
Secure Block-level Data Deduplication approach for Cloud

Data Centers

By

Gul Sayyar Ali

FALL-2015-MS-CSE 00000117418

Supervisor

Dr. Mian Ilyas Ahmad

Department of Computational Engineering

A thesis submitted in partial fulfillment of the requirements for the
degree of Masters of Science in Computational Science and

Engineering (MS CS&E)

In

Research Center for Modeling and Simulation,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(December 2018)

Approval

It is certified that the contents and format of the thesis entitled “Secure Block-

level Data Deduplication approach for Cloud Data Centers” submitted by

Gul Sayyar Ali have been found satisfactory for the requirement of the degree.

.

Advisor: Dr. Mian Ilyas Ahmed

Signature:

Date:

Committee Member 1: Dr.Salma Sherbaz

Signature:

Date:

Committee Member 2: Dr. Tariq Saeed

Signature:

Date:

Dedication

I would like to dedicate this effort especially to my parents,

to my elder brother, whose unconditional love and support enabled

me to reach this far in my educational career, to my teachers

who inspired me all the way and all those friends who always

supported me.

Certificate of Originality

I hereby declare that this project neither as a whole nor as a part has been copied

out from any source. It is further declared that I have developed this project and

the accompanied report entirely on the basis of my personal efforts made under the

sincere guidance of my supervisor. No portion of the work presented in this report

has been submitted in the support of any other degree or qualification of this or any

other University or Institute of learning, if found I shall stand responsible.

Author Name: Gul Sayyar Ali

Signature:

Acknowledgement

“Keep positive attitude and constantly strive to give your

best effort, eventually you will succeed, no matter how hard

the situation is”.

First of all, I would like to thanks ALLAH, who given me strength and guid-

ance in the accomplishment of this thesis. I am thankful to project supervisor Dr.

Mian Ilyas Ahmad whose motivation and interest on the topic made me able to

accomplish this project in the allocated time. I would also express heartfelt thanks

to my thesis committee members Dr. Salma Sherbaz and Dr. Tariq Saeed for their

skillful assistance and guidance. Their encouragement and motivation were the main

source of strength that stimulated me to complete this study. I am also thankful

to staff members and colleagues of RCMS who helped me through the difficulties I

faced during the thesis. Last but not the least, I am greatly thankful to my parents

and family members, without their financial and spiritual support, I would not be

able to complete my research work.

Gul Sayyar Ali

Abstract

The rise in information and technology sector has increased storage requirement

in cloud data centers with unprecedented pace. Global storage reached 2.8 trillion

GB as per EMC Digital Universe study 2012 [1] and will reach 5247GB per user by

2020. Data redundancy is one of the root factors in storage scarcity because clients

upload data without knowing the content available on the server. Ponemon Institute

detected 18 percent redundant data in “National Survey on Data Centers Outages”

[15]. To resolve this issue, the concept of data deduplication is used, where each

file has a unique hash identifier that changes with the content of the file. If a client

tries to save duplicate of an existing file, he/she receives a pointer for retrieving

the existing file. In this way, data deduplication helps in storage reduction and

identifying redundant copies of the same files stored at data centers. Therefore,

many popular cloud storage vendors like Amazon, Google Dropbox, IBM Cloud,

Microsoft Azure, Spider Oak, Waula and Mozy adopted data deduplication. In this

study, we have made a comparison of commonly used File-level deduplication with

our proposed Block-level deduplication for cloud data centers. We implemented the

two deduplication approaches on a local dataset and demonstrated that the proposed

Block-level deduplication approach shows 5 percent better results as compared to

the File-level deduplication approach. Furthermore, we expect that the performance

can be further improved by considering a large dataset with more users working in

similar domain.

List of Abbreviations

CSP Cloud Server Providers

Hash Hashing function

PAKE Password Authentication Key Exchange

IoTs Internet of Things

GB Giga Bytes

TB Tera Bytes

RLU Rate Limiting uploader

RLC Rate Limiting checker

CIA Confidentiality Integrity Availability

SHA-1 Secure Hash Algorithm Version 1.0

SHA-256 Secure Hash Algorithm Version – 256 bit

PDF Portable Document Format

ABW AbiWord - Word processing

Contents

1 Introduction 1

1.1 Data Deduplication . 1

1.2 Classification of data deduplication 3

1.2.1 File-level and Block-level deduplication 3

1.2.2 Client-based and Server-based deduplication 4

1.2.3 Intra-user and Inter-user deduplication 5

1.3 Problem Statement . 6

1.4 Research objective . 6

1.5 Research Contribution . 6

1.6 Research Motivation . 7

1.7 Overview . 7

2 Literature Review 8

2.1 Data deduplication and related issues 9

2.2 File-Level and Block-level Deduplication schemes 14

3 Deduplication Methodology 18

3.1 System Model . 19

3.2 Basic design of Block-level deduplication approach 19

3.3 Methodology of the proposed framework 20

3.4 System Modules . 22

3.4.1 Deduplication . 22

3.4.2 Encryption Methods . 24

3.4.3 Crypto - Hash Functions . 24

3.4.4 Password Authentication Key Exchange (PAKE) 25

3.4.5 Rate Limiting . 25

3.4.6 Randomized Threshold . 26

3.4.7 Checker Selection . 26

3.5 Python based functions used for Block-level deduplication Scheme . . 27

3.6 Pseudo Algorithms used in Block-level deduplication Scheme 28

4 Results and Discussion 32

4.1 Implementation Environment . 32

4.2 Small Dataset Scenario . 33

4.3 Local Network Scenario . 34

5 Conclusion and Future work 41

5.1 Conclusion . 41

5.2 Future Work . 42

Bibliography 43

List of Tables

3.1 Python based functions used for Block-level deduplication Scheme . . 27

4.1 Metadata for the small dataset Scenario 33

4.2 File-level Vs Block-level storage reduction in small dataset 34

4.3 File-level Vs Block-level storage reduction in Local Network dataset . 38

List of Figures

1.1 Block diagram of standard data deduplication technique 3

1.2 Difference in Block-level and File-level deduplication 4

1.3 Difference between Client-side and Server-side deduplication 5

2.1 Multi-level encryption of Chun Fan proposal 11

2.2 System model of BDO-SD . 13

2.3 Architecture of P.Meye’s Intra Vs Inter-user deduplication 15

2.4 Activity diagram for ClouDedup approach with multi-layer encryption 16

3.1 General architecture of our proposed framework 19

3.2 Block diagram for our proposed Block-level framework 20

3.3 Flow chart diagram for proposed deduplication model 21

3.4 Interaction diagram of the proposed deduplication model 22

3.5 Algorithm: Make count of file in directory 28

3.6 Algorithm: Generate crypto-hash for complete file 29

3.7 Algorithm: Divide big file into small blocks 30

3.8 Algorithm: Generate crypto-hash list for PDF files 31

4.1 File’s popularity in Local Network dataset 36

4.2 Block’s popularity in Local Network dataset 36

4.3 Files reduction in Local Network dataset 37

4.4 Blocks reduction in Local Network dataset 38

4.5 Storage reduced via File-level approach 39

4.6 Storage reduced via Block-level approach 39

Chapter 1

Introduction

Before going into the details of our research problem, we briefly introduce the con-

cept of data deduplication.

1.1 Data Deduplication

Cloud computing due to its dominant performance in computation, massive storage

and web access becoming the superior choice for deploying highly secure and scalable

systems. Many well-known companies like Amazon, Apple and Google are offering

their digital storage services in form of hardware, computational and software re-

sources which have properties like elasticity, availability, and cost effectiveness to its

clients. According to the EMC Digital Universe Study, the global data supply has

reached 2.8 trillion Giga Bytes (GBs) in 2012 and and will reach 5247GB per user

by 2020.

Data redundancy is one of the root factors in storage scarcity because clients

uploads data regardless of checking the same file already exists or not. Ponemon In-

stitutes detected 18 percent redundant data in its National Survey on “Data Centers

Outages” [15]. Cloud Service Providers are adopting many simultaneous strategies

1

including data deduplication to overcome the possible scarcity of data storage. Data

deduplication has advocated a promising and effective role to save the digital storage

space by removing copies of a data file available on data centers. Data deduplica-

tion system identifies the redundancy in data and then eliminates it in order to

overcome redundancy problem in the storage centers. The resulting unique single

copy is stored and then will serve all the authorized users. This technology can

greatly reduce the storage space and communication bandwidth. Therefore, many

popular cloud storage vendors like amazon, Google Dropbox, IBM Cloud, Microsoft

Azure, Spider Oak, Waula and Mozy adopted data deduplication technology [10].

In most commonly practiced procedure of data deduplication technology, it iden-

tifies the same data files or block through generating their cryptographic-hash string

by using some hash-function i.e., SHA-1, SHA-256 etc. Hash function generates the

same hash string for the files having the same contents. Once the cryptographic-

hash value is generated for a newly arrived file, the deduplication system stores that

crypto-hash value in a record table and also allow the user to upload the file. Now

if a second user uploads a file with same content and gets crypto-hash value by

passing through the hash function. Now the system compares the freshly arrived

crypto-hash value with already available on record table of different file and data

blocks. If two identical cryptographic-hash keys are detected, the already existing

file will be made accessible to the new user and its data file will not be store on

storage center. In result a great amount of data reduces by storing a single copy of

identical data files.

2

Figure 1.1: Block diagram of standard data deduplication technique
.

1.2 Classification of data deduplication

Data deduplication technology works in different ways, but going through literature

we have been through many types of deduplication in the term of size, location and

operating side of the system. In the below section, we will be discussing some main

types of deduplication.

1.2.1 File-level and Block-level deduplication

File-level deduplication is the most common way to implement data deduplication.

In File-level deduplication, the system generates the crypto-hash key of the com-

plete file without having any size limit and then check for the redundant copy in the

incoming files. While, Block-level deduplication system divides the file into specified

chunk size, after splitting the file into various small pieces the system then generates

the crypto-hash key of each block separately, where each block of data is treated as

individual file and its hash keys are compared with all incoming chunks.

3

Figure 1.2: Difference in Block-level and File-level deduplication
.

1.2.2 Client-based and Server-based deduplication

Client-based and server-based deduplication or sometimes termed as source-based

and target-based deduplication. In client-based deduplication, if a client wants to

upload his data to the cloud server somewhere, client will be running the hashing

algorithm after passing data from a hash function, the crypto-hash value will be

check and compared by the server in the record table if available, server will discard

data and will give access of the same existing file to that client. On the other hand,

server-based deduplication, the intended client will be completely unaware of any

deduplication procedure. It will be a simple end user, who wants to upload his file,

the storage server will generate the crypto-hash key of every file without client’s en-

gagement. Server checks and compares the hash-values on its end, if the same hash

found in the record table, it simply discards file and allow accessing the existing file

without informing the client.

4

Figure 1.3: Difference between Client-side and Server-side deduplication
.

1.2.3 Intra-user and Inter-user deduplication

If the copy of the same file is uploaded multiple times by the same client or user, the

deduplication is termed as Intra-user deduplication. On the other hand, if a copy

of the duplicate file belongs to different users or clients, known as inter-user dedu-

plication. Inter-user deduplication is a bit more vulnerable to dictionary attacks.

Considering the above discussion on deduplication technology and its types, the

benefits of space and bandwidth savings from data deduplication are favorable to

cloud servers as well as for the clients.

5

1.3 Problem Statement

If the copy of the same file is uploaded multiple times by the same client or user,

the deduplication is termed as Intra-user deduplication. On the other hand, if

a copy of the duplicate file belongs to different users or clients, known as inter-

user deduplication. Inter-user deduplication is a bit more vulnerable to dictionary

attacks. Considering the above discussion on deduplication technology and its types,

the benefits of space and bandwidth savings from data deduplication are favorable

to cloud servers as well as for the clients.

1.4 Research objective

The goal of this study is to provide maximum storages saving to the data centers

or cloud owners by identifying and removing redundant data. To achieve this, the

following are objectives of this work.

• Implementation of File-level deduplication on our local dataset

• Implementation of Block-level deduplication on the same local dataset

• Making detailed comparison of these two deduplication schemes with different

aspects

1.5 Research Contribution

In our proposed methodology, we have used Python 3.0 as our main programming

language to simulate the deduplication. Basic reasons behind selecting Python are;

its secure, portable and mostly preferred language for projects related dealing and

analyzing large datasets. Furthermore, our study has the following two major ad-

vantages to the Information and technology sector. Our studies have improved the

6

deduplication percentage by dividing the file into multiple small chunks, which ul-

timately improve storage saving for data centers.

1.6 Research Motivation

After numerous technology giants like Amazon, Google, IBM and Microsoft pos-

sessed deduplication technology in order to save their redundant space, a lot of

research work been carried out in various dimensions including privacy and security

issues [23]. Before putting this proposal, we studied the several existing techniques

and models to figure out the advantages of deduplication to the community while

keeping its shortcomings in mind. Jian Lui [13] performed File-level deduplication

and shown significant improvement in storage reduction. In this study, we have

made a comprehensive comparison of the mostly used File-level deduplication with

our proposed Block-level deduplication for data centers. We performed both ap-

proaches on our local dataset and demonstrated that our deduplication percentage

has added 5 percent increase to the previous implemented approach.

1.7 Overview

The remainder of the thesis has been structured as follow. In Chapter 2, we discuss

literature review and related work on the concept of data deduplication. Chapter

3 discusses the methodology of the proposed deduplication scheme. Chapter 4 is

comprised of our experimental results, its plots and detailed discussion on both File-

level and Block-level deduplication systems, while fifth and final chapter is focused

on conclusion and future strategy of our research study.

7

Chapter 2

Literature Review

In this digital era, data and storage have secured the core importance, with every

passing year, storage requirement also increases multi-time. Computer scientists had

to search new solutions to counter the swiftly increasing demand of storage space.

Data deduplication technology somehow emerged as substitute storage reduction

technology in 2007 in order to remove the redundant data resides at large data cen-

ters. Due to its wide range of applications and significant role in storage saving, the

technology got maximum attention in shorter span of time. The technology received

maximum boost with growth of information and communication sector, where the

storage requirements increased about 50 percent in the last decade [1].

As major advantages of deduplication technology are linked with cloud environ-

ment, where data centers store millions of trillions of data. Storage saving at data

center level can give additional challenges due to its large number of concurrent

attached systems from enterprisers to private users. Where a third party server

controls the outsourced information, therefore, technologist considers availability,

integrity, security and privacy-related challenges [20] are the top-most challenges

while owning deduplication technology. Moreover, the virtualization concept in

cloud servers further leads to various security anxieties, because the system has

8

to address numerous concurrent clients. The previous study reveals that cloud

consumers focus on three man factors while outsourcing the documents i.e., con-

fidentiality, integrity and availability (CIA) security [3]. Thus, the cloud vendors

and organizations faced internal and external challenges including the risk against

information assets residing in cloud server providers, different types of malicious

attackers, the security threats associated with the CSPs and many other relevant

considerations of attacks and countermeasures.

2.1 Data deduplication and related issues

After the advent of deduplication technology, many researchers have proposed some

dominant work to address deduplication issues in almost every dimension and con-

tributed their input to make an efficient and productive system. In this section of

our study, we have concisely discussed some of the researchers highlighting their

proposed solutions specifically in relevance to the data deduplication technology.

In Raykova et al [15] familiarized a deterministic encryption scheme which is

then used for secure database searching. However, Raykova failed to produces a

clear the data search nomenclature in the cloud storage using this encryption scheme.

Ashish Agarwala et al. [16] in 2017, proposed new deduplication scheme using DICE

protocol in order to detect the redundant files at client-side. A. Agarwala’s Mes-

sage Locked Encryption (MLE) based protocol along with DICE protocol reduces

bandwidth consumption, computation and communication cost with security proto-

col. They used SHA256 as has function while AES for encryption and decryption.

The deduplication is robust against poison attacks (also named duplicate-faking

attacks). They have computed the computation cost in the term of cryptography

9

where hash-value has been calculated twice, i.e., first time for the generating Hash-

value while the second for the file-tag. Himshai Kamboj et al. [18] presented a

client side deduplication app, which provide easy interface to users, with opera-

tions like downloading, uploading, deletion and registration with client side GUI.

Kamboj’s research was focused on providing easy and simple way of access while

maintaining the necessary privacy and security of data. Dedup app shows improve-

ment in the computation and functionality of the deduplication process. Jia Xu et

al [19]. extended the proof of ownership scheme for the client side deduplication

adopting storage servers which was proposed by Halevi et al. Jia Xu’s scheme was

focused on the possible leakage of contain amount of information. He demonstrated

that his scheme has robust behavior towards the inside honest-but-curious server

as well as to the out outsider adversaries. Youngjoo Shin et al. [20] proposed a

solution with name of SEED in order to decrease the leakage of information during

the deduplication process. SEED technique was focused on security and efficiency

of the deduplication system by enabling the lazy encryption that omites encryption

in client-side deduplication. SEED demonstrated the guaranteed integrity of the

user files and show strong resistance against brute-force attacks through the user’s

secret data encryption. In 2012, Chun Fan et al. [5] proposed his research work re-

lated to the security and privacy of the deduplication systems. Fan et al. proposed

a detailed solution to protect the sensitive user file from any outside access. The

proposal also gives an experimental demonstration of their deduplication algorithm,

where data redundancy and reasons of security weaknesses in convergent encryption

i.e., semantic security were specifically discussed. In order to address these privacy

issues inside cloud environment, paper proposed a framework consist of encryption

at multiple layers (i.e., check block, enabling block, cipher block) which ensure stor-

age saving along with improved security measures at every level of the system.

10

Figure 2.1: Multi-level encryption of Chun Fan proposal
.

Lilli bridge et al. [6] introduced an enhanced version of deduplication system

by introducing inline chunking based deduplication scheme. Bridge et al used block

or chunk base files which were supposed to be a fixed size limit. His demonstrated

multiple time improvement in storage saving, they also expressed their results by

changing the specified block size and compared which shows significantly improved

the poor performance of the deduplication system. Zheng Yan et al. [24] proposed

the re-encryption method for deduplication, where user need to produce ownership

certificate along with his public key. After server’s verification it then forwarded to

authentic party who’s supposed to challenge user for data ownership. Zheng Yan’s

scheme resists online brute-force attacks and provide efficient storage saving on very

low cost. Jin Li et al. [25] proposed a security model for hybrid cloud architecture.

Jin’s prototype has conducted experiments for the evaluation of overhead demon-

strated that the overhead is minimal against the normal convergent encryption.

Also, Jin Li’s decuplication proposal is secured against outside and insider attack

11

but the scheme seems to be vulnerable against the online brute force attack for the

predictable files. Junbeom Hur et al. [27] proposed server-based deduplication tech-

niques which exploits randomized convergent encryption. This scheme successfully

restricts the data leakage as well as the inconsistency tag attacks to damage data

integrity. The additional computation overhead of the system is minor level and

produces a good amount of improvement in the efficiency of storage saving. This

scheme has a disadvantage also on its credit as cloud server providers remove all

redundant files so it can’t restore the original data file if vanished in the data-loss

attack. Another Deduplication scheme which was proposed by Rodel Miguel et al.

[28] based Homomorphic Encryption consisted of many key-management algorithms.

HED scheme gives global storage saving in the result of because deduplication not

only takes place at particular domain but also at public and other’s enterprise level.

It guarantees strong confidentiality cloud provider has no direct access to data and

data secret keys. Further it ensure have minimal latency overhead while implement-

ing the model. Mi-Wen et al. [8] proposed a scheme for the outsourcing the data to

a remote server, under the technique named ‘BDO-SD’, where Wen et al provides

such a deduplication system that consists of an additional keyword searching pref-

erence that manages the encryption keys. This study focused convergent encryption

which has been broadly adopted for data outsourcing with deduplication ability, a

data owner queries the encrypted data with searchable encryption keywords in a

privacy-preserving manner.

In order to meet the proposal, they combined an identity-based signature al-

gorithm with a blind signature technique in a keyword search, which makes it a

notable solution ensuring data confidentiality and privacy in the system. The study

also proved that their scheme gives efficient results with respect to storage reduction.

12

Figure 2.2: System model of BDO-SD
.

Harnik et al. [9] approach provides global savings regarding to storage space and

network bandwidth savings for the whole network but did not provide protection

against client’s attacks based on data identifier manipulation as well as client’s at-

tacks based on network traffic observation when inter-user deduplication is enabled.

Moreover, the approach provides no proper protection against client attacks based

on backup observation when inter-user de-duplication is enabled along with the pa-

rameter of protection against honest but curious CSP and produced prominent im-

provement to reduce the data leakage in cross-user deduplication environment. Mihir

Bellare [10] proposed his framework with name of DupLESS in order to counter the

brute-force attacks while implementing deduplication, it was focused on Convergent

Encryption based on Message-Locked Encryption. Ballare et al. approach along

with global storage and bandwidth saving also decelerated the frequency of brute

force attack both over the network also on backup server, but this approach failed

to provide any solid the solution for the malicious data identifiers. Heen et al. [11]

13

addressed global savings for storage space as well as provide bandwidth savings be-

tween the client and the storage server rather than bandwidth savings between the

client and the gateway for whole network. Moreover, it limited the ability of at-

tackers to monitor the traffic going through the gateway and also limited the ability

of attackers to corrupt or replace the software module in the gateway. In addition,

this approach is inefficient for protection against client’s attacks based on backup

observation and protection against honest but curious CSP parameters. In addition

to the above work, various researchers have specifically worked on both File-level

and Block-level deduplication in order to perform maximum reduction of storage

while the other parameters like privacy, network traffic observation, data identifier

manipulation are considered at minimum level in the deduplication servers.

2.2 File-Level and Block-level Deduplication schemes

Pierre Meye et al [12] raised some frequently occurring issue in data deduplication

i.e., CDN and Brute force attacks from malicious clients that are based on the ma-

nipulation of data identifiers and those based on backup time and network traffic

observation. This study divided the deduplication schemes into main two parts i,e.,

Intra-user and Inter-user deduplication in order to build a storage system that is

secure against the above mentioned attacks by controlling the correspondence be-

tween files and their identifiers.

Their study recommends two separate mechanisms for both types of deduplica-

tion approaches, the study also addressed protection against client attacks based on

data identifier manipulation, network traffic observation as well as attacks based on

backup time observation perfectly but the algorithm gives no solution to the curious

14

Figure 2.3: Architecture of P.Meye’s Intra Vs Inter-user deduplication
.

cloud servers. Which eventually provides global storage space savings as well as per-

client bandwidth network savings. Pasquale-Puzio [7] proposed a new multi-layer

scheme for Block-level deduplication with title ClouDedup. Puzio’s ClouDedup fo-

cused the tradeoff between data deduplication and confidentiality of user data, it

means whenever the same file is assigned to the two different users, so confidential-

ity of the file might be compromised. ClouDedup also enlighten dictionary attacks,

Confirmation of file (COF) and learn remaining info (LRI). In order to address these

issues in Block-level deduplication, ClouDedup designed a framework where there

was a separate block for securing the confidential files, called metadata manager, the

confidential file includes information tables, crypto-hash keys, and pointer tables,

with efficiency evaluated with respect to block size.

ClouDedup approach made significantly improved performance by reducing band-

width consumption and eliminating the re-encryption phase through the adoption

of random storage. Jian Liu et al. [13] in his research work concentrated on the

15

Figure 2.4: Activity diagram for ClouDedup approach with multi-layer encryption
.

client and server – side encryption, encrypting data on client-side before upload-

ing it to cloud storage is essential for protecting users’ privacy. However most of

the time client-side encryption decreased the deduplication percentage because the

deduplication system cannot detect and figure out the redundant blocks or files.

Therefore, their provided single-server scheme for secure cross-user de-duplication

with client-side encrypted data, introducing PAKE (Password Authenticated Key

Exchange) cryptographic algorithm. The proposed method in this paper improves

both the effectiveness and the efficiency via simulating using their online datasets

in the scheme. Lui et al. approach is basically for File-level deduplication which

provides global storage and network bandwidth savings for the group of users in

the case if they are using their client solution, their work also ensure protection

against honest but curious Cloud Service Provider. Lui [13] also used PAKE proto-

col, which is an approach for exchanging file accessing key when multi clients have

to access the same file. By using PAKE protocol, actually server invites some of

16

the already available clients and allow them to run PAKE protocol with new up-

loader. This study also introduced Rate Limiter in order to stop brute-force attacks

on the system. Rate limiter restricts the uploader to make only the specified num-

ber of upload attempts, while it also restricts checkers (already registered clients

having copy of the same file) to keep number of responses to the uploader below

the specified number. Lui’s approach failed to address some of the important pa-

rameters i.e., protection against client attacks based on backup time observation

and data identifier manipulation and network traffic observation. Rohit Kiran et

al. [14] released an extended version of Lui [13] deduplication protocol and made

some valuable addition which improves the efficiency and deduplication ratio. Lui’s

protocol was purely based on File-level deduplication, where client was supposed to

send file’s crypto-hash value (short hash) before uploading file to the server. On the

other hand, Rohit’s [14] work further added an approach and introduced dividing

the big file into blocks called ‘chunks’ and then they generated their crypto-hash

value, this process is called Block-level deduplication. The research claims to have

improved storage reduction performance as compared to Lui’s framework [13].

After going through the literature work in last 10 years, we have decided to

make better the storage reduction dimension of Jian Lui [13] File-level deduplication

framework. We intend to improve the performance by introducing the ‘chunking’

concept and implement it on those file whose size limit is greater than 1 GB, because

in many large organizations a file that formally moves from one level to next, that

file actually update by a smaller change so by applying the proposed Block-level

deduplication we can greatly improve our deduplication percentage.

17

Chapter 3

Deduplication Methodology

Many researchers in recent years, made some great efforts to give a composite dedu-

plication system which provide maximum possible storage saving along with a secure

nomenclature [17] but we haven’t seen a single research work which provide all the

problems at the same time and that’s almost impossible too. In this section we

discuss my methodology which I used to generate my results. We are considering

Lui [13] approach as base to our research study, we are proposing a comprehensive

approach to provide maximum possible storage saving along with a secure file pro-

cessing solution.

First of all, we started to reproduce Liu’s paper [13] on our local network datasets.

Our study provides an extension of the Liu’s work with implementation the real

world data and presenting a quick analysis of both the research frameworks. We

will be discussing the methodology of resolving the redundant files issue in the sys-

tem at different locations like storage nodes, hard drives, datacenters and other large

storage servers. We will keep our focus on the substructures and organization of the

overall deduplication proposed model.

18

3.1 System Model

Figure 3.1 represents the general architecture of our proposed system, diagram also

visulize different operation performed by when a new cleint or uploader wants to

save data on the server. The new client is then passed through many phases which

are visualized in the design.

Figure 3.1: General architecture of our proposed framework
.

3.2 Basic design of Block-level deduplication ap-
proach

System design for our implemented deduplication system consist of a client/uploader

titled as C, who tends to upload the file after registering to the system, uploader

will make upload request to storage Server S, while those clients who have already

19

uploaded the file has been termed as Checkers Ci. Flow diagram of our system is

given in figure below.

Figure 3.2: Block diagram for our proposed Block-level framework
.

3.3 Methodology of the proposed framework

Our Block-level deduplication approaches provide a client side, cross-user and sin-

gle server deduplication scheme, where client side encryption will ensure user’s file

privacy, semantically secure cross-user to meet impeccable deduplication between

different and single server deduplication will avoid any sort of brute force attacks

often occurs in proxy or additional servers. Furthermore, by using PAKE protocol,

we have kept a limit on number of attempt made by a user to upload a file, which

restricts the malicious attacks made by any curios client.

Our scheme makes use of short hashes of 13-bits for the file identifiers instead

of full hash 160-bits, in order to minimize the chances for the compromised server

to guess or determine the file key. Our scheme has already generated a short-hash

(sh) value stored in database for every uploaded encrypted file, before uploading a

20

Figure 3.3: Flow chart diagram for proposed deduplication model
.

specific file to the server, every clients computes its hash and short-hash (sh) and

sends it to the server. Server then checks its short hash value with already available

in the database. Now if two files with the same short hash arrived at server it al-

lows the clients having same short hashes to run PAKE in order to converse the file

accessing key among themselves. After server gets the keys received from both the

clients they exchanged through the PAKE, server configures the indexes for the au-

thentication of the already saved and newly coming duplicate files. Furthermore, If

the file accessing key not communicated in defined number of PAKE runs, the server

allots a new key to the newly arrived while his file will not be stored. The number

of attempts by a specific client for the PAKE runs has been defined by rate limiting

strategy. We have used rate limiting strategy to restrict number of attempts made

by client while uploading a specific file, throughout this study, we have kept that

limit up to 100, combining both rate limiting (uploaded) and rate limiting (checker).

21

Figure 3.4: Interaction diagram of the proposed deduplication model
.

3.4 System Modules

Our proposed single-server, data deduplication consists of various system modules

that have been introduced for the first time from Lui’s paper, like Rate limiters,

Checkers selection, PAKE etc which I need to explain it for better understanding of

the project.

3.4.1 Deduplication

Deduplication technique can be mainly categorized into two types; File-level dedu-

plication and Block-level deduplication. In File-level deduplication, the system gen-

erates the hash value of the complete file and then checks for the identical hash

value in the hash-table. While Block-level deduplication approach, it divides the file

in further segment called “chunks” and generates the hash value of each block to

22

checks either its identical exist in the hash-table or not, block level deduplication is

more efficient in the term of storage saving.

Deduplication can also be divided into two categories, according to the location

where exactly deduplication takes place, which are server-side deduplication and

client-side deduplication. In server side deduplication, client is unaware of the pro-

cess and the deduplication occurs once file gets uploaded to the system, whereas in

the client-side deduplication, client or uploader is fully involved in the process of

deduplication, initially client sends hash value of the desired uploading file, where

server checks the hash value in its hashing table. If the file exists in the server’s

hash-list, then server will ask the client not to upload the file and will share the file

accessing key of the existing file, otherwise client sends complete file as hash value

not stored in the server’s hash database. As per the above literature review, we

are convinced that client side deduplication is more efficient in the term of network

bandwidth saving.

Furthermore, deduplication efficiency can be measured through its storage sav-

ing power as well as bandwidth throughput reduction. we measure deduplication

effectiveness using deduplication percentage, let’s assume all the files are of the same

size and deduplication percentage is represented by: .

Deduplication percentage:

∂ = 1− Number of files in the storage / Total number of upload request .

While

Space reduction percentage = (1 − 1
Deduplication−ratio

) .

We compute the overhead of our system as below:

µ = (Total number of PAKE runs) / (Total number of upload requests)

Furthermore, to calculate the deduplication percentage we need the total number

23

of files exist in storage over the number of upload requests, as given

ρ = (1 - Number of all files in storage /Total number of upload requests) . 100

3.4.2 Encryption Methods

In the deduplication system the encryption technique plays vital role to ensure secu-

rity of the user throughout the system. In previously studied literature, most of the

researchers have used convergent file encryption method. Convergent method gen-

erates same plaintexts incase two different clients sends two same files consequently

we can detect the replicate file in the system. Encryption is retraceable two-way

technique, like we use to encrypt data where the file becomes unreadable while on

the receiving we get back the readable file after the decryption.

3.4.3 Crypto - Hash Functions

Hashing formally reoffered as cryptographic hash function, is an algorithm used to

be applied on a data to compute a value in order to verify the authenticity and repli-

cation of the data, if the same cryptographic hash function is used for a pair of files

and they produced the identical output checksums, then we assume both the files to

be duplicated or identical. MD-5 (Message Digest), SHA-1 (Secure Hash Algorithm)

and SHA-256 are commonly used cryptographic hashing functions, we will be also

using SHA-1 hashing function throughout the thesis. While using short-hash (sh)

cryptographic function we have made measured for hash collision to avoid the pos-

sible repetition in hash keys. Unlike encryption hashing is a one-way process where

we just generate representative checksum of the file which cannot be reproduced or

retraced.

24

3.4.4 Password Authentication Key Exchange (PAKE)

PAKE is prominent cryptographic technique guarantees security of the user file and

limits unnecessary attempts from irrelevant users. PAKE is a secure protocol even

at low entropy, whenever the server detects two identical short hashes, it allows

the clients to run PAKE-protocol in order to communicate file accessing key. For

example, if a user uploading a file, while after sending the hash value to the server,

he/she gets a message from the server that the same file already has been stored

in the storage, server through PAKE protocol will permit the new and old clients

having the same file to exchange their private file key, for accessing the file. In

such a way to exchange the accessing with the new user, the availability of the old

client is necessary for which server is responsible to complete the required number

of checkers. If file accessing key not communicated in defined number of PAKE runs

(which is limited through rate limiting strategy in the scheme) then the new clients

gets another accessing key while his files get discarded. Server also checks the subset

of available short hash in order make the deduplication more effective.

3.4.5 Rate Limiting

In data center’s paradigm, the presence of an active compromised server cannot be

ignored because such server can pretend to be uploader or checker at different to

guess some predictable files. For example, server can act to be an uploader who

is trying to upload the file and can exchange PAKE with checkers, or it can also

perform like a checker to reply PAKE requests from the uploader. So keeping these

brute force attack in mind we have proposed a “Rate Limiting Strategy” in order to

limit the number of PAKE run from uploader and number of PAKE responses from

the corresponding checkers. We have two type of Rate Limits, for a specific file F,

RLu will represent the limit specified for an uplaoder C and RLc denotes the Rate

25

Limit for the checker Ci. In this study, we have kept RLU = 70 while RLC = 30

and this strategy successfully improve security and reduces overhead on the system.

3.4.6 Randomized Threshold

In order to save maximum storage space and bandwidth, we have introduced a term

named “Randomized threshold”, get know how the same copy of newly arrived file

available in the storage system. The randomized threshold is TF (normally TF =¿

2) is then compared with Tc (a counter for each file, which compute number of

duplicate file already available in the system). Now if TC ¿ TF, then server S tells

the uploader that the same file is already available in the system and there is no

need to upload the file, and client-side de-duplication takes place here which saves

storage as well as network bandwidth. In second case if duplicate file found but TC ¡

TF, then server asks the client to upload the file but Server S do not save it because

file is already available, this type de-duplication is called server-side de-duplication

which stores only storage space.

3.4.7 Checker Selection

Once server gets an upload request from the client in the form of short hash (sh),

server shortlist the checkers by checking their popularity. Popularity means which

client has made more checks for the new coming files, it will be measured in de-

scending order. After that server selects the checkers having maximum PAKE run

engagement for serving as checker for the same file. If no match for the file found

Server puts client with random checkers to ensure PAKE run before uploading the

file.

26

3.5 Python based functions used for Block-level
deduplication Scheme

This section consists of some programing and designing modules of our methodology,

the following table show various function and methods used for different operations,

every function along with its usage is explained in the table.

Table 3.1: Python based functions used for Block-level deduplication Scheme

Functions Description

fileCounts() A program that calculate total files in directory along with its size

makeChunks() makeChunks() divides those file into small chunks whose size is
greater than the threshold size.

fhash() It’s developed to generate the crypto-hash keys for the file contents

HashforPDF() It generate the crypto-hash string value only for PDF file.

UploadStreamGenerator() It takes the popularity file produced by previous program and
creates a stream of uploads for the simulator

generate() It read the input and return it in form of upload and total uploads

get-generator() It generate another function which generates random numbers
from a specific distribution to a single file.

read-input() Reads the input data from source given in arguments, and returns
a list of (hash, count, size) tuples

convert() A method that converts various tokens on a line to integers.

count-uploads() It counts the total number of uploads the read dataset contains,
takes Args (files - The list of files read-input() returned) and re-
turns the number of uploads

compute-uploads() A function that computes the time ticks at which each upload
happens.

output-uploads() A function which gives the uploads generated by compute-
uploads().

simulate() It is a simulator for the deduplication protocol, which prints gives
an output CSV file with the raw simulation results in following for-
mat: ¡files stored¿ ¡files requested¿ ¡data stored¿ ¡data requested¿

27

3.6 Pseudo Algorithms used in Block-level dedu-
plication Scheme

For better understanding of our framework, we have put some our key functions in

form of algorithm, whose functionalities are discussed. In Algorithm 1, the simulator

reads all the files in the directory and subdirectories and compute the corresponding

crypto-hash by calling the relent function to the file type.

Figure 3.5: Algorithm: Make count of file in directory
.

28

Algorithm 2 is a default function for generating 13-bits crypto-hash through any

hash function if file size is less then threshold value and file type is not PDF. (we

used SHA-1 as hash calculating function).

Figure 3.6: Algorithm: Generate crypto-hash for complete file
.

29

Algorithm 3 will be called through the main function, if our file size is greater

than the specified threshold. Algorithm 3 divides that huge file into many chunks

and return crypto-hash value of every single chunk by applying SHA-1 hash function.

Figure 3.7: Algorithm: Divide big file into small blocks
.

Furthermore, if there is a PDF file in the given directory, the main function

will call Algorithm 4 where this function read out PDF pages via standard PDF

library (we used PyPDF2). After reading a complete PDF file, the function returns

separate hash for every chunk of the file.

30

Figure 3.8: Algorithm: Generate crypto-hash list for PDF files
.

31

Chapter 4

Results and Discussion

This Chapter is composed of implementation of our proposed deduplication pro-

totype, where we are proposing the extended version of the Liu’s deduplication

protocol along with some additional features. Lui’s [13] simulation model provides

solution to the File-level deduplication while we are proposing a complete compari-

son of the existing File-level and the newly implemented Block-level deduplication.

4.1 Implementation Environment

The basic tool for implementation of the project is Python3.0, which is object ori-

ented and multi-paradigm programming language. Python’s wide range of libraries,

inherent readability and simplicity makes it perfect choice for all the projects of

datasets. In our project we will be using some specialized Python’s libraries like

PyPDF2, SciPy, NumPy and Scilkit-Learn which provide easy way and techniques

for analysis of scientific data along with required modules for data preprocess-

ing. Furthermore, for implementation purposes we have configured an embedded

VMware Workstation Pro inside Microsoft Windows 10 Pro. Microsoft Windows

10 is installed on HP PO1, Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz, 3600Mhz,

4-core(s), with 16 GB of physical memory (RAM), while SDD Hard disk of 1000GB.

32

Additionally, the embedded virtual machine has been configured with 64 bit of

Lubuntu (Lite Ubuntu) 18.04 LTS amd64 (desktop) operating system. File-level

deduplication model [13] was implemented on two separate datasets which were

named as media dataset and enterprise dataset. However, we have implemented

our simulation using local network’s dataset, which is a private network collecting

student’s record and other research documentation of MS and PhD students. The

network is located on Super-computer of Research Center for Modeling and Simu-

lations, NUST Islamabad. Before discussing these results, we first consider a small

example with known redundancy to show the importance of our implementation and

validate deduplication schemes.

4.2 Small Dataset Scenario

In order to validate our simulation results on different file types individually, we

have taken a dataset as a test case scenario where three types of documents files are

considered (i.e., txt, abw and pdf). Metadata of these files listed as below:

Table 4.1: Metadata for the small dataset Scenario

Serial No. File type Number of files Size of files
1 .txt 8 771 KBs
2 .abw 6 1.02 MBs
3 .pdf 5 1.24 MBs

After passing these file through our simulation process we got the following, for

the text files (.txt), the requested data for storage is 771.5 KBs, File-level Dedu-

plications stored 385.8 KBs of data showing 50 percent deduplication percentage,

while Block-level Deduplication stored 206.3 KBs of data with 73. 26 percent dedu-

plication percentage. Similarly, for ABW files (i.e., word processor for Ubuntu),

requested amount of data is 1.0 MBs, where File-level approach stored 710 KBs of

33

data having 32.14 percent deduplication rate and Block-level approach stored 505.8

KBs of data with deduplication percentage of 51.72 percent. These results are shown

in Table 4.2.

Moreover, the requested amount of data for PDF files is 1.2 MBs, where File-

level approach stored 1007.1 KBs with deduplication percentage of 21.05 percent.

On the other hand, Block-level approach stored just 343.7 KBs with deduplication

percentage of 73.05 percent.

Table 4.2: File-level Vs Block-level storage reduction in small dataset

File type Data requested Block-level dedup File-level dedup
Data stored DD Percentage Data stored DD Percentage

txt 771.5 KBs 206.3 KBs 73.26 perc 385.8 KBs 50.00 perc
abw 1044.0 KBs 505.8 KBs 51.72 perc 710.9 KBs 32.14 perc
pdf 1228.0 KBs 343.7 KBs 73.05 perc 1007.1 KBs 21.05 perc

It has been observed from the example that the Block-level approach for dedu-

plication correctly remove redundant files at the storage center and gives better

performance as compared to the File-level approach.

4.3 Local Network Scenario

For more practical results on the two File-level and Block-level deduplication schemes,

we have used a 262.7 MBs dataset from the RCMS Super computer.

We have utilized 1200 files in directory and subdirectories for the File-level dedu-

plication, after simulation 937 files were stored to the memory while rest of the files

were found duplicate of the already stored files. During File-level deduplication our

simulator received a total 262.7 MBs data for storage while stored data on the server

is 234.8 MBs. In short, our percentage of storage reduction remained 10.5 percent

34

and the calculated time per file processing was 3.2ms. On the other hand, while per-

forming Block-level deduplication where we had put some extra functions in order

to split those files falls greater than the threshold value i.e., 100 KB. So, we received

5700 chunked-file for storage where just 4600 chunk-files were stored and the rest

chunks detected as duplicate. During Block-level deduplication, our simulator got

total 262.7 MBs of data for storage while stored data to the disk was 222.7 MBs.

In short, our percentage of storage reduction remained 15.21 percent, the calculated

time per file processing was 14.2ms (increase in processing time occurred due to

extra computation during file chunking).

In simple words, we have improved our deduplication percentage from 10.5 per-

cent to 15.21 percent by chunking the big files into fixed-size small blocks. Fur-

thermore, the below subsection of this our study consist of the visualizing of our

results, which may further help in demonstrating and analyzing performance of our

proposed approach.

Figure 4.1 below, indicates “Number of files” verses “Popularity of the file”, pop-

ularity means how many requests has been made to upload a file having same hash

value, we have plotted number of upload requests on y-axis while x-axis represents

File ID, (i.e., total number of files in dataset).

35

Figure 4.1: File’s popularity in Local Network dataset
.

Likewise below given figure 4.2 represent the “Popularity Graph ” for data Block-

level data deduplication framwork, which shows around 4500 files has been stored

to the system.

Figure 4.2: Block’s popularity in Local Network dataset
.

36

Figure 4.3 and Figure 4.4 respectfully represents the number of files and blocks

that are reduced in the Local Network dataset, these reduced files and blocks that

are omitted from storing on the server.

Figure 4.3: Files reduction in Local Network dataset
.

37

Figure 4.4: Blocks reduction in Local Network dataset
.

After we have shown, the total number of files that we replaced because of having

their duplicate already on the server, now we present the total number of storage

spaces that we reduced in our experiments. The storage reduced is shown in KBs

(Kilobytes).

Table 4.3: File-level Vs Block-level storage reduction in Local Network dataset

Data requested Block-level dedup File-level dedup
Data stored DD Percentage Data stored DD Percentage

262.7 MBs 222.7 MBs 15.22 perc 234.8 MBs 10.59 perc

38

Figure 4.5: Storage reduced via File-level approach
.

Figure 4.6: Storage reduced via Block-level approach
.

39

So from the above discussion we concluded that our proposed Block-level data

deduplication has improved deduplication performance by 5 percent (from 10.59

to 15.21 percent) in our local network dataset, Figure 4.5 and Figure 4.6 visualize

storage reduction of the two deduplication schemes. Furthermore, we expect that

the performance can be further improved by considering a large dataset with more

users working in similar domain.

40

Chapter 5

Conclusion and Future work

In this chapter, we have discussed the conclusion and future work derived from our

research work.

5.1 Conclusion

Deduplication in last few years has become an active area of research mainly for

storage reduction but there are many associated issues such as maximizing storage

reduction, bandwidth utilization and authentication, privacy, security and availabil-

ity of the shared files. In this thesis, our focus is on saving maximum possible storage

and providing a secure deduplication mechanism in order to keep the client’s trust

on the system. For Block-level deduplication when the size of a specific file is greater

than a predefined threshold, we made chunks of that specific size and applied crypto-

hash function which significantly improved our deduplication percentage. After the

comparison of our experimental results, we found our system showed 5 percent im-

provement to the previously discussed framework. In addition to improving results

we also had made comparison of the File-level data deduplication and Block-level

data deduplication. The security model of our approach provides the same privacy

and security measures to the user data previously discussed Lui’s [13] framework.

41

5.2 Future Work

This simulation work was specifically focused on the performance comparison of

File-level deduplication and Block-level deduplication, but our future work includes

further optimizing these already taken results and making its practical deployment

and usable prototype. We will further evaluate these solutions in terms of secu-

rity, latency, throughput, bandwidth and reconstruction of the blocks at during file

retrieval. Furthermore, we also have plans to implement the same deduplication

system on Server-side as well. Server-side deduplication solutions will always per-

form a full upload from the client to the server and are therefore not susceptible to

the client side-channel attacks. The downside of server-side deduplication is that; it

provides minimum bandwidth savings.

42

Bibliography

[1] Gantz, John, and David Reinsel. ”The digital universe in 2020: Big data, bigger

digital shadows, and biggest growth in the far east.” IDC iView: IDC Analyze

the future 2007.2012 (2012): 1-16.

[2] Dropbox hacked.” http://www.businessinsider.com/dropbox-hacked- 2014-10.

Accessed on November 2014.

[3] Aldossary, Sultan, and William Allen. ”Data security, privacy, availability and

integrity in cloud computing: issues and current solutions.” International Jour-

nal of Advanced Computer Science and Applications 7.4 (2016): 485-498.

[4] Sen, Jaydip. ”Security and privacy issues in cloud computing.” Cloud Tech-

nology: Concepts, Methodologies, Tools, and Applications. IGI Global, 2015.

1585-1630.

[5] Fan, Chun-I., Shi-Yuan Huang, and Wen-Che Hsu. ”Hybrid data deduplication

in cloud environment.” Information Security and Intelligence Control (ISIC),

2012 International conference on. IEEE, 2012.

[6] Lillibridge, Mark, Kave Eshghi, and Deepavali Bhagwat. ”Improving restore

speed for backup systems that use inline chunk-based deduplication.” FAST.

2013.

43

[7] Puzio, Pasquale, et al. ”ClouDedup: secure deduplication with encrypted data

for cloud storage.” Cloud Computing Technology and Science (CloudCom),

2013 IEEE 5th International Conference on. Vol. 1. IEEE, 2013.

[8] Wen, Mi, et al. ”BDO-SD: An efficient scheme for big data outsourcing with se-

cure deduplication.” Computer Communications Workshops (INFOCOM WK-

SHPS), 2015 IEEE Conference on. IEEE, 2015.

[9] Harnik, Danny, Benny Pinkas, and Alexandra Shulman-Peleg. ”Side channels

in cloud services: Deduplication in cloud storage.” IEEE Security and Privacy

6 (2010): 40-47.

[10] Keelveedhi, Sriram, Mihir Bellare, and Thomas Ristenpart. ”DupLESS: server-

aided encryption for deduplicated storage.” Presented as part of the 22nd

USENIX Security Symposium (USENIX Security 13). 2013.

[11] Heen, Olivier, et al. ”Improving the resistance to side-channel attacks on cloud

storage services.” New Technologies, Mobility and Security (NTMS), 2012 5th

International Conference on. IEEE, 2012.

[12] Meye, Pierre, et al. ”A secure two-phase data deduplication scheme.” High

Performance Computing and Communications, 2014 IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Soft-

ware and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on. IEEE, 2014.

[13] Liu, Jian, N. Asokan, and Benny Pinkas. ”Secure deduplication of encrypted

data without additional independent servers.” Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2015.

44

[14] Rohit Kiran, Rafael Fourq “SECURE DEDUPLICATION OF ENCRYPTED

BLOCKS OF FILES WITHOUT INDEPENDENT SERVERS” International

Journal of Advances in Electronics and Computer Science, ISSN: 2393-2835,

Volume-3, Issue-10, Oct.-2016.

[15] Ponemon Institute, “Cost of Data Center Outages”, Data Center Performance

Benchmark Series, 2016 https://www.ponemon.org/blog/national-survey-on-

data-center-outages.

[16] Agarwala, Ashish, Priyanka Singh, and Pradeep K. Atrey. ”DICE: A dual in-

tegrity convergent encryption protocol for client side secure data deduplica-

tion.” Systems, Man, and Cybernetics (SMC), 2017 IEEE International Con-

ference on. IEEE, 2017.

[17] Xia, Wen, et al. ”A comprehensive study of the past, present, and future of

data deduplication.” Proceedings of the IEEE 104.9 (2016): 1681-1710.

[18] Kamboj, Himshai, and Bharati Sinha. ”DEDUP: Deduplication system for

encrypted data in cloud. ”Computing, Communication and Automation (IC-

CCA), 2017 International Conference on. IEEE, 2017.

[19] Xu, Jia, Ee-Chien Chang, and Jianying Zhou. ”Weak leakage-resilient client-

side deduplication of encrypted data in cloud storage.” Proceedings of the 8th

ACM SIGSAC symposium on Information, computer and communications se-

curity. ACM, 2013.

[20] Wu, Yulin, et al. ”Dynamic data operations with deduplication in privacy-

preserving public auditing for secure cloud storage.” 2017 IEEE International

Conference on Computational Science and Engineering (CSE) and IEEE Inter-

45

national Conference on Embedded and Ubiquitous Computing (EUC). Vol. 1.

IEEE, 2017.

[21] Rajkumar, Shubhangi ”Security Analysis and Deduplication Using Convergent

Algorithm”, 2013 International Journal of Science and Research (IJSR) ISSN:

2319-7064.

[22] Shin, Youngjoo, et al. ”SEED: Enabling Serverless and Efficient Encrypted

Deduplication for Cloud Storage.” Cloud Computing Technology and Science

(CloudCom), 2016 IEEE International Conference on. IEEE, 2016.

[23] Rabotka, Vladimir, and Mohammad Mannan. ”An evaluation of recent secure

deduplication proposals.” Journal of Information Security and Applications 27

(2016): 3-18.

[24] Yan, Zheng, et al. ”Deduplication on encrypted big data in cloud.” IEEE trans-

actions on big data 2.2 (2016): 138-150.

[25] Li, Jin, et al. ”A hybrid cloud approach for secure authorized deduplication.”

IEEE Transactions on Parallel and Distributed Systems 26.5 (2015): 1206-1216.

[26] Yan, Zheng, Wenxiu Ding, and Haiqi Zhu. ”A scheme to manage encrypted data

storage with deduplication in cloud.” International Conference on Algorithms

and Architectures for Parallel Processing. Springer, Cham, 2015.

[27] Hur, Junbeom, et al. ”Secure data deduplication with dynamic ownership man-

agement in cloud storage.” IEEE Transactions on knowledge and data engineer-

ing 28.11 (2016): 3113-3125.

46

[28] Miguel, Rodel, and Khin Mi Mi Aung. ”HEDup: Secure Deduplication with

Homomorphic Encryption.” Networking, Architecture and Storage (NAS), 2015

IEEE International Conference on. IEEE, 2015.

47

