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Abstract 
 

Wireless sensor networks (WSNs) have revolutionized surveillance and monitoring applications 

by offering remote control and regulation capabilities. In most applications, networks utilize 

mobile nodes and rely on localization techniques to track the nodes' positions and movements. 

However, ensuring the security of the entire network poses a critical challenge. A single malicious 

node pretending to be another can wreak havoc and compromise the entire system. 

To tackle the presence of malicious nodes, this research presents a novel secure localization 

algorithm designed to estimate the positions of unknown mobile sensors in the presence of multiple 

coordinated Sybil nodes, while also detecting these malicious nodes. The research aims to provide 

a robust system that can withstand the rigors of real-world applications.  The algorithm 

accomplishes this by initially evaluating the network's geometric characteristics and unknown 

node location by time of arrival (TOA) measurements, followed by iterative detection employing 

the Generalized Likelihood Ratio Test as a mathematical framework. Next, infectious nodes are 

eliminated from the network, and estimation is performed utilizing the Geman McClure cost 

function. The final estimation guarantees resilience, facilitating precise localization even in noisy 

environments and in scenarios where not all malicious nodes are detected. 

The algorithm's performance is assessed by analyzing Root Mean Square Error (RMSE) and the 

probability of correct detections for different network states and considering two types of attacker 

models, those capable of exclusively performing enlargement or reduction attacks, as well as 

attackers capable of executing both attacks. The algorithm demonstrates a high probability of 

detection, surpassing 0.95, for attack intensities greater than 15m, while achieving a lower Root 

Mean Square Error (RMSE) compared to localization systems reported in the literature. The 

proposed algorithm's convergence is assessed by comparing it with existing literature, thereby 

affirming its practicality in WSN environments.  The system can be improved by extending the 

capability to detect and prevent attacks other than enlargement and reduction attacks and 

improving the detection rate at low attack intensity. 

Keywords: localization, Wireless Sensor Networks, attacker detection
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1.  Introduction 

 
 

1.1 Background 
 

Wireless Sensor Network (WSN) is an indispensable part of the Internet of Things (IoT) [1] that 

has attracted a significant number of IoT applications in military, commercial, and healthcare 

industries due to its affordability, scalability, and versatility. WSN is a network composed of small-

sized devices called sensor nodes which are self-configured and spatially distributed. The network 

is designed to be cost-effective, low-power, and capable of collecting and transmitting data 

wirelessly. 

In the healthcare sector, WSNs are utilized for remote examination of patients, allowing real-time 

monitoring of patients’ vitals’ conditions like sugar level, blood pressure, and heart rate. By 

equipping objects with wireless sensors, engineers and IT professionals can monitor the location, 

condition, and usage patterns of equipment and supplies in real time. This helps streamline 

operations, optimize inventory levels, and prevent loss or theft. In industrial settings, WSNs are 

used in asset tracking and inventory management that optimize operations. The versatility and 

flexibility of WSNs make them essential tools for engineers and IT professionals, empowering 

them to optimize processes, make informed decisions, and enhance performance and security in 

their respective fields. All the applications above require that the WSN be secure i.e., it should 

ensure confidentiality, integrity, and availability. Security is a key consideration in contemporary 

wireless network environments. 
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Attacks on WSNs can be classified as active and passive [2], protocol-stack-based attacks[3], or 

attacks compromising a specific aspect of security. Classifying attacks based on the layer in the 

protocol stack is a holistic approach as it is a relatively technical classification. Mentioned below 

are attacks on WSNs specific to each protocol stack layer. 

 At the physical layer, WSNs are susceptible to jamming attacks [4], compromised node attacks 

[5], and replication attacks [6]. Jamming attacks aim to target the availability of legitimate nodes 

by interfering with the communication channel. A Compromised Node Attack is when an attacker 

gains unauthorized access to a legitimate node or device within a network to exploit it for control, 

gathering sensitive information, further attacks, or disruption of network operations. The attacker 

can gain access to the node through various means such as exploiting vulnerabilities, password 

cracking, social engineering, or malware.  A Replication Attack involves the unauthorized 

duplication or cloning of a legitimate node within a network. The attacker copies the characteristics 

and behavior of a legitimate node, including its identifiers, credentials, or cryptographic keys, to 

create replicas, which are then used to carry out malicious activities such as distributed denial-of-

service (DDoS) attacks, identity theft, or network flooding. 

At the data link layer, WSN is susceptible to denial of sleep attack [7]. An attacker in a Denial-of-

sleep attack prevents sensor nodes from entering a sleep state and attempts to rapidly deplete the 

power supply of the nodes. This can decrease the lifespan of the nodes and even damage network 

communications. While other attacks, such as Jamming and flooding attacks, can also consume 

the energy of the nodes, Denial-of-sleep is a particularly devious attack that continuously keeps 

the node in an active state, thus draining the battery more quickly. 
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Figure 1: Sybil Attack 

Network layer attacks on WSNs include Sybil attack [8], selective forwarding attack [9], wormhole 

attack [10], and sinkhole attack [11]. In a Sybil attack as illustrated in Figure 1, an adversary 

generates several fake identities or nodes to gain control over the system or alter its operations. 

The attacker aims to exploit the trust in a network by generating multiple fraudulent identities. 

In a selective forwarding attack, nodes do not fulfill their responsibility of forwarding traffic for 

other nodes and drop some packets. This makes it harder to detect. If the compromised node is 

presently receiving dense traffic packets, the attack causes a lot of harm as compared to the 

compromised node receiving a very limited number of packets. In a Wormhole attack, the attacker 

sets up two malicious systems that communicate with each other via covert communication point-

to-point channel. This enables the attacker to receive the data faster and by effectively bypassing 

the network. 

A sinkhole attack is where the attacker changes the course of the network traffic from its intended 

destination to a malicious end, known as the sinkhole. The attacker takes advantage of a 

vulnerability in the routing protocol to redirect the traffic. 
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The transport layer is exposed to desynchronization attacks & Transmission Control Protocol 

(TCP) Synchronization SYN flooding and User Datagram Protocol (UDP) flooding attacks. An 

attacker forges the transport layer datagrams with unnecessary sequence numbers or flags in the 

de-synchronization attack. The receiver cannot reassemble the datagrams at its end and requests 

retransmission. When the sensor node receives these datagrams, it will retransmit the lost packets. 

This will result in retransmission timeouts and increased latency. In a TCP SYN flooding attack, 

the attacker floods the victim with numerous connection establishment requests i.e., TCP SYN 

messages. Upon receiving these requests’ messages, the victim sends acknowledgment packets 

and waits for the connection thus occupying network resources inefficiently. 

At the Application layer, WSNs are exposed to remote code execution. The attacker inserts a 

malicious code which may result in a compromise of the network. 

 

1.2 Localization 

Localization is a technique to calculate the position of an unknown target. Localization algorithms 

are employed to estimate the positions of unknown target nodes based on measurements of various 

parameters such as signal strength, time of flight, angle of arrival, or time difference of arrival or 

hop count. 

It involves estimating the spatial coordinates of sensor nodes in each environment without relying 

on external infrastructure like GPS. Localization can be performed by angle of arrival, time of 

arrival, signal strength, etc.  
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1.3 Motivation 

Most Wireless sensor applications involve monitoring and tracking where it is crucial to know the 

geographic position of the nodes. Although each sensor has limited capabilities, when a big WSN 

is implemented, it can carry out many complex tasks in a range of applications like management 

and regulation in environmental, agricultural, and industrial settings. An example of this is in 

agriculture where WSNs can reduce costs and environmental impact by only irrigating and 

fertilizing where necessary [12]. In recent years, there has been research to minimize the damage 

that is caused by natural disasters such as volcanic eruptions [13], floods, earthquakes, landslides, 

forest fires, cyclones, and tsunamis by using sensor networks [14]. 

Having the ability to recognize the precise positions of the nodes allows the collected sensor data 

to be associated with specific areas, resulting in more accurate analysis and better decision-

making.  

Moreover, localization is necessary for network management tasks. With knowledge of the node 

locations, network administrators can allocate resources more efficiently, plan node deployments, 

and configure communication parameters. This helps with routing, data aggregation, and energy 

management, ultimately improving the performance and longevity of the network. 

Localization plays a role in finding the exact positions of the nodes to ensure adequate coverage 

and connectivity within the network. By doing this, it becomes possible to design a deployment 

plan that meets the sensing coverage needs. Localization data can also be used to spot any coverage 

holes and relocate or add additional nodes to improve the network's connectivity and performance. 

Localization can also help to detect and localize any faults or errors within the network. Knowing 

the exact positions of the nodes lets us recognize any malicious activity. 
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The utilization of localization algorithms in wireless sensor networks is hindered by a variety of 

difficulties. Notable among these are: limited resources, communication impediments, precision 

and accuracy issues, scalability troubles, dynamic topology challenges, harsh environment 

complications, and security and privacy considerations. To overcome these obstructions, a 

localization algorithm that is both robust and energy efficient must be developed to address the 

resource limitations, accuracy requirements, scalability, dynamic network environment, and 

security needs of wireless sensor networks. 

 

1.4 Problem Statement 

Sybil attack ravages Wireless Sensor Networks (WSNs), leaving chaos and destruction in their 

wake. By creating a network of counterfeit personas, the attacker gains the power to manipulate 

data aggregation, manipulate routing paths, and exploit valuable network resources. The 

consequences of such attacks are profound. Legitimate nodes face communication disruptions as 

the imposter interferes with data exchange. The integrity of transmitted data is compromised and 

tainted by the injection of falsified information. The attacker consumes network resources, leading 

to resource depletion and degradation of network performance.  

Moreover, the imposter evades authentication and authorization mechanisms, compromising the 

overall security of the network. The resilience and trustworthiness of the WSN are severely 

jeopardized. To combat the Sybil menace, it is imperative to implement effective mitigation 

strategies and detection mechanisms to safeguard the network from these malicious attacks. 

While there exist, numerous techniques aimed at securing WSNs from a Sybil attack, they often 

come at a price, the need for additional hardware, and computationally demanding authentication 



 

7 
 

and integrity schemes. These formidable defenses, while effective in traditional settings, prove to 

be impractical within the resource-constrained realm of WSNs. Given the vast array of applications 

for Wireless Sensor Networks (WSNs) in critical and disastrous scenarios, it is crucial to develop 

robust mechanisms for detecting and mitigating a Sybil attack. This research aims to formulate a 

secure and robust localization system that ensures WSN security in mobile adversarial 

environments in the presence of coordinated attacks such as the Sybil attack keeping in view the 

computational capacity and limitations of WSN nodes. 

 

1.5 Thesis Contribution 

Based on the problem statement, a novel solution to secure the WSN has been proposed that detects 

the attacker nodes in the network and localizes unknown nodes in a noisy environment. The 

contribution of the thesis is as follows:   

• Formulation of a localization system that estimates the position of an unknown node in a 

noisy environment. 

• A Sybil node detection system to detect the malicious or compromised node performing 

coordinated enlargement or reduction attack. 

• A realistic WSN-based solution that does not make unrealistic assumptions about the 

network and aims for light-weighted calculation. 



 

8 
 

1.6 Thesis Organization 

The first chapter provides the research introduction provides an overview that encompasses the 

necessary insights into the concepts and terminologies essential for comprehending the research, 

the motivation behind the research, the problem statement, and the objectives of the research. 

Chapter 2 provides a comprehensive exploration of the literature regarding defense mechanisms 

against attacks in WSNs and localization techniques to calculate the position of an unknown node 

in WSNs. This includes an in-depth study of the merits and limitations of different localization 

techniques that lay the foundation for the proposed research. 

Chapter 3 elucidates the methodology employed in this study. It delineates the approach taken to 

design, develop, and evaluate the proposed localization technique. The chapter provides the 

frameworks utilized to ensure a robust localization system suitable for WSNs. 

In Chapter 4 and chapter 5, the experimental setup and the analysis is presented. This encompasses 

a detailed explanation of the assumptions made and the security analysis of the system. 

Furthermore, a comparative analysis is conducted to underscore the profound significance of the 

research about the prevailing literature. By juxtaposing the proposed work with existing studies, a 

comprehensive evaluation is presented, highlighting the novel contributions and advancements 

made by this research. This comparative analysis serves to emphasize the unique value and 

relevance of the proposed research in the broader academic landscape. 

Finally, the last chapter summarizes the main contributions, findings, and insights derived from 

the study. Moreover, within this chapter, attention is directed towards potential avenues for future 

work, providing valuable recommendations to further enhance the proposed scheme and 
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effectively mitigate any identified limitations. These recommendations serve as a guide for future 

researchers and practitioners to explore new possibilities, refine the existing framework, and 

expand upon its capabilities. 

 

1.7 Summary  

This chapter provides a comprehensive overview of Wireless Sensor Networks (WSNs), attacks 

in WSNs, and the field of localization. It begins by establishing the research motivation and 

highlighting the problem within WSN-based localization. Throughout this chapter, we delve into 

the domain of WSNs and localization, examining the array of attacks that pose significant security 

challenges and understanding the different localization algorithms. 

The thesis explains the underlying motivation, centered on bolstering the security and efficacy of 

WSNs. Furthermore, it highlights the notable contributions of the devised technique, showcasing 

its capacity to adapt to evolving system requirements. To provide a coherent structure, the 

organization of the thesis is outlined, delineating the subsequent chapters. The forthcoming chapter 

offers a comprehensive literature review.  

Later in the chapters, a detailed exposition of the technique follows explaining every aspect of the 

technique and analyzing its performance in comparison to the literature.  
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2.   Literature Review 
 

 

2.1 Introduction 

The current chapter is dedicated to the in-depth examination of localization algorithms, providing 

insights into the rationale behind the necessity of localization specific to WSN. Additionally, an 

extensive review of existing literature is conducted to identify the weaknesses of localization 

algorithms that can be applied to WSNs to determine the location of an unidentified node in the 

presence of malicious nodes. 

Due to the energy constraint and limited power, Wireless Sensor Networks (WSNs) are susceptible 

to various types of attacks that compromise the confidentiality, integrity, or availability of the 

network. Strong encryption and authentication algorithms, secure key management and trust 

management solutions, effective localization algorithms, and machine learning-based solutions 

can be employed to reduce the vulnerability of WSNs to attacks.   

While designing algorithms to secure WSNs, it must be taken into consideration that they are 

limited in power and computation capability. Performing complex and lengthy computations of 

encryption and key management will deteriorate the energy of WSN nodes. As a result, the lifetime 

of the WSN will decrease. Sending numerous communication packets to ensure secure and reliable 

communication will lead to network congestion and result in delayed communication. 

Key establishment algorithms may work in coordinated Wireless sensor networks but in 

adversarial networks where all nodes have limited resources, it is challenging to have a centralized 

entity to perform key establishment. In a dense environment, a considerable amount of energy will 
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be utilized by each node to exchange keys with all neighboring nodes thus adversely impacting 

the channel. 

Due to the distributed and power-constrained nature of WSNs, security protocols do not need to 

be universal at the finest level of granularity. Instead, it needs to ensure that it does not drain the 

power of nodes for unessential tasks. For instance, signal jamming directed against a proportion 

of nodes can be tolerated due to the implicit redundancy of the system, and data aggregation allows 

for only necessary information to be protected. 

 

2.2  Localization Algorithms  

Global Positioning System (GPS) can satisfy some requirements for localization, but not only is it 

an expensive solution, but it is also imprecise for nodes deployed in indoor environments due to 

position error. Moreover, the GPS location may be inaccessible as the GPS can be jammed by 

climatic conditions.  

A positioning algorithm must fulfill the following criteria.  

• The system needs to be distributed, as a network with low memory and limited bandwidth 

would be unable to cope with the demands of shuttling the entire topology to a server.  

• The communication between the nodes and processing power must be utilized efficiently.  

• the positioning system should be able to function even when the network is 

disconnected.[15] 

Some common techniques used for estimating the position of an unknown target are the 

following: 
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• Multilateration 

• Trilateration 

• Received signal strength (RSS) based localization 

• Proximity-based localization 

• Centroid-based localization 

• Gradient-based range localization 

• Monte Carlo-based Localization 

Multilateration is a technique that relies on either the received signal's time of arrival (TOA) or the 

time difference of arrival (TDOA). TOA requires synchronization between the receiver and 

transmitter and calculates the distance between the receiver and the transmitter from the absolute 

value of the signal's time of flight from the transmitter to the receiver using the TOA and the 

propagation speed. On the other hand, TDOA requires only synchronization of the receivers. This 

method involves the anchor nodes receiving the signal transmitted by the tracked node and using 

the difference in the signal arrival times at the two anchor nodes to calculate the difference in the 

distances. Figure 2 illustrates Multilateration for 2-dimensional position estimation.  

Blue nodes are identified by their known positions, while the yellow node represents a position 

that is sought after. The circles symbolize the distance between the known node and the unknown 

node. The measurement of distance is determined by calculating the time difference of arrival. For 

3-dimensional position estimation, at least 4 known nodes are required. 
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Figure 2: Multilateration 

Trilateration estimates the position of an unknown target by the angle of arrival measurements. 

Angle of Arrival (AOA) measurement techniques are also referred to as bearing measurements or 

direction of arrival measurements. There are two main categories of AOA measurement 

techniques:  

• The amplitude response of the receiver antennae 

• Phase response of the receiver antennae  

They both calculate the angle from which a signal from an anchor node arrives at an unknown 

sensor node. The region in which the unknown sensor is located can then be determined from the 

angle of the line formed between the anchor node and the unknown sensor as illustrated in Figure 

3. To accurately calculate the position of the unknown sensor, at least two anchor nodes are needed. 
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Figure 3: Trilateration 

Received signal strength (RSS) based localization is a technique that utilizes the attenuation of 

wireless signals to calculate the position of a device or object. The strength of the signal is 

measured at various points and the distance between the device and the transmitter is estimated. 

This information, combined with the known positions of the transmitters, is then used to determine 

where the device is located. 

RSS-based localization can be achieved using wireless communication protocols, for example, 

Radio Frequency IDentification (RFID) Wi-Fi, Bluetooth, or Zigbee. The accuracy and reliability 

of estimating the unknown target position depend on the communication protocol's characteristics 

and signal propagation properties. Advantages of RSS-based localization include cost-

effectiveness, ease of deployment, and compatibility with existing wireless infrastructure. 

Limitations of RSS-based localization include sensitivity to signal interference, multipath effects, 

and environmental changes. 
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Proximity-based localization does not calculate the exact position but rather the relative position 

of the unknown node relative to an anchor node. In Distance vector (DV) hop-based localization, 

the sensors estimate the distance between each other based on hop count. The anchor nodes 

broadcast their position coordinates to their neighboring nodes, incrementing the hop number and 

sending it to their neighboring nodes. Based on the number of hops it takes to reach the unlocalized 

node, the unlocalized node sets a value of the distance from anchor nodes. 

Hop Terrain is a distance estimating technique that is similar to the DV hop method. It calculates 

the position of unknown nodes by evaluating the average hop distance of the unlocalized node 

from the anchor node. Then the initial estimated position and distance information is broadcasted 

to the neighboring nodes. The previously unlocalized node refines its position using the least 

square method. 

Centroid-based localization calculates the position based on connectivity information between 

sensors. Unlike other range-free algorithms, centroid-based localization depends on the relative 

positions of neighboring nodes rather than the actual distances between them. Sensors calculate 

their locations based on the centroid of their neighboring nodes. The centroid is determined 

through the connectivity or signal strength readings. The algorithm assumes that the sensors are 

distributed uniformly across the network. 

Gradient-based range localization estimates the positions of sensors in WSN based on an iterative 

method that initially has a guess position and performs gradient descent on signal strength or 

connectivity-based attributes to update the position. The gradient value determines the direction to 

reach the position of an unknown node. The magnitude of gradient descent is regulated by the 
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learning rate parameter. The process of calculation of estimates continues until the difference 

between the consecutive estimates becomes less than the threshold defined for convergence. 

Monte Carlo-based Localization is an iterative probabilistic technique that calculates the target 

position by network communication and particle filtering.  

During a phase of network communications, the essential data for updating location information 

is obtained. In this process, anchor nodes transmit their locations, which are then received by 

unknown nodes. Upon receiving the information, these unknown nodes rebroadcast it to other 

nodes. Regardless of the type of broadcast received, nodes store both the location data and the 

corresponding node IDs. At regular intervals, nodes utilize this accumulated information to update 

their location estimates through the utilization of a particle filter. Particle filtering involves 

estimating the target location by defining a motion model and performing prediction and 

estimation. The previous position of the sensor is used to assign weights to the measurement and 

these weights are resampled after each iteration to improve the accuracy of the position calculated. 

While most range and range-less localization algorithms can fulfill the following criterion, each 

has its own merits and limitations. A concise overview of localization techniques designed for 

non-adversarial environments is provided [16-20]. 

[16] is based on least squares approaches i.e., range-difference measurements (RD-LS), squared 

range observations (SR-LS), and squared range-difference measurements (SRD-LS) for localizing 

the node. Even though the outcome of the optimization problems is not convex, the position is 

calculated accurately by solving the Generalized Trust Region Subproblem (GTRS).[17] on the 

other hand, performs maximum likelihood (ML) estimation and converts a non-convex problem 

to a convex problem. An algebraic approach is presented in [18] to localize an object in three-
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dimensional space using Angle of Arrival (AOA) measurements, which can handle the impact of 

sensor position errors. It achieves the theoretical lower limit defined by Cramer Rao Lower Bound 

(CRLB) and keeps a bias low. It assumes that the position lies within the convex hull. [19] 

performs localization with a hybrid approach using both TOA and RSS-based localization 

techniques. Keeping in view the power constraints of WSN, the algorithm does not perform 

iterative calculation, rather it uses Maximum likelihood estimation which is closed form and thus 

an efficient way to localize nodes in WSN.  

The conventional localization algorithms mentioned above are formulated to be used in harmless 

environments. As a result, they become vulnerable to a variety of security risks that could arise 

from interference and attacks. 

 

2.3 Secure Localization Algorithms 

The failure of conventional localization algorithms in the presence of an adversary calls for a 

secure localization scheme that estimates the correct position of the unknown node when attackers 

are trying to manipulate the calculation. 

SeRLoc [20] is a secure range-independent localization system designed for wireless sensor 

networks (WSNs), employing two types of nodes, mobile nodes, and Locator nodes. The position 

of the unknown node is estimated by locators who transmit different beacons to the 

omnidirectional antennas and collect the information from each sensor in its neighborhood. The 

locator then performs a search to specify the search region where the sensor lies and then employs 

a grid scoring system to choose the region that is specified by the overlapping region of all the 
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locators in its vicinity. The algorithms can defend against impersonation, Sybil, and wormhole 

attacks. 

HiRLoc [21], an enhancement to the SeRLoc model, enables nodes to passively detect their 

location without increasing the number of sensors. It achieves this by intersecting beacon frames 

in the coverage area with multiple reference points. HiRLoc effectively addresses security 

concerns such as a Sybil attack, wormhole attack, false beaconing, and impersonation by utilizing 

properties like antenna orientation and communication range. It employs cryptographic primitives 

like GSK (Global symmetric key) to secure beacon frames. 

While HiRLoc offers improved accuracy compared to SeRLoc, it does introduce higher 

computation and communication overhead due to the reception of multiple beaconing frames from 

different locators. It is worth noting that SeRLoc requires additional hardware, specifically a 

locator node with a directional antenna, which may limit its suitability in adversarial WSN 

scenarios. 

In the range-based localization, Verifiable Multilateration, location authentication with mobile 

base stations, and distance bounding protocols were proposed to withstand attacks. In [22], a 

distance reduction attack was countered with a distance-bounding protocol and authentication 

attacks were countered with a simple challenge-response protocol. [23] proposed a modulation 

scheme-based distance commitment-verification protocol that assumes that the attacker can 

perform a replay attack. The process of correct estimation of unknown nodes involves a 2-step 

procedure, data distance commitment, and distance verification a. In the distance commitment 

phase, the device upper bounds the distance measurements by modulation. An adversary enlarging 

distance by more than the communication range is also exposed. 
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After distance bounding, the committed distance is verified by round-trip time-of-flight 

measurement. In this exchange, the sender initiates the distance verification phase by transmitting 

a verification code; the receiver tries to detect the presence of that code, or traces thereof, in the 

transmission, despite the adversary’s efforts to trail-hide its existence from the channel. The model 

is limited to localizing securely only when an enlargement attack occurs and provides no security 

in case of reduction attacks. The [22]  and [24] guarantee a high level of security when the target 

and anchor node topology is such that the location estimation is a convex problem.  

[25] proposed three forms of Attack-Resistant Minimum Mean Square Estimation Schemes that 

were brute force based, greedy, and enhanced greedy-based algorithms. The brute force is the most 

computationally expensive approach among the proposed approaches. Greedy and enhanced 

greedy decrease the computational load of the algorithm by identifying the attackers efficiently.  

The position of the target sensor node is calculated by determining the target field. The reference 

sensor nodes identify the region of a rectangle with the minimum area that covers all the locations 

that are declared by references. The extended rectangle is formed by keeping in view the maximum 

transmission range of the signal. The extended rectangle is declared as the target field. The 

extended rectangle is divided into sub-regions which are assigned a vote which is incremented 

based on the rings formed by reference sensors. Finally, the location of the unknown node is 

calculated by centroid-based localization. It verifies whether the location references are suspicious 

or not based on a degree of consistency metric. If the consistency metric is less than a threshold, 

the nodes are suspicious. The algorithm checks for all nodes and removes the suspicious node and 

performs localization. A greedy approach reduces the computations by a voting-based system, 

wherein the localization area was divided into a grid and the vote count of each grid point was 

increased if the distance from the reference point matched the distance measurement from the 
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reference point. To overcome resource constraints and achieve higher accuracy in location 

estimation, an iterative refinement algorithm is proposed. The number of cells is determined based 

on memory limitations. After the initial round of voting, the algorithm identifies the smallest 

rectangle enclosing cells with the highest vote and repeats the voting process. This iterative 

refinement allows for a smaller quantization area and finer precision. Malicious location references 

are likely discarded as their candidate rings do not overlap with benign references. The refinement 

process terminates when the desired precision or the limit of refinement is reached. The algorithm 

outputs the estimated location obtained in the final iteration. By setting a desired precision 

threshold, the algorithm ensures termination. 

In [26], localization based on Geometric dilution of precision is proposed that considers the 

distance measurements of unknown nodes and known nodes. Weights are assigned to the estimates 

that are calculated by the GDOP value. These weights reflect the respective significance of each 

location estimate. The position of unknown nodes is calculated accurately irrespective of the 

node's visibility or lack thereof. It is scalable as it utilizes a distributed architecture, enabling each 

node to independently compute its location. However, its computational complexity increases as 

it relies on the number of anchors needed to localize randomly deployed nodes within the network. 

To mitigate this problem, one solution is to limit the number of anchors required within a specific 

communication range of each node. 

 [27] addresses the challenge of localizing a target in challenging environments where direct line-

of-sight links may not be available. It performs localization based on the network topology 

information and received signal strengths of reference nodes. By combining measurements of 

received signal strength (RSS) and time of arrival (TOA), the system estimates the azimuth angle 
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between a reference point and the target. These estimated azimuth angle observations are then 

employed to linearize the measurement models, facilitating the derivation of a new estimator. The 

technique can calculate the azimuth angle without the requirement of additional hardware while 

assuming that the nodes are fixed and form a topology that can calculate the azimuth. The 

assumption that the position of known nodes is fixed and limited to a certain geometry supports 

the calculation of azimuth angle but limits the usage of the technique with randomly deployed 

WSN architecture. 

A novel strategy using Variational Bayesian Localization (VBL) was used for localization in [28], 

where imperfect knowledge about the anchors’ locations is taken into consideration. The technique 

claimed to perform accurate localization with mobile anchor nodes in dense environments where 

the nodes are at NLOS, and their exact position is not known. The approach incorporated a mixture 

of Gaussian distribution to model noise. Since the direct estimation of the likelihood function for 

the target node's position is challenging when the node position has an uncertainty factor, 

variational distributions were used to approximate the posterior distributions by minimizing the 

divergence that can result from the calculation of non-convex geometry. Importance sampling was 

employed to handle nonlinearities and node uncertainties.  

Conversely, the available secure localization solutions rely on specific assumptions about the 

network topology, communication channel, or malicious intent of nodes, which limits their 

practicality. 

Recently, several wireless localization techniques have been used in the Monte Carlo approach 

e.g.  SA-MCL [29], RESA-MCL [30], IMCB [31], and MCB-PSO [32]. 
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SA-MCL [29] introduced a notable improvement to the MCL algorithm [33] by utilizing dead 

reckoning to update node locations when anchor nodes are not within communication range. This 

enhancement enhances the localization accuracy during the time intervals between encounters with 

anchor nodes. The MCL approach had limitations, however. It outperformed the MCL approach 

only when the anchor nodes are not present in the communication range of the targeted node. 

Therefore, in dense networks where anchor nodes are more readily available, the SA-MCL was 

improved to the conventional MCL approach only in the network where anchor nodes are scarce. 

RESA-MCL [30] enhances the conventional MCL algorithm by implementing modifications that 

enhance accuracy and resilience to attackers. Initially, particle positions are updated through dead 

reckoning. The received anchor lists undergo a positional plausibility check and update the 

distrusted points. To prevent a single malicious node from significantly impacting the position 

estimate, RESA-MCL selectively applies anchor node information to a subset of particles and 

allows motion-based updates. It provides security against biased position attacks, random position 

attacks, and fixed position attacks. 

Monte Carlo Boxed Localization (MCB) is an adaptation of Monte Carlo Localization (MCL) that 

involves establishing individual one-hop and two-hop anchor sets for each unknown node through 

listening, effectively limiting impossible samples. MCB goes a step further by utilizing anchor set 

information to restrict the sample space, leading to significant energy savings for sensor nodes and 

enhanced sampling accuracy. 

Improved Monte Carlo Localization Boxed (IMCB) incorporates historical anchor node and RSSI 

ranging data. It leverages historical anchor nodes and RSSI-ranging information to narrow down 

the sampling range for unknown nodes. This approach improves node position sampling efficiency 
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and addresses the anchor node density issue. Secondly, it optimizes the weight allocation based on 

RSSI, effectively distinguishing the importance of different sampling points. This optimization 

contributes to reducing localization errors in node positioning. Thirdly, the motion model is 

improved, enhancing the direction prediction for nodes, and thereby reducing the sampling range 

for position prediction. These improvements lead to increased efficiency and accuracy in node 

localization. However, IMCB cannot capture discriminatory factors that lead to malicious user 

detection. The approach has a high dependency on measurements, if measurements are fraudulent, 

the position will not be estimated correctly. It also requires a database to store historical Received 

Signal Strength Indicator (RSSI) and node position which can be a challenge in dense 

environments. 

Monte Carlo-based (MCB) algorithms have certain drawbacks. One of the limitations is the 

absence of a specific search direction since candidate positions are randomly generated within an 

anchor box. As a result, the time required for localization is high and the overall efficiency is low. 

Additionally, MCB algorithms may not be suitable for scenarios with high mobility demands. In 

extreme cases, a significant number of candidate nodes within the anchor box may fall outside the 

coverage area of their corresponding anchors, leading to low localization accuracy upon 

completion of the iteration.  

MCB-PSO [32] aims at overcoming the flaws in traditional Monte Carlo-based localization by 

incorporating an algorithm for optimization. It is an MCB approach designed for an environment 

where both anchor and unknown nodes are mobile. Initially, the nodes transmit packets containing 

position information and hop counts to the entire network. The unknown node receives these 

packets and establishes its neighbors based on the hop counts. Subsequently, the anchor box is 
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constructed using the neighboring nodes connected to the unknown node. To optimize the 

localization process, the Particle Swarm Optimization algorithm is employed. The adaptive anchor 

node selection parameter is utilized to evaluate the cost of each particle, and the position and 

velocity of the particles are updated accordingly based on the cost value. It achieves convergence 

efficiency by adaptively varying the anchor selection operator. It also overcomes the particle 

degeneracy problem that the conventional MCB techniques faced.  

A unique cube-based multitarget three-dimensional localization solution was proposed in [34] 

which uses time-difference-of-arrival (TDOA) measurements of sensors. Turbo expectation 

propagation (EP)-based decoding algorithm (TED) is formulated to perform localization 

successfully in asynchronous networks. The approach proposed does not require synchronization 

among TDOA-based sensor arrays. The cube-based 3D location system proposed was designed 

for WSNs that use narrowband signal transmission. 

In contrast to most existing schemes that assume prior knowledge of model parameters to reduce 

the dimensionality of cost functions in the location estimation process, the approach presented in 

[35] takes a different approach. In contrast to the existing techniques that assume a model with 

fixed parameters, [35] proposed an adaptive estimation of model parameters. The localization 

equation is an open-form solution and depends on how the parameters are set. The proposed 

algorithm is a 2-step calculation that utilizes TOA and RSS measurements and calculates the 

position iteratively by the Least square approach. It is assumed that even if a very simple LOS 

communication is performed, the calculation by TOA and RSS is nonlinear and thus cannot be 

modeled by a closed form. Initially, calibration is performed to calculate the nuisance parameters 

as the reference node locations and signal strengths are known. Afterward, the position of the 
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unknown node is estimated by taking advantage of both TOA and RSS measurements, and an 

iterative least square is carried out to estimate the position of the node.  

CFFLS [36] proposed three closed-form least squares (LS) algorithms for three-dimensional 

localization using time difference of arrival (TDOA) measurements. Two of these algorithms were 

specifically designed to leverage knowledge about nuisance parameters to achieve accurate 

localization. The algorithms utilized different sets of TDOA measurements, including a single set, 

an extended single set, and a full set. To evaluate the performance of the algorithms, simulations, 

and real-world measurements were conducted. The experiments involved placing transmitters in a 

quasi-coplanar configuration within a wireless system. The results obtained from both simulations 

and real-world measurements were compared, demonstrating consistent outcomes. The study 

concluded that when TDOA measurements were contaminated by noise, the CFSSLS provided 

better estimation as compared to CFExSSLS and CFFSLS algorithms at different signal-to-noise 

ratio (SNR) levels. Moreover, the CFFSLS algorithm did not show drastic estimation performance 

differences due to changes in the signal power or noise. 

[37] devised a novel technique for estimating the position of the unknown target with Multi-

Dimensional Similarity (MDS) analysis for the environment with the NLOS propagation model. 

The position approximation was formulated Alternating Direction Method of Multipliers 

(ADMM) to solve the constrained minimization problem. Initially, ADMM was used to create a 

low-rank matrix for a complex propagation model that contained both Gaussian and non-gaussian 

noise and biases. TOA measurements were used for range calculation in matrices. Next, the 

generalized subspace method was used to separate the signals from noise by Eigen Value 
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Decomposition (EVD).  The impact of outlier measurements is mitigated by using ADMM and 

the approach is made robust by using ℓ2 norm.   

Recently, the concept of Generalized Trust Region Sub-Problem (GTRS) has been used to solve 

the localization problem efficiently. [38] calculates the unknown target node position Weighted 

Central Mass (WCM) for the sensors that have a direct link with the nodes whose positions are 

known. It is accompanied by forming triangles using the law of cosines between the sensors. The 

triangles between sensors are created by adopting multi-hopping, which simplifies the problem 

into a GTRS. It is assumed that all sensors possess the ability to obtain RSS measurements, but 

only anchors nodes possess the ability to measure AOA.  

SR-MCC [39] focused on calculating the position of an unknown node in the NLOS environment 

using only TOA measurements. It proposed a mixture model with 2 types of noise, gaussian noise 

for thermal disturbances in the sensor and non-gaussian noise for NLOS and biases. Using GTRS 

and half quadratic theory, the severely no convex problem is solved via bisection. Half quadratic 

theory is adopted with alternating optimization to set the value of Kernal, a variable that assigns 

weights to the outlier measurements. The use of half-quadratic theory, coupled with an alternating 

optimization technique, effectively handles the nonlinearity of the problem, enhancing the 

robustness of SR-MCC against NLOS effects. 

The localization approach proposed in [40] calculated the position of unknown nodes assuming 

that there may be malicious nodes in the network as well. The malicious nodes can corrupt the 

network with a distance enlargement attack. The initial position is calculated using WCM 

including malicious nodes as well. Initially, the methodology utilizes TOA measurements from 

known nodes to create range circles. These circles are centered on the known anchor nodes’ 
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location and have radii equal to the distance between the known node and the unknown node being 

localized. These range circles are employed to determine the intersection points between each 

circle and other circles in the network. Based on the resulting intersection points, the nodes are 

categorized as potential nodes. A node is considered potential if its range circle either does not 

intersect with other circles or has fewer intersections. If all nodes are classified as potential, this 

may indicate interference in communication channels, such as Non-Line-of-Sight (NLOS) or a 

noisy channel. The mode is calculated for all the potential nodes and after removing the node, the 

position is calculated again by GTRS. The honest, malicious nodes and the nodes in a noisy 

channel are differentiated based on a threshold defined to differentiate between the attacker and 

the noisy channel. If the range circle of a particular node does not intersect with any other node, 

the line is extended from the node to check if it will intersect in case it is extended. If the line 

intersects, the node is not considered malicious as the network assumes only an enlargement attack 

can be performed by the nodes.  

A novel attacker detection scheme is proposed in [41] that combines a geometric approach for 

obtaining the estimate of the location of an unknown node with the Generalized Likelihood Ratio 

Test (GLRT) in an environment where nodes are present and capable of performing distance 

reduction and distance enlargement attacks. The initial position is calculated as in [40] by using 

WCM. The malicious node is detected by calculating the noise standard deviation and tuning the 

false alarm probability. The problem of detecting attackers involves the task of differentiating 

between two hypotheses. H0 is the hypothesis that distance measurement is the result of the 

distance of each sensor from the unknown sensor with an additive noise value whereas H1 is the 

hypothesis that distance measurement is the result of the distance of each sensor from the unknown 

sensor with an additive noise value and a deviation value sigma. Under the assumption that H0 is 
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true, the distance measurement indicates that node ai is honest, although it may contain some noise 

attributed to the channel. On the other hand, if H1 is true, it signifies that the node ai is an attacker 

engaging in an enlargement attack when the value of sigma is positive, or a reduction attack when 

the value of sigma is negative. After detecting the malicious identities, they are excluded from the 

localization process which is converted into a GTRS using the law of cosines (LOC) and solved 

efficiently with the bisection principle. 

[42] aimed to estimate both the position and orientation of the source accurately in the NLOS 

environment. propose an iterative algorithm that effectively utilizes RSS and TOA measurements. 

The algorithm performs iteratively utilizing RSS and TOA measurements. The localization 

problem solves the non-convex arrangements of nodes and transforms the non-convex problem 

into GTRS. Considering that the RSS measurements of the target can vary significantly depending 

on its directionality, initially, the location of the target is estimated using only the TOA 

measurements.  The limitation of this approach is that it assumes prior knowledge of the 

transmission power and transmission time of the target for the anchors. 

A novel iterative approach is used to address the challenge of localizing a target node in wireless 

sensor networks utilizing the TOA and RSS when dealing with NLOS conditions [43]. It does not 

necessitate the knowledge of NLOS bias distribution. To solve the localization problem, a Non-

Linear Weighted Least Squares (NLWLS) problem is formulated and solved using a majorization-

minimization (MM) algorithm. The MM algorithm uses a series of simple update steps to decrease 

the NLWLS objective until it converges to a stationary point.  

From the aforementioned approaches, most localization algorithms that claim high accuracy are 

either not able to detect the case an attacker is present or make unrealistic assumptions about the 
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network or detect only a specific kind of attacker. In the case of adversarial networks, localization 

is a challenge, and a technique must be devised that not only calculates the accurate position of the 

unknown target but can detect a wide variety of attackers. Traditional systems used for localizing 

sensors in WSN often assume Gaussian noise due to its approximation capabilities in real-life 

situations. However, this assumption may not hold in environments with signal-blocking obstacles 

and reflecting surfaces, such as in IoT applications. To address the challenges posed by noise and 

interference, a non-linear system model is formulated. Since solving this problem directly is 

difficult, convex relaxation techniques are employed to tackle the non-linear least squares problem. 

Convex optimization solvers based on the interior-point method are iterative and computationally 

expensive rendering them unsuitable for WSNs. As an alternative, the problem can be transformed 

into the framework of a GTRS or approached using the maximum likelihood method. These 

approaches help mitigate the impact of adverse environmental conditions by reducing 

computational complexity, trimming out outlier-sensitive losses, and achieving resistance to 

biased measurements. By employing these techniques, the algorithm becomes more suitable for 

adverse environmental cases. 

2.4 Summary   

This chapter covered the literature review regarding localization algorithms specifically for WSN. 

Further, identify the weaknesses of localization algorithms that can be applied to WSNs to 

determine the location of an unidentified node in the presence of malicious nodes. 

In the next chapter, we propose a secure localization technique that can detect attackers and 

calculate the position of unknown nodes accurately. 
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3.  Methodology 
 

 

In this section, the proposed methodology to achieve secure localization is explained. The chapter 

is divided into two parts: 

• Problem identification  

• Proposed methodology 

 

3.1  Problem Identification 

Based on the literature review, the focus of this research is to achieve a secure localization system 

that not only calculates the accurate position of the unknown node in a WSN but can detect the 

attackers when the system has coordinated attackers such as a Sybil attack. 

In a Sybil attack, the attacker employs a strategic approach to establish multiple fraudulent nodes. 

These fabricated nodes are designed to engage in communication and collaboration with one 

another, thereby amplifying their collective influence or deceiving other participants within the 

targeted system. By orchestrating the operation of multiple fake identities in a coordinated manner, 

the attacker can significantly impact the system, potentially leading to disruptive consequences. 

The coordinated nature of a Sybil attack enables the attacker to exploit the system's decision-

making processes, effectively undermining the system's reliability and compromising its overall 

functionality. A Sybil attack leverages the presence of multiple fake identities or nodes, known as 

Sybil nodes, to carry out various forms of manipulation within a network. One such manipulation 
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technique involves distance enlargement and reduction attacks, which impact the measurements 

of distance or similarity between entities. 

 

Figure 4: Enlargement Attack 

In a distance enlargement attack depicted in Figure 4, the attacker illustrated by a grey range circle, 

strategically connects the Sybil nodes to specific entities and provides misleading information, 

thus inflating the perceived distance between these entities. 

Conversely, a distance reduction attack exploits Sybil nodes to establish fraudulent connections or 

relationships in a way that the distance between the nodes is perceived to be less than it is. In 

Figure 5, the node with grey colored range circle is performing a reduction attack. 
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Figure 5: Reduction Attack 

The impact of these distance manipulation techniques can be amplified by employing multiple 

Sybil nodes, enabling the attacker to exert greater influence on algorithms or systems reliant on 

distance or similarity measurements.  

The objectives of both distance enlargement attacks and distance reduction attacks revolve around 

undermining the accuracy and dependability of the localization system by manipulating the 

perceived distances among nodes. Such attacks pose significant risks to localization-based 

applications, including location-based services and tracking systems, as they can result in 

erroneous positioning data and potentially facilitate malicious endeavors. 

Previous research has focused on identifying and detecting distance enlargement attacks and 

distance reduction attacks. However, an important aspect that has been overlooked is the 

investigation of coordinated attacks, where attacker nodes engage in both enlargement and 

reduction attacks simultaneously, posing a significant threat to system integrity. 
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3.2 Proposed Methodology 

This section provides an overview of the methodology employed to detect a Sybil attack and ensure 

secure localization. The methodology is an amalgamation of localization technique and attacker 

detection technique.  

The estimation of the position of the unknown mobile node is achieved by using both TOA and 

RSS measurements. The acquisition of estimates using TOA and RSS is an improvement on 

localization using a single set of measurements in terms of localization accuracy as it takes 

advantage of relatively inexpensive realization by RSS measurements while reaping the benefits 

of time resolution and higher accuracy by TOA measurements. 

 

Figure 6: Proposed System Flowchart 

The procedure involves three steps: 

• Pre-detection assessment of the network 

• Detection of Sybil nodes 
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• Unknown node localization by robust maximum likelihood  

 

3.2.1 Pre-detection Assessment of Network 

Initial assessment of the network utilizes TOA or RSS measurements from known nodes to create 

range circles. These circles are centered on the known node's location and have a radius equal to 

the distance between the known node and the unknown node being localized. 

Next, these range circles are employed to determine the intersection points (IP) between each circle 

and other circles in the network.  

Based on the IP of circles, the mean distance of each circle with range circles of other nodes is 

calculated. 

The distance distinguishes two cases: 

• The circles do not intersect because either one is an attacker 

• The circles do not intersect due to noise or environmental bias   

It does so by setting a potential intersection point and assuming an imaginary line. If the node's 

measurements are corrupted due to environment the intersection points will lie on the line. 

The distance will be used to assign weights to the IP and based on these weights position of the 

unknown node is calculated geometrically. Weighted Central Mass (WCM) serves as the 

foundation for the mathematical methodology employed to allocate weights to IP. 

 WCM is a concept used for estimating a value by assigning a priority parameter to the components 

involved in the estimation process. In the context of localization in WSNs, WCM can be applied 
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to calculate the weighted center of mass using neighboring anchor nodes, eliminating the 

requirement for explicit range or distance measurements. In WCM, each anchor node is assigned 

a weight, which is determined based on factors like signal strength or connectivity to the target 

node. These weights reflect the significance or trustworthiness of each anchor node in the position 

estimation process. 

The primary goal is to identify any potential IP between these circles, which can be achieved by 

calculating the point of intersection. Subsequently, the computed IP of interest 𝐼𝑖𝑗, are derived as 

the mean value between the two intersection points, 𝐼𝑖, and 𝐼𝑗. This approach is based on the 

rationale that in scenarios where the two anchors are solely affected by noise, the closest pair of 

points on their respective circles will align precisely along the line passing through the anchors. In 

other words, these points would have intersected in proximity if it were not for the presence of 

noise. 

The IP of range circles are calculated as follows: 

𝐼𝑖𝑗 =  𝐼0 ± 𝑡 

𝑖 = 1, ⋯ , 𝑁 − 1 

𝑗 = 𝑖 + 1, ⋯ , 𝑁 

𝐼0 =  
𝑎𝑗 + 𝑎𝑖

2
+  

𝑑𝑖
2 −  𝑑𝑗

2

2 ||𝑎𝑗 − 𝑎𝑖||2
 × (𝑎𝑗 − 𝑎𝑖) 

𝑆 =  
√𝑆  × 𝑀 ×

2 ||𝑎𝑗 − 𝑎𝑖||2
(𝑎𝑗 − 𝑎𝑖) 

𝑆 = [ ( ( 𝑑𝑗 +  𝑑𝑖  )2  − ||𝑎𝑗 − 𝑎𝑖||
2 ) ( 2 ||𝑎𝑗 − 𝑎𝑖||

2  −  ( 𝑑𝑗 −  𝑑𝑖 )
2 )] 
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The selection of weights is intentionally designed in such a way that smaller weights are assigned 

to pairs of the largest (on average) distance measurements. This deliberate weighting technique 

aims to minimize the impact of a corrupted anchor node, especially when the corrupted node has 

not been identified or exposed yet. By assigning smaller weights to these larger distance 

measurements, the influence of a potentially corrupted anchor node is mitigated. 

By calculating the weighted center of mass, which involves averaging the positions of anchor 

nodes weighted by their respective the target node's position is obtained from WCM is calculated 

as follows: 

𝑃𝑥𝑦 =  ∑ 𝑤𝑖𝑗 𝐼𝑖𝑗  

𝑁

𝑖,𝑗 = 1

 

𝑖 = 1, ⋯ , 𝑁 − 1 

𝑗 = 𝑖 + 1, ⋯ , 𝑁 

𝑃𝑥𝑦 is the position of the unknown node, 𝐼𝑖𝑗 are the IP of circles such that for node 1, 𝐼12 is the 

point that intersects node 2 and 𝐼13  is the point that intersects node 3, and so on. The points, 𝐼𝑖𝑗 

are utilized to create clusters based on their close physical proximity, aiming to select the cluster 

with the smallest convex hull. This is accomplished by assigning weights and determining the 

clusters accordingly.  

3.2.2 Detection of Sybil Nodes  

Based on the resulting intersection points and weights assigned to the points, the nodes are 

categorized as potential attackers or intruders. A node is considered a potential attacker if its’ range 

circle does not intersect with other circles, or the imaginary line extrapolated to intersect the points. 
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If all nodes are classified as potential attackers, this may imply interference in communication 

channels, such as Non-Line-of-Sight (NLOS) or a noisy channel.  

To effectively address this situation, additional filtering is applied to the potential nodes based on 

their intersection points with other nodes. This filtering process aims to identify nodes that exhibit 

characteristics indicating a higher likelihood of being associated with an attacker. To evaluate the 

potential nodes, the average distance between pairs of intersection points is calculated. This 

average distance plays a key role in determining the weights assigned to the nodes. 

By focusing on these specific nodes, the methodology can prioritize the detection and mitigation 

of potential malicious nodes, enhancing the overall robustness of the system. Filtering is an 

iterative process and depends on the number of nodes that are assigned as potential attackers and 

the dimensionality of the system. The process of detection is carried out sequentially for potential 

attackers until the node under scrutiny is identified as honest or until the number of nodes reaches 

the specified threshold. For a two-dimensional network, the threshold (K) is set at four nodes, 

while for a three-dimensional network, it is set at five nodes. 

The problem of detecting attackers involves the task of differentiating between two hypotheses. 

Under the assumption that 𝑃𝑛 is true, the distance measurement indicates that the node 𝑎𝑖 is honest, 

although it may contain some noise attributed to the channel. On the other hand, if 𝑃𝐴 is true, it 

implies that the node 𝑎𝑖 is an attacker engaging in an enlargement attack when the value of 𝛿𝑖 is 

positive, or a reduction attack when the value of 𝛿𝑖 is negative. 

The node is honest node if it satisfies the hypothesis 𝑃𝑛. 

𝑃𝑛 ∶  𝑑𝑖,𝑘 =  ||𝑃𝑥𝑦 − 𝑎𝑖|| +  𝑛𝑖,𝑘  
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The node is the attacker if it satisfies the hypothesis 𝑃𝐴. 

𝑃𝐴 ∶  𝑑𝑖,𝑘 =   ||𝑃𝑥𝑦 − 𝑎𝑖|| +  𝑛𝑖,𝑘 + 𝛿𝑖  

𝛿𝑖  ≠ 0 

These hypothesis conditions can be translated into probabilistic terms.  

𝑃 ( 𝑑𝑖 | 𝑃𝑛) = 𝑐 × exp { 
1

2𝜎2
 ∑( 𝑑𝑖,𝑗  − ||𝑃𝑥𝑦 − 𝑎𝑖||

2 )

𝑘

𝑘=1

 } 

𝑃 ( 𝑑𝑖 | 𝑃𝐴) = 𝑐 × exp { 
1

2𝜎2
 ∑( 𝑑𝑖,𝑗  − 𝛿𝑖

2  −  ||𝑃𝑥𝑦 − 𝑎𝑖||
2 )

𝑘

𝑘=1

 } 

Once the potential attacker is assessed to determine if it is indeed an attacker, it is subsequently 

classified as either an attacker or not. If it is identified as an attacker, the node is excluded from 

further calculations. Following this exclusion, the detection process is carried out on the remaining 

potential attackers, one by on. The generalized Likelihood Ratio Test is used for this purpose. 

GLRT is a statistical hypothesis test that compares two competing hypotheses using their 

likelihood functions. It is applicable when the likelihood functions are either known or can be 

modeled. By computing the likelihood ratio, which is the ratio of the likelihood of the observed 

data under one hypothesis to the likelihood under the other hypothesis, the GLRT quantifies the 

relative support for each hypothesis. The resulting test statistic is then compared to a predetermined 

threshold or critical value, enabling the decision-making process to choose between the 

hypotheses. 

One of the key advantages of the GLRT is its suitability for scenarios where the likelihood 

functions deviate from Gaussian distributions or when the underlying statistical distributions are 
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not well-established. This flexibility allows for rigorous statistical analysis and inference, 

facilitating accurate and informed decision-making in a diverse range of practical applications. 

The GLRT detection process involves calculating the attack intensity for each link, as well as 

estimating the noise standard deviation based on the Maximum Likelihood principle. Given the 

presence of multiple potential attackers, the GLRT test is performed iteratively, considering the 

number of potential attackers and the honest nodes within the network. 

The GLRT involves comparing the likelihood ratio between two models: the null hypothesis model 

also known as the restricted model and the alternative hypothesis model also known as the 

unrestricted model. The null hypothesis assumes certain constraints or simplifications, while the 

alternative hypothesis relaxes those constraints, providing a more flexible representation of the 

data. The formula to calculate the standard deviation is:  

𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  √
1

𝑘 − 1
 ∑  

𝑁

𝑖=1

∑   (𝑑𝑖,𝑘 −  𝛿𝑖  − ||𝑃𝑥𝑦 − 𝑎𝑖||)
2

 

𝑁

𝑘=1

   

The attack intensity against each communication link: 

𝛿𝑖 =  
1

𝑘
  ∑     (𝑑𝑖,𝑘  −  ||𝑃𝑥𝑦 − 𝑎𝑖||)

1
 

𝑘

𝑘=1

 

For hypothesis 𝑃𝐴 , the estimated attacker intensity must satisfy the following condition:  

|𝛿𝑖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| >  √
2

𝑘
 (𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2 ln (𝜏)   

For hypothesis 𝑃𝑛 , the estimated attacker intensity must satisfy the following condition:  

|𝛿𝑖𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑| <   √
2

𝑘
 (𝜎𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2 ln (𝜏)   
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In the equations above, τ is the threshold that defines a false alarm. 

 

3.2.3 Unknown Node Localization by Robust Maximum 

Likelihood 

Upon successful detection of the attackers, they are eliminated from the system. The remaining 

honest nodes are then utilized to calculate a more accurate position estimation. This refined 

position estimation is achieved by employing the Received Signal Strength (RSS) measurements 

and applying a Geman-McClure cost function. 

By removing the detected attackers and focusing solely on the honest nodes, the methodology aims 

to improve the accuracy of the final position calculation. This helps mitigate the impact of potential 

attackers on the localization process, ensuring a more reliable and precise position estimation for 

the unknown node.  

In the upcoming section, a concise overview of the mathematical concepts employed in the 

proposed methodology is presented, outlining their implementation and integration within the 

system. The next chapter will offer detailed insights into how these techniques are implemented 

and applied. 

The Geman Mclure likelihood function belongs to the class of M-estimators. M estimators are 

generalizations of Maximum Likelihood estimators[44] that claim robustness in the presence of 

outliers. Robust Maximum Likelihood Estimators (MLEs) are statistical estimation techniques 

designed to enhance the reliability and resilience of parameter estimates when faced with outliers 

or violations of underlying assumptions. Traditional MLE assumes that data conform to a specific 
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distribution with known parameters. However, real-world data often diverge from these 

assumptions, resulting in biased or inefficient parameter estimates. 

Robust MLE acknowledges the possible existence of outliers and strives to produce more 

dependable and consistent estimates in the presence of outliers and noisy measurements. It 

accomplishes this by employing robust estimation techniques, including robust loss functions, or 

weighting schemes, which diminish the impact of outliers or assign them reduced weights during 

the estimation procedure. Robust MLEs integrate robustness measures into the estimation process. 

These estimators seek to minimize the impact of outliers or heavy-tailed distributions, which can 

significantly influence estimation obtained through conventional MLE methods.  

The challenge lies in the accurate yet efficient computation of unknown nodes for realistic 

scenarios where assumptions regarding channel are as minimal as possible to make the solution 

applicable for diverse scenarios. One of the key advantages of robust maximum likelihood 

estimation is its suitability in dealing with anomalous data or measurements containing outliers.  

After identifying the intruder or multiple intruders in the network, the position of the unknown 

mobile node is calculated excluding the intruders. The calculation utilizes the RSS range 

measurements that are extracted from the received signal modeled as: 

𝑃𝑖 =  𝑃0 − 10𝛾𝑙𝑜𝑔10 ∥ 𝑃𝑥𝑦 − 𝑎𝑖 ∥ + 𝑛𝑔 − 𝑛𝑛𝑔 

𝑃𝑖 is the RSS of the ith sensor,  𝑃0 is the RSS for the sensor at a 1m distance and 𝛾 is the path loss 

exponent, 𝑛𝑔 is the noise that is modeled as zero-mean Gaussian and 𝑛𝑛𝑔 is non gaussian noise. 

By arithmetic simplification and Taylor expansion, the RSS range-based model is transformed as: 

𝛽𝑖 = 10
𝑃𝐷𝐼𝐹𝐹
−(10𝛾) 
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𝑃𝐷𝐼𝐹𝐹 = −𝑃𝑖 + 𝑃0 

TOA range-based measurements are modeled as:  

𝑟𝑖 = ∥ 𝑃𝑥𝑦 − 𝑎𝑖 ∥ + 𝑛𝑡𝑔 − 𝑛𝑡𝑛𝑔 

In the equation above, 𝑟𝑖 is the distance between the target 𝑃𝑥𝑦 and anchor node 𝑎𝑖, 𝑛𝑡𝑔 is the zero 

mean gaussian noise in TOA measurements and 𝑛𝑡𝑛𝑔 is the non-gaussian noise in TOA 

measurements. 

With the help of the TOA range measurement model, the robust solution becomes:  

𝑚𝑖𝑛 ∑  𝜁𝑒𝑖 

2𝐿

𝑖 = 1

 

𝑒𝑖  =  10 𝛾(1 − 𝛽𝑖 ||𝑃𝑥𝑦 − 𝑎𝑖||2 )/ ln 10 

𝑒𝑖+𝑙  = 𝑟𝑖−  ||𝑃𝑥𝑦 − 𝑎𝑖||2 

𝜁 represents the outlier-resistant loss function. 𝜁 will become Geman McClure loss with a tunable 

parameter 𝜖 which is set to 1 as in [44]. Next, the weights are assigned by squared range iterative 

reweighted least squares (SR-IRLS) [45].  

𝑤𝑖 =
1

𝑒𝑖
2 + 𝜖2

 

After determining the weights iteratively using the alternating minimization (AM) approach, the 

final estimate is calculated by using a similar approach as used in [46] wherein the estimation 

was performed using an iterative message passing algorithm. The estimation of position 
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leverages the concept of M-estimators and AM by recursively approximating the objective 

function.  

𝑆1 = ∑ 𝜂𝑖𝜂𝑖
𝑇𝑞

𝐿

𝑖=1

 

𝑆2 = ∑ 𝜂𝑖𝑞 [𝑞−1.
200𝛽𝑖

2 𝛾2 𝑤𝑖

𝑙𝑛2(10) + 2𝑤𝑖+𝐿𝑟𝑖
− 𝜑𝑖]

𝐿

𝑖=1

 

𝑞 = [
200𝛽𝑖

2 𝛾2 𝑤𝑖

𝑙𝑛2(10) + 2𝑤𝑖+𝐿
] 

𝜑𝑖 = ||𝑃𝑥𝑦 − 𝑎𝑖||2 − 𝜂𝑖
𝑇𝑃𝑥𝑦 

  𝜂𝑖
𝑇 =

𝑃𝑥𝑦 − 𝑎𝑖

||𝑃𝑥𝑦 − 𝑎𝑖||2
 

The position estimate from WCM is fed to the robust estimator. This enables fast convergence as 

the algorithm is open form and calculates the position estimate iteratively. The iterations are 

controlled by an error threshold and maximum iteration parameter. 
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4. Experimental Setup 
 

 

In this section, the experimental setup and the results are provided. The chapter is divided into two 

parts: 

• Experimental setup 

• Evaluation metrics 

 

4.1 Experimental Setup 

The hardware and software used in the experiment are as follows: 

Table 1: Experiment Tool 

Hardware Tool Laptop Core i7 

System type 64-bit operating system  

Operating system Windows 

Programming tool MATLAB 2023a (student licensed) 

 

 

4.1.1 System Model 

 The WSN designed for the experiment consists of an N number of anchor nodes and an unknown 

node. The nodes are mobile, and their motion is not predetermined. The nodes can transmit and 

receive packets within their communication range. This implies that the anchor node can perform 

TOA, TDOA, or RSS distance calculations. Any anchor node can be compromised by an attacker 
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and converted into a Sybil node capable of performing both distance enlargement attack and 

distance reduction attack. To determine the two-dimensional position of the target node, we need 

the two-dimensional position of the anchor nodes. Similarly, if we aim to determine the three-

dimensional position of the target node, we require the three-dimensional position of the anchor 

nodes. The system can calculate both the two-dimensional and three-dimensional positions of the 

unknown node. However, when determining the three-dimensional position of the unknown node, 

an additional anchor node is needed compared to determining the two-dimensional position. In an 

ideal case with 5 anchor nodes, the localization in the network can be visualized as in the figure 

below. 

 

Figure 7: Desired Network 

Figure 7 assumes that the noise is low enough that it does not impact the distance calculation of 

the nodes. However, this is not the case in realistic scenarios. The communication channel adds 

noise which in ideal cases may be Additive White Gaussian Noise (AWGN) and in non-ideal cases 

can be complex distribution e.g., Nakagami or log-normal distribution. 
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The system has 2 types of attacker models: 

• Attacker model with multiple attackers operating with the same attack intensity exclusively 

performing either enlargement attack or reduction attack. This attacker model is referred 

to as attacker model 1. 

• Attacker model with multiple attackers operating with the same attack intensity performing 

both enlargement attack and reduction attack. This attacker model is referred to as attacker 

model 2. 

 

Figure 8: Attacker Model 1 Reduction Attack 

 

Figure 8 showcases a network consisting of four honest nodes and two attacker nodes. The honest 

nodes are represented by red, cyan, green, and pink crosses, and their range circles are depicted 

using corresponding colors. The attacker nodes, on the other hand, are depicted by grey and yellow 
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crosses, and their range circles are also shown using respective colors. In this scenario, both 

attacker nodes are engaged in a reduction attack, as the target lies outside the range circles of both 

attackers. In the presence of the attackers, the position will not be calculated accurately as depicted 

in Figure 9. The blue circle shows the position calculated when all the nodes are taken into 

consideration and the position is calculated by WCM. The position is not precisely close to the 

black circle, the actual position of the unknown node. 

 

Figure 9: Inaccurate unknown node position in the presence of attackers 

After detecting the attackers and calculating the position by the robust Maximum likelihood 

estimator the resultant position has a minimum error.  
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Figure 10: Accurate Estimate by Robust Localization 

Figure 10 illustrates the same network as in Figures 8 and 9. The estimate after detecting attackers 

and removing them from the network is shown by an orange star symbol.  

Table 2: Environment Parameters 

Parameter Value 

Dimensionality 2 or 3 

Communication Range  25 x 25 𝑚2 

Path loss {𝛾} 3 

Reference RSS { 𝑃0 } 20 dBm 

Desired probability of false alarm 0.1 

Monte-Carlo Runs 500 Runs 

Standard deviation in RSS {𝜎𝑅𝑆𝑆} 3 

Standard deviation in TOA {𝜎𝑇𝑂𝐴} 3 
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4.2 Evaluation Metrics 

The evaluation metrics to analyze the performance of the system are: 

• RMSE 

• Probability of detection 

• Convergence Rate 

4.2.1 RMSE 

Root Mean Square Error (RMSE) is a commonly used metric to measure the accuracy or the 

average difference between predicted values and actual values in various fields, including 

statistics, machine learning, and regression analysis. It is a measure of the dispersion or the spread 

of errors. 

Mathematically, RMSE is calculated by taking the square root of the mean of the squared 

differences between predicted values and actual values. 

𝑅𝑀𝑆𝐸𝑥 =   √
Σ(𝑥̂ − 𝑥)2

𝑛
 

𝑅𝑀𝑆𝐸𝑦 =   √
Σ(𝑦̂ − 𝑦)2

𝑛
 

𝑅𝑀𝑆𝐸𝑟 =   √𝑅𝑀𝑆𝐸𝑥
2 + 𝑅𝑀𝑆𝐸𝑦

2
 

𝑥̂ and  𝑦̂ represent the position coordinates calculated by the system and x and y represents the 

actual position coordinates, and n is the total number of samples. 
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RMSE is a measure of the deviation between predicted and actual values, and it is expressed in the 

same unit as the variable being measured. It provides a single numerical value that represents the 

overall error or accuracy of a predictive model or estimation technique. 

The lower values of RMSE indicate better accuracy and less dispersion of errors. A value of zero 

indicates a perfect match between predicted and actual values. However, it's important to note that 

RMSE is sensitive to outliers and large errors, as it squares the differences before calculating the 

mean. 

 

4.2.2 Probability of Detection  

The probability of Detection (POD) is a vital statistical measure used to assess the effectiveness 

of detection systems and algorithms. It gauges the likelihood of successfully detecting a target or 

desired signal within the system. 

In detection systems, POD is commonly defined as the ratio of correctly detected instances to the 

total number of actual instances present. It offers insights into how well the system identifies and 

detects the desired targets while minimizing false negatives, which are instances that go 

undetected. 

POD is typically expressed as a probability value ranging from 0 to 1 or as a percentage from 0% 

to 100%. A higher POD indicates a greater chance of successfully detecting targets, while a lower 

POD suggests a higher probability of missed detections. 
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Calculating POD depends on the specific detection scenario and the availability of ground truth 

information. In many cases, it involves comparing the detection system's outputs with a known set 

of ground truth labels or annotations. 

The probability of detection is assessed through the following 3 key measures: 

• Probability of Correct Detection 

• Probability of False Detection 

• Probability of No Detection 

 

4.2.3 Probability of Correct Detection 

The Probability of Correct Detection refers to the likelihood that a detection system correctly 

identifies or detects the presence of a target or event when it is indeed present. It represents the 

probability that the system makes an accurate positive detection or correctly recognizes the 

occurrence of the target or event of interest. 

 𝑃𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  
attack_det_tot

attack_det_tot +  false_det_tot +  no_attack_det_tot
  

 

4.2.4 Probability of False Detection  

The Probability of False Detection is the probability that a detection system erroneously indicates 

the presence of a target or event when it is not present. It measures the likelihood of false positive 

detection, where the system incorrectly identifies the occurrence of the target or event. 
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𝑃𝐹𝑎𝑙𝑠𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  
false_attack_det_tot

attack_det_tot +  false_det_tot +  no_attack_det_tot
 

 

4.2.5 Probability of No Detection  

The Probability of No Detection represents the probability that a detection system fails to identify 

or detect the presence of a target or event when it is present. It indicates the likelihood of a false 

negative, where the system fails to recognize the occurrence of the target or event of interest. 

𝑃𝑁𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =  
No_attack_det_tot

attack_det_tot +  false_det_tot +  no_attack_det_tot
 

 

4.2.6 Convergence Rate 

The convergence rate refers to the number of iterations required to achieve a certain error value in 

a process to attain an optimal solution. It serves as a metric in optimization and numerical analysis 

to gauge the performance of the algorithm with which it assures accuracy. The system is time 

intensive and computationally inefficient if convergence is slow. 
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5.  Analysis and Discussion 

This chapter presents a thorough examination of the proposed scheme. The analysis encompasses 

the system's performance under various attack models and different configurations of nodes in the 

system and attacker nodes. Furthermore, a comparison with existing literature is included. 

 

5.1 Comparative Analysis  

The experiment is conducted through 500 Monte Carlo runs to accurately observe and analyze 

trends. Initially, the number of attackers remains constant while the total number of anchor nodes 

increases. This allows for the observation of the response of additional honest nodes within the 

network. 

In terms of minimum requirements for estimation, the number of honest nodes needed is 

determined by adding one additional node to the dimension of the node positions. For example, in 

a 2-dimensional position scenario, a minimum of 3 nodes must be honest, while in a 3-dimensional 

position scenario, at least 4 nodes should be honest. 

The performance is evaluated based on detection accuracy and localization error. Attacker 

intensity is set to be in the range -of 20:5:20 to understand the impact of attacker intensity on 

RMSE. 

The algorithm's performance is evaluated by comparing the root mean square error (RMSE) and 

the probability of detection. Two different simulation scenarios are used to model the attack. 
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• In the first scenario, multiple attackers are either all conducting enlargement attacks or all 

performing reduction attacks This attacker model is referred to as attacker model 1. 

• In the second scenario, the attackers perform both enlargement and reduction attacks 

simultaneously, but with a specific attack intensity. For example, if there are two attackers, 

one performs an enlargement attack while the other conducts a reduction attack of the same 

attack intensity. In the case of three attackers, two perform reduction attacks, and one 

performs an enlargement attack during half of the Monte Carlo runs. For the remaining 

half, one attacker conducts a reduction attack, while the other two perform enlargement 

attacks. This attacker model is referred to as attacker model 2. 

 

5.1.1 RMSE Analysis for Attacker Model 1 

 

Figure 11: RMSE Comparison 2 Attackers 

Figure 11 illustrates the impact of RMSE on the number of nodes against a range of attack 

intensity values. When the total number of nodes is 7 and 2 of them are attackers, the error is 
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greater as compared to the case when the total number of nodes is 8 and 9 against the same value 

of attack intensity. 

To assess the performance of the proposed algorithm in comparison to existing literature, the LOC-

GTRS-based localization [41] is used as a benchmark as it considered both enlargement and 

reduction attacks. However, it should be noted that LOC-GTRS does not include a detection 

mechanism for coordinated attacker models. Therefore, the comparison between the proposed 

algorithm and LOC-GTRS is made solely based on the RMSE of the estimate after the detection 

of attackers. Figure 12 and 13 depicts the localization error comparison of the proposed technique 

and LOC-GTRS for attacker model 1. Figure 12 shows the RMSE performance of attacker model 

1 with 2 attackers for a network with 7 nodes represented by red and cyan lines and 8 nodes 

represented by pink dotted and green dashed lines.    

 

Figure 12: RMSE Comparison with LOC_GTRS for 2 Attackers 
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Figure 13: RMSE Comparison with LOC_GTRS for 3 Attackers 

Figure 13 shows the localization error performance of attacker model 1 with 3 attackers for a 

network with 8 nodes represented by red and cyan lines and 9 nodes represented by pink dotted 

and green dashed lines.    

5.1.2 Probability of Detection Analysis for Attacker Model 1 

 The proposed secure localization algorithm's performance is evaluated by analyzing Attacker 

Model 1. In this model, the probability of detection is compared for scenarios involving 2 attackers, 

with a total number of nodes set at 6, 7, and 8 in Figures 14, 15, and 16, respectively.  

It can be observed from Figures 14, 15, and 16 that when the attacker intensity is greater, the 

detection is accurate and when the attacker intensity is less, the malicious nodes are hard to detect 

resulting in false detections. Enlargement attacks are easily detected as compared to reduction 

attacks. When the attacker intensity is zero, there is no change in the distance measurement of the 

attacker so there is no detection.    
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Figure 14: Probability of Detection Bar Chart with 2 Attackers and 4 Honest Nodes 

 

 

Figure 15: Probability of Detection Bar Chart with 2 Attackers and 5 Honest Nodes 
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Figure 16: Probability of Detection Bar Chart with 2 Attackers and 6 Honest Nodes 

Based on these observations, it can be concluded that the system performs well in both dense and 

sparse node environments. This suggests that the system is robust and can effectively detect attacks 

regardless of the density of the network nodes. 

Figures 17 and 18 present scenarios with 7 and 8 nodes with 3 attackers. Comparative analysis of 

the figures deduces that there is a relatively smaller difference in the detection rates at higher attack 

intensities. As the number of honest nodes increases, the system becomes better equipped for 

accurate detection. The performance of detection is better for coordinated enlargement attacks as 

compared to coordinated reduction attacks.  

Based on these observations, it can be concluded that the system performs well in both dense and 

sparse node environments. This suggests that the system is robust and can effectively detect attacks 

regardless of the density of the network nodes. 
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Figure 17: Probability of Detection Bar Chart with 3 Attackers and 4 Honest Nodes 

 

 

Figure 18: Probability of Detection Bar Chart with 3 Attackers and 5 Honest Nodes 
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5.1.3 RMSE Analysis for Attacker Model 2  

 

Figure 19: RMSE Comparison for 3 Attackers  

Figures 19, 20, and 21 display the RMSE for attacker model 2. In comparison to Attacker Model 

1, the RMSE demonstrates symmetry, and the error is similar to coordinated enlargement attacks, 

which performed better than coordinated reduction attacks. Additionally, the algorithm's 

performance surpasses that of the LOC-GTRS for Attack Model 2 as well. 

 

Figure 20: RMSE Comparison with LOC_GTRS for 2 Attackers 
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Figure 21: RMSE Comparison with LOC_GTRS for 3 Attackers 

5.1.4 Probability of Detection Analysis for Attacker Model 2  

 

Figures 22, 23, and 24 illustrate the Probability of Detection Bar Chart for Attacker Model 2. When 

33.33% of the nodes in a network are attackers, the probability of correct detection is higher when 

the attackers have a high intensity. This is supported by Figures 22 and 23 representing 2 and 3 

attackers respectively where the detection probability remains consistent for higher intensities. 

Additionally, the probability of correct detection increases for low attack intensities when the total 

number of nodes increases, while keeping the attackers' percentage the same. 
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Figure 22: Probability of Detection Bar Chart with 2 Attackers and 4 Honest Nodes 

 

Figure 23: Probability of Detection Bar Chart with 3 Attackers and 6 Honest Nodes 
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Figure 24: Probability of Detection Bar Chart with 2 Attackers and 8 Honest Nodes 

 

Furthermore, when the percentage of attackers is reduced to 20% of the total nodes in the network, 

the probability of detection improves significantly compared to when 33.33% of the nodes are 

attackers as illustrated in Figure 24. Figure 24 depicts the network's detection probability when 

there are 2 attackers and 10 honest nodes, representing a 20% attacker ratio. Based on figures 22, 

23, and 24, it can be deduced that the probability of detecting attackers in a network is influenced 

by both the percentage of attackers and their attack intensity. Decreasing the percentage of 

attackers or increasing their attack intensity leads to higher detection probabilities. 

Nevertheless, when compared to Attack Model 1, Attack Model 2 falls short in achieving a high 

probability of detection, especially when compared to the exclusive enlargement attack. Therefore, 

the system demonstrates its optimal performance in terms of detection probability when facing 

enlargement attacks. 
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5.1.5 RMSE Analysis for Failed Detection to Check Robustness 

To evaluate the algorithm's robustness, the position estimate is scrutinized by deliberately 

manipulating the detection model to exclude specific attackers. The resulting estimate is then 

compared with the estimation obtained through the LOC-GTRS approach, using the same missed 

attack detection model. Even in cases where the detection fails, the RMSE performance 

outperforms that of LOC-GTRS. In Figure 25, the total number of nodes is 8 out of which 3 are 

attackers and the detection model is manipulated to detect only 2 attackers. The attacker detected 

are excluded from the measurement model and both proposed Robust ML-based estimation and 

LOC_GTRS estimation is performed. The RMSE graph illustrates that the proposed technique 

outperforms the LOC-GTRS approach. 

 

Figure 25: Robustness Check of Estimation 

 

5.1.6 Convergence Rate Comparison 

While aiming for accuracy in secure localization schemes, certain limitations on network topology 

and the presence of noise are often encountered. These schemes typically assume that the problem 

can be represented by a convex hull, which simplifies calculations due to the availability of closed-
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form solutions. However, non-line-of-sight (NLOS) conditions, environmental biases, and the 

specific topology of the nodes can render localization a non-convex problem.  

A comparison with recent literature that provides localization solutions addressed for non-convex 

scenarios is presented in Table 3. 

N represents the total number of nodes, ℰ denotes the number of iterations required for VMP[47] 

to converge, 𝑁𝑝 denotes the number of particles drawn by sampling in VBL[28], 𝜂 is the number 

of iterations required for VBL to converge, 𝐵𝑚𝑎𝑥 is the number of bisection steps and 𝐶𝐹𝑚𝑎𝑥 

denotes the number of iterations required by the proposed algorithm estimation to converge. 

Among the localization schemes documented in the literature, enlargement_attack_GTRS and 

LOC_GTRS provide the best convergence rate.  

Table 3: Performance Complexity Comparison 

ALGORITHM COMPLEXITY 

VBL [28] ℴ(𝑁𝑁𝑝𝜂 ) 

Enlargement_attack_GTRS [40] ℴ(𝑁𝐵𝑚𝑎𝑥 ) 

LOC-GTRS [41] ℴ(𝑁𝐵𝑚𝑎𝑥 ) 

MM-NLWLS [43] ℴ( k 𝑁 ) 

VMP [47] ℴ(8 ( 𝑁+1 ) ℰ) 

WLS [48] ℴ(N) 

Proposed scheme  ℴ(𝑁𝐶𝐹𝑚𝑎𝑥 ) 

 

The proposed algorithm is compared against LOC-GTRS. In the proposed algorithm, the 

maximum iteration counter is fixed at 10, while the LOC-GTRS approach sets it to 30. The 
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performance evaluation demonstrates that the proposed algorithm achieves faster convergence 

compared to LOC-GTRS. In contrast, the proposed scheme achieves precise position calculation 

and exhibits rapid convergence.  

5.1.7 Summary 

In this chapter a detailed comparative analysis is presented, illustrating the comparison between 

two localization approaches: the proposed Robust Maximum Likelihood-based approach and the 

Generalized Trust Region Subproblem law of cosines (GTRS-LOC) based approach discussed in 

[41]. The localization approach described in [41] utilizes the law of cosines to transform the 

quadratic objective function into a GTRS problem. On the other hand, the Robust Maximum 

Likelihood approach utilizes RSS measurements. Upon conducting an analysis based on the 

evaluation metrics, the following are inferred:  

• The robust Maximum Likelihood approach yields lower localization errors compared to 

the method in LOC-GTRS.  

• The proposed system can detect coordinated attacks, unlike LOC-GTRS. 

• The robust Maximum Likelihood approach applies to a variety of network environments. 

This versatility allows the RML approach to be deployed and adapted in diverse scenarios, 

accommodating different network structures and characteristics. 

• The proposed approach exhibits faster convergence compared to the method presented in 

[41]. This means that the Robust Maximum Likelihood approach can efficiently achieve 

low localization error. 
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6.  Conclusion 

 

This chapter serves as the conclusion of the research, presenting a comprehensive summary of the 

research findings, limitations, and potential future work. It provides an overview of the proposed 

work, and how it will impact the domain of WSN security. Furthermore, this chapter addresses the 

limitations of the proposed work and suggests avenues for future research.  

 

6.1 Key Findings 

This thesis addresses the research conducted in response to the high demand for location-aware 

wireless sensor networks (WSNs). WSNs possess unique characteristics that give rise to various 

challenges concerning localization and communication. Within this thesis, we tackle two key 

challenges which are accurate location information and detection of malicious entities. We propose 

a computationally efficient and robust scheme to achieve the challenges. 

To achieve this, we utilize the distance measurement and received signal strength measurement 

while catering to both Line of sight and non-line-of-sight scenarios.  The adoption of the scheme 

results in distinct advantages in terms of ranging and reliable communication.  This scheme can 

be used in diverse environments as it does not impose plenty of conditions on the network noise, 

topology, or communication protocol. 

In the domain of environmental monitoring, secure localization in WSN will ensure precise spatial 

information acquisition of environmental parameters, including temperature, humidity, and 

pollution levels. Surveillance and monitoring systems will benefit from secure localization, 
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enabling reliable and secure positioning of valuable assets in real-time. Healthcare systems will 

leverage secure localization for precise localization of wearable or implantable medical devices, 

enhancing patient monitoring and emergency response. The military and air defense industry will 

leverage secure localization systems to identify the enemy target, thereby improving situational 

awareness and threat detection capabilities.  

 

6.2 Limitations  

As localization requires a minimum of 3 sensors for 2-dimensional position estimation and 4 

sensors for 3-dimensional position estimation if Sybil nodes can penetrate the network such that 

they overpower honest nodes, the position will not be calculated accurately. Moreover, since the 

algorithm focuses on enlargement and reduction attacks, any attacker that performs a passive 

attack will not be detected.  

 

6.3 Future Directions 

The presented work can make a significant contribution toward secure localization in WSN. 

However, there is room for further research as follows: 

• Improving the detection of malicious identity when the attack intensity is low.  

• Reducing the computational cost of the localization algorithm by devising a more robust 

yet lightweight localization scheme. 
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• Extending the secure localization to detect and prevent other attacks as well other than 

enlargement and reduction attacks e.g., passive attacks, and jamming attacks. 
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