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Abstract 

 

Studies have found out that tumors in brain are one of the fiercest diseases which can ultimately 

lead to death. Gliomas are the most commonly found primary tumors that are very hard to predict 

and can be found anywhere in the brain. It is prime objective to differentiate the different tumor 

tissues such as enhancing tissues, edema, from healthy ones. To do this task, two types of 

segmentation techniques come into existent i.e. manual and automatic. The automation methods 

of brain tumor segmentation have gained ground over manual segmentation algorithms and further 

its estimation is very closer to clinical results. In this paper we propose a comprehensive U-NET 

architecture with modification in their layers for 2D slices segmentation as a major contribution to 

BRATS 2015 challenge.. Then we enlisted different datasets that are available publicly i.e. BRATS 

and DICOM. Further, we present a robust framework inspired from U-NET model with addition 

and modification of layers and image pre-processing methodology such as contrast enhancement 

for visible input and output details. In this way our approach achieves highest dice score 0.92 on 

the publicly available BRATS 2015 dataset and with better time constraint i.e. training time 

decreases to 80-90 minute instead of previously 2 to 3 days. We put our approach to the test on the 

benchmark brats 2015 dataset, and it outperformed the competition in terms of performance and 

Dice Score. 
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Chapter 1: Introduction 

 

 Brief Description and Motivation 

In medical imaging, segmentation and quantities assessment of tumors has a vital role to play. It is 

crucial for monitoring and planning of treatment strategies of the disease. These assessments can 

provide valuable knowledge about the spatial distribution of the lesions and their different types. 

Gliomas, on the other hand, are extremely difficult to segment because they are easily defused by 

their environment. They contrast poorly with aberrant or irregular structures. These tumors can also 

be detected anywhere in the brain and come in a variety of sizes, shapes ranging from tiny to 

enormous. 

However, early detection of a Gliomas tumors is critical for better therapy and patient survival. 

However, due to the variability of tumors features among patients, automatic tumors segmentation 

has always been a difficult process. Some of the main explanations are low-intensity MRI pictures 

and irregular tumors forms. Now, with the improvements of machine learning due to technology, 

improvements have been shown in effective segmentation of these tumors. Advance convolutional 

neural network architectures have provided good classification results for various datasets. 

Gliomas is the most common type of primary brain tumors. Gliomas tumors account for 

approximately 29% brain tumors, according to estimates. Gliomas tumors develop in glial cells. In 

the brain, these cells helps neurons a lot.. In the United States, approximately 16,000 new cases of 

gliomas were diagnosed in 2018[4]. 

Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG) are two types of gliomas (HGG). LGG 

accounts for approximately 28% of all new gliomas, and these are the early stages of the disease 

(stage 1 and stage 2). Advanced gliomas are classified as High-Grade gliomas (stages 3 and 4) and 

have a 70 percent occurrence rate. Glioma patients have a one-year survival rate of 37.2 percent, a 

five-year rate of 5.1 percent, and a ten-year rate of only 2.6 percent from the day of diagnosis, 

making it the most lethal of all cancer types. 

It is also difficult to segment gliomas their surroundings quickly detonate them. They also contrast 

poorly with aberrant and irregular structures. Tumors of all sizes and shapes can be discovered 

anywhere in the brain. Early detection of a Glioma tumors is critical for better therapy. Before 

beginning treatment, a medical professional must determine which cells are healthy and which are 

malignant. 
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White matter, grey matter, and cerebrospinal fluid are the three types of healthy brain tissues 

(CSF).Tumorous brain regions consist of edema, necrotic tissues and active tumorous tissues. 

Normally, glioma tissues are diffused into healthy tissues in such a way that we hardly distinguish 

them from healthy tissues. The goal for the glioma brain tumor segmentation problem is to correctly 

segment the tumor infected tissues from the healthy and normal tissues. In case of a glioma brain 

tumor, accurate segmentation of regions is important because an estimation of the volumes of these 

sub-regions is crucial for planning and treatment follow up. Figure 1.1 Shows the tissue composition 

in human brain. 

 

Figure 1. 1 Example of Inner Brain Composition. 

Magnetic resonance imaging (MRI) is most accepted mechanism for brain tumor identification and 

recognition. Various MRI modalities make it more useful over other provided frameworks such as 

computed tomography (CT), positron emission tomography (PET) and magnetic resonance 

spectroscopy (MRS). Further, MRI image segmentation is pivotal in order to monitor the irregular 

shapes of tumors and it performs well in differentiating between healthy tissues and abnormal 

tissues. Moreover, gliomas ’complexity and subtle differences in MRI analysis create 

insurmountable challenges for radiologists’ experts. This is so, because they cannot easily diagnose 

it by visual inspection of MRI. Modalities. Automation approach of brain tumor segmentation is 

most widely adopted mechanism for brain tumor classification. While, using these segmentation 

techniques for brain tumor, first MRI 3D images are converted into 2D slices. Later on they are 

divided into various classes for the ease of use [11].Moving on, MRI modalities are combined to 

create multi model images. These images provide a detailed analysis of irregular formed tumors that 

are difficult to locate with a single modality. There are some modalities named as T1 (MRI), T1C 

(MRI with contrast improvement), T2 MRI, and T2-weighted MRI with fluid attenuated inversion 

recovery (T2) (T2-Flair) [9].  



13  

The human  brain is divided into three zones i.e. white matter (WM), grey matter (GM), and 

cerebrospinal fluid (CSF)  .In surrounding of white matter (WM), tumor with unbounded boundaries 

are created and make it difficult to segment these regions. The swelling around the brain is created 

due to extreme tumors effects with their sub categories i.e. necrotic center, active tumor region, and 

edema. However, a precisely segmented tumor region is also of paramount importance in medical 

identifying and cure planning.  

Recently a growing number in automation in brain segmentation approaches have been accepted 

widely inspired by deep neural networks. Presently, U-NET is one of the most influential deep 

neural network algorithms along with its encoding and decoding layers [5].  We also target the 

problem of automatic brain tumor segmentation on BRAT 2015 dataset. We particularly employed 

the UNET architecture for the propose task. In brats 2015, major challenges of brain tumors are 

irregular shape, size and localities; MRI Scans come with noise problem, and multiple modalities 

are needed to segment tumor sub regions. Therefore, we have employed a comprehensive U-NET 

architecture for segmentation. 

 

 Types of Brain Imaging Methods 

X-ray, Ultrasonography, Computed Tomography (CT), Positron Emission Tomography (PET), 

Infrared thermography (IRT), Magnetic Resonance Spectroscopy (MRS), and Magnetic Resonance 

Imaging (MRI) are some of the new imaging technologies that have evolved in the last two decades 

[6]. The use of MRI to diagnose cancer of many forms, including glioblastoma brain tumors tissues, 

is becoming more common these days. A magnetic field and radio waves are used in the MRI 

procedure to provide a thorough pathology of the body. 

MRI modalities are currently utilized to identify cancers in a variety of ways. A few of them are 

utilized to gain access to various parts of the brain. Each mode contributes to the provision of varied 

pathological information about tissues throughout the body.
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Figure 1.2 Scans of MRI T1 T1C T2 T2FLAIR and Ground Truth from left to right in BRATS 

2015 Dataset. 

 

 Brain Tumor Segmentation and its Types 

Glioma brain tumour segmentation can be done in three ways: manually, semi-automatically, and 

entirely automatically. Glioma tumour segmentation by hand is a tough and time-consuming task. 

The vast quantity of MRI pictures for a single patient must be evaluated by an expert. While in 

manual segmentation, pathologists use previous knowledge and experience to segment tumorous and 

healthy tissues. 

Semi-automatic method requires both human and computer help to make segments. Manual and 

semi-automatic methods are very time-consuming and also the risk of human errors prevail. 

On the other hand, Automatic-segmentation does not require human interaction. Computer 

algorithms draw the boundaries on the basis of knowledge which they have acquired during the 

learning process. This method does not take as much time as manual and semi-automatic methods 

take. The procedure is also devoid of human mistake. As a result, computer-assisted medical image 

analysis is a viable option.
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Figure 1.3 before and After Segmentation of Brain MRI images 

 

Researchers have recently presented a number of autonomous image processing algorithms to 

segregate brain tumors tissues from healthy brain tissues. Because deep learning approaches produce 

the greatest results on huge datasets, they are included. Traditional image processing methods are 

also beneficial, but only for a limited collection of datasets, and they require the training of certain 

features. The process of recognizing a glioma brain tumors is extremely tough since two pixels with 

different labels may have the same attributes. This necessitates the use of a probabilistic machine 

learning algorithm that labels incoming images according to their likelihood. Among the several 

classifications, each image pixel is assigned to the one with the highest likelihood.  

 

 Research Challenge and Contribution 

Because of the diversity in shape, size, and location of neoplasms, automatic glioma brain tumour 

segmentation is a difficult task. Furthermore, because these tumours lack obvious boundaries, 

segmenting them using typical edge-based approaches is difficult. The MRI pictures of glioma 

tumours derived from clinics and synthetic databases [9] are intrinsically complicated. Due to 

motion and field inhomogeneity, MRI systems emit noise during picture capture. These sounds 

could cause the intensity level of a picture to vary over time, resulting in poor segmentation 

performance. We used a variety of Convolutional Neural Network Architecture to solve the problem 

of glioma tumour segmentation. We played around with the U-NET architecture, which we 

somewhat tweaked. The U-NET architecture that results performs better at segmenting glioma 

tumours. 

Throughout the architecture, a dropout layer has been inserted after every second convolution. We 

also swapped out the loss function optimizer and used the one that produced the best results for our 

problem. 
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 Aims of the Thesis 

The main objectives of this study include: 

 An automatic glioma brain tumor segmentation framework is proposed having improved 

results. 

 The proposed model uses complex Convolutional Neural Network Architecture to extract 

deep local and global contextual information from the data in order to segment different 

glioma tumor sub regions. 

 Regularization, U-NET architecture, and Non-linear activations are used in the proposed 

model. 

 We also used a two-phase network training strategy to address the issue of class imbalance, 

which resulted in improved performance. 

 

 Circumscription 

Tissue images obtained from different sources may differ in appearance, something that will not be 

discussed in this study. In order to study dimensions of small histological images, magnification of 

the order of (40X) will be done and the size of the related image crops will be delimited. No research 

will be performed on the impact of contrast or color exploitation. Moreover, the results of CNN 

technique will not be compared with any earlier cancer grading findings since number of images 

used in different datasets are vary in prior research. 

 

 Structure of the Thesis 

This research study has five chapters. Chapter 1 explain the challenges in Glioma Brain tumor 

Segmentation, Imaging Modalities, Segmentation methods, and Research Objectives A literature 

survey of the area of Glioma Brain Tumor Segmentation is offered in Chapter 2. We provided a 

detailed description of our suggested framework in Chapter 3. We reviewed the experimental setup 

and a few obstacles we met in Glioma Tumor Segmentation in Chapter 4. Chapter 5 contains a 

summary of our projected work as well as a discussion of feat.
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Chapter 2: Related Background 

 Tumor 

Normally, the cells in a human body grow and divide in an order. Every cell in a body performs a 

certain job and when old cells are destroyed, new cells take their place and the cycle goes on. But 

when cells divide in an uncontrolled way and do not die, they form an unnecessary mass of tissue 

called tumor.  The tumor keeps on growing if more and more cells continue to accumulate in the 

mass. While some tumors are benign, others are malignant.  

 Brain Tumors Scans 

Based on the extent of human involvement, segmentation of brain MRI images approaches are 

divided into three categories (manual, semi-automated, and fully automatic). All of these methods 

for treating brain tumours are currently in use, with varying degrees of success. 

With a prior understanding of human brain architecture, radiologists use information gained from 

several multimodal scans of a single patient in manual segmentation [11].Radiologists achieve this 

by manually drawing the boundaries of a brain tumour and color-coding the various tumour 

locations. Because an expert must examine each slice of the patient's MRI, this is a time-consuming 

task. Furthermore, the expertise and attention of the expert matters a great deal in terms of 

performance. As a result, semi-automated and completely automatic procedures are increasingly 

employed in conjunction with manual approaches to achieve superior results. 

In semi-automatic approaches, the user initiates the process by entering some parameters, then waits 

for the results and responds to the software computation. Initialization, feedback response, and 

evaluation are all part of this process [12]. 

 This process may results in better performance but it also depends upon the expert and may vary 

for same experts on repetition. 

Based on a region expanding segmentation tool, Thomas [13] suggested a method for semi-

automated tumour segmentation. Using a smart brush tool, 320 segments of Flair and MPRage 

sequences were segmented (a region growing based semi-automated tool). The algorithm begins 

with a segmentation-aiding region-growing algorithm, followed by a 2-D segmentation that was 

manually conducted and then 3-D interpolated after conducting another perpendicular 2-D 

segmentation. Small alterations were also done manually or with the help of the region expanding 

tool. The proposed methodology performed well, but the existence of manual help in the 

methodology caused performance to vary for each individual. 
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The majority of research nowadays is conducted using a fully automated segmentation technique. It 

doesn't require any user participation and takes a fraction of the time. This is one of the most difficult 

segmentation tasks because to the irregular shape, variable size, and location of tumours. We 

classified fully automatic approaches into four categories: 

 

Neural Network methods, traditional image processing methods, clustering methods, and traditional 

machine learning methods are all examples of traditional machine learning methods. 

 Conventional Image Processing Approaches 

Most traditional image processing algorithms concentrate on the geometry of a picture. The value 

of pixels in an output image is determined by the surrounding pixels of the matching pixel in the 

input image. The region expansion method is the most extensively used morphological operation 

algorithm. It is used to extract relevant pixels from a snapshot in a similar region. In calculating the 

similarity criterion, the range of pixel intensity levels is the most essential consideration. However, 

the partial volume impact is a drawback of the region-based strategy. Because the voxel represents 

more than one tissue type, it appears on that pixel, which is actually the border of two tissue types, 

causing the pixel to blur. 

Sudharani et al. [14] proposed a morphological method for segmenting brain tumours. In this 

technique, the brightness modification strategy was utilized first, followed by the resampling of a 

photograph. They then utilized a histogram normalization approach to transform the grey 

photographs into vibrant images. The tumour area was then computed using geometrical procedures, 

and the region of interest was highlighted using a threshold methodology. Before applying erosion 

and dilation, the fast Fourier transform and lookup table conversion were used. The accuracy of their 

system was 89.2 percent. Ishmam et al. [15] suggested an approach in which a dynamic threshold 

was used to identify a region of interest, and then k-mean clustering was used to segregate tumour 

regions. Following that, a high-intensity region-growing approach was used. 12 as a tolerance value 

On the brats 2012 data set, the proposed technique has an efficiency of 0.85. The approach was also 

capable of accurately calculating the size of the tumours. 

The BRATS 2012 dataset features a small number of photos, as has been highlighted. It means that 

they are inefficient when it comes to deep learning algorithms, which require a larger dataset to be 

effective. As a result, traditional image processing-based methods perform well with smaller 

datasets. Traditional image processing has a substantial advantage over deep neural networks in this 

regard. 

 Primary Machine Learning Algorithm  

Medical image analysis and diagnosis can be automated using traditional machine learning 

algorithms. Random Forests and Support Vector Machine are two of the most commonly used 

technologies, and they have the potential to considerably reduce the workload of radiologists in the 

area of radiology. Random Forest is a versatile, user-friendly algorithm that gives excellent 

classification results in the vast majority of scenarios. They are the most widely used algorithms due 
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to their simplicity and adaptability in terms of classification and regression Random forest RF is a 

supervised learning approach for constructing random forests, which are a collection of decision 

trees that have been bagged trained. Nicholas et al. [16] proposed a supervised learning technique 

based on random forests-derived probabilities, in which they used multiple sets of features such as 

intensity, shape, and asymmetry to segment total brain and tumour regions. By creating a matrix of 

attributes with their labels, they employed a random forest training technique to predict the label. 

Each image sample passes through the ensemble's trees, where it is classified and labelled. Each 

vote was converted into voxel-wise probabilities estimates for each class using some method. They 

employed two stages of RF training to complete the brain tumour segmentation challenge. 

A new segmentation method based on super pixel classification and segmentation was proposed by 

Mohammad reza et al. [17]. They extracted a number of different properties from each super pixel 

of the Flair MRI scans. 

  In order to compare their outcomes, they also trained these features on the support vector machine 

(SVM). 

When given labelled input training data, a support vector machine produces an ideal hyper plane 

that can categories each new test case.  

 

Vladimir Vapnik devised first support vector machine. a highly valuable real-time technique that 

requires minimal computer power while maintaining great accuracy. Such algorithms can be highly 

useful in medical imaging where high processing power is difficult to get by and time is crucial. A 

random forest and SVM-based technique was developed by Samya et al. [18].Their strategy began 

with the use of RF to categories foreground input pixels and generate segmentation results, which 

were then passed on to the SVM classifier. The SVM classifier then segmented a large region of 

interest (ROI) that had been absent during the initial stage. As a result, SVM concentrated on global 

characteristics while RF concentrated on more local characteristics. These two processes were 

carried out again and again until the best results were achieved. 

 

 Clustering Techniques 

Clustering is an unsupervised machine learning approach that requires no prior knowledge of pixel 

labels. In supervised machine learning algorithms, each sample consists of two parts: an input 

characteristic and a label. The purpose of supervised learning is to create a functional relationship 

between training and testing data. Unsupervised learning techniques come in handy when pixel 

labels aren't provided. In terms of execution time, the clustering technique has an advantage over 

the deep neural network because these techniques are much faster. Table 2.1 lists the benefits and 

drawbacks of various techniques. 
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Table 2. 1 Advantages and disadvantage of various image processing method. 

No. Method Advantage Disadvantage 

1 Clustering For small data sets, clustering is a quick 

and simple procedure. When compared to 

deep neural networks, clustering 

algorithms are substantially faster to 

implement. 

 

In comparison to Deep 

Convolutional Neural Network 

techniques, performance is 

significantly lower. 

2 SVM SVM is a very valuable real-time method 

since it utilizes very little computer 

resources while providing great accuracy. 

Also, even if the training data isn't 

particularly large, the SVM method can 

perform well. Small changes in data will 

not alter the results once the limits have 

been determined, avoiding over fitting. 

When compared to Deep Neural 

Network Methods, performance is 

much lower. 

3 Random 

Forest 

Random forests are a straightforward 

method that may be used for 

classification as well as regression. Like 

SVM method, random forests reduce 

variance and helps is avoiding  

over fitting, 

Feed forward neural networks are 

unable to learn nonlinear low-level 

representations. Another downside 

of the random forest technique is that 

it performs poorly on data with 

uneven classes. (An unbalanced class 

problem exists in the BRATS 

dataset.) 



21  

    

4 Conventional 

Image 

Processing 

Methods 

Geometrical procedures, for example, 

require extremely little training data. 

It takes less time to classify the data. 

When compared to the Deep Neural 

Network DNN technique, the 

performance is lower. 

5 DNN While most classification algorithms 

require meaningful features as input, 

DNN may be able to discover 

meaningful features from training data 

on its own. Methods of deep learning In 

numerous areas, it outperforms other 

classification problems by a large 

margin.. 

 

 

 

For the detection of brain cancers, many systems employ k-mean clustering. Although K-mean 

clustering is a rapid and easy way to deal with large data sets, it can sometimes lead to partial tumour 

detection, which can be costly if the tumour is malignant. In K-mean clustering, each data point 

must belong to just one cluster center. Other systems, on the other hand, use fuzzy C-mean FCM 

clustering, which does an excellent job of segmenting all tumour regions.. 

In fuzzy C-mean clustering, a point must belong to at least one or two cluster centres. The k-mean 

integrated with fuzzy C-mean clustering (KIFCM) methodology, which is a hybrid clustering 

method, was proposed by Eman et al. [19]. Before sending the input photographs into the KIFCM 

algorithm, they first de-noised them. The KIFCM was used to segregate the tumour from the 

surrounding healthy tissue. It helped segment and categories more dispersed points into one or more 

kinds. The DICOM dataset, the Brain Web data collection, and the Brats data set are used to evaluate 

their findings. 

James et al introduced another method based on Otsu and fuzzy C-mean clustering, who used the 

VelocityAI programmer to build tumor zone of interests blobs for Otsu and Fuzzy processing. These 

blobs were then used to segment the tumours using clustering algorithms. With three and four 

classes, the Otsu and Fuzzy C-mean clustering algorithms were applied respectively. With a dice 

score of 0.91, their Fuzzy3 (three classes) method was the most successful. Table 1 compares the 

various image processing approaches used to segment glioma tumours. 
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 Convolution Neural Networks Approaches 

The most widely used brain tumour classification algorithms are neural networks, which are 

particularly popular among academics due to their better performance. The input layer, convolution 

layer, pooling layer, drop-out layer, fully connected layer, and final output layer are all layers found 

in popular neural networks. The most often used deep neural network approach for image 

identification and segmentation is convolutional neural networks. While most classification 

algorithms require meaningful input, CNN can automatically learn meaningful features from 

training data. 

 

 

Figure 2.1 CNN Basic frameworks 

Small leakage patches were convolved using a sequence of 3X3 kernels, then a max-out and max-

pooling layer was added, according to Mohammad et al. [22]. The max-out layer compares the 

input feature values for each spatial point and provides the maximum value of a feature map. They 

also used a two-pathway architecture, which has two streams of input patches, one with a small 

7X7 (local) receptive field and the other with a big 13X13 (global). Both methodologies provide 

different feature maps, which were integrated to create a single feature map with both local and 

global receptive field features. On the Brats dataset, their methods achieved a dice score of 0.85. 

Saddam et al. [23] proposed a nexus architecture in which two CNNs were used with the output of 

the first network concatenated with the input of the second. They demonstrated a variety of nexus 

architecture principles. The BRATS dataset provided a 33X33 input patch. To refine the design even 

more, they used the dropout and batch normalization layers. As a pre-processing step, they used 

N4ITK and the intensity normalization technique. On the Brats 2015 dataset, these sophisticated 

nexus designs were able to earn good dice scores. 
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The majority of brain segmentation algorithms are two-dimensional, but Konstantin et al. [24] 

developed a 13-layer deep three-dimensional brain tumour segmentation architecture. For a more 

detailed feature field, they used a smaller kernel in their design. Furthermore, they obtain both local 

and contextual data using concurrent multistate processing. They achieved this by combining the 

inputs of two routes into one, but the second segment, which had similar low resolution, was down 

sampled by a factor of three. On the dice, their architecture obtained a score of 0.90. 

The purpose of this architecture was to extract as many local and global features as possible. Five 

pieces were cut out of their network. Both input and output were included in the first slice. On the 

right side of each slide, the de-convolution process was carried out. The reset50 architecture was 

used on the left side of each slide, from top to bottom. Each ResNet50 was connected to a DCR, and 

the results were combined with lower layer's DE convolution process to create a complicated 

architecture. On the dice score, their proposed method worked admirably. 

As a pre-processing step, Sergio et al. [26] used N4ITK and the intensity normalization approach. 

They also included a post-processing step that deleted small groups that were smaller than the 

threshold level. In the BRATS 2013 competition, their algorithm came in second place. The majority 

of brain tumour algorithms have been discovered to lack a post-processing technique, which could 

help improve the system's performance. As a result, a researcher should place a strong emphasis on 

the algorithm's post-processing. Table 3 compares the results of the top Glioma tumor segmentation 

technique. 

 Dataset 

Various organizations have various datasets to motivate researchers to take active participation in 

brain segmentation. Among these multiple datasets some are listed below i.e. ISBR (provided by 

Massachusetts General Hospital), DICOM (online accessible dataset with images and videos), and 

BRATS that are publicly available [12, 13]. The datasets mentioned below are used to conduct the 

majority of automated brain tumor segmentation methods since they allow for reproducibility and 

comparison of findings across studies. 

Various committees have offered various datasets to encourage researchers to participate in brain 

segmentation. Brain Web [27], Internet Brain Segmentation Repository (ISBR) [28], and BRATS 

[29] for tumour segmentation, Isles [30] for evaluating stroke, MSSEG [31] for lesion segmentation 

and detection on MS data, and NeoBrainS12 [32], MRBrainS [33] are some of the most widely used 

publically available datasets.The datasets described below are used to run the majority of automatic 

brain tumour segmentation algorithms because they allow for replication and comparison of results 

across research. 

 

2.7.1 DICOM 

DICOM (Digital Imaging and Communications in Medicine) is the world's largest online collection 

of medical images and video data. It is one of the most extensively utilised platforms for free and 

open datasets. It has a big database of medical data for a range of illnesses, including glioma brain 
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tumours. Optical Coherence Tomography, Mammography, and Magnetic Resonance Imaging 

images are included.  

   Various performance measuring matrices are used to analyze and compare the accuracy                        

of a model. Multiple metrics are utilized to evaluate performance in various procedures, including 

true positive, true negative, false positive, and false negative. Table 1 displays a collection of 

different performance measurement methods for evaluating the quality of brain MRI segmentation, 

as well as their mathematical formulation. 

 

2.7.2 ISBR  

 

It's an MR Images dataset from Massachusetts General Hospital's Center for Morphometric 

Analysis. IBSR18 and IBSR20 are the two sets of data that make up this dataset. IBSR18: This 

dataset is made up of T1-w scans with a 1.5mm slice thickness. It is free of any noise that could 

compromise scan accuracy. Auto bias field correction was used to preprocess the data. 

 

2.7.3 BRATS  

In 2012, the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) competition was 

established to evaluate and compare several brain tumour segmentation techniques. It consists of a 

large number of MRI images of brain tumours that have been separated into five categories: healthy 

tissue, edema, non-enhanced, necrosis, and enhanced tumour regions. Over time, the training dataset 

has grown in size. There are both low-grade and high-grade samples in the sample. t1 mri, t1 

contrast-enhanced mri (t1c), t2, mri and t2 flair mri are the four imaging modalities available. The 

voxel resolution of all images in the Brats datasets is 1 mm. The BRATS dataset serves as a reference 

point for comparing outcomes from different studies. 

Figure 2.2 depicts a detailed modification. 
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Figure 2.2 Sub region of Glioma  

 

  

The BRATS dataset was introduced in 2012 with MRI scans consisting four different modalities. 

Segmentations and classifications approaches applied on BRATS challenges which produced 

satisfactory results. Dataset consisted of five major classes named as healthy brain’s cells, non-

enhancing brain tumor, edema, enhancing tissues of tumors and lastly necrosis.  With every year, 

training size of dataset has been growing continuously. There are two types of tumor grades in 

dataset. One is low grade and other is high grade tumor. The BRATS dataset contains MRI scans 

with different modalities named as T1, T1 contrast-enhanced (T1C), T2 and T2 FLAIR. The dataset 

serves as a benchmark for analyzing the outcomes of different brain tumor segmentation techniques. 

 

 Fig. 2.3 First four MRI scans are four MRI modalities and on the extreme right corner 

there is a ground truth.
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 Challenges and Problems 

Automatic glioma brain tumour segmentation is difficult due to the diversity in shape, size, and 

location of these neoplasms. Traditional edge-based techniques are difficult to segment because 

these tumours have uncertain boundaries with discontinuities. MRI pictures of glioma tumours from 

clinics and synthetic datasets are intrinsically complicated.
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Chapter 3: Methodology  

 

In this chapter, we'll go through the extensive feature engineering-based models that are used to 

segment brain tumor manually. Then, using convolutional neural networks, some recent deep 

learning-based models for segmentation and pixel level classification were presented (CNN). 

Finally, we review the Pixel level classification using UNET architecture upon which our proposed 

method is based. 

 

 Overview of overall Proposed Methodology 

The subject of gliomas brain tumors segmentation was the focus of our proposed research, which 

used the modified U_NET architecture. Images were taken from the BRATS 2015 dataset. Pre-

processing, patch construction, and implementation of various CNN architectures are the three steps 

in the proposed methodology. The input images are first preprocessed and divided into patches, 

which are then fed through the proposed architecture. The flowchart of our suggested framework is 

shown in Figure 2. The following is a more extensive description of these steps. Our proposed 

paradigm is depicted in Figure 3.1 as a block diagram. 

There are three segmentation techniques that are highly depended on human’s interaction level. 

These techniques are named as manual, semi-automatic and fully automatic.[14] Among these 

segmentation methods, manual segmentation uses prior information of the single patient with 

definite amount of human brain knowledge through past training and experience [15].In this section, 

we first discuss U-NET architecture along with Relu activation function for segmentation of brain 

tumor on BRATS-2015 dataset. Then, proposed a Mask-RCNN for classification of brain tumor 

which resultantly gives better performance. Figure 3 shows the complete procedure of our designed 

methodology. 
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Figure 3.1 Proposed Approach of training and testing algorithm  
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Fig. 3.2 Block diagram of our proposed model 

 

 

 Image Preprocessing  

MRI images have noise problems because of heterogeneity and motion of images throughout 

image acquisition. These noises can cause an image's intensity level to change and consequently 

resulting in poor output. Two pre-processing techniques are applied to enhance our input images. 

Firstly, all images are homogeny using the N4ITK algorithm, which is a bias correction technique. 

The N41TK algorithm is capable of correcting MRI data's bias region. Secondly, the intensities in 
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the top 1% and bottom 1% are ignored. Secondly, each picture in our dataset was also subjected to 

intensity normalization. This process of normalization translates the image's pixel intensities into a 

functional collection. In this process we removed 1% top and bottom intensity values throughout 

the dataset which helps improving the learning process during training. To improve our input 

photos, we use two pre-processing approaches. 

1. To eliminate this effect, N4ITK [37], a bias field correction approach, is applied to the 

input images. N4ITK eliminates inhomogeneity un the input data created during MRI scan 

capture. Normalization of non-parametric, non-uniform intensity also the N3 technique is a 

well-known approach for removing artifact-induced intensity normalization. N4ITK is a 

better variant of N3ITK. 

2. Each image in our dataset was also subjected to intensity normalization. The intensity 

normalization method converts pixel intensities across the image into a usable range. We 

deleted 1% top and bottom intensity values throughout the dataset as part of this process, 

which aids in the learning process during training. 

The impact of pre-processing techniques such as N4ITK and normalization is depicted in the 

diagram below. On the BRATS 2015 dataset, Figure 3.2 compares the MRI image before and after 

applying pre-processing.  

Figure 3.3 after image preprocessing results 

 

  Formation of patches  

The BRATS-2015 dataset consists of 3-D MRI images along with T1, T1c, T2, and FLAIR 

modalities. All these 3-D brain images are transformed into 2-D MRI slices having pixel size of 240 

x 240. Further, patches are generated from these multiple slices and modified U-NET is trained on 

them. We tested on different size of patches to see which patch size give better results. After 

experimentation we choose patch size to be 33X33 throughout the dataset. The label of the center 

pixel of each patch is assigned as a label to that whole patch. Similarly, same step is repeated 

throughout the dataset. 
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 U-NET framework for brain tumor segmentation 

In our proposed work we address the problem of gliomas segmentation in brain images using U-

NET architecture. We acquired images from BRATS 2015 dataset. The proposed methodology is 

divided into three main steps named as image preprocessing, patch formation and U-NET 

architecture. These steps are described briefly following. 

 

3.4.1 U-net architectural detail 

 

To the best of our knowledge the U-NET architecture has not been realized on the BRATS-

2015 dataset. Figure 4 shows the overall proposed U-net architecture which include 

encoding and decoding blocks. The Architecture below takes images of size 33 ×33 and 

generates output of the same size after implementation. The left side of the architecture acts 

as an encoder and the right side of the architecture acts as a decoder. In convolution layers 

activation functions such as soft_max and relu. Further, padding is used to get same sized 

output images. 

3.4.2 Generic U-NET architecture 

 

• First sight, it has a “U” shape. The architecture contains two paths. First path is the contraction 

path (also called as the encoder) which is used to capture the context in the image. 

• The second path is the symmetric expanding path (also called as the decoder) which is used 

to enable precise localization using transposed convolutions. It is an end-to-end fully 

convolutional network (FCN), i.e.  it only contains Convolutional layers. 
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Figure 3.4 Generic U-NET Architecture 

 

 Modified U-NET architecture 

 

The proposed Architecture below takes images of size 33 × 33 and generates output of the same size 

after implementation. The layers of a convolutional neural network (CNN) are convolution, pooling, 

activation, dense, batch normalization, and dropout. Each of these layers has its own set of functions. 

A feature map is created by layering these layers on top of each other in a hierarchical order. Each 

layer receives features from the previous layer and passes them on to the next layer. The most 

significant layer in a CNN is the convolutional layer, which is made up of the building blocks of a 

Convolutional Neural Network. The feature maps produced by the convolution layer and 

convolution filter are transferred to the pooling layer. The pooling layer keeps the features that are 

valuable and discards the rest. These maps move through each layer of the network until they reach 

the last layer, which is usually the final layer of the network. Our suggested modified architecture 

is depicted in detail in Figure 3.5. The figure shows that two pooling layers are used, the first of 
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which is max pooling and the second of which is average pooling. In our suggested modified U-

NET architecture, we've included a dropout layer after each convolution layer. Each module now 

produces better output and has more regularity as a result of this addition. Many architectures 

employ a dropout layer to prevent over fitting. Some researchers utilize dropout as a replacement 

for batch normalization, but a few studies [45] claim that Dropout works equally well as batch 

normalization in terms of generalizing the result.  

Convolutional filters are combined with a Convolution layer to create feature maps. These filters 

are available in three different sizes: 3x3, 5x5, and 7x7. Convolution filters (also known as kernels) 

are often little box-shaped objects that look like the objects in the photos. The resulting feature, 

termed feature maps, contains essential information in the form of little boxes. Each feature map 

corresponds to a hidden unit known as a neuron, which is controlled by the activation layer. 

Convolutional Neural Networks use a variety of activation layers, including Sigmoid, Tanh, ReLU, 

leaky ReLU, and max-out [43]. The surrounding voxels in the feature map are affected by the 

activation. Neuronal receptive fields are the areas in the feature map that grow in size with each 

succeeding layer. Each neuron in a layer is connected to the layer above it via a weighted link. 

T1, T1c, T2, and Flair are the four patches that the proposed framework processes. These four 

patches are combined into a single input that is sent to the network. The network considers the input 

to be a single four-channel input. One modality is represented by each channel. These phenomena 

are comparable to those seen in color images' red, green, and blue channels. The procedure 

continues, with each slice of the entire brain being thrown out.  
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Figure 3.5 Proposed Modified Tuned U-NET Architecture  

 

3.5.1  Encoding side: left side of the architecture 

 

There are few sections of encoding framework of architecture. Each section comprises of 

convolution layer, a max-out and a pooling layer. For example in figure 4 input image of size four 

patches of 240 × 240 are indulged and extract four patches of 33 ×33 as a input. On this section 7 

×7 convolution filter is applied with couple of max-out activation function and a 4 ×4 pooling 

function. In the same way all the layers are working as described in the diagram. The last section of 

the encoder side is used activation function soft-max and output is 5 ×1 ×1 as final output on the 

encoder side of the architecture. Conclusively, it can be said that on the encode side of the 
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architecture process of contraction is applied for better features learning. Further, details of all the 

layers is on the table 1. 

 

TABLE 3.1: DETAIL OF ALL THE ENCODING LAYERS  

Encoding Layers  

Layers Layer detail Output Size 

      Conv1_x 

7×7, Pooling 

4×4,Maxout 
64×24×24 

      Conv2_x 

3×3, Pooling 

2×2,Maxout 
64×21×21 

      Conv3_x 

21×21, Soft-

max 
5×1×1 

 

The encoder network performs convolution with a filter to produce a set of feature maps  

• ReLU is applied  

• Batch normalized  

• Maxpooling with a 2 × 2 window and stride 2 is performed 

 • Discard FC layer 

    

 

Figure 3.6 Encoding working side 
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3.5.2  Decoding side of the architecture: right side 

 

The right side of the architecture named as decoder side performs the expansion process. In this 

portion all the decoding layers work in a reverse order as compared to encoding layers. All the 

convolution layers show in table 2 of U-Net are followed by pooling layer and soft-max activation 

function. Further, detail is given below; 

 The decoder network up samples its input feature map. 

 Batch normalization is applied. 

 The decoder corresponding to the first encoder (front to the input image) produces a multi-

channel feature map. 

 The high dimensional feature representation at the output of the final decoder is fed to a 

trainable Soft-max classifier. 

 The output of the Soft-max classifier is a K channel image of probabilities. 

 

 

 

 

  TABLE 3.2: DETAIL OF ALL THE DECODING LAYERS  

Decoding Layers  

Layers Layer detail Output Size 

      Conv1_x 

Convolution 

21×21  
64×21×21 

      Conv2_x 

 3×3, 

Pooling2×2,Max

out 

64×24×24 

      Conv3_x 
3×3, Soft_max 4×33×33 
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7

 

Figure 3.7 Decoding working side  

 

 

 Training 

 

To enhance the proper training probabilities of labels across the dataset while reducing the loss 

function, Convolutional Neural Network training is necessary. The objective is to optimize the 

Softmax layer probability for each training patch’s true label across the whole dataset. On the 

network, various loss function optimizers were evaluated in order to maximize training performance 

and reducing. Figure 3.5 depicts a random selection of kernels at various points in the proposed 

modified U-NET architectures. 
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Figure 3.8 Training Kernel size  

 

3.6.1 Loss Function 

The loss function is an important component of both neural networks and convolutional neural 

networks. They're described as a metric against which the network's performance is measured. In 

our study, we used the mean square loss function because we needed pixel-by-pixel data. 

3.6.1 Optimization of loss function 

To fine-tune our outcome, we trained the network using three loss function optimizers. 

 We started using stochastic gradient descent (SGD), which is commonly regarded as the 

default optimizer. Then we used Adam optimizer to further test our network. 

 Finally, the influence of Root Mean Square Propagation (RMSProp) optimizers on finding 

the global minimum point of the loss function was investigated. 

3.6.2 Batch Normalization 

 

 Sometimes layers weights change significantly due to large learning rate, causing 

small changes to amplify resulting the weights to explode. 

 Batch normalization control the gradient in acceptable range. 

 It maintains the feature’s mean and standard deviation close to 0 and 1 respectively. 
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Figure 3.9 Batch Normalization  

 

3.6.3 Dropout Layers 

 

• Large neural nets trained on relatively small datasets can overfit the training data. 

• Results in poor performance when the model is evaluated on new data. 

• Technique to avoid over-fitting. 

• Drop random set of Neurons from each layer. 

• Reduces computational complexity. 

• Dropout value is set at 0.3. 
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 Implementation: Hardware detail 

 

• Architecture was trained using Core-i9 9th Gen. Linux mint machine with RTX 2080 11 

GB graphics card and 64 GB RAM and 1TB SSD. 

• The primary language used was Python. 

• NumPy and SciPy were used for the vast majority of numerical computations. 

• Scikit learn was used for the machine learning algorithms. 

• All deep learning related code was written using Keras, with a backend of Tensor Flow. 
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 Network Training 

 

 

 Four images of 33*33 pixel are passed through the network as input. 

 We trained the model till the convergence was achieved.   

 We used max and average pooling layer in our model 

 Dropout value of 0.3 is adjusted to drop weak feature in the training. 

 The network was trained by using batch training method with batch size equal to 64.  

 We set the biases value of all layer to be zero except for the last soft-max layer where we set 

the bias value to be 0.2.   
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Chapter 4: Experimental Results 

4.1 Dataset description  

Our experiments were conducted using the BRATS 2015 [29] dataset, which serves as a benchmark 

for evaluating brain gliomas tumors segmentation. The training dataset contains 220 HGG and 54 

LGG patients' MRI scans, whereas the test dataset contains 110 images.  

. 

 

 

                                             

Figure 4.1 BRATS 2015 Dataset snaps 

4.2 Implementation of robust U-NET architecture 

Gliomas brain tumors segmentation was tested using a variety of architectures, including modified 

U-NET architecture. Because most patches belong to classes 0 and 1, we also employed a two-

phase training model to lessen the influence of the class imbalance problem. We used their true 

ratio in the dataset to train the model in the first step. The network was then trained again with an 
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equal number of patches from each class, using the prior training results. Experimenting with this 

strategy, we discovered that it improved network performance by 1%. 

4.2.1 Designed Modified U-NET architecture 

To begin our segmentation attempts, we used U-NET as our baseline models. Although U-NET is 

an older architecture, we updated it in the sense that we employed the most recent trend in CNN, 

namely the regularization layer, hyper parameter adjustment, and two-phase training, to improve 

segmentation results.  

The implementation is carried out on scans of 220 HHG and 54 LGG gliomas brain tumors. Because 

the dataset is in 3-D and the BRATS dataset lacks resolution in the third dimension, we converted 

the 3-D data into a 2-D image dataset before starting the training procedure. The network is trained 

over a period of 50 epochs on a total of ten thousand patches. On two phases, we also saw the 

implementation of our modified VGG architecture. 

In terms of segmenting the gliomas tumors, the proposed model performed admirably. It was 

discovered that by utilizing a dropout layer network, it was possible to train more effectively. As a 

result, there was less over fitting in the training. 

Our proposed U-NET Architecture appears to operate well based on the results, since it learns good 

local and global features during the training. We used 65 epochs to train our suggested network for 

a total of ten thousand training patches. We observed that there is no benefit to training beyond 65 

epochs, and the network has already reached convergence. 

 

4.3 Step by Step Training mechanism  

The majority of the brain imaging pixels in gliomas tumors segmentation datasets are healthy 

tissues, resulting in an unbalanced class distribution. To properly learn data, the model should train 

a large number of patches from each class. This is not the case with the standard one-phase training 

method. We also noticed that when the number of feature maps rises, the likelihood of over fitting 

increases dramatically, and if the feature is greatly reduced, the network underfits. As a result, the 

dropout value of 0.4 is changed to eliminate the training's weak feature. 

Because the fully connected layer consumes the majority of the time during network training, an 

optimal size of 1024 completely connected (FC) features was selected to achieve stability.  
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Figure 4.2 Complete overview of Training mechanism 

4.4 Testing phase 

In the BRATS 2015 dataset, there are 1000 test photos. Before sending the test image to the network, 

the photos are processed using the same image processing technique. To execute testing, the 3-D 

test data is transformed to 2D and then preprocessed. Intensity Normalization and N4ITK bias field 

correction techniques are used as pre-processing procedures. On our machine, the testing process 

takes about 4-5 minutes to get findings. The test findings were evaluated using three parameters: 

Dice Coefficient, Sensitivity, and Specificity.  

 

Preprocessing: 

Inhomogeneity 

Reduction, Noise 

Reduction, 

Regression 

Patch Extraction 

 Training with equal 

class ratio in the 

dataset 

Evaluation Segmentation n 

Training with true 

class ratio in the 

dataset 
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Figure4.3 Segmented output  

                         

Figure 4.4 Segmented output 2 
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4.5 Detail overview of hardware  

The area of machine learning obtained a big performance boost with the introduction of high-

performance graphics processing units (GPUs), because deep learning techniques necessitate a large 

amount of matrix multiplication, which GPUs made possible. ImageNet [46] relied heavily on the 

availability of high-performance GPUs and their CUDA API. Prior to the introduction of modern 

GPUs, graphic performance was solely dependent on the CPU's capability. The performance of early 

NVIDIA GPUs was up to 70 times higher than that of conventional personal computers.  

• Architecture was trained using Core-i9 9th Gen. Linux mint machine with RTX 2080 11 

GB graphics card and 64 GB RAM and 1TB SSD. 

• The primary language used was Python. 

• NumPy and SciPy were used for the vast majority of numerical computations. 

• Scikit learn was used for the machine learning algorithms. 

• All deep learning related code was written using Keras, with a backend of TensorFlow.  

 

 

4.6 Fine tuning of hyper-parameter of U-NET architecture 

We used the Keras [47] library with Tensor Flow as the back-end to develop our framework on an 

Ubuntu computer. Four 33*33 pixel images are fed into the network as input. During training, 

batches of 64 and 128 were used. 

We trained the model until it reached convergence. In our model, we used a max and average pooling 

layer. While max pooling is implemented in both networks, the last pooling layer in the proposed 

U-NET architecture is global average pooling. The pooling and convolution stride sizes are both 

fixed at 2. 

 

4.6.1 Neuronal Activation 

After each layer, an activation function is utilized to modulate the output values of the neurons. 

Linear, Tangent (tanh), sigmoid Rectified Linear unit (ReLU), leaky ReLU, and max-out are some 

of the activation layers proposed by researchers to manage the value of neurons. A value between 

[-1,1] is produced by the tangent activation function. The ReLU activation function is a nonlinear 

activation function that returns either a 0 or a 1. 
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4.6.2 Activation Functions  

To monitor the output values of a neuron after each layer, an activation mechanism is used. The 

researchers have suggested several activation layers to regulate the importance of the neuron, i.e the 

tangent activation function returns a value between [-1,1]. Linear, Tangent (tanh), sigmoid Rectified 

Linear Unit (ReLU) and leaky ReLU, and max-out. The activation function of ReLU is a nonlinear 

activation function which generates either a zero or a positive value. 

4.6.3 Normalization  

To normalize each layer from the input data, we used Batch Normalization (BN) [48]. Batch 

normalization uses an activation feature to regulate the mean and standard of the function, close to 

0 and 1 deviation respectively. Because of the high learning rate, layer weights often change 

radically, allowing the minor shifts to enhance results in inadequate resources. During back-

propagation, BN regulates the gradient within an appropriate range.  

4.6.4 Loss function Optimizers 

The loss function value at the output of the network is calculated by an optimizer and these modified 

values are propagated back to the network to refine the preparation. In order to accelerate, we 

analyzed different optimizers in our network. We taught the network to fine-tune our outcome with 

three loss function optimizers. First of all, we used stochastic gradient descent (SGD), which is 

commonly known as the default optimizer. We then further played with our Adam optimizer 

network. 

 

4.7 Comparative analysis of results 

Table 4 presents a comprehensive comparative analysis on brain tumor segmentation of different 

techniques applied on BRATS dataset up till now. From year 2015 to 2021, we listed all the 

proposed methodology their results in term of dice score and datasets they used. In the end we listed 

our proposed framework with highest achieved dice score.   
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TABLE 4.1 Comparative analysis using Dice score as performance evaluating of various brain 

tumor segmentation architectures  

Num. Writer of the paper  Architecture  Published 

in 
Menu-driven 

interface 

Dice 

score 

Datasets Reference 

1 E. Abdel-Maksoud  Fuzzy c-mean and k-

mean clustering 

2015 Automatic 0.85 DICOM [16] 

2 N. J. Tustison Conventional Machine 

Learning 

2015 Automatic 0.86 BRATS 2013 [17] 

4 I. Njeh, et al. A Graphic matching 

approach 

2015 Semi-auto 0.76 BRATS 2012 [18] 

5 Pereira et al.    CNN architecture 2016 Automatic 0.88 BRATS 2015 [8] 

5 Mohammad, et al    CNN two phase 

training architecture 

2016 Automatic 0.88 BRATS 2013 [9] 

6 Huber, T, et al Conventional 

processing algorithms   

2015 Semi- 

automatic 

0.86 3-D MPRAGE- 
private 

[19] 

7    M. Soltaninejad Super pixel based 

Classification 

2017 Automatic 0.87 BRATS 2015 [20] 

8   S. Amiri et al. Support vector 

algorithms  

2016 Automatic 0.84 BRATS 2012 [21] 

9 J. Liu,  et al. Neural Network 2018 Automatic 0.88 3-D MPRAGE- 

private 

[32] 

10 D. Liu, H. Zhang. Deep neural networks  2018 Automatic 0.88 BRATS 2015 [14] 

11 Proposed   

Mohsin jabbar 

U-NET with 

modification 

2021 Automatic 0.92 BRATS 2015  
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Chapter 5: Conclusion and Future Work 

5.1 Conclusion  

Due to high class imbalance of brain MRI images it is very difficult task to segment properly of 

brain tumor and aim is to predict tumors by segmenting the entire MRI images very carefully by 

adopting newly developed artificial intelligence. We proposed a novel framework named as U-NET 

with minor changes for gliomas tumor segmentation and achieved better result over all other 

frameworks up till now. Further, we discussed in detail all the available dataset with their challenges 

and works on BRATS 2015 dataset challenge. All the segmentation and classification techniques 

divided into four sub categories such as conventional image processing, deep neural networks, 

conventional and   clustering Machine learning methods. In all of these methods, deep learning 

methods give better results with high time constraints and slow processing time. 

  To contribute the existing challenges and issues while in segmentation of brain tumors we proposed 

a U-NET novel architecture with minor changing in convolution layers such as adding pooling 

layers, activation function i.e. ReLU softmax for better precision in output layers. Further, we added 

image pre-processing session to increase the quality of the MRI images. Additionally, patch 

formation is also used for improving qualitative properties of the MRI input images. Each input 

image divided into multiples patch and these patches are extracted on the output side of the proposed 

architecture. After evaluation experimental results shows that our methodology works extraordinary 

well and achieve highest dice score on all the state-of-the-art frameworks present up till now.  

As future directions, we should pay more attention by applying newly developed CNN models on 

different publicly available datasets and achieve better time constraint and high dice score. The 

filtration process in dataset can also be applied for betterment of result. Therefore, my research work 

paves the way towards new dimensions of the problem. 

. 

5.2 Future Work 

Many improvements to the Glioma Brain Tumor Segmentation Process can be implemented for 

the feature goal 

5.3 Dataset 

The majority of automatic tumour segmentation methods have promising results in tumour 

segmentation and analysis; however, further improvements in these algorithms and the availability 

of additional image information from new image modalities may improve these methods and prove 

to be useful in the development of large-scale, clinically acceptable tumour segmentation methods. 

Because a larger dataset improves the performance of the Deep Convolutional Neural Network, 

more training instances should be added in the future for network training purposes. Another 

important factor to consider while creating a brain-tumor segmentation model is its resilience, or the 

ability of the algorithm to work with varied datasets. As a result, in order to create a reliable brain 
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tumour segmentation model, researchers should test their algorithm on a variety of datasets with 

varying modalities. 

5.4  Transfer Learning 

Transfer learning is a method in which a network learns information from one problem and applies 

it to another. We investigated transfer learning over the entire network training during our 

experiments. There are also some other transfer learning models that to provide excellent results. 

During fine-tuning, freezing the last layer of the network could be a good change in transfer learning 

technique. Fine tuning will be carried out in this manner on all layers of the network until it is fully 

integrated. The advantage of this method is that it reduces over fitting during the fine tuning process, 

which is an issue with our network as well. 

Applying transfer learning to multiple medical datasets and then applying the learning outputs to 

the problem at hand could appear to yield superior results. Using transfer learning on the Brats 

dataset has some drawbacks. Because the BRATS dataset is a multimodality imaging dataset, 

network training comprises T1, T1C, T2, and Flair channels per input. However, when fine tuning, 

most datasets only have three channels or, in the case of grey level images, only one channel. A 

number of choices are available to deal with this issue. One option is to just turn off a channel. 

 

To match the size of the feature channels, we trained on the BRATS dataset. New researchers are 

welcome to join this field of Glioma Brain Tumor Segmentation .
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ABBREVIATION 

DCNN: Deep Convolutional Neural Network  

BRATS: Brain Tumor Segmentation Challenge 

 MRI: Magnetic Resonance Imaging 

CAD: Computer Aided Diagnosis  

CNN: Convolutional Neural Network 

 GT: Ground Truth 

LGG: Low Grade Glioma  

HGG: High Grade Glioma  

CT: Computed Tomography 

PET: Position Emission Tomography 

SPECT: Single Photon Emission Computed Tomography  

NMR: Nuclear Magnetic Resonance 

MRS: Magnetic Resonance Spectroscopy 

 EEG: Electroencephalography 

WM: White Matter 

SVM: Support Vector Machine 

 GM: Gray Matter 

FCM: Fuzzy C-Means 

KIFCM: called k-mean integrated with fuzzy C-mean clustering 

 IRT: Infrared thermography 

DICOM: Digital Imaging and Communications in Medicine  

ILSVRC: ImageNet Large Scale Visual Recognition Competition  

N4ITK: Improved N3 Bias Correction 

FLAIR: Fluid-attenuated inversion recovery  

ISBR: Internet Brain Segmentation Repository  

DCR: Dilated convolution refined 

ROI: Region of Interest 

http://www.image-net.org/challenges/LSVRC/
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 TP: True Positive 

TN: True Negative 

 FP: False Positive  

FN: False Negative 

ReLU: rectified linear unit 
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DNN: Deep Neural Network CSF: Cerebrospinal Fluid 

MEG: Magnetoencephalography DF: Decision Forests 

RF: Random Forests 

SGD: Stochastic Gradient Descent GPU: Graphical Processing Unit DSC: Dice Similarity 

Coefficient SR: Sparse Representation 

ERT: extremely randomized trees RDF: Random Decision Forests CPU: Central Processing Unit 

PCA: Principle Component Analysis VGG: Visual Geometry Group 

FC: Fully Connected 

CUDA: Compute Unified Device Architecture API: application program interface 

BN: Batch Normalization TL: Transfer Learning PC: Personal Computer DL: Deep Learning 

GT: Ground Truth 

SR: Sparse Representation RDF: Random Decision Forests 

 


