions with positive

values and penalize unfavorable actions with negative ones.

rts = awtts−1 − awtts

This research primarily employs the Wait Time Reward function among the suggested

rewards, given that it considers the waiting times of vehicles at junctions. The hypothesis

is that an efficient intersection minimizes the wait times for vehicles during the green

phase. This aspect is not considered in the other two reward functions, hence Wait Time

Reward is used in this work.

3.4 Learning Mechanism

The learning mechanism outlines the methodology by which a reinforcement learning

(RL) agent discerns the correlation between a state and an action. The Q-learning

methodology, an off-policy and model-free RL approach, enables this learning process

by assigning Q-values to various actions. These Q-values, representing the quality or

“goodness” of an action, are the linchpins for decision-making by the agent. Essentially,

the agent assigns Q-values to every possible action for each state in the environment

and subsequently selects actions based on these values [25].

A common approach to mapping the state of the environment to corresponding Q-values

of actions is the Q-table. This matrix is a two-dimensional structure, where every row

corresponds to a unique state within the state space, every column signifies an action

within the action space, and each cell encapsulates the relevant Q-value. The essence of

Q-learning lies in discerning the Q-values for all plausible actions in a particular state,

and the action leading to the highest Q-value is considered the best choice for that state.

However, the Q-table approach suffices only for finite state and action spaces. As the

size of these spaces grows, employing Q-tables becomes computationally infeasible. In
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such scenarios, function approximators are called upon to map the given state of the

environment to Q-values of actions [25].

Deep Neural Networks (DNNs) have demonstrated their capabilities as efficient function

approximators, and their application can aptly replace Q-tables. DNNs process the state

as input and output the predicted Q-values. Specifically, in traffic control scenarios, the

action set is finite but the state space is virtually infinite. This makes it imperative to

leverage DNNs to establish a correlation between states and actions.

3.4.1 Deep neural network architecture

The reinforcement learning model in this study utilizes a Deep Neural Network (DNN)

as a function approximator to develop the relationship between state-action pairs. This

DNN is composed of five fully connected hidden layers, each utilizing the Rectified Linear

Unit (ReLU) as the activation function. The hidden layers, labelled as hl, consist of

varying quantities of nodes, as illustrated in Figure 3-17, with hl1, hl2, hl3, hl4, and hl5

accommodating 512, 512, 512, 256, and 128 nodes, respectively.

The DNN is structured with an input layer that accepts the environmental state and

an output layer that produces the Q-values of actions. The number of nodes within the

input and output layers is contingent upon the particular RL agent in use.

For a turn-based agent, the nodes in the input layer equal the product of the encoding

matrix size and the number of intersection sides. The nodes in the output layer equate

to the size of the turn-based action space, represented as Aturn. On the other hand,

for a time-based agent, the count of nodes in the input layer matches the size of the

encoding matrix, and the nodes in the output layer match the size of the time-based

action space, represented as Atime.

The output layer, being fully connected, incorporates a linear activation unit. This

highlights the principle that the activation function of the output layer should not limit

the range of output values, particularly in the context of Q-learning.

3.4.2 Training deep neural network

The training of the deep neural network involves training data, a tuple that includes the

state, action, reward, and the subsequent state. This data is preserved in a component
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known as Experience Replay Memory, capable of storing up to 50,000 training instances.

Once the capacity is fulfilled, older training instances are eliminated to accommodate

the new ones.

With the initiation of traffic simulation, new training instances are successively added to

memory at every sampling timestep ts. The raw training examples from memory need

to be appropriately formatted to comply with the input and output prerequisites of the

deep neural network. The state, serving as the network’s input, is directly retrieved from

the training instance, while the Q-values, forming the output, are determined using the

Bellman equation.

A random batch of training instances is extracted from memory and processed through

the Bellman equation to calculate target Q-values. The discrepancy between these target

Q-values and the Q-values projected by the deep neural network functions as the error

metric, which is then used to update the deep neural network’s weights using the Adam

optimizer.

The training of the deep neural network is significantly impacted by hyperparameters.

Key hyperparameters for this training encompass the learning rate and the batch size,

set at 0.001 and 64 training instances, respectively. A comprehensive discussion on the

training process will be presented in section 4.3.
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Experimental Setup

In the previous chapter, the agent’s specifications, including state, action, and reward

definition, were detailed. The present chapter delves deeper into the agent’s operational

flow, elaborating on how the components of the reinforcement learning (RL) agent in-

tegrate to process state information, train the underlying deep neural network, and

subsequently select an appropriate action. This operational loop is executed at every

designated sampling timestep, ts. Figure 4.1 presents the general workflow of a rein-

forcement learning agent, which applies both to turn-based and time-based agents.

Figure 4.1: Operational Cycle of the Reinforcement Learning Agent
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The sampling timestep, ts, starts after a certain number of simulation steps. At the onset

of this timestep, the agent gathers the state of the environment, encoding it following

the pre-defined encoding matrix. Subsequently, the agent determines the waiting time

for all vehicles halted at the intersection.

The next step involves the calculation of the reward, achieved by deducting the waiting

time at the preceding timestep (ts−1) from the current waiting time at ts. This approach

enables the agent to measure the efficiency of its actions in terms of reducing overall

wait time at the intersection.

Now, having the information of the current state, action, reward, and subsequent state,

the agent stores this data into its memory. This data serves as the agent’s experience

or training examples and is important in neural network training.

At the start of the simulation, the agent’s memory lacks sufficient training examples to

initiate learning. Hence, the agent focuses on gathering these training examples in its

memory until it reaches a pre-set training threshold. Once this threshold is met, the

agent launches the training procedure.

On completion of this cycle, the turn-based agent selects the traffic phase as its ac-

tion, while the time-based agent decides the duration of the phase to present to the

environment.

The remainder of this chapter will elaborate on the salient features of the chosen sim-

ulation software, detail the agent’s training procedure, and discuss the generation of

various traffic scenarios.

4.1 Urban Mobility Simulation Tools and Techniques

The training process of a reinforcement learning (RL) agent requires a simulation en-

vironment. Various tools such as PTV Vissim, Aimsun Live, TSIS-CORSIM, SUMO,

PARAMICS, and SimMobility are available for this purpose. For this research, we have

chosen to utilize the Simulation of Urban MObility (SUMO) version 1.2.0, given its

robust and comprehensive features.

SUMO is a versatile, open-source, microscopic, multimodal, and continuous traffic sim-

ulation package that offers a Python interface for enhanced programmability. It neces-

sitates the creation of simulation files in xml format that encapsulate all the relevant
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configuration details related to the simulation. An overview of these files and their

purposes is tabulated below in Table 4.1.

Table 4.1: Summary of Simulation Files

File Name Extension

Node <NAME>.nod.xml

Edge <NAME>.edg.xml

Type <NAME>.xml

Network <NAME>.net.xml

Route <NAME>.rou.xml

Configuration <NAME>.sumocfg

While the network, route, and configuration files are essential for executing the sim-

ulation, the node, edge, and type files are necessary for constructing the network file.

SUMO provides a set of additional tools for editing all aspects of road infrastructure.

In the context of this thesis, we have utilized the following:

4.1.1 Netconvert

Netconvert is a command-line utility included with the SUMO package. It converts

node, edge, and type files into a network file. This tool can also handle map files from

other sources such as OpenStreetMap (OSM) and VISUM-network.

4.1.2 Polyconvert

This command-line tool imports geometrical shapes (polygons or points of interest) from

different sources, improving the visual representation of the simulation.

4.1.3 NetEdit

NetEdit is a GUI-based network editor used for modifying existing network attributes.

In this research, it was employed for editing road and intersection-related attributes.

It proved particularly useful for editing imported networks from other sources such as

OSM and VISUM-network.
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4.1.4 TraCI (Traffic Control Interface)

TraCI provides access to various simulation parameters, such as vehicle position, veloc-

ity, acceleration, and intersection phase. When imported as a module into a Python

program, it enables direct access to and manipulation of the simulation environment.

4.1.5 Simulation Options

SUMO offers two types of simulations: terminal-based and GUI-based. The terminal-

based version runs in the background and is faster, making it suitable for gathering

simulation data and training RL agents. The GUI-based simulation, in contrast, pro-

vides a visual representation of the road network and traffic, making it better suited for

presentations and demonstrations.

Additional reading for understanding these simulation tools can be found in the SUMO

documentation [sumo], and for a broader perspective on traffic simulations, we recom-

mend Barceló [46] and the works cited therein.

4.2 Experience Replay: A Key Mechanism in Reinforce-

ment Learning

Experience Replay is an essential technique in reinforcement learning that enhances

performance and learning efficiency [25]. Its fundamental principle lies in the storage

and subsequent utilization of "experiences" or training instances gathered during the

simulation. These experiences, symbolized by H, form the basis of the learning process.

Each experience, H, encompasses four elements: the current state (st), the action taken

in that state (at), the subsequent reward received (rt), and the next state that action

leads to (st+1).

H = {st, at, rt, st+1} (Eq. 4.1)

An Experience Replay buffer is used to store these instances for future use during train-

ing. This storage and retrieval process is depicted in Figure 4.2.
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Figure 4.2: Process of Experience Replay

The buffer incorporates two primary parameters: memory size and batch size. Memory

size determines the total number of experiences that can be stored, and for the purpose

of this study, it is set to 50,000 experiences. Batch size, on the other hand, dictates

the number of experiences drawn from the memory for each training step. It’s a hyper-

parameter, meaning its optimal value isn’t predefined but is chosen based on empirical

testing. In most recent studies, the batch size falls between 16 and 128 experiences [45].

In our case, we have used a batch size of 64 experiences.

During the simulation, the RL agent starts filling up the memory with experiences.

Training commences once the number of stored experiences exceeds the batch size. After

this point, the agent retrieves a random batch of experiences from memory for each

training step. As the simulation continues, the memory eventually gets filled, triggering

a ’first in, first out’ strategy, where older experiences are discarded to accommodate new

ones. On average, each episode generates about 270 experiences, filling up the memory

after approximately 185 episodes.

Despite the availability of other techniques for RL agent training [49] [51], Experience

Replay offers several advantages:

• It breaks the correlation between consecutive experiences: In traffic simulations,

two states might be correlated, leading to instabilities in training. Experience

Replay randomly samples experiences, thereby minimizing such correlations.

• It periodically refreshes the agent’s experiences: Over time, the agent might forget
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the knowledge gained in earlier stages of training and become biased towards recent

states. Random sampling of experiences counters this bias, ensuring a balanced

recall of older and newer experiences.

• It allows efficient use of memory: By discarding older experiences, Experience Re-

play maintains a finite, manageable size of memory, making it an efficient solution

for storing and accessing training examples.

Both turn-based and time-based agents employed in this study use the same methodol-

ogy for storing and retrieving experiences.

4.3 Training Methodology of Reinforcement Learning Agent

This section provides a comprehensive breakdown of the process. During simulation, for

every sampling time step, ts, an instance of training data, denoted by H, is stored in the

Experience Replay buffer, M. Training begins when the buffer accumulates sufficient

examples to form a batch, B. A batch is a randomly selected subset of examples from

the buffer, as indicated by B ∈ B, where B is the collection of all possible combinations

of experiences. For this study, the batch size, Bs, is set to 64, thus requiring at least 64

training examples to commence training.

B = [H(1),H(2), . . . ,H(64)] (Eq. 4.2)

Each training example is a quadruple, comprising st, at, rt, and st+1. In the next step,

all current and next states are isolated from the batch.

Subsequently, the Q-values, Q(st, at), corresponding to each current state, st, are calcu-

lated. This involves feeding each state, st(i), to an Artificial Neural Network (ANN) to

predict the Q-values relative to at(i), where i denotes the ith training example in the

batch. The number of Q-values derived depends on the action space of the agent.

The process is repeated to calculate the Q-values, Q(st+1, a), for each next state, st+1.

The Q-value yielding the highest value is selected. The number of potential Q-values

derived is contingent on the action space of the agent.

The Q-values are updated using the Bellman equation (Eq. 4.3) [bellman1957dynamic].

This equation consists of two components: the immediate reward and the discounted fu-
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ture reward. The latter is computed by multiplying the maximum Q-value (obtained in

step 4) with a discount factor, γ. The sum of the immediate reward and the discounted

future reward provides the expected Q-values to replace the ones calculated in step 3.

Qgt(st, at) = rt + γ ·max
a

Q(st+1, a) (Eq. 4.3)

The Q-values derived in step 5 are deemed as the ’ground-truth’ Q-values. The expec-

tation is that feeding state st into the deep neural network (DNN) should yield these

Q-values. This can only be achieved by updating the weights of the DNN. To accomplish

this, we need to calculate the loss, which is the mean squared difference between the

predicted Q-values and the ground-truth Q-values.

4.4 Balancing Exploration and Exploitation in Training

One of the key challenges in the training phase of an RL agent involves managing

the exploration-exploitation trade-off. Initially, the agent lacks knowledge about the

best course of action and focuses on exploration over performance, adopting random

actions to learn about the state-action space. As the training process continues, the

agent becomes more knowledgeable about the state-action pairs and minimizes explo-

ration. Consequently, the agent increasingly adopts exploitation actions to optimize

performance.

The agent’s propensity to choose a random action is governed by a variable called epsilon

(ϵ), also known as the exploration rate. Initially, during the early training stages, the

exploration rate is high, leading to more random actions. As training concludes, the

exploration rate diminishes, causing the agent to favor exploitative actions. There exist

a number of functions for modeling the exploration rate throughout training. For the

purpose of this study, we focus on the linear decay model.

In the linear decay model, also known as the ϵ-greedy strategy [45], the exploration

rate epsilon (ϵ) starts at 1 (signifying complete exploration) and linearly decays to 0

(signifying complete exploitation) by the end of training. The model is defined by the

equation:

ϵ = 1− e

N
(Eq. 4.5)

46



Chapter 4: Experimental Setup

where e is the current episode and N is the total number of episodes.

This model provides a balanced approach to exploration and exploitation, allowing the

agent to fully explore the state-action space in the initial stages of training and gradually

transition to exploitation as it becomes more knowledgeable. However, it is essential

to maintain this balance as an imbalance could hinder the agent’s learning. Too much

exploration might lead to suboptimal decisions, while excessive exploitation could cause

the agent to miss potentially more optimal solutions.

Figure 4.3 showcases a plot of the linear decay model (Eq. 4.5), demonstrating how the

exploration rate decays over the episodes.

Figure 4.3: Epsilon Decay in Linear Model

Overall, the balance between exploration and exploitation is critical in RL, and the

choice of the exploration rate model plays a crucial role in the training and performance

of the agent. The ϵ-greedy strategy, in particular, has proven to be effective in many

RL applications [2, 45] and is thus employed in this study.

4.5 Traffic Generation in Simulations

The proper simulation of traffic generation has a significant impact on the performance

of an agent. In the training phase, it is crucial to generate traffic patterns that resemble
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real-world scenarios. For this purpose, various probability distributions can be utilized

to simulate different traffic patterns. The most commonly used distributions for this

purpose are Uniform, Gaussian, and Weibull, as depicted in Figure 4.4, with the x-axis

representing the number of simulation steps and the y-axis indicating the number of

vehicles generated in each step.

Figure 4.4: Three Different Traffic Generation Distributions

The Uniform distribution is one of the simplest and generates an equal number of ve-

hicles at every simulation timestep. However, this approach fails to accurately capture

real-world traffic patterns where vehicle flow varies over time. Similarly, Gaussian distri-

bution falls short of modeling real-world traffic accurately as it increases and decreases

gradually, while traffic flow in reality often peaks during certain hours and decreases

slowly.

On the other hand, the Weibull distribution closely mimics real-world traffic patterns,

demonstrating high traffic flow during peak hours followed by a slow decrease. This

behavior aligns with actual traffic patterns, particularly during morning and evening

rush hours. Consequently, the Weibull distribution was selected for this study [3].

To optimize the agent’s performance, four different traffic scenarios were created. These

scenarios varied the number of cars generated, as summarized in Table 4.2. During the

training phase, these traffic scenarios were cycled after each episode.
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Table 4.2: Traffic Generation in Different Traffic Scenarios

Traffic Scenario Traffic Generation

Low 600

High 3000

East-West (EW) 1500

North-South (NS) 1500

The total number of cars generated in each traffic scenario and the timestep at which

these cars entered the simulation environment were defined and used to determine the

source and destination of the generated cars.

The probability distribution of car generation for each traffic scenario is listed in Table

4.3. For the Low and High traffic scenarios, the car generation probability is the same

for all directions.

Table 4.3: Traffic Generation Probability for Four-Way Intersection

Traffic Scenario East West North South

Low 0.25 0.25 0.25 0.25

High 0.25 0.25 0.25 0.25

East-West (EW) 0.40 0.40 0.10 0.10

North-South (NS) 0.10 0.10 0.40 0.40

In each case, the destination of each car was determined using a pre-defined probability

distribution: 60% of cars proceed straight, 20% turn left, and the remaining 20% turn

right.

Traffic was simulated in the SUMO environment using a route file that contains all the

necessary information about each car’s source, destination, departure time, and route

between source and destination. To identify the optimal route, the A* algorithm was

used, which is provided by SUMO’s DUAROUTER package [61].

This section provides a comprehensive approach to generating traffic for RL training,

aiming to closely mimic real-world scenarios. By doing so, the trained agent can better

learn how to handle complex, real-world traffic scenarios, thus making the model more
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useful and robust in practical applications.

It’s worth mentioning that East-West and North-South traffic scenarios were designed

to emulate heavy traffic on main thoroughfares in urban environments. The aim is to

train the reinforcement learning agent to avoid developing a preference for one specific

direction at intersections.

For the East-West scenario, 80% of the traffic originated from East and West directions,

with the remaining 20% coming from North and South. Meanwhile, in the North-South

scenario, 80% of the traffic came from North and South, with the remaining 20% from

East and West. These specific distributions were intended to accurately represent the

varied traffic patterns observed in actual city traffic.

This comprehensive approach to generating traffic for RL training aims to mirror real-

world scenarios as closely as possible. The design is meant to enable the agent to

effectively learn to navigate through complex traffic patterns, thereby increasing the

model’s applicability and robustness in real-world situations.
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Results and Discussion

In this chapter, the results from different simulation experiments involving reinforce-

ment learning (RL) agents are evaluated and analyzed. These assessments provide a

reference point or benchmark to ascertain the performance of the agent. To ensure a

comprehensive understanding, seven distinct evaluation metrics are employed.

These metrics are employed to make comparisons between multiple iterations of turn-

based and time-based agents. At the end of this chapter, we will reflect on the optimal

models from single-agent and multi-agent perspectives, discussing their potential appli-

cations in real-world settings. A glossary of terms used throughout this chapter can be

found in Table 5-1.

5.1 Evaluating Performance

The performance measure is a yardstick that assesses how effectively the agent interacts

within the simulated environment. This measure encapsulates the quality of the agent’s

performance. Unlike previous studies that have predominantly used single evaluation

metrics [russo2020, prashanth2019], this analysis makes use of seven evaluation met-

rics. This approach acknowledges the complexity of performance in RL and recognises

that a single metric may not fully capture the agent’s overall performance.

In the evaluation phase, the trained RL agent is simulated over five episodes. During

each episode, vehicles are generated using a Weibull distribution with random seeds.

Data for the seven evaluation metrics are gathered from the simulation and averaged to

obtain mean values.
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Table 5.1: Chapter 5 Terminology

Notation Definition

e Current episode

Tnr(e) Total negative reward for episode e

ts Sampling timestep

m Total number of sampling timesteps in one episode

r(ts) Reward value at timestep ts

awt(ts) Accumulative wait time of all cars at ts

ar(e) Accumulative reward for episode e

c Individual car

n Total number of cars in network at ts

rd Road towards the intersection

Tawt(e) Total accumulative wait time for episode e

ewpc(e) Expected wait time per car for episode e

aql(e) Average queue length for episode e

ql Queue length of stationary cars at intersection

p(ts)(c) Speed of car c at ts

sgn Signum mathematical function

RL Reinforcement Learning

It should be noted that in this research, four different traffic scenarios are utilized. For

each traffic scenario, all seven evaluation metrics are calculated and compared, offering

a comprehensive assessment of agent performance. These seven evaluation metrics will

be discussed in detail in the following sections.

5.2 Evaluation Metrics

5.2.1 Total Negative Reward

In the context of reinforcement learning, rewards can be positive or negative as discussed

in section 3.5. A critical assessment of RL agent performance involves aggregating

these rewards. The Total Negative Reward (Tnr) refers to the sum of all negative

rewards garnered from the reward function during one simulation episode. This metric is
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calculated at the conclusion of each episode, and the RL agent’s objective is to maximize

it. Equation 5.1 illustrates how Tnr is calculated for a single episode e.

Tnr(e) =
∑

min(0, r(ts)) for ts from 1 to m. (5.2.1)

5.2.2 Total Accumulated Wait Time

The Wait Time (wt) at a specific sampling timestep ts represents the sum of waiting

periods for each car c located on an incoming road rd. Consider the scenario illustrated in

Figure 5-2, which represents an individual car’s wait time at various sampling timesteps

as it approaches an intersection. The car’s wait time remains zero until it halts at the

intersection due to a red light. Notably, the wait time only increases when the car’s

speed falls below 1 m/s.

The Accumulated Wait Time (awt) sums the individual wait times of all cars present on

the network’s incoming road at a specific sampling timestep ts, as described in Equation

5.2:

awt(ts) =
∑

[rd(c) · wt(ts)(c)] (5.2.2)

where rd(c) is 1 if the car is on the incoming road, and 0 otherwise.

The Total Accumulated Wait Time (Tawt) represents the sum of all awt(ts) for a given

episode e, as expressed in Equation 5.3:

Tawt(e) =
∑

awt(ts) for ts from 1 to m. (5.2.3)

5.2.3 Expected Wait Time per Car

The Expected Wait Time per Car (ewpc) is the average waiting time an individual car

c can anticipate when attempting to cross the intersection. This measure is calculated

at the conclusion of each episode e, using Equation 5.4:

Ewpc(e) =
∑

[rd(c) · wt(ts = m)(c)]
n

for c from 1 to n. (5.2.4)
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Here c denotes number of cars. The Ewpc(e) serves as a crucial performance metric

for the reinforcement learning agent. Lower values denote superior agent performance,

whereas higher values signify poorer performance.

5.2.4 Average Queue Length

Queue Length (ql) signifies the number of cars stationary at the intersection, where cars

moving slower than 1 m/s are considered stationary. This metric is calculated at every

sampling timestep using Equation 5.5:

ql(ts) =
∑

rd(c) [1− floor {sgn (p(ts)(c)− 1) /2 + 1}] for c from 1 to n. (5.2.5)

Here, ’floor’ is a mathematical function that rounds down values, while ’sgn’ is the

signum function. The Average Queue Length (aql) is the mean ql value calculated at

the end of each episode e. It is determined for each direction of the intersection using

Equation 5.6. Lower aql(e) values denote superior performance, while higher values

indicate poorer performance.

aql(e) =
∑

ql(ts) from ts = 1 to m

m
. (5.2.6)

These metrics (Tawt, ewpc, and aql) serve as crucial tools in assessing the effectiveness

of reinforcement learning agents in traffic signal control scenarios. Further studies can

be found in the literature that extensively address these issues. For example, "A Deep

Reinforcement Learning Network for Traffic Light Cycle Control" (Li, 2019) and "A

Survey on Traffic Signal Control Methods" (Yang, 2020) provide deeper insights into

these parameters and their applications in real-world traffic management systems.

5.3 Results

5.3.1 Agent 1: Deep Reinforcement Learning with Q Learning (DQN)

The upcoming figures showcase key metrics, namely the total negative reward, total

positive reward, total average reward, and total reward across episodes for the DQN

agent with experience replay. It is worth noting that initially, the values for these
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metrics are relatively high, indicating the agent’s initial lack of proficiency. However, as

the episodes unfold, a consistent decline in the total negative reward becomes apparent.

This downward trend serves as evidence that the RL agent actively learns and refines

its behavior over time, leading to improved performance.

Total Negative Reward

Figure 5.1: Total Negative Reward
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Total Average Reward

Figure 5.2: Total Average Reward

Total Reward

Figure 5.3: Total Reward
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The upcoming figures present the trend of vehicle wait times for each cardinal direction

at a traffic intersection (North, East, South, West). Initially, the wait times at the

intersection were higher, reflecting the inefficiency of the RL agents. However, as the RL

agents continue to learn throughout each episode, the wait times consistently decrease.

This reduction in wait times indicates that the RL agents are gradually improving their

decision-making abilities and optimizing traffic flow at the intersection.

Wait time in Cardinal Direction of North

Figure 5.4: Wait time in Cardinal Direction of North
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Wait time in Cardinal Direction of East

Figure 5.5: Wait time in Cardinal Direction of East

Wait time in Cardinal Direction of West

Figure 5.6: Wait time in Cardinal Direction of West
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Wait time in Cardinal Direction of South

Figure 5.7: Wait time in Cardinal Direction of South

5.3.2 Agent 2: Deep Reinforcement Learning with Double Q Learning

(DDQN)

The subsequent figures shoeperformance indicators such as total negative reward, to-

tal positive reward, total average reward, and the comprehensive reward over multiple

episodes for the DDQN agent coupled with experience replay. It’s crucial to highlight

that the initial episodes register high metrics, reflecting the agent’s preliminary stage of

learning and consequent inefficient performance. Nevertheless, as the agent progresses

through the episodes, a consistent decrease in the total negative reward is observed. This

continuous improvement indicates the RL agent’s adaptive learning capability, demon-

strating its gradual refinement of strategies leading to superior performance.
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Total Negative Reward

Figure 5.8: Total Negative Reward

Total Average Reward

Figure 5.9: Total Average Reward

60



Chapter 5: Results and Discussion

Total Reward

Figure 5.10: Total Reward

The forthcoming illustrations depict the trajectory of vehicle wait times at a traffic

intersection, covering each cardinal direction (North, East, South, West). Early episodes

showcase elevated wait times, demonstrating the RL agents’ initial inefficiencies. As

episodes progress, however, these times consistently reduce, highlighting the RL agents’

continuous learning and enhanced decision-making capabilities, leading to traffic flow

optimization at the intersection.
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Wait time in Cardinal Direction of North

Figure 5.11: Wait time in Cardinal Direction of North

Wait time in Cardinal Direction of East

Figure 5.12: Wait time in Cardinal Direction of East
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Wait time in Cardinal Direction of West

Figure 5.13: Wait time in Cardinal Direction of West

Wait time in Cardinal Direction of South

Figure 5.14: Wait time in Cardinal Direction of South
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5.4 Conclusion

In summary, the study demonstrates that both of our algorithms – the Deep Q-Learning

(DQN) and the Double Deep Q-Learning (DDQN) – exhibit convergence when run

for 1000 episodes, indicating a promising trend of continual learning and performance

improvement.

This performance trend underscores the significance of reinforcement learning (RL) in

optimizing traffic light control systems. The RL agents started with high wait times,

signifying an initial lack of proficiency. However, as the agents proceeded through the

episodes, they progressively reduced the wait times, exhibiting learning and decision-

making enhancement.

The encoding method used to represent the state space of the intersection had a pivotal

role in the agent’s performance. It allowed the agents to better understand the traffic

scenario and make informed decisions. Furthermore, the reward function, designed to

minimize the wait times, provided the necessary feedback for the agents to improve their

performance.

The use of Deep Neural Networks (DNN) as function approximators also played a crucial

role. They helped to cope with the large state space encountered in traffic scenarios by

learning the association between state-action pairs effectively.

Additionally, the training process, which involved experience replay memory and the

Bellman equation, allowed the RL agents to effectively learn from their past experiences,

which further enhanced their decision-making capabilities.

It should be noted, however, that the learning curve could potentially be further satu-

rated by increasing the number of episodes and the number of games in each episode.

Both of these are hyperparameters that can be fine-tuned as per specific requirements.

Fine-tuning these parameters could potentially lead to even better performance and

more robust learning by the RL agents.

In conclusion, this research presents a compelling case for the application of RL tech-

niques in traffic light control systems. It suggests that RL, coupled with an effective state

representation method, a suitable reward function, and a robust training process, can

substantially optimize the traffic flow and reduce the wait times at traffic intersections.

Future studies could explore different RL algorithms, state representation methods, and
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reward functions to continue advancing in this area.

5.5 Future Work

Traffic control at multiple intersections is an intricate problem that is increasingly be-

ing tackled using multi-agent deep reinforcement learning. Managing traffic flow across

multiple intersections is a complex problem being progressively tackled through multi-

agent deep reinforcement learning. Approaches such as Independent Q-Learning, Fully

Observable Critic, Value Function Factorization, Consensus algorithms, and learning to

communicate each offer their own unique advantages and drawbacks. However, these

methods have significantly advanced the field, facilitating cooperative interaction be-

tween agents and enabling coordinated control over traffic networks. Despite these

advancements, challenges such as optimality versus scalability, non-stationarity of the

environment, and the problem of credit assignment persist.

Future research directions should focus on addressing these challenges and further im-

proving the performance of multi-agent RL in managing traffic. The incorporation of

other AI techniques, such as attention mechanisms, could help in selecting relevant infor-

mation and dealing with the curse of dimensionality. Hierarchical reinforcement learning

and the use of graph theory also hold potential. Finally, the development of novel com-

munication protocols among agents, including the efficient exchange of policy gradients

or weights, could lead to more sophisticated and effective traffic control solutions. As

we continue to make progress in these areas, the potential for RL to revolutionize traffic

control systems becomes increasingly tangible.
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