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Abstract

Brain tumor is the spread of abnormal cells in the brain. Out of several kinds of brain

tumor gliomas is the most dangerous with low survival rate and difficult to detect man-

ually due to irregular form and confusing boundaries. Magnetic Resonance Imaging

is the most widely used imaging modality that allows radiologist to look inside brain

by utilizing radio waves and magnet but the manual identification of tumor region is

tedious task. Therefore, a reliable and automatic segmentation and prediction is nec-

essary for segmentation of brain tumor and prediction. However due to complexity

and unavailability of resources to train deep learning algorithms, it is complex to iden-

tify the tumorous and non-tumorous region. So, in this paper, a reliable and efficient

variant of UNET i.e., VGG19-UNET for segmentation of brain tumor and ensemble

learning model for survival prediction is proposed. Specifically, an encoder part of the

UNET is a pretrained VGG19 followed by the adjacent decoder part. Meanwhile, the

ensemble voting classifier of Naïve Bayes and Random Forest was trained for survival

prediction. The datasets we are using for segmentation is BRATS’20 which comprises

of four different MRI modalities and one target mask file. Whereas, the datasets of

survival prediction is also BTARS’20 which is comma separated file containing different

features. Above mentioned algorithm resulted in dice coefficient score of 0.81, 0.86 and

0.88 for enhancing, core and whole tumor whereas the accuracy of overall survival is

62.7%. Keywords: VGG19, UNET, Encoder-Decoder Network, Segmentation of brain

tumor, MRI, Survival Prediction, Ensemble Learning, BRATS
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Chapter 1

INTRODUCTION

Brain tumor is the spread of atypical cell in the brain. Some cells are non-cancerous

(benign) having high survival rate while some cells are cancerous (malignant) having

low survival rate [1]. There are two kinds of brain tumors. First is known as primary

tumor because it starts from brain it is the common kind of tumor and other one is

known as secondary tumor because it travels from other part in the body and extends

to the brain [2]. There are several types of brain tumor out of which gliomas are the

most ordinary type of brain cancer and more than 35 percent of all brain cancers are

gliomas. Gliomas originates from glial cells which are responsible for keeping neural

nerves healthy. Gliomas is further divided into several types based on the specific tar-

geted cell. Out of which, a glioblastoma is the most malignant type of the glioma [8].

MRI is an imaging technique that allow doctors to see inside human body by utilizing

magnet and radio waves. As brain is the most common soft tissue therefore MRI provide

excellent detail of the brain image as compared to CT, X-ray and Ultrasound modalities.

To get better results of the targeted areas certain types MRI modalities are employed

amongst them T1, T2, T2* and FLAIR weighted mages are most common modalities of

MRI [3], [4]. TI weighted images are produced by using little Repetition Time (TR) and

Time to Echo (TE), while T2 weighted images are produced by using greater TR and TE

than T2. Similarly, FLAIR weighted images are variant of the T2 which are produced by

using greater TR and TE than T2. The contrast between different modalities generates

the unique image of each tissue. Effective diagnosis of the brain tumor plays important

role in the patient’s overall survival rate.

Image segmentation is the process dividing an image into well-defined regions or cate-
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gories where each area contains pixels with similar attributes and each resolution in an

image is assigned to one of these categories [5]. Similarly, Brain tumor segmentation is

the process of splitting of tumorous region from the non-tumorous region [6]. Generally,

there two types of brain tumor segmentation firstly, the manual decomposition is the

tedious and complex task but an accurate meanwhile automatic segmentation is simple

as well as accurate due to development in the field of artificial intelligence. Specifically,

due to availability of efficient machine leaning algorithms and libraries the application

of artificial intelligence in medical imaging is tremendously increasing [7]. Therefore, to

utilize the complete benefits of machine learning, a combination of pretrained VGG19

and UNET has been proposed for brain tumor segmentation whereas ensemble voting

classifier of Random Forest and Naïve Bayes (NB) was trained for tumorous patient

survival prediction. For segmentation, the encoder portion of the UNET is pretrained

VGG19 followed by respective decoder part. Whereas for brain tumor survival predic-

tion, data preprocessing steps comprised of feature selection and normalization were

proposed followed by ensemble of Random Forest and NB.

1.1 MOTIVATION

According to London Institute of Cancer and World Health Organization there are

18 Million registered cases of cancer globally. Out of which two hundred and ninety

thousand cases are brain tumors and the highest cases of brain tumor cases are reported

in Asia with the amount of one hundred and fifty six thousand cases. Similarly, 9.5

Million cases of deaths are due to global cancers, of which two hundred and forty one

thousand are belongs to brain cancers and the highest mortality rate was observed in

Asia with one hundred and twenty nine thousand cases. Meanwhile, Early diagnosis

of brain tumors plays essential part in the overall survival of the patient. There are

different variations of brain tumor exist which makes it challenging to separate tumorous

region from the non-tumorous area, mainly in underdeveloped countries like Pakistan as

claimed in different reports, the population is increasing everyday and resources available

are inefficient with less experienced professional so there is need of an automated system

which is not only accurate but economical as well. Therefore, this research aims to

improve the healthcare facility with more accurate and efficient results.
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1.2 PROBLEM STATEMENT

Manual diagnosis of the tumor is a difficult job because of non-uniform shapes and

complex boundaries. Therefore, this research aims to facilitate medical experts by au-

tomatically diagnosing brain tumorous regions using segmentation and segmentation

information to predict the overall patient’s survival.

1.3 AIMS AND OBJECTIVES

The primary goals of the research are mentioned below:

• To utilize DNN for brain tumorous region segmentation

• To create and train UNET for segmentation

• To use pre-trained VGG19 as encoder part of the UNET

• To utilize segmentation results to build patient survival prediction model

• To train ensemble model for patient survival prediction

• Differentiation of results with prominent detection and prediction techniques

1.4 STRUCTURE OF THESIS

The structure of thesis is followed as:

Chapter 2 describes the basics concepts of Magnetic Imaging Resonance followed by

detailed pictures of brain and brain tumor segmentation

Chapter 3 review some previous working for brain tumor segmentation and patient

survival prediction and perform deep review of the results achieved

Chapter 4 is the representation of proposed methodologies. Meanwhile, it provides the

detail of essential techniques used in the experimentation

Chapter 5 describes the datasets, evaluation matrices and experimentation results are

also described in details in this chapter Chapter 6 is the final chapter which concludes

the thesis and reveals future scope of the research
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Chapter 2

FUNDAMENTALS OF

MAGNETIC RESONANCE

IMAGING AND BRAIN

2.1 ESSENTIAL OF MAGNETIC RESONANCE IMAG-

ING

2.1.1 Computer Tomography (CT)

Computed Tomography is a standard diagnostic image modality that uses series of x-

ray to build the slices of the body tissues. The CT machine scanners emits an x-ray

toward the body from different directions, and detectors in the CT machine measure

the variance between x-rays consumed by the body and x-ray diffused from the body.

This process is called attenuation [9]. The attenuation is determined by the thickness

of the tissues followed by an individual CT number or Hounsfield value. Typically, high

thickness tissues fascinate the radiation from a higher degree, and the scanner recognizes

a reduced amount on the other side of the body. Conversely, low thickness tissue retains

the radiation from the lower point, and a tremendous amount of signal is detected by the

scanner. Those tissues with high attenuation coefficient show up white while the tissues

with a low attenuation coefficient are shown up as black, quantified by CT number. The

CT number or Hounsfield number ranges from -1000 to 1000. For air, the Hounsfield

value is -1000, while for bone, the Hounsfield value is 1000. When interpreting a CT
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Figure 2.1: Basic Principle of CT [10]

image, the orientation of the image is essential. Usually, images are presented in a

transverse plane and are oriented to look up the body from the patient toes. CT image

is a digital image consisting of square matric of elements called pixels, and each pixel is

represented as a volume element (voxel) of the patient. Figure 2.1 illustrates the basic

principle of CT.

2.1.2 Ultrasound

Ultrasound is another imaging modality that utilizes sound waves of higher frequency

to depict body tissues. It is a more reliable and flexible imaging modality that pro-

vides the additional unique characteristics of the tissues. Typically, the frequency of

the sound wave in ultrasound ranges from 20 hertz to 20,000 hertz [11]. The ultrasound

working is simple: sending an ultrasound wave from the ultrasound transducer into the

tissue and receiving echoes back. The echoes contain spatial and contrast information.

The ultrasound technique is more sophisticated to gather enough data to generate a

two-dimensional grayscale image. In addition to the grayscale image, some characteris-

tics such as the doppler effect of returning echoes can be selected to gather additional

6



Figure 2.2: Image Acquisition by Ultrasound [12]

information. Ultrasound is a much inexpensive technique than CT. The basic working

principle of image acquisition by ultrasound is illustrated in Figure 2.2.

2.1.3 X-Ray

Figure 2.3: The basic principle of X-ray generation [5]
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X-ray is the commonly used imaging modality in hospitals. Wilhelm Rontgen initially

discovered it in 1895. X-ray is a type of electromagnetic radiation [13]. The radiation

is produced when an electric current is created from a high voltage generator. The

generator can be an electron, proton, or any other x-ray. It is typically generated by

bombarding a metal target with a generator of electrons. The electrons are created by

warming a metal filament. The electrons produced from the filament are then moving

towards the target material known as an anode. When the generator hits, an anode

X-ray is emitted. The x-ray acquisition principle is illustrated in Figure 2.3.

2.1.4 Magnetic Resonance Imaging

Magnetic Resonance Image (MRI) allows MRI experts to utilize magnet and radio waves

to check inside the human body. MRI scanner was initially developed in 1971 in New

York. MRI estimates how much water is in various body tissues by utilizing magnets

and radio waves to plan the water’s space and uses this information to make a top

to bottom picture [14]. The photos are so in-depth because our body is composed of

around 65% water. The water molecule (H2O) includes two hydrogen particles and one

oxygen atom, as represented in Figure 2.4. The hydrogen (H) atom or the (H) particle

is used to figure the sign from the body. At the point when we take a gander at a

hydrogen molecule comprehensively, it’s anything but a positive charge is procured by

a focal core known as a proton. Like the Earth turning on the two poles, the north

and the south pole, similarly each rotating protons of hydrogen proton seems like a

small magnet pivoting around its own axis’. Like a compass needle changes towards the

magnetic field when these are discretionarily turning hydrogen protons are placed in an

MRI scanner, their axis realign them with the scanner’s more grounded magnetic field.

We consider the scanner’s magnetic field the B0. Mainly like a compass needle on the

earth field, the accurate compass does not move. However, the needle spins to change

itself. The hydrogen protons do not truly move in the body when it enters an MRI

scanner; their axis essentially changes along the course of the B0 field. Some will change

parallel, and some will change anti-parallel to look like while twirling around on their

axis. As a result of the laws of quantum physical science, which we will not go into here,

there are for each situation just gradually more parallel proton than anti-parallel. If

we presently consider the entire magnetic field produced from all our hydrogen protons,

8



Figure 2.4: H20 molecule

these tiny magnets almost offset each other, to leave simply the magnetic field from the

small degree of additional equal protons. It is this bit of magnetic field that we can

measure using MRI. The B0 field impacts the hydrogen proton’s arrangement plan and

impacts how rapidly these protons turn, called precessional frequency. The precessional

frequency depends upon the strength of the attractive field. The more grounded the

magnetic field, the faster they turn. We get a picture from these turning just by turning

hydrogen protons in the cerebrum. The protons turn back and correct alongside the

B0. We think about our compass once more when the RF pulse is turned off. The

needle will pivot from east to north and line up with the magnetic field again when

moving our little bar magnet away. The protons emit energy when they flip back and

realigns with B0. Various tissues of the body radiate various amounts of energy. To

quantify this radiated energy, we require loop hardware put around the considered part

of the body. The loop goes about as a receiving wire and considers as an electrical flow.

The electrical flow is changed, through a PC, utilizing a numerical computation called a

Fourier transformation. A numerical estimation is utilized to change the electrical flow

in a loop into a picture. Since protons in the various types of tissues in mind, like dark

matter, white matter, and blood, all radiate various energy measures, the aftereffect
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Figure 2.5: Protons in the body

of the changed energy is an exceptionally nitty gritty picture of the tissue inside the

cerebrum.

• Relaxation

Relaxation is the cycle where spin delivered the energy got from a radiofrequency.

There are three types of relaxation that influence the MRI signal [15], [16]. T1

relaxation The nuclei spin in the transverse plane and are bounded by the sur-

rounding particles. They do so by returning to the longitudinal magnetization

(M) exponentially, as shown in Figure 2.5. The rate at which this happens is

represented by a time constant (T1).

Figure 2.6: MRI exponential curve T2 Relaxation

T2 relaxation alludes to the advanced dephasing of turning dipoles, bringing about

decay in the polarization in the cross-over plane (M). Following a radiofrequency,
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Figure 2.7: Difference between T2 and T2* relaxation

this type of relaxation happens with consistent T2, where T2 is the hour of cross-

over polarization vector to rot to 37% of its initial magnitude.

• T2* Relaxation

T2 relaxation is the exponential curve of transverse decay in the ideal world.

However, when we measure it in reality, we track down that the transverse decay

is a lot quicker. The signal decreases to zero quicker than expected. This process

is called the T2* relaxation.

• Image Contrast

Three features of biological tissues contribute to the brightness of MRI and enhance

overall image contrast. The Proton Density: The proton density determines the

maximum signals obtained from a given tissue through an excitable number of

spins per unit volume. T1 time of tissue: The T1 time of a tissue is the time that

takes the energizing spin to improve and to be accessible for another spin. T1

sign can be fluctuated haphazardly and influences the sign power by implication.

Contrast images that the T1 determines are called T1 weighted images. T2 time of

tissue: It determines the fades out of the MRI signal after excitation. The operator

can control the T2 contrast of MRI. Contrast images that the T2 determines are

called T2 weighted images [17].

• Spatial Encoding and Slice Selection

MR imaging produces cross-sectional pictures of the human body. Therefore, the

excitation pulse is conveyed uniquely to the slice we need to imagine and not the
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Figure 2.8: Slice selection in the z-axis

entire body [18]. Allow us to consider a cross-over (hub) slice or get segment

through the body. The magnetic field created by most MR scanners is not guided

through, however, along with the body slice of the individual being imaged. This

is the course assigned by "z" since, as of now said, z represents the bearing of

the primary magnetic field. The magnetic field angles that presently become an

essential factor are addressed by wedges, with the tip represents the lower field

strength, and the thick side represents the higher field strength.

• K-Space

Figure 2.9: MRI generation from k-space MRI Modalities

The spatial data obtained from the MRI scanner is transformed to the frequency
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domain during the acquisition process. In the MRI, the initial encoded acquired

data is referred k-space. They are Fourier-transformed data [19]. To convert

back to spatial information, apply the inverse Fourier transform to obtain the MR

image. Each data point in the k-space is derived directly from the MR signal.

Inverse FT is applied after k-space acquisition to gain the final image. Each pixel

in the achieved image is the total sum of all the discrete points in the k-space.

The Figure 2.9. illustrate the generation of MRI from k-space

Figure 2.10: Comparison of T1-weighted Image with T2-weighted and Flair [20]

There are three most common types of MRI modalities. The modalities are classified

based on Time to Echo (TE) and Repetition Time (TR). T1-Weighted images: are

generated by using short TE and TR times. The T1 properties of tissue determine the

brightness and contrast of the T1-weighted image. T2-Weighted images: are created by

utilizing longer TR andTE times. The T2 properties of tissue determine the brightness

and contrast of the T1-weighted image. Flair Attenuated Inversion Recovery (FLAIR):

is another most common type of MRI modality and is similar to T2-weighted images by

having a significantly longer TE and TR modality. The cerebral spinal fluid (CSF) is

bright on T2-weighted imaging and dark on T1-weighted imaging, as shown in Figure

2.10.

To summarize, MRI can be generated in the following five steps: The MRI scanner

emits an RF pulse at a specific frequency RF coil sends the pulse to the examined area

of the body The RF pulse is consumed by protons, making their redirection for the

essential magnetic field When the RF pulse is turned off, the protons rotate back to the

initial position by emitting radio waves Finally, the spatial information is converted to

measured data in the frequency domain
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2.2 STRUCTURE OF BRAIN

The structure of the brain is composed of three main parts, which is illustrated in Figure

2.11 with their functionality; The forebrain is composed of the cerebrum. The cerebrum

is the central segment of the brain. It is responsible for the higher functionality of the

cerebral, such as action and thought. The forebrain is divided into four subsections

called lobes. The midbrain is smallest segment of the brain located below the cerebrum

and above the hindbrain, and it is also located almost centrally within the cranial

cavity. It comprises the cerebral peduncles, several nuclei, fasciculi, tegmentum, cerebral

aqueduct, and tectum, The fundamental occupation of the midbrain is to fill in as a

kind of relay station for our auditory and visual systems. Sections of the midbrain

called the red center and the substantia nigra are locked in with the control of body

advancement. The hindbrain is a region made out of the medulla oblongata, the pons,

and the cerebellum. The hindbrain facilitates capacities that are crucial to survival,

including respiratory beats, motor action, rest, and alertness.

Figure 2.11: Structure of Brain [21]

2.3 Segmentation of Brain Tumor

Essential brain tumors start in the cerebrum and happen due to strange synapses, known

as mutations. As the cells mutate, they develop and duplicate wildly, shaping a tumor.

Malignancies that have spread to the mind from different areas in the body are known

as cerebrum metastases.
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Image segmentation states dividing an image into distinct regions or categories, with

each region containing pixels with similar attributes and each pixel in an image being

allocated to one of these categories. Similarly, the process of using an MRI scan to

find a tumor is called Brain Tumor Segmentation. The goal of Segmentation of Brain

Tumor is to separate the non-tumorous region from the tumor region as the brain tumor

borders are hard to detect from an MRI scan. This is performed by detecting atypical

areas when compared to typical tissue.

Figure 2.12: (A) The visibility of WT in FLAIR (B) The visibility of TC in T2 (C) The visi-

bility of structure of enhancing tumor as blue in T1C, nearby the cystic/necrotic

components of the core as green (D) Segmentations are joint to create the final

labels of the tumor [23]

The rule for interpreting the various pictorial structures is illustrated in [22] for low and

high-grade cases illustrated in Figure 2.12. T2 images were used to segment edema. In

the resulting steps, The relabelled part of the core structure contains the underlying

"edema" segmented in T2 and FLAIR, as showing in Figure 2.12 (A). The segmentation

of both non-enhancing tumors and enhancing was first segmented by assessing hyper-

intensities in T1C and the hypotensive areas noticeable in T1, as shown in Figure 2.12

(B). The proper intensity threshold was resolved outwardly dependent upon the situa-

tion shown in Figure 2.12 (C). The necrotic or core was low-intensity necrotic structures

inside the enhancing border observable in T1c illustrated in Figure 2.12 (C). Finally,

the segmentation are integrate to create final labels of all tumor types are illustrated in

Figure 2.12 (D).
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Chapter Summary

In this chapter, a complete working of MRI along with different MRI modalities are

described with some basic knowledge of other medical imaging modalities. Specifically,

a briefly depiction of how magnetic fields shift the control of water molecules in the

human body and various tissues react differently to RF pulse. Meanwhile, the structure

of brain and segmentation of brain tumor is also discussed briefly.
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Chapter 3

LITERATURE REVIEW

3.1 BRAIN TUMOR SEGMENTATION

Havaei et al. [24] proposed efficient, flexible, and high capacity DNNs consist of Local

and global pathways of 7x7 and 13x13 respective fields for Segmentation of Brain Tumor.

Similarly, three different variants of cascaded architectures on the basis of connecting

the output of the initial layer to the input of different hidden layers of architectures

were also proposed. The experimentation of the proposed method was performed on

MRI datasets of Segmentation of Brain Tumor datasets (BRATS 2013). The evaluation

metrics used in the experiment were dice, sensitivity, and specificity. The dice score of

two pathway architecture is between 70 and 80 percent. The sensitivity and specificity

were between 70 to 90%. Then, the dice score of cascaded-based methods was between

70 and 90%, and sensitivity, specificity was between 75 to 85 and 70 to 90 percent,

respectively. Similarly, Pereira et al. [25] proposed a CNN and tunning the intensity

normalization transformation for low-grade and high-grade gliomas segmentation. The

validation of the proposed method was performed on BRATS 2013 and 2015 of MRI

datasets. Dice similarity score on BRATS 2013 was 0.88, 0.83, and 0.77 for complete,

core, and enhancing brain regions, respectively. Similarly, the DSC on BRATS 2015

were 0.78, 0.65, and 0.75 for WT, CT, and ET, respectively. Zhao et al. [26] proposed

an accurate and faster slice by slice brain image segmentation for tumor detection con-

sist of three steps. Firstly, training FCNN using image patches, then training CRF-RNN

using image slices, and finally, Fine-tune FCNN and CRF-RNN using image slices. The

efficiency of the proposed method was performed on BRATS 2013, BRATS 2015, and
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BRATS 2016. The evaluation metrics used in the experiments were Dice score, Positive

predictive value (PPV), and sensitivity. The dice score, PPV, and sensitivity were be-

tween 0.75 and 0.90 for each mode of the MRI. A fully automated end-to-end incremental

CNN model for MRI Segmentation of Brain Tumor was proposed by Saouli et al. [27].

Specifically, 2CNet, 3CNet, and EnsembleNet methods were proposed. These models

exploit local and global features of the patches using two pathways. The evaluation of

proposed methods was performed on BRATS 2017. The dice score and sensitivity of

2CNET, 3CNET, and EnsembleNet were between 0.8 and 0.9. Similarly, the specificity

of 2CNET, 3CNET, and EnsembleNet was between 0.75 and 0.9. Zhao et al. [28] pro-

posed an efficient FCNN for 3D Segmentation of Brain Tumor. The proposed integration

of three 2D FCNNs and each 2D FCNNs were trained to segment brain images from

axial, coronal, and sagittal view, respectively. The evaluation was performed on BRATS

2017. The maximum dice score of the proposed method was between 0.82 to 0.92, and

PPV was between 0.81 to 0.92. Similarly, sensitivity was between 0.82 to 0.88 for all the

modes of MRI. Colmeiro et al. [29] proposed a simple and fast 3D UNET method for

automatic Segmentation of Brain Tumor. Specifically, two steps 3D DCN was proposed.

In first step, whole tumor was segmented from low resolution volume then the second

step was to make fine tissue segmentation. The proposed method was evaluated on

BRATS 2017 datasets and the maximum dice score, sensitivity, specificity and Haus-

dorff distance mean on unseen datasets was 0.86, 0.997 and 14.0 for whole, enhanced

and core region respectively. Similarly, a UNET consist of 23-layer deep FCNN for fully

automated voxel-based segmentation of gliomas was proposed by Alex et al. [30]. The

proposed method was trained and validated on BRATS 2017 datasets and the dice score

on whole tumor, core tumor and active tumor were 0.79, 0.65 and 0.63 respectively.

Similarly, Myronenko et al [35] proposed a 3D MRI brain tumor semantic segmentation

using encoder-decoder architecture. Specifically, a variational auto-encoder was used

to construct input image and decoder was used to impose constraints on its layer. The

proposed method was evaluated on BRATS 2018 and the maximum Dice scores value for

enhance, whole and core tumor were 0.82, 0.91 and 0.86 respectively. Similarly, Haus-

dorff distances for enhance, whole and core tumor were 8.0, 10.0 and 5.9 respectively. Li

et al. [32] proposed an ensemble of CNN and fully connected conditional random field

(CRF) in two steps. In the first step, 3D MRI is input to CNN for accurate recognition

of glioma. Then the output is applied to CRF for boundaries description. The private
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datasets used in this experimentation were obtained from Shanghai Huashan Hospital.

The datasets are composed of 59 training sets and 101 test sets. The maximum Dice

similarity coefficient (DSC), positive predictive value (PPV), and sensitivity on training

sets were 0.85, 0.83, and 0.88, respectively. Similarly, the maximum Dice similarity

coefficient (DSC)], positive predictive value (PPV), and sensitivity on test sets were

0.85, 0.85, and 0.86, respectively. Soltaninejad et al. [31] proposed a learning-based

method for automatic Segmentation of Brain Tumor into multimodal images. Specifi-

cally, FCNN was used to extract features from MRI. The Random Forest (RF) was used

to classify MRIs into typical and different kinds of tissues. The proposed method was

validated on BRATS 2017. The mean dice score on the whole tumor, core tumor, and

active tumor were 0.86, 0.78, and 0.66, respectively, unseen data. Similarly, integration

of FCNN and CRF for Segmentation of Brain Tumor was proposed by Zhao et al. [33].

The proposed method consists of three steps. In the first step, MRI is input to FCNN

for training. The output of FCNN was used to train CRF, and in the last step, image

slices obtained from CRF were used to fine-tune the whole network. The performance of

the proposed method was evaluated on BRATS 2013, and the maximum Dice similarity

coefficient (DSC)], positive predictive value (PPV), and sensitivity were achieved on

the whole region, i.e., 0.87, 0.92, and 0.83, respectively. Chang et al. [34] proposed an

efficient and robust fully convolutional residual neural network (FCR-NN) was proposed

for tumor segmentation. FCR-NN gain optimization from residual identity and combine

with CNN. The proposed method was validated on BRATS 2016. The Dice scores value

for complete, core, and enhancing tumor were 0.89, 0.83, and 0.78, respectively. The

Hausdorff distances for complete, core, and enhancing tumors were 8.0, 10.0, and 5.9,

respectively. Similarly, McKinley et al. [36] proposed an ensemble of multiple classifiers

based on DeepSCAN. The architecture consists of densely connected blocks of dilated

convolutions following the UNET structure. The validation of the proposed method was

performed on BRATS 2018. The mean Dice scores value for enhancing ,whole and core

tumor were 0.73, 0.88 and 0.79. Similarly, Hausdorff distances for enhancing, whole,

and core tumors were 3.4, 5.51, and 5.53, respectively. Isensee et al. [37] proposed

the context pathway of UNET combines high-level features and is subsequently local-

ized with the localization pathway of UNET. The validation was performed on BRATS

2017. The dice score on validation datasets was 0.896, 0.797 and 0.732 for the WT, TC

and ET, respectively. Similarly, dice score on test sets was 0.858, 0.775, and 0.647 for

19



whole, core, and enhancing tumors. Chen et al. [38] proposed an efficient 3D CNN for

real-time segmentation. Similar to UNET, a multi-scale representation was achieved in

the encoding stage by applying Dilated Multi-Fiber (DMF) for the encoding unit. Then

in the decoding stage, the high-resolution feature was combined with upsampling for

final segmentation. The effectiveness of the proposed method was evaluated on BRATS

2018 with dice scores of 0.812, 0.90, and 0.84, respectively, for the ET, WT and TC.

Similarly, Lachinov et al. [39] proposed the modification of UNET. Precisely, the pro-

posed network consists of three UNET building blocks. The output of one block is the

input to the next block, which takes down-sampled volume as input and produces the

segmented image. The dataset used in the experiments was BRATS 2018, with a mean

Dice score of 0.908, 0.784, and 0.844 was obtained on the validation dataset for the WT,

ET and TC, respectively. Li et al. [40] proposed a GAN-based approach for Segmen-

tation of Brain Tumor. The generator follows an adversarial process and discriminator

to generate synthetic images from the generator’s output. The proposed method was

evaluated on BRATS 2017 datasets. The dice score, PPV, and sensitivity of the whole

and core region were between 86 and 89. Similarly, dice score, PPV, and sensitivity

of enhancing area were between 77 and 78. Similarly, Rezaei et al. [41] proposed a

CGAN for Segmentation of Brain Tumor. A generator was an FCN encoder-decoder

that generates probability mapping from input to multi-model images. The discrimina-

tor was a binary classifier that maps the predicted mask from the segmented network.

The evaluation of the proposed method was performed on BRATS 2017 datasets, with

the maximum dice score on validation datasets was 0.8. Similarly, maximum sensitiv-

ity, specificity, and Hausdorff distance on validation datasets were 0.75, 0.99, and 12.04.

Again, a GAN-inspired Segan was proposed by Xue et al. [42] for Segmentation of Brain

Tumor. Specifically, the segmented network of Segan is a convolutional encoder-decoder

that maps probability labels to an input image. The discriminator network was used

to predict the label to segment network. The effectiveness of the proposed method was

validated on BRATS 2013 and BRATS 2015 with maximum Dice similarity coefficient,

precision, and sensitivity for BRATS 2013 on the whole region were 0.84, 0.87, and

0.83, respectively, and the leading Dice similarity coefficient, accuracy, and sensitivity

for BRATS 2015 on the entire area were 0.85, 0.92 and 0.8 respectively. Recently Cirillo

et al. [43] proposed a Vox2Vox, a voxel-to-voxel GAN-based framework for segmenta-

tion. The generator network of Vox2Vox is the enhancement of 3D UNET, while the
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discriminator is the 3D CNN for determining the quality of an image generated by the

generator. The proposed method was evaluated on BRATS 2020, with the mean Dice

scores value for enhancing, whole and core tumor on training datasets were 0.79, 0.91,

and 0.89, respectively. Similarly, Hausdorff distances for enhancing, whole and core

tumors were 30.04, 3.52, and 3.66, respectively. Khosravanian et al. [44] proposed a

Segmentation of Brain Tumor approach based on superpixel fuzzy clustering and the lat-

tice Boltzmann method. Specifically, a three-step segmentation process was presented.

Level set equations are also obtained using the gradient descent method. Finally, a level

set equation was achieved by using the lattice Boltzmann machine. The performance

of the proposed method was evaluated on BRATS 2017 datasets, and the average Dice

and Jaccard coefficient was 0.93 and 0.87, respectively. Khan et al. [45] proposed a

deep learning approach with MRI data analysis to classify the brain. Specifically, the

process comprises three phases. In the first phase, MRI preprocessing was performed.

K-mean clustering was applied for Segmentation of Brain Tumor, and finally, VGG19

was applied to perform tumor classification. The BRATS 2015 datasets were used in

the experimentation with a classification accuracy of more than 90%. Chen et al. [46]

proposed a variant of Deep Convolutional Neural Network (DCNN) called Deep Convo-

lutional Symmetric Neural Network which only adds symmetric masks in several layers

in DCNN for Segmentation of Brain Tumor. The validation of proposed method was

performed on BRATS 2015 with Dice Coefficient Score of 0.852. Zhou et al. [47] pro-

posed an ERV-Net for segmentation of tumor. In ERV-Net, a 3D ShuffleNetV2 was

utilized as encoder part, and Residual Block was taken as decoder part of the UNET.

Effective post-processing was applied to enhance the segmentation output. The valida-

tion of processing was performed on BRATS 2018 with a Dice score of 81.8%, 91.21%,

86.62%, for ET, WT, and CT, respectively. Pei et al. [48] proposed two methods for

segmentation. The first method combine stochastic multi-resolution texture features

with cell density component. The second method utilizes the joint label function (JLF)

to combine labels obtained from stochastic texture feature-based, Random Forest (RF),

and boosted Glioma Image Segmentation and Registration (GLISTRboost). The eval-

uation is performed on BRATS 2015 with an average dice score of 0.4 and 0.82 for both

methods. Similarly, Naser et al. [49] proposed a pre-trained VGG16 with UNET for

Segmentation of Brain Tumor. The datasets used in the experimentation were BRATS

2013 and BRATS 2015. The mean dice similarity coefficient and tumor detection accu-
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racy achieved by the segmentation are 0.84 and 0.92. Zeineldin et al. [50] proposed a

deep learning model called as DeepSeg for segmentation. Specifically, DeepSeg is modi-

fied from UNET with Residual neural Network (ResNet), Dense convolutional network,

and NASNet as an encoder part of UNET. The efficacy of the proposed method was

performed on BRATS 2019 with dice and Hausdorff score of 0.81, 0.84, and 9.8 and 19.7,

respectively. Zeineldin et al. [51] applies different pretrained deep learning architecture

for fully automatic segmentation. Similar to conventional U-NET, an encoder is a CNN

responsible for feature extraction followed by respective decoder part to achieve the se-

mantic probability map. Specifically, different CNN model such as DenseNet, ResNet

and NASNet was utilized as encoder. The evaluation of proposed method was performed

on BRATS’19 datasets and achieved a dice coefficient score (DSC) of 0.839, 0.837, 0.839,

and 0.835 on Xception, VGGNet, DenseNet, and MobileNet encoder respectively. Pei

et al. [52] proposed a context aware deep neural network (CANet) framework for brain

tumor segmentation. In addition to encoder and decoder part of U-NET, it has con-

text encoding module which computes scaling factors of all classes. These scaling factor

learns the global representation of all tumor classes. The validation of proposed method

was performed on BRATS’19 and BRATS’20 dataset and evaluation metrices used in

the experimentation was DSC. The DSC on test set were 0.821, 0.895, and 0.835 for

ET, WT and TC respectively. Ghosh et al. [53] proposed a pretrained deep learn-

ing architecture for brain tumor segmentation. The proposed architecture is similar

to standard UNET except the encoder part is pretrained VGG16 which consist of 13

convolutional layers, 5 pooling layers and 3 fully connected layers therefore decoder also

have 13 convolutional layers, 5 up sampling layers and 3 fully connected layers. The val-

idation of proposed method was performed on The Cancer Imaging Archive (TCIA) and

evaluation was performed on different metrices such as accuracy, DSC, and intersection

over Union (IoU). The accuracy, DSC, and intersection over Union (IoU) of proposed

method is 0.998, 0.93 and 0.83 respectively. Alqazzaz et al. [54] trained a variant of

Segnet for brain tumor segmentation. Specifically, four different SegNet were trained on

T1, Flair, T1ce and T2 weighted images. Then four SegNet combine each other and fea-

ture extraction is performed and finally Decision Tree was applied on extracted features

to generate the predicted segmentation mask of tumor region. The datasets used in

the experimentation was BRATS’17 and evaluation metrices were precision, recall and

F-measure and achieved the F-measure of 0.85, 0.81 and 0.79 on whole, enhancing and
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core tumor respectively. Kaewrak et al. [55] proposed an encoder-decoder deep neural

network for multi class brain tumor segmentation. The proposed architecture is called

as TwoPath U-NET because it learns both local and global features by uses local and

global feature extraction path in down-sampling path of the deep neural network. The

validation of proposed method was performed on BRATS’19 and dice coefficient score

was the evaluation metrices used in the experimentation. The dice coefficient score of

proposed method was 0.76, 0.64 and 0.58 for whole tumor, enhancing tumor and core

tumor respectively. Silva et al. [94] presented a deep multi cascade fully connected

neural network for brain tumor segmentation. Specifically, the proposed architecture is

composed of cascaded of three deep layer aggregation neural network i.e., basic convo-

lutional block, convolutional block and aggregation block. The evaluation of proposed

method was performed on BRATS’20 datasets and DSC and Hausdorff distance were

the evaluation metrices used in the experimentation. The DSC was 0.88, 0.82 and 0.79

for WT, TC and ET respectiveLY. Murugesan et al. [95] presented a multidimensional

and multiresolution ensemble neural network for brain tumor segmentation and trained

traditional machine learning model for survival prediction. Specifically, an ensemble

of pretrained neural networks such as DenseNET-169, SERESNEXT-101 and SENet-

154 were utilized to segment WT, TC and ET respectively. Then the segmentation

map was produced by combining segmentation of ensemble of pretrained deep neural

networks. The datasets used in the experimentation was BRATS’19 and achieve dice

coefficient score of 0.89, 0.78 and 0.779 for WT, TC and ET respectively and survival

prediction accuracy was 34Qamar et al. [96] trained a 3D UNET to classify the tumor

into whole tumor, enhancing tumor and core tumor classes. Specifically, the proposed

architecture extracts the multi-stake information by combining information of 3D con-

volutional neural network in the residual inception block and by utilizing hyperdense

inception 3D UNET. The validation of proposed method was performed on BRATS 2020

datasets and achieve the dice coefficient score of 0.79, 0.87 and 0.83 for ET, WT and

TC respectively. Zhuge et al. [97] presented a holistically nested neural network for the

segmentation of brain tumor. The multiscale and multilevel hierarchical features of the

brain MRI was learned by the holistically nested neural network which is the extension

of CNN to generate the prediction map of test images of brain MRI. The evaluation of

proposed method was performed on BRATS’13 datasets and evaluation metrices used

in the experimentation were DSC and sensitivity. The achieve results shows that the
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presented method outperformed the previous method with DSC and sensitivity of 0.83

and 0.85 respectively. Cui et al. [98] proposed a cascaded convolutional neural network

for brain tumor segmentation. The proposed architecture is composed of two subnet-

works. First network is called as tumor localization network (TCN) and it is used to

detect the tumorous region from MRI scan. The second network was called as intratu-

mor classification network (ITCN) which was used to label the defined tumorous region

into sub regions. The proposed architecture was validated on BRATS’15 datasets and

DSC, sensitivity and Positive Predicted Value (PPV) are the evaluation metrices used

in the experimentation and achieve DSC of 0.89, 077 and 0.80 for WT, TC and ET

respectively. Kamnitsas et al. [14] proposed an Ensemble of Multiple Model and Archi-

tecture (EMMA) for efficient brain tumor segmentation for determining the influence of

meta-parameters on individual model while reducing the risk of overfitting. Specifically,

the proposed architecture is the ensemble of two 3D multi-scale CNN called DeepMedic,

Fully Connected Network (FCN) and UNET. The performance of proposed architecture

was validated on BRATS’17 which consist of 215 High Grade Glioma (HGG) images 75

Low Grade Glioma (LGG) images. The DSC of 72.9, 88.6 and 78.5 were obtained for

ET, TC and WT respectively

3.2 SURVIVAL PREDICTION

Agravat et al. [56] apply Random Forest Regression (RFR) with five-fold cross-validation

for the tumor’s overall survival prediction. The performance of RFR has been evaluated

on BRATS 2020 datasets which consist of Age, volume, and shape features. The RFR

achieve an accuracy of 56.8% and 51.7% on the training and validation set, respectively.

Similarly, Anand et al. [57] extracted 1022 features from BRATS 2020 datasets. Only

32 most important components are selected, and finally, RFR was applied to selected

features. The proposed method achieved an accuracy of 44.8% and 44.52% on validation

and test set. Kao et al. [58] proposed a three-step process for the survival prediction

of a patient. In the first step, an ensemble of lesion occurrence probabilities in struc-

tural regions with MR images and a patch-based neural network was proposed for the

Segmentation of Brain Tumor. Then, feature normalization and feature selection were

performed. Finally, the SVM was applied to selected features for overall survival predic-

tion. The BRATS 2018 datasets were utilized in the experimentation and achieved an
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Table 3.1: Summary of BRATS on 2013 datasets

Ref.# Proposed Method Goal Results

[24] Local and global pathway consist

of 7x7 and 13x13 respective field

for Segmentation of Brain Tumor.

Similarly, three different variants of

cascaded architectures based on the

mapping of output of first layer to

the input of different hidden layers

of architectures were proposed

An efficient,

flexible and high

capacity DNNs

for Segmentation

of Brain Tumor

The dice score of

two pathway ar-

chitecture is be-

tween 70 and 80

percent. Simi-

larly, dice score

of cascaded based

methods was be-

tween 70 and 90%

[40] Integration of FCNN and CRF for

Segmentation of Brain Tumor was

proposed. In first step, MRI is input

to FCNN for training then output of

FCNN was used to train CRF and

in last step image slices obtained

from CRF were used to fine tune the

whole network

Novel and accu-

rate automatic

method for Seg-

mentation of

Brain Tumor

The maximum

DSC, positive

predictive value

(PPV), and

sensitivity were

achieved on com-

plete region i.e.,

0.87, 0.92 and

0.83 respectively

[33] Two steps 3D DCN was proposed

for Segmentation of Brain Tumor.

In first step, whole tumor was seg-

mented from low resolution volume

then the second step was to make

fine tissue segmentation

A simple and

fast 3D UNET

method for

automatic Seg-

mentation of

Brain Tumor

The mean dice

score on un-

seen datasets

was 0.86 whole,

whole, enhanced

and core region

respectively
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Table 3.2: Summary of BRATS on 2017 datasets

Ref.# Proposed Method Goal Results

[27] 2CNet, 3CNet, EnsembleNet meth-

ods were proposed based on CNN.

These models exploit local and

global features of the patches using

two pathways

A fully auto-

mated end-to-end

incremental CNN

models for MRI

Segmentation of

Brain Tumor

The dice score

and sensitivity of

2CNET, 3CNET

and EnsembleNet

was between 0.8

and 0.9

[28] Integration of three 2D FCNNs and

each 2D FCNNs were trained to seg-

ment brain images from axial, coro-

nal and sagittal view respectively

Proposed efficient

FCNN for 3D

Segmentation of

Brain Tumor

The maximum

dice score of

proposed method

was between 0.82

to 0.92 and PPV

was between 0.81

to 0.92

[47] GAN based approach for Segmenta-

tion of Brain Tumor where genera-

tor follows adversarial approach and

discriminator was used to generate

synthetic image from the output of

generator

An efficient CNN

for Segmentation

of Brain Tumor to

increase the spa-

tial contiguity

The dice score,

PPV and sensitiv-

ity of complete,

Core region and

enhancing region

was between 0.79

and 0.88

[48] CGAN for Segmentation of Brain

Tumor where generator was FCN

encoder-decoder that generates

probability mapping from input to

multi model images and discrimina-

tor was binary classifier that maps

predicted mask from segmented

network

An efficient, auto-

matic end to end

CNN for seman-

tic Segmentation

of Brain Tumor

The maximum

dice score and

Hausdorff dis-

tance on valida-

tion datasets was

0.8. and 0.75

respectively
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Table 3.3: Summary of BRATS on 2018 datasets

Ref.# Proposed Method Goal Results

[35] 3D MRI brain tumor semantic

segmentation using encoder-decoder

architecture. A variational auto-

encoder was used to construct input

image and decoder was used to im-

pose constraints on its layer

Sematic segmen-

tation network for

brain tumor de-

tection

The maximum

Dice scores value

for enhance,

whole and core

tumor were 0.82,

0.91 and 0.86

respectively

[36] Ensemble of multiple classifiers

based on DeepSCAN were proposed

for Segmentation of Brain Tumor.

The architecture consists of densely

connected blocks of dilated convolu-

tions following UNET structure

Multiple classi-

fiers for Segmen-

tation of Brain

Tumor

The mean Dice

scores value for

enhance, whole

and core tu-

mor were 0.73,

0.88 and 0.79

respectively

[38] Similar to UNET, in encoding stage

a multi scale representation was

achieved by applying Dilated Multi-

Fiber (DMF) for encoding unit then

in decoding stage, high resolution

feature was combined with up sam-

pling for final segmentation

The effective-

ness of proposed

method was eval-

uated on BRATS

2018

The dice scores of

0.812, 0.90 and

0.84 respectively

for the enhancing

tumor, the whole

tumor and the tu-

mor core

[39] The proposed network consists of

three UNET building blocks. The

output of one block is the input to

next block which takes downsam-

pled volume as input and produce

segmented image

Modification

of UNET for

Segmentation of

Brain Tumor

The mean Dice

score of 0.908,

0.784 and 0.844

was obtained

on validation

dataset for the

WT, ET and CT

respectively
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Table 3.4: Summary of BRATS on different datasets

Ref.# Proposed Method Goal Results

[40] Firstly, training FCNN using image

patches then training CRF-RNN us-

ing image slices and finally, Fine

tune FCNN and CRF-RNN using

image slices

Accurate and

faster slice by

slice brain image

segmentation for

tumor detection

The dice score,

PPV and sensitiv-

ity were between

0.75 and 0.90 for

each mode of the

MRI

[32] Ensemble of CNN and fully con-

nected conditional random field

(CRF). IN first step, 3D MRI is in-

put to CNN for accurate recognition

of glioma then output is applied to

CRF for boundaries description

Multiple classi-

fiers for Segmen-

tation of Brain

Tumor

The maximum

DSC, positive

predictive value

(PPV), and sen-

sitivity on test

sets were 0.85,

0.85 and 0.86

respectively

[42] The segmentor network of SegAN is

convolutional encode-decoder that

maps probability labels to input im-

age. The discriminator network was

used to predicted label to segmentor

network

An encoder-

decoder based

method for Seg-

mentation of

Brain Tumor

The maximum

Dice similarity co-

efficient, precision

and sensitivity

on complete re-

gion were 0.85,

0.92 and 0.8

respectively
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average accuracy of 63%. Puybareau et al. [59] proposed a pre-trained VGG-16 network

for Segmentation of Brain Tumor. Then ten most relevant features were extracted from

the datasets. Finally, the Random Forest algorithm was applied for overall survival

prediction. The dataset used in the experimentation was BRATS 2018.

Shboul et al. [60] proposed a state-of-the-art method for overall survival prediction.

Specifically, an ensemble of multiclass Random Forest (RF) and CNN-based tumor

segmentation was proposed for Segmentation of Brain Tumor. Then, a total of 1207

features were extracted from datasets. Finally, RF was applied to predict the patient’s

survival. The overall accuracy of 63% was achieved on BRATS 2017. Feng et al. [61]

proposed an ensemble deep learning model for Segmentation of Brain Tumor. Then

six most important features were extracted from segmentation results. Finally, mul-

tivariate linear regression was trained to predict the overall survival prediction. The

dataset used in the experimentation was BRATS 2018. The maximum accuracy of the

proposed method was 61%. Zhao et al. [62] proposed a deep learning model called seg-

mentation then Prediction (STP) for Segmentation of Brain Tumor and overall survival

prediction. Specifically, a 3D UNET and a 3D ResNET-50 were proposed for local and

global feature extraction. The validation of the proposed method was performed on

BRATS 2020 datasets and achieved an accuracy of 65.5% for survival prediction. Ali

et al. [63] proposed an ensemble model of 2D and 3D Convolutional Neural Network

(CNN) for Segmentation of Brain Tumor. Then multiple radiomic and image-based fea-

tures were extracted from MRI images and segmented regions. Finally, a classification

algorithm was applied to predict the overall survival of the patient. The performance of

the proposed method was validated on BRATS 2020 and achieved an accuracy of 57%

for survival prediction.

29



Table 3.5: Summary of Survival Prediction on different datasets

Ref.# Proposed Method Datasets Results

[57] Extract 1022 features from BRATS

2020 datasets then only 32 most im-

portant features are selected and fi-

nally RFR was applied on selected

features

The validation of

proposed method

is performed on

BRATS 2020

The proposed

method achieved

an accuracy

of 44.8% and

44.52% on valida-

tion and test set

respectively

[58] A pretrained VGG-16 network

for Segmentation of Brain Tumor.

Then 10 most relevant features

were extracted from datasets and

finally Random Forest algorithm

was applied for overall survival

prediction

The BRATS18

datasets was used

in the experimen-

tation

The prediction

accuracy of pro-

posed method

was 58%

[59] Six most important features were

extracted from segmentation results

and finally multivariate linear re-

gression was trained to predict the

overall survival prediction

The BRATS18

datasets was used

in the experimen-

tation

The classifica-

tion accuracy of

proposed method

was 61%

[60] A 3D UNET and a 3D ResNET-50

was proposed for local and global

feature extraction

The perfor-

mance of pro-

posed method

was validated

on BRATS20

datasets

The survival

prediction accu-

racy of proposed

method was

65.7%
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Chapter 4

METHODOLOGY

4.1 INTRODUCTION TO MACHINE LEARNING

Machine Learning is defined as "learn from data. [64]" Machine learning uses many

algorithms to learn the underlying pattern in the data and make the final decision. So,

the data is very much essential to understand the patterns in the data. Data is defined

as raw facts and figures, and machine learning algorithms utilize these facts and figures

to generate the best information. Generally, datasets are the collection of rows and

columns. Rows represent the examples in the datasets, also known as instances, whereas

column represents the properties of the instances, also known as attributes or features.

Attributes are either discrete and continuous. The discrete attribute has a finite set

of values, whereas continuous attributes have infinite and absolute values. There are

two types of data based on the availability of unique attributes. Data with a unique

attribute is labeled, whereas a unique attribute or tag is unlabeled. The field of machine

learning that deals with labeled data is known as supervised learning [65]. Furthermore,

if the value of the unique attributes is numerical, e.g., predicting the height, the task

called is regression, and if the value of a unique attribute is categorical, e.g., categorizing

the grade of the students, the task is called classification task. Conversely, the field of

machine learning dealing with unlabeled data is known as unsupervised learning. The

field of machine learning that deals with unlabeled datasets are known as unsupervised

learning. Generally, unsupervised learning aims to extract hidden functional patterns in

the datasets. In Supervised learning, the labeled datasets are provided to the machine

learning algorithm, and the goal is to generate a model that can learn the relationship
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between input and output features. The model is provided with training data to generate

accurate prediction by using an optimization algorithm, then generalizes the learning

experience of the model to check the accuracy of output on new unseen data, also known

as test data. The data is divided in three different sets, training, test and the validation

set. The model is tuning on train set performance is improved by using the validation

set, and test set are the unseen data utilized to check the model’s performance. In

unsupervised learning [66], the goal is to find the data’s relationship and understand

hidden patterns in the data. The task unsupervised of learning is divided into two

subfields, i.e., Association learning and clustering. In association learning, the goal is to

find the relationship between features of the training set. Clustering is another subfield

of machine learning grouping of an item with similar properties are created. Items with

similar properties are grouped in similar whereas another group is created for items with

different properties. Figure 4.1. shows the general framework of machine learning.

Figure 4.1: Machine Learning Framework

4.2 GENERALIZATION OF ML MODELS

Generalization in machine learning refers to how well the concepts learned from pre-

viously seen data by the machine learning model are applied to new unseen data [67].

The main goal of machine learning is to generalize well on any data to make the perfect

prediction on any future problem. When we talked about generalization, two concepts

are most familiar, namely, overfitting and underfitting. Underfitting and overfitting are
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the most common problems everyone face for their machine learning model’s poor per-

formance. In overfitting, the machine learning model performs too well on training data.

It is also defined as a complex model for simple data. Overfitting is solved by reduc-

ing the size of the data and using a straightforward model for uncomplicated data and

a composite model for complex data. Underfitting occurs when the machine learning

model could not understand the underlying pattern of the data. In underfitting, the ma-

chine learning model performs too poorly on training data. It is also defined as a simple

model for complex data. The problem of underfitting is solved by increasing the size of

the data. Figure 4.2. Illustrate the difference between the overfitting, underfitting, and

best-fit machine learning model.

Figure 4.2: Comparison of Overfitting and Underfitting [68]

Machine learning algorithms can be divided into two general algorithmic categories i.e.

linear and non-linear algorithms [69].

4.3 LINEAR ALGORITHMS

The linear algorithm assumes linear function as a prediction function for separating a

set of features. A linear function consists of a finite number of features x1, x2,.,.,., xi

then the linear function is represented as w0+ni=1wi*xi where w1, w2, wi are respective

weights. If a prediction function is linear, then it can be used to perform prediction and

regression tasks. In Figure 4.3(a), it is easy to draw a simple line to differentiate among
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the data classes. So, using a linear classifier, it can be easily solved, whereas in Figure

4.3(b),

Figure 4.3: Data separation by linear Data non-linear separation model

it cannot be easy to draw a line to separate the classes so that a linear classifier will not

work. Some of the prominent linear machine learning algorithms are mentioned below;

Linear regression is the most prominent and straightforward linear model that take for

granted a linear relationship among a variable (y) which depends upon an independent

variable (x) [70]. In a situation where there is a single independent variable, x1, that

algorithm is known as simple linear regression. In contrast, if there are more indepen-

dent variables such as (x1, x2,.,.,., xi), then the algorithm is known as multiple linear

regression. Equation 1. represent the simple linear regression. Equation 2. Represent

the multiple linear regression y = w0 + w1 × x y = w0 + w1 × x1 + w2 × x2 Logistic

regression is another famous and standard linear machine learning algorithm [71]. As

the name suggests, the logistic function is the core of the logistic regression algorithm.

The logistic function is represented in equation 3.

Where e is the natural logarithm and t is a linear function.
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4.4 NON-LINEAR ALGORITHMS

Linear models are unable to be performed on non-linear separated data. For that, non-

linear come into play. Non-linear algorithms assume a non-linear function prediction

function from making the decision. There are a number of non-linear machine learning

algorithms available for solving classification problems. We will select the most are going

to use the most of the mark machine learning algorithms to solve the problems regarding

machine learning and classification, described below:

4.4.1 K-Nearest Neighbor Classifier

KNN is the noteworthy and explicit algorithm used in machine learning, usually em-

ployed for solving supervised learning problems. The distance among the test point with

every point in the preparation data is calculated in this algorithm, afterwards at that

point tracks down the k closest neighbor for that preparation point [72]. After feeding

the test data into the model, the algorithm calculates the distance from every other

point in the training data. Then it finds the nearest K members for that point. The K

also helps us to classify the data into a particular group. The value of K gives us the

number of nearest neighbors to consider while classifying the new data point.Figure 4.4

is the representation of KKN.

Figure 4.4: KNN representation
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We can find the distance between two points by using the Euclidean distance formula.

Advantages

• It is simple to implement

• Makes no prior assumption of the data

Disadvantages

• As the model finds the distance between every point, its prediction time is high.

4.4.2 Naive Bayes Classifier

Naive Bayes is another generally noticeable, straightforward, and broadly utilized ML

algorithm for settling classification problem. Conditional probability is involved in this

algorithm. likelihood to order the test information into predefined classes. Conditional

likelihood is the likelihood that defines if something will happen relies upon conditions.

let us consider two events, M and N, and then the conditional probability is defined as

P (M and N) = P(M)*P (N|M) Naive Bayes classifier locates each element’s likelihood

and then selects the component with the highest likelihood. The naive Bayes classifier is

based on the Bayes rule. Bayes’s rule helps us know how often A happens given that N

already happens P(M|N) when we know that how often N happens given that A already

happens P(N|M). Naïve Bayes Classifier finds the probability of every feature, and then

it selects the outcomes with the highest probability.

Advantages

• Also, work on the small amount of data

• Easy and quick to predict the class of test data

Disadvantages

• Not suitable for large data sets

• Not work if features are correlated
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4.4.3 Decision Tree Classifier

Decision tree is a well-known algorithm, used for the supervised learning problems such

as regression and classification. This algorithm uses the mechanism of classification for

prediction, assumes that every anticipation belongs to the most repeatedly occur ed class

of training perceptions, in the zone where it belongs to [73]. The most often occurred

class of training observations is taken as a reference and predict that every observation

is associated with it in the zone where it belongs. The basic representation of decision

tree is shown in Figure 4.5.

Figure 4.5: Representation of simple Decision Tree

Advantages

• Easy to understood and interpret

• Also, work on simple data

Disadvantages

• Likely to overfit

• It can be unstable for large datasets
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4.4.4 Random Forest

Random Forest is the modern variation of the decision tree developed to solve the

greedy problem of decision trees, and it is one of the most powerful and vital machine

learning algorithms [74]. It can also be used to perform both classification and regression

tasks by using ensembles of decision trees. Specifically, Random Forest creates multiple

decision trees and merges them to get better accuracy in prediction. In contrast to the

decision tree, which looks for the best split of input spaces, a Random Forest change this

procedure to search the random samples of the features. The number of features that

can be searched at each split point (m) can be specified as several algorithm parameters.

For the classification task, the split point is defined as; m = p, while for regression, the

split point is defined as; m = p3.

4.4.5 Deep Learning

Figure 4.6: Difference among AI, ML, and DL

When we talk about deep learning, the first thing that came to mind is the difference

or relationship between artificial intelligence, deep learning, and machine learning. So,

before going to the details, let us understand the difference between them as illustrated

in Figure 4.6. Artificial intelligence is "the science and engineering" of making intelligent

machines, defined by John McCarthy, . It is the intelligence exhibit by the machine.
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Arthur Samuel says: "When machines are given the ability to learn via explicit program-

ming, this is machine learning. Similarly, Tom Mitchell defined machine learning as "A

computer program is said to learn from experience E with respect to some task T and

some performance measure P, if its performance on T, as measured by P, improves with

experience E." Before defining deep learning, first, we need to understand neural net-

works. Neural Networks is the network of neurons or nodes connected and performed to

receive input, do some computation and produce output. So, Deep learning is a specific

sub-field of machine learning that emphasizes learning successive layers where meaning

increases concerning the representation of layers. Artificial intelligence, deep learning

and machine learning are related to each other. Its a hierarchy like machine learning

has a sub-domain which is deep learning and machine learning itself is a sub-domain of

Artificial intelligence which is the more general field of science and engineering.

Figure 4.7: Neural network with only one hidden layer

Deep learning is the study of neural networks [75]. Deep in deep learning refers to

the study of a successive or hidden layer of representations. The approach of machine

learning that deals with the study of only one or two hidden layers are called an external

network. Similarly, the approach of machine learning that deals with more than one or

two layers is referred to as the deep neural network.
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Artificial Neural Network The model, Artificial Neural Network (ANN) [76] stimulates

the human brain. It is the network of layers that are connected to perform computation.

The basic structure of ANN is made up of three central parts; known as input, hidden,

and output layer. The simple ANN takes in some training data for train itself in-order

to understand the pattern in that given data and use it to predict the output when some

new data-set is provided. The input of any kind is provided in the input layer. The

hidden layer is the core computational layer that performs all computation on the input.

Each value is provided as input to each neuron in Layer 1. Neurons follow the neurons

in previous layers in the successive layers via channels. Each channel is allocated some

number, called weight. The values in the input layer are multiplied by the consistent

weights, and their summation is provided as inputs to the neurons possessed by hidden

layer, while each of these neurons is added with a constant number, known as ’bias’. The

bias is then added to the input summation, then the obtained value is passed through a

threshold function, known as activation function. The result of this activation function

decides a binary decision for any neuron, to activate it or not . If a neuron is activated,

it will send the data to the neuron of the following layer. In this manner, the data is

transmitted across all the network, this process is the forward propagation. Then in

the output layer, the highest values neuron fires and generates the probabilistic output,

and this resultant value is called the predicted value. The predicted values are always

different from the input value, and this difference is called an error, and there is a need

to reduce the error. The given information is then moved back through the network,

called Back-propagation. The weights are adjusted based on the information received

from different cycles of forward and backward propagation until we receive an updated

value of weight that minimize the difference between actual and predicted value.

4.5 CONVOLUTIONAL NEURAL NETWORK

Yann LeCun initiated the Convolutional Neural Network (CNN). This is a feed-forward

ANN. Yann LeCun was a student of New York University in 1997. Inspired by the

human visual cortex, the neuron of CNN followed a similar connectivity pattern. The

visual cortex is the area of the brain cerebral cortex that is responsible for processing

visual information. Visual input is providing from the eyes and reaches the visual

cortex via the lateral geniculate nucleus in the thalamus. The state-of-the-art artificial
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Figure 4.8: Neural network with more than one hidden layer

neural network is employed in many image processing and machine vision tasks such

as image segmentation, image classification, and recognition. The standard CNN is

composed of input layers, hidden layers, and output layers. The hidden layers are

usually convolutional, pooling layers, and fully connected layers. The working of CNN

is simple by comparing the pixels of the images. The pixels are also called features of

the images. So, in short, CNN works by learning the features of the images, and CNN

learns these features by passing through different hidden layers, and hidden layers in

CNN are usually filters of different sizes.

4.5.1 Convolutional Layer

Figure 4.9: Example Convolutional Operation [77]

41



The convolutional layer is the main part of a convolutional neural network. It is the

important layer responsible for feature extracting such edges and corners from the image.

This layer is also responsible for identifying complex features such as shapes and digits.

Convolution is a mathematical operation that takes an input image as a matrix and

applies a filter or kernel that is also a matrix and generates the final image. Consider an

input image of size (h x w x d) where h, w, and d are the input image’s height, width,

and dimension, respectively. Similarly, a filter of size (fh, fw, and fd) where fh, fw, and

fd are the height, width, and dimension of the image of the filter. Then convolution

operation generates the output of volume (h – fh + 1) x (h – fw + 1) x1. The example

of convolution operation is shown in Figure 4.9.

4.5.2 Padding

The image size is shrinking after each convolutional layer which might result in the loss

of valuable information. The solution to this problem is adding some extra layers to the

border of the input image. There are two ways to pad an image. Adding zeros to the

image’s border so that the input and output image dimension is the same called ’same

padding.’ (n x n) * (f x f) = (n – f + 1) x (n – f + 1) On the other hand, ’valid padding’

suggests no padding at all. The input image is left with its original shape. The equation

is represented below, where ’p’ is the number of layers to be added. (n + 2p) x (n +

2p) * (f x f) = (n x n) image. The Figure 4.10. Shows the padding of 1 layer to the

input image

Figure 4.10: Zero paddings of 1 layer to an image of size 6x6 [78]
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4.5.3 Stride

Stride is an essential parameter of CNN. It determines the moment of filter over the

input image. Stride is usually set to be an integer value. For example, if the stride is

equal to 1, then the filter will move 1 step at a time, below Figure 4.11. Clearly illustrate

the concept of stride.

Figure 4.11: Working principle of stride [79]

4.5.4 Pooling

The pooling layer is also called the subsampling layer. Similar to the convolutional

layer, the purpose of the pooling layer is the extracting features and reducing the size of

the image. Two types of pooling techniques are often used: Max pooling and Average

pooling. In max pooling, the maximum value from the pooling region is chosen. In

Average pooling, the average of all values from the pooling region is taken.

Figure 4.12: Max Pooling Example [80]
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4.5.5 Fully Connected Layer

All the layers or techniques we discussed above are feature extracted techniques [81]. In

a fully connected layer, we perform the actual classification of the output by flattening

the image into a column vector. The flattened output is provided to the feed-forward

neural network then Backpropagation is applied to every iteration. After the training

series, the model can differentiate between dominating and low-level features and then

perform classification by applying the SoftMax activation function. An example of the

fully connected layer is shown in Figure 4.13.

Figure 4.13: Fully connected SoftMax layer

4.5.6 ReLU

ReLU is the acronym of Rectified Linear Unit. It is the most prominent non-linear

operation used in CNN. The output produced by the CNN till now is linear, so, the

activation function precisely, a ReLU is applied to transform the linear value into a non-

linear value. Out of other activation functions such as sigmoid or tanh, ReLU handles

the vanishing gradient problem efficiently. The equation of the ReLU activation function

is represented in equation (2).

f(x) = max (0, x)

4.5.7 Backpropagation

Backpropagation, short for ’Backward Propagation of error,’ is a flexible and straight-

forward supervised learning algorithm for fine-tuning neural network weights. As the

goal of all neural network is to reduce the difference between actual and predicted values

Backpropagation help us to do so. We can do so by adequately tuning weights, making
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the model reliable by increasing its generalization and reducing the error rate. The

working of Backpropagation follows a six-step process.

• Input is provided to the artificial neural network

• Randomly initialized weights model input for each neuron

• Calculate the output of each neuron by summing the multiplication of each pre-

vious neuron

• Calculate the difference between the actual and expected value, i.e., error

Error = Actual Output – Expected/Predicted Output

• Traverse back from the output to the hidden layer and adjust weights accordingly

so that error is decreased

• Repeat the training until the difference between the actual and predicted value is

minimized

Figure 4.14: Backpropagation workflow [82]

The grammatical representation of the backpropagation algorithm is shown in Figure

4.14.

4.6 CASE STUDY: ALEXNET

AlexNet was proposed by Alex Krizhevsky et al. [83] in 2012 and won the ImageNet

large-scale visual recognition challenge (ILSVRC). It was the first CNN that utilizes the
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power of GPU to increase performance. The AlexNet consists of eight layers, out of

which five layers are convolution layers followed by three fully connected layers. Except

for the output layer, the model uses ReLU as an activation function, and it was observed

that using ReLU as activation boosts the training process by six times. The model also

introduced padding to prevent the drastic reduction in the size of the feature map. The

architecture of AlexNet is illustrated in Table I.

AlexNet starts with an image of (224x224x3) and uses 96 filters with size (11x11x3).

A stride of 4 is applied and obtained resultant image of size (55x55x96). Then a max-

pooling was applied to extract the features further. It is noted that each ReLU is applied

in a convolutional layer. The second convolutional layer uses the image of size (27x27x96)

and uses 256 filters with size (5x5x3), and a stride of 4 is applied and obtained resultant

image of size (27x27x256). Then a max-pooling was applied to extract the features of

size (13x13x256). Similarly, three more convolutional layers, one max-pooling, and three

fully connected layers with different filter sizes were applied to extracted 4096 features

and 62.3 million parameters. To perform classification, the final layer AlexNet is the

1000-way SoftMax function.

Figure 4.15: Summary of ALexNet [84]

To summarize,

• AlexNet is an 8-layer neural network comprised of 5 convolution layers with max-

pooling, and 3 are fully connected layers.
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• ReLU is the activation function applied to each convolution layer SoftMax is the

activation function applied to the final layer

• The architecture also utilizes two Dropout layers

• A total of 62.3 million learning parameters are achieved in architecture

4.7 METHODOLOGY

4.7.1 Proposed Framework of Segmentation of Brain Tumor

Figure 4.16: A framework of Segmentation of Brain Tumor

The framework of Segmentation of Brain Tumor is shown in Fig 4.16. Similar to the

standard UNET [85], the proposed framework comprises of encoder and decoder part.

The encoder part is standard VGG19 [86] used to extract features from MR images;

meanwhile, the decoder part uses the output of encoder VGG19 to segment the image

by upsampling the feature maps. The figure also shows that different hidden layers are

represented by different colors. The convolutional layers are represented by blue color,

yellow are pooling layers, upsampling layers are represented by pink color and finally the

SoftMax layer is represented in red color. Input is provided at encoder part and after

passing through different hidden layer output segmented image is received at the end

of decoder part. Initially there are 114 million parameters of VGG19 that is reduced to

36.1 Million parameters by discarding Fully Connected layer layers. Output is passed

to SoftMax layer to classify pixel independently into ’K’ classes. Where ’K’ is number

of classes. In this K is equal to four because we have classes with (0,1,2,3) labels. 0 for
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non tumorous, 1 for CT, 2 for WT and 3 for ET.

• Encoder

Figure 4.17: A framework of Segmentation of Brain Tumor

The architecture of Encoder is represented in Figure 4.17. The encoder network

performs convolution with a filter to produce a set of feature maps. Then Recti-

fied Linear Unit (ReLU) is applied to transform the non-linear output into linear

output. Then the output is Batch normalized. Also, the Maxpooling layer with a

2 × 2 window and stride 2 is performed to reduce the dimension of the image. In

this case we discard FC layer to reduce the parameters learns from 114 Million to

36.1 Million parameters.

• Decoder

Figure 4.18: A framework of Segmentation of Brain Tumor

The architecture of decoder is represented in Figure 4.18. The input feature map is

up-sampled by the decoder network. The decoder which corresponds to the initial

encoder (front to the image which was input), generates a feature map which is

multi-channel. The next process is the representation of the high dimensional
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feature at the output of the last decoder, it is fed to a softMax classifier, which is

trainable and its output is a ’K’ channel image of probabilities, where ’K’ represents

the number of classes.

4.7.2 Datasets

For the evaluation of proposed frameworks, two types of datasets were used. Specifically,

for the segmentation task, the BRATS20 [26] was used, consisting of 371 image files,

and each file is composed of five subfiles, out of which four files are MRI modalities

of the individual patients one file is the target mask of the individual patient. T1, T2,

T2*, and Attenuated Inversion Recovery (FLAIR) weighted mages are the most common

modalities of MRI utilizes in this dataset. Each modality was acquired different clinical

protocol and multiple scanners from a number of institutions and each modality have

been segmented manually by one to four raters. All the modalities are available as

NIFTI file with the extension of (.nii.gz). NIFTI file is the most common file format for

neuroimaging.

Similarly, for survival prediction, BRATS20 survival info was used. The datasets are

composed of 371 entities of the individual patient, which are the pseudo identifier of the

imaging data. The survival info datasets include patients’ age and resurrection status

of the patients.

4.7.3 VGG19

VGG19 is the commonly used CNN composed of 19 layers. Out of 19 layers, 16 are

convolutional layers, five max-pool layers, the three completely connected layers, and

1 SoftMax layer. The architecture of VGG19 [86] is simple that follows the six steps

process.

• First, the image is provided as input to the architecture; usually, the shape (224,

224, 3) is provided as input.

• Then, the kernel of size (3, 3) was applied to discover the underlying patterns of

the image.

• Padding was used to preserve image resolution
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• Pooling was applied to reduce the dimension of the image

• The output of the layers is usually linear. Therefore, a fully connected layer was

applied to transform the linear output into the non-linear output

• Finally, the SoftMax layer is applied to predict the probability distribution of the

multiple classes

The training of VGG19 from scratch is a tedious and complex task; therefore, nowadays,

a pre-trained VGG19 is often used. A pre-trained VGG19 is usually trained on larger

datasets, i.e., ImageNet therefore, the learning of new and complex patterns becomes

efficient and straightforward.

Figure 4.19: VGG19 Architecture

4.7.4 UNET

Image segmentation refers to partitioning an image into distinct regions or categories,

with each region contains pixels with similar attributes, and each pixel in an image is

allocated to one of these categories. UNET is the state-of-the-art variant of convolu-

tional neural network widely used for medical image segmentation. UNET was initially

proposed by Olag Ronneberger et al. [85] in 2015. The simple UNET comprises two

paths: contracting path (encoder) and expansive path (decoder). The general CNN’s

encoder part consists of the input layer, convolutional layer, pooling layer, and fully

connected layer. It is used to extract features from the images, and each downsampling

doubles the number of features. The decoder part uses transposed convolution to per-

mit localization. It consists of upsampling of the feature map, which helves the number

of feature channels. The concatenation of corresponding feature maps of encoder and

decoder is also performed, and finally, a convolutional layer was applied to map the

channels to the corresponding classes.
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Figure 4.20: UNET Architecture

4.7.5 Feature Extraction

The overall survival info datasets consist of 371 entities having four columns i.e. age of

the patient, Pseudo identifier of image, survival days and Gross Total Resection (GTR).

The output of segmentation task serve as an input to survival prediction task because

segmented image contain useful feature like volume of enhancing tumor, whole tumor

and core tumor therefore in this case volume of edema, necrotic, and enhancing tumor

along with age of the patient are taken as feature and utilizes for the survival prediction

task. From survival days we assign the labels to the features by using the intuition if

Survival Days is less than 250 then the category ’Short’ is assign, else if Survival days

is greater than 250 and less than or equal to 450 then category Medium is assign and

everything else is assign in the Long category.

Table 4.1: Feature Extracted for overall Survival Prediction

S. No. Age ET WT TC

1. 57.000 0.015202 0.039171 0.019636

2. 83.649 0.039530 0.048636 0.025146

3. 60.019 0.000448 0.018200 0.071834
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The framework of the survival prediction task is shown in Figure 4.19. Each part of the

framework is discussed below.

Figure 4.21: A framework of Survival Prediction

4.7.6 Normalization

All four columns of the datasets contain values ranges from positive infinity to negative

infinity. In this case, it difficult for the learning algorithm to find the hidden pattern in

the datasets; therefore, in this paper, we use Minmax normalization to limit the values

between 0 and 1 [88]. It can easily be performed by using the MinMaxScaler() function

of Scikit Learn preprocessing in python. Minmax normalization preserves the linear

transformation of the attributes. The equation for Minmax normalization is represented

in equation (1). The equation shows that mini is the minimum value of the attribute

and maxi is the maximum value of the attribute and vi is the attribute value whose

normalization is performed, and vi is the final normalized value.
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Figure 4.22: Overview of Ensemble Voting Classifier

4.7.7 Ensemble Classifier

The Figure 4.20. represent the flow of overall patient survival prediction framework.

Ensemble learning is a machine learning technique that combines multiple machine

learning models to produce optimal prediction results. To further improve prediction

performance, an ensemble of random forest Naïve Bayes (NB) is performed by applying a

hard voting classifier that means we predict class labels by majority rule voting instead of

probability-based. Random forest is a prominent ensemble model that is the combination

of multiple decision trees. A decision tree is the most powerful and essential algorithm for

predictive modeling machine learning. The decision tree is known by its modern name

Classification and Regression Tree (CART) [89]. Therefore, it can be used to resolve the

problems of regression and classification. The decision tree can perform classification

by sorting down the training data from the top (root) node to the tree’s bottom (leaf)

node. Each instance is classified by starting from the tree’s root node, then testing

the instance specified by the node and moving down to the leaf node. This process is

repeated for all subtrees rooted at the new nodes. Meanwhile, NB is another supervised

machine learning algorithm use to classify data into predefined classes. It simply did

this by finding the probability that something will happen, given that something else has

already happened. Therefore, this task ensemble, voting classifier of random forest, and

NB were applied to classify the patient survival into short, medium, and long survival

classes. We also set the voting = ’hard’ which means we assigned the majority rule

voting for classification instead of probability based
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Chapter Summary

In this chapter, a broad overview of machine learning principles and generalization of

machine learning models are discussed. Then, the most prominent and highly useful

machine learning models are described in details. Furthermore, a complete background

and working of convolutional neural network is discussed and finally, the working of

proposed methodologies for segmentation of brain tumor and overall survival prediction

is given.
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Chapter 5

Experimental Evaluation

In this section, evaluation metrics and obtained results are described in detail.

5.1 EVALUATION METRICS

Generally, there two types of Segmentation of Brain Tumor used, i.e., manual segmen-

tation and automatic segmentation. Firstly, the manual segmentation is performed by

MRI experts that are tedious and complex tasks, but accurate, while the accurate and

straightforward software does automatic segmentation due to development in artificial

intelligence. It is also worth mentioning that the MRI experts first label the datasets

used for automatic segmentation. The evaluation metrics use for Segmentation of Brain

Tumor are DSC, accuracy, sensitivity, and precision. Meanwhile, the evaluation metric

for brain tumor survival prediction are the accuracy of the prediction. TP refers to

tuple to the positive tuple that is accurately labeled by the classifier [90]. Similarly, TN

refers to the negative tuple that is correctly labeled by the classifier. FN refers to tuple

to the positive tuple that is incorrectly labeled by the classifier. Similarly, FP refers to

the negative tuple that is incorrectly labeled by the classifier.

Dice coefficient Score (DSC) is the commonly used evaluation metric for image

segmentation and Segmentation of Brain Tumor. DSC is the measure of overlap-

ping area between two images [91]. For example, in Figure 5.1. There are two

circle images of the name image ’A’ and image ’B.’ Then the DSC of the figure

is illustrated in equation (1) that shows that DSC is equal to two times of over-

lap area into the overall area of picture element of both images. It can also be
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illustrated as the two times of TP divided by total TP, FP and FN represented in

equation (2). DSC = 2 |AB| / (|A|+|B|)

Figure 5.1: Dice Coefficient Example

DSC = 2TP

2TP + FN + FP
(5.1.1)

Sensitivity is the ratio of TP to TP and FN, as illustrated in equation (1).

Sensitivity = TP

TP + FN
(5.1.2)

Specificity Specificity is the ratio of TN to TN and FP illustrated in equation (4).

Specificity = TN

TN + FP
(5.1.3)

Precision is the ratio of TP to TP and FP illustrated in equation (5).

Precision = TP

TP + FP
(5.1.4)

Recall is the ratio TP to TP and FN illustrated in equation (8).

Accuracy = TP + TP

FN
(5.1.5)

56



Accuracy is the ratio of TP and TN to total positive (P) and negative (N) illus-

trated (9).

Accuracy = TP + TN

P + N
(5.1.6)

Intersection Over Union (IOU) is the another prominent used evaluation criteria in

image segmentation. It is defined as the ratio of the intersection region of images

to the union of two images. The equation (10) represents the equation of IOU.

IOU = TP

FP + TP + FN
(5.1.7)

5.2 DATASETS

For the evaluation of proposed frameworks, two types of datasets were used. Specifically,

for the segmentation task, the BRATS20 [87] was used, consisting of 371 image files,

and each file is composed of five subfiles, out of which four files are MRI modalities

of the individual patients one file is the target mask of the individual patient. T1,

T2, T2*, and Attenuated Inversion Recovery (FLAIR) weighted mages are the most

common modalities of MRI utilizes in this dataset. Similarly, for survival prediction,

BRATS20 survival info was used. The datasets are composed of 371 entities of an

individual patient, a pseudo identifier of the imaging data. The survival info datasets

include patient’s age and resurrection status of patients. The Figure 5.2. Represents

the MRI modalities with the ground mask.

Figure 5.2: MRI modalities and ground mask

5.3 QUANTITATIVE EVALUATION

In this section, a comparison of both proposed methods are performed, respectively. The

results demonstrate that the performance of VGG-UNET is better for ET and TC as
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compared to the previous method. Similarly, the performance of the proposed Ensemble

Voting Classifier is better than previous methods.

Table 5.1: Comparison of Segmentation of Brain Tumor Results

S. No. Methods ET WT TC

1. Ghaffari et al. [91] 0.78 0.90 0.82

2. Ballester et al. [92] 0.67 0.85 0.78

3. Colman et al. [93] 0.75 0.86 0.79

4. Proposed Method 0.81 0.88 0.86

5.4 QUALITATIVE EVALUATION

5.4.1 Results of VGG19 Encoder UNET

Figure 5.3: Comparison of Accuracy w.r.t number of epochs

The Figure 5.5. shows the accuracy curve that is the most important curve to understand

the progress of machine learning algorithms. The curve illustrate that initially the train

accuracy is 90% and decreases in first 2 epochs and begin to increase from second epoch

and with the number of 40 epoch train accuracy is approach to 99.7%. The test accuracy
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begins from 98% and with increases in the number of epoch test accuracy approaches

to 99%.

Figure 5.4: Dice coefficient loss w.r.t number of epochs

The Figure 5.6. represents another important curve that is the loss curve and is the curve

between Loss and number of epochs. The curve illustrate that train loss consistently

decreases with increasing in the number of epochs. Similarly, the train loss also decreases

with increases in the number of epochs but train loss decreasing is inconsistent.

Table 5.2. illustrate the segmentation results

Table 5.2: Results of Segmentation

S. No. Metrices Results

1. Sensitivity 0.997

2. Specificity 0.991

3. Precision 0.925

4. Accuracy 0.994

5. Dice Coefficient of ET 0.8189

5. Dice Coefficient of WT 0.8876

6. Dice Coefficient of TC 0.8648
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5.4.2 Results of Ensemble Model

Table 5.3: Results of Brain Survival Prediction

S. No. ML Algorithms Accuracy

1. KNN 54%

2. Decision Tree 46%

3. SVM 55%

4. Ensemble Classifier 62.73%

The evaluation metrics used for brain tumor survival prediction are accurate, and com-

parison of the achieved prediction results with prominent machine learning algorithms

are illustrated in Table 5.3.

Figure 5.5: Generated Results

Similarly, the comparison of proposed ensemble voting classifier for overall survival pre-

diction with other prominent techniques are illustrated in Table 5.4.

The qualitative results of the segmentation of brain tumor is shown in Figure 5.5. The
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Table 5.4: Comparison of Overall Survival Prediction Results

S. No. Method Accuracy

1. Agravat et al. [56] 56.8%

2. Ali et al. [63] 57%

3. Proposed Ensemble Voting Classifier 62.73%

first column of the image is the input image. The next column is the ground truth of

the corresponding input image. Then, the third column represents the segmentation of

all tumorous classes. The forth, fifth and sixth columns are individual segmentation of

core, whole and enhancing tumor respectively.

Chapter Summary

In this chapter, a qualitative and quantitative results are presented. Additionally,

an evaluation matrices used in the experimentation are also described along with the

datasets. Furthermore, the evaluationn of achieved results with the previous methods

are also presented.
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Chapter 6

CONCLUSION & FUTURE

WORK

6.1 CONCLUSION

To conclude a pretrained VGG19-UNET was trained for segmentation of Brain Tumor.

The evaluation is carryout on BRATS20 and evaluation metrics use in the segmentation

method are accuracy, sensitivity, specificity, precision and DSC. The obtained results

shows that proposed model produces more accurate and better outputs than previous

method for enhancing tumor and core tumor with dice coefficient score of 0.81 and

0.86 respectively. Furthermore, an ensemble model of random forest and Naïve Bayes

was applied for patient’s survival prediction and achieve prediction accuracy of 62.7%.

The proposed segmentation methods enable the efficient and effective diagnosis of brain

tumor whereas ensemble method enable the early survival prediction.

6.2 CONTRIBUTION

The contribution of proposed architectures is summarized as:

••••••• Fully automated system for Segmentation of Brain Tumor and patient survival

prediction

• Encoder decoder model for brain tumor segmentation and ensemble model for

survival prediction
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• An encoder part of the model is pretrained VGG19 followed by respective decoder

part

• An ensemble voting classifier of Random Forest and Naïve Bayes for patient sur-

vival prediction

• Review and distinguish of proposed methods with previous prominent methods

6.3 FUTURE WORK

In this research, we used BRATS’20 to perform Detection of Brain Tumor and survival

prediction. We achieved better DSC on segmentation of core and enhancing tumor

however we are unable to increase DSC of whole tumor segmentation. Therefore, our

future work will be focus on refining all tumor types. We can do so by using generative

models. Furthermore, our proposed architecture is general so someone can be used it

on different datasets for enhancing segmentation and prediction results.
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