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Abstract

Excessive mental workload effects mental and physical health along with the perfor-

mance of individuals. There is a need to monitor the mental workload of operators

performing critical tasks. Electrical signals produced by neural structures in the brain

can be captured through EEG and information about mental state of an operator can

be inferred. The power distribution in various frequency bands of these signals has

been utilized to assess the mental workload. These noisy signals require significant fil-

tering and preprocessing because of their low signal to noise ratio. A number of factors

such as window size, filter cut-off, etc. influence the accuracy of EEG-based workload

assessment. In this thesis, we analyze the performance of workload assessment pipeline

with respect to these factors on an open-source workload dataset. Moreover, perfor-

mance of workload assessment is analyzed using signals acquired from individual lobes

of the brain instead of the entire brain and using different frequency bands instead of

the entire frequency spectrum. Lastly, we also compare the performance of a num-

ber of classifiers for three level workload classification. For the preprocessing stage,

a sliding window of 256 samples with an overlap of a quarter and an Artifact Sub-

space Reconstruction (ASR) threshold of 5 provide maximum assessment accuracy of

71.12%. Frontal and occipital lobes of the brain seem to contain the highest workload

related information as they provide an average assessment accuracy of 65.83%. For

frequency bands analysis, our findings validate that θ and α bands are most relevant

for workload assessment as they provide 72.23% assessment accuracy which is highest

among all bands. Finally, Support Vector Machines (SVM) is able to classify mental

workload with an average accuracy of 66.22% which is the highest among the classifiers

compared.
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Chapter 1

Introduction

This chapter is about background of this research, motivation of this research, objective

of this research and organization of thesis.

1.1 Background

The use of wearable devices for monitoring our daily physiological activities along with

the widespread availability of these devices has increased rapidly in the present decade.

Devices such as smartwatches/gears, health and fitness bands are very popular these

days. These devices have increasingly more features and embedded sensors for count

steps, heart/pulse rate, etc. One aspect of the human body that can be tracked using a

wearable device is the human brain activity. Electroencephalography (EEG) is one of

the techniques used to observe/record it. These devices measure the electrical potential

generated by activation of various neurons of the human brain. The person who first

tried to record human brain activities using EEG was the German physiologist named

Hans Berger in 1924 [3]. Later, EEG was adopted in clinical environment to analyze

and diagnose human brain activities and the diseases such as seizure, epilepsy, stress

and several types of brain disorder. In last decade, EEG was limited to clinical environ-

ment and the EEG devices were very costly and not portable while trained and expert

people were needed for acquisition of EEG. However, in the present decade with the

improvement of technology, the use of EEG is common in medical departments as the
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Chapter 1: Introduction

devices are portable, often wireless and easy to use with no professional aid required for

EEG acquisition. These devices capture electrical signals from brain using electrodes.

The signals captured from brain contains some information about brain activities. The

meaningful information in the signals according to[3–5] is in δ, θ, α, β and γ. bands

and the frequency ranges of these bands are (0 - 4 Hz), (4 - 8 Hz), (8 – 13 Hz), (13 – 30

Hz) and (> 30 Hz) respectively. Fatigue, workload, seizure, epilepsy and stress could

be analyzed through the band powers ratios of these 4 bands. However, extracting

meaningful information is challenging as the obtained signal is noisy therefore, a lot

of preprocessing is required. EEG is not the only technique to capture brain activi-

ties, there are some other alternatives available for brain imaging such as, functional

Magnetic Resonance Imaging (fMRI), functional Near Infrared Spectroscopy (fNIRS)

and Magnetoencephalography (MEG) [4]. All of these are different with respect to

their characteristic, their spatial and temporal resolution, their portability and their

cost. fMRI devices are very expensive, are not portable, are operated in very controlled

environments and are most commonly used in medical environments. fNRIS devices

are portable, often wireless and easy to operate without professional aid. Its spatial

resolution is very high, but its temporal resolution is very low. EEG devices are also

portable, easy to operate and wireless. Its temporal resolution is very high, but its spa-

tial resolution is low. EEG is being used for clinical as well as personal entertainment

purpose. EEG device manufacturing companies often provide EEG based applications

for gaming controls, mental problem-solving capability assessment and many other

brain related applications. In various studies EEG is used for monitoring mental stress

[5, 6], mental fatigue [7], stress level at construction sites [8] and workload [9]. In

this thesis, we study the measurement of mental workload using EEG. We investigate

which regions of the brain and which EEG bands contribute the most for assessment

of mental workload. We analyze the performance of existing workload metrics when

number of channels and EEG bands are reduced.

2



Chapter 1: Introduction

1.2 Motivation

EEG based workload assessment methods often use the complete spatial dimension of

the brain. For example, if a 14-channel device is used then workload assessment is

dependent on the acquired data of all 14 channels to retain its classification accuracy.

However, the brain is subdivided into 4 lobes and each lobe is responsible for different

activity. For example, the motor cortex is responsible for muscular movements, occipi-

tal lobe is responsible for eye focus, frontal and temporal lobes are responsive in stressed

condition and frontal and parietal lobes are responsible for workload. So, all mental

activities are related with different regions of brain. Each mental activity generates

different brain signals and band powers of these signals also vary with respect to the

mental activity that occurs. In this thesis, we explore the role of different regions of the

brain in mental workload measurement. Such region based analysis of brain with EEG

is important especially in case of workload as often workload needs to be measured in

the natural environment instead of a controlled setup. Since frontal and parietal lobes

are more responsive in case of mental workload, the analysis of these two regions of

brain with EEG is performed in this research work. This will help in understanding

the minimum number of required electrodes to reliably measure mental workload. So,

if we fix only a few electrodes in some wearable device (like headphones), we would

know which individual electrode must be included to give most reliable results.

1.3 Problem Statement

In this research, we evaluate the performance of EEG-based mental workload assess-

ment techniques using the benchmark STEW dataset. Our evaluation has a number of

dimensions. First, we study the effect of various parameters (window length, overlap,

Artifact Subspace Reconstruction (ASR), etc.) on accuracy of workload assessment.

Second, we study the role of different brain regions on workload assessment. Third, we

study the role of different frequency bands on workload assessment. Lastly, we compare

a number of classifiers and see which is most appropriate for the said problem.

3
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1.4 Objectives

• To investigate the effect of each parameter in the workload estimation pipeline

on the accuracy of assessment.

• To examine if we can reduce the number of electrodes used in workload estima-

tion without compromising accuracy. If so how much reduction in number of

electrodes is possible. How much accuracy do we compromise if we use only one

electrode and which electrode gives maximum accuracy?

• To study if the conventional method of using frontal alpha and parietal theta for

workload estimation is reasonable. What bands provide maximum information

about workload?

• To compare the performance of a number of classifiers for measuring workload.

1.5 Thesis Organization

The organization of thesis is as follows. Chapter 2 reviews the literature of EEG based

mental workload assessment. We first discuss mental workload, subjective and objec-

tive measure of mental workload and the correlation between both. Then, we describe

Electroencephalogram (EEG), its characteristics, why it is important and the correla-

tion between EEG and mental workload. At the end of chapter 2 we discuss EEG based

workload assessment, how brain activities are recorded and how the novel aspects of

our work. Chapter 3 describes the proposed methodology and implementation details.

We first overview the problem and then describe the pipeline to address the underlying

problem. In chapter 4, we discuss the parameters influencing workload assessment ac-

curacy and how these parameters can effect computation time. We then compare the

workload assessment accuracy from different brain regions and frequency bands. At

the end, we compare the performance of different classifiers. In chapter 5, we conclude

our thesis and present avenues of follow up work.

4



Chapter 2

Literature Review

This literature review focuses on subjective and objective measures of mental workload

and the correlation between them. It covers the research that has already been carried

out on EEG and brain signals and its correlation with cognitive states such as stress,

workload and fatigue.

2.1 Mental workload

Every task needs some cognitive or mental resources to be utilized to complete it. The

amount of cognitive or mental resources required to complete a certain task is called

mental workload. Some tasks need more cognitive resources and some tasks need less

cognitive resources. There is a direct relationship between required cognitive or mental

resources and degree of mental workload. If degree of mental workload increases, the

risk of error could also increase. So, mental workload is a very important parameter

in the field of people’s performance to reduce the risk of error associated with high

mental workload [9].

2.2 Types of measures

There are two ways to measure mental or cognitive workload.

5
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1. Subjective measures

2. Objective measures

2.2.1 Subjective measures

Subjective measure is used to get feedback of subjects’ experience based on their feelings

during the time of measurement. This includes surveys, open and close ended ques-

tionnaire, ranking and rating based on subjects’ feelings. For example, NASA-TLX

(NASA-Task Load Index), SURJ-TLX (Surgical-Task Load Index), RSME (Rating

scale of mental effort), Bedford scale for workload assessment and SWAT (Subjective

workload Assessment Technique), etc. [10]. Subjective measures are very important,

but it could be difficult to comprehend without understanding the context of experi-

ence.

2.2.2 Objective measures

Objective measures are biological measures that are not dependant on examiner’s judge-

ment. These are recorded with measuring devices that work within allowable error

range. These biological measures indicate the subjects’ performance. For example,

blood pressure measurement, ocular measurements (blink rate, pupil dilation), elec-

trocardiac activity measurements (heart beat rate), respiration measurements (airflow

and gas analysis), skin based measures (tissues blood volume, skin conductance level

and response) and electrical brain activity measures, etc. [10].

2.2.3 Correlation between subjective and objective measures

Both subjective and objective measures are correlated to each other. Objective mea-

sures are simply the evidences for the subjective measures. Objective measures describe

that how biological things are functioning whereas subjective measures help us to know

about a subject’s psychology and his feelings. For example, if a person is suffering from

6
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high workload, his EEG record will indicate how his brain is functioning whereas his

subjective test will indicate the symptoms of workload.

2.3 EEG

EEG is one of the techniques used to get objective measurement of brain activity.

It is the neuro-imaging technique used to record electrical activities occurring inside

the brain. Different amounts of electrical activities occur in different lobes of brain

like frontal lobe, parietal lobe, motor cortex, temporal lobe and occipital lobe during

different tasks. To record these activities some electrodes needs to be placed on these

lobes. These electrodes act as channels connected for recording with these devices.

Channels receive very low amplitude data usually in micro volts (µV).

There are three types of EEG. First, invasive brain computer interface (BCI), in this

technique electrodes need to be placed inside the brain lobes beneath the skull. Second,

partial invasive brain computer interface in which electrodes need to be placed inside

the scalp but only on the surface of the brain lobes and not inside. Third, non-invasive

brain computer interface, in which electrodes are placed on the scalp. In this thesis,

We focus on non-invasive brain computer interface technique as they are most common

and safe for use in application other than medicine. See 14-channel non-invasive device

in figure 2.1.

Figure 2.1: Emotiv EPOC+ 14-channel EEG device.

EEG is a famous neuro imaging technique that is easy to record because recent de-

vices are portable, and it has more tolerance to subjects’ movement during a recording

session. Its temporal resolution is very high. It captures the dynamics of cognitive

7
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activities in the time period in which cognitive activity occurs. It has ability to record

within hundred to thousands of milliseconds. It measures brain activities (Change in

voltage) directly and the data recorded with EEG devices is multidimensional. Con-

ceptually, it looks like two dimensional data. First is temporal which comes under

the umbrella of change in voltage per unit time called sampling rate of EEG device

and second is spatial that comes under the umbrella of space covered by the placed

electrodes of the device used. But actually, it is four-dimensional data which are time,

space, frequency and power [11].

EEG is not suitable for many research questions for example, where the importance

of spatial resolution is high and where slow cognitive processes need to be measured.

fMRI and fNIRS are more suitable for low temporal and high spatial resolution [11].

2.3.1 EEG signals

Electrical pulses are generated in the nervous system when neurons fire and the vari-

ations in potential occur at the scalp. These variations in potential called EEG signal

which can be measured with an EEG device. These measured signals correspond to

different lobes of the brain with respect to the event trigger. EEG signals are measured

in micro volts (µV). These micro volts can be recorded using electrodes placed on the

head. These micro volts are the change in electrical activity between the electrode

and the reference electrode [11]. To record the electrical potentials various commer-

cially available devices are used such as, NeuroSky MindWave Mobile 2 headset (single

channel), Muse 2 Headset (4-Channel), Emotiv EPOC+ (14-Channel), etc. All these

devices have some electrode channels that need to be placed on scalp according to a

predefined electrode placement location system called 10-20 system international [1].

2.3.2 10-20 System International

The international 10-20 system [1, 12] is the first internationally recognized standard

that is being followed for the electrodes names and placements locations. According to

this system electrodes should be placed on the scalp in the way that there should be

8
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either 10% or 20% surface distance from front to back and left to right between two

adjacent electrodes. The name 10-20 indicates the distance between the two adjacent

electrodes. Electrode locations are associated with alphanumeric names (e.g. F4, T8,

P7 etc.). The letters F, P, T, O and C represent the brain lobes frontal, parietal,

temporal, occipital and central. And the (even) numbers 2, 4, 6, 8 represent the

position on right sides of scalp and (odd) 1, 3, 5, 7 represent the position on left side

of scalp and ‘z’ stands for zero that indicate the position on the mid-line of scalp.

Some new alphabet prefixes are introduced in extended 10-20 system that are AF, FT,

TP and FC that represent Anterior Frontal, Frontal Temporal, Temporal Parietal and

Frontal Central locations respectively [13]. Figure 2.2 shows locations where the 14

electrodes of EMOTIV EPOC+ device are placed.

Figure 2.2: 14-channels electrodes placement location according to 10-20 system [1]

2.3.3 EEG Frequencies

EEG signals recorded from the brain are comprised of oscillations of different frequen-

cies which are classified into frequency bands Delta, Theta, Alpha, Beta and Gamma,

based on frequency ranges [14].

Delta wave is very slow wave and completes 1 to 4 cycles per second, see Figure 2.3a.

This band influenced by external noise such as eye blinks and muscles movement and

9
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Bands Delta Theta Alpha Beta Gamma
Frequency
Ranges 1 -4 Hz 4 - 8 Hz 8 - 13 Hz 13 - 30 Hz > 30 Hz

Table 2.1: Frequency bands and ranges

(a) Delta frequency band

(b) Theta frequency band

(c) Alpha frequency band

(d) Beta frequency band

(e) Gamma frequency band

Figure 2.3: Frequency bands (Delta, Theta, Alpha, Beta, Gamma)

10
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neck movement [15, 16]. Theta wave completes 4 to 8 cycles per second and it is faster

than delta wave as shown Figure 2.3b. This band is related to the memory load and

memory performance and and get effected during memory recall [17, 18]. Alpha wave,

shown in Figure 2.3c, completes 8 to 13 cycles per second and it is faster than theta

wave and correlated with relaxed state of mind [18–20]. Beta wave completes 13 to 30

cycles per second and is faster than alpha wave, see Figure 2.3d. It is associated with

attention and concentration and causes stress if someone receive too much beta wave

[21]. Gamma wave is a very fast wave and completes more than 30 cycles per seconds

as shown in Figure 2.3e. This band is associated with high cognitive demand or high

level cognitive processing and cause mental disorder or mental disease such as seizure

and schizophrenia [22].

2.4 Correlation between EEG and mental workload

A number of studies have reported that mental workload can be measured/assessed

with EEG [9, 10, 23]. A number of studies concluded that increase in theta and alpha

activities cause the mental workload. In [14], Jap et al. reported if band power of

alpha in frontal lobe and beta in parietal lobe is greater then all other bands that

means the subject is fatigued. Since fatigue is a brain state induced due to high

workload, so frontal alpha and parietal beta is correlated with mental workload. Hou

et al. [24] reported that theta and alpha bands are correlated with mental workload

because high band power in theta band indicates high memory load and high mental

workload. Mu et al. [7] also reported that, when drivers’ fatigue increases the power

of theta and alpha bands of their brain activity increases. In [9], Lim et al. created

a dataset of simultaneous task load and reported that high work loaded subjects have

high theta and alpha band power in their brain activity recordings. In almost all studies

people conducted time-frequency analysis of EEG signals to extract the band powers

of the frequency bands. For time-frequency analysis signals needed to be transform

into Fourier domain. Fourier transform gives us power of each frequency component.

From this time-frequency transform power of each band can be calculated. In [25] it
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is claimed that increase in ratio of slow wave such as θ and α to fast wave such as β

indicates increase in fatigue. Four algorithms of ratio of slow to fast wave are mentioned

in [14] (θ+α)/β, α/β, (θ+α)/(α+β) and θ/β. If these increase, then mental fatigue

would also increase. Moreover, increase in frontal delta (δ), frontal, temporal and

occipital theta (θ), occipital alpha (α) and temporal and frontal beta (β) indicates the

development of fatigue [25]. In [26] it is stated that increase in band power of frontal

theta (θ) and parietal alpha (α) leads to development of mental fatigue. So different

studies have different viewpoints. These four variables frontal, temporal, parietal and

occipital are the lobes of brain and to acquire the brain waves from these lobes the

electrodes of headset should be fixed on these specific lobes. For this purpose in various

studies different headsets are used such as 32-channel headset is used in[25], 14-channel

Emotiv EPOC headset is used in [9], 4-channel Emotiv Insight device is used in [27, 28]

and a 26-Channel headset is used in [24, 29–31].

2.5 EEG based workload assessment

EEG based workload assessment has four basic steps [9, 30, 31] as shown in Figure

2.4. First step is recording brain activities with a measuring device as well as with

subjective test so that these subjective test results can be used as ground truth. Sec-

ond step is data cleaning with high pass, low pass and/or notch filters to remove the

unnecessary/irrelevant data and noise. Third step is δ, θ, α, β and γ frequency band

extraction with band pass filter. Last step is workload assessment after feeding the

labeled data to the machine learning classifier.

2.5.1 Recording brain activities

As it is described above, to record brain activities of a subject an EEG device is

required. That device has some electrodes and all those electrodes need to be placed

on the scalp according the famous 10-20 system international. For better recording

EEG, the environment should be calm and noiseless, and subject’s movement should

12
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Figure 2.4: Basic steps of EEG based workload assessment

be minimal. In [25], a fatigue dataset is acquired from 52 drivers (36 males and 16

females) of age 20 to 70 years using a 32-channel headset. In [26], a fatigue dataset of

33 subjects is gathered. In [31], a stress, workload and emotion dataset of 7 subjects is

acquired with a 14-channels EEG device. All these datasets are not freely available. A

freely available dataset of 48 subjects for 2.5 minutes from 14-channels is collected in

[9]. In [32], 6 electrodes C3, C4, P3, P4, O1, O2 and 2 references A1 and A2 are used

for recording brainwaves. So, the accuracy of these systems varies with respect to the

devices used, specific electrodes used, there number of participants, recording period

and recording environment, etc.

2.5.2 Data Cleaning

EEG signals are noise prone and need to be cleaned first. EEG signals may have

different type of noise such as, high amplitude artifacts, electrical line noise, white

noise and the frequencies other than the required bands. All these effect the meaningful

information in signals. So, the acquired signal needs to be cleaned with different kind of

filters [9] such as a high pass filter, a low pass filter, a notch/band reject filter, etc. High

pass filter is used to filter out all frequencies that are higher than a predefined threshold,

low pass filter is used to filter all frequencies that are lower than the threshold and

notch filter stops a specific frequency band and let all other frequencies pass through

it.

13
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2.5.3 Frequency band extraction and labeling

After cleaning EEG signals to extract frequency bands, signals need to be transformed

in frequency domain and power spectrum of all bands needs to be calculated. For

this purpose, power spectral density (PSD) needs to be measured. These band powers

can be used as unique features of the signals [30, 31]. For feature extraction there are

different methods used in different studies. In [24] Short Fourier transform is used for

feature extraction. In [33] PSD Power Spectral Density, in [7] four entropies (spec-

trum, approximate, sample and fuzzy entropies) method is used for feature extraction

purpose.

Two other factors of utmost importance are the ground truth used for labeling the

data and workload induction methods. In [31] the Checklist Individual Strength (CIS)

questioner is filled by subjects during the EEG recording and obtained marks from this

questioner are used as ground truth of the respective recording and Psycho-Motor Vig-

ilance Test (PVT), a cognitive test, is used to induce fatigue. In [32] Raven’s Advance

Progressive Metric Test (RAPM) is used to induce fatigue. In [9] a multitasking work-

load test called SIMKAP multitasking test is used to induce fatigue and for ground

truth 1 to 9 rating of subject about his stress is used.

2.5.4 Workload assessment

As the step for workload assessment, the calculated PSD features should be fed to the

classifiers to predict the workload. For prediction different types of machine learning

classifiers are used in various studies and each classifier has its pros and cons. In [26],

the classifiers used for features selection or training the system are kernel partial least

squares linear discrimination analysis (KPLS-LDR) and kernel partial least squares

support vector classifier (KPLS-SVC). In [32], Support Vector Machine (SVM), Multi

layer Perceptron (MLP) Naive Bayes (NB) and K-Nearest Neighbor (K-NN) classifiers

are used. In [31], Linear Support Vector Machine (LSVM), Naive Bayes (NB) and K-

NN are used for classification. In [9], Near Component Analysis (NCA) and Support

Vector Machine (SVM) classifiers are used for classification while [33] used Bayesian
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Neural Network (BNN). For validation most of the studies used k-fold cross validation

[9, 26, 32].

In two class mental fatigue classification, accuracy of class1 (low fatigue) 97.37% and

class2 (high fatigue) 95.57% with 11 Hz low pass filter and class1 (low fatigue) 98.78%

and class2 (high fatigue) 96.97% with 18 Hz low pass filter is reported in [26]. In [32]

93.33% , in [7] 98.75% classification accuracy with combined entropy features using

SVM, in [33] 76% accuracy with open eyes and 75.3% with closed eyes with Bayesian

Neural Network is achieved. In [31] 93.45% accuracy with subject dependent basis and

39.80% with subject independent basis is achieved. A dataset called STEW, is used in

[9] and 69% classification accuracy is achieved after 5-fold cross validation.

2.6 Research Gap

1. In various studies different workload assessment methods and accuracy has been

reported, however the analysis of various parameters effecting the accuracy and

computation time has not been reported in literature. This is very important

for effective use of parameters influencing the workload assessment accuracy and

computation time.

2. In most of existing studies EEG data of all brain regions is used for brain state

monitoring. Since, each brain state is a response of specific brain regions and

specific frequency bands, workload assessment from specific regions and specific

frequency bands needs to be investigated. These two aspects of workload assess-

ment will help to isolate workload from rest of brain activities.

3. Lastly, different machine learning classifiers have been used on different datasets,

but performance comparison of these classifiers for workload assessment is also

missing in literature. Such a comparison will help select the best classifier for

workload assessment.
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Methodology

In this chapter, we describe the benchmark dataset used and discuss our proposed

methodology in detail.

3.1 Dataset

In this work, We have used a mental workload dataset called STEW: Simultaneous Task

EEG Workload dataset [34]. This is a freely available dataset in which a benchmark

test is used for workload induction. The dataset consists of pre and post workload

recordings of 50 subjects. The number of subjects participated is sufficiently large. This

dataset is recorded with a 14-channel EEG device called EMOTIV EPOC+. These 14

channels represents most of the brain region. Six channels cover frontal region, two

channels cover temporal region, two cover parietal region, two cover occipital region

and two cover the motor cortex.

3.1.1 Data collection methods and materials

For data collection Lim et al. [34] hired 50 graduate students from university and

all the subjects have no neurological and brain related disease history. For workload

induction they conducted a test called SIMKAP (Simultaneous Capacity) test [2]. This

is a GUI based programmed psychological assessment test used to assess multitasking
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and stress tolerance in people. The GUI of test is shown in Figure 3.1.

Figure 3.1: SIMKAP test GUI. There are two segments: a comparison window and
and an auditory response panel. A timer is displayed on the upper right corner [2]

The GUI shows two segments of the test. First is a comparison window in which

subjects are required to select the identical terms or items from one comparison window

and mark that term in other comparison window. Second segment of the test is auditory

response panel in which subjects are to select the answer of auditory question. Subjects

are to perform both tasks simultaneously for a duration of 18 minutes.

Figure 3.2: EEG data recording pipeline.

The process of data recording is shown in Figure 3.2. Firstly, the subjects are asked to

perform no task for 3 minutes meanwhile EEG is recorded for those 3 minutes. Then,
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SIMKAP test is conducted for 18 minutes and in the last 3 minutes of SIMKAP test

EEG has been recorded again for those last 3 minutes. After completion of test and

recording workload rating has been taken on the rating scale of 1 - 9 from subjects.

This is pipeline for one session and this pipeline has been repeated for all 50 subjects.

At the end, EEG recordings as well as workload ratings of each subject are obtained

[9].

3.2 Workload measurement

The acquired data is not as much usable in its raw form as it is full of noise and

artifacts. A lot of preprocessing is required to rely on it. The workload measurement

pipeline used is divided into four parts. A) is data collection which is described in

Section 3.1, B) is signals processing, C) is classification and D) is workload assessment.

All parts are further subdivided into 2 or 3 sub-parts each as illustrated in Figure 3.3.

Figure 3.3: Workload measurement pipeline

A Data collection

We have used a freely available dataset called STEW - Simultaneous Task EEG

Workload dataset. The data collection tools, test and procedures are already

discussed in Section 3.1.
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B Signal processing

(a) Pre-processing

i. Data filtering

The data acquired from subjects’ EEG recordings, is useful in its raw

form. This may have a lot of noise and unwanted artifacts. It has

multiple frequencies in it but we need data only between 1 – 50 Hz

frequencies. The frequencies below 1 Hz and above 50Hz are useless

because the meaningful information is within five frequency bands and

frequency range of these bands is from 1 to 50 Hz. So, first the data

is high pass filtered on frequency 1 Hz. High pass filter stops all the

frequencies below the threshold and let all frequencies pass above the

threshold.

ii. Line noise cleaning

Since signals are affected by electrical line noise that occurs because of

electrical equipment operation. So, line noise generates misinformation

in EEG signals and this needs to be removed. Frequency of line noise is

60 Hz so for line noise cleaning data is filtered with a notch/band reject

filter at 60 Hz.

iii. Artifact Subspace Reconstruction (ASR)

The very important task of this segment is artifact subspace reconstruc-

tion. This is a functionality used to remove bad channels, bad periods

and high amplitude artifacts and reconstruct them. High amplitude ar-

tifacts occur because of muscular movement or sometimes if an electrode

is fixed poorly. These high amplitude artifacts increase the power of sig-

nals. Removal of bad channels and bad periods changes the dimension

of dataset because it removes bad channels or bad periods completely.

So, we only need to remove high amplitude artifacts for getting signals

cleaned.

iv. Referencing
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The voltage values recorded from one electrode is relative to the voltage

values recorded on other electrodes. Therefore, EEG data needs to be

re-referenced. Sometimes the data is referenced with respect to some

reference electrode and other times it is average re-referenced offline.

In average referencing, the data of each signal is first averaged, and

subtracted from the signal at all electrodes at all sampled times. Average

referencing minimizes the influence of activities of all electrodes in each

other.

(b) Features extraction

Since this is machine learning problem, so first we need some unique iden-

tifiers of each signal for the entire dataset. As discussed in Chapter 2, the

power of delta, theta, alpha, beta and gamma frequency bands can be con-

sidered as identifiers of presence of workload, so these bands are used as

the unique features of the signals. First, signals are filtered and segmented

into these bands and then power of all bands of each signal is calculated.

For band power, the power spectral density (PSD) is calculated. PSD is

the density of power spectrum that describes how much of the total signal

power a signal component is holding.

PSD is calculated with discrete Fourier transform that converts a time-

domain series x(n) = x(1), x(2), x(3) . . . x(N)T into another series in fre-

quency domain s(n) = s(1), s(2), s(3) . . . (N)T . The equation of s is Eq.

3.1.

s(k) =
N−1∑
n=0

x(n)e
jk2πn
N , k = 0, . . . , N − 1. (3.1)

After computing Fourier transform, power is calculates as.

ŝ(k) = 1
N
|s(k)|2, k = 0, . . . , N − 1 (3.2)

For calculating power of each band, average power of frequencies of respec-

tive band will be calculated.
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C Classification

(a) Data labeling

After extracting the power features the data needs to be labeled. Subjects’

ratings are used as labels. Although ratings are on the rating scale from 1 – 9,

we consider this as a 3-class classification problem. This means ratings from

1-3 are considered as class one i.e. low workload, ratings 4-6 are considered

as class 2 i.e. medium workload and 7-9 ratings are considered as class 3 i.e.

high workload. So, the data is labeled in 3 classes.

(b) Machine learning

After labeling, this labeled data will be fed to different machine learning

classifiers such as SVM, KNN, NB, LDA and Decision Tree for training.

(c) Training model

Model will be trained on 5-fold cross validation that means 80% training

data and 20 % test data for all 5 folds.

D Workload assessment

(a). Workload detection/recognition

After training of models we will predict the workload. Workload assessment

will be done in all brain regions such as frontal region, parietal region,

occipital region individually as well as combined regions such as frontal and

parietal region, frontal and occipital region.

(b). System performance

After workload assessment we will evaluate the system’s performance in

terms of assessment accuracy of individual region as well as combined region

analysis and computational time.

3.3 Problem description

The first step after acquisition of EEG data is cleaning data from noise and unnecessary

artifacts. Then for features extraction, sliding window technique is most commonly
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used while taking Fourier transform. Sliding window has some window length and

some step size. In previous studies, people mostly use n window length and n ∗ 3/4

overlapping length for spectral analysis [9, 30]. In [8], two analysis are reported for

stress detection on an EEG dataset of construction workers. In the first analysis, the

authors used n = 128 window and 0 overlapping window length for spectral analysis

and in the second analysis, n = 128 window length and n−1 = 127 overlapping window

length were used. They reported that the first analysis provides better accuracy than

second. The data set used consisted of 7 subjects which is very small for making a

conclusion of better results. We hypothesize that, an increase in overlapping length

may improve classification accuracy if the dataset is not very small. According to

literature, workload related activities are more present in frontal and parietal regions

of brain and θ and α frequency bands [14]. So hypothetically, use of dataset acquired

from the electrodes representing these two brain region and these two frequency bands

may provides better results.

3.4 Methodology

First, we implement the workload assessment pipeline and validate this baseline for two

and three level mental workload assessment. Next, we evaluate the factor that effect

the assessment accuracy. This experiment will focus on factors such as sliding window

size, sliding window step size and artifact subspace reconstruction (ASR) threshold. To

assess mental workload from each region of brain we will perform region-based analysis

to find out the brain regions in which presence of information related to workload is

higher. To assess mental workload from each frequency bands we will perform fre-

quency bands analysis to find out the frequency bands in which more workload related

information is present. In our last experiment, a comparison of workload classification

will be done with multiple machine learning classifiers. This comparison will show the

performance of various classifiers on the basis of workload assessment accuracy. All

experiments are summarized in Table 4.10.
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3.4.1 Baseline Pipeline Validation

To prepare dataset for first experiment, data is perprocessed. First step in preprocess-

ing is data filtration (data is high pass filtered at 1 Hz), second step is line noise removal

(line noise is removed at 60 Hz), third step is ASR (Artifact Subspace Reconstruction),

for ASR standard deviation cutoff value is used 5 and in fourth and last preprocessing

step data is re-referenced at average. Output of preprocessing segment is fed to feature

extraction segment. For this purpose EEGLAB toolbox’s spectopo() method is used

that uses fft() Fast Fourier Transform method of MATLAB signal processing toolbox.

It first segments the data and then slides the window to take Fourier transform from

starting value to end ending value of signal. The window size used in this experiment

is 512 and step size used is 128. After this, data is segmented into 4 frequency bands

that are θ, α, β and γ, then PSD (Power Spectral Density) of each band is calculated.

These PSD values are considered are unique features. Some parameters we have used

in this experiment are listed below, see table 3.2

no parameters values
1 High pass filter cutoff 1 Hz
2 Line noise removal value 60 Hz
3 ASR Standard deviation cutoff 5
4 Re-referencing value average
5 Sliding window size 512
6 Sliding window step size 128

Table 3.2: Different variable parameters and the values we have used

Two level workload assessment

This pipeline is first tested for two level workload classification. The Level one is

for no workload. All the recordings that came under first recording session (before

test recording) are considered as class 1. The level two is for high workload. All

the recordings that came under second recording session (after test recording) are

considered as class 2. These features are then labeled and then fed to classifier for

training model.
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Three level workload assessment

The extracted features are then labeled in three classes with respect to the subject

ratings. The recordings that are rated from 1 - 3 are labeled for class 1 and considered

as low workload, the recordings that are rated from 4 - 6 are labeled for class 2 and

considered as medium workload and The recordings that are rated from 7 - 9 are labeled

for class 3 and considered as high workload. After labeling this, dataset fed to classifier

for training model.

3.4.2 Experiment 1: Factors influencing workload assessment

accuracy

Apart from the classifier used, the accuracy of the workload assessment also depends on

a number of parameters. A list of such parameters that exist throughout the processing

pipeline is given in Table 3.3.

no parameters/variables
1 High pass filter cutoff
2 ASR Standard deviation cutoff
3 Sliding window size
4 Sliding window step size

Table 3.3: List of variable parameters effecting workload assessment accuracy

ASR Cut-off

ASR is a technique used to remove bad channels, bad periods and high amplitude

artifacts and reconstruct them. We limited our analysis to high amplitude artifacts

removal and reconstruction only. ASR standard deviation cutoff threshold needed to

be set first and ASR algorithm compares the signals’ standard deviation with this

threshold and reject all those periods which have standard deviation more then the

decided threshold. We have used 10 different ASR standard deviation threshold values

which are 0.5, 1, 2, 3, 5, 7, 9, 11, 13 and 15.
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Window size

For spectral analysis of EEG data, sliding window technique is most commonly used

as Fourier transform of the whole recording at a time is unable to capture variations

in the electric potential. If number of samples in a window increases the estimation

of spectrum will be more smooth and less fine detailed and it loses some meaningful

information too. If number of samples in window will be fewer, the estimation of

spectrum will be less smooth but more fine detailed and it retains maximum meaningful

information. Minimum acceptable window size in EEGLAB is equal to sample rate of

dataset. Sample rate of our data set is 128 samples per second so, we have analyzed

four different window sizes i.e. fs, 2fs, 4fs and 8fs where fs is sampling frequency. For

the STEW dataset fs = 128 so the window sizes we applied are 128, 256, 512 and 1024

respectively. In Figure 3.4, a window size of 128 used.

Figure 3.4: Visual description of window size and step size.
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Overlap size

Overlapping technique is used to get more accurate results. Step size of the sliding win-

dow is equal to the difference of window size and overlap Step Size = Window Size−

Overlap Size. Step size also effects the meaningful information. Larger step size loses

more meaningful information and retains less, and smaller step size retains more mean-

ingful information. We have used 4 different overlap sizes which are w/4, 2w/4, 3w/4 and w−

1 respectively where w is the window size. In Figure 3.4, the window size is 128 and

in segment (A) overlap size is 0 and step size is 128 and in segment (B) step size is 1

and overlap size is 127.

Combined effect of window size and overlap size

We also study the combined effect of both window size and overlap size on the ac-

curacy of workload assessment. We simulate our pipeline on four different window

sizes which are fs, 2fs, 4fs and 8fs, where fs is sampling frequency or sample rate.

In our case fs is 128 so the windows we used for simulation are 128, 256, 512 and

1024. Then for each window size, we set overlap size at 4 different sizes which are

w/4, 2w/4, 3w/4 and w− 1 where w is the window size. Therefore, the stated exper-

iment has 16 different combinations of window size and overlap size.

3.4.3 Experiment 2: Region-based analysis

As discussed in Chapter 2, it has been reported that some brain regions correspond

to mental fatigue and workload. These regions are frontal, parietal and occipital lobes

of the brain. In this experiment, we studied the effect of workload in all these regions

individually as well as combined.

Analysis of individual region

First we performed analysis on the frontal region in which we used data from the frontal

region electrodes (AF4, F3, F4, F7, F8, FC5 and FC6) individually. Then we labeled it
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according to the rating scale and fed it to the classifier for training the model. Second,

we analyzed the parietal region in which we used parietal region electrodes (P7 and P8)

and fed this data to the classifier after labeling. Third, we use (O1 and O2) electrodes

data for training the model. The workflow for preparing dataset for individual region

based analysis is illustrated in Figure 3.5.

Figure 3.5: Individual region data extraction workflow

Frontal and parietal region-based analysis

According to the 10-20 electrodes placement system AF3, AF4, F3, F4, F7, F8, FC5

and FC6 electrodes of the EMOTIV EPOC+ lie on frontal region of brain and P7 and

P8 lie on parietal region. So, the data recorded recorded from these electrodes is used
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in frontal and parietal region analysis. We imported the data of only these electrodes

from overall preprocessed data and then labeled it and fed this to the classifier for

training.

Frontal and occipital region-based analysis

Similarly for frontal region we used AF3, AF4, F3, F4, F7, F8, FC5 and FC6 electrodes

and for occipital region we used O1 and O2 electrodes. The recorded data from these

electrodes is used for frontal and occipital region analysis. From overall preprocessed

data first we imported data of these electrodes and then trained a classifier on this

dataset.

Analysis of individual channel

Further we have analyzed the effect of individual channel location on workload as-

sessment. For this analysis, we trained the classifier on dataset acquired from each

individual channel and we analyzed whether workload effects the electric potential at

individual channel locations. Some electrodes datasets provide higher accuracy than

rest of others.

3.4.4 Experiment 3: Frequency-band analysis

Since it has been reported in literature that information about mental workload is

present in some frequency bands, therefore in this experiment we have studied the

information in all θ (4−8)Hz, α (8−13)Hz, β (13−30)Hz and γ (> 30)Hz frequency

bands individually. The workflow for frequency band extraction is shown in Figure 3.6.

Analysis of individual frequency bands

In this part of experiment we have extracted all frequency bands individually and

formed five datasets consisting of individual frequency bands. Each frequency band
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Figure 3.6: Individual band extraction flowchart

dataset is then labeled and fed to the machine learning classifier for training. Theta

and Alpha band datasets provides accuracy higher than rest of three band datasets.

Analysis of combined frequency bands

From the above analysis we have noticed that prediction accuracy of model trained on

theta and alpha frequency bands dataset is higher then rest of two. So, we combined
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these two datasets, 1) theta band dataset having frequency range (4 - 8) Hz and, 2)

alpha band dataset having frequency range (8 - 13) Hz. After labeling we fed this

combined dataset to the classifier for training the model.

Region based frequency-band analysis

On the basis of results from the previous experiments, we concluded that theta and

alpha band are the bands that carry maximum information regarding workload so, we

explore these two bands for further analysis.

First we extracted theta band as features from the data of the electrodes which are

located on frontal and parietal lobe. Second we extracted theta band as features from

the data of electrodes located on frontal and occipital lobe. Third we extracted two

bands theta and alpha from frontal and occipital lobes. After preparing these three

datasets we labeled these and fed one by one to the classifier for training models.

3.4.5 Experiment 4: Classifier analysis

There are multiple machine learning classifiers that are being commonly used in brain

computer interface (BCI) applications such as, Support Vector Machine (SVM), De-

cision Tree, K-Nearest Neighbor (KNN), Linear Discrimination Analysis (LDA) and

Naive Bayes (NB), etc. In this simulation we applied these five classifiers on STEW

dataset for 3-level workload assessment.

3.5 Chapter Summary

We have described the dataset used in this research and the workload assessment

pipeline implemented in this thesis. We have also explained the methodology consisting

of four experiments used to analyze the performance of workload assessment techniques.

In the next chapters, we will present and discuss the results along with the conclusions

that can be drawn from these results.
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Results and Discussion

4.1 Validation experiment

In this experiment we simulated the workload assessment pipeline for two analysis.

First analysis was for two level of workload assessment in which all of the recordings

in idle state i.e. before taking the SIMKAP test are considered as class 1 (no or low

workload), and all recordings after taking the test are considered as class 2 (some or

high workload). The parameter values we have used are displayed in Table 4.1. The

classification accuracy achieved is 82.2%.

Second analysis was for three levels of workload assessment. In this analysis data is

labeled with respect to the given rating scale where 1 - 3 rated data is labeled as class

1 (for low workload), 4 - 6 rated data is labeled as class 2 (for medium workload)

and 7 - 9 rated data is labeled as class 3 (for high workload). We have used SVM

classifier and other parameter values used are displayed in third column of Table 4.1.

The classification accuracy we have achieved is 69.9% which matches with the results

mentioned in [9].
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no parameters/variables Two level
workload assessment

Three level
workload assessment

1 High pass filter cutoff 1 Hz 1 Hz
2 Line noise removal value 60 Hz 60 Hz
3 ASR Standard deviation cutoff 3 3
4 Re-referencing value average average
5 Sliding window size w 512 512
6 Sliding window step size 128 128
7 Labeling Classes 2 3
8 ML classifier SVM SVM
9 SVM kernel default (linear) default (linear)

Assessment Accuracy 82.2% 69.9%

Table 4.1: Parameter values used for pipeline validation

4.2 Experiment 1: Analysis of parameter influence

on workload assessment accuracy

We analyzed the influence of various factors on the assessment accuracy. These include

ASR threshold, window size and overlap size.

First, we used 10 different ASR threshold values and [512,384] window and overlaps

size respectively to observe how the assessment accuracy varies. In Table 4.2 it can be

seen that effect of ASR threshold on accuracy is random while the maximum accuracy

achieved is 70.01% at ASR threshold of 5 and 9.

ASR Values 0.5 1 2 3 5 7 9 11 13 15
Accuracy 65.56 67.79 65.56 65.56 70.01 65.56 70.01 63.34 64.45 65.56

Table 4.2: Effect of different ASR values on accuracy

Next, we simulated the system for 4 window sizes fs, 2fs, 4fs and 8fs where fs is sam-

pling frequency. For the dataset we have used, fs is 128 so the window sizes we applied

are 128, 256, 512 and 1024 respectively and 4 overlap sizes w/4, 2w/4, 3w/4 and w−1

respectively where w is the window size. Table 4.3 shows the 16 different combinations

of window and overlap sizes along with the workload prediction accuracy for each. The

maximum accuracy we achieved is 72.2% by using [256,256-1] window and overlap size.

The results drawn from these two analyses are inconclusive. Both experiments are
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Window Overlap Accuracy
128 w/4 36.67
128 2w/4 34.44
128 3w/4 65.56
128 w − 1 66.68
256 w/4 66.68
256 2w/4 66.68
256 3w/4 65.56
256 w − 1 72.23
512 w/4 67.79
512 2w/4 68.89
512 3w/4 65.56
512 w − 1 64.45
1024 w/4 66.68
1024 2w/4 64.45
1024 3w/4 66.68
1024 w − 1 67.79

Table 4.3: Effect of different window and overlap sizes on accuracy for ASR cut-off = 3

regarding effect of individual parameter. To get more conclusive results we need to

calculated the combined effect of parameters mentioned in these two analyses.

4.2.1 Evaluation of combined effect of ASR, window size and

overlap size on accuracy

On the basis of previous two analyses, we have simulated the pipeline to analyze the

combined effect of ASR threshold, window size and overlap size. In Table 4.4, it can

be seen that there are 16 different combinations of window and overlap size across 10

different values of ASR threshold. We have simulated the pipeline for all 160 com-

binations. The maximum workload assessment accuracy of all combinations we have

achieved is 72.2% on [256,256-1],[512,512-1] window and overlap sizes with 3 and 0.5

ASR thresholds respectively. And minimum workload assessment accuracy we have

achieved is 34.4% on [128,128*1/4],[128,128*2/4] window and overlap sizes with 2 and 3

ASR thresholds respectively. But these results does not lead to the conclusion whether

we should choose these parameter values as baseline or not.
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Chapter 4: Results and Discussion

In the last column of Table 4.4 it can be seen that the maximum average accuracy of

all ASR threshold is 67.34% achieved on window and overlap combination [256,256-1],

and in last row it can be seen that maximum average accuracy of all combinations of

window and overlap size is 64.03% is achieved on ASR threshold 5. In Figure 4.1, it

can be observed that constellation of maximum accuracy is also in 5th column and 7th,

8th and 11th row where ASR threshold is 5 and window and overlap sizes are [256,

256*3/4], [256, 256-1] and [512,512-1]. So, on the basis of these result the most reliable

window and overlap size is [256, 256-1] and ASR threshold is 5.

Figure 4.1: Heatmap of combined effect of ASR, Window and Overlap size on accuracy.

4.2.2 Evaluation of combined effect of window size and overlap

size on time

In this experiment we have calculated the computation time for preprocessing for four

different window size and 9 different overlap sizes. These window sizes are fs, 2fs, 4fs

and 8fs and overlap sizes are w/4, 2w/4, 3w/4, w−25, w−24, w−23, w−22, w−21

and w − 20 respectively.

Smaller window sizes took less time to process one window but took more time to

process all data because if we decrease the size of window, the number of windows to
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be processed increase while if we increase the size of window the number of windows to

be processed decrease. Therefore, there is an inverse relation between the size of window

and number of windows to be processed. Moreover, an inverse relation between size of

window and time exists while there is a direct relation between number of windows to

be processed and time, see equation 4.1.

w ∝ 1
no.ofwindows

w ∝ 1
time

no.ofwindows ∝ time

(4.1)

In Figure 4.2, the x-axis shows overlap size and y-axis shows the computation time in

hours, for 9 different overlap sizes and curve shows the mean time of 4 windows. As

expected, with an increase in the window and overlap sizes the computation time also

increases.

Figure 4.2: Effect of Window and Overlap size on time. x-axis represents the compu-
tation time and y-axis represents 9 different overlaps.
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4.3 Evaluation Experiment 2: Region-based Anal-

ysis

In this experiment we have extracted features from frontal region (AF3, AF4, F3, F4,

F7, F8), parietal region (P7, P8), occipital region (O1, O2), together from both frontal

and parietal regions (AF3, AF4, F3, F4, F7, F8, P7, P8) and then together from both

frontal and occipital regions’ (AF3, AF4, F3, F4, F7, F8, O1, O2) electrodes. We

performed workload assessment using these datasets with 4 window and 2 overlap sizes

and an ASR threshold value of 5.

In Table 4.5, it can be seen that maximum average workload classification accuracy

achieved in frontal region is 65.69%, in parietal region is 50.41%, in occipital region is

56.38%, in combined frontal and parietal region is 64.58% and in frontal and occipital

region is 65.83%.

Window Overlap Frontal
Accuracy

Parietal
Accuracy

Occipital
Accuracy

F and P
Accuracy

F and O
Accuracy

128 3w/4 66.68 50.00 56.67 64.45 64.45
128 w-1 65.56 50.00 54.45 63.34 64.45
256 3w/4 66.68 51.12 55.56 65.56 65.56
256 w-1 64.45 51.12 56.67 65.56 65.56
512 3w/4 65.56 50.00 58.89 63.34 66.68
512 w-1 66.68 51.12 55.56 65.56 68.89
1024 3w/4 65.56 51.12 56.67 64.45 65.56
1024 w-1 64.45 48.89 56.67 64.45 65.56

Average 65.69 50.41 56.38 64.58 65.83

Table 4.5: Effect of region based analysis on accuracy with 8 different windows and
overlaps.

Figure 4.3 illustrates that maximum information about workload activities is present in

frontal and occipital regions and minimum in parietal region. Our experiment results

have contradict with prior studies in which frontal and parietal regions are reported

for workload.

According to the results it can be concluded that frontal and occipital regions are more

responsive for mental workload. Our accuracy is hovering between 60-70% by using

less number of electrodes where as 69% accuracy is reported in baseline paper [9]. So,
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by using less number of electrodes our results are comparable.

Figure 4.3: Effect of workload in different brain regions

Next, we analyse the results of individual channels with 2 different window and overlap

sizes. In Figure 4.4, it can be seen that there are 6 electrodes that are red circled. These

6 electrodes provide maximum accuracy, see in Table 4.6. Four of these electrodes are

located on frontal lobe and 2 are located on occipital lobe.

Figure 4.4: Red circles shows the electrodes that are more responsive for mental work-
load.

39



Chapter 4: Results and Discussion

Electrodes 2fs, 3w/4 2fs, w-1 4fs, 3w/4 8fs, w-1 Average
AF3 50.0000 52.2222 48.8889 54.4444 51.3889
F7 47.7778 48.8889 47.7778 50.0000 48.6111
F3 47.7778 48.8889 47.7778 47.7778 48.0556
FC5 53.3333 52.2222 53.3333 48.8889 51.9444
T7 47.7778 48.8889 47.7778 48.8889 48.3333
P7 46.6667 46.6667 47.7778 47.7778 47.2222
O1 51.1111 50.0000 51.1111 51.1111 50.8333
O2 51.1111 50.0000 52.2222 51.1111 51.1111
P8 46.6667 46.6667 46.6667 46.6667 46.6667
T8 47.7778 47.7778 47.7778 48.8889 48.0556
FC6 57.7778 55.5556 57.7778 51.1111 55.5556
F4 48.8889 47.7778 50.0000 46.6667 48.3333
F8 55.5556 54.4444 54.4444 56.6667 55.2778
AF4 46.6667 48.8889 47.7778 48.8889 48.0556

Table 4.6: Analysis of individual channel

4.4 Evaluation of Experiment 3: Frequency band

analysis

We further evaluated the performance of workload assessment for individual frequency

bands. In this experiment we have prepared six datasets in which first dataset has

only δ band powers as unique features, second dataset has θ band powers as unique

features, third dataset has α band powers as unique features, fourth dataset has β

band powers as unique features, fifth dataset has γ band powers as unique features

and sixth dataset has θ and α band powers as unique features. These dataset are then

fed to the classifiers one by one for training the models.

In Table 4.7, it can be seen that the maximum assessment accuracy is achieved from

individual theta band dataset and combined theta and alpha band dataset. Theta

band dataset accuracy is 71.1% and combined theta and alpha bands dataset accuracy

is 72.2%. So, it can be concluded that workload related information is present more in

theta and alpha bands than other bands.

Next, we have analyzes the pipeline for brain regions based frequency bands. In Table

4.8, average workload assessment accuracy for frontal α and parietal θ is 58.47%, for

frontal α and occipital θ is 58.89%, for frontal and parietal α , θ is 59.58% and for
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Bands delta δ theta θ alpha α beta β gamma γ
theta θ and

alpha α

Accuracy 55.56 71.12 67.79 55.56 51.12 72.23

Table 4.7: Workload assessment results in individual δ, θ, α, β and γ and combined θ
and α frequency bands

frontal and occipital α , θ is 60.28%. These results show that workload related activities

are mostly present in frontal and occipital region of brain and both theta and alpha

frequency bands.

Window Overlap Frontal α
Parietal θ

Frontal α
Occipital θ

F and P
α + θ

F and O
α + θ

128 128*3/4 57.78 58.89 58.89 58.89
128 128-1 57.78 58.89 58.89 60.00
256 256*3/4 58.89 58.89 58.89 61.12
256 256-1 57.78 58.89 60.00 60.00
512 512*3/4 58.89 58.89 61.12 62.23
512 512-1 58.89 60.00 61.12 58.89
1024 1024*3/4 58.89 57.78 58.89 60.00
1024 1024-1 58.89 58.89 58.89 61.12

Average Accuracy 58.47 58.89 59.58 60.28

Table 4.8: Effect of region based frequency bands on accuracy for 8 different windows
and overlaps.

4.5 Evaluation of different classifiers and their ef-

fect on accuracy

Further we examine different machine learning classifiers to evaluate the performance

of these classifiers for mental workload assessment for three levels of workload classifi-

cation.

Figure 4.5 shows 5 different classifiers SVM, Decision Tree, KNN, LDA and Naive

Bayes and there assessment accuracy.

In Table 4.9, all 5 classifiers are trained on 10 different ASR threshold values for

[512,512-1] window and overlap size. Average assessment accuracy of 66.22% is achieved

with SVM, 59.78% with decision tree, 58.22% with KNN where k = 4, 52.33% with
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Figure 4.5: Effect of Classifiers on accuracy

LDA and 36.89% with Naive Bayes. SVM provides maximum average accuracy among

these classifiers.

ASR Threshold SVM Decision tree KNN LDA Naive Bayes
0.5 67.79 64.44 63.33 58.89 36.67
1 67.79 62.23 54.45 53.34 36.67
2 66.68 61.12 57.78 48.89 35.56
3 64.45 58.89 60.00 51.12 34.44
5 72.23 60.00 62.23 51.12 36.67
7 66.68 61.12 61.12 51.12 34.44
9 65.56 57.78 58.89 51.12 36.67

11 62.23 57.78 55.56 51.12 38.89
13 63.34 57.78 55.56 53.34 40.00
15 65.56 56.67 53.34 53.34 38.89

Average 66.22 59.78 58.22 52.33 36.89

Table 4.9: Effect of different classifiers on accuracy

SVM employs large margin hyperplane technique. Conventional classifiers that are

based on hyperplane such as, LDA, require the training examples lie on the right side

of the hyperplane and find optimal value of θ and θ0 so that θTxi + θ0 > 0 if belongs to

positive class and θTxi +θ0 < 0 if belongs to negative class, where θ is an n-dimensional

Weight vector of feature space and θ0 is a Bias term. But, SVM require the training

examples lie on right side as well as it require Safety margin for better generalization
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capability. The objective function is J(θ) = 1
2 ||θ||, for maximization of margin, ||θ||

needs to be minimized. SVM also allows misclassification for non-linearly separable

data i.e. point lie on wrong side or within the margin. A Slack variable ξi is introduced

which is set to the distance of xi from the decision boundary (hyperplane) for this kind

of scenarios. Slack variables summed up in objective function as Penalty factor. So,

our objective function looks like J(θ) = 1
2 ||θ|| + C(ΣN

i=1ξi) where C is regularization

parameter [35–38].

In case of EEG signals it is more likely to occur misclassification because of several

reasons such as, poor placement of electrodes, subjective assessment bias and difference

of ability to withstand workload in subjects. Because of such reasons the dataset may

not linearly separable and training examples of one class may lie in other class. So,

SVM is more suitable in this case and provides good results than rest of the classifiers.
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Conclusion

5.1 Conclusions

Review of existing literature on EEG-based mental workload assessment using machine

learning has shown that an analysis of the factors that influence workload assessment

accuracy is needed. Moreover, the effect of different regions and frequency bands on

workload is required. Finally, a comparison of different machine leaning classifiers also

needs to be performed.

The recent research of EEG-based mental workload assessment present two and three

level workload assessment with different assessment accuracy [8, 9, 24, 31]. In order

to analyze the effect of different factors that influence of workload assessment meth-

ods, we investigated various parameters such as sliding window size, sliding window

step size and Artifact subspace reconstruction (ASR) threshold. We have analyzed

individual as well as combined effect of these parameters. While analyzing effect of

individual parameters, results are inconclusive where as analysis of combined effect of

these parameters show that most suitable window and step sizes are 256 and 256*3/4

respectively. Moreover, an ASR threshold of 5 provides maximum average accuracy of

64.03%.

In previous studies, different regions of brain are theoretically reported for different

mental states such as, frontal and parietal regions are more responsive for fatigue and

45



Chapter 5: Conclusion

mental workload. To validate this we have analyzed individual region of brain for

presence of workload related activities. Our investigation contradicts prior studies in

which frontal and parietal regions are reported for mental workload. In our results,

frontal and occipital region provides maximum average accuracy of 65.83% which is

higher than rest of other brain regions. We have evaluated the response of individual

channel and the best performance is obtained from the channels that are located on

frontal and occipital region.

Theta θ and Alpha α frequency bands are reported to have maximum workload related

information. We have analyzed the presence of mental workload activities in each

frequency band. Our results indicate that indeed maximum mental workload related

information is present in theta θ and alpha α frequency bands.

Lastly, we have compared the performance of various machine learning classifiers with

respect to workload assessment accuracy. Our results indicate that SVM classifier

performs best among SVM, Decision Tree, kNN, LDA and Naive Bayes, with maximum

average assessment accuracy of 66.22%.

5.2 Limitations

In this study we have used workload dataset called STWE:(Simultaneous task EEG

workload dataset). The workload is induced in this dataset with SIMKAP test which

is based on simultaneous tasks so, it may not be used for single task based workload

detection. Single task based workload can better be detected with some individual task

based workload dataset. In subjective rating, there may be self assessment bias because,

a subject cannot correctly assess himself, which level of workload is he suffering from.

The current implementation is for offline data processing so, it may not be used for

real-time workload detection in its present form. We may use this implementation for

real-time workload detection after making some changes. Further more, the employed

dataset is skewed and all 3 classes do not have equal number of examples (data samples),

class 1 holds 42 data samples, class 2 holds 23 data samples and class 3 holds 25 data

samples so, the assessment accuracy may not be same of all classes.
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5.3 Future directions

In our current research we have worked on EEG based workload detection based on

an offline dataset in which workload is induced with a benchmark SIMKAP test. We

foresee future directions for real-time workload detection using the proposed pipeline.

Next, the real-time workload detection pipeline can be validated for tasks carried out in

the natural environment. This will allow for estimation of mental workload of operators

performing critical tasks in the context of their working environment.

Real-time monitoring is more challenging than offline monitoring. Since the proposed

pipeline is for offline processing and may not be used for real-time workload detection

in its present form. For real-time processing we need to record EEG activity for at

least equal to the length of STEW dataset recording time which is 2.5 minutes. This

2.5 minutes data requires some time for processing and cannot be processed as a whole

so, we may employ parallel processing for faster data processing. We can also use this

implementation in real-world environment. Real-world scenarios are more sensitive to

external noise such as, muscular and head movement, eye blinks etc. So, the real-world

monitoring may require a lot more processing for noise reduction.
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