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Abstract

In this thesis, an adaptive prediction horizon approach based on machine

learning is presented for the finite control set model predictive control (FCS-

MPC) of power converters. Normally, in FCS-MPC, the prediction horizon

(N) is fixed during both the transients and the steady-state. A large N

improves performance while significantly increasing the computational cost.

A novel technique is presented where the prediction horizon (N) adapts to

the instantaneous states i.e. il, vo and vo,err = (vref − vo). Simulations

are run for different combinations of N , il, vo and vref to create a data set

of the optimal N against the instantaneous states and the error between

the reference output voltage and the output voltage and an artificial neural

network is trained to tell the optimal length of N . The proposed method

is simulated on a boost converter in Simulink. The simulation results show

that the computational cost is reduced without affecting the performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Model predictive control (MPC) uses a discrete-time model of the system to

”predict” the future values of the system based on the current state. In power

electronic converters, the control input is the on/off actuation of the switch.

This entails that the possible inputs are finite in number. This variant of

MPC is called the finite control set model predictive control (FCS-MPC). The

finite number of possible inputs produce a finite number of possible switching

sequences. The number of prediction steps in the horizon (N) dictates the

length of the switching sequences and thus, tells how far ahead we ”see” in

the future. A cost function is defined and FCS-MPC solves an optimization

problem for every sequence. The sequence that minimizes the cost function

is the optimal sequence. The optimization problem is solved online at every

sampling instant and the first actuation of the sequence is then applied to the

converter. This process is repeated at every time step for new state values

and is known as receding horizon policy [18].

The main disadvantage of the MPC is the large computational cost asso-

1



CHAPTER 1. INTRODUCTION 2

ciated. The time intervals in power electronic converters are in the microsec-

onds and in real-time, the optimization problem is computationally extensive

to solve. The prediction horizon is an important factor in MPC. A larger

prediction horizon increases the performances of the system [24] but at the

same time, increases the computational cost as the number of sequences to

be searched increase exponentially. Moreover, the power electronic convert-

ers that exhibit a non-minimum phase behaviour require a large prediction

horizon for stability.

The computational cost of MPC could be reduced if the prediction horizon

was varying. A trade off between the physical performance and the cyber per-

formance (computational cost) could be achieved similar to a cyber-physical

system [1, 7]. A cyber-physical system (CPS) consists of both the physical

as well as the cyber aspect of the system. A CPS approach to the attitude

control of the CubeSat satellite is presented in [2]. Due to the limitation

of resources in the satellite, the computational power is shared by all tasks

being carried out. The controller regulates both the physical and cyber re-

sources of the satellite. Similarly, a cyber-physical cost function (Jcp) can be

defined for an FCS-MPC controlled converter that contains information of

both the cyber utilization and physical performance of the converter.

1.2 Problem Statement

The solutions to the computational complexity of MPC that exist all focus on

solving the optimization problem efficiently. However, none of the solutions

that exist talk about the cyber-physical aspect of MPC. A larger prediction

horizon improves performance while simultaneously, posing a high computa-

tional cost. Therefore, a cyber-physical function for MPC has to be formed
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that provides a trade off between the physical performance and the cyber

utilization. This would allow the prediction horizon to be smaller and thus,

reducing the computational complexity.

1.3 Proposed Method

A novel technique is proposed where the prediction horizon (N) is always

varying instead of being fixed. An artificial neural network tells what N to

choose at run-time. Several simulations were run with different conditions of

converter states i.e. il, vo and vo,err for a range of N and the resulting cyber-

physical cost (Jcp) was determined. For the different conditions of converter

states, that particular N from the range was assigned that registered the

smallest Jcp. A data set of these states and the corresponding N is created.

An artificial neural network was trained on the data set to learn the behaviour

and predict the optimal N at run-time.

The proposed method is applied on a boost converter. The main objec-

tive of the controller is to regulate the output voltage to a set reference. A

discrete-time model for the boost converter is determined that incorporates

both the continuous conduction mode (CCM) and the discontinuous conduc-

tion mode (DCM). A discrete Kalman filter [23] is included with the control

scheme to cater for the changes in load and provide an offset-free voltage

regulation.



Chapter 2

Literature Review

2.1 Digital Control Strategies

In recent years, the applications of dc-dc converters have widened, ranging

from dc power supplies, dc motor control [11], electric vehicles, hybrid electri-

cal systems and renewable energy systems. With the dc-dc converters comes

the need to control the converters to desired conditions. In this aspect, linear

control techniques like pulse-width-modulation and PI [6] have been applied

on power converters. However, the control techniques pose problems such as

extensive manual tuning.

Ever since the dawn of fast processors, researchers have been able to come

up with newer control techniques that are superior to the classical control.

Embedded systems and digital processors have enabled the use of techniques

like feedforward control [8,9], fuzzy logic [13,22], nonlinear techniques [5,21],

sliding mode [14, 19] and H∞ [10]. One of the control method that takes

advantage of the processing power is the model predictive control (MPC) [20]

that eliminates the manual tuning of the controller.
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CHAPTER 2. LITERATURE REVIEW 5

2.2 Finite Control Set Model Predictive Con-

trol (FCS-MPC)

Model predictive control (MPC) uses a discrete-time model of the system to

”predict” the future values of the system based on the current state. In power

electronic converters, the control input is the on/off actuation of the switch.

This entails that the possible inputs are finite in number. This variant of

MPC is called the finite control set model predictive control (FCS-MPC). The

finite number of possible inputs produce a finite number of possible switching

sequences. The number of prediction steps in the horizon (N) dictates the

length of the switching sequences and thus, tells how far ahead we ”see” in

the future. A cost function is defined and FCS-MPC solves an optimization

problem for every sequence. The sequence that minimizes the cost function

is the optimal sequence. The optimization problem is solved online at every

sampling instant and the first actuation of the sequence is then applied to the

converter. This process is repeated at every time step for new state values

and is known as receding horizon policy [18].

The main disadvantage of the MPC is the large computational cost asso-

ciated. The time intervals in power electronic converters are in the microsec-

onds and in real-time, the optimization problem is computationally extensive

to solve. The prediction horizon is an important factor in MPC. A larger

prediction horizon increases the performances of the system [24] but at the

same time, increases the computational cost as the number of sequences to

be searched increase exponentially. Moreover, the power electronic convert-

ers that exhibit a non-minimum phase behaviour require a large prediction

horizon for stability.
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2.3 Move Blocking Strategy

Move-blocking scheme [16,17] was introduced in MPC by breaking the hori-

zon into fine and coarse time steps. For the immediate future, fine time

intervals were used while coarse time intervals were used for the future far

ahead. This meant that the states of the converter could be ”predicted”

further ahead by applying a comparatively smaller N that reduced the com-

putational complexity.

2.4 Sphere Decoding Algorithm

Instead of exhaustive search, one solution is to reduce the computational

cost by efficiently solving the optimization problem. Techniques like sphere

decoding [4] were introduced in the realm of MPC to replace the exhaustive

search with solving the optimization problem in a vector form. This converts

the optimization problem to an integer least square problem. Thus, the

optimal switching position is found in a more cost-effective manner. However,

this technique is suitable for multilevel inverters and present complexities in

its application to dc-dc converters. Other efficient solutions to FCS-MPC

involve techniques like event-based horizon and extrapolation strategy [12].

2.5 Cyber-Physical Systems

The techniques explained in previous sections have a fixed number of pre-

diction steps N in the horizon. The computational cost of MPC could be

reduced if the prediction horizon was varying. A trade off between the phys-

ical performance and the cyber performance (computational cost) could be

achieved similar to a cyber-physical system [1, 7]. A cyber-physical system
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(CPS) consists of both the physical as well as the cyber aspect of the system.

A CPS approach to the attitude control of the CubeSat satellite is presented

in [2]. Due to the limitation of resources in the satellite, the computational

power is shared by all tasks being carried out. The controller regulates both

the physical and cyber resources of the satellite. Similarly, a cyber-physical

cost function (Jcp) can be defined for an FCS-MPC controlled converter that

contains information of both the cyber utilization and physical performance

of the converter.



Chapter 3

Model of the Boost Converter

The topology of the boost converter is shown in Fig. 3.1. A boost converter

increases the output voltage of the system to higher value than the voltage

supplied to the converter. The inductor (L) charges itself initially to store

current which is then used to charge the capacitor (Co) to the desired value

of the output voltage. Moreover, the inductor also functions to reduce the

ripple in the inductor and the output capacitor reduces the ripples in the

output voltage. After the initial charging of the inductor and the capacitor,

the switch (S) is applied with actuation inputs to regulate the output voltage

to the reference voltage. The parasitic resistance of the inductor is denoted

by RL

8
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Figure 3.1: The topology of the boost converter [16].

3.1 Continuous-Time Model

The continuous model of the boost converter should incorporate the three

modes of operations of the boost converter.

1. The switch (S) is ON and the diode (D) is OFF

2. The switch (S) is OFF and the diode (D) is ON

3. The switch (S) is OFF and the inductor current il = 0, which turns

OFF the diode (D)

In mode 1, the inductor is storing current and at the same time, not

letting the current to fall. However, the output voltage falls. In mode 2,

the inductor releases its stored current to charge the output capacitor (Co)

which causes the rise of output voltage across the load (R). This process

happens quite rapidly that only a small ripple is observed in the current and

voltage. These two modes are the continuous conduction mode (CCM) since

the inductor current is greater than zero. However, the converter goes in
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mode 3 when the inductor current il = 0. This cause the diode to switch off.

This is the discontinuous conduction mode (DCM).

The state-space model of the boost converter for continuous-time is given

as [3]:

dx(t)/dt = (A1 + A2u(t))x(t) +Bvs(t) (3.1a)

y(t) = Cx(t) (3.1b)

where

x(t) =
[
il(t) vo(t)

]T
(3.2)

is the state vector, vs is the input voltage, u(t) is the input applied to

the switch (S) i.e. either 0 meaning the switch (S) is OFF or 1 meaning the

switch (S) is ON and

A1 =

−
dauxRL

L
−daux

L

daux
Co

− 1

CoR

 , A2 =

 0
1

L

− 1

Co

0

 , B =

[
daux
L

0

]T

and C =
[
0 1

]
daux can take the value of either 0 or 1 and determines whether the con-

verter operates in CCM or DCM. daux takes the value 1 if the converter

is operating in continuous conduction mode (CCM) and a value of 0 is as-

signed to daux if the converter is operating in discontinuous conduction mode

(DCM). The mathematical expression to explain this is given as:

daux(t) =

1 if u(t) = 1, or u(t) = 0 and il(t) > 0

0 if u(t) = 0 and il(t) = 0

(3.3)
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3.2 Discontinuous-Time Model

Model predictive control (MPC) uses the discrete-time model to ”predict”

the future values of the converter. Therefore, an accurate discrete-time model

that incorporates all modes of operation is need. This requires the conver-

sion of continuous-time model matrices to discrete-time model matrices. We

denote these discrete models as follows:

Γ1 = A1 for daux = 1

Γ2 = A1 for daux = 0

Γ3 = A2, and

∆ = B for daux = 1

By using the continuous-time model from equation (3.1) and Euler’s ap-

proximation, the following discrete-time model for the boost converter with

a sampling interval, Ts, is obtained [16]:

x(k + 1) =



E1x(k) + F1vs(k) Mode 1

E2x(k) + F2vs(k) Mode 2

E3x(k) + F3vs(k) Mode 3

E4x(k) Mode 4

(3.5a)

y(k) = Gx(k) (3.5b)

where the matrices are defined as:

E1 = 1 + (Γ1 + Γ3)

E2 = 1 + Γ1Ts
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E3 =
1

2
(E1 + E2)

E4 = 1 + Γ2Ts

F1 = ∆Ts

F2 = F1

F3 =
1

2
∆, and

G = C

1 is an identity matrix of order 2. The graphical representation of the

discrete modes of the boost converter is illustrated in Fig. 3.2.
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Figure 3.2: Graphical representation of the discrete modes of the boost con-

verter [16].



Chapter 4

Finite Control Set Model

Predictive Control

Finite control set refers to the finite number of actuation sequences that occur

for a fixed number of prediction steps in the horizon. All possible control

sequences are first determined and then, model predictive control solves the

optimization problem for all sequences in the control set and chooses the

sequences that has the lowest cost.

4.1 Objective Function

The objective function opted is:

J =
k+N−1∑
l=k

|vref − vo(l)|+ λ|u(l − 1)− u(l)| (4.1)

where N is the number of prediction steps in the horizon over which the

variables of interest are penalized. N is a finite number. vref is the reference

voltage which the output voltage should track while u represents the switch

14
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being either on or off. The first term in the objective function penalizes the

error between the reference output voltage and the output voltage.

vo,err = vref − vo(k) (4.2)

The second term of the objective function is the difference between the

previous switching state and the current switching state. This prevents the

excessive switching and reduce the switching frequency of the switch.

∆u(k) = u(k − 1)− u(k) (4.3)

The term λ is the weighting factor and decides the bias of the objective

function. It is usually set to a smaller value because the bias tends towards

reducing the error between the reference output voltage and the output volt-

age.

4.2 Optimization Problem

The optimization problem is to minimize the objective function posed in

(4.1).

U∗(k) = arg minJ(k)subject to equation (3.5) (4.4)

The solution of the optimization problem is a sequence of the form:

U(k) = [u(k)u(k + 1)u(k + 2)...u(k +N − 1)]

The sequence that provides the lowest value of J(k) is the optimal se-

quence and is denoted by U∗(k). However, only the first entry of the optimal

sequence, u∗(k), is applied as input to the converter switch. This optimiza-

tion problem is solved online at every time step.
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The solution to this optimization problem is a tricky one because it is

a mixed integer nonlinear optimization problem. Note that modes 1 and 2

are affine (linear plus offset), mode 3 is nonlinear and mode 4 is linear. The

simplest solution to this problem is the use of enumeration or exhaustive

search. First, all possible sequences are defined for the prediction horizon

which are 2N in number. For each sequence, the cost of objective function

is found and the sequence that has the lowest cost is the optimal sequence.

However, this method is not very computationally efficient as the cost of 2N

sequences has to be found in the sampling interval, Ts.

4.3 Significance of Large N

The boost converter exhibits a non-minimum phase behavior (shown in Fig.

4.1) that entails an initial drop in the output voltage when the reference

voltage is increased. This attitude requires a prediction horizon large enough

to ”see” the eventual rise of output voltage after it drops. The move-blocking

strategy [16] was devised for a seemingly large N with the computational cost

of a smaller prediction horizon. Furthermore, a large prediction horizon also

improves the physical performance of the converter [24] in the transient state

where it helps to reach the reference voltage in a shorter time.
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Figure 4.1: Non-minimum phase behaviour of the boost converter [16].

4.4 Move Blocking Strategy

As discussed in the previous section, the main issue presented by the boost

converter for its voltage control is that it poses a non-minimum phase be-

haviour. This means that when the reference voltage to be tracked is in-

creased, the output voltage drops at first. This is because during this time,

the inductor is charging up to eventually charge up the output capacitor.

Therefore, the prediction horizon should be large enough to ”see” the even-

tual rise of the output voltage to maintain the stability of the converter.

To avoid the loss of stability of the converter, NTs should be large enough.

However, increasing N would increase the number of computations because

the number of control sequence would increase while increasing Ts would

decrease the resolution of the measurements. Both cases are not beneficial

for the cause. This is where move blocking comes in. Move blocking breaks

the prediction intervals into fine and coarse samples as shown in the equation

below
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N1Ts +N2nsTs

where ns is a constant multiplying factor that increases the sampling time

further ahead in the future. The resolution of measurements do not affect

the control in the future because only the measurements in the near future

are of importance. If a prediction horizon of 20 is used, the total prediction

interval is 20Ts. However, with move blocking

N = N1 +N2

If N1 = 7 and N2 = 4

then N = 11

the total prediction interval if ns = 4 is

N1Ts +N2nsTs = 23Ts

As demonstrated by the equations above and Fig. 4.2, a prediction hori-

zon of 11 with move blocking strategy provides more prediction steps than a

prediction horizon of 20 without move blocking strategy.
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Figure 4.2: Non-minimum phase behaviour of the boost converter with move

blocking strategy [16].

It should also be noted that the number of possible control sequences for

a prediction horizon of 20 without move blocking strategy amounts to:

2N = 220 = 1048576

while the number of possible control sequences for a prediction horizon

of 11 with move blocking strategy amounts to:

2N = 211 = 2048

These numbers indicate a decrease of 99.9% in the number of computa-

tions. Moreover, increasing the prediction horizon increases the number of

possible sequences and thus, the computational cost exponentially.

Another point to be noted is that fine time steps are only required in the

near future and coarse time steps are enough for the future further ahead.

This is because of the receding horizon policy implemented in the model

predictive control (MPC). As the time increases step by step, the once coarse



CHAPTER 4. FINITE CONTROL SETMODEL PREDICTIVE CONTROL20

time samples are converted to fine time samples. The behaviour of the boost

converter is illustrated in Fig. 4.3.

Figure 4.3: Prediction steps with move blocking scheme for a) output voltage,

b) inductor current and c) control input.
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4.5 Changes in Load

The load is often time-varying and unknown in most applications. Thus, a

Kalman filter [15, 16] is added to the control scheme to provide offset-free

tracking of the reference voltage during changes in load as presented in. In

addition to the measured states, il and vo, disturbance states ie and ve are

added to form an augmented state vector

xa =
[
il vo ie ve

]T
(4.5)

Therefore, the state space model changes to

xa(k + 1) = EaMx(k) + FaMvs(k) (4.6a)

ya(k) = Gax(k) (4.6b)

EaM =

EM 0

0 1

 , FaM =


FM

0

0

 and Ga =
[
1 1

]
(4.7)

where 1 and 0 are identity matrix and a null matrix of order two respec-

tively.

A discrete Kalman filter is designed with four different Kalman gains KM

according to the mode of operation. The noise covariance matrices Q and R

are assigned such that high credibility is associated with the measured state

while the disturbance states have low credibility associated with them. Thus,

the estimated state equation is defined as

x̂(k + 1) = EaM x̂a(k) +KMGa(x̂a(k))FaMvs(k) (4.8)
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The estimated disturbance state is used to eliminate the offset from the

reference by altering the reference voltage to

v̂ref = vo − v̂e (4.9)

Instead of the measured states, il and vo, the estimated states îl and v̂o

are used as input vector to the controller.



Chapter 5

Proposed Adaptive Prediction

Horizon

In the standard FCS-MPC scheme [16], the prediction horizon is fixed. An in-

crease in prediction horizon improves the physical performance but the com-

putational complexity also increases. The purpose of the proposed method is

to find a prediction horizon that provides a trade off between great physical

performance and low computational complexity. However, a fixed prediction

horizon that provides this trade off will not suffice. A prediction horizon that

adapts itself to the changing values of il, vo and vo,err during disturbances

in load, changes in output reference voltage, transients and steady-state is

needed. The proposed method of determining the adaptive prediction hori-

zon is explained in the following subsections.

5.1 Cyber-physical Cost Function

A cyber-physical cost function is defined as a metric to determine the effect

of different number of prediction steps in the horizon N on the physical

23
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performance of the converter and the cyber resource utilization. It is the

sum of the physical performance, Jp and the weighted cyber utilization, Jc.

Jp :=
M∑
k=1

|vref − vo(l)|+ λ|u(l − 1)− u(l)| (5.1a)

where λ is a weighting factor similar to equation (2) and M is the number

of samples to assess the physical performance. M is a fixed arbitrary number

and should be set sufficiently greater than the number of prediction steps in

the horizon, N . In the proposed method, its value is M = 100 which entails

that Jp contains the information of the physical performance for 100 samples.

The cyber utilization is defined as

Jc := 2N (5.1b)

and the cyber-physical cost function is

Jcp := Jp + γJc (5.1c)

where γ is a constant less than one used adjust the value of the cyber-physical

cost since Jc tends to have a rather large value.

It can be seen from (8a) that Jp is an accumulation of the error for 100

time steps. In case of large N , the term (vref − vo) gets smaller quite quickly

because of increased performance resulting in a smaller value of Jp which is

desirable but at the same time, the value of Jc is large because of greater

resource utilization. Thus, a trade off has to be found between the physical

performance and the cyber utilization.
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5.2 Data Collection

A range of values for N , il, vo and vo,err are defined. For every possible

combination of N , il, vo and vo,err, simulations are run and the corresponding

Jp is determined. The values of vo for M = 100 samples to determine Jp are

calculated by the MPC algorithm with move blocking presented in [16]. For

every possible combination of values of il, vo and vo,err, the corresponding

N is chosen which has the smallest value of Jcp. A training data set is

formed using this strategy where an optimal number of prediction steps in

the horizon, No, is related to every combination of il, vo and vo,err.

5.3 Training

The artificial neural network is a supervised machine learning technique that

is analogous to function mapping. It is inspired by the biological neural net-

work where several nodes combine themselves in a network to relate several

features or inputs to an output. In the proposed case, the inputs are the

states of the converter ,il and vo, and the error between the reference volt-

age and output voltage, vo,err, which outputs the prediction horizon N to be

chosen for the particular states.
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Figure 5.1: A representation of an artificial neural network.

For the training data set formed, an artificial neural network is trained

to learn the relation between the inputs and the output. For the proposed

method, an artificial neural network toolbox based on Bayesian Regular-

ization in MATLAB was used to train the artificial neural network. The

trained neural network forms a function that takes il, vo and vo,err as input

and outputs the optimal prediction horizon, No.
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No = adapt(il, vo, vo,err) (5.2)

The data collection and training is done offline and No is dictated by (9)

online at every sampling interval.

The steps to use the toolbox in MATLAB are illustrated in Fig. 5.2 to

Fig. 5. 7.

Figure 5.2: The start up of the neural network toolbox in MATLAB.
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Figure 5.3: Selection of input and output matrices.
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Figure 5.4: Specify the number of hidden neurones.
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Figure 5.5: Choose Bayesian-Regularization as the training algorithm.
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Figure 5.6: Training starts and stops when either 1000 iterations are complete

or the mean squared error stops decreasing.



CHAPTER 5. PROPOSED ADAPTIVE PREDICTION HORIZON 32

Figure 5.7: Form the function ’adapt’ which chooses the optimal N.

5.4 FCS-MPC with Adaptive Prediction Hori-

zon

The control scheme proposed is summarized in Algorithm 2. Instead of

fixed prediction horizon, the algorithm adapts the horizon depending on il,

vo and vo,err and the optimal prediction horizon, No, is determined by (9).

The function f1 denotes a state model with fine sampling time, Ts, while f2

denotes a state model with coarse sampling time, nsTs The block diagram of

the proposed control method is shown in Fig. 2.
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Figure 5.8: Block diagram of FCS-MPC scheme with adaptive prediction

horizon and Kalman filter.
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Algorithm 5.1 FCS-MPC with Adaptive Prediction Horizon

function MPC(il, vo, vo,err, x̂(k), u(k − 1))

J∗(k) =∞;u∗(k) = ∅;x(k) = x̂(k)

No = adapt(il, vo, vo,err)

for all U over No do

J = 0

for l = k to k +No + 1 do

if l < k +N1 then

x(l + 1) = f1(x(l), u(l))

else

x(l + 1) = f2(x(l), u(l))

end if

verr(l + 1) = v̂ref − vo(l + 1)

J = J + |verr(l + 1)|+ λ|u(l)− u(l − 1)|

end for

if J < J∗(k) then

J∗(k) = J

u∗(k) = U(1)

end if

end for

end function



Chapter 6

Simulation Results

The simulation results of the proposed control scheme with adaptive predic-

tion horizon are presented in this section. These results demonstrate that the

physical performance of the converter has not been compromised by adapting

the prediction horizon, however, there is a significant reduction in the com-

putational cost. The attitude of the output voltage to changes in reference

voltage, input voltage and load disturbances are shown.

For the data collection to train the neural network, the range of horizons

are Nmin = 8 to Nmax = 13, the output reference voltages are vref,min =

20 V to vref,max = 25 V, the maximum inductor current il = 6 A and the

maximum output voltage vo = 26 V. The value of weighting factor in Jcp is

γ = 1/2Nmax .

The circuit parameters are Co = 220 µF, L = 450 µH and Rl = 0.3 Ω.

The input voltage vs = 10 V and the output reference voltage vref = 25 V.

The load resistance is R = 73 Ω.

The weighting factor in the objective function (2) is λ = 0.1, the sampling

time interval is Ts = 5 µs. For the move-blocking strategy, the parameters

are N1 = 6 and ns = 4. As for the Kalman filter, the covariance matrices Q
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and R are set as diag([0.1, 0.1, 50, 50]) and diag([1, 1]) respectively.

6.1 Start-Up

The start-up behaviour of the converter under nominal conditions is shown

in Fig. 3. It can be seen that the reference output voltage is reached in 2.6

ms without any offshoot. It may also be noticed that during the charging

of the inductor, the prediction horizon is adapted to smaller values knowing

that a larger prediction horizon would provide no benefit in the performance

and hence, reducing the computational cost (cyber utilization). However,

when the inductor is charged, the prediction horizon adapts to the maximum

value at which the neural network was trained to provide the best possible

physical performance. Eventually, when the converter achieves steady-state,

the optimal prediction horizon is adapted to track the reference voltage
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Figure 6.1: A simulated start-up behaviour of output voltage, inductor cur-

rent and the optimal prediction horizon.

6.2 Step Changes in the Output Reference

Voltages

A step-down change in the output reference voltage from 25 V to 20 V was

provided at time 1.5 ms as shown in Fig. 4. At the time of transition, a

large prediction horizon is desirable to which the prediction horizon adapts

and quickly settling for a smaller prediction horizon because in step-down

changes, the output capacitor voltage is dropping off and a large prediction
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horizon offers no benefit. The inductor current also drops to zero as the

capacitor looses its charge. A time of 3 ms is taken for the output voltage

to reach the target voltage at which point, the prediction horizon adjusts to

the new conditions.
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Figure 6.2: The simulated behaviour of output voltage, inductor current and

the optimal prediction horizon for a step-down change in output reference

voltage.

The behaviour of the output voltage for a step-up change in the out-

put reference voltage is shown in Fig. 5. A step-up change of 5 V was

applied which was catered for in about 1.5 ms. At this transition, due to

the non-minimum phase behaviour of the boost converter, a large prediction
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horizon is required and thus, the prediction horizon adapts and increases to

its maximum trained value before falling down to a smaller value once the

steady-state is reached.
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Figure 6.3: The simulated behaviour of output voltage, inductor current

and the optimal prediction horizon for a step-up change in output reference

voltage.

6.3 Step Change in the Input Voltage

A step change at about 0.58 ms from 10 V to 15 V was applied to the

input voltage and the resulting attitude of the output voltage and inductor
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current is depicted in Fig. 6 and Fig. 7 respectively. The output voltage is

unaffected by this change and as there is no significant change in vo,err and

vo, the prediction horizon is also not affected.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (ms)

24

24.2

24.4

24.6

24.8

25

25.2

25.4

25.6

25.8

26
v

o

v
ref

Figure 6.4: The simulated behaviour of output voltage for a step-up change

in input voltage.
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Figure 6.5: The simulated behaviour of inductor current for a step-up change

in input voltage.

6.4 Load Step Change

The last case is the change in load. For the converter operating at an input

voltage of vs = 10 V and the output reference voltage set at vref = 20 V, the

load is changed from R = 73 Ω to R = 36.5 Ω. The behaviour of the output

voltage and the prediction horizon is shown in Fig. 8 and 9 respectively.

The disturbance in the load occurs at ms. Initially, there is a slight drop in

the output voltage during which time the Kalman filter adjusts the reference
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output voltage. Once the reference voltage is adjusted to a new value, the

output voltage starts creeping up to the desired value. The adjustment in the

output reference voltage provides an offset free tracking i.e. no steady-state

error. The prediction horizon adapts itself to the changing states of output

voltage and the error between the output voltage and the reference voltage

as shown in Fig. 9.
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Figure 6.6: The simulated behaviour of output voltage for a change in load.
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Figure 6.7: The simulated behaviour of the prediction horizon for a change

in load.
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Conclusions

During transients and disturbances in the system, a larger prediction horizon

N is needed but during the steady state and the initial charging of inductor

in boost converter, a smaller prediction horizon is sufficient. In context of

this behaviour of the boost converter, a prediction horizon that adapts itself

to the state conditions of the converter causes a significant reduction in cyber

resources (computational cost) without a compromise in performance. These

claims are verified by the results illustrated in chapter 5.

For future works, a method can be developed that varies the value of γ

on run-time. This would enable the system to be a true cyber-physical sys-

tem as we would be able to change the weightage of Jcp on run-time. This

would enable us to make the system perform physically well or be compu-

tationally cost effective. Moreover, for move blocking strategy, the number

of prediction steps for fine time steps N1 is kept constant. We could train

a system that varies N1 as well. by decreasing the value of N1, the effective

prediction horizon increases and vice versa. A trade off for the value of N1

could also be found to improve the performance of the system while keeping

the computational cost at bay.
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