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Abstract 

The COVID 19 pandemic has been a very tough time for people around the globe, be it medical 

professionals who had to work for long hours or patients who had to deal with shortage of 

medical professionals or delays in their diagnosis. Chest X-rays have been a valuable tool for 

identifying COVID in a patient and tracking its progression along with other techniques. 

However, due to the large number of patients and by extension, chest x-rays, the healthcare 

professionals are facing a real problem. Therefore, any technique that can help in early 

diagnosis and reduces effort of medical professionals can essentially be lifesaving. Recently, 

many researchers have tried to help medical professionals by using advanced deep learning 

techniques such as Convolutional Neural Network for automatic diagnosis from chest X-rays. 

In this research, use of multiple advance deep learning like Yolact and Yolact++ to segment 

and localize anatomical structures in chest x-ray image is explored. This would help medical 

professionals to look at different anatomical structures independently and this would reduce 

their effort and time consumption in diagnosis. Furthermore, isolation of these anatomical 

structures can also help train other specific deep networks for diagnosis of diseases as correct 

localization will help reduce the noise in the images. 
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Chapter 1 Introduction 

According to a report by WHO [1] , Chronic obstructive pulmonary disease (COPD) affects 

around 65 million people globally, with 3 million dying each year, making it the third greatest 

cause of mortality. Asthma affects around 334 million people worldwide, and it is the most 

prevalent chronic illness of childhood, impacting 14% of all children. Pneumonia kills millions 

of people every year and is the top cause of mortality in children under the age of five. 

Tuberculosis (TB) affects around 10 million people worldwide each year, with 1.4 million 

deaths, making it the most prevalent deadly infectious illness. Lung cancer is the most lethal 

cancer, killing 1.6 million people each year. Chronic respiratory illness claims the lives of 4 

million individuals worldwide. Also, according to a report by WHO [2], cardiovascular 

diseases (CVDs) are the leading cause of mortality worldwide, claiming the lives of an 

estimated 17.9 million people per year. So in totality, heart and circulatory disorders and 

respiratory disorders [1] [2] [3] cause the most number of deaths around the globe. Whenever 

there is any issue in upper thoracic region, be it cardiovascular or respiratory, chest x-rays are 

first and foremost procedures to be done. Chest x-rays vast usage lies in the fact that it is cheap, 

non-invasive, easily available and easily doable. Globally, each year, there are 2 billion chest 

x-rays being done [4]. While x-rays are quite common, trained and qualified practitioners that 

can understand those x-rays are very scarce. 

 

Figure 1-1 WHO Data for Cause of Deaths 
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The world as we know it is being changed thanks to the advances in the field of deep learning 

and AI as fictitious things like autonomous cars come into the market. We see a sudden increase 

in the use of AI in all fields to be a part of these advances and incorporate these recent advances 

for the betterment of their respective system. In all sectors that Artificial Intelligent Networks 

are used, you can see a steady boom as they bring results which are achievable by human 

intervention. Nowadays, health care is one of these sectors where Deep Learning techniques 

are being used to help medical decision support systems vastly and modern computing 

technological leaps are being used to help in the advancement of the medical sciences. Hence, 

computer vision techniques such as segmentation and localization of anatomical structures of 

chest X-Rays can play pivotal role in implementation of automated and intelligent medical 

decision support systems. Also, extracted anatomical structures can be used as an input in other 

deep learning problems involving those structure i.e. that of a heart, a lung, or others. This 

research compares different modern deep learning techniques such as Yolact and Yolact++ for 

the segmentation and localization of anatomical structures in the thoracic region using chest x-

ray.  

1.1 Motivation 

In recent times, with the world facing pandemics like COVID-19 and having a significant 

increase in population, medical professionals and systems have been under immense pressure 

and it has been a challenge for them to tend to patients around the world. The hospitals have 

groaned under the immense numbers of patients around the globe. Medical staff have been 

overworked and there is a shortage of personnel in the staff of hospitals around the globe. This 

fact is highlighted by the studies carried out in Rosman, D. A. et al. [5] and Ali et al. [6] where 

it was shown that as of 2015, Rawanda had only 11 radiologists for a population of over 12 

million people of Rwanda whereas Liberia having a population of four million had only two 

practicing radiologists in the same timeline. Similarly, Pakistan, like other third world 

countries, suffers from shortage of medical professionals. In 2019 it was estimated that 

approximately 562,000 individuals developed TB in Pakistan but only 360,000 were notified 

and diagnosed [7] whereas, 202,000 people were not diagnosed due to the low doctor to patient 

ratio (which was staggering 1:1300 in Pakistan as of 2019). This leads to large number of un-

diagnosed cases resulting in general population causing high mortality rate. 

So, in this scenario, any automated medical decision support system can be really crucial for 

timely diagnosis and provide a wider coverage as it is not limited to the knowledge of the 
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current doctor. In addition, this system can also have worldwide coverage so that the lives of 

millions of people can be catered to with the help of an automated medical decision support 

system. The job of the doctor is to interpret the X-rays of patients to understand what type of 

symptoms or discrepancy has made them unwell. The machine itself is not intuitive enough to 

understand the symptoms of a patient just by looking at the image of the x-ray, therefore, 

segmentation and localization of anatomical structures in chest x-rays such as the heart, lungs 

can help medical decision support systems identify the disease and facilitate it and is the 

motivation behind this research. 

1.2 Problem Statement 

This research is based on improving the accuracy of medical decision support systems in the 

field by making accurate models which will be able to work in a real-time environment. In this 

paper we look into, improving the segmentation and localization of anatomical structures in 

chest x-rays can really help medical decision support systems and train other specific deep 

networks for diagnosis of diseases as correct segmentation and localization will help reduce 

the noise in the images. The purpose of this research is to explore deep learning techniques 

such as Yolact and Yolact++ in order to improve the segmentation and localization of 

anatomical structures in chest x-rays. We believe that applying these models which have shown 

incredible results in the field of Instance segmentation in the field of computer vision will allow 

us to perform medical decisions in a real-time environment while also being able to provide 

accuracy in prediction on par with licensed doctors. 

1.3 Aims and Objectives 

The major objectives of the research are as follow:  

 Segmentation of different anatomical structures present in a CXRs need attention for 

more understanding of a CXR 

 Localization along with segmentation is not used for CXR  

 Advance deep learning-based models have not been utilized for localization and 

segmentation of CXR structures  

1.4 Structure of Thesis 

This dissertation work is structured as follows: 
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Chapter 2 covers the importance of chest x-rays in medical science and how fast and accurate 

diagnosis can be ensured using segmented and localized anatomical structures present in chest 

cx--rays. 

Chapter 3 gives a review of the literature and the significant work done by researchers in the 

past few years for the segmentation and localization of anatomical structures in chest x-ray 

images. 

Chapter 4 consists of the proposed methodology in detail. It includes two main modules: using 

Yolact and Yolact++ for segmentation and localization. 

Chapter 5 introduces the databases used for evaluation purposes. All the experimental results 

are discussed in detail with all desired figures and tables.  

Chapter 6 concludes the thesis and reveals the future scope of this research  
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Chapter 2 Importance of Segmentation & Localization of Anatomical 

Features of Chest X-Rays 

It is standard practice in the medical sector to diagnose any problems a person may have in the 

thoracic region with x-rays. The reason that x-rays are such a standard practice for an initial 

diagnosis is that it provides a clear pictorial view on the inside of the patient while also being 

a non-invasive procedure and giving negligible radiation exposure to the patient. Moreover, it 

is also the preferred method by doctors as it provides the doctor with a detailed look into the 

patient’s symptoms and it also gives a more standardized approach as the tolerance of different 

people can be different. Afterward, the physicians take a look at each anatomical structure like 

lungs, heart, ribcage, clavicle in the x-ray for diagnosis/analysis and then look into solving the 

patient’s illness. This chapter will briefly cover the basics of chest x-ray, diagnoses that can be 

done from segmented anatomical structures present in the chest, and its use cases.  

2.1 Chest X-Rays 

In the modern day medical science, chest x-rays are the most commonly used x-rays around 

the globe. A chest x-ray produces pictures of the heart, lungs, airways, blood vessels, spine, 

and chest bones, which is why they are so common. An x-ray examination assists doctors in 

the diagnosis and treatment of medical illnesses by providing a crisper image and giving the 

doctor more information than the patient's symptoms. It creates photographs of the inside of 

your body using a little quantity of ionising radiation. The most popular and oldest form of 

medical imaging is X-rays. 

A chest X-ray may show a lot about what's going on within your body, including: 

 The situation of lungs 

 The size of the heart.  

 Fractures.  

 Cancer 

Because radiation is absorbed differently in various tissues, a chest X-ray produces a black-

and-white picture of the organs in the chest. Radiation-blocking structures look white, whereas 

radiation-allowing structures seem black. Bones appear in light color as they are dense 

structures. The heart is also visible as a lighter area. Lungs show as darker spots on the 

photographs because they contain air and block relatively little radiation. A trained radiologist 

or a specialist doctor examines the images for diagnosis and makes a conclusion on the patient’s 
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condition based on his medical knowledge as to the discrepancies of the current x-ray with that 

of a healthy person’s x-ray and the disease that caused the discrepancy. 

2.2 Lungs 

On either side of the chest are two spongy, air-filled organs called lungs (thorax). Through 

tubular branches known as bronchi, the trachea (windpipe) carries breathed air to the lungs. 

The bronchi become tiny when they divide into smaller and smaller branches (bronchioles). 

Bronchioles finally end in alveoli, which are clusters of microscopic air sacs. The alveoli take 

oxygen from the atmosphere and transport it to the bloodstream. The metabolic waste product 

carbon dioxide goes from the bloodstream to the alveoli, where it is released. Between the 

alveoli, there exists a thin layer by the name of interstitium which contains cells and blood 

vessels that support the alveoli. A thin tissue layer that covers the lungs is known as the pleura. 

The inside of the chest cavity is lined with the same thin tissue known as pleura. With each 

breath, a small coating of fluid works as a lubricant, helping the lungs to expand and collapse 

easily. 

 

As the lungs are such an invaluable organ, we would like them to stay in top-notch condition. 

In case a patient comes into the doctor with symptoms that affect the lungs (e.g., they are having 

trouble breathing) the physician would normally advise them to do a chest X-ray can be used 

to diagnose pulmonary abnormalities such excess fluid (pulmonary edoema), fluid surrounding 

the lung (pleural effusion), pneumonia, bronchitis, asthma, cysts, and malignancies and the x-

ray would then be able to help the doctor identify the source of the patient’s discomfort using 

the discrepancy in the x-ray. Moreover, Chest X-rays are so detailed and medical science has 

evolved so far that medical professionals can identify and correlate problems such as i.e., 

alterations or issues in the lungs as a result of cardiac difficulties Congestive heart failure, for 

example, can cause fluid in the lungs. 
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Figure 2-1 Detailed diagram of lungs 

 

2.3 Heart 

The heart is a muscular organ about the size of a fist that sits directly behind and to the left of 

the breastbone. The cardiovascular system, which consists of a network of arteries and veins, 

circulates blood through heart. It’s solely responsible for transporting the blood in the body so 

proving oxygen or any nutrients that the body might need and also carrying waste like carbon 

dioxide out of the body.   

In matters of the heart, a doctor may prescribe a chest x-ray to identify the discrepancy in the 

patient’s heart that is responsible for causing the problem. For example, heart changes in size 

and form might suggest heart failure, fluid surrounding the heart, or difficulties with the heart 

valves. Because the outlines of the big vessels around the heart, such as the aorta, pulmonary 

arteries, and veins, may be seen on X-rays, it can also reveal aortic aneurysms, other blood 

vessel issues, or congenital heart disease. Calcium in the heart or blood arteries can also be 

detected using chest X-rays. Its presence might suggest the presence of lipids and other 
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substances in your vessels, as well as damage to your heart valves, coronary arteries, heart 

muscle, and the protective sac that surrounds the heart. So as you can see the chest x-rays allow 

the doctor to get a clear idea of the discrepancy taking place in the person heart leading to their 

systems and then asking the patient to go on a treatment plan based on what they seem 

medically appropriate. 

 

 

Figure 2-2 Detailed diagram of Heart 

 

2.4 Bones 

Chest x-ray contains ribcage and clavicle bones. The rib cage is one of the body's best defenses 

against impact injury. The ribcage is made up of the ribs and the sternum. The rib cage shields 

vital organs like the heart, lungs, and liver from injury. There are 24 ribs in the rib cage. Each 

rib grows out of the spinal cord and wraps around the body. The sternum is a long flat bone in 

the middle of the chest that is also known as the breastbone. Its purpose is to protect the heart.  

The first seven ribs, as well as the clavicle, or collarbone, are connected by the sternum. The 

clavicle, or also known as the collarbone, extends across the front of the shoulder from the 

sternum to the scapula, or shoulder blade.  
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In case of damage of bones (fractures), doctors prescribe the patient an x-ray to get an idea of 

the damage the magnitude of the damage the person has suffered. The way this Is done is that 

normally x-ray radiations are not able to pass through the bones as they are so din caseut in 

case of a fracture of the bone the racked so we are able to the breaking point as the radiation 

will pass through that point and we will have a black point rather then the expected white point 

of a healthy bone. 

 

 
 

Figure 2-3 Detailed diagram of bones in CXR 

 

2.5 Use-Cases 

In modern times, with advancements in deep learning, automated medical decision systems are 

being developed and deployed to help in the advancements of the medical sciences. There are 

numerous researches being carried out the increase the efficiency and time complexity of health 
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systems throughout the world. The reason for this solution is to aid in the development and 

improvement of the medical world and to be one of the driving forces on the brink of changing 

and advancing this field. 

 

One of the most fundamental reasons for the success of these applications is segmentation, 

which is the process of splitting a digital image into several parts (sets of pixels, also known as 

image objects). The purpose of picture segmentation is to make an image's representation more 

meaningful and simpler to examine by simplifying and/or changing it. Image segmentation is 

commonly used to find objects and boundaries (lines, curves, and so on) in images. Image 

segmentation is the process of labeling every pixel in an image so that pixels with the same 

label share certain characteristics. Whereas localization is another deep learning method that 

gives us a bounding box around objects in an image. Its output is x coordinate, y coordinate, 

height, and width of the bounding box of the object. So, segmentation and localization can help 

us identify objects in images. Now in our thesis, we are using both of these algorithms to extract 

lungs, heart, and clavicle from chest x-ray images. 

 

Chest x-rays are one of the most abundantly used diagnosis methods or rather the most initial 

diagnosis method for any issues in the thoracic region by the physicians. With the emergence 

of COVID-19, chest x-rays were commonly used for checking conditions of lungs for COVID-

19 to get an in-depth analysis of positive patients as well as people who were considered false 

negatives and had uneasiness with their lungs. CT Scans and COVID-19 tests had time 

constraints which caused problems as there was a delay in providing patients with the right 

care and also the classification of whether the person had tested positive for COVID-19 also 

took time, while x-rays can be obtained in real-time, so this increase in usage increased the 

demand for more professionals to assess these x-rays. The recent pandemic has shown us that 

the medical sector is already short-staffed as during COVID-19 the world’s top and foremost 

countries in the field of medical science were also seen having issues with catering to patients 

during the pandemic due to the large numbers. The idea behind this paper being that since 

automation has had such a major role in so many industries bringing it to the medical sector 

will allow us to get increased coverage while also providing patients with timely care as a fully 

automated such as this will be able to cut the turnaround time from a few hours to a few 

seconds. So, any system that could automate this assessment of x-ray automatically can really 

be beneficial for health care systems as well as patients as it can decrease turnaround reporting 

time to a few seconds from a few hours. This can in a result be very vital for the greater good 
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of people and robust working systems can increase the lifesaving capacity of the health care 

system while also alleviating the doctors from tedious activities to more important ones. Also, 

these extracted anatomical structures can be given to other deep learning-based automated 

medical decision support systems that can do the diagnosis like if extracted lungs can be given 

to any deep learning algorithm to extract the damage done to them, its workload becomes very 

less and it can work very robustly, same goes for heart etc. 

 

So, this robust method of applying computer vision techniques like image segmentation and 

image localization of anatomical structures in chest x-rays can indeed help the medical sector. 

The deep learning field can automate the tedious and repetitive tasks for medical professionals 

freeing up more time for them to devote to the betterment of their patients and the development 

of the medical sciences, this is very important as it will intern will lead to the preservation of 

the human species 
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Chapter 3 Literature Review 

Chest x-rays have been very integral part of medical imagining and there has been a lot of 

research being done on them. In recent times, various imaging solutions are being utilized but 

chest x-rays are still the first and basic step in getting any diagnosis in the thoracic region. In 

the past two years, many researchers have worked on segmentation and localization of 

anatomical structures in chest x-rays. Segmentation and localization of anatomical structures 

in chest x-rays is difficult because of ribs being super imposed on lungs and low intensity of 

heart etc, so it has been quiet a trivial research topic in recent years.  This chapter summarizes 

all those valuable researches. 

3.1 Segmentation 

Joseph et al. [8] depicted an entirely automatic way of segmentation of X-ray images on a 

limited data set. It showed an architecture of 2 encoder decoder modules instead of a single 

deep architecture in order to image pixilation and combat overfitting. Data set used for training 

and scoring the model was of IBEX Innovations Ltd. The algorithm produced results of 92% 

accuracy, 92% f1-score and 98% AUC which exceeded the already existing traditional 

implementations. 

Souza et al. [9] tries to automatically segment lungs including the opacities caused by 

pneumonia and pulmonary tuberculosis etc. The opacities reach high intensity making it 

difficult to segment automatically in a single region. The algorithm involves using 2 CNNs, 

one for initial segmentation of lungs and second for reconstruction of missing lungs portions 

and final output is the combination of both CNNs. For initial segmentation, AlexNet was used 

while for reconstruction ResNet18 was used. Montgomery County Chest X-ray dataset was 

used, which contained 138 CXR exams from normal patients but also from several patients 

with manifestations of tuberculosis, so it was quiet heterogeneous dataset. Results of this 

research showed promise in the quality of the segmentation, but the dataset was limited and 

there is still a chance of getting false positive high intensity regions as a result. 

In this paper Zhang et al. [10], task-driven generative adversarial network model was used to 

investigate the unsupervised multi-organ segmentation on X-ray images. The proposed model 

framework accepts synthetic labelled DRR images produced from 3d CT as input and produces 

meaningful segmentation results on real Xray images without the use of ground truth 

annotations. It uses a cycle-GAN substructure to achieve image style transfer and carefully 
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designed add-on modules to segment organs of interest at the same time. 153 topograms were 

used for training and it was tested on 500 random annotated images from NIH dataset 

qualitatively and on 300 random annotated images from JSRT dataset quantitatively. It has 

been able provide 86% dice with unsupervised learning which was pretty similar to 89% dice 

score of supervised learning. 

Maga et al. [11] showed a combination of CNN and Adversarial Critic Model for segmenting 

lungs in chest X-rays. The CNN identifies different masks among the X-ray image while the 

Critic Model determines whether the X-ray contains Lungs or not? The data sets used for 

training and scoring the model contained Japan Society of Radiological Technology (JSRT), 

Montgomery and Shenzhen data sets. And the final Dice Score of 0.975 was achieved. 

Rehman et al. [12] described a conjunction of U-net and 9 different Deep CNNs including 

ResNet(18,50,101), MobileNet,ChexNet,InceptionV3,SqueezeNEt,DenseNet201 and Vgg19 

for initially segmenting the lungs and then classifying whether it’s a positive/negative case for 

TB. The datasets were gathered from various online sources including Kaggle, A. Rosenthal et 

al. The TB Portals and B. P. Health. (2020). Belarus Tuberculosis Portal. For training the Deep 

CNNs, transfer learning was used to initialize weights from pre-trained models for 

classification. After experimentation, the algorithm with optimal scores for classification 

(without segmentation) was found to be ChexNet having accuracy, sensitivity, precision, 

specificity and f1-score of 0.965,0.965,0.966,0.965 and 0.965 respectively. The algorithm for 

classification (with segmentation) produced best results with DenseNet201 of 0.986, 0.986, 

0.986, 0.985 & 0.986 for accuracy, sensitivity, precision, specificity and f1-score respectively. 

In addition, the paper used Score-CAM heat map visualization to confirm the detection of TB. 

In Abdel-Basset et al. [13], they tried extracting the similar small regions of the chest image in 

attempt to extract the important region called image segmentation problem (ISP), which is 

highly useful for detecting COVID-19 by using x-ray images. The authors discovered a new 

hybrid multi thresholding approach based on e SMA behavior with WOA for overcoming ISP. 

Its effectiveness is better than five state of the art algorithms like WOA, SSA, Lshade, HHA, 

and FFA. The authors used number of images from The Berkeley Segmentation Dataset and 

Benchmark as dataset. 

In Pereira et al. [14], lungs segmentations was used on chest X-ray images which was further 

effectively used to detect COIVD-19. They used U-Net CNN architecture, and classified using 

three CNN architectures (VGG, ResNet, and Inception). They composed three class dataset 

naming Pneumonia, COVID and Normal human. They also used dataset from different sources 

for their experimentation. With a Jaccard distance of 0.034 and a Dice value of 0.982, the 
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segmentation was successful. For the multi-class configuration, the classification using 

segmented pictures achieved an F1-Score of 0.88, and for COVID-19 identification, an F1-

Score of 0.83. They got an F1-Score of 0.74 and an area under the ROC curve of 0.9 for 

COVID-19 identification utilizing segmented pictures in the cross-dataset scenario. The 

models were trained using proprietary databases including photos from four Chinese hospitals 

and then evaluated on the open-access CC-CCII dataset, which is publicly available. 

3.2 Localization 

Wu et al. [15] uses an end to end automated approach of firstly segmenting the 6 zones of lungs 

(upper, lower and middle of left/right lung) using U-Net with the help of bounding boxes. The 

anomalous region was labelled with a different color. Subsequently, these labelled images are 

passed into RetinaNet for classification using lung opacity. The dataset of ChexRay-14 NIH 

was used for training and validation purposes and the average recall and precision of 81.8% 

and 89.6% were achieved respectively. 

Kholiavchenko et al. [16] discusses an automated method for detecting pneumonia regions in 

the chest using an ensemble of RetinaNet & Mask-RNN. Both models are trained separately 

on training data set and weighted average is calculated for the final predictions. The data set 

used for training and validation were obtained from Kaggle Pneumonia Detection Challenge 

and the best score of 79.3% recall was achieved. In addition, the paper claims to have achieved 

a top 3% ranking in the competition. 

Singh et al. [17] tried to predict Thorax disease by applying deep convolutional neural network 

using ImageNet on multiple X-ray images. The dataset used in this research was provided by 

NIH, it included 25,603 gray scale x-ray images of 1024x1024 pixels from 30,000 unique 

patients. They used two different models to analyze the x-ray. Firstly, the SoftMax regression 

and secondly DCNN architecture with account of metadata such as age, gender etc The solution 

got mean Accuracy of 69.75%.  

Zebin et al. [18] tried to diagnose COVID-19 disease by chest X-ray images. For identifying 

COVID-19 chest X-ray pictures, they used a transfer learning pipeline. The classifier 

distinguished the images of lungs infected by COVID-19 and Pneumonia form the normal ones. 

They used multiple pre-trained convolutional backbones for feature extraction and achieved an 

overall detection accuracy of 90%, 94.3%, and 96.8% for the VGG16, ResNet50, and 

EfficientNetB0 backbones respectively. For visual explanation they used gradient class 

activation mapping technique to highlight the regions that are important for predictions. For 
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dataset they created three class datasets with titles normal patient, COVID-19 patients and 

patients with bacterial Pneumonia, the images were taken from “COVID-19 Image Data 

Collection” publicly available on GitHub. 

 

Table 3-1Literature Review Summary 

Year Authors Dataset Methodology Results 

2019 
Joseph et al. 

[8] 

IBEX 

Innovations Ltd 

Automatic segmentation 

using 2 encoder decoder 

modules containing 

multiple layers of Pooling, 

Upsampling, ReLU, 

Softmax Activation and 

Convolution 

92% Accuracy, 

92% F1-score, 

98% AUC 

2019 Souza et al. [9] 

Montgomery 

County Chest 

X-ray 

2 CNN, one for lung 

segmentation and other for 

reconstruction of opaque 

lung portions caused by TB 

and pneumonia 

97% Accuracy, 

97%  Sensitivity, 

96% Specificity, 

93% Dice Index, 

88% Jaccard 

score 

 

2020 
Zhang et al. 

[10] 
JSRT & NIH 

Accepts synthetic labelled 

DRR images produced 

from 3d CT as input  and 

segments real X-ray 

images by using a cycle-

GAN substructure 

86% Dice Index 

 

2020 
Maga et al. 

[11] 

JSRT, 

Montgomery 

and Shenzhen 

CNN identifies different 

lungs masks among the X-

ray image while the Critic 

Model determined whether 

the X-ray contained Lungs 

 

97.5% Dice Index 
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2020 
Rehman et al. 

[12] 

Kaggle Chest 

X-Ray, NLM, 

Belarus, NIAID 

TB and RSNA 

 

Segmentation of lungs and  

then detection of TB using 

U-Net and Deep CNN 

98.6% Accuracy, 

98.6% 

Sensitivity, 

98.6% Precision, 

98.5 % 

Specificity, 

98.6% F1-Score 

2020 
Abdel-Basset 

et al. [13] 

The Berkeley 

Segmentation 

Dataset and 

Benchmark 

Hybrid multi thresholding 

approach based on e SMA 

behavior with WOA for 

overcoming Segmentation 

of lungs. 

Its effectiveness 

is better than 

WOA, SSA, 

Lshade, HHA, 

and FFA 

2021 
Pereira et al. 

[14] 
Private 

U-Net for Lung 

Segmentation & 3 CNN for 

classification as COVID-

19 effectee 

74% F1-Score, 

Area under the 

ROC curve of 0.9 

 

2020 Wu et al. [15] 
ChexRay-14 

NIH 

Segmentation of lungs 

using U-Net then 

classification using 

RetinaNet 

81.8% Average 

Recall, 89.6% 

Precision 

2019 
Kholiavchenko 

et al. [16] 

Kaggle 

Pneumonia 

Detection 

Challenge 

RetinaNet and Mask R-

CNN were trained 

separately and weighted 

average was calculated for 

final predictions 

75.8% Precision, 

Recall 79.3%,  

77.5% F1-score 

2020 
Singh et al. 

[17] 
NIH 

Deep Convolutional Neural 

Network unified 

framework and disease 

localization using 

ImageNet 

69.75% Accuracy 

2021 
Zebin et al. 

[18] 

Kaggle CXR 

Pneumonia 

dataset, Github 

Convolution network with 

3 backbones i.e. VGG-16, 

Accuracy of 90%, 

94.3%, and 

96.8% for the 
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COVID-19 

Image Data 

Collection 

dataset 

ResNet50 and 

EfficientNetB0 

VGG16, 

ResNet50, and 

EfficientNetB0 

 

As we conducted the above literature review, it dawned upon us that segmentation and mask 

prediction at pixel level of different anatomical structures present in Chest X-Rays need 

attention and more work to generate better models that understand Chest X-Ray images and 

anatomical structures present in it. Also, no research has ever used localization with 

segmentation for Chest X-Rays, so it’s either segmentation or localization, but combination of 

both have never happened as previously there were no sophisticated advanced deep learning 

models present that had both of these techniques. But, nowadays, there are certain advance 

deep learning based models which are using localization and segmentation simultaneously but 

those algorithms are not being used for segmentation and localization of anatomical structures 

in Chest X-Rays till date, so that posed as a research gap for our thesis research. 
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Chapter 4 Proposed Framework 

This chapter will explain the framework which has been proposed for the segmentation and 

localization of anatomical structures in chest x-rays. First we, will cover the dataset used, then 

an explanation of Yolact followed by an explanation of Yolact++ and eventually our own 

implementation. 

4.1 Dataset 

We used a publicly available dataset, the Japanese Society of Radiological Technology (JSRT), 

for our research. JSRT dataset contains 247 CXRs gathered from 14 medical centers. There are 

93 normal images and 154 abnormal images among the 247 images. These images are saved 

in PNG format with 2048x2048 pixels and a grayscale of 12 bits. Image abnormality is graded 

from extremely subtle to obvious. 

Table 4-1 Dataset Summary 

Name Japanese Society of Radiological Technology (JSRT) 

Number of Images 247 

Resolution 2048x2048 

Anatomical Structures Heart, Left Lung, Right Lung, Left Clavicle, Right Clavicle 

 

 

Figure 4-1 Annotated image of JSRT 
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4.2 Methodology 

The methodology we followed has been shown in Figure 4.2. We took the annotated JSRT 

chest x-ray, parsed the JSRT annotations to COCO style JSON. We then passed the chest x-

rays, as well as COCO style annotations JSON file to our deep  learning models which were 

Yolact and Yolact++ to train.  Our models then gave us the localized and segmented the chest 

x-rays from test split of dataset and gave us masks and bounding boxes for all the classes i.e. 

Heart, Right Lung, Left Lung, Right Clavicle, Left Clavicle. 

 
Figure 4-2 Proposed Methodology Summary 

4.2.1 Preprocessing 

We took the JSRT public dataset which came with chest x-rays and their respective annotation 

files. These JSRT annotations weren’t COCO style JSON annotation files. So we wrote a parser 

which took JSRT annotation files and returned us a JSON which was similar to JSON’s being 

given by Labelme utility as an output. Labelme utility was advised by the GitHub repository 

of Yolact and Yolact++ for annotation. After parsing each JSRT annotation we got a JSON file 

that contained all the relevant information regarding annotations and the image. Afterwards we 

created a text file that contained all the class labels i.e. left lung, right lung, heart, left clavicle, 

right clavicle etc. Finally we used instance segmentation utility by the name of labelme2coco 

to convert labelme styled annotated dataset to COCO style annotated dataset. Output of this 

utility was our prepared dataset. 

We used the dataset prepared above to train the Yolact and Yolact++ models and evaluated 

them to get mAP scores for both the models. 
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4.2.2 Advanced Deep Learning Models 

Image segmentation has always been seen as a computationally expensive step that cannot be 

achieved in a real-time environment. The problem is a mixture of both object detection and 

semantic segmentation as the problem tackles the prediction of object instances and their per-

pixel segmentation masks, the final goal being to assign a class label to each pixel like that of 

semantic segmentation, the way it differs from semantic segmentation being that it treats 

multiple objects belonging to the same class as individual objects. In the same way that real-

time object detectors (e.g., SSD and YOLO) proposed a one-stage architecture so that they 

could be used in a real-time environment unlike two-stage. So that’s what make Yolact and 

Yolact++ so effective. 

4.2.2.1 Yolact 

YOLACT proposes to be a solution for this problem as it provides a solution similar to the way 

real-time object detectors like SSD and YOLO after faster than the pro R-CNN and R-FCN, 

through the removal of one of their stages of production so that they can work in real-time, and 

by making up for accuracy with other means. The YOLACT is similarly an alternative to the 

two-stage instance segmentation models that are readily available (e.g., Mask-RCNN) with a 

one-stage approach so as to allow us to deploy in a real-time environment. This solution for 

achieving image segmentation is not as simple as object detection, as we only had other models 

trying to attain object segmentation in the past (Straight to Shapes and Box2Pix) perform in a 

real-time environment and their accuracies were far from the desired percentage for modern-

day models. 

 

To address this problem, we have the YOLACT model which works by breaking up the image 

segmentation into two parts. It will generate a dictionary of prototype masks over the image. 

Secondly, it works by predicting a set of linear combination coefficients per instance. The 

above steps are the core process as all that remains is to perform the image segmentation and 

we do that by linearly combining the prototypes using the corresponding predicted coefficients 

from the model and then crop them using a bounding box towards the end to get the image 

segmentation. The Bounding Box in itself is a rough mask, which approximates the contour of 

the mask with the minimum bounding rectangle. This is very different from the other image 

segmentation model as the conventional way to perform segmentation is repooling or other 
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methods (e.g., mask voting), these steps put huge time constraints on the algorithm and the 

model is then not able to perform in a real-time environment. The YOLACT model because of 

its aforementioned structure is able to forgo these steps as it simply relies on linear 

combinations. Moreover, the YOLACT model is able to do the generation of prototype masks 

and predict per-instance masks coefficients in parallel which allows it to do the tasks almost 

seamlessly.  

 

Figure 4-3 Architectural View o Yolact 

 

As shown in the architecture diagram Figure 4.3. The YOLACT model we have used a 

RESNET-101 along with the FCN as the default feature backbone. The next step is done as a 

parallel process so as to increase the efficiency of the algorithm by decreasing the time latency. 

The first branch involves that the prototype masks are generated with the help of the FCN and 

in the second branch it performs detection and predicts class detection and mask coefficient for 

each of the instances.  

According to the following design decisions, the prototype generating branch (protonet) 

forecasts a set of k prototype masks for the full image: 

1. Using protonet from deeper backbone characteristics that provide strong and high-quality 

masks, the final layer with k channels from FPN P3 is evaluated, and it is up sampled to one-

fourth the input image's size to improve performance on small objects. 

2. Individual prototype losses are not expressly considered; instead, the total mask loss after 

assembly is evaluated. 
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3. A relu (non linearity) operation is done on the protonet's output to maintain it unbound, 

allowing the network to generate huge, overwhelming activations on prototypes it is highly 

certain about for the background. 

Following Figure 4.4 shows a depiction of Protonet architecture. It shows simple upsampling 

followed by 3x3 convolution until the last stage where the convolution is 1x1. 

 

Figure 4-4 Protonet incorporated in Yolact 

In the mask generating branch, we got 2 basic components working, one being prediction head 

and other being fast NMS. 

The prediction head in depicted in Figure 4.5, here, the input is passed through a 3x3 FCN 

twice. Afterwards, data is passed through a class coefficient branch, a box coefficient branch 

and a mask coefficient branch simultaneously. This is for c classes, a anchors for feature layer 

Pi and k prototypes. Its output is fed to Fast NMS. These 3 heads have separate loses: 

 Classification loss: Log based as shown in figure [19] 

 

 Box regression loss: Combination of different factors such as Intersection over Union 

(IoU) and Generalized IoU (GIoU) as shown in figure [19] 
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 Mask loss L mask: Binary Cross Entropy (BCE) which means how far are we from 

actual mask as shown in figure 

 

 

Figure 4-5 Different output heads in Yolact 

NMS is used to reduce duplicate detections in most object detectors. The NMS procedure is 

carried out in the following order: sort the detected boxes descending by confidence for each 

of the c classes in the dataset, and then delete all those with lower confidence than it that have 

an IoU overlap higher than a threshold for each detection. Even though it is quick, it is a 

significant impediment to achieving 30 frames per second. To overcome the sequential nature 

of conventional NMS, Yolact uses the Fast NMS, in which each instance may be determined 

to be maintained or discarded in concurrently; to do so, we leverage previously deleted 

detections to suppress additional detections, which is not feasible in classic NMS. 

These two parallel steps are combined by a simple linear combination of the generated 

prototypes and the mask coefficients. After which we apply sigmoid linearity to produce the 

final mask. We have 3 losses to train our model the classification loss, box regression loss, and 

mask loss. During the training period, we use do not crop the bounding box in the evaluation 

period to still get the small objects in the prototypes but in the final evaluation, we crop the 
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final masks with the bounding box and after thresholding, we are able to arrive at the high-

quality masks for each object instances.  

This gives us the benefit of having market standard performance from the model as its masks 

allow us to get the full extent of the image without the loss we normally get when repooling, 

coupled with the easy integration of generating prototypes and coefficients which is very 

helpful. In addition, the time constraint for this model is also less as it is comparable to a one-

stage backbone detector because of its ability to be run in parallel threads and its simplistic 

assembly process. Moreover, because of its simple assembly structure can also be GPU-

accelerated matrix-matrix multiplication making the model stand out in performing the image 

segmentation in a real-time environment. 

 

4.2.2.2 Yolact++ 

The Yolact++ proposes an improved version of the YOLACT architecture. The change in the 

architecture helps us not only increase in accuracy but the compact size of the new architecture 

along with the new compact size allows it to run in low-compacity embedded systems while 

also performing in performance as the Frame Rate per second is also increased. The First 

increase in efficiency is caused by using Deformable Convolution Networks which cause an 

increase in the accuracy because of the DCN network makes up for the lack of not having a re-

sampling process the use of DCN will align the sub-optimal sampling which have been 

obtained to a canonical reference region, also the DCN also gives us the added advantage of 

allowing the network to handle target instances with respect to their scale, rotation and aspect 

ratios.  Secondly, the model employs a Fast Mask re-scoring network which consists of a 6-

layer FCN with ReLU non-linearity per conv layer and a final global pooling layer. Finally, 

the Yolact++ boats an anchor-based backbone detector and tune the parameters to set the 

optimum value of aspects ratios and scales. 
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Chapter 5 EXPERIMENTATION AND RESULTS 

This chapter will explain the results we got for our research. First, we will explain the metrics 

used to judge the output of the research like Intersection over Union, Average Precision, mean 

Average Precision and the then we will present these metrics for Yolact and Yolact++ for our 

own annotated JSRT dataset. 

5.1 Performance Metrics: 

Every deep learning algorithm’s performance is evaluated by some fix metrics. To judge our 

algorithm, following are the performance metrics we would be using. 

5.1.1 Intersection over Union (IOU): 

IoU is a number between 0-1 that is defined by area of overlap between the predicted and 

ground truth bounding box divided by union of region between the predicted and ground truth 

bounding box. If IoU id 1, it indicates that there is a full overlap while lower values mean the 

predicted bounding box is away from the ground truth bounding box. It is used to calculate 

mean average precision.  

 

Figure 5-1 Intersection over union pictorial representation 

5.1.2 Average Precision (AP): 

AP is a metric used to measure accuracy of object detectors. Mathematically it is area under 

the curve for precision-recall curve plotted from 0 to 1.  

Now, precision is a measure of how accurate our predictions are.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
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Or in simple terms,  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
 

 

Similarly, recall means how accurate did we predict all positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Or in simple terms,  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑖𝑛𝑝𝑢𝑡𝑠
 

 

So, AP is area under the curve of precision-recall graph.  

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

 

5.1.3 Mean Average Precision (mAP): 

While evaluating COCO style datasets, mAP is used for measuring correctness of multi class 

detection. mAP is calculated over different IoU’s, starting from 0.5 to 0.95. So, for each IoU, 

mean of AP for all classes with same IoU is calculated and final mAP contains percentage 

means of AP for all classes over mentioned above range of IoUs.  

5.2 Experimentation 

So, for experimentation, we first transformed our annotated JSRT dataset to COCO style 

annotation as Yolact and Yolact++ only take COCO styled annotations to train. So we parsed 

the annotations and created COCO style annotated JSON files with 90-10 split for training and 

validation. Afterwards, we trained Yolact and Yolact++ on these custom parsed JSON and got 

performance metrics explained above.  

5.2.1 Yolact 

So, we tested Yolact on our JSRT dataset which had 5 classes i.e. heart, left lung, right lung, 

left clavicle, right clavicle with a 90-10 training validation split. So we got average precisions 

for each class at different IoUs. Table 5.1 contains the AP’s on different IoU’s ranging from 

0.5 to 0.95 with an interval of 0.05 for each class. 
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Table 5-1 APs on different IoU’s of all classes for Yolact 

Class Box/Mask 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Heart 
Box 1.0 1.0 1.0 1.0 1.0 1.0 0.94 0.63 0.065 0.01 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.93 0.39 0.02 

Left 
Lung 

Box 1.0 1.0 1.0 1.0 1.0 1.0 0.90 0.81 0.41 0.0 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.49 

Right 
Lung 

Box 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 0.31 0.0 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.55 

Left 
Clavicle 

Box 1.0 1.0 1.0 1.0 0.83 0.70 0.62 0.34 0.13 0.0 

Mask 1.0 1.0 1.0 1.0 1.0 0.72 0.61 0.41 0.02 0.0 

Right 
Clavicle 

Box 1.0 1.0 1.0 1.0 1.0 1.0 0.73 0.47 0.05 0.01 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.66 0.06 0.0 
 

Also, the results gave us mean average precision (mAP) for IoU’s ranging from 0.5 to 0.95 

with an interval of 0.05 and a final average on all IoU’s. Table 5.2 shows these mAP’s. 

 
Table 5-2 mAP for Yolact across different IoUs 

 All 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Box 75.78 100 100 100 100 96.53 93.94 84.42 63.22 19.38 0.32 

Mask 83.73 100 100 100 100 100 94.30 92.18 79.98 49.52 21.29 

 

5.2.2 Yolact++ 

So, we tested Yolact++ on our JSRT dataset which had 5 classes i.e. heart, left lung, right lung, 

left clavicle, right clavicle with a 90-10 training validation split. So we got average precisions 

for each class at different IoUs. Table 5.3 contains the AP’s on different IoU’s ranging from 

0.5 to 0.95 with an interval of 0.05 for each class. 

 
Table 5-3 APs on different IoUs of all classes for Yolact++ 

Class Box/Mask 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Heart 
Box 1.0 1.0 1.0 1.0 1.0 1.0 0.87 0.38 0.05 0 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.62 0.43 0 

Left 
Lung 

Box 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.92 0.29 0.04 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.31 

Right 
Lung 

Box 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.31 0.03 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 

Left 
Clavicle 

Box 1.0 1.0 1.0 1.0 0.82 0.69 0.69 0.61 0.23 0 

Mask 1.0 1.0 1.0 1.0 1.0 0.93 0.54 0.54 0.09 0 

Right 
Clavicle 

Box 1.0 1.0 1.0 1.0 1.0 0.94 0.94 0.31 0.06 0 

Mask 1.0 1.0 1.0 1.0 1.0 1.0 0.94 0.56 0.02 0 

 



28 
 

Also, the results gave us mean average precision (mAP) for IoU’s ranging from 0.5 to 0.95 

with an interval of 0.05 and a final average on all IoU’s. Table 5.4 shows these mAP’s. 

 
Table 5-4 mAP for Yolact++ across different IoUs 

 All 0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

Box 76.48 100 100 100 100 96.4 92.6 90.08 64.88 19.48 1.4 

Mask 83.23 100 100 100 100 100 98.6 89.69 74.76 50.17 18.53 

 

5.3 Validation of framework 

We tested the Yolact++ models trained on JSRT dataset on 2 unseen datasets. The first dataset 

it was tested was called Montgomery County X-Ray set. It contained 138 chest x-ray images 

with a resolution of 4020x4892. Figure 5.2 contains inputs and results for this dataset.  

 

 

Figure 5-2 Input and predicted results on Montgomery dataset 

 

Second dataset it was tested against was called Shenzhen Hospital X-ray Set. It contained 662 

images with a resolution of 2987x2945. Figure 5.3 contains inputs and results for this dataset. 
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Figure 5-3 Input and predicted results on Shenzhen dataset 

As we can see, the model was predicting all 5 classes pretty accurately. We do not have any 

numbers though as no other datasets except JSRT had all these 5 classes annotated. 

5.4 Comparative Analysis 

For comparative analysis, we trained and validated with same dataset on Yolo v5 and U-Net.  

For Yolo v5, we got the mAP’s as well as predicted outputs. Table 5.5 contains mAP’s of 

bounding boxes by Yolo v5 versus mAPs of masks and bounding boxes by Yolact++. Figure 

5.4 shows labelled and predicted images by Yolo v5. As we can see in Table 5.5, Yolact++ is 

giving masks at a pretty similar average precision till 70 percent IoU which is a pretty high 

standard for any deep learning model while Yolo v5 is giving bounding boxes which are easier 

to find. 

Table 5-5 mAP for Yolact++ vs Yolo v5 

 IoU 50 55 60 65 70 75 80 85 90 95 

Yolact++ 
Box 100 100 100 100 96.4 92.6 90.08 64.88 19.48 1.4 

Mask 100 100 100 100 100 98.6 89.69 74.76 50.71 18.53 

Yolo v5 Box 100 100 100 100 100 100 100 99.8 96.02 77.31 
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Figure 5-4 (a) Labelled Images (b) Predicted Labels by Yolo v5 

 

For U-Net, we got average IoU’s for each class but we have to run 2 models as Clavicles were 

intermingled and overlapping on Lungs so there was one model having Heart, Left Lung and 

Right Lung while the other model had Left Clavicle and Right Clavicle. Table 5.6 contains the 

mean IoU of each class while Figure 5.5 shows us the predicted masks on some samples. Now 

Table 5.6 shows a similar mean IoUs to Yolact++. 

 

Table 5-6 Mean IoU for all classes by U-Net 

Class Heart Left Lung Right Lung Left Clavicle Right Clavicle 

Mean IoU 0.81912156 0.939344 0.94960601 0.74123646 0.80185122 
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Figure 5-5 (a) Labelled Images (b) Predicted Labels by U-Net 

5.5 Discussion 

So, we tested Yolact and Yolact++ against our defined performance metrics and against most 

sophisticated localization and segmentation algorithms separately and one thing that stood out 

was both of these advanced deep learning algorithms were providing segmentation and 

localization with similar performance to those of specialized algorithms specified for singular 

task in less time too. So both of these became natural selection for segmentation and 

localization simultaneously. Among Yolact and Yolact++, Yolact++ had better results as 

mentioned above and it trained around 20-25 percent faster than Yolact. So, Yolact++ was 

doing better segmentation and localization faster than Yolact. Next chapter would conclude 

with the analysis and future work required to maximize the output of this effort.  
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Chapter 6 Conclusion & Future Work 

6.1 Conclusion  

Chest X-Rays are most common diagnostic step in any diagnosis of any ailments in upper 

thoracic regions as its non-invasive, cost-effective, feasible and accessible to most of the 

population around the globe. According to a WHO report, nearly 2 billion Chest X-Rays are 

conducted annually. So Chest X-Rays are accessible but trained radiologists and physicians 

having specific specializations to understand Chest X-Rays are scarce. According to Rosman, 

D. A. et al. [5], in 2005, 11 radiologists were serving 12 million of population of Rwanda and 

according to Ali et al. [6], 4 million people of Liberia had access to only 2 radiologists. So, 

there was an scarcity of skilled workforce to understand the Chest X-Rays before COVID-19 

but with emergence of COVID-19, the situation has gone from bad to worse. So any automated 

diagnostic and/or decision support system which helps in understanding Chest X-Rays can be 

really beneficial for current medical systems and mankind. Having said this, all the initial upper 

thoracic diagnosis requires the medical practitioners to glance and study each anatomical 

structure present in Chest X-Rays which is a time consuming task. Current CAD and decision 

support systems have localization and segmentation done separately which is time and compute 

consuming. Yolact++ on the contrary can do both, localization and segmentation at a very low 

time and compute cost because it’s a very advance deep learning architecture and it is pretty 

accurate with the masks as shown above. Although the model was trained with just 247 images, 

it was pretty effective when we tested it on unseen validation datasets such as Montgomery 

and Shenzhen. The reason for this was there were no class imbalance in the training dataset 

and Chest X-Rays always had a similar reference style i.e. minor tilts and zooming issues. Also, 

Yolact++ was compared with advanced localization technique such as Yolo v5 and 

segmentation technique such as U-Net and results were pretty similar to both. So it was doing 

what both of them were doing in less time and with more accuracy. Hence, Yolact++ is a 

compact solution that can be used for segmentation and localization of anatomical structures 

of Chest X-Rays. 

6.2 Contribution 

This research contributed towards the following aspects in advanced deep learning algorithms 

involving Chest X-Rays: 

 Utilized one of the most recent architectures YOLACT++ for Chest X-Ray images  
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 The trained model is tested across different Chest X-Ray datasets to see the 

robustness of trained model   

 Utilizes recent localization and segmentation architecture for anatomical structures 

present in Chest X-Rays 

6.3 Future Work 

The current works lays foundation for diagnostics systems which are dependent on 

segmentation and localization of anatomical structures in Chest X-Rays. In order for this 

research to yield an appropriate/useable system there are number of future directions which 

can be followed. Some of such directions are listed below: 

• We can collect locally gathered Chest X-Ray dataset to train our model for an enhanced 

accurate result. 

• Fused features from entire image and segmented lung region can enhance classification 

results. 

• Further medical corpus can be incorporated in the current framework in order to 

improve report generation results. 

• The framework can be adopted by various Decision Support Systems such as early 

detection of COVID19. 

• The prototype framework can be extended to a commercial product if added to a 

medical decision support system or CAD systems.  
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