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Abstract 

Prostate cancer is the second most aggressive type of cancer diagnosed in men, seriously 

affecting people’s life and health. Prostate cancer detection and grading in advance is a very critical 

step for pathologists. Large scale inter observer reproducibility exists in staging the prostate 

biopsies which leads us to move towards a Computer based model, which could accurately detect 

and grade the cancerous prostate.  Due to recent development in the field of digital pathology, 

tissue microarrays (TMA) images are generated from whole slide images resulting in less 

computational procedures and achieve good performance. This thesis is focused on deep learning 

model to automatically stage the cancer instead of feature engineering based models Deep learning 

models directly learn the features via convolutional layers and achieve good accuracy as compared 

to feature engineering based models. We have used two datasets, Harvard dataset and Gleason 

Challenge 2019, for implementation of our proposed model. Our proposed UNET based 

architecture is used for training as well as testing and evaluation. We have used different deep 

learning models for our UNET based encoder and achieved 0.728 and 0.732 average Cohen’s 

kappa with F1 on both datasets respectively. The results show that our proposed UNET based deep 

learning model performs better as compared to other state of art models. Hence, it would help 

pathologists to automatically grade the prostate biopsies with high accuracy. 
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1 Chapter 1: Introduction 

 

1.1 Brief Description 

Prostate cancer is the second most deadly form of cancer commonly found in men in the 

United States [1]. In developed countries, prostate cancer is increasing exponentially due to high 

living standards and population explosion. A very large number of prostate cancerous patients die 

every year due to insufficient diagnosis environment and large scale inter observer variation 

between pathologists. This all led to design a model of early detection and correctly classify the 

cancerous grade. Since 1960, the Gleason grading algorithm has been the most reliable and 

effective prognostic predictor for prostate cancerous cells [2]. The Gleason scoring algorithm is 

highly recognized by the World Health (WHO), and it was updated and revised by the International 

Society of Urological Pathology in 2005 and 2014 (ISUP) [3]. Although there have been several 

advances in the clinical diagnosis of prostate cancerous cells, Gleason scoring dependent on 

histology remained the most effective prognostic indicator of prostate carcinoma’s early diagnosis 

and staging [4].  

The architectural pattern of cancerous cells is used to render the histological evaluation. 

The architecture pattern consists of well differentiated cells to the poor ones. The Gleason score is 

totally based on this architectural pattern. Figure 1.1 shows micro-array images which have been 

classified into benign and Gleason score 6 to 8, depending on their architectural patterns. 

 

Figure 1.1: Example of tissue microarrays images (TMA), benign to Gleason Score 8 [5] 
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The Gleason score assigned is totally based on pathologist’s review and it's a time-

consuming but essential phase with a lot of inter- and intra-observer variation. This problem 

specially occurs when differentiating Gleason grade 3 from Gleason grade 4 having Gleason score 

equal to 7 (4+3 or 3+4), which has a very complex impact on further treatment. Since major 

medical decisions are based on rating of biopsy specimens, dire need of automatic prostate cancer 

grading model is obvious [6-8]. There are many feature engineering based techniques used for 

automatic Gleason grading [9]. The success of feature engineering based techniques is totally 

dependent on how accurately features are extracted and their compatibility with model. In prostate 

cancer grading, due to high correlation between cancerous cells to the healthy cells, there are high 

chances of misclassification which leads to the failure of automatic computer-based models.The 

computer-aided method of identification focused on convolutional neural network has always been 

considered to play a significant role in medical image analysis [10, 11]. This method has replaced 

the traditional way of drawing out features for image classification with a totally different approach 

of allowing the computer to finalize which features have to be considered. The outstanding results 

on standard datasets have made CNN a widely used technique for pattern identification. Therefore, 

we worked on CNN system to analyze different tissue microarray images and assign them Gleason 

score.  

1.2 Aim of the Thesis 

This thesis is aimed on executing a classifier on a limited dataset of (H and E) Tissue Micro 

Array (TMA) images and finding out how Convolutional Neural Network (CNN) technique can 

be employed on it to get positive outcomes. Besides, the limited dataset convinced us to use various 

augmentation practices as well. As a whole, our research shows that the systems based on deep 

learning approach have great potential of producing accurate and reproducible results, particularly 

in case of heterogeneous structures. 

1.3 Scope of the Thesis 

We intend to develop a system that could easily be used by physicians without getting 

involved into the complex algorithms, working in the background.  The development of such a 

system, offering masterly performance, for evaluating prostate biopsies would encourage Pakistani 
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specialists to use this automated system for cancer diagnosis. This would save pathologists’ 

valuable time since they have to go through significant number of slides, often involving further 

immune staining, to reach a decision. Besides, pathologists have to measure various parameters 

(such as length, mitotic rate, surface areas etc.) for ordinary evaluating systems [12]. In addition, 

there is a great deficiency of oncologists in Pakistan, with the ratio of medical oncologists to 

population being very low. Hence, such software would decrease the burden on expert specialist 

by offering a balance between prognostication and practicability in everyday clinical practices.  

1.4 Thesis Problem Statement 

In this project, the assessment of tissue microarrays and metadata triggered the 

verbalization of problem statement. The intention was to train a machine learning program by 

using tissue microarray images which could be utilized afterwards to find out seriousness of 

disease on the basis of Gleason score assigned to unviewed biopsies. This is a multiclass 

classification task since five distinct grade groups are involved. Multiclass classification is 

complicated, especially due to class variance and small dataset, as compared to binary 

classification of clinical importance. Besides, a small set of data was available, which was an 

additional problem, for testing and training which was addressed by applying suitable 

augmentation techniques. The success of the software depends on how effectively features are 

extracted from biopsy images and how accurately the Gleason scores are assigned to specimens. 

Hence, the key challenge in classifying prostate cancer specimen is to develop a good feature 

extraction technique and execute an effective mask predicting classifier. 

1.5 Method 

In this dissertation, we have discussed in detail the latest Prostate Cancer Grading 

techniques which are being used in clinical process nowadays. We are working on MICCAI 

Gleason Grade Challenge 2019 Dataset and publically available Harvard dataset which have both 

training as well testing data. The Dataset consists of Tissue Micro Arrays (TMA) of prostate 

biopsies. TMA images are more useful as compared to whole slide images because they contain 

only the cancerous region of image which directly reduces the computation part. As deep learning 

models need larger number of data for their training, data augmentation techniques are applied for 
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better training. UNET Model has used  pixel wise classification of images and predicts the images 

on test data. On both datasets, our CNN-based UNET model achieved state-of-the-art performance 

with scores of 0.728 and 0.732, respectively. The system’s performance was evaluated on (245) 

biopsy specimens, which were graded by (6) expert urologists independently from ISUP. By 

evaluating the extent of cancer as calculated by the method, Cohen's kappa combined with F1 

score was used to calculate the concordance between the grades reported by expert urologists and 

those assigned by the automated computer system. 

1.6 Circumscription 

Tissue images obtained from different sources may differ in appearance, something that 

will not be discussed in this study. In order to study dimensions of small histological images, 

magnification of the order of (40X) will be done and the size of the related image crops will be 

delimited. No research will be performed on the impact of contrast or color exploitation.  

1.7 Structure of the Thesis 

The thesis is divided into the following six chapters. 

Chapter 1 describes the introduction, aim and scope of the thesis with problem statement, Chapter 

2 describes the background for an appropriate understanding of anatomy of prostate, prostate 

cancer and its types, staging and grading of prostate cancer and screening techniques.  

Chapter 3 discusses the previous techniques utilized for image pixel level classification in order to 

explore the most effective method for image analysis. The discussed techniques include best deep 

learning model architectures. 

Chapter 4 is based on the proposed methodology and algorithm for segmentation and extraction 

of cancerous regions. Then, Chapter 5 contains the results. The proposed algorithm has been 

statistically shown to be a reliable method for prostate cancer diagnosis. The conclusions are also 

compared with manual grading of expert pathologists. Pixel-based approach has been used to 

evaluate the suggested algorithm.  

In chapter 6, conclusion, contributions, and recommendations for further work have been 

presented. 
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2 Chapter 2: Related Background 

 

2.1 Tumor 

Normally, the cells in a human body grow and divide in an order. Every cell in a body 

performs a certain job and when old cells are destroyed, new cells take their place and the cycle 

goes on. But when cells divide in an uncontrolled way and do not die, they form an unnecessary 

mass of tissue called tumor.  The tumor keeps on growing if more and more cells continue to 

accumulate in the mass. While some tumors are benign, others are malignant.  

2.2 Benign Tumors 

Benign tumors are noncancerous and their spreading to other areas of the body is not 

possible. They usually do not grow back once removed. These tumors mostly do not cause any 

harm but in some cases, if they press against vital structures like blood vessels or nerves, they may 

result in pain or some other problems. 

2.3   Malignant Tumors 

These tumors are cancerous, and they can spread to other areas of the body easily.  The 

cancerous cells contain abnormal chromosomes and DNA, having large and dark nuclei. These 

cells may grow back after removal and require aggressive treatment.  

There are different types of malignant tumors which arise in different types of cells.  Major 

types include carcinomas, sarcoma, melanoma, lymphoma and leukemia. Sarcoma arises in 

multiple locations in the body like blood vessels, bones, muscles and in  soft and connective 

tissues. Melanoma develops in cells that produce pigment in skin while lymphoma arises in the 

immune system and leukemia develops in blood tissues.  

 Among all these types, carcinomas are the most common types which start in epithelial 

tissue. Epithelial tissues are the major tissues found in glands and form the covering of internal 

organs, such as the liver or kidneys. There are different subtypes of carcinoma cancer depending 

upon the type of epithelial cells. Some common types include, 

https://www.webmd.com/cancer/sarcoma
https://www.webmd.com/melanoma-skin-cancer/default.htm
https://www.webmd.com/melanoma-skin-cancer/default.htm
https://www.webmd.com/cancer/lymphoma/lymphoma-cancer
https://www.webmd.com/cancer/lymphoma/lymphoma-cancer
https://www.webmd.com/cancer/lymphoma/understanding-leukemia-basics
https://www.webmd.com/cancer/lymphoma/understanding-leukemia-basics
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1. Tumors of the squamous cells 

2. Adenocarcinoma  

3. Carcinomas of the transitional cell 

4. basal cell carcinoma 

Our study is concerned with adenocarcinoma of the prostate. Adenocarcinoma basically 

develops in glandular cells called adenomatous. These cells are responsible for releasing fluids 

into the body or excreting some substance from the body. Most cancers in prostate are 

adenocarcinomas. About 95% of prostate cancers are adenocarcinomas [13].  

2.3 Anatomy of Prostate Cancer 

2.3.1 Prostate Gland 

Prostate is a tiny gland in men's reproductive system that is around the size of a walnut. 

Figure 2.1 shows its location and structure which is present above the males’ reproductive organ 

(penis) and below the bladder. The urethra, which takes urine from the bladder out of the body, 

flows along the middle of the prostate. In the urethra, the prostate secretes a seminal milky fluid. 

This fluid combines with sperm and forms a part of semen to assist in its nourishment and 

transportation out of the body. 

 

Figure 2.1: Picture of the Prostate[14]  
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2.3.2 Prostate Cancer 

Prostate cancer is said to arise as prostate cells multiply out of control. Prostate cancer is 

one of the most common malignant tumors, and it is the sixth leading cause of death in men around 

the world [15]. 

Prostate cancerous cells can spread to other areas of the body, where they can develop a 

new tumor. Prostate cancer metastasis occurs when cells from the prostate tumors break apart and 

migrate to other areas, most commonly the bones and lymph nodes, causing damage to healthy 

tissues. Since the new affected region includes the same type of irregular cells as the initial cancer, 

the new tumor is assigned the same name. For instance, when prostate cancer cells migrate to the 

bones, the condition is considered metastatic prostate cancer rather than bone cancer. 

2.3.3 Symptoms 

Prostate cancer doesn’t usually show any symptoms until the prostate gets large enough to 

press against the urine carrying tube (urethra). When urethra is pressed, following symptoms can 

be noticed. 

● Change of urination pattern such as pain while urinating, more frequent desire to urinate 

and having a feeling that your bladder is not fully emptied. 

● blood in the semen 

2.4 History of Prostate Cancer 

Prostate cancer's structure and experience have resulted in highly critical factors in 

treatment, detection, and diagnosis. Changes in the DNA, which provides orders to the cells to 

replicate, are believed to be the origin of prostate cancer, according to scientists. One of the major 

causes of prostate cancer, according to studies, is an individual's diet and age, but it also has a lot 

to do with tumor growth in the prostate gland. Furthermore, genetics play a major role in the 

growth of prostate cancer and must be taken into account. Since prostate cancer is the most 

common cause of cancer death in men above a certain age, all men around the world should be 

forced to take preventative medicines. Prostate cancer is primarily characterized by changes in 

body cells and the physiology making its diagnostic approaches achievable through cell sorting 
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and grading. Cell grading approach is helpful in identifying affected cells through the employment 

of various approaches, in our case the use of deep architectures, a powerful tool that when well 

harnessed  can be of great help in ensuring that prostate cancer management is easy and efficient. 

Prostate cancer management and care is largely focused on detecting infected cells, assessing 

cancer stage, and eventually determining the extent of infection. With this knowledge, a proper 

treatment plan may be taken to ensure that the patient gets the required drug to ensure success [16].  

 

Over the years, scientists have produced a number of prostate cancer therapies that have 

proved to be reliable. Prostate cancer is more prevalent in men of 50 years and older, according to 

studies. While the cause of prostate cancer is unclear, a variety of risk factors have been attributed 

to the condition, including age, African-American ethnicity, a high-fat diet, family background 

and, perhaps most interestingly, exposure to rubber or cadmium. Men of all ages must know the 

prostate cancer prevention, treatment choices, screenings and, most notably, diagnosis. According 

to the American Cancer Society, “about 317,000 new cases of prostate cancer are diagnosed each 

year in the United States, with approximately 41,000 men dying each year.” Prostate cancer can 

affect men all over the world at any stage in their life, whether it is them or a close friend. As a 

result, having the necessary medications and vaccines would be sufficient in treating prostate 

cancer. 

While there is no one-size-fits-all solution for reducing prostate cancer, there are a variety 

of steps that can be done to reduce the possibility of developing it. The most important way to 

avoid prostate cancer is to eat well and follow a safe lifestyle. In their daily lives, most men eat so 

much meat and not enough healthy foods like vegetables and fruits. Consumption of red meat and 

dairy products is favorably correlated with P.C.A., while consumption of olive oil and green tea is 

negatively associated. This may result in speeding the progression of prostate cancer in future. 

Furthermore, it has been discovered that eating fish rich in fatty acids, such as tuna, herring, and 

mackerel, is the safest way to avoid prostate cancer. Although scientists are unsure about the 

reason, eating fish oils tends to inhibit tumor development in the prostate gland. “Men who 

consume these types of fish three days a week and complement their diet with some form of marine 

fatty acid supplement would have a much lower percentage risk of developing prostate cancer,” 

according to a study (“Patient's Guide”). It has also been established in other nations, such as Asia, 



15 

 

that drinking green tea and soy decreases the risk of contracting prostate cancer. Vitamins D and 

E are both taken into account to ensure the body's health. Men should take the necessary vitamins 

and nutrients for their bodies so that they do not grow or to risk prostate cancer when they get 

older. 

The signs of prostate cancer must be recognized, as well as the stage at which it could be 

right then, which can be determined by grading prostate cancer cells based on their cellular 

characteristics. Trouble urinating, blood in the urine or sperm, bone pain, swelling of the legs, or 

pressure in the pelvic region are all signs of advanced prostate cancer. Men who are having these 

signs should get medical treatment right away. Unfortunately, symptoms are not always present, 

and this form of cancer can be ignored during regular tests. When cancer has spread to the bones, 

it is normal to feel extreme pain in the bones, which is a sure indication that the disease has spread. 

Prostate cancer must be able to spread across the majority of the prostate tissues until it can spread 

to other areas of the body. Some men have pain in their pelvis, neck, lower back, or even hip, and 

may be suffering with unexplained weight loss and exhaustion. The most frequent cause of urinary 

problems is a disease known as Benign Prostate Hyperplasia, or BPH; this refers to a swollen 

prostate, which induces intense discomfort in the urinary tract. BPH is not a precancerous or 

cancerous disease, but it is normal in men over the age of 50. Men must do their utmost to ensure 

a safe future free of prostate cancer; therefore, feeding and dieting correctly would be the best 

choice. 

Fortunately, for every man suffering from prostate cancer, there are a number of 

medications available to assist in the management of this condition. Radiation therapy, surgery, 

and hormone manipulations are the four primary treatment choices for prostate cancer. Treatment 

methods differ based on the level of prostate cancer and which approach is more helpful to the 

patient. Surgery to remove the entire prostate is the most effective procedure for all patients in the 

early stages of prostate cancer. This is known as radical prostatectomy, because it involves the 

removal of the seminal vesicles, prostate, and vas deferens. In general, prostate cancer is graded 

before starting any therapy or resorting to any treatment strategy based on the visible 

characteristics of prostate cancer cells in one's body as well as the physical characteristics visible 

in an individual; this is where deep structures come into play as a treatment stage/mechanism for 

prostate cancer. The use of deep structures in prostate cancer grading comes from the fact that the 
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tool allows the interpretation of cells’ characteristics based on cell characteristics as well as 

improvements in cell DNA structures, which is a frequent symptom of prostate cancer infection. 

2.5 Diagnosis of Prostate Cancer 

2.5.1 Screening 

Prostate cancer can be diagnosed early by screening. Prostate cancer screening consists of 

two types of tests: a blood test for prostate specific antigen (PSA) and a digital rectal examination 

(DRE). PSA tests diagnose cancer by measuring the amount of PSA (a particular protein formed 

solely by the prostate) in the blood, while DRE assists physical analysis in identifying anomalies 

or prostate thickness. 

Although PSA and DRE are very useful tests for early detection of prostate cancer, these 

two are not always effective and accurate. PSA test may show abnormal results (“false positive”) 

when a person is in fact healthy or it may show normal results (“false negative”) even if a person 

has cancer. Studies suggested that after the initial introduction of PSA testing, the lifetime risk of 

being diagnosed with cancer increased from one in eleven to one in six, whereas lifetime death 

expectancy remained same that is one in thirty four [17]. 

2.5.2 Prostate Biopsy 

If the PSA test shows elevated PSA level, your doctor may recommend further tests to 

estimate the possibility of prostate cancer. Sometimes, PSA level may get high due to some other 

factors such as an infection or sexual stimulation. If the additional tests show less probability of 

prostate cancer, a person may avoid having a biopsy. Depending on test results and some other 

factors, such as family history, biopsy history and ethnicity, the decision to have a biopsy can be 

made. A biopsy is a minor operation that involves scraping small fragments of prostate tissue and 

testing them under a microscope for cancer cells [18]. This test is the best way to assess the 

occurrence of prostate cancer as well as the cancer grading, which shows how far the cancer has 

advanced.  
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2.5.3 Grading and Staging of Prostate Tumor 

After the core biopsies indicate the presence of cancer cells in the tissue, the next step is to 

assess the cancer's level and grade. Grading is a mean of assessing how aggressive and unhealthy 

cancer cells are, and provides us with details about the cancer's seriousness. Staging refers to the 

scale and presence of a cancer, i.e. how large it is and if it has spread to other areas of the body. 

Both grading and staging are crucial measures in deciding how curable a cancer is and what 

treatment options are available. 

2.5.3.1 Gleason Grading system 

The keystone in cancer treatment is prostate carcinoma grading. In 1978, the American 

Cancer Society organized several seminars to finalize the prostate cancer classification system [19, 

20]. The society compared different grading systems before accepting Donald Gleason's Gleason 

grading system, which he developed in 1966 [21] , to be the most powerful medium for cancer 

prediction, since it was discrete, simple, consistent and clinically relevant.  

Gleason classification, which is based on analysis of Hematoxylin and Eosin (H and E) 

stained histological sections under the light microscope, is currently the most commonly applied 

method around the world. This ranking scheme is normal because it only recognizes the 

architectural patterns of prostatic tumors, known as Gleason patterns. Over the years, the Gleason 

ranking scheme has been revised many times. In 2014, the International Society of Urological 

Pathology (ISUP) conducted a systematic review and modification of this method, as well as the 

introduction of several important developments [20]. Each histological pattern is assigned a 

number ranging from 1 (well differentiated) to 5 (poorly/least differentiated) in the Gleason 

grading scheme. Gleason pattern 3 is characterized by irregularly spaced, well-formed glands of 

different sizes. Note that Gleason patterns 1 and 2 are no longer recommended because they show 

the same effects as grade 3. Fused glands, abnormal cribriform glands, glomeruli structures, and 

poorly-formed glands are all defined by Pattern 4. Comedonecrosis and poorly differentiated single 

cells, most likely forming cords and including vacuoles, are present in Gleason pattern 5. 

The Gleason score is then calculated by multiplying the two most common trends in the 

specimen. The lowest score appointed is Gleason 6 (3+3), which proposes that the cancer is slow 
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growing. The highest score 10 suggests that the cancer is extremely destructive and high-risk. In 

the ISUP conference of 2014, a new grade grouping (from 1 to 5) [22] was suggested in order to 

make a more accurate cancer prognosis.  

Gleason scores of 6 or less are assigned to grade category 1 in this scheme. Grade groups 

2 and 3 are assigned to Gleason scores of 3+4=7 and 4+3=7, respectively. They were not 

previously known as GS 7 and were not labelled as such. Class 4 is made up of people with a 

Gleason score of 4+4=8, and groups 9 and 10 are made up of people with a Gleason score of 9 and 

10 [23-26]. 

Figure 2.2 [23] shows the recent Gleason grading system with 5 group grades assigned to 

different Gleason scores each corresponding to a unique Gleason pattern.  

 

Figure 2.2: The contemporary Gleason Grading system having five group grades 

assigned to various Gleason scores[23] 
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Despite the fact that the Gleason rating scheme has improved over time, pathologists 

nevertheless administer the majority of grades manually. This is a time-consuming work and can 

only be done by highly educated pathologists, and still suffers from a lot of variation among 

pathologists’ decisions [27, 28]. This issue is more common when distinguishing Gleason 3 from 

Gleason 4, which, if not distinguished correctly, may have a major effect on subsequent care [6-

8].  An automated annotation method may be a viable solution to this problem. Feature-engineering 

methods for prostate cancer Gleason scoring were first used in previous studies (27-29) Finally, 

deep learning applications were used to diagnose cancer and grade biopsies using Gleason grading 

[29, 30].  

2.5.3.2 Staging 

Stage refers to the magnitude or extent of a tumor. Stage of cancer assists doctors to 

determine the seriousness of disease and recommend the best treatment. Sometimes a low stage 

cancer can be of high risk. The TNM scheme is used to categorize cancer levels, with T denoting 

tumor size and its spread to surrounding tissues, and N and M denoting nodes (tumor spread to 

adjacent lymph nodes) and metastasis (prostate cancer spread to other body parts), respectively. 

DRE and special   imaging tests, such as ultrasound, MRI, CT, or bone scan, are used to 

assess the “T” level. The PSA degree, prostate biopsy, and DRE findings are used to determine 

cancer staging. 

2.6 Prostate Cancer Screening and Technological Application History 

Cancer screening has a high propensity for moral conflict because it subjects a large 

number of patients to risks and concerns in order to provide other people with the benefits of early 

detection. Prostate cancer is one of the most well-known male cancers. Despite the fact that routine 

PCa screening is still debatable, the American Cancer Society (ACS) recommends PSA monitoring 

for men at high risk. The use of PSA to test for malignant prostate growth (PSA) has greatly aided 

in the diagnosis and management of prostate disease. To detect any signs of prostate tumors, 

researchers used a prostate-specific antigen test in combination with a digital rectal inspection 

(DRE). Nonetheless, PSA has not often differentiated the precise degree of PSA to determine 

malignant prostate development, which has resulted in specialists treating immaterial tumors being 

confused. 
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Aversion of prostate cancer and a prime position are thought to be important factors in 

controlling inflammation and increasing patient resilience. [31] Recommend that, in order to 

prevent malignant prostate cancer, the importance of public health education be emphasized. 

According to patient promotion [31], initiatives based on the Health Belief Model had a significant 

impact on the resigned participants' prostate cancer prevention activities by enhancing their insight 

level and HBM components. The experts agree that by paying more attention to the instructional 

system and preparation based on instructional speculations and templates, an early diagnosis will 

be made and the illness can be successfully treated [31]. Furthermore, prostate cancer screening 

and management are more successful when patients are fully engaged in these programs. As 

mentioned, some of the elements [32], Individuals' dispositions and convictions, for example, have 

a significant effect on people's decisions about preventive social care and compliance with 

prescription medical regimens. According to analysts, social insurance professionals should 

continue to persuade men to seek out malignant growth screening. This will serve as a roadmap 

for designing educational manuals for analysts and human resources professionals, as well as 

influencing examinations that will increase interest in PCa early exploration. 

Furthermore, joint decision-making between patients and physicians should be encouraged 

in order to achieve the patients' PSA screening goals. Patients must be able to combine and 

incorporate quantitative results in their decision-making as a condition of joint critical decision-

making and hazard communication. The patient's ability to decipher probability and danger details 

is dependent on his or her numeracy of quantitative concepts. A possible question of low numeracy 

persists, which poses a threat to the joint decision-making process [33]. Elective strategies for 

communicating ideas of risk to patients, especially among those with lower numeracy and 

proficiency, may promote mutual critical leadership in the early detection of prostate disease. 

Furthermore, evidence-based clinical data is a critical knowledge that will help patients 

make informed decisions about whether or not to perform PSA testing. Nonetheless, clinical data 

materials must be adequate, adjusted, and unbiased in order for patients to be informed of the 

substantial risk of over diagnosis [34]. Finally, becoming aware of the PSA exam can be an 

important consideration. Because of a lack of records, limited access to treatment, and a lack of 

education and encouragement regarding prostate cancer screenings, most men may suffer [34] 

Adult males would be willing to take on more influential responsibility and learn about their fitness 
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if healthcare providers have more assets and accessible wellness inclusion. In addition, with 

improvements in legislation affecting the delivery of medical care, malignant growth-related 

mortality could be predicted, and men's personal satisfaction could improve. These findings 

suggest that a long-term doctor-patient partnership should be upgraded to provide important 

information to adult male patients [35]. Tumor markers may be used to assess malignant 

progression, predict and screen management responses, and evaluate if the illness has returned 

following the treatment. In most cases, cancer markers cannot be used alone to detect cancer; they 

must be used in conjunction with other tests. Deep structures are being studied to see how they can 

be used in the early detection and screening of prostate cancer. 

 

2.7 Digital Pathology and Technological Enhancement of Diagnosis 

Pathology employs tissues and body fluid analysis to formulate correct diagnostic 

approaches for illnesses such as prostate cancer. Based on pathological approach of diagnosis, 

patients are first assessed for infection. When it has been ruled out that there is an infection, 

analysis is performed on the patient’s cells to determine the level of prostate cancer infection, the 

stage of infection and many other factors about the disease. The analysis of these factors usually 

employ various approaches, an example is use of deep structures, to observe the patients’ prostate 

cancer cells behavior and shapes. Technological application has greatly revolutionized the prostate 

cancer cells’ grading. This has been achieved through the application of deep structures to identify 

variance in an individual’s cells, for instance, identifying an infected and a healthy cell. 

In other medical fields, technology has played a critical role in the transformation of 

pathology. It has been used in the infrastructure transformation in an area for lab-to-lab sharing of 

information by direct interfaces with the laboratory information and management systems. 

Technology is used in the provision of virtual pathology provisions in inaccessible areas and 

enables consultations of individual ideas. Moreover, pathologists apply technology in the 

integration of the laboratory test results management across multiple lab sites by use of differing 

lab information systems such as immunology, hematology, cytology, microbiology, and 

biochemistry. Consolidation by means of system integration can lead to enhanced accuracy in 

processing of data and facilitating the performance of multi-disciplinary groups. Pathologists can 
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share important information for enhancing patient care like enabling referrals and consultations 

and use of patient electronic health records. Technology enables patients, with prolonged 

conditions, to manage their health care by assisting them to self-manage their conditions. It has 

provided many other enhanced approaches that have made the diagnosis of various chronic disease 

relatively easier and even experimental. 

2.8 Prostate Cancer Early Detection and its Contribution to Treatment 

According to US Healthcare System 

Early detection and prevention following prostate cancer diagnosis have been made 

possible, thanks to the successful use of preventive medicine in the US healthcare system. Prostate 

cancer is the second most prevalent cancer in men in the United States, after skin cancer. It is more 

common in African American men than in Caucasian men. Men with a higher BMI (body mass 

index) are more likely to be diagnosed with prostate cancer and less likely to be diagnosed with 

other cancers [36]. Furthermore, race appears to be linked to an increased risk of prostate cancer. 

Prostate cancer is one of the most common diseases listed as "non-amenable." Prostate cancer was 

the second leading cause of cancer deaths for men in the United States in 2000, with 31,000 deaths. 

A lifestyle change, that emphasizes smoking avoidance, fitness, and weight stability in return 

reduces the risk of prostate cancer and facilitates safe living, is one of the key preventive methods 

for prostate cancer. Early detection or preventive drug therapy is an effective way to slow the 

development of prostate cancer by closely monitoring and stabilizing the infected region to prevent 

further spread. Detecting and curing prostate cancer before signs appear, according to the National 

Cancer Institute, does not increase your health or help you live longer. It is not easy for health care 

providers or doctors to monitor the quality of primary care programs for cancer patients or other 

amenable diseases. As a result, unique environmental conditions can also lead to early diagnosis 

of prostate cancer. According to the evidence so far, there is a significant positive relationship 

between good preventive medicine and early detection of diseases amenable to medical 

intervention in the US healthcare system. However, the crucial question is whether, if diagnosed 

early, action will reduce re-admission by using preventative drugs [16]. 
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2.9 Background Related to CAD Systems 

2.9.1 What is Computer Based Diagnosis System 

Computer based diagnosis is a diagnostic technique that employs the use of multiple 

computer-controlled instruments to assist doctors in interpreting medical images based on their 

characteristics and in rendering the proper diagnosis of a condition so that the appropriate 

medication can be written. Picture recognition, image segmentation, image extraction and filtering, 

and classification are typically used in computer-aided diagnostics. Preprocessing aids are used in 

improving the image's accuracy and preparing it for subsequent processes such as segmentation, 

Feature Extraction. Segmentation is a technique for separating the suspicious mass field from the 

rest of the mammogram. The characteristics of a segmented mass area are extracted using feature 

extraction. The derived characteristics are analyzed, and the mammogram is graded as benign or 

cancerous depending on the results. Multi-parametric MRI is one of the most often used CAD 

techniques in the diagnosis of prostate cancer. The basic function of this method is to improve 

prostate cancer cell analysis in order to demonstrate the cell's embedded characteristics. One of 

the key reasons that has improved cancer cell grading ability in the use of CAD is improved cell 

structure specification. Computer-aided detection, CAD, has advanced the process of detection of 

infection patterns in the diagnosis of prostate cancer, MRI and other morphological characteristics. 

A method for distinguishing the suspicious mass area from the remainder of the mammogram is 

segmentation. Using function extraction, the features of a segmented mass area are retrieved. The 

mammogram is classified as benign or cancerous based on the outcomes of the derived 

characteristics. One of the most often used CAD methods in the detection of prostate cancer is 

multi-parametric MRI. The aim of this approach is to enhance prostate cancer cell analysis such 

that the cell's embedded features can be seen. Improved cell structure specification is one of the 

main reasons that CAD has improved cancer cell grading ability. 

 

 



24 

 

2.9.2 Application of Artificial Intelligence Algorithm for Prostate Cancer 

Diagnosis 

Curing cancer is among the biggest challenges in the healthcare industry in 2021. While 

technologies and knowledge about cancer have increased immensely over the last two decades, 

the vast variability between different types of cancer and between patients who have the same 

cancer makes it hard to develop a definitive cure or detection mechanism. More than 100 cancer-

related diseases require a comprehensive standard of care for managing these illnesses, including 

physical examination and continuous assessment and monitoring of patient’s symptoms to keep 

up with the increased expanding nature of the disease. The challenges identifiable from this nature 

of cancer-related diseases in line with detection technologies include making cancer detection 

more accurate, high expense in the development of detection technologies, anatomic limitations, 

and issues with technologies for detecting MicroRNAs in cancer patients. 

The significance of technological application in prostate cancer diagnosis is enhancement 

of  the war against cancer, one of the most devastating disease conditions in the health landscape. 

This has been done through enhanced technologies for cancer detection to facilitate early detection 

of cancerous cells for effective treatment. These technologies will address and overcome flaws 

identified in the existing technologies, such as low specificity in cancer detection. The detection 

of cancerous cells in the human body is of paramount and integral importance in combating cancer 

and enhancing patient outcomes. 

Technological application of prostate cancer treatment has been faced by multiple issues and 

has affected its enhancement considerably. Some of these issues include; low specificity. In the 

detection of any disease, the precision and efficiency of the available technologies and methods 

are crucial and non-negotiable. The detection of cancer cells using emerging technologies has to 

be highly precise to enhance early detection and effective treatment of various types of cancers 

before the cancer advance to lethal stages. However, the currently available cancer detection 

technologies have a low specificity and precision rate, making them unfit for use.  In a study 

conducted to assess the specificity and sensitivity range of different technologies in the detection 

of cancer, the specificity of some technologies was found to be extremely low. The low specificity 

of cancer detection technologies found in this study was found in technologies such as MelaFind 

with a specificity range of 6-40%, Electrical Impedance Spectroscopy (EIS) technologies with a 
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specificity range of 34-55%, and Pigmented Lesion Assay (PLA) technologies 57-91%. With such 

low-range specificity, these technologies are unreliable in the detection of skin cancer and hence 

the need to increase the efficacy of these technologies. Lack of precision in cancer detection 

technologies is problematic, as the results projected from the screening process may be inaccurate. 

Another negatively impacting factor is anatomical limitation. Circulating Tumor Cells (CTCs) has 

been a significant area of focus as this liquid biopsy is integral in the early detection of cancer 

cells. Further CTCs are crucial in the evaluation of cancer recurrence and helps inform the best 

medical intervention as well as improve the efficacy of treatment procedures like chemotherapy. 

Nonetheless, CTC technology is limited by the harm it can cause to cancer patients, the bias in 

sampling, and difficulties in sampling deep tumors. In light of this, there is a need to improve these 

technologies to reduce the harm it can cause to patients as well as enhance the specificity of the 

technology in scanning and making a definite diagnosis of cancer in deep tumors. MicroRNA 

detection challenges in electrochemical, mechanical, electrical, and optical detection of cancerous 

cells also need improvement on precision, which is of utmost importance in modern medicine to 

enhance accurate diagnosis and treatment of cancer patients.  And finally, due to high cost of 

technological integration, the cost of healthcare has been on the rise for the last few decades, which 

has increasingly reduced the accessibility to quality medical care. Both the government and 

international health organizations are always on the lookout for new technologies and strategies 

that can ease the disease burden on patients as well as prevent diseases from overwhelming the 

healthcare industry. Cancer treatment is one of the costliest healthcare encounters, and the costs 

are continually rising with the implementation of new technologies. High expense is the most 

significant hurdle against the massive implementation of cancer detection technologies. This is a 

problematic challenge that is barring people from accessing quality technology-based cancer 

screening and treatment. In this regard, more and more patients go for cancer screening when 

cancer has already advanced to lethal stages, making it hard for them to recover, particularly if the 

cancer cells have already spread throughout the body.  
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2.10 Prostate Cancer Statistics 

Statistical data is important as it allows scientists to determine the need of additional 

research and where to focus their efforts. Understanding the international trends of prostate cancer 

would help health officials and scientists target the most needed area for better treatment, such as 

improving grading techniques and screening methods.  

2.10.1 Global Cancer Ranking as a Cause of Death 

Non-communicable diseases are currently the leading cause of death worldwide [37], and 

cancer is predicted to be the leading cause of global deaths and a significant impediment to  

longevity of countries across the world in the twenty-first century. Cancer is the leading cause of 

death for people under the age of 70 in 48 countries, according to WHO figures from 2015 (Figure 

2.3), and it ranks second in 43 others. It is the third and fourth leading cause of death in an 

additional 22 nations [37]. 
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Figure 2.3: World map showing cancer ranking in 2015 as a cause of premature 

mortality (0-69) in 172 countries [37] 

The growth of cancer burden across the world is mainly due to population growth and 

aging, and also because the prevailing risk factors for cancer, especially the ones associated with 

societal development and economic growth, have been changing over the recent years [38, 39] 

2.10.2   Worldwide Cancer Patterns 

Figure 2.4 and Figure 2.5 show the cancer types which are most commonly found in 

different countries and responsible for the most mortalities. The maps show significant variation 

in cancer types at national levels. Prostate cancer is the most frequently diagnosed cancer in men 

in 105 countries, accounting for half of the overall 185, with Australia, Northern and Western 

Europe, the Americas, and the majority of Sub-Saharan Africa standing out. Prostate cancer is the 

leading cause of death among men in 46 countries, mostly in Africa, the Caribbean, and Sub-

Saharan Africa. 
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Figure 2.4: The most common cancer types in men in 185 countries. Source: IARC 

World Health Organization[39] 

 

 

 

Figure 2.5: The cancer types which were considered as the major cause of deaths in 185 

different countries. Source: IARC World Health Organization[39] 
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2.10.3   Incidence and Mortality Rates and Trends in Prostate Cancer 

According to GLOBOCAN 2018 figures, nearly 1,276,000 new cases of prostate cancer 

are diagnosed worldwide in 2018, with 359,000 deaths due to prostate cancer. The more populated 

nations, such as Northern America, Western and Northern Europe, Oceania, and the Caribbean, 

have the highest occurrence rate [40] , whereas the lowest rates were noticed in Northern Africa, 

South-Central Asia and South-Eastern and Eastern Asia. On the other hand, the highest death rates 

were observed in Southern and Middle Africa and Caribbean, while Northern Africa and most 

parts of Asia remained least affected areas [41]. 

The given pie chart (Figure 2.6) represents PCa as the 2nd verily found cancer, constituting 

13.5% of the total number of cases. 6.7 % of total deaths were caused due to prostate cancer, 

making it the 5th major reason for deaths in men. 

 

Figure 2.6: Distribution of Cases and Deaths for the 10 Most Maximum score Cancers in 

men in 2018[42]. 
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 Based on the GLOBOCAN database of 2018, age adjusted prostate cancer incidence and 

mortality rates during the most recent five years have been falling or showing a stable pattern in 

most of the countries across the world. The declining pattern is more prevalent in countries with 

human development. The decline in the use of PSA testing and better treatment methods might be 

the reasons for declined incidence and mortality trends respectively. 

2.10.4  Key Statistics for Prostate Cancer in United States 

Prostate cancer is fairly common in the U.S. compared to other cancers. It is the second 

leading cause of death in men in America, after lung cancer [43]. 

Estimated new cases of prostate cancer in 2020 in the U.S. were 191,930, which is about 

10.6% of all new cancer cases. About 33,330 mortalities were estimated to occur in 2020, which 

makes up 5.5% of all cancer deaths [43]. From the above data, it is clear that prostate cancer is one 

of the most frequently occurring cancers across the globe, hence there is a need for an error-free 

system for grading and detection of prostate cancer. Manual grading system is a difficult task, 

which requires very expert pathologists, but still suffers from inter-and-intra observer variability. 

Moreover, every patient cannot have access to such expertise. Hence, a vigorous and consistent 

grading is needed at master level. In this thesis, we will develop a fully automatic deep learning 

system for grading of prostate biopsies. 
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3 Chapter 3: Literature Review 

 

In this chapter, we'll go through the extensive feature engineering-based models that are 

used to diagnose prostate cancer automatically. Then, using convolutional neural networks, some 

recent deep learning-based models for segmentation and pixel level classification will be presented 

(CNN). Finally, we will review the Pixel level classification using UNET architecture upon which 

our proposed method is based. 

3.1 Literature Review of Computer Aided Diagnosis (CAD) Systems and 

Digital Pathology 

The goal of this literature review on prostate cancer grading using computer-based 

detection (CAD) in cancer TMA is to outline the steps involved in determining whether a patient 

has a malignancy or benignancy. In addition, the aim of this literature review is to look at the 

scientific advancements that have been made in the field of prostate cancer. Cancer is the most 

common cancer in women, followed by lung cancer and skin cancer, all of which are also common 

in men. This literature review was prompted by advances in prostate cancer screening technologies 

and the discovery of malignant cells. The recent advancements in tumor identification continue to 

draw attention to this field of research. The current study will look at the methods for image 

processing, segmentation, extraction and collection, and classification that contribute to the final 

declaration of the presence of malignant growths. 

The method of detecting prostatic patterns in complex cancer TMA and other 

morphological characteristics has been improved significantly, thanks to computer-aided 

detection, or CAD. As a result, CAD systems have enabled the automation of many production 

and analysis tasks that would otherwise be performed manually by field professionals. The 

procedure aids in the accurate diagnosis and differentiation of benign and malignant growths, 

limiting or removing the need for needless biopsy. Although specificity varies, the technology has 

the highest sensitivity of all existing imaging modalities for prostate detection, ranging from 95.0 

percent to 99.0 percent. During cancer tissue enhancement, an artificial CAD device produces 

color-coding based on signal amplitude, resulting in changes in voxels. It improves the pattern 
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analysis by allowing touch enhancement of the patterns through a range of photographs, allowing 

a more accurate diagnosis of prostate cancer. 

Using image processing knowledge for diagnosis, literature shows researchers have 

utilized multiple methodologies to achieve different goals such as extracted features-based 

classification, image registration, and region and object segmentation. With the development in 

Computer Aided Diagnosis, pathological diagnosis has entered a new era. Now digital diagnosis 

is considered much precise and is used on large scale in diagnosis of prostate cancer and other 

cancer cell related infections. 

3.2 Feature Engineering based Techniques’ Review  

Many traditional techniques of medical imaging focus on an image's pixel structure. Based 

on the corresponding pixel in the input image and its value in the function index, the value of the 

pixel in the output image is decided. The most popular morphological operation algorithm is area 

growth and is used to remove linked pixels from an image in the relative region. The parameters 

for similarities often depend on the set of values for pixel density or other characteristics. CAD 

Gleason grading for prostate cancer diagnosis has been the subject of several researches. The most 

popular technique is feature engineering based approach, in which features are derived from 

medical images, either whole slides or tissue micro array (TMA) images, and then fed into 

traditional machine learning classifiers like support vector machine (SVM) [44] , Bayesian 

classifier [45] or random forests [46].  

Farooq et al [9] used Gabor filter and local binary patterns for features extraction. Gabor 

filter variants were created by rotating and expanding mother function. It has resemblance with the 

two properties of cells in the basic visual cortex, which are band pass nature and directionality. 

After assessing the potency of eight neighbors, the real version of LBP operator was carried on 

each pixel. Due to combination of multiple texture features, the suggested approach demonstrated 

higher accuracy. These selected features were used in KNN classifier to automatic grade the 

prostate cancerous cells. The KNN model achieved accuracy of 98.3% for real dataset of 268 

histological E&H images collected from 160 different patients at different times.  
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The power distribution of histological tissue images was used by Smith et al. [47] to reflect 

texture characteristics of prostatic biopsies. They used nearest neighbor classifier to grade those 

characteristic features into Gleason grade 1, grade 3, grade 4 and grade 5. 

 Farjam et al. [48] suggested a multistage classifier based on morphometric and texture 

characteristics. Those morphometric and texture features are used to identify gland units. The 

image is then classified into grades 1 through 5 using morphometric and texture attributes derived 

from gland units in a sequence of classification levels. Since this strategy leverages properties such 

as roundness and shape distribution, which are associated with the structure of the glands and do 

not depend on magnification, the suggested approach is resistant to changes in lighting and 

magnification. It used two different datasets, one consists of 91 images with similar magnifications 

and illuminations and dataset 2 consist of 199 images with different magnifications and 

illuminations. It used T- structure algorithm to classify the Gleason grade into 5 corresponding 

groups. This algorithm achieved 95% accuracy on dataset 1 and 85% accuracy on dataset 2. 

Nguyen et al. [49] used structural features of prostate glands to classify pre-extracted 

regions of interest (ROIs) into benign, G3, and G4. Based on structural features, used a hierarchical 

(binary) classification scheme which utilizes the two methods and obtains 85.6 % accuracy in 

classifying an input tissue pattern into one of the three groups.  The data was used to make the 

classifier learn textural behavior and categorize each pixel into various classes.  The segmented 

regions were then used to calculate the automatic diagnosis results. Quantitative information 

collected from glands, stroma was combined with Morphological features, and logistic regression 

was then used to distinguish between the regions of Gleason grade 3 and grade 4. The operating 

curve gave the accuracy of 82%, which is a perfect value when inter-observer variability is taken 

into account. The described papers achieved good results on their datasets due to high dependence 

on feature extraction.  

In [50] Jian Ren used  the structure features and Delaunay Triangulation. Based on these 

features, prostate glands are segmented into different regions. The uniqueness of this method lies 

in the fact that they carried out regional based nuclei division without using earlier knowledge of 

lumen. The respective glands can be categorized by employing Delaunay Triangulation and 

structure features since each gland region is neighbored by nuclei. The model comprised of three 

major steps.First, pigment variations are removed from various images through preprocessing. 
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Then, each nuclei as well as global gland regions are recognized. Afterwards, gland region from 

the distance map is grouped with nearby nuclei in order to construct distinct gland. Lastly, for each 

segmented gland a shape descriptor is specified. The precision, recall and F1 score achieved in this 

model is 0.94, 0.11, 0.60, 0.23 and 0.70, 0.19 respectively. 

 Nilgoon [51] used hyper spectral transmission images using sixteen light wavelengths, 

those images are converted into RGB images using Principle Component analysis. He proposed 

an effective technique for spotting glandular structures of prostate and its nuclei. They used hyper 

spectral transmission images using sixteen light wavelengths, which were converted into RGB 

images using Principle Component analysis. The segmented results were achieved by clustering 

method which was further cleaned by morphological methods. PCA is a method  that reduces 

dimensionality of large data set by decreasing number of variables which still have most of the 

information. Since basis vectors are computed individually for each dataset, PC RGB composite 

images, having different colors for alike materials, are produced when PCA is run on dataset 

independently. For comparing RGB images, they transformed datasets into a single basis vector 

set and scaled equally so that colour intensities between RGB images may be examined. The PC 

RGB images were then converted into LAB color space. K-mean clustering was then applied by 

setting number of clusters equal to three. The gland class, which was impure and had some 

residuals of stoma, was then cleaned using morphological cleaning functions. It resulted in well 

segmented glands. Since the gland cells have cytoplasm and nuclei, the same procedure of K-mean 

clustering and morphological cleaning was carried out in order to obtain segmented nuclei. The 

segmented results are achieved by clustering method which is further cleaned by morphological 

methods. The accuracy achieved in this method is 80% of spectral images are correctly classified 

which is most of the 60% TMAs images. 

 In [52] Angshuman used morphological scale space for feature extraction and gland 

segmentation which is totally based on regional glands structure. The method’s dependency was 

on a biological hint (that EL surrounds a gland which looks darker in H and E stained images) 

instead of gland distinct signatures of intensity or texture, which may differ across the whole slide. 

Hence, the difference in stain or gland structure over the slide didn’t have any effect on this 

method. The performance of model is measured by calculating F1 Score, achieved 0.68 F1 score 

which consist of 85% of the histological images. 
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Table 3.1  LITERATURE REVIEW BASED ON FEATURE ENGINEERING 

TECHNIQUES 

Author Year Dataset Features Classifier Results 

Farooq  

[9] 
2017 Local Dataset 

Texture 

Features 
KNN 98.3 % 

Farjam  

[48] 
2005 Local Dataset 

Morphometric 

and Texture  

Features 

Multi-Stage 95% 

Nguyen 

[53] 
2017 

Whole Slide Local 

Dataset 

Structural 

Features 

ROI based 

Binary 

Scheme 

85.6 % 

Jian [50] 2017 Local Dataset 
Structural 

Features 
Segmentation 0.90 

Nilgoon 

[51] 
2017 

TMA (Vancouver 

Prostate Centre) 

Morphological 

and Glandular 

Structures 

Segmentation 80% 

A Paul 

[52] 
2016 GlaS Challenge dataset 

Region based 

Structural 

Features   

Segmentation 0.68 

 

 

 

 

 

 

 

https://scholar.google.com/citations?user=uPdXm3gAAAAJ&hl=en&oi=sra
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3.3 Deep Learning Techniques’ Review 

Deep learning techniques have shown favorable results in a variety of computer vision 

tasks, including segmentation, recognition, and object detection [54, 55]. These approaches use 

convolutional layers to create input images from which different characteristics can be extracted, 

ranging from low-level local features to high-level global features. A fully connected layer 

converts convoluted features into certain marks' probabilities at the end of the convolutional neural 

layers [54]. The batch normalization layer, for example, normalizes the input of a layer with a zero 

mean and a unit version [56]. A dropout layer, which is one of the regularization approaches that 

avoids randomly chosen nodes, has been shown to improve deep learning methods. To achieve 

persuasive performance, however, optimal layer combinations and structures, as well as precise 

fine-tuning of hyper-parameters, are needed [54, 55, 57]. 

Extensive research has been carried out based on deep learning methods to design  automatic 

computer based model for accurately grading the cancer [58]. Deep learning based fully 

convolution neural network models are very useful in early detection of prostate cancer as compared 

to feature engineering based models [59]. Deep learning models are very successful in prostatic 

segmentation [60]. In early stage, CNN based architectures [61] are used for better feature 

extraction as compared to conventional feature engineering based methods. They analyze deep 

entropy features using different CNN models and pass those features to random forest classifier to 

predict the Gleason score. Augmented based technique is proposed in [62], which uses three 

different CNNs, combine their prediction results and predict the Gleason score by logistic 

regression method. They achieved 92% and 86% accuracy in classifying low and high prostate 

grade. [63] used both morphological and texture features achieving 79% accuracy of classifying 

benign with other higher grades.  

A very recent studies [2] implement the prostate TMAs classification into four categories; 

benign, grade 3, grade 4 and grade 5. In this model CNN is used as directly for feature extraction 

and Mobile NetV2 architecture as backbone for classification into different prostate groups.  

In [64] Khani used Gleason Challenge 2019 dataset which consist of TMAs (Tissue 

Microarrays). In this framework Gleason grading system is used to evaluate the prostate cancer. 

For achieving ground level annotation in MICCAI dataset, staple algorithm is used for training the 

model. The images patches are extracted with size 256x256 and 512x512 with an overlap of 8 
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pixels. Deep Labv3 with MobileNetV2 model is used as backbone for feature extraction as well as 

classification. Deep Labv3 model is consist of encoder-decoder based architecture which has been 

used in many semantic segmentation models. It achieved the quadratic Cohen’s Kappa of 0.56. 

 Lokhande [65] proposed modified FCN8s with ResNet50 as backbone for classification on 

Gleason Challenge 2019  MICCAI dataset. This model is designed purely for semantic 

segmentation problem. The model implementation is done on MICCAAI 2019 dataset which 

consist of tissue microarrays (TMAs). The TMAs based annotation are used for pixel level 

classification, all the pixels have corresponding class according to pixel level. These pixel level 

annotations are than passed to model FCN8 with ResNet50 to classify each pixel of TMAs. The 

model is named is Carcino-Net and achieved average dice coefficient score of 0.74.  

Bulten [66] used UNET model with different pixel spacing for the classification of prostate 

images into different grade groups. Due to limited dataset problem, on Harvard V1 dataset, data 

augmentation techniques are applied to achieve Cohen’s kappa of 0.711. This model is totally 

encoder decoder based architecture. The system used randomly selected biopsies by the biopsy 

Gleason score from different patients. The Model is trained on 72 epochs with learning size of 

0.0005 and batch size 8.  

In [67] Locus used inception V3 CNN architecture as classifier on locally available dataset. He 

worked on Gleason grading score algorithm to grade the prostate biopsies. He introduced grade 

groups with different benign and prostate tissue. These grade groups based biopsies are than passed 

to CNN inception model and achieved average K of 0.70.  

Shin used [68]  self-attentive normalization (SAN) instead of normalization techniques on 

publically available Harvard dataset. To focus on more relevant parts of the feature map, the 

suggested approach can learn the element wise affine transformation. Because SAN only requires 

a few more learning parameters, it can be readily incorporated into current automated Gleason 

grading systems with minimal overhead. He used VGG16 CNN architecture for classification and 

achieved 79% accuracy as a whole. 
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Table 3.2 LITERATURE REVIEW  BASED ON DEEP LEARNING TECHNIQUES 

Author Year Dataset Classifier Results 

Karimi [62] 2019 Local Dataset  Logistic Model 92% 

Arvaniti [2] 2018 Harvard Dataset CNN MobileNetV2 0.72 

Khani  [64] 2019 
Gleason Challenge 

2019 

Deep 

Labv3+MobileNetV2 
0.56 

Lokhande  [65] 2020 
Gleason Challenge 

2019 
Carcino-Net 0.74 

Bulten [66] 2019 Harvard Dataset UNET 0.711 

Lucas [67] 2019 Local Dataset Inception V3 0.70 

Shin [68] 2020 Harvard Dataset VGG16 79% 
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4 Chapter 4: Experimental Methodology 

  

We suggest an automatic computer-driven prostate cancer Gleason grading scheme based 

on deep learning and Convolutional Neural Networks in our study (CNN). Photos were taken from 

the Gleason 2019 Challenge dataset. Image selection, pre-processing, and deployment of various 

CNN architectures are the three stages in the suggested technique. The input images are then 

preprocessed and resize, which are then passed into a CNN architecture. The more detailed 

summary of these measures is given in subsequent headings. Our suggested model is depicted in 

Figure 4.1 as a block diagram. 

 

 

Figure 4.1: Diagram of Proposed Methodology 
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First, for understanding the dataset of prostate cancer images and tissue microarrays, local 

hospitals and doctors will be contacted. This will require a thorough understanding of the 

acquisition system and then labeling of the images by the pathologists. The dataset of images will 

be grouped and labeled into four categories; Grade 1 and 2, Grade 3, Grade 4 and Grade 5. Grade 

1 and 2 are considered as healthy benign samples whereas Grade 3, 4, 5 are high cancerous sample 

images. 

4.1 Data Preprocessing and Normalization  

The Gleason 2019 Challenge dataset consists of tissue microarrays (TMAs) which are 

histological images obtained from patients who had radical prostatectomy. The TMAs were stained 

in H&E and scanned at 40x magnification with SCN400 slide scanner. These digitized TMA 

images were loaded into digital tab and stylish based android application which annotated the 

images under six experienced pathologists. These pathologists have experience of more than 20 

years in the field of prostate cancer detection and grading. The below diagram shows the flow 

chart of preparing Tissue Microarrays (TMAs) and get them ready to feed in Convolutional Neural 

Network (CNN) after preprocessing.  

 

 The block diagram of our proposed scheme is shown in Figure 4.1. TMA images and their 

corresponding masks of Gleason Challenge dataset have resolution of 4608 x 5120. The  TMA  

images have been resized to 512 x 512 for the 2 stages of training process. In  PNG masks, the pixel 

values 0, 1, 2, 3, 4, 5 and 6 show corresponding Gleason score. 

In Harvard Dataverse VI, the size of TMAs and masks are different, 3100 x 3100. We have 

resized the images to 512 x 512 for better generalization of model results which is trained on same 

size of images. In PNG masks, the pixel values  1, 2, 3 and 4 show corresponding Gleason score. 

After getting images, which are tissue microarray TMAs, data augmentation is applied to increase 

the data size. 
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4.2 Data Augmentation 

Data augmentation is considered important, particularly in medical application fields where the 

amount of data is small. The overall performance of deep learning algorithm is improved using data 

augmentation. Data augmentation is the process of creating new training data based on existing 

training data by using methods like horizontal, vertical shift, horizontal flip, vertical flip, rotation, 

scaling and zooming. For data augmentation, we have used augmentor library [69], where tissue 

micro array images (TMA) are rotated from 90 to 270 degree with 0.25 probability and also 

performed left to right flipping. similarly top to bottom flipping is done with 0.15 probability. 

Finally we used random cropping operation with 0.35 probability. During data augmentation, we 

selected equal class ratio for augmentation to combat problems of  data limitation. Table 4.1 shows 

the parameters for data augmentation technique which we have used in the thesis. 

 

Table 4.1: SUMMARY OF DATA AUGMENTATION IMPLEMENTATION 

Methods Range 

Rotation 90 , 270 Degree 

Flip Left to Right 15 % Probability 

Flip Top to Bottom 25 % Probability 

Random Cropping 40 % Probability 
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4.3 Convolutional Neural Network (CNN) 

For automatic computer based model, to accurately assign the prostate grade and initiate 

the medication, CNN plays vital role due to its robustness and automatic feature learning 

capability. Before feeding into CNN, Images are pre-processed at certain levels and under 

computation resources for better results. Previous research has shown that deep learning 

approaches based on CNN can achieve high classification precision. This is due to the fact that 

deep learning methods are not restricted to handcrafted features, which can lead to a biased current 

domain information. With enough testing data and training, CNN models are able to get a clearer 

visual pattern, resulting in an increased precision. However, due to inter-variations in labelled 

results, training of these models is extremely difficult. While deep learning models have a strong 

reputation in the medical domain and computer vision, most medical applications have a small 

amount of branded training data. Therefore, programming a deep learning model with a vast 

number of parameters becomes very difficult. 

CNN training requires large amount of data with considerable variation, which is often not 

available in medical diagnosis problems. This is solved by increasing the data using different 

techniques, named as data augmentation techniques. In our work, since the dataset is not enough 

to train the CNN model, we also applied data augmentation to solve the limited data problems and 

achieve state of art performance. 

4.3.1  Convolutional Neural Network (CNN) Architecture Design  

The input layer, hidden layers, and output layer make up a Convolutional Neural Network. 

Convolution layer, pooling layer, activation layer, normalization layer, and dropout or totally 

linked layer are all examples of hidden layers. Each of these layers has its own functionality which 

distinguishes the architecture from other conventional machine learning models. However CNN 

must have input, convolution, activation and fully connected layers. These layers lie on top of each 

other and make a hierarchical fashioned feature map. When it reaches the final layer, each layer 

takes data from the previous layer and transfers these features to the next layer. Softmax is 

normally preferred as the final layer. Based on the input function maps, the Softmax layer 

generates a probabilistic distribution of data. The Convolutional Neural Network's building block 

is the Convolution layer. 
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A convolutional layer performs convolution with different size of filters leading to the 

generation of feature maps. The size of the filter can be 3x3, 5x5, 7x7 etc. The shapes of 

convolutional filters are usually like boxes, as one of the images present in the data, and used to 

extract information from it. The resultant feature map consists of very useful and contextual 

information which is used in training. These feature maps correspond to some hidden layers which 

are controlled by activation layers. 

There are various kinds of activation layers used on convolutional neutral network such as 

ReLU, TANH, Sigmoid and Softmax. The proposed network consists of 7 or 4 inputs depending 

on the size of TMA images. The pixel values range from 0 to 6. The input is assumed as one input 

with class labels which are act channels. Each channel is represented as red, blue, green channels 

of color images. Figure 4.2 shows a simplest CNN architecture design, containing convolution, 

pooling and fully connected layers. 

 

Figure 4.2: Simple Convolutional Neural Network which consists of input, 

convolutional, pooling, fully connected layers and output layers. 

The Convolutional Kernels and connected weights are updated by a method called back 

propagation algorithm [44]. In Back-Propagation, input images are passed through the network via 
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feed forward pass and the network makes some class prediction. These predictions are then 

compared with the actual prediction. The resultant error in prediction is forwarded starting from 

the last layer to the first layer of the network. 

 

4.4 UNET Architecture. 

UNET architecture, as shown in Figure 4.3, was first introduced by [59] in 2015 for biomedical 

image segmentation. This model makes its place in the field of medical image segmentation in 

recent times due to its uniqueness. UNET model has the capability of contracting the input images 

into multiple feature maps. After contraction, it uses its previous feature maps to expand till it 

reaches its output level.  

 

 

Figure 4.3: UNET Architecture with each stage shows encoding and decoding. Each blue 

box represents the feature maps followed by convolution and max pool [59]. 
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Due to its contraction and expansion capability with concatenation power, it preserves the 

structural integrity of images. The layer details of UNET model with all four CNN architectures are 

given in Table 4.2 

 

Table 4.2: UNET LAYERS OF ENCODING OF OUR FOUR ARCHITECURES 

Model Input Shape Output Shape 
Convolution 

layers 
Pooling Layers 

VGG19 512x512x1 512x512x6 16 5 max pool 

ResNext50 512x512x1 512x512x6 48 
1 max pool, 1 

global avg pool 

MobileNetv2 512x512x1 512x512x6 10 1 avg pool 

ResNet50 512x512x1 512x512x6 48 
1 max pool, 1 

avg pool 

 

4.5 System Architecture Setup  

Deep learning based models require large amount of data for their training to perform well on 

test data. So data augmentation is applied using Augmenter library to reduce the over fitting  

problem and increase the generalizability of model. After properly resizing the TMAs images and 

data augmentation, TMAs are fed into convolutional neural network (CNN). Next step is to extract 

feature maps which is very critical for pixel level classification, because bad features may lead to  

poor pixel level classification results. Convolutional Neural Network is used for direct feature 

learning from data. In available datasets, large amount of class imbalance exists due to which model 

shows over fitting. To reduce class unequal problem, we used two phase training which solves the 

class imbalance problem. In first phase of training, we used equal class ratio to train the model and 

then used those weights to train on true class ratio. This methodology leads to achieve good results.  

We used four different CNN architectures with UNET. The four architectures VGG19, 

ResNet50, Mobilenetv2 and ResNext50 are used for extracting progressive features from pre-

processed TMAs. UNET model used these progressive features, up sample them, concatenate the 

features and generate predicted mask same as original mask. The mask contains the pixel level 

classes. Due to ResNet50 residual property and greater number of trainable parameters on both 
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MICCAI and Harvard Dataverse V1 datasets, we have achieved state of the art results. The details 

of architectures’ parameters are given in Table 4.3 and Table 4.4. 

Table 4.3: DETAIL OF PARAMETERS OF FOUR ENCODER ARCHITECURE 

WITH UNET ON MICAAI DATASET 

Model Trainable Non Trainable Total 

VGG19 29,058,807 4,032 29,062,839 

ResNext50 31,993,850 70,214 32,064,064 

MobileNetv2 8,012,215 36,096 8,048,311 

ResNet50 32,514,426 47,558 32,561,984 

 

Table 4.4: DETAIL OF PARAMETERS OF FOUR ENCODER ARCHITECURE 

WITH UNET  ON HARVARD   DATASET 

Model Trainable 
Non 

Trainable 
Total 

VGG19 9,033,988 20,028,416 29,062,404 

ResNext50 25,121,345 7,140,105 32,261,450 

MobileNetv2 5,822,020 2,225,856 8,047,876 

ResNet50 9,059,079 23,502,470 32,561,549 
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4.5.1 ResNet50. 

In this architecture design, we have used ResNet50 [55] as an encoder part of UNET with 

skip connections and double convolution layers which are stacked parallel to each other.  

ResNet is a deep convolutional neural network that is combined with images and auto-

encodes. Resnet50 architecture consists of blocks which are convolution layers at different stages 

followed by pooling layers. Each block of encoder ResNet50 ends with global average pooling 

layer. Our residual network is made up of 177 layers and was derived from a 50-layer residual 

network architecture, as seen below in Figure 4.4 . Each convolution block is followed by max 

pooling operation. At the end of convolution, average pooling layer is used. 

 We used only convolution layers block for segmentation of Prostate cancer.  During 

convolution and pooling, the contextual information of tissue microarray (TMA) images is retained 

and then decoded with concatenation. ResNet50 performance is greater than all other three encoder 

architectures. Due to identity mapping property, gradient loss problem is solved and network 

learning speed increases. All the implantation is dependent on our system setup and hardware setup 

and this model gives best results on it. 
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Figure 4.4: The architecture of ResNet50 and deep learning model flowchart [70] 

 

 



49 

 

4.5.2  VGG 19 Architecture 

 

VGG stands for Visual Geometry Group which is one of the important deep learning 

architecture used for segmentation and classification. There are two types of VGG architecture in 

study in the literature named as VGG-16 and VGG-19. VGG-19 is the expansion of VGG-16, the 

only difference between the two architectures is that VGG-16 consists of 12 convolutional layers 

while VGG-19 consists of 16 convolutional layers. In VGG-19 (as shown in Figure 4.5), each 

convolutional layers block is followed by max pooling and at the end of architecture, three FC 

layers are followed by softmax activation function. The last layer of VGG-19 has 1000 neurons 

which are equal to the number of categories in ImageNet dataset. We used only convolutional 

layers block followed by max pooling for segmentation of prostate cancer.  

 

 

 

Figure 4.5: VGG-19 architecture [71] 

 

The default input size is 512x512x3 as used in VGG-16. The input is moved to a stack of 

convolutional blocks with most of the convolutional layers having a window size of 3x3 and all of 

the convolutional blocks being accompanied by the max pooling operation. In the case of all 

convolutional layers, the stride and padding are set to 1. Max pooling is performed with a 2x2 

window with a stride of 2. ReLU is used as activation function in all the convolutional layers. The 

total number of parameters is 29,062,839 with input size kept as 512x512. 



50 

 

 

4.5.3 ResNext50 Architecture  

We used ResNext50 architecture shown in Figure 4.6 as an encoder to UNET for our 

automatic segmentation of prostate cancer. ResNext50 consists of convolution block followed by 

cross connections in each of its residual block. The map size for each feature map starts from 160 

and becomes half in each operation i.e160, 80, 40, 20, 10. Up-sampling is then used to reconstruct 

the original map. Figure 4.7 shows the complete structure of ResNeXt50 architecture with UNET.  

 

 

Figure 4.6: Architecture sketch for the U-Net inspired model using a ResNeXt50 

encoder [72] 
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Figure 4.7: Architecture of the Deeper U-Net mode [72] 

4.5.4 Mobile NET V2 Architecture 

 

MobileNetv2 architecture is one of the famous architecture used in deep learning 

segmentation and classification. It is used in our segmentation methodology as an encoder to 

UNET due to its low value of inference time and high accuracy. The bottleneck residual blocks 

consist of 19 original fundamental blocks in the MobileNetV2 network architecture. Each block is 

followed by 1x1 convolutional layer with an average max pooling operation. The detail structure 

of MobileNetv2 Architecture is shown in Figure 4.8 
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Figure 4.8: The architecture of the MobileNetv2network [73] 

  

 

4.6 Loss Functions 

In the development and enhancement of deep neural networks, the loss function is 

important. The loss function is a crucial component of both the Neural Network and the 

Convolutional Neural Network. They are characterized as a criterion against which the 

performance of the network is measured. Since our model optimization is entirely dependent on 

pixel level classification, we chose the mean square loss function. 
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We experimented with various loss functions during training to fine-tune our model, and 

our aim is to obtain state-of-the-art results on Gleason on both datasets. The loss functions that we 

used are as follows: 

4.6.1 Stochastic Gradient Descent (SGD) 

We used SGD as an optimizer at the outset of our training because it minimizes the 

calculations enormously. SGD takes one data point at random from the whole dataset at each 

iteration. The term ‘stochastic' refers to a process that is based on chance. As a result, instead of 

collecting all of the data for each iteration, Stochastic Gradient Descent selects a few samples at 

random. Gradient Descent has a definition called "batch," which reflects the total number of 

samples from a dataset used to calculate the gradient for each iteration. 

4.6.2 Adam 

Adam can be known of as a crossover between RMSprop and Stochastic Gradient Descent 

when it comes to momentum. It scales the learning rate using squared gradients, similar to 

RMSprop and it uses momentum by using the gradient's moving average rather than the gradient 

itself, similar to SGD with momentum. Adam is an adaptive learning rate process, which means 

he learns at his own pace. 

 

4.7  Evaluation Metrics. 

To assess the efficiency of segmentation models, evaluation criteria are used. We have used 

standard evaluation metrics that are currently being used in automatic Gleason grading of TMA 

images and also being used in clinical process of calculating inter observer variation. Our literature 

reveals that TMA based datasets are evaluated on Cohen’s Kappa [74] , F1 Score and Dice score 

[75]. We have also used these metrics to assess the performance of our proposed model. Another 

reason for choosing these metrics is to perform comparison with previous reported results in 

literature on automatic Gleason grading.  
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Cohens Kappa =
Po − Pe

1 − Pe
                                        (4.1)  

Equation (1) shows the Cohen’s Kappa where Po is observed agreement among ratters and Pe is 

hypothetical probability of chance agreement.  

 

F1 Score = 2 [
Precision .  Recall

Precision + Recall
]                      (4.2) 

F1 score is the function of Precision and Recall. The calculation of precision and recall is dependent 

on true positive and the sum of true positive and false positive which is shown in equation 3 and 4. 

 

F1 Score =
TP

TP +  
1
2

(FP + FN)
                            (4.3) 

 

                                   

Dice Score =
2 × TP

(TP + FP) + (TP + FN)
              (4.4) 

 

       

Overall Score =
Cohens Kappa + F1 Score

2
    (4.5) 

We calculated the overall score consisting of both Cohen’s kappa and F1 score for evaluating our 

model.
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5 Chapter 5: Experimental Results  

 

In this section we will briefly discuss the experimental results. We have performed our 

experimentation on Gleason Challenge 2019 and Harvard dataset. Both datasets contain tissue 

microarrays (TMAs) which have pixel level annotations by expert pathologists. Gleason Challenge 

2019 dataset contains 244 TMAs, among which 188 are used as training by applying data 

augmentation, 33 TMAs are used as independent validation and 23 are used as testing cohort. While 

on Harvard dataset we have 509 TMAs as training, 133 TMAs as validation set and 245 TMAs as 

independent test cohort. Both datasets contain Gleason score of 3, 4 and 5. 

5.1 Datasets  

5.1.1 Gleason Challenge 2019 Dataset  

The recently published dataset from the Gleason 2019 challenge has been used in our work [5]. 

Tissue microarray (TMA) images are  included in this competition. Several specialist pathologists 

with years of experience in their fields annotated each TMA picture in great detail. Data is prepared 

by pathologists on the basis of majority voting annotations. The data contains samples belonging to 

benign and 3 different grades; G3, G4 and G5. The distribution of dataset into training, validation 

and testing cohorts is given in  Table 5.1. 

 

Table 5.1: THE DISTRIBUTION OF GLEASON GRADE IN THE TRAINING, 

VALIDATION AND TEST COHORTS. 

 Total Cases Benign G 3 G 4 G 5 

Train 188 72 111 134 10 

Validation 

 
33 13 20 23 1 

Test 23 15 10 14 3 

Total 244 100 141 171 14 
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Training images contain 188 TMA of prostatic tissues with benign, Gleason 3, Gleason 4, and 

Gleason 5. For testing the deep learning model we used 23 TMAs and for validation we used 33 

TMAs. Some of the images from MICCAI dataset have been shown in Figure 5.1. Grade 3 and 

Grade 4 have high class ratio of images in data which create over fitting problems which are 

addressed by batch normalization, dropout and data augmentation. 

. 

Figure 5.1: Example of Tissue Microarray Images (TMA) of MICCAI Dataset 

 

 

Figure 5.2: Example of true masks of corresponding TMAs. 
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Above TMAs are achieved after preprocessing of original images with corresponding masks 

after data augmentation. Figure 5.2 shows ground truth of original TMAs which consist of Gleason 

score ranging from 0 to7. 

5.1.2 Harvard Dataverse V1 Dataset 

Harvard dataset is acquired from online databases of Harvard [2]. It contains five tissue micro 

arrays TMA each with 200 to 300 spots, which makes up the data. Objects or non-prostate tissue 

with spots (e.g. lymph node metastasis) is excluded from the study. The first pathologist (K.S.F.) 

identified the prostate TMA spots by carefully delineating cancerous areas and giving each one a 

Gleason pattern of 3, 4 or 5. TMA spots without cancerous areas have also been discovered to be 

benign. The distribution of Gleason scores across different tissue microarrays is seen in Table 5.2. 

Since TMA 80 has the most events, it has been assigned as the study cohort. TMA 76 was used as 

a confirmation cohort because it has the most evenly distributed Gleason ratings. Three other TMAs 

were used as a training cohort as a result. A second pathologist annotated the TMA spots in the 

research data separately, allowing the inter-pathologist variability to be quantified. 

 

Table 5.2: THE DISTRIBUTION OF GLEASON GRADE IN THE TRAINING, 

VALIDATIO AND TEST COHORTS. 

 

 
Benign G 6 G 7           G 8         G 9 G 10 Total Images 

TMA 76 42 35 25 15 2 14 133 

TMA 80 12 88 38 91 3 13 245 

TMA 111 0 95 39 69 16 8 227 

TMA 204 0 1 17 25 8 69 105 

TMA 199 61 69 2 26 2 1 176 
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Figure 5.3: Example of Tissue Microarrays (TMA) of Harvard Dataverse V1 Dataset 

 

 

Figure 5.4: Example of True masks of correspond 

 

Figure 5.3 and Figure 5.4 represent the tissue microarrays TMAs and their corresponding masks 

of  Harvard Dataverse V1 Dataset [2]. The above TMAs are achieved after preprocessing of 
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original images with corresponding masks after data augmentation. Figure 5.4 shows ground truth 

of original TMAs which consist of Gleason score ranging from 0 to 5 

5.2 Results on Gleason Challenge MACCAI 2019 Dataset  

For our experimentation on automated grading of prostate cancer tissue using deep learning 

techniques [46, 62], we used the dataset from the MACCAI 2019 challenge [46, 60], which was 

part of the MICCAI 2019 meeting. Tissue microarray (TMA) images are annotated in depth by 

many specialist pathologists in this dataset. We have split the dataset of 244 TMA images into 

preparation, testing, and validation images. The dataset division is listed above. 

In MICAAI dataset, four different CNN architectures are used as our UNET model 

encoder. We have achieved good results on all four encoder architectures and evaluated those using 

Dice Score, Cohen’s kappa and F score. ResNet50 has performed well as compared to other 

encoder architectures due to its residual property and faster convergence. Categorical cross entropy 

is used as loss function with learning rate of 0.0001. ResNet50 has achieved overall score of 0.728 

which is highest as compared to other models. 

5.2.1 Comparison of Results on MICCAI Dataset 

Table 5.3: COMPARISON OF UNET BASED MODEL RESULTS ON MACCAI 

DATASET 

UNET 

Model 

Encoder 

Backbone 
Dice Score Cohen’s Kappa F Score Overall Score 

1 VGG-19 0.49 0.30 0.31 0.305 

2 ResNext 50 0.47 0.28 0.29 0.281 

3 MobileNET 0.63 0.63 0.61 0.621 

4 ResNet 50 0.68 0.72 0.73 0.728 
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 Results in Table 5.3 clearly indicate that when ResNet 50 is used as backbone with UNET, it 

outperforms all other architectures. The dice score for ResNet50 exceeds MobileNetv2 by 7.5%. 

While the increase is more significant when compared with ResNext50 and VGG-19 scores. This 

score go past ResNext50 and VGG-19 scores by 31% and 28% respectively. Similarly, ResNet 50 

shows better results than other frameworks for both Cohen’s Kappa and F score. A significant rise 

of 0.42 and 0.44 can be seen in overall score of our encoder from VGG-19 and ResNext50. 

However, there is an increase of 14.7% from MobileNetv2, proving it to be the best encoder for 

Gleason score assignment. Due to its residual blocks and identity mapping, ResNet50 has produced 

optimal feature maps. Those optimal feature maps contain all the pertinent features which can 

perfectly classify the image to its ground-truth class that is why ResNet50 gives state of art results 

as compared to other encoder architectures. 

 

Table 5.4: COMPARISON OF OUR MODEL WITH BEST PERFORMING MODEL 

IN TERMS OF COHEN’S KAPPA ON MACCAI 2019 DATASET. 

Model Team F1 

Score 

Cohen’s 

Kappa 

Score 

YujinHu 0.845 0.845 0.845 

Nitinsinghal 0.792 0.792 0.792 

Ternaus  

0.789 

 

 

0.789 

 

 

0.789 

 

Zhangjingmri  

0.778 

 

 

0.778 

 

 

0.778 

 

sdsy888 0.759 0.759 0.759 

 

cvblab 

 

 

0.757 

 

 

0.757 

 

 

0.757 

 

XiaHua 0.716 0.716 0.716 

AlirezaFatemi  

0.712 

 

 

0.712 

 

 

0.712 

 

Jpviguerasguillen 0.649 0.64 0.64 

qq604395564  

0.643 

 

 

0.643 

 

 

0.643 

 
Unipabs  

0.587 

 

 
0.587 

 

 
0.587 

 

Our Proposed 0.722 0.73 0.732 
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Figure 5.5: Results on best performing model UNET-ResNet50 (a) Original TMA 

images (b) Original masks (c) Predicted 

 

Figure 5.6: Graphical Representation of ResNet50 accuracy on MICAAI dataset 
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Figure 5.7: Graphical Representation of ResNet50 loss on MICAAI dataset 

Figure 5.5 (a) shows original images of MICCAI dataset, (b) shows the original masks which 

contains pixels ranging from 0 to 7 and (c) shows the predicted masks based on our best performing 

architecure. Figure 5.6 and Figure 5.7 show the training and testing accuracy of ResNet50 model 

with their corresponding losses. We trained our model on 50 epochs. The graphs show that training 

as well as testing accuracy gradually increases as number of epochs increases. However, the 

training and testing loss gradually decreases as the number of epochs increases due to  increment 

of learning.  

In Gleason Challenge 2019 [5], teams from all over the world have participated and are working 

on MICCAI dataset. Table 5.4 shows the comparison of top selected teams taken from Kaggle in 

Gleason Challenge with our top performing model UNET-ResNet50. Most of the teams have 

managed to achieve good results. However, their methodology and results have not been published 

so far. We have still managed to achieve competitive results on the Gleason Challenge dataset.  
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5.3 Results on Harvard Dataset  

In Harvard dataset, four different CNN architectures are used as our UNET model encoder. 

We have achieved good results on all four encoder architectures and evaluated those using Dice 

Score, Cohen’s kappa and F score. ResNet50 has performed well as compared to other encoder 

architectures due to its residual property and faster convergence. Categorical cross entropy is used 

as loss function with learning rate of 0.0001. ResNet50 has achieved overall score of 0.728 which 

is highest among other encoders. 

5.3.1 Comparison of Results on Harvard Dataset       

Table 5.5 shows the results of Harvard dataset. On Harvard dataset, we have implemented 

VGG19, ResNext50, MobileNetV2 and ResNet50 architectures as encoder with UNET. It is readily 

apparent from Table 5.5 that ResNet50 is again the top model in comparison to other encoders with 

regard to all variables. Dice score of ResNet50 is greater by 2.6%, while Cohen’s score by 5.5% 

from VGG-19, hence it attained the highest accuracy among the four models. ResNet50 stands out 

from the rests in terms of overall score as well, with 5.5% increase from VGG-19 and Mobile Net 

and 7% greater than ResNext50. 

 

Table 5.5: COMPARISON OF OUR MODEL WITH BEST PERFORMING   MODEL 

IN TERM OF COHEN’S KAPPA ON HARVARD DATAVERSE DATASET 

 

UNET Model Encoder 

Backbone 

Dice Score Cohen’s Kappa Overall Score 

1 VGG-19 0.75 0.69 0.69 

2 ResNext 50 0.62 0.68 0.68 

3 MobileNETV2 0.70 0.63 0.69 

4 ResNet 50 0.77 0.73 0.73 
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ResNet50 contains 48 convolution layers stacked one after the other, with max and average 

pooling. It is a long deep trained model with residual block which gives us state of the art results as 

compared to other models. Due to identity mapping property, gradient loss problem is solved and 

network learning speed increased. That is why we have achieved best results with UNET-ResNet50 

architecture. 

 

Figure 5.8: Results on best performing model UNET-ResNet50   (a) Original TMA 

images (b) Original masks (b) Predicted masks 
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Figure 5.9: Graphical Representation of ResNet50 accuracy on Harvard dataset 

 

 

Figure 5.10: Graphical Representation of ResNet50 accuracy on Harvard dataset 

Figure 5.8(a) shows the example images from the dataset, (b) shows the ground truth masks of 

Harvard dataset which contains pixels’ ranges from 0 to 4 and (c) shows the predicted masks using 
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our best performing architecture. Figure 5.9 and Figure 5.10 show the training and testing 

accuracy with corresponding loss. As the number of training epochs are increased, the training 

accuracy is increased and loss decreases. We tested our model using same parameters and achieved 

state of the art results. In testing our model generalization, we have used same dataset as used in 

given [2]  and achieved better results as compared to them. The detailed comparison of our results 

with other results reported in literature is shown in Table 5.6. 

 

Table 5.6: COMPARISON OF UNET BASED MODEL RESULTS ON HARVARD 

DATASET 

 

5.4 Hardware Requirements  

The above experiment was carried out on an Intel Core i5 processor using an NVIDIA 

GPU with 8 GB of RAM. NVIDIA began producing Computation Unified System Architecture 

(CUDA) in 2007 to enable programming for the NVIDIA graphical processing unit (GPUs) on 

Google Colab. Since then, NVIDIA GPUs have become the industry leader with high-performance 

GPUs specially built for greater matrix multiplication that can be multiplied.  

The area of machine learning has achieved a major performance improvement with the 

introduction of a high-performance graphical processing unit as deep learning techniques involve 

a massive amount of matrix multiplication and these GPUs have enabled it. Before that, the graphic 

performance of these GPUs was solely dependent on the capacity of the CPUs. The performance 

power of the previous NVIDIA GPU version was up to 70 times more than the ordinary personal 

computers. Since the release of the previous NVIDIA GPU model in 2012, both the memory space 

and the number of NVIDIA graphics card cores have increased.

Model No. of Images  Cohen’s Score 

Eirini et al. [2] 640 0.72 

Bulten [66] 640 0.71 

UNET-ResNet 50 640 0.73 
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6 Chapter 6: Conclusion and Future Work 

 

The results prove that deep learning models have the capability to achieve expert level results. 

In this thesis, we have implemented deep learning based models on two different datasets for 

automatic prostate cancer grading. We have proposed a methodology which is based on UNET 

model for automatic prostate cancer grading at pixel level and predicted the pathologist’s level 

results on both datasets. We used four different CNN architectures; VGG19, ResNext50, 

MobileNetV2 and ResNet50 as an encoder to UNET model. UNET with ResNet50 encoder gave 

us state of the art results as compared to other encoder architectures due to its unique identity 

mapping. Due to lesser number of samples, we have also implemented data augmentation on both 

datasets which increases the overall performance of UNET model. Our experimental results show 

that our proposed deep learning based model achieved good results on Gleason Challenge dataset 

and higher results on Harvard dataset as compared to previous reported results. 

6.1 Future Work 

Most automatic segmentation methods have promising results in prostate cancer 

identification and grading, however, further improvement in these algorithms and availability of 

large amount of data with less class imbalance problem may improve these methods and prove to 

be helpful in the development of large-scale, clinically acceptable methods for grading of prostate 

cancer. Moreover, researchers should focus on large scale CNN architectures for more robustness 

of the model and better generalization. 

The majority of automated computer-based methods for prostate cancer grading and 

analysis have promising results. However, further improvements in these algorithms and the 

availability of additional image details from new image modalities can enhance these methods and 

can be useful in the creation of large-scale, clinically appropriate methods for better automatic 

prostate cancer grading. The Deep Convolutional Neural Network performs better with larger 

dataset. Therefore, in future the availability of more training samples could be beneficial for 

network training. Another important factor to be considered when designing an automated prostate 

cancer grading model is its robustness, which means that the algorithm should be able to deal with 

a variety of datasets. Hence, in order to design a robust automated prostate cancer grading model, 
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the availability of more number of datasets would help researchers test their algorithm on various 

datasets with various modalities. 
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