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Abstract 

Energy-efficient design and operation have been the focus of research in process 

industries to mitigate global warming and realize a circular economy. The crude 

distillation unit (CDU) is a critical component in the refining process, but it also 

consumes a significant amount of energy. It is estimated that the CDU is responsible 

for 35-40% of the total energy consumption in a refinery. It highlights the need for 

efficient operation and process optimization to reduce energy consumption and costs. 

Improved operation and technology advancements can lead to significant energy 

savings in the CDU process. Optimum values of tray temperature, also known as the 

cut-point temperature, have been a challenge considering the uncertainty around crude 

composition and process conditions. Apart from cut-point temperature optimization, an 

analysis of energy and exergy is conducted to assess the energy efficiency of the CDU 

and identify potential areas for improvement. Compared to conventional energy 

analysis, exergy analysis is a more comprehensive method for evaluating the 

performance of the CDU, as it incorporates the second law of thermodynamics and 

traditional energy analysis techniques. In this study, we integrate the exergy analysis 

aspect in our previous study based on the hybrid framework of the Taguchi method and 

genetic algorithm (GA).  A crude distillation unit (CDU) simulation was created using 

Aspen HYSYS to evaluate crude oil assays from Pakistan's Kunnar and Zamzama 

regions to improve performance. Multiple variations of the crude assay were created by 

introducing artificial uncertainty in the actual crude composition and operating 

conditions, resulting in hundreds of scenarios being examined to evaluate the effect of 

uncertainty. The hybrid model combining the Taguchi and genetic algorithms was 

created in MATLAB and integrated with Aspen HYSYS simulation to determine the 

optimal cut points. Minimizing exergy destruction in a column per kilo barrel of diesel 

production was set as an objective function. Three hundred and ten data samples 

comprised of a variant in process conditions and optimized cut points from the hybrid 

network were generated. Based on the results, an artificial neural network model was 

developed to predict optimal cut points for increased diesel production. The results 

produced by the artificial neural network (ANN) were then used directly in the Aspen 

HYSYS model, bypassing the hybrid structure. The results of the Hybrid optimization 

and ANN models were similar, indicating that the ANN model could accurately predict 

the optimal cut points for optimized diesel production. For the Kunnar crude, a 27% 
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increase in diesel production and a 26% decrease in exergy destruction within the 

column per kilo barrel of diesel were observed compared to straight-run results. For the 

Zamzama crude, there was a 12% increase in diesel production and a 13.22% decrease 

in exergy destruction within the column per kilo barrel of diesel. 

 

Keywords:  Hybrid Taguchi and Genetic Algorithm, ANN, industry 4.0, Exergy 

analysis, Cut-point temperature optimization, CDU 
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Chapter 1  

Introduction 

1.1  Background  
 

The ongoing depletion of fossil fuel resources and the increasing concerns over global 

warming have spotlighted the need for energy-efficient designs in industrial processes. 

With the future of energy resources uncertain, researchers focus on developing 

solutions that can deliver greater output while consuming less energy. The energy-

efficient design optimizes various elements, such as heat exchangers, pumps, and 

compressors, to minimize energy consumption. It can be achieved using advanced 

materials, such as high thermal conductivity, and innovative technologies, such as 

microreactors. In addition, using renewable energy sources, such as solar and wind 

power, can also contribute to energy efficiency in industrial processes. Another critical 

aspect of the energy-efficient design is advanced control systems and automation. 

These systems can monitor and control parameters such as temperature, pressure, and 

flow rate to optimize the process and reduce energy consumption. Cohesive efforts by 

researchers, governments, and industrial stakeholders are required for the successful 

adoption and implementation of energy-efficient designs. The integration of energy-

efficient technologies into current infrastructures can be considerably aided by policy 

frameworks and incentives that place a priority on environmentally responsible 

behaviors. 

Furthermore, process integration and heat integration techniques can also be applied 

to optimize energy consumption and increase the overall efficiency of the process. 

Energy-efficient operation is another critical aspect of energy efficiency in industrial 

processes. It involves implementing best practices and procedures to minimize energy 

consumption during operation. For example, predictive maintenance can help reduce 

downtime and energy consumption by identifying and addressing potential issues 

before they occur. Additionally, real-time monitoring and control systems can help 

identify and address energy inefficiencies, thus reducing energy consumption. Energy-

efficient design and operation are crucial to achieving a circular economy and 
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mitigating global warming. By developing and implementing advanced technologies 

and best practices, researchers are working to minimize energy consumption and 

increase the efficiency of industrial processes, thus reducing the environmental impact 

of these processes. Advancements in technology and best practices are continually 

being developed by researchers and inventors. Automation, machine learning, and 

artificial intelligence are being used to better optimize processes and reduce energy 

waste. With the help of these technologies, businesses can function more precisely and 

quickly, which improves energy efficiency and lessens environmental impact. 

Furthermore, using renewable energy sources and advanced control systems can also 

contribute to achieving a sustainable future. A cleaner and more sustainable energy 

supply is ensured by switching from fossil fuels to renewable energy sources including 

solar, wind, and hydro power. Industries may reduce their carbon footprint and support 

the global effort to combat climate change by investing in renewable energy 

infrastructure. Incentives and policies from the government are also very important in 

improving energy efficiency in industrial processes. Government officials can support 

industries in adopting sustainable practices by offering funding, tax breaks, and legal 

frameworks. Such actions foster an environment where companies may give 

sustainability and energy efficiency top priority. 

The crude distillation unit is a vital component in petroleum refineries, responsible for 

separating the various hydrocarbons found in crude oil into distinct fractions based on 

their boiling points. This process, known as fractionation, is a complex process that 

consumes a significant amount of energy, with estimates suggesting that crude 

distillation units account for 30-45% of the total energy consumption in refineries [1,2]. 

Due to this high energy consumption, researchers have optimized crude distillation to 

achieve production targets while minimizing energy consumption [3]. The crude 

distillation process starts with heating crude oil to a specific temperature, after which 

the oil is fed into the distillation unit. As the oil is heated and vaporized, it is directed 

through a series of trays or plates, separating the different hydrocarbons based on their 

boiling points. These fractions are then further broken down into components along a 

range of boiling points, resulting in a range of products, including naphtha, diesel, 

kerosene, ago, off-the-gas, wastewater, and residue. Therefore, we can minimize energy 

consumption by making our columns more efficient, mainly involving additional 

capital costs. There are plenty of ways to optimize the design of these units to improve 
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energy efficiency. Process control methods like optimization and alternative designs 

have been utilized for this purpose. In addition to process control methods, 

technological advancements have played a crucial role in enhancing energy efficiency. 

Innovations in column internals, such as structured packing and trays with higher 

separation efficiencies, contribute to reducing energy consumption during distillation. 

Furthermore, the implementation of advanced heat exchangers and energy recovery 

systems can help harness waste heat and repurpose it for various heating requirements 

within the refinery. Moreover, research and development efforts continue to explore 

novel approaches to maximize energy efficiency in crude distillation. These efforts 

encompass the exploration of alternative energy sources, such as renewable energy 

integration and waste heat utilization. Additionally, advancements in materials science 

contribute to the development of more effective insulating materials, thereby reducing 

heat losses during the process. 

Production of crude products depends on the tray's temperature of the crude distillation 

unit, also known as cut points. Tuning cut points can be used to increase the production 

of a specific product and minimize energy consumption in the column. However, the 

optimal cut points depend on the tray's temperature of the crude distillation unit, which 

can be affected by frequent changes in crude composition and any disturbance in 

process parameters. Therefore, estimating the optimal points for maximum efficiency 

makes it quite challenging. The crude oil composition can change due to the 

geographical origin of the crude, the season, and other factors. Any disturbance in 

process parameters, such as the feed rate, the reflux ratio, and the column pressure, can 

also affect the tray's temperature and the optimal cut points. Therefore, estimating the 

optimal points for maximum efficiency makes it quite challenging. The challenge of 

identifying the ideal cut points for maximum efficiency is made more difficult by the 

interaction between the composition of the crude oil and the process variables. To make 

informed decisions about adjusting the cut points in response to shifting conditions, 

refinery operators must continuously monitor and analyze data from numerous sensors 

and instruments. Refineries frequently use cutting-edge process management and 

optimization techniques to address these issues and improve energy efficiency. 

Operators can evaluate the operation of the distillation unit and promptly alter the cut 

points thanks to real-time data monitoring and analytics. Based on historical data and 

the current operating environment, artificial intelligence and machine learning 
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algorithms can help forecast the behavior of the crude oil and optimize the cut spots. 

Researchers are exploring a systematic approach based on the second law of 

thermodynamics to improve the efficiency of crude distillation. The second law of 

thermodynamics states that the availability of thermal energy limits the efficiency of 

any thermodynamic process. By analyzing the energy consumption and production of 

the crude distillation unit, it is possible to identify opportunities for improvement and 

increase the efficiency of the process. Thermodynamic models are one of the most 

effective ways to analyze the energy consumption and production of the crude 

distillation unit. Thermodynamic models can simulate the performance of the crude 

distillation unit under different conditions and provide insights into the energy 

consumption and production of the process. Advanced simulation tools such as Aspen 

HYSYS can help optimize the crude distillation process by simulating different 

scenarios and identifying the optimal cut points that minimize energy consumption and 

maximize production. Using real-time monitoring and control systems can also aid in 

optimizing the crude distillation process. Real-time monitoring systems can provide 

insight into the unit's current performance and identify areas for improvement. By 

monitoring the process parameters, such as the feed rate, the reflux ratio, and the 

column pressure, it is possible to identify and correct any disturbances in the process 

and maintain optimal performance. 

Multiple methods, such as cut-point temperature optimization, energy analysis, and 

exergy analysis, have been used to evaluate the energy efficiency of the CDU. Energy 

analysis provides an overview of the CDU's performance, but exergy analysis is more 

comprehensive as it considers the second law of thermodynamics. Exergy, representing 

the maximum amount of energy obtained from a system through a reversible process 

with its surroundings, offers a more accurate assessment of the CDU's work potential 

than energy analysis alone. In real processes, much irreversibility always occurs. 

Exergy is the usable energy that remains after accounting for losses. These losses, 

resulting from irreversible processes, are also known as exergy destruction or anergy. 

Exergy analysis is a powerful tool for evaluating the quality of energy and identifying 

inefficiencies within a process. Exergy analysis provides a broader understanding of a 

system's work potential by considering the second law of thermodynamics. Exergy 

analysis is a crucial tool for optimizing the performance of energy systems because it 

can help identify problem areas in processes, which can inform better design choices 
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for the ones we manage. Exergy is based on the assumption that not all types of energy 

are equally useful for carrying out useful tasks. It understands that as energy passes 

through different changes, it can deteriorate and lose its capacity to perform work. 

Exergy, sometimes referred to as accessible or useful energy, is the amount of work 

that can be accomplished with a given energy stream once it has reached 

thermodynamic equilibrium with its surroundings. The capacity of exergy analysis to 

measure the magnitude of energy losses or inefficiencies in a process is critical. This 

quantification allows for a precise comparison of various processes and systems, 

allowing for more informed design decisions and resource allocation. Furthermore, 

exergy analysis can aid in the prioritization of improvement efforts by revealing which 

components or stages have the most impact on overall system inefficiencies. Exergy 

analysis is critical in the aim of optimizing energy systems. It provides a clear roadmap 

for improving overall system efficiency and reducing energy waste. Engineers can 

focus on designing novel solutions and implementing modern technology to reduce 

these inefficiencies by pinpointing the locations with the largest exergy destruction or 

losses. Finding inefficiencies and potential losses in energy systems is made easier with 

the help of exergy analysis. Engineers and researchers can better understand the reasons 

that obstruct a system's effectiveness by identifying these troublesome areas. With this 

information in hand, they can decide how to enhance system design and operational 

procedures. This study explores the potential for reducing energy consumption by 

retrofitting existing columns in industrial processes. The focus is on implementing the 

second law of thermodynamics, which states that energy cannot be converted from one 

form to another without some loss. This principle is particularly relevant in process 

industries, where energy consumption is a significant concern. One of the main 

challenges in optimizing energy usage in process industries is the impact of process 

uncertainty. Variations in feed and process conditions can lead to higher energy usage 

and product losses. It makes it crucial to consider the influence of process uncertainty 

when solving optimization problems. The study proposes using optimization algorithms 

that are more resilient to uncertainty. For example, stochastic and robust optimization 

approaches are designed to handle the unpredictable nature of process conditions. These 

algorithms can identify the optimal control variables that minimize energy usage while 

maintaining product quality. In addition to using robust optimization algorithms, the 

study also suggests implementing real-time monitoring and control systems. These 

systems can help minimize the impact of process uncertainty on energy usage and 
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product losses. By providing real-time data on process conditions, these systems can 

allow rapid adjustments to control variables to maintain optimal performance. Overall, 

the study highlights the importance of considering the influence of process uncertainty 

in solving optimization problems in process industries. By using robust optimization 

algorithms and implementing real-time monitoring and control systems, achieving 

optimal performance while reducing energy consumption is possible. It not only results 

in cost savings for the industry but also helps in reducing the carbon footprint and 

achieving sustainability goals. 

This research aims to maximize diesel production while minimizing exergy destruction 

in the column, considering uncertainty in crude composition and process parameters. It 

is an important goal, as exergy destruction can significantly impact the energy 

efficiency of a process and contribute to higher energy costs. By minimizing exergy 

destruction, it is possible to increase the overall efficiency of the process and potentially 

reduce energy consumption. To the authors’ knowledge, the exergy analysis of CDU 

under uncertainty has never been reported in the literature.  

1.2  Thesis Outline  

The thesis structure is thoughtfully organized, demonstrating a clear and logical 

progression of ideas throughout its chapters. The second chapter delivers a 

comprehensive literature review, setting the groundwork by providing an overview of 

existing research and explaining the specific research objectives. In Chapter 3, a 

detailed explanation of the theoretical concepts surrounding Artificial Neural Networks 

(ANN), Genetic Algorithms (GA), and exergy analysis is presented, offering a solid 

theoretical foundation for the study. Chapter 4 further enriches the thesis by delving 

into the research methodology, offering a thorough description of the techniques 

employed to conduct the study. The pivotal point of the thesis lies in Chapter 5, where 

the results and discussions are presented, providing valuable insights into the findings 

and their implications. The final chapter, Chapter 6, offers a well-structured conclusion 

by summarizing the main points of the research and engaging in a thoughtful discussion 

of the broader implications of the study's outcomes.  
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Chapter 2  

Literature Survey and Objectives 

2.1  Literature Survey  

 With the unpredictability of energy resources, experts have focused on creating and 

managing effective industrial procedures. In recent years, energy research has grown 

interested in using exergy analysis to optimize industrial processes. One such process 

that has received significant attention is the crude distillation unit (CDU), also known 

as an air distillation unit, which separates the various components of crude oil based 

on differences in their volatility and boiling point It is a fundamental process in which 

crude oil is fractionated to separate its various components depending on their 

variable volatility and boiling points. The CDU is responsible for breaking down 

crude oil's complex blend of hydrocarbons into more manageable fractions such as 

naphtha, diesel, kerosene, and several other petrochemical feedstocks. 

Using exergy analysis in the context of CDUs is a practical approach to identifying 

potential sources of inefficiency and waste. The exergy analysis provides a 

comprehensive assessment of the thermodynamic performance of the CDU process, 

including the quality of the input and output streams and the thermodynamic potential 

for improvement. Traditional energy analysis is primarily concerned with energy 

quantity, ignoring energy quality and the losses associated with energy 

transformations. Exergy analysis, on the other hand, takes into account the second 

rule of thermodynamics, which recognizes that not all energy is created equal and that 

energy can degrade as it undergoes transformations. Exergy analysis, as a result, 

provides a more accurate and insightful view of the system's performance. 

Furthermore, exergy analysis within the CDU can show potential for heat integration 

and energy recovery. Engineers can investigate strategies of utilizing this precious 

energy to meet additional heating or power demands within the refinery by finding 

streams with high exergy content. These approaches have the potential to dramatically 

reduce overall energy usage and, as a result, the environmental effect of the CDU and 

the entire refinery operation. Exergy analysis during the CDU process allows 

engineers to discover areas where exergy destruction occurs. During the fractional 
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distillation of crude oil, important energy is irreversibly lost or destroyed. Researchers 

can develop and execute solutions to prevent such losses and improve the overall 

energy efficiency of the CDU by finding these inefficiencies. 

One of the key challenges in applying exergy analysis to CDUs is estimating the 

optimal cut points for the different crude oil fractions. It is a complex problem that 

requires the consideration of multiple factors, including the properties of the crude 

oil, the design of the CDU, and the desired product specifications. Several research 

studies have proposed using hybrid optimization techniques, such as combining 

Taguchi methods with genetic algorithms or artificial neural networks (ANNs). These 

methods effectively identify the optimal cut points for CDUs by combining the 

advantages of the deterministic and stochastic optimization approaches. For instance, 

Taguchi methods provide a systematic way of evaluating the effects of different 

process parameters on the performance of the CDU. At the same time, genetic 

algorithms and ANNs offer the ability to handle complex, nonlinear relationships and 

to search for global optima. The studies conducted so far have shown promising 

results in terms of the accuracy and robustness of the estimated cut points, as well as 

the computational efficiency of the optimization algorithms. However, there is still a 

need for further research in this area, particularly regarding the scalability of the 

methods to larger-scale industrial systems and incorporating other vital factors, such 

as economic considerations and environmental impacts. Adjusting the points at which 

different fractions of crude oil are separated, known as cut-points, can be a valuable 

strategy to enhance the output of a particular product while also reducing energy 

consumption within the distillation column. It can be achieved by identifying and 

optimizing the cut points that result in the highest yield of the desired product while 

minimizing the energy required for the separation process. This approach can lead to 

more efficient operations and cost savings for the industry. 

Furthermore, it can also positively impact the environment by reducing the energy 

consumption and greenhouse gas emissions associated with crude oil processing. 

Therefore, various methods have been developed to optimize the cut points in crude 

oil distillation units in recent years. These methods aim to enhance the production of 

a specific product while minimizing energy consumption within the distillation 

column. Some of the methods that have been proposed in the literature include the 

following: 
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• The mode or categorization approach uses statistical analysis to identify the 

most likely cut points for a given crude oil sample [4]. 

• The swing cut modeling method uses a simulation-based approach to optimize 

the cut points by varying the feed conditions and process parameters [4]. 

• The fixed yield structure representations model uses a mathematical model to 

represent the relationship between the cut points and the product yields [5]. 

• The fractionation index model uses a thermodynamic approach to optimize 

the cut points based on the exergy of the input and output streams [6]. 

• The Taguchi method uses a statistical design of experiments to evaluate the 

effect of different process parameters on the performance of the distillation 

column [7]. 

• The weight transfer ratio (WTR) approach uses a mass balance to optimize 

the cut points based on the ratio of the mass of a product to the mass of the 

feed [8]. 

• Monotonic interpolation uses interpolation techniques to estimate the cut 

points based on the properties of the crude oil and the product specifications 

[9]. 

• The hybrid framework of genetic algorithm (GA) uses a combination of 

genetic algorithms and other optimization techniques to search for optimal cut 

points [10]. 

• The Taguchi-GA-ANN is a hybrid method that combines the Taguchi method, 

genetic algorithms, and artificial neural networks to optimize the cut points 

[11,12]. 

These methods effectively identify the optimal cut points for crude oil distillation 

units. However, each method has its strengths and limitations. The mode or 

categorization approach, for example, is simple and easy to implement, but it may not 

be able to handle complex nonlinear relationships. On the other hand, the swing cut 

modeling method is more complex and computationally intensive, but it can handle a 

wide range of feed conditions and process parameters. The fixed yield structure 

representations model, fractionation index model, Taguchi method, weight transfer 
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ratio (WTR) approach, monotonic interpolation, and the hybrid framework of genetic 

algorithm (GA) have been used to optimize the cut points of crude oil distillation units 

and have shown promising results in terms of the accuracy and robustness of the 

estimated cut points. The Taguchi-GA is a hybrid method that combines the Taguchi 

method and genetic algorithms to optimize the cut points. It is a powerful optimization 

tool that can handle complex, nonlinear relationships and search for global optima. 

The literature suggests several methods have been developed for cut-point 

temperature optimization in crude oil distillation units. Each method has its strengths 

and limitations, and the choice of method will depend on the application's specific 

requirements. However, more research is needed to fully understand these methods' 

potential benefits and limitations and develop practical implementation strategies for 

industrial applications. 

In the pursuit of energy efficiency and sustainability within the petroleum industry, 

exergy analysis and modeling techniques play a pivotal role in evaluating and 

optimizing crude oil distillation units. These studies provide valuable insights into the 

various aspects of energy utilization, process efficiency, and operational optimization 

Researcher conducted an important study that implemented energy and exergy 

analysis on single- and two-stage crude oil distillation units. By comparing the overall 

exergy efficiencies of these configurations, they demonstrated that the two-stage 

distillation unit outperformed the single-stage one by approximately 17.5%. This 

finding underscores the significance of multi-stage distillation systems in achieving 

higher energy efficiencies and more optimized processes [13]. Franzoi et al. (2020) 

contributed significantly to the field with their cut point temperature-modeling 

framework for distillation units. Their research focused on developing techniques to 

determine optimizable surrogate models, which establish correlations between key 

independent variables, such as crude oil compositions and temperatures, and various 

dependent variables, including stream yields and properties of distillates. The 

introduction of these surrogate models allows for more accurate and efficient 

modeling of the distillation process, aiding in better process control and optimization. 

[14] 

Exergy analysis is a powerful method for evaluating energy systems' thermodynamic 

performance and identifying improvement opportunities. This technique is beneficial 

for crude distillation units (CDUs). In recent years, several studies have been 
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published on the exergy analysis of CDUs. These studies have focused on a variety 

of topics, including the relationship between exergy efficiency and operating 

conditions [15], the number of trays in the distillation column [16], the use of flash 

preheating [17], and the integration of CDUs with other process equipment such as 

heaters, columns, and condensers [18,19]. In addition, several studies have also been 

reported on using optimization techniques for the exergy analysis of CDUs. For 

example, some researchers have used sequential quadratic programming to minimize 

exergy loss [20]. 

In contrast, others have used bootstrap aggregated neural networks (BANN) to 

estimate optimum process conditions for higher exergy efficiency [21]. The literature 

suggests that exergy analysis is a valuable tool for optimizing the performance of 

crude distillation units. By identifying problem areas in the process and informing 

better design choices, exergy analysis can help improve these systems' efficiency and 

profitability. Furthermore, the use of optimization techniques, such as sequential 

quadratic programming and BANN, can make it possible to minimize exergy loss and 

estimate the optimum process conditions for higher exergy efficiency. However, there 

is still a need for further research in this area, particularly regarding the scalability of 

these methods to larger-scale industrial systems and the incorporation of other 

essential factors, such as economic considerations and environmental impacts. The 

simulation-optimization approach presented by Ibrahim et al. (2017) represents a 

significant advancement in the field of crude oil distillation unit design. The 

integration of a rigorous tray-by-tray model with an optimization algorithm allows 

for a comprehensive and detailed examination of the system. This approach not only 

simplifies the modeling process but also enhances the accuracy of the optimization, 

leading to more efficient and well-designed distillation units [22]. On a broader scale, 

the study by Nguyen et al. (2014) emphasizes the importance of defining exergy 

efficiencies in petroleum systems, particularly within the context of crude distillation 

plants. The lack of uniformity across different formulations of exergy efficiency poses 

challenges in accurately evaluating the performance of such systems. Establishing a 

standardized approach to exergy analysis in the petroleum industry is essential to 

enable consistent comparisons and foster better understanding and improvements. 

The work of Ochoa-Estopier & Jobson (2015) introduces another vital aspect of 

optimization in crude oil distillation units: heat integration. By utilizing artificial 
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neural networks, the study provides a dynamic representation of the distillation 

process, allowing for more precise control and adaptability. The proposed retrofit 

modifications for the heat exchanger networks offer practical solutions for enhancing 

the overall efficiency and performance of the distillation unit. [23] 

In one research conducted, a retrofit-optimization framework was proposed for the 

design of crude oil distillation systems based on exergy analysis. Optimization of the 

entire process was undertaken by minimizing exergy loss as the objective function. 

The theoretical framework was used to analyze the influence of key factors on the 

exergy loss of different components in the crude oil distillation unit at Dalian 

Petrochemical Refinery. The process was retrofitted to reduce exergy loss by adding 

two pre-flashing drums, and the temperature of the pre-flashings and vapor feed stage 

of the main tower was optimized. Operational parameters were further optimized 

using the SQP methodology with exergy loss of each sub-unit as objective functions. 

The improved distillation process, considering optimized heat exchange networks, 

achieved higher exergy efficiency and a significant reduction in Total Annualized 

Cost (TAC). Compared to the basic process, the exergy efficiency increased from 

28.9% to 41.4%, with a cost-saving of 28.8% for the entire distillation process. This 

retrofit-optimization framework has potential applications in enhancing energy and 

exergy efficiency in similar chemical separation processes, contributing to improved 

sustainability and economic viability in the petroleum industry. However, its 

applicability to reaction systems at this level needs further consideration. [24] 

 

Considering these studies, it becomes evident that exergy analysis, coupled with 

advanced simulation and optimization techniques, can significantly contribute to the 

ongoing efforts to improve the energy efficiency and sustainability of crude 

distillation processes. By adopting these methodologies and implementing the 

findings, the petroleum industry can reduce energy consumption, lower greenhouse 

gas emissions, and enhance the overall performance of its refining operations. 

In this research, we have incorporated exergy analysis into our previous work utilizing 

a hybrid approach that combines the Taguchi method and genetic algorithm [11]. 

Furthermore, we have also considered uncertainty in process variables such as 

temperature, pressure, and flow rate, in addition to the composition of the feed.  
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2.2 Research Objectives 

This study aims to increase the production of diesel fuel while simultaneously reducing 

the exergy destruction in the distillation column, considering the unpredictability of 

crude oil composition and process parameters. This objective is crucial as exergy 

destruction can substantially affect a process's energy efficiency, ultimately leading to 

high energy expenses. The main contributions of the present study are given below: 

• The development of an HYSYS-based fractionation model for Kunnar 

and Zamazama crudes, integrated with a MATLAB code, to analyze cut 

points and exergy in the CDU under artificially induced uncertainty in 

crude compositions and process conditions. 

• Development of a hybrid framework combining Taguchi and Genetic 

Algorithm techniques to determine optimal cut points in the CDU 

column, resulting in higher production of diesel with minimal exergy 

losses. 

• The development of an artificial neural network-based model to estimate 

optimal cut points without using GA and Taguchi methods. 
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Chapter 3  

Process Description and Simulation Method 

3.1 Process Flow Description 

In this study, we conducted a simulation of a crude distillation unit using the Aspen 

HYSYS software to analyze the behavior of two distinct Pakistani crude oils: Kunnar 

and Zamzama. Prior to the simulation, we characterized the crude oils by examining 

various properties, including crude properties, API gravity, light end volume percent, 

TBP distillation, and ASTM distillation. These properties were utilized as input data in 

the Aspen HYSYS software, enabling us to generate compositions for pseudo 

components and identify known light-end components associated with each crude oil. 

Subsequently, we employed these compositions to simulate the crude distillation unit 

and assess the overall process performance. The main objective of our simulation was 

to evaluate how the crude distillation process behaves for Kunnar and Zamzama crude 

oils. Through the utilization of Aspen HYSYS, we gained insights into the separation 

of different components present in the crude oils, including their boiling points and 

other key characteristics. This allowed us to analyze the yields of various fractions, 

ranging from lighter components like gasoline and naphtha to heavier components such 

as diesel and atmospheric residue. By comparing the performance of the crude 

distillation unit for both crude oils, our simulation results offered valuable information 

for optimizing the distillation process for each specific type of crude oil. These findings 

contribute significantly to the knowledge and understanding of how different crude oils 

respond to the distillation process, which can have practical implications for refining 

strategies in the petroleum industry. The Aspen HYSYS model provides a valuable tool 

for understanding the behavior of the crude distillation unit and identifying 

opportunities for optimization. Both Kunnar and Zamzama crude oils are sweet and 

light. The crude oil is supplied to the flash column at a pressure of 517 Kpa and 232.2 

C, then heated in a furnace to 343.3 C before entering the crude distillation unit. The 

pressure in the crude distillation tower is lower than the heater, so when the feed enters 

the 28th tray of the column, it begins to boil. Three pump-around systems are installed 

for internal reflux, and the column has 29 trays. The vapors produced by the boiling 

liquid, mainly containing the feed's lighter components, rise through the tower in a 
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series of distillation stages. As the vapors rise, the temperature decreases, and the 

components condense. The liquid that remains after distillation, mainly composed of 

the heavier components of the feed, flows downward and accumulates at the bottom, 

where it is extracted as the bottom product. The yield of the distillation column refers 

to the percentage of each component, referred to as the product stream, that is separated 

during the process. The products of the distillation tower include residue, AGO, diesel, 

kerosene, naphtha, and off-gas. An ASPEN HYSYS spreadsheet was developed to 

include all essential parameters needed for optimization. Artificial uncertainty of +/- 

3% was incorporated into the composition of the crude feed and 12 additional operating 

parameters, including flow rate, pressure, and temperature. Exergy analysis was 

performed and stored in the spreadsheet. In the next step, the spreadsheet was linked to 

a MATLAB code to extract the required parameters for optimization. The primary aim 

of this research was to investigate and determine the optimal cut points within the crude 

distillation process, with a particular focus on maximizing the production of diesel 

while simultaneously minimizing exergy destruction occurring within the distillation 

column. To achieve this objective, a comprehensive and meticulous simulation using 

the powerful Aspen HYSYS software was conducted, enabling the exploration of 

various operating conditions and configurations. By repeatedly running the simulation 

under different scenarios, researchers could obtain comprehensive insights into how 

different parameters influenced the performance of the crude distillation unit and the 

subsequent yields of various product fractions. Through the rigorous analysis of the 

simulation results, valuable opportunities for process improvement were identified. The 

strategic optimization of cut points within the distillation process emerged as a key 

factor in fine-tuning the separation of components within the crude oil. By effectively 

adjusting the cut points, the distillation unit could achieve higher yields of diesel, a 

highly valuable and sought-after product in the petroleum industry, thereby potentially 

bolstering overall profitability and competitiveness for refineries. Furthermore, the 

study placed significant emphasis on reducing exergy destruction within the distillation 

process. Exergy destruction represents the irreversibility and inefficiency that occur 

during energy conversions in the refining process. By recognizing areas of significant 

exergy destruction and thoroughly understanding the underlying causes, researchers 

were equipped to propose targeted measures and strategies to minimize these losses. 

This aspect of the research is of paramount importance as it aligns with the growing 

focus on sustainability and environmental responsibility in the refining industry. By 
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optimizing energy efficiency and minimizing exergy destruction, refineries can make 

strides toward reducing their ecological footprint and enhancing their overall 

environmental performance. It is essential to highlight that the findings and conclusions 

presented in this study were derived entirely from original research conducted through 

Aspen HYSYS simulations and rigorous experimentation. 

 

 

Figure 1 Process flow diagram of crude distillation unit 
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Table 1 Crude distillation unit parameters 

 

 

 

 

 

 

Figure 2 HYSYS Flow diagram of CDU 
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3.2 Taguchi Method: 

 The Taguchi method is a statistical technique often used to optimize the design 

of processes across various engineering fields. It is a powerful tool that can optimize 

various process parameters, including manufacturing, quality control, and product 

design. For example, the Taguchi method has been employed in chemical refineries to 

optimize chemical production, reduce energy costs, and improve safety. The basic 

principle behind the Taguchi method is to use experimental design to optimize a process 

or product by altering input parameters such as material properties and process 

conditions and observing the resulting output performance. The goal is to identify the 

combination of input parameters that yields the best output performance. In order to use 

the Taguchi method, one must first determine the goal function, quality attributes, and 

regulating elements and their levels. 

This study used the Taguchi method to estimate optimal cut points for a crude 

distillation column that would maximize diesel production and minimize exergy 

destruction. The Taguchi method is a well-recognized and effective statistical technique 

widely used to optimize process design problems across various engineering 

disciplines. It is a reliable tool for optimizing various process parameters and has been 

utilized in various settings, including chemical refineries, to optimize chemical 

production, reduce energy costs, and improve safety. Using experimental design to alter 

input parameters and observe the resulting output performance, the Taguchi method 

allows for identifying the combination of input parameters that yields the best output 

performance. This can be an invaluable tool for optimizing process design and 

improving efficiency. 

Using the Taguchi method, the impact of various factors on the crude distillation unit 

(CDU) model can be systematically evaluated. The number of factors and levels 

considered determine the choice of an appropriate orthogonal array for the experiment. 

[25].   
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Table 2 Levels and Factors for Taguchi 

 Factors. Level 1 . Level 2 . Level 3. 

A . Naphtha .Cutpoint .Temperature . -5ºC . Straight.Run.Temp. +5ºC . 

B . Kerosene .Cutpoint .Temperature . -5ºC . Straight.Run.Temp... +5ºC . 

C . Diesel .Cutpoint .Temperature . -5ºC . Straight.Run.Temp. +5ºC . 

D . AGO .Cutpoint .Temperature . -5ºC . Straight.Run.Temp. +5ºC . 

    

 

 

Table 3 Orthogonal Array Selector 

 
 

 

Table 4 L9 (4-factors 3-levels) DOE standard orthogonal array 

Trials  Factor A  Factor B  Factor C  Factor D  

1  1  1  1  1  

2  1  2  2  2  

3  1  3  3  3  

4  2  1  2  3  

5  2  2  3  1  

6  2  3  1  2  

7  3  1  3  2  

8  3  2  1  3  

9  3  3  2  1  
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Figure 3 Taguchi Method Flow Diagram 

 

 

3.3  Genetic Algorithm 

 A genetic algorithm (GA) is a computational method to optimize complex 

processes and solve difficult problems. It was developed by Japanese statistician 

Genichi Taguchi in the 1950s and is based on natural selection and heredity principles. 

A GA operates by simulating the process of evolution, in which individual solutions 

(often represented as chromosomes) are selected through mutation and crossover. This 

selection process is repeated until an optimal solution is achieved. This approach helps 

minimize the process's cost, time, and energy while maximizing efficiency. In addition, 

a GA can identify areas for improvement in large industrial processes, allowing 

companies to reduce costs and increase efficiency by finding the most optimal solution 

to a process. In crude distillation, GAs (Genetic Algorithms) can identify the optimal 

operating conditions for the distillation process, such as the best combination of 

temperature, pressure, and flow rates. The use of GAs in industrial processes has the 

potential to reduce costs and increase efficiency. By finding the most optimal solution 

to a process, GAs can help companies to produce more products with less waste. This 
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can lead to significant savings in terms of raw materials, energy, and labor costs. In our 

study, a genetic algorithm was employed with the Taguchi Algorithm to predict the 

optimal cut points for a crude distillation unit, leading to minimal exergy destruction 

per kilo barrel of diesel. 

  

 

Figure 4 Schematic of Genetic Algorithm 
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The genetic algorithm comprises the following steps: 

• Initialization: To begin, the algorithm creates an initial population of solutions, 

represented as chromosomes – strings of genes. The number of genes in each 

chromosome varies based on the specific problem. 

• Evaluation: Each solution in the population undergoes evaluation to determine 

its fitness, measuring how effectively it solves the problem. 

• Selection: A subset of solutions is chosen as parents, based on their fitness. 

Solutions with higher fitness have a higher chance of being selected. 

• Crossover: The selected parents are used to produce offspring by combining 

their genes. The process of crossover involves randomly determining how the 

genes of the parents are combined. 

• Mutation: Some offspring may undergo mutation, where a gene is randomly 

altered. The mutation process randomly selects genes to be changed and 

determines the nature of the change. 

• Reevaluation: The fitness scores of the offspring are calculated through 

evaluation. 

• Termination: The algorithm stops when a predefined condition is met. This 

condition could be reaching a maximum number of generations or finding a 

solution with a specified fitness score. 

The genetic algorithm iterates through these steps until the termination condition is 

satisfied, usually when a solution with a fitness score above a certain threshold is found. 

Genetic algorithms are optimization techniques inspired by the process of natural 

selection. They work by iteratively applying the steps of initialization, evaluation, 

selection, crossover, mutation, and termination. By iteratively applying these steps, 

genetic algorithms efficiently explore the solution space and converge towards optimal 

or near-optimal solutions. Their ability to handle non-linear and multi-modal objective 

functions makes them particularly valuable in real-world scenarios where traditional 

optimization methods may fall short. As research and advancements in genetic 

algorithms continue, we can expect these algorithms to play an increasingly significant 

role in addressing complex optimization challenges across various industries and 

domains. [26,27,28] 
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3.4 Hybrid Taguchi and Genetic Algorithm 

A hybrid algorithm combining Taguchi and genetic algorithms can be used to optimize 

crude distillation processes. The Taguchi algorithm is a statistical method commonly 

used to optimize process design across various engineering fields. It involves altering 

input parameters and observing the resulting output performance to identify the 

combination of input parameters that yields the best output performance. The genetic 

algorithm is a computational technique that simulates the process of natural selection 

and heredity to find optimal solutions to complex problems. Combining these two 

algorithms makes it possible to optimize crude distillation processes in terms of 

production yield, energy efficiency, and other relevant criteria. The hybrid Taguchi-

genetic algorithm demonstrated in our research serves as a robust and effective tool for 

optimizing crude distillation processes, with the primary objective of enhancing their 

overall efficiency. Leveraging the capabilities of this hybrid approach, we successfully 

predicted the optimal cut points for a crude distillation unit by minimizing exergy 

destruction per kilo barrel of diesel. By integrating the Taguchi and genetic algorithm 

techniques, we harnessed their respective strengths to achieve more precise and reliable 

results in the optimization process. The developed hybrid model, implemented using 

MATLAB, played a pivotal role in streamlining the prediction and optimization 

procedures, making them more manageable and efficient. Through the application of 

this model, we observed significant improvements in production yield and exergy 

efficiency, indicating its potential for enhancing the performance of crude distillation 

processes in the oil industry. This research contributes valuable insights and practical 

implications, offering a promising direction for further advancements and 

implementations in the field of crude distillation optimization and process 

improvement. 

 

3.5 Artificial Neural Network (ANN) 

Artificial neural networks (ANNs) are computational models that take inspiration from 

the biological neural networks in the human brain. These models can recognize patterns 

and make decisions based on input data. ANNs are used in many fields, including 

computer vision, robotics, natural language processing, and speech recognition. They 

can also be utilized to optimize industrial processes by identifying the most efficient 
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way to complete a task, thereby reducing time and energy costs. In addition, ANNs can 

optimize production processes and identify bottlenecks, allowing companies to reduce 

waste and increase efficiency. Artificial Neural Networks (ANNs) are a popular class 

of machine learning models that are often trained using supervised learning techniques. 

In the case of supervised learning, the ANN is presented with a labeled dataset, where 

each input data point is associated with a corresponding target or output value. During 

training, the network iteratively processes the input data, adjusts its internal weights 

and biases based on the differences between predicted outputs and actual targets, and 

gradually improves its performance. 

In this research, a MATLAB-based ANN tool was opted to facilitate the optimization 

process. MATLAB, a powerful programming language and software development 

platform, is well-suited for creating ANNs due to its extensive capabilities and built-in 

functions tailored for designing and training neural networks. This choice ensured that 

the researchers had access to a wide range of tools and functionalities to fine-tune the 

ANN architecture and effectively handle complex datasets. 

The advantages of using MATLAB for ANN development extend beyond its versatile 

capabilities. The platform's comprehensive visualization tools played a crucial role in 

facilitating the debugging and analysis of ANN performance. The ability to visualize 

the network's structure, weight distributions, and activation patterns during training 

allows researchers to gain valuable insights into the learning process and identify 

potential issues or areas of improvement. 

Moreover, MATLAB's user-friendly interface and intuitive programming syntax 

enabled a more seamless integration of the ANN into the research workflow. This ease 

of use and clear syntax enabled the researchers to focus more on the optimization 

process and experimentation, rather than getting bogged down in complicated 

implementation details. By leveraging the power of MATLAB for ANN development 

and optimization, efficient and effective results were achieved. The combination of 

MATLAB's extensive functionalities, visualization tools, and user-friendly 

environment contributed to a streamlined and productive research process. As a result, 

the study yielded a well-optimized ANN model capable of making accurate predictions 

and extracting valuable insights from the complex dataset, further demonstrating the 
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significance of employing MATLAB as a valuable tool in the field of artificial neural 

networks and machine learning research. 

3.6 ANN MODEL Development 

In this study, a novel hybrid Taguchi-genetic algorithm framework was developed and 

implemented in MATLAB to obtain results, which were then utilized to construct an 

artificial neural network (ANN) model. The dataset used in the experiment consisted 

of 307 data sets derived from Zamzama and Kunnar crudes. 

 

To train the ANN model, 80% of the dataset (245 data sets) was used, while the 

remaining 20% (62 data sets) were reserved for testing and validation purposes. A feed-

forward-backward propagation type network was chosen and trained with the 

backpropagation algorithm using the TRAINLM training method. The performance of 

the trained ANN was evaluated using the mean squared error (MSE) as the performance 

function, and the adaptive learning function LEARNGDM was employed to optimize 

the learning process. Additionally, the root mean squared error (RMSE) and the 

coefficient of determination (R2) were used as metrics to assess the accuracy and 

predictive capabilities of the trained ANN model. 

 

This approach allowed for a comprehensive analysis of the ANN's performance, and 

the hybrid Taguchi-genetic algorithm framework contributed to enhancing the 

optimization process, ultimately leading to a more accurate and reliable artificial neural 

network model. The use of real-world crude oil data from Zamama and Kunnar crudes 

provided valuable insights into the effectiveness of the developed framework and the 

ANN's ability to handle complex datasets. The obtained results hold significant promise 

for various applications in the domain of crude oil analysis and prediction.  

 

3.7 Exergy Analysis 

Exergy analysis helps evaluate the efficiency of systems, processes, and components. 

It allows for assessing energy utilization and identifying potential areas for 

improvement. The analysis considers the energy content of available and valuable 

energy and their associated losses. Through this approach, the user can identify waste 

and optimize efficiency. Exergy analysis is a method that utilizes the principles of the 
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first and second laws of thermodynamics. According to the first law, energy can be 

transformed but not created or destroyed. The second law states that energy degrades 

during conversion from one form to another. Exergy analysis then identifies the losses 

associated with energy conversion [29]. Exergy analysis is a common technique 

employed in various industries to enhance the efficiency of their processes. For 

instance, exergy analysis has been utilized in the refining industry to evaluate the 

energy efficiency of systems such as fuel, cooling, and steam networks. It has also been 

used to compare the efficiency of different refinery processes, including alkylation, 

cracking, distillation, and reforming. As a result, refineries can implement 

improvements to minimize energy consumption and improve efficiency by 

understanding the exergy losses in each process. Exergy analysis can optimize the 

separation of crude oil into various products, such as naphtha, kerosene, and diesel, 

within the crude distillation unit (CDU). By utilizing this technique, it is possible to 

identify the most energy-efficient operating conditions for the CDU and the optimal cut 

points for the various products. It can be achieved using process simulation software, 

such as Aspen HYSYS, which can model the CDU and forecast the exergy losses under 

different operating conditions. 

Exergy can be classified into several types based on its origin and form. Farzad et al. 

proposed a straightforward method to calculate the exergies of a material stream within 

an HYSYS simulation [30]. The two parameters used to analyze the exergy content by 

Farzad were exergy destruction and exergy efficiency. The exergy destruction or 

irreversibilities represented by the symbol 𝐼 are calculated using equation 10. 
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The exergy efficiency was calculated as the ratio of the sum of the incoming exergies 

to the outgoing exergies represented by the symbol 𝜖.  
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By definition of the above equation, the exergy input to a control volume is the total 

amount of exergy that enters the system and it is equal to the sum of exergy destroyed 
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within the control volume and the exergy that is desired to be outputted from the control 

volume 

𝜖 =
|ΔEdesired |

|ΔEdesired | + 1
 … …                                                                        … . (3) 

 

3.8 Methodology 

STEP 1: The crude distillation process involves separating the crude oil into various 

fractions or components based on their boiling points. The ASPEN HYSYS software is 

widely used in the petroleum industry for simulating and optimizing the crude 

distillation process. This study's crude oil assay data for Zamzama and Kunnar Blend 

was input into the ASPEN HYSYS environment. The software then used this data to 

characterize the crude oil and generate multiple hypothetical pseudo components based 

on their boiling points. These pseudo components were then used to simulate the crude 

distillation process, allowing the US to optimize the process and improve production 

yields. 

 

STEP 2: The ASPEN HYSYS model was essential in our study of the crude distillation 

unit (CDU) and its pretreatment processes. In the next step, the crude distillation system 

was simulated. We used the built-in features of HYSYS to evaluate the exergy of the 

CDU and recorded the results in a spreadsheet. To make our simulations more realistic, 

we introduced artificial uncertainty to some crude parameters by varying them by +/-

1%, +/-2%, and +/-3%. This helped us account for the variability encountered in actual 

field conditions. Combining the ASPEN HYSYS model and the spreadsheet provided 

a comprehensive and accurate analysis of the CDU's performance. 

 

STEP 3: Integrating the HYSYS model with MATLAB code was crucial in our 

optimization process. It allowed us to access and use relevant information from ASPEN 

HYSYS to guide our optimization efforts. We generated optimized results by 

modifying specific parameters within HYSYS using this code. We employed a hybrid 

optimization framework comprising Taguchi and Genetic Algorithm techniques to 
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achieve this. This optimization process aimed to identify optimal cut points for the 

crude distillation column that would maximize diesel production while minimizing 

exergy destruction. It was accomplished by developing and customizing the hybrid 

optimization framework to fit the specific needs of our system. 

STEP 4: In the concluding stage of our project, we utilized the data generated by the 

Hybrid Taguchi and Genetic Algorithm to develop an Artificial Neural Network (ANN) 

model in MATLAB. A portion of the data, precisely 80%, was designated for training 

the ANN model, while the remaining 20% was reserved for testing and validation. Upon 

implementing the ANN model, we discovered that it successfully determined optimal 

cut points aligned with our objective. Furthermore, it eliminated the need to utilize the 

Taguchi and Genetic Algorithm techniques further. Overall, the integration of the ANN 

model proved to be an asset in optimizing the performance of our system. 

Figure 5 Description of steps involved in research methodology. 
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Results and Discussion 

In this section, the results of comprehensive study on Pakistani crude oils - Zamzama 

and Kunnar is presented. Through careful analysis and experimentation, I divided the 

findings into two distinct cases to facilitate a specific examination of each crude oil 

type. Case 1 focuses on Zamzama crude oil, providing insights into its key properties 

and behavior, while Case 2 delves into Kunnar crude oil, highlighting its unique 

characteristics. This systematic approach allowed for a clear understanding of the 

individual features of each crude oil type, contributing valuable knowledge to the oil 

industry and scientific community. By presenting the data in a well-structured manner, 

transparency and accuracy in analysis is ensured, furthering the understanding of 

Pakistan's crude oil reserves and their potential applications. 

 

Figure 6 Properties of Crude Oils 

 

Case 1: Kunnar Crude 

In Case 1, we selected Kunnar crude oil and fed the crude data into the HYSYS model 

designed for the crude distillation process. This oil is characterized by its sweet, light 

properties with a specific gravity that falls within the range of 0.75 to 0.76. In order to 

incorporate artificial uncertainty, we modified the crude oil composition and 10 process 

parameters. Six data sets were generated by introducing uncertainty of -3%, -2%, -1%, 

+1%, +2%, and +3% in the original process conditions. In order to make the model 
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adapt to changes in the composition of any single component, we introduced 

uncertainty within the range above in each component of the crude oil individually. The 

data set for process conditions are illustrated in Figure 7. 

 

 

Exergy analysis was performed using the built-in feature of ASPEN HYSYS. The 

exergy efficiency and destruction in the crude distillation column were calculated and 

recorded in an HYSYS sheet. This sheet was integrated with a MATLAB code that 

used hybrid Taguchi and Genetic algorithms to optimize diesel production while 

minimizing exergy destruction in the column. The optimal cut points were determined 

by minimizing the target function of "Exergy destruction in the column per unit diesel 

production (EX/V). 147 data sets were generated using a hybrid structure, including 

optimized crude distillation unit cut points. These data sets were fed into an Artificial 

Neural Network (ANN) model in MATLAB, using 118 data sets for training and 29 

data sets for testing and validating the ANN model. 

 

The ANN model contained two hidden layers, with 20 neurons in the first layer and 4 

neurons in the second layer per output in the output layer. 49 neurons were selected as 

input for the ANN model. Data randomization was first performed in an EXCEL sheet. 

Then the "dividerand" function was used to divide the data. Both hidden layers utilized 

the TANSIG (tangent sigmoid) transfer function. The TRAINLM function, utilizing the 

Levenberg-Marquardt algorithm, was employed to train the neural network. The 

training was completed with a gradient of 0.22329 at epoch 26. The mean squared error 

Process Conditions    Data set 1 Data set 2 Data set 3 Data set 4 Data set 5 Data set 6

Kunnar Mass Flow (kBPD) 97.0 95.1 94.1 95.1 97.0 99.9

Kunnar Temperature (℃) 501.6 491.6 486.6 491.5 501.3 516.4

Kunnar Pressure (kPa) 225.3 220.8 218.5 220.7 225.1 231.9

Condenser Pressure (kPa) 131.8 129.1 127.8 129.1 131.7 135.6

Main Steam Mass Flow (kg/h) 3299.9 3233.9 3201.6 3233.6 3298.3 3397.2

Main Steam Temperature (℃) 184.8 181.1 179.3 181.1 184.7 190.3

Main Steam pressure (kPa) 1003.2 983.1 973.3 983.0 1002.7 1032.8

AGO Steam Mass Flow (kg/h) 1100.0 1078.0 1067.2 1077.9 1099.4 1132.4

AGO steam Temperature (℃) 144.4 141.5 140.1 141.5 144.4 148.7

AGO steam Pressure (kPa) 334.4 327.7 324.4 327.7 334.2 344.3

Figure 7 Data sets of various parameters with artificial uncertainty 
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(MSE) was used as a performance metric to evaluate the model's accuracy. Figure 9 

demonstrates that the ANN model was trained to a superior level of accuracy and 

precision, as indicated by the R2 value of 0.99996.  

 

 

  Figure 9 ANN model for Case 2: Kunnar Crude 

  

Figure 8 ANN MSE value for combined Training, Validation, and Testing 
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Model was also robust, requiring minimal computational resources and producing 

reliable estimations. Figure 10 presents a graphical comparison of the cut points 

predicted by the ANN model and those optimized using a combination of Taguchi and 

Genetic algorithms, revealing a high degree of similarity. 

 

 

 

Table 5 Straight Run Model exergy analysis parameters and production data 

STRAIGHT RUN 

DIESEL 

Ex/V 

EXERGY 

EFFICIENCY 

EXERGY 

DESTRUCTION 

NAPTHA(KB

PD) 

KEROSENE 

(KBPD) 

DIESEL 

(KBPD) 

AGO(KBP

D) 

Residue 

(KBPD) 
Total 

5689.61 47.41 126375.34 20.83 19.16 22.21 29.54 8.15 99.89 

5645.60 47.32 119493.55 19.65 18.32 21.17 28.20 7.76 95.09 

5661.87 47.35 122175.51 20.11 18.65 21.58 28.73 7.91 96.98 

5661.12 47.35 122162.90 20.14 18.63 21.58 28.72 7.91 96.98 

5661.24 47.36 122229.44 20.15 18.64 21.59 28.74 7.91 97.03 

5625.41 47.31 118105.61 19.72 17.86 20.98 27.91 7.67 94.14 

5690.34 47.40 126375.28 20.83 19.16 22.21 29.54 8.15 99.89 

5633.62 47.26 118380.06 19.77 17.86 20.96 27.89 7.66 94.14 

5631.37 47.33 119438.60 19.90 18.04 21.21 28.18 7.75 95.08 

5690.34 47.40 126375.28 20.83 19.16 22.21 29.54 8.15 99.89 

5691.08 47.54 121520.93 20.27 18.63 21.46 28.72 7.91 96.98 

5685.30 47.24 118324.21 19.72 18.10 20.76 27.89 7.67 94.14 

5684.94 47.36 122107.83 20.27 18.62 21.48 28.70 7.91 96.98 

5668.82 47.34 119385.23 19.90 18.28 21.06 28.10 7.75 95.09 

5634.72 47.33 119372.61 19.90 18.27 21.18 27.98 7.75 95.08 

5655.59 47.38 122186.90 20.28 18.64 21.61 28.60 7.91 97.03 

5664.50 47.11 123119.63 20.27 18.62 21.57 28.66 7.91 97.03 

Figure 10 Comparison of cutpoints derived from Hybrid and ANN model 
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Table 5 presents data for the straight run of a crude distillation unit without any 

optimization techniques. The data set comprised 29 distinct sets and was also utilized 

to test and validate an artificial neural network model. The first column of the table 

displays the exergy destruction within the column, quantified in kilowatts per diesel 

production, which serves as the objective function for the optimization problem. The 

second and third columns contain information regarding exergy destruction and 

efficiency. In contrast, the remaining columns present data on producing various crude 

distillation unit products under uncertainty in process conditions and feed composition. 

It is manifest from these results that a reduction in the production of the other products 

accompanies an augmentation in the production of one product. 

Table 6 Hybrid model exergy analysis data, cut points and production data 

HYBRID 

DIESEL 

Ex/V 

EXERGY 

EFFICIENC

Y 

EXERGY 

DESTRUCTION 

NAPTHA 

CUTPOINT 

NAPTHA 

(KBPD) 

KEROSENE 

CUTPOINT 

KEROSENE 

(KBPD) 

DIESEL 

CUTPOINT 

DIESEL 

(KBPD) 

AGO 

CUTPOIN

T 

AGO 

(KBPD) 

 Residue 

(KBPD) 
Total 

4170.87 46.73 126719.65 98.07 20.08 142.84 16.89 261.67 30.49 402.42 23.93 8.49 

99.8

9 

4105.62 47.84 119592.61 98.53 19.39 142.75 15.74 262.29 29.23 412.01 23.48 7.25 

95.0

9 

4086.19 47.79 122310.08 99.30 20.04 142.50 15.53 262.42 30.04 410.69 23.91 7.46 

96.9

8 

4201.19 47.87 122225.67 97.99 20.03 143.14 16.34 259.79 29.20 411.98 24.04 7.37 

96.9

8 

4129.53 47.80 122359.88 99.29 20.17 142.68 15.46 262.03 29.74 411.17 24.21 7.46 

97.0

3 

4195.88 47.53 118190.48 94.32 16.96 142.50 18.36 261.17 28.27 411.06 23.27 7.28 

94.1

4 

4120.79 47.00 126701.45 99.22 20.78 142.65 15.89 261.77 30.86 404.32 24.05 8.31 

99.8

9 

4103.61 47.83 118182.47 97.94 18.80 142.69 15.95 259.69 28.90 412.00 23.32 7.16 

94.1

4 

4070.99 47.98 119524.87 98.47 20.01 142.64 14.86 261.96 29.47 411.87 23.56 7.19 

95.0

8 

4096.29 47.77 126530.29 99.03 20.76 142.71 16.00 262.46 31.00 411.17 24.41 7.73 

99.8

9 

5664.61 47.37 122201.16 20.27 18.62 21.57 28.66 7.91 97.03 

5704.32 47.14 123139.36 20.27 18.63 21.59 28.65 7.90 97.03 

5666.38 47.41 122194.95 20.27 18.62 21.57 28.71 7.88 97.03 

5652.51 47.40 119414.46 19.88 18.25 21.13 28.14 7.69 95.09 

5689.37 47.41 126375.16 20.83 19.16 22.21 29.54 8.14 99.89 

5670.56 47.25 119798.64 19.88 18.25 21.13 28.15 7.69 95.09 

5666.64 47.39 122201.48 20.27 18.62 21.57 28.71 7.87 97.03 

5671.45 47.25 119791.15 19.88 18.25 21.12 28.14 7.70 95.09 

5654.80 47.34 119411.06 19.88 18.25 21.12 28.13 7.70 95.08 

5657.14 47.34 119410.64 19.88 18.25 21.11 28.13 7.71 95.08 

5666.97 47.38 122201.43 20.27 18.62 21.56 28.71 7.88 97.03 

5647.50 47.34 118081.47 19.69 18.07 20.91 27.86 7.61 94.14 
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4164.73 47.92 122192.00 98.24 19.93 143.14 16.22 260.79 29.44 412.23 24.03 7.35 

96.9

8 

4139.35 48.66 117966.75 99.43 19.47 142.69 15.74 262.27 28.60 412.00 23.67 6.66 

94.1

4 

4117.33 47.70 122256.94 99.04 20.20 142.93 15.62 260.37 29.80 410.90 23.85 7.53 

96.9

8 

4102.87 47.87 119495.68 99.48 19.97 142.50 15.30 261.47 29.23 411.00 23.34 7.25 

95.0

9 

4094.68 47.87 119480.81 98.54 19.67 142.52 15.43 261.75 29.28 411.93 23.45 7.24 

95.0

8 

4148.45 46.81 122489.40 96.35 19.17 142.59 16.79 260.72 29.63 404.52 23.30 8.14 

97.0

3 

4108.43 48.05 122274.87 98.57 20.04 142.68 15.83 260.98 29.87 412.20 24.00 7.29 

97.0

3 

4109.55 47.71 122346.00 99.37 20.13 143.51 15.83 262.47 29.88 410.63 23.67 7.52 

97.0

3 

4122.45 47.75 122328.80 97.52 19.58 142.83 16.35 261.06 29.78 410.84 23.85 7.48 

97.0

3 

4079.64 48.01 122308.11 99.44 20.34 142.50 15.36 262.21 30.09 412.00 23.92 7.33 

97.0

3 

4090.31 46.84 119757.16 99.19 19.80 143.27 15.14 261.73 29.38 403.29 22.82 7.96 

95.0

9 

4228.48 47.73 126454.06 99.29 19.63 143.03 18.02 262.44 30.01 411.87 24.53 7.69 

99.8

9 

4224.60 47.71 119477.79 94.24 16.86 142.97 19.09 261.58 28.38 411.84 23.56 7.19 

95.0

9 

4130.39 47.72 122342.78 98.75 20.08 142.96 15.87 261.97 29.73 410.91 23.87 7.48 

97.0

3 

4233.34 47.74 119465.00 93.58 16.96 143.36 19.04 261.70 28.32 412.00 23.58 7.19 

95.0

9 

4123.97 47.92 119507.70 99.07 19.81 142.72 15.49 262.42 29.08 411.92 23.52 7.17 

95.0

8 

4139.75 47.83 119510.50 98.81 19.72 143.07 15.68 261.05 28.97 411.79 23.49 7.23 

95.0

8 

4117.91 48.34 122214.33 98.44 20.00 143.07 16.05 262.35 29.78 411.36 24.13 7.07 

97.0

3 

4141.23 47.72 118193.09 98.02 19.26 144.14 15.83 260.42 28.64 411.33 23.21 7.19 

94.1

4 

 

 

Table 6 displays data on exergy destruction within the column, quantified in kilowatts 

per production of diesel, as well as exergy efficiency, exergy destruction in the column, 

and optimal cut points estimated through the application of a hybrid Taguchi and 

Genetic algorithm on a crude distillation model under uncertain feed composition and 

process conditions. The data set consisted of 29 distinct sets and was also utilized to 

test and validate an artificial neural network model. These results show that an increase 

in the production of one product is accompanied by a decrease in the other products' 

production. In this case, diesel production is increased at the expense of a decrease in 

the remaining products' production. 
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Table 7  ANN model exergy analysis parameters, cut points and production data 

DIESE

L EX/V 

EXERGY 

EFFICIENCY 

EXERGY 

DESTRUCTIO

N 

NAPTHA 

CUTPOIN

T 

NAPTHA 

(KBPD) 

KEROSENE 

CUTPOINT 

KEROSENE 

(KBPD) 

DIESEL 

CUTPOINT 

DIESE

L 

(KBPD) 

AGO 

CUTPOIN

T 

AGO 

(KB

PD) 

Residu

e 

(KBPD

) 

Total 

4215.60 48.42 126292.04 94.57 17.81 143.16 19.75 261.75 30.07 414.65 25.08 7.18 99.89 

4168.75 48.16 119462.81 93.86 16.75 142.87 18.82 262.20 28.76 413.98 23.79 6.97 95.09 

4173.05 48.40 122097.58 93.89 17.17 142.91 19.17 262.31 29.36 414.74 24.30 6.97 96.98 

4184.44 48.21 122119.13 93.30 17.11 143.15 19.30 262.36 29.29 414.14 24.20 7.09 96.98 

4184.69 47.94 123131.52 93.31 17.12 143.15 19.31 262.36 29.30 414.16 24.21 7.09 97.03 

4211.01 47.87 118112.61 92.03 16.65 144.12 18.83 262.12 28.15 412.74 23.46 7.06 94.14 

4215.77 48.42 126293.67 94.60 17.82 143.18 19.74 261.72 30.06 414.64 25.08 7.19 99.89 

4208.83 47.89 118097.40 92.26 16.62 143.87 18.84 262.12 28.16 412.86 23.48 7.04 94.14 

4130.50 48.48 119339.73 92.37 16.79 143.85 19.04 262.20 28.46 413.17 23.73 7.07 95.08 

4130.50 48.48 119339.73 94.53 17.82 143.19 19.74 261.74 30.06 414.62 25.08 7.19 99.89 

4205.89 48.27 122063.97 94.16 17.33 143.26 19.22 262.27 29.13 414.29 24.26 7.05 96.98 

4233.42 47.95 118028.50 92.43 16.61 144.23 19.14 262.38 27.98 413.13 23.40 7.01 94.14 

4198.53 48.33 122044.51 93.19 17.22 143.08 19.31 262.35 29.17 414.47 24.26 7.01 96.98 

4130.50 48.48 119339.73 96.83 18.88 142.81 16.53 262.12 29.00 414.73 23.86 6.83 95.09 

4180.77 48.22 119326.99 93.17 16.90 142.95 18.92 262.36 28.64 414.21 23.68 6.93 95.08 

4189.75 48.24 122133.77 93.14 17.22 143.27 19.37 262.39 29.25 414.21 24.11 7.08 97.03 

4219.48 47.99 123096.02 93.86 17.32 143.13 19.20 262.27 29.28 414.12 24.15 7.09 97.03 

4193.81 48.33 122139.19 94.15 17.34 143.05 19.17 262.06 29.23 414.47 24.27 7.03 97.03 

4192.89 48.32 122139.84 93.30 17.24 143.09 19.30 262.20 29.23 414.48 24.24 7.03 97.03 

4187.96 48.44 122120.76 93.66 17.29 143.08 19.22 262.26 29.26 414.67 24.30 6.95 97.03 

4177.36 48.44 119343.21 93.10 16.97 143.25 18.84 262.38 28.67 414.50 23.82 6.79 95.09 

4216.20 48.42 126288.80 94.58 17.82 143.18 19.75 261.72 30.06 414.64 25.08 7.18 99.89 

4194.03 48.11 119403.04 92.18 16.72 143.55 19.21 262.44 28.57 413.71 23.64 6.95 95.09 

4191.88 48.27 122153.78 92.86 17.16 143.19 19.39 262.37 29.24 414.27 24.21 7.03 97.03 

4227.10 47.82 120016.73 92.66 16.79 143.68 19.14 262.28 28.50 413.25 23.64 7.02 95.09 

4206.06 48.00 119409.84 92.65 16.79 143.68 19.14 262.28 28.49 413.25 23.64 7.02 95.08 

4200.19 48.10 119389.09 92.16 16.71 143.51 19.20 262.32 28.53 413.70 23.68 6.97 95.08 

4190.89 48.38 122129.52 92.75 17.15 143.07 19.39 262.23 29.25 414.62 24.29 6.96 97.03 

4213.41 48.04 118326.43 91.78 16.50 143.73 19.13 262.31 28.18 413.83 23.47 6.86 94.14 

Table 7 displays data on exergy destruction within the column, quantified in kilowatts 

per diesel production, and exergy efficiency, exergy destruction in the column, and 

optimal cut points estimated by applying the ANN Model on a crude distillation model 

under uncertain feed composition and process conditions. The data set consists of 29 

distinct sets obtained from ANN. Cut points of naphtha, kerosene, diesel and AGO 

obtained from the ANN model are quite similar to the results of the Hybrid optimization 

model, while cut points for the straight run model remain the same. The objective was 

set to minimize EX/V of diesel, which results in a significant increase in diesel 

production with minimum exergy destruction inside the column. The reported diesel 

production for these 29 data sets is illustrated in Figure 10. 
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Figure 11 illustrates that diesel production in kilo barrels per day has significantly 

increased when using Hybrid Taguchi and Genetic Algorithm, as well as Artificial 

Neural Network models, compared to the straight run model. Additionally, the graph 

demonstrates that the production trends for diesel are similar for both the Hybrid 

optimization and ANN models, indicating the effectiveness of the ANN model.  

 

Figure 12 presents the average diesel production for 29 data sets using the straight run, 

hybrid, and ANN models. By applying a hybrid Taguchi and genetic algorithm, we 

observed a 27.32% increase in diesel production in kilo barrels per day compared to the 

straight-run model. Similarly, using an ANN model resulted in a 26.14% increase in 

diesel production. Both the ANN and hybrid models outperformed the straight-run 

model, which had lower average production values of diesel. These results demonstrate 

the effectiveness of optimization techniques in improving diesel production. 

Figure 11 Diesel production data from Straight run, hybrid and ANN model 

Figure 12 Comparison of average diesel production of straight run, hybrid and ANN models 

 

Figure 8 Exergy destruction per kilo barrel of diesel data from straight run, hybrid and ANN 

modelsFigure 9 Comparison of average diesel production of straight run, hybrid and ANN 

models 
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In contrast, the straight-run model, which did not utilize any optimization techniques, 

had lower average production values than the hybrid and ANN models. The hybrid 

model, which combines the strengths of the Taguchi and genetic algorithm methods, 

achieved a greater increase in diesel production. Additionally, the similarity in 

production trends for diesel between the hybrid optimization and ANN models suggests 

that ANNs can accurately model and predict production outcomes, as demonstrated in 

the case of diesel production, where they significantly improved production levels. 

 

Figure 13 illustrates that the exergy destruction in the column per diesel production has 

significantly decreased when using Hybrid Taguchi and Genetic Algorithm, as well as 

Artificial Neural Network models, compared to the straight run model. The desired 

objective in the optimization problem was to minimize exergy destruction per diesel 

flow. It was a critical goal, as reducing exergy destruction can lead to significant energy 

savings, increasing diesel production. Additionally, the graph demonstrates that the 

output results for EX/V values are similar for both the Hybrid optimization and ANN 

models, indicating the effectiveness of the ANN model. 

 

  

Figure 13 Exergy destruction per kilo barrel of diesel data from straight run, hybrid and 

ANN models 
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Figure 14 presents the average exergy destruction per diesel flow for 29 data sets using 

the straight run, hybrid, and ANN models. By applying a hybrid Taguchi and genetic 

algorithm, we observed a 27.09% decrease in exergy destruction per follow of diesel 

compared to the straight run model. Similarly, using an ANN model resulted in a 

25.99% decrease in exergy destruction per follow of diesel. Both the ANN and hybrid 

models outperformed the straight-run model, which had higher exergy destruction per 

follow of diesel values. The hybrid optimization and ANN models showed a similar 

decrease in exergy destruction per diesel flow, indicating that ANNs can accurately 

model and predict production outcomes.  

 

 

Figure 14 Comparison of average exergy destruction per kilo barrel of 

diesel from straight run, Hybrid and ANN models 

Figure 15 Comparison of average exergy efficiency of straight run, hybrid 

and ANN models 
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In Figure 15, the exergy efficiency data of the crude distillation system is compared for 

all three models. The data set consists of 29 distinct sets, thoroughly analyzing the 

system's performance. It is vital to consider exergy efficiency when evaluating the 

effectiveness of a crude distillation system, as it measures the amount of energy that is 

available to do work. Despite a significant increase in diesel production, the exergy 

efficiency for the hybrid Taguchi and genetic algorithm model and the ANN model 

increased. Nevertheless, it is a positive outcome, indicating that the system can produce 

more diesel while maintaining high energy efficiency. 

Hybrid Taguchi and Genetic Algorithm model showed a 1.3% increase in exergy 

efficiency compared to the straight-run model. It demonstrates this model's 

effectiveness in improving the system's energy efficiency. Similarly, using an ANN 

model resulted in a 1.8% increase in exergy efficiency compared to the straight-run 

model. 

  

 

 

Figure 16 summarizes the Kunnar crude production, comparing the production of 

Naphtha, Kerosene, Diesel, and AGO, as well as residue, for the straight runs, hybrid, 

and ANN models. The hybrid and ANN models resulted in an increase of around 27% 

in diesel production compared to the straight runs model. A decrease in the production 

of the remaining components accompanied this increase in diesel production. An 

Figure 16 Comparison of average production of crude components of Kunnar Field 
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increase in diesel production was achieved while exergy efficiency was improved in a 

crude distillation unit. This is a significant accomplishment, as it demonstrates the 

ability of the unit to produce more fuel while also using energy more efficiently. 

 

Case 2: Zamzama Crude 

For Case 2, we selected Zamzama crude oil as an input for an HYSYS model that 

simulates the crude distillation process. This oil is known for its sweet, light properties 

and a specific gravity between 0.75 and 0.76. We modified the crude oil composition 

and 10 process parameters to introduce artificial uncertainty. We generated six data sets 

by making slight changes (-3%, -2%, -1%, +1%, +2%, and +3%) to the original process 

conditions. We also introduced uncertainty within the specified range for each 

component of the crude oil. The data set for the modified process conditions are shown 

in Table 8. 

 

Table 8 Data set of process conditions with uncertainty 

 

Process Condition      
Data set 

1 

Data set 

2 

Data set 

3 

Data set 

4 

Data set 

5 

Data set 

6 

 
Zamzama Mass Flow  

(kBPD) 
97 95.1 94.1 95.05 96.9 99.7  

Zamzama Temperature 

(℃) 
225.2 220.7 218.5 220.7 225.1 231.9  

Zamzama Pressure (kPa) 554.1 542.9 537.6 542.9 553.8 570.4  

Condenser Pressure (kPa) 131.8 129.1 127.8 129.1 131.7 135.7  

Steam Mass Flow (kg/h) 3299.9 3233.9 3201.6 3233.6 3298.3 3397.2  

Steam Temperature (℃) 184.9 181.2 179.4 181.2 184.8 190.4  

Steam pressure (kPa) 1003 982.9 973.1 982.8 1002.5 1032.6  

AGO Steam Mass Flow 

(kg/h) 
1099.9 1077.9 1067.2 1077.9 1099.4 1132.4  

AGO steam Temperature 

(℃) 
144.4 141.5 140.1 141.6 144.4 148.7  

AGO steam Pressure (kPa) 334.4 327.7 324.4 327.6 334.2 344.2  
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Exergy analysis was performed using ASPEN HYSYS, resulting in the calculation and 

recording of exergy efficiency and exergy destruction in the crude distillation column 

in an HYSYS sheet, as we did with case 1. This sheet was integrated with a MATLAB 

code that utilized a combination of Taguchi and Genetic algorithms to estimate optimal 

cut points resulting in our desired objective, "Exergy destruction in the column per unit 

production of diesel (EX/V)" to optimize diesel production while minimizing exergy 

destruction in the column. 169 data sets were generated using a hybrid structure, 

including optimized crude distillation unit cut points. These data sets were fed into an 

Artificial Neural Network (ANN) model in MATLAB, using 135 data sets for training 

and 34 data sets for testing and validating the ANN model. 

The ANN model contained two hidden layers, with 10 neurons in the first layer and 4 

neurons in the second layer per output in the output layer. 43 neurons were selected as 

input for the ANN model.  

 

 

Both hidden layers utilized the TANSIG (tangent sigmoid) transfer function. The 

TRAINLM function, utilizing the Levenberg-Marquardt algorithm, was employed to 

train the neural network. The training was completed with a gradient of 0.252 at epoch 

200. The mean squared error (MSE) was used as a performance metric to evaluate the 

model's accuracy. Figure 18 demonstrates that the ANN model was trained to superior 

accuracy and precision, as indicated by the R2 value of 0.99995. This is because the 

model has learned to identify the relationships between the input features and the target 

variable with a high degree of precision.  

Figure 17 ANN model of Case 2: Zamzama 
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Figure 10 ANN MSE value for combined training, validation, and testing 

Figure 19 Training and performance monitoring parameters of 

ANN 
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Figure 20 compares the cut points predicted by the Artificial Neural Network (ANN) 

model with those optimized through a hybrid of Taguchi and Genetic algorithms, 

demonstrating a high level of similarity. This finding suggests that the ANN model 

accurately predicted the optimal cut points for the crude distillation process. 

 

 

Table 9 Straight run model exergy analysis parameters and production data 

Straight Run 

Exergy 

destruction

/ Diesel 

flow 

EX 

EFF 
EX DEST 

NAPTH

A KBPD 

KEROSENE 

KBPD 

DIESEL 

KBPD 

AGO 

KBPD 

Residue 

KBPD 

Total 

FLOW 

KBPD 

833.95 26.86 31210.51 12.06 22.87 37.42 26.74 0.79 99.89 

860.78 26.15 30699.24 11.34 21.83 35.66 25.49 0.76 95.08 

860.87 26.14 30705.27 11.34 21.83 35.67 25.49 0.76 95.09 

833.82 26.86 31212.51 12.05 22.87 37.43 26.74 0.79 99.89 

849.37 26.48 30849.99 11.76 22.17 36.32 26.01 0.77 97.03 

833.83 26.86 31209.70 12.06 22.87 37.43 26.74 0.79 99.89 

866.77 26.17 30636.08 11.55 21.92 35.36 25.51 0.76 95.09 

866.65 26.17 30635.55 11.55 21.92 35.34 25.52 0.76 95.08 

863.83 26.15 30629.48 11.55 21.82 35.46 25.50 0.76 95.08 

833.79 26.87 31206.45 12.06 22.87 37.43 26.74 0.79 99.89 

851.14 26.45 30840.24 11.75 22.23 36.25 25.98 0.77 96.98 

833.79 26.87 31206.45 12.06 22.87 37.43 26.74 0.79 99.89 

862.89 26.15 30618.23 11.54 21.81 35.48 25.49 0.75 95.08 

869.36 26.00 30518.69 11.44 21.60 35.10 25.25 0.75 94.14 

Figure 20 Comparison of cut point temperatures obtained from Hybrid and ANN models 
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833.89 26.86 31209.52 12.06 22.87 37.43 26.74 0.79 99.89 

850.25 26.45 30838.49 11.75 22.24 36.27 26.00 0.77 97.03 

867.56 26.00 30512.05 11.44 21.59 35.18 25.18 0.75 94.14 

864.61 25.97 30524.83 11.44 21.60 35.30 25.04 0.76 94.14 

857.98 26.10 30639.42 11.54 21.80 35.71 25.27 0.77 95.09 

847.64 26.41 30846.59 11.75 22.22 36.39 25.85 0.78 96.98 

833.77 26.86 31209.77 12.06 22.87 37.43 26.74 0.79 99.89 

859.37 26.09 30647.29 11.54 21.79 35.66 25.33 0.76 95.08 

866.79 25.93 30553.72 11.44 21.58 35.31 25.06 0.75 94.14 

833.82 26.86 31211.21 12.06 22.87 37.43 26.74 0.79 99.89 

848.85 26.41 30856.50 11.74 22.22 36.35 25.90 0.77 96.98 

866.01 25.92 30564.18 11.43 21.58 35.29 25.08 0.75 94.14 

866.27 25.92 30566.33 11.43 21.58 35.28 25.09 0.75 94.14 

866.27 25.92 30566.33 11.53 21.79 35.63 25.37 0.76 95.08 

833.80 26.86 31210.20 11.75 22.23 36.36 25.92 0.78 97.03 

860.93 26.10 30664.57 11.53 21.78 35.62 25.40 0.75 95.08 

860.93 26.09 30667.69 11.53 21.78 35.62 25.41 0.75 95.09 

849.32 26.42 30859.49 11.74 22.21 36.33 25.93 0.77 96.98 

849.03 26.44 30862.58 11.74 22.22 36.35 25.97 0.75 97.03 

866.85 25.95 30572.67 11.43 21.57 35.26 25.19 0.70 94.14 

 

Table 9 presents data for the straight run of a crude distillation unit without any 

optimization techniques. The data set comprises 34 distinct sets. The first column of 

the table displays the exergy destruction within the column, quantified in kilowatts per 

diesel production, which serves as the objective function for the optimization problem. 

The second and third columns contain information regarding exergy destruction and 

efficiency. In contrast, the remaining columns present data on the production of various 

crude distillation unit products under uncertainty in process conditions and feed 

composition. These results show that an increase in the production of one product is 

accompanied by a reduction in the other products' production. 
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Table 10 Hybrid model exergy analysis parameters, cut points and production data 

Hybrid 

Exergy dest 

/Diesel flow 

EX 

EFF 
EX DES 

NAPTHA 

CUTPOINT 

NAPTHA 

KBPD 

KEROSENE 

CUTPOINT 

KEROSENE 

KBPD 

DIESEL 

CUTPOINT 

DIESEL 

KBPD 

AGO 

CUTPOINT 

AGO 

KBPD 

Residue 

KBPD 

Total FLOW 

KBPD 

752.57 28.79 30924.93 101.45 17.19 127.50 15.32 266.66 41.08 456.57 25.74 0.57 99.89 

788.20 28.10 29858.53 101.42 13.83 137.09 18.09 267.15 37.87 456.58 24.76 0.54 95.08 

751.45 27.74 30008.06 101.34 15.74 129.22 14.47 265.98 39.92 456.71 24.44 0.52 95.09 

720.10 28.40 30555.54 96.70 18.70 128.00 13.13 263.02 42.42 456.71 25.07 0.57 99.89 

752.44 28.30 30087.25 101.44 14.22 133.00 17.61 267.22 39.97 456.76 24.67 0.56 97.03 

747.22 28.79 30387.06 101.29 14.62 128.71 18.02 266.82 40.65 456.79 26.06 0.54 99.89 

724.96 27.40 30128.10 100.20 18.04 127.50 11.11 267.15 41.54 456.79 23.84 0.56 95.09 

752.05 27.64 30025.35 101.03 17.87 127.50 12.59 262.98 39.91 456.80 24.06 0.65 95.08 

754.80 27.63 30013.16 99.80 17.30 132.84 12.43 266.79 39.75 456.81 24.93 0.67 95.08 

771.07 28.96 30314.87 101.39 14.60 128.39 18.99 267.23 39.30 456.83 26.47 0.53 99.89 

744.57 28.17 30116.38 99.78 14.22 127.74 17.29 265.39 40.43 456.83 24.32 0.73 96.98 

738.68 27.60 30022.91 99.55 16.41 127.80 13.67 267.36 40.63 456.84 23.84 0.55 95.09 

755.92 27.68 29995.41 98.07 17.88 135.87 12.57 267.25 39.67 456.87 24.43 0.53 95.08 

734.30 27.29 30002.83 101.47 17.31 127.65 11.69 267.34 40.84 456.87 23.76 0.54 94.14 

720.77 28.39 30559.23 99.91 18.82 127.66 12.86 267.47 42.38 456.90 25.25 0.57 99.89 

730.36 27.99 30193.64 98.07 16.51 128.19 14.31 267.07 41.33 456.92 24.32 0.57 97.03 

728.55 27.20 30019.36 96.87 18.11 130.58 10.53 265.75 41.19 456.94 23.77 0.54 94.14 

754.82 27.46 29907.40 101.48 17.48 127.50 12.27 266.90 39.61 456.97 24.25 0.53 94.14 

762.84 27.90 29891.80 101.15 13.94 127.57 17.75 267.26 39.17 456.99 23.53 0.71 95.09 

726.32 27.77 30276.30 101.23 18.56 127.50 10.89 267.34 41.67 457.03 25.34 0.52 96.98 

711.05 28.28 30603.91 101.38 18.91 127.50 12.30 263.00 43.02 457.07 25.10 0.56 99.89 

796.09 28.07 29827.87 100.48 14.49 127.61 17.55 267.46 37.45 457.09 25.08 0.51 95.08 

749.16 27.36 29965.06 96.50 17.86 135.77 12.16 267.16 39.98 457.09 23.58 0.55 94.14 

745.12 28.76 30399.47 101.26 14.63 134.27 18.18 266.79 40.78 457.11 25.74 0.56 99.89 

747.67 28.03 30175.38 100.78 17.03 127.87 13.60 267.24 40.34 457.14 25.48 0.52 96.98 

754.13 27.57 29883.57 101.06 13.85 134.02 16.73 266.96 39.61 457.15 23.30 0.65 94.14 

729.05 27.18 
30047.49 

97.08 17.31 127.69 11.70 265.98 41.20 457.25 23.37 0.56 94.14 

785.83 27.91 29902.56 100.04 17.70 128.16 14.93 266.76 38.04 457.26 23.86 0.55 95.08 

779.72 28.49 29994.69 100.47 14.14 127.58 19.41 266.66 38.45 457.28 24.46 0.57 97.03 

801.09 28.10 29833.63 101.25 14.93 127.60 17.91 267.17 37.23 457.28 24.32 0.69 95.08 

792.10 28.14 29817.17 100.35 13.87 127.74 19.20 267.30 37.63 457.41 23.84 0.56 95.09 

787.79 28.53 29973.10 99.75 14.11 127.52 19.72 267.24 38.03 457.42 24.55 0.57 96.98 

808.98 28.63 29942.28 99.51 14.11 127.63 19.64 267.49 37.00 457.44 25.79 0.49 97.03 

751.60 27.48 29941.58 101.40 15.49 127.73 14.82 267.07 39.82 457.48 23.34 0.67 94.14 

 

Table 10 displays data on exergy destruction within the column, quantified in kilowatts 

per production of diesel, as well as exergy efficiency, exergy destruction in the column, 

and optimal cut points estimated through the application of a hybrid Taguchi and 
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Genetic algorithm on a crude distillation model under uncertain feed composition and 

process conditions. The data set consists of 29 distinct sets. In this case, diesel 

production is increased at the expense of a decrease in the remaining products' 

production. 

Table 11 ANN model exergy analysis parameters, cut points and production data 

ANN 
Exergy 

destructio
n/Diesel 

EX 

EFF 

EX 

DES 

NAPTHA 

CUTPOIN
T 

NAPTH

A KBPD 

KEROSENE 

CUTPOINT 

KEROSE

NE KBPD 

DIESEL 

CUTPOIN
T 

DIESE

L 
KBPD 

AGO 

CUTPOI
NT 

AGO 

KBPD 

Residue 

KBPD 

Total 

FLOW 
KBPD 

745.7 28.7 30414.7 101.5 14.3 127.5 17.9 267.2 40.8 456.2 26.2 0.7 99.9 

743.1 27.6 30108.6 101.5 17.8 133.8 12.2 267.5 40.5 452.9 24.0 0.6 95.1 

743.5 27.6 30103.5 99.6 17.8 129.6 12.2 265.7 40.5 454.2 24.0 0.6 95.1 

750.1 28.7 30407.7 99.2 16.5 129.5 16.6 265.7 40.5 454.1 25.6 0.6 99.9 

732.0 27.9 30252.8 95.7 18.4 127.5 12.2 262.5 41.3 452.6 24.5 0.6 97.0 

744.2 28.7 30445.3 101.5 17.2 127.8 15.6 266.5 40.9 455.1 25.6 0.6 99.9 

754.1 27.6 30027.2 101.5 18.0 128.0 12.5 266.7 39.8 455.1 24.1 0.7 95.1 

753.7 27.6 30028.4 101.5 18.0 127.5 12.5 267.1 39.8 454.8 24.1 0.7 95.1 

721.8 27.3 30137.3 101.5 18.3 128.2 10.6 267.4 41.7 454.5 23.8 0.6 95.1 

744.9 28.7 30434.3 99.2 16.7 130.1 16.1 265.6 40.8 454.2 25.7 0.6 99.9 

712.0 27.7 30325.3 101.5 18.6 127.6 10.8 265.6 42.6 455.6 24.3 0.7 97.0 

719.8 27.3 30152.7 101.5 18.3 127.5 10.6 263.1 41.9 454.6 23.6 0.7 95.1 

732.3 27.2 30010.7 101.5 18.1 137.0 10.5 263.5 41.0 455.2 24.0 0.6 95.1 

730.8 27.4 30088.3 101.5 18.2 129.8 11.0 265.2 41.2 456.1 24.1 0.5 94.1 

753.2 28.0 30171.9 101.5 18.4 127.5 12.5 267.0 40.0 452.9 25.6 0.6 99.9 

750.1 28.7 30415.3 99.6 16.6 129.8 16.4 265.8 40.5 454.2 25.7 0.6 97.0 

725.1 27.2 30029.9 101.5 18.1 127.6 10.5 267.3 41.4 453.4 23.6 0.5 94.1 

743.0 27.4 29780.1 101.5 18.1 127.6 10.5 266.6 40.3 454.4 24.6 0.6 94.1 

766.1 27.7 29958.6 101.5 17.9 128.7 13.0 266.4 39.1 452.9 24.5 0.5 95.1 

719.9 27.7 30287.4 101.5 18.5 128.6 11.4 266.4 42.1 452.9 24.4 0.6 97.0 

749.6 28.7 30416.2 101.5 16.5 128.0 16.3 266.7 40.6 455.7 25.8 0.6 99.9 

719.6 27.2 30168.7 101.5 18.3 127.7 10.7 267.4 41.9 455.3 23.5 0.7 95.1 

728.5 27.1 30059.1 101.5 18.1 128.3 10.6 267.4 41.2 454.6 23.6 0.6 94.1 

744.1 28.7 30440.3 101.5 17.2 132.7 15.5 266.4 40.9 455.9 25.7 0.6 99.9 

720.2 27.7 30310.6 101.5 18.6 127.5 10.9 264.1 42.1 456.2 24.8 0.5 97.0 

741.6 27.2 30027.8 101.5 18.1 132.2 10.5 267.4 40.5 454.3 24.5 0.5 94.1 

727.2 27.1 30072.7 101.5 18.1 128.3 10.8 266.9 41.3 455.1 23.4 0.6 94.1 

775.2 27.8 29950.7 101.5 17.8 128.3 14.4 266.9 38.6 455.1 23.6 0.7 95.1 

756.8 28.1 30151.6 101.5 18.2 127.5 14.2 266.3 39.8 455.9 24.2 0.6 97.0 

739.8 27.5 30087.4 99.1 18.0 130.4 12.1 265.9 40.7 454.2 23.7 0.6 95.1 

739.7 27.5 30087.7 101.5 18.0 128.5 12.1 264.1 40.7 454.7 23.7 0.6 95.1 

767.3 28.2 30116.2 101.5 18.1 127.5 14.4 267.4 39.2 452.6 24.7 0.6 97.0 

799.9 28.4 30033.9 101.5 18.1 127.8 15.2 267.2 37.5 454.1 25.7 0.5 97.0 

741.1 27.3 30030.3 99.1 17.9 129.8 11.6 265.3 40.5 454.2 23.5 0.6 94.1 
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Table 11 displays data on exergy destruction within the column, quantified in kilowatts 

per production of diesel, as well as exergy efficiency, exergy destruction in the column, 

and optimal cut points estimated through the application of an Artificial Neural Model 

on a crude distillation model under uncertain feed composition and process conditions. 

The data set consists of 34 distinct sets obtained from ANN. Cut points of naphtha, 

kerosene, diesel and AGO obtained from the ANN model are quite like the results of 

the Hybrid optimization model, while cut points for the straight run model remain the 

same. The objective was set to minimize the EX/V of diesel, which results in a 

significant increase in diesel production with minimum exergy destruction inside the 

column. The reported diesel production for these 34 data sets is illustrated in the figure 

21. 

 

 

Figure 21 illustrates that diesel production in kilo barrels per day has significantly 

increased when using Hybrid Taguchi and Genetic Algorithm, as well as Artificial 

Neural Network models, compared to the straight run model. Additionally, the graph 

demonstrates that the production trends for diesel are similar for both the Hybrid 

optimization and ANN models, indicating the effectiveness of the ANN model. 

Figure 21 Diesel production data derived from straight run, hybrid and 

ANN models 
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Figure 22 presents the average diesel production for 34 data sets using the straight run, 

hybrid, and ANN models. By applying a hybrid Taguchi and genetic algorithm, we 

observed a 10.34% increase in diesel production in kilo barrels per day compared to the 

straight-run model. Similarly, using an ANN model resulted in an 11.51% increase in 

diesel production. Both the ANN and hybrid models outperformed the straight-run 

model, which had lower average production values of diesel.  

 

Figure 112 Comparison of average diesel production 

derived from straight run, hybrid and ANN models 

 

Figure 12 Exergy destruction per kilobarrel diesel production 

data from straight run, hybrid and ANN modelsFigure 13 

Comparison of average diesel production derived from straight 

run, hybrid and ANN models 

Figure 23 Exergy destruction per kilobarrel diesel production data from 

straight run, hybrid and ANN models 
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Figure 23 illustrates that the exergy destruction in the column per diesel production has 

significantly decreased when using Hybrid Taguchi and Genetic Algorithm, as well as 

Artificial Neural Network models, compared to the straight run model. The desired 

objective in the optimization problem was to minimize exergy destruction per diesel 

flow. The graph demonstrates that the output results for EX/V values are similar for 

both the Hybrid optimization and ANN models, indicating the effectiveness of the ANN 

model.  

 

 

Figure 24 presents the average exergy destruction per diesel flow for 29 data sets using 

the straight run, hybrid, and ANN models. By applying a hybrid Taguchi and genetic 

algorithm, we observed a 12.16% decrease in exergy destruction per diesel compared 

to the straight run model. Similarly, using an ANN model resulted in a 13.22% decrease 

in exergy destruction per follow of diesel. Both the ANN and hybrid models 

outperformed the straight-run model, which had higher exergy destruction per follow 

of diesel values.  

Figure 24 Comparison of average exergy destruction per kilo barrel 

production of diesel from straight run, hybrid and ANN models 

Figure 25 Comparison of average exergy efficiency of straight 

run, hybrid and ANN models 
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Figure 25 compares the exergy efficiency data of the crude distillation system for three 

different models using a data set of 34 distinct sets. Despite increased diesel production, 

the hybrid Taguchi and Genetic Algorithm model and the ANN model showed 

increased exergy efficiency. It is a positive result, indicating that the system can 

produce more diesel while maintaining an elevated level of energy efficiency. The 

Hybrid Taguchi and Genetic Algorithm model showed a 5.68% increase in exergy 

efficiency compared .to the straight-run model, and the ANN model resulted in a 5.18% 

increase compared to the straight-run model. 

 

Figure 26 summarizes the Zamzama crude production, comparing the production of 

various products, including Naphtha, Kerosene, Diesel, AGO, and residue for the 

straight runs, hybrid, and ANN models. The results show that both the hybrid and ANN 

models increased around 11% in diesel production compared to the straight runs model. 

This increase in diesel production was achieved while exergy efficiency was also 

improved in the crude distillation unit. It is a notable achievement, as it demonstrates 

the ability of the unit to produce more fuel while using energy more efficiently. The 

results suggest that the use of advanced machine learning and optimization techniques 

such as the hybrid Taguchi and Genetic Algorithm model and ANN models can 

effectively optimize crude distillation processes, leading to improvements in both fuel 

production and energy efficiency.  

Figure 146 Comparison of average production of various crude products obtained from Zamzama 

crude 
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Conclusions & Recommendations 

Conclusions 

In conclusion, the results of this study demonstrate the effectiveness of using Hybrid 

Taguchi and Genetic Algorithm and Artificial Neural Network models in optimizing 

the crude distillation system for producing diesel under uncertain process conditions. 

The output results for both the Hybrid optimization and ANN models were similar, 

indicating the effectiveness of the ANN model in accurately predicting optimal cut 

points for optimized diesel production. These models outperformed the straight-run 

model in terms of increasing diesel production. The Hybrid and ANN models resulted 

in around 27% and 11.5% increases in diesel production for Kunnar and Zamzama 

crudes, respectively. In addition to increasing diesel production, the Hybrid and ANN 

models demonstrated significant reductions in exergy destruction per kilo barrel of 

diesel. It leads to energy savings, increased production, and potential cost and resource 

savings for the crude distillation system. The Hybrid and ANN models resulted in 

around 27% and 13% decreases in exergy destruction per kilo barrel of diesel and 1.3% 

and 5.7% increases in exergy efficiency for Kunnar and Zamzama crudes, respectively. 

Overall, using these optimization models can significantly improve the performance of 

the crude distillation system. It is crucial in today's global energy market, where demand 

for diesel continues to grow and efficiency is critical to staying competitive. The 

successful implementation of the Hybrid Taguchi and Genetic Algorithm and Artificial 

Neural Network (ANN) models in this study showcases the immense potential of these 

optimization techniques in revolutionizing not only crude distillation systems but also 

various other industries and systems. By utilizing these advanced optimization models, 

crude distillation processes can significantly enhance its production while 

simultaneously achieving notable reductions in energy consumption and operational 

costs. The demonstrated efficacy of these models opens up new avenues for the 

application of optimization techniques in diverse domains, empowering industries to 

improve their efficiency, sustainability, and overall performance. From manufacturing 

and logistics to energy management and healthcare, the integration of these 

optimization methods can lead to remarkable advancements, making processes more 

streamlined, resource-efficient, and cost-effective. As such, this research contributes to 
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the broader field of optimization, offering valuable insights and paving the way for 

future innovation and advancements across various sectors. 

Recommendations 

The successful implementation of the optimization models in the crude distillation 

system demonstrates their potential to revolutionize the energy industry. Energy 

companies should consider integrating these advanced optimization techniques into 

their processes to improve efficiency, reduce energy consumption, and lower 

operational costs. The positive results obtained from this study suggest that there is a 

need for further research and development in optimization techniques. Investing in 

more studies and experiments can lead to the refinement and customization of these 

models to suit specific crude types and distillation systems, potentially unlocking even 

greater performance improvements. The conclusion highlights that the potential of 

these optimization techniques is not limited to the energy sector. Industries spanning 

manufacturing, logistics, healthcare, and more could benefit from incorporating Hybrid 

Taguchi and Genetic Algorithm and Artificial Neural Network models to enhance their 

processes, improve resource efficiency, and reduce costs. 
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