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Abstract 

In Pakistan, domestic electricity consumption accounts for approximately 40% of the electricity sale 

share, stressing requirement of forecasting this consumption sector load profiles for establishing 

demand side management policies ever more important. It has become crucial for power generating 

companies to profile their clients' electricity consumption profiles in recent times. This process would 

allow them to optimize their grids by providing only enough power to serve their clients keeping in 

view the demand and thus avoid wastages and unnecessary strain on whole system particularly 

transmission system hence resultantly enables to bridge the gap between electrical supply and demand 

efficiently. Moreover, this step helps consider efficient electricity generation from renewable sources, 

like solar and wind, which require a power storage device. The best way for these companies to achieve 

this goal is by developing load profiling models that simulate consumers’ domestic power consumption 

under different load conditions and factors effecting these. Efficient electricity infrastructure based on 

accurately monitored load profiles of consumer will help implement smart grid infrastructure and 

demand side management solutions in a developing country like Pakistan in near future. This work 

undertakes to develop a model which forecast household electricity consumption profiles using 

coherent technique i.e. agent-based modelling. It considers a population having 300 households and 

then uses the Any-Logic software to model their behaviour according to their activities investigated 

through variables and functions. Multi layered hierarchal scheme incorporating agents and their 

characteristics subject to actions taken in inter-related environment based on their habits, nature, 

occupancy profiles and patterns is considered. This work discusses the processes involved in Agent 

based modelling and simulation environment which reflects characteristics in respect of the modelled 

entities to simulate actual operating conditions of the appliances for generating a high resolution 

household energy demand profile. Results show that the agent-based simulated total electricity 

consumption in kWh for a given set of households in a month approximates real time validated data 

with difference of 2.4%. Hence, this approach proves viable for the purpose of obtaining this vital 

information i.e. electricity load profiles through observing daily, weekly, yearly patterns of the 

electrical appliance consumption by households. 
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Chapter 1 

Introduction 

1.1. Motivation 

With necessity arising for utility companies to regulate and plan expansion of existing capacity of the 

network but before determining the storage capacity that they need, these companies must know the 

demands of their customers. It is not possible to approximate an individual's power usage using another 

data from other people’s consumption. Still, despite the complexity involved in this process, power 

companies still need to know their clients' power usage profile to plan their generation and distribution 

of the power and use appropriate equipment. Furthermore, many of these companies create smart grids, 

which optimize power generation and distribution to their clients [1]. These smart grids work best when 

the companies have usage profile data from their customers. They obtain this information using energy 

management systems, which use algorithms to simulate their users' power consumption while 

considering varying loads and generation capabilities [1]. If these companies fail to profile their clients' 

power consumption, they may end up in situations where they may need to use alternative power 

generation measures, such as propane-powered generators [2] [3]. Such a step would be more 

expensive than using appropriate storage and distribution of their power depending on their clients' 

usage profiles.  

1.2. Introduction 

This chapter presents overview of the proposed analysis framework in light of need of better insights 

for the planning of efficient electricity grid network. People use electricity for different purposes in 

their homes and at work. Electric loads include appliances like dishwashers, cookers, televisions, 

lights, personal computers, digital clocks, electric vehicles, and other devices. The number of these 

appliances keeps on rising, which increases the need for more power. Moreover, while people may 

have similar appliances, their usage profiles differ, which means that it is not possible to determine the 

power consumption pattern of a person using the data of another [4]. For instance, one person may 
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spend more time watching television than another one who may be using their computer. This variation 

in power consumption makes it hard to determine how much power these two people need without data 

from them. In a world with increasing power demand, it is vital to find users' electricity load profile to 

decide how much power to generate to satisfy their needs. In recent times, more attention has shifted 

to the generation of electricity using renewable sources, including geothermal, solar, and wind sources 

[5]. However, these sources usually require storage for their power since they vary depending on 

environmental factors [6]. For instance, electricity generation using solar energy is only possible during 

the day. Moreover, using wind to generate electricity produces varying power depending on wind 

intensity. Since people's demand for power does not depend on these environmental variations, it is 

impossible to use them without a storage device, which will ensure the availability of power when 

needed. Consequently, companies generating power from these renewable sources need to have storage 

devices to ensure their grids' stability. 

This work proposes an agent-based domestic electricity consumption of 300 households simulation 

and analysis framework while considering factors having influence on the outcome of the consumption 

profile and encompasses features such as occupancy patterns of the agents given different constraints 

like no. of residents of the house, no. of working occupants of a household, age of the occupants which 

enables to make a suitable assumption for processing a checking loop regarding occupancy pattern on 

a given time of the day, the number of rooms in the houses to cater for dynamics of variation in size of 

the house, and the appliances that these households have, categorized based on the power ratings and 

usages patterns accordingly. As described above, electric load profiling of users is of high importance 

to lay a basic framework for implementation of smart home energy mechanisms and demand side 

management policies. Data in respect of Household demand profiles carry most importance because of 

the fact that major consumer class of electricity is domestic sector with ranging to about 40%. 

Therefore, provision of such accurately monitored data is imperative to build on clean green smart grid 

technology. This work also looks at the impact of weather on inductive load like air conditioners and 

fans' usage and electric vehicles' ownership. Changing weather conditions in the real world demands 

simulation to include response towards alternating climatic conditions to replicate the real life scenario 

in true sense. It incorporates a function that allows to change the temperature condition at run time to 



 

3  

see the impact of such a variation on the model.  Modelling inductive load requires work to be carried 

out in respect of the variability of the load and phenomenon of the initial spikes associated with them. 

Considering all these factors leads to developing a comprehensive agent based electricity profile of 

daily, weekly and seasonal power usage for a given set of people in the population which closely 

approximates actual data differing by 2.4% as discussed in the Simulations chapter in detail.  

Our proposed framework will support relevant stakeholders in understanding the diversified patterns 

of domestic electricity utilization to fulfil the On Peak, Off Peak and Mid Peak power demand. It will 

also help for the planning of efficient electricity transmission and distribution network. 

1.3. Problem Statement 

With ever evolving role of demand side management in view of the smart grid infrastructure to 

efficiently utilize the available resources, it requires an extensive load profiling simulator design 

incorporating in depth occupants related parameters hence leading to the problem statement as 

follows: 

The problem is to develop a comprehensive Agent base modelled and simulated load profiling 

system for a set of domestic population which includes power usage variations influenced by the 

appliance design and occupant behavior while incorporating the dynamics of inductive loads 

usually found in domestic scenarios effectively given the randomness in its nature. 

 

1.4. Research Objectives 
 

The following are the research objectives of this thesis. 

1. To develop an approach that maximizes monitored electricity profiling efficiency. 

2. To present a methodology that focuses on the enhancement of ability to forecast under 

varying loads and weather considerations. 

3. To develop the optimization framework which accounts for the randomness involved in 

problem and ensuring optimization of appliance power consumption levels based on the 

given inputs. 

4. To perform the comparison of ABM electricity load profiling under the provision of actual 

consumption data from electrical distribution company. 
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1.5. Contribution 

Main contribution of the study is listed as follows: 

1. Proposed a suitable Agent based simulation & analysis framework which well captures the 

diversity of occupants nature and behavior for accurate monitoring of the electricity load 

profiles. 

2. Presented modelling and analysis framework of domestic electricity load profiles which 

constitutes major chunk of consumer class, for forecasting future energy demand. 

3. Impact of variable weather, inductive load dynamics and Load classification strategy is 

investigated to incorporate diverse appliance characteristics and occupants behavioral patterns 

in the proposed model for the purpose of analyzing hourly, weekly, monthly and total 

electricity consumption and appliance wise electricity consumption. 

 

1.6. Thesis Organization 

The organization of the thesis is as follows. 

 Chapter 2: Fundamentals 

Chapter 2 presents a brief overview of basic concepts related to electricity load profiling and 

demand side management. It briefly describes factors related to agent base modelling and its 

importance in terms of advantages over other techniques. 

 Chapter 3: Literature review 

Chapter 3 provides overview of the previous work done in forecasting of domestic load 

consumption profiles. It provides a critical analysis of the different techniques discussed in 

the respective papers to implement Demand side management through load profiling. 

 Chapter 4: System Model 

This chapter explains the formulation of proposed approach and how it models domestic load 

consumption through agent base modelling. Input parameters and proposed simulation and 

analysis framework is explained in this chapter. 

 Chapter 5: Simulations 

This chapter presents simulation of our framework. It describes the simulation model 

conditions and constraints and shows the output of our framework in terms of load forecasting. 
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Comparison of simulations results with actual data is also presented.  

 Chapter 6: Conclusion and Future work 

The tasks completed during the course of this thesis are presented in this chapter. The 

conclusion of our work and the future work to carry out enhancement of the model is presented 

in this chapter. 
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Chapter 2       

Fundamentals 

 

 
The chapter provides description on the different components and parameters involved in demand 

side management and electricity load profiling environment. It discusses each concept involved 

for the better understanding of relevant concepts before going forward. These components are 

Load curves, Demand response, smart grid and pricing techniques. In addition, this chapter also 

briefs about the components and parameters used in Any-logic software. The pros and cons of 

each technology associated with DSM are discussed in detail.  

 

2.1. Household Electricity Load Curve 

The household’s role in future electricity systems is evolving as now they are playing the role of 

prosumers, therefore a good understanding of the household electricity demand profiles is vital. 

Demand / Load Profile is a curve or chart illustrating the variation in demand/ electrical load over a 

specified time as shown in Fig. 2.1 below. 

  

Fig. 2.1: Example of Load curve [7] 
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2.2. Smart Grid 

A smart grid is an electricity network which provides a two-way flow of electricity and communication 

data with digital communications technology equipping system to ascertain, respond and pro-act to 

changes in user usage pattern and other co-existing multiple issues. Smart grids provide mechanism to 

electricity customers to become active participants in electricity network. A smart grid is a modern 

power generation, transmission and distribution system that can automate and efficiently deal with the 

increasing complexity and requirements of electricity in the 21st century. As illustrated in Fig. 2.2, the 

technology aims to; integrate and support renewable energy sources like solar, wind and hydro, 

empower consumers with real-time information about their energy consumption [8]. Current mode of 

electricity grid network calls for changes in it. This is because the grid technology has been the same 

with no major modifications in connection of flow of communication data for tracking and monitoring 

purpose. There has been a need of revamp in grid technology to incorporate ever evolving modern day 

dynamics of electrical usage and user satisfaction. Fig. 2.2 shows how communication and electrical 

flow of data operate in two way direction in an interconnected system ensuring overall tracking 

monitoring of electricity production and consumption. 

               
 

Fig. 2.2: Smart Grid System [8] 

SMART GRID 
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2.3. Demand side Management 
 

Demand side management is an effective mechanism to efficiently utilize available generated energy 

for increased reliability and productivity of overall system infrastructure. Demand side management 

essentially modifies consumer demand for energy through various methods such as smart metering, 

indirect load control like incentive based schemes and direct load control which include monetary 

incentive for turning off loads or rescheduling loads. Fig. 2.3 shows categories of Demand side 

management in respect of time required for implementation and subsequent impact generated on 

electricity utilization patterns. This is explained in further detail in this chapter. DSM involves the 

process of collection of data of electricity consumption profiles through energy, load and occupancy 

forecasting and then applying different optimization algorithms to design a particular simulator which 

is able to regulate the loads accordingly for efficient utilization of energy at disposal. Demand side 

management is a technique which effectively removes the need of setting up new plants by managing 

load curve in conventional grid and also smart grid having renewable energy penetration. 

                       

            Fig. 2.3: Categories of Demand side management [9] 
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breakdown and failures have occurred due to non-efficient and improperly tested equipment 

usage.  Implementing energy efficiency program under demand side management umbrella is 

rather difficult as it needs a major over haul of entire electrical power infrastructure. 

 Demand response: Demand Response deals with behavioral change in consumer 

consumption patterns to increase efficiency by reducing peak demand of residential sector 

which constitutes major chunk of total cost incurred. It is essentially an energy conservation 

and efficient utilization technique for efficient usage and consumption of electricity by users 

to reduce and lessen the burden imposed on electrical generation, transmission and 

distribution network.  

In Demand Response programs (DR) using Direct load control (DLC), clients give electricity 

distribution companies the choice to shut down appliances from a far apart distance during peak 

electricity demand duration or electric power supply contingencies through a preset program installed 

in controllable equipment, so that load profile can be maneuvered, and in return receive benefits on 

electricity bills for this partnership and cooperation with utility companies. 

The rescheduling of peak load from one time frame to another results in one instability which needs to 

be taken care of through effective and thorough planning. The one big issue is instability, e.g., a 

“rebound” electricity peak demand may take place during an otherwise low demand time period due 

to a significant amount of switched load to same slot/period. Some methods used by utilities for price 

schemes are 

 Price based methods  

It is a day ahead pricing scheme. It utilizes day ahead price, when price is large, only high prioritized 

appliances are allowed to operate.  

 Time of Use (TOU) method 

Generally the commonly known peak demand time periods, morning and evening, are nominated as 

peak energy usage times and during these periods, fewer appliances are operated. 

 Real time pricing (RTP) method  

It is a dynamic pricing scheme. Its parameters are changed hourly or sub hourly. 

 Critical Peak pricing (CPP) method 



 

10  

This scheme is very rarely used by utility companies. It is employed in the case of emergency and 

contingency conditions. Usually customers are charge 15-20 days of the year under this scheme. Prices 

are set very high during these hours. In Fig. 2.4 Time and price based demand response flow diagram 

is illustrated which takes into account the difference between real time pricing and time based pricing 

demand response strategy with former incorporating price signal at run time.  

 

Fig. 2.4: Time and Price based Demand Response flow diagram 

2.4. Components of Demand side Management 

Some of the basic components that lead to implementation of Demand side management and terms 

related to it are described here. 

Load / Demand profiling means to accurately monitored and forecasted electricity consumption 

patterns of users for implementing different techniques and optimization algorithms for achieving 

demand response desired results. Optimization algorithms such as particle swarm optimization, genetic 

algorithm, MOPSO, linear integer programming techniques are used to implement Demand side 
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management by modifying user consumption pattern through demand response control strategies. 

Demand side management in renewable energy environment required power storage devices for its 

implementation. Power storage devices is any type of device used to store power for usage. It is used 

in context of smart grid to mostly refer to storage devices like batteries which provide electricity power 

to appliances once stored through solar or wind power systems. Agent base modeling is a relatively 

newer approach to forecast demand profiles which serve as pre requisite for DSM. There are three 

main simulation modeling paradigms:  

1-  Discrete event  

2-  Systems dynamics 

3-   Agent-based 

System dynamics and discrete event are traditional simulation approaches, agent based is a newer one. 

Technically, system dynamics approach deals mostly with continuous processes whereas discrete event 

and agent-based models work mostly in discrete time, i.e. jump from one event to another. Agent base 

modeling implemented through software Any-logic has some basic components as follows. 

   Agents: Agents may provide representation to a variety of things — people, vehicles, projects, 

utilities, commodities, pieces of land, etc. Agents serve as building blocks of Any-Logic 

model. Agent is a unit of model design that possesses behavior, memory, timing, contacts, etc.  

   Variables: Agent consists variables in them. Variables generally serve the purpose of storing 

the results of simulation or to model some data units or object characteristics, changing over 

time. 

   Event: Event is the simplest way to programme some activity / measures in the model. Thus, 

events are commonly used to model delays and timeouts.  

 Function: Any-Logic enables defining your own functions. Function will return the value of        

an expression each time the user calls it from the model. Functions are helpful when you need 

to re-use the same function in multiple places in your model.  

https://en.wikipedia.org/wiki/Discrete_event_simulation
https://en.wikipedia.org/wiki/Systems_dynamics
https://en.wikipedia.org/wiki/Agent-based_model
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2.5. Agent Base Modelling & Simulation 

This chapter discusses Agent based modelling & simulation (ABMS) in respect of modelling 

consumption profiles. Several methods can produce data that shows people's domestic power usage 

profiles. These approaches include using data mining methods and using performance simulations. 

These approaches are applicable, but data mining uses artificial intelligence and neural networks to 

produce useful power usage profiles. Its only challenge is that it involves intense data collection, and 

the developed models may not be readily applicable to old buildings [10]. On the other hand, 

performance simulations can solve this data collection challenge, but some simulations tend to fail to 

capture and account for randomness of power usage. Their data is not viable in developing load 

profiles. They are only applicable during building design, and not to produce power usage profiles. 

However, due to the challenges of implementing a data mining approach, simulations become more 

suitable in this case to capture the essence of electric load profiling. 

2.6. Agent Base Modelling: Advantageous Approach 

There are several methods of simulating power usage in domestic houses. The performance simulation 

approach uses system-wide data and considers their systems as a whole. For instance, when assessing 

a population of 100 items, these approaches will model one item and then apply its characteristics and 

behaviours to the rest of the items. This approach fails to consider the randomness of the individuals 

in the population. Application of such a modelling approach is not valid, since as discussed above, it 

is hard to use one individual's power usage profile to estimate that of a different person. The best tactic 

would be to use a method that considers all the population members differently and then combines 

their profile to find the whole system. This approach is called agent-based simulation since it considers 

the members in the system as having distinct features. 

This approach defines the variables affecting an agent's behaviours and programs them in a model. 

Then the simulation software places all the agents in an environment, where they can act independently, 

and it then considers their combined response. When used to model the power usage profile for people 

in an area, the agent-based approach produces comparable results to real-life situations [11]. The 



 

13  

advantage of using agent-based modelling in developing power usage profiles is that it does not use a 

generalized structure such as is the case with performance simulations. The agent-based approach 

considers the power usage of different people depending on their appliance usage tendencies. When 

using the performance simulation, the system may assume factors like the time subjects use appliances 

like the television. It will create a general assumption that will make the results fail to be realistic. This 

approach also defines the variable as random and then examines the results emerging from these 

appliances' ensuing random usage. This process produces realistic results. 

It is possible to achieve real-life results when combining mathematical analysis and object-oriented 

programming to develop a simulation. However, this approach will produce a significantly large 

simulation, and it will be hard to make, especially in the case of inexperienced modellers [12] [13]. 

Instead of using such a challenging method, agent-based modelling provides an easy solution. It 

follows a more straightforward process and produces a much smaller model than object-oriented 

programming merged with mathematical analysis. Moreover, the results of agent-based modelling will 

be better than those of the former approach. Thus, agent-based is preferable when compared to the use 

of mathematical and object-oriented programming.  

Based on the benefits of using the agent-based approach to simulate the power usage profile, this work 

adopts aforementioned technique. It used the Any-Logic software to develop and run the model. This 

paper will provide the process used in developing this model. It will discuss all the variables considered 

and show how the software varied and applied them to the chosen population of 300 households. The 

software makes it possible to model and simulate all these households' power usage and provide a 

viable model and results. This paper will also discuss this experiment's results and compare them with 

published data to validate them. Given these advantages of agent-based modelling, it emerges as more 

superior to other methods used in such instances. Besides, as discussed above, agent-based modelling 

provides more accurate results, and its implementation is more straightforward than its alternatives. 

As such, an agent based simulation model is a set of interacting objects that reflect relationships 

in the real world. The results make agent based simulation a natural step forward in understanding 

and managing the complexity of today’s business and social system .
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           Chapter 3 

     Literature Review 

 
 

This chapter presents the literature review on the techniques / approaches being implemented for 

electricity load profiling. It provides a critical analysis of the approaches being discussed in the 

respective papers to implement Demand side management through demand load profiling and 

optimization algorithms and also highlights their advantages and disadvantages in comparison 

with keeping in view different conditions with respect to efficient load profiling resulting in close 

to real output. 

 

3.1. Modelling & Simulation of Electricity Load profiles  

Previous work carried out in the field of electricity load profiling and DSM can be classified as 

techniques followed on the basis of statistical / probabilistic / Time of use (TOU) models, agent 

base models, smart meters / home energy management systems / optimization algorithms such as 

particle swarm algorithm / genetic algorithms / neural networks / fuzzy logic and models based 

on effect of weather / occupancy on electricity consumption. 

Demand Side Management (DSM) discussed in literature employing different control and heuristic 

optimization techniques is an effective tool for utilities to increase the flexibility of electrical 

distribution network, and augment the efficiency of electrical system in the presence of distributed 

generation facilities in a smart grid environment. Emergence of distributed generations and smart grid 

framework has accentuated the importance of having an optimization technique to address the 

problems created by peak load occurrence in distribution network. Research has shown that Demand 

side management finds it major benefits and advantages in residential areas distribution network. 

Residential areas which consist of a major chunk of electricity distribution users may help in making 

the whole electrical system more efficient and reliable if Demand side management (DSM) is 

employed properly. Demand side management can be explained as the name of averting or checking 

the need for investment in brand new electrical power plants, enhancing and improving the power 
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quality, increasing energy efficiency and reliability by ensuring efficient production, transmission and 

distribution of available electricity.  

This section discusses demand profile forecasting techniques as well as the heuristic optimization 

techniques employed thus far in research to implement Demand side management (DSM). Many 

researchers have focused to propose and devise mathematical and optimization techniques to schedule 

the peak load under optimal conditions. This enhances the efficient utilization of available energy in 

smart grid. In [15], latest DSM literature tilt towards stochastic modelling is presented. Credit based 

novel incentive scheme within stochastic planning environment is used. Fig. 3.1. Illustrates household 

smart energy management system including inflow of power from power utility to a home having 

Energy management controller (EMC) to implement control mechanism and thus enabling smart 

control on appliances connected.   

    

Fig. 3.1: Household Smart Energy Management system 

 

Home energy management for distributed energy resources (DERs) comprising both electrical and 

thermal appliances scheduling (HEMDAS) [16]. The proposed technique aimed to minimize the energy 

usage price while considering the user comfort. The mixed integer non-linear programming (MINLP) 
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along with dynamic pricing (DP) scheme is adopted.  

In [17], Teacher learning based optimization (TLBO) is used. Load is classified into three classes: 

shift-able, shed-able and non-shed-able load. Cost efficiency is taken as the ratio of total energy 

consumption advantages to the total energy payments. CE is considered as a signal for customers to 

adapt and alter their energy consumption pattern. Moreover, the fractional programming (FP) 

technique combining with RTP and day ahead pricing (DAP) is adopted in this scheme. The 

performance results show that CE is increased with large number of DERs [18]. In [19], for a system 

with an integration of Photovoltaic (PV) to a wind mill as RESs, and uncertainties arising by RESs 

integration, fuzzy logic technique is used. 

Fig. 3.2 illustrates hierarchical levels of DSM. An author named Safdarian, categorized DSM into two 

stages. In first category, there is a decentralized system with the objective to reduce the energy cost of 

consumers. Mixed integer non-linear technique (MILP) is used to formulate the problem. In second 

stage, the main goal of the proposed model is to provide benefits to the utility by maneuvering the load 

profile while also taking caution of guarding the parameters important to user i.e. cost and comfort. 

MIQP approach is adopted to get to the target of modified load profile curve [20]. 

                

Fig. 3.2: Hierarchical levels of DSM 

Energy 

efficiency 

   TOU 

SR 

Physical 

DR Market 

 DR 

Permanent                     Days                    Seconds 

Time 

 

Temporarily 

reduced 

 

 

 

 

 

 

 

Optimized 

schedule 

 

Optimized 

Impact on 

process quality 



 

17  

Agent-based Modeling and Simulation (ABMS) approach is used by researchers for complex socio-

technical problems to serve as a pre-requisite for implementing DSM policies by forecasting electricity 

load profiles. Recently the framework is used for modeling of smart grid scenarios like demand 

response strategies, distribution generation, integration of renewable technologies and energy storage. 

[21] used the agent-based simulation approach by dividing the London urban area into zones using 

socio-demographic parameters. For each zone, a heterogeneous group of agents is created with an 

occupancy profile which simulates the hourly electricity consumption for heat-pumps, electric 

vehicles, and residential energy. The focus of the researcher was electric vehicles and residential use 

was represented as an aggregate in total electricity consumption. [22] used an agent-based model to 

study office building electricity consumption. 

It has been observed in the literature that mathematical models tend to model structure & environmental 

data better and probabilistic models tend to model social behavior appropriately. However, what is 

required is a strategy which can incorporate both the structural-environmental and socio-anthropologic 

aspects within the simulation element. Though very effective, collecting data from the consumers for 

forecasting and planning has cost, legal and privacy concerns which make these systems less practical 

for the existing energy systems the sheer of collecting data from the consumers makes these models 

unlikely for use in the existing energy system. Table 3.1 gives summarized previous literature work 

analysis. 

Table 3.1: Literature survey and identification of research gaps 

S.

N. 

Demo- 

graphics 
Author (s) Description / Technique Data Source 

16 IEEE 

Transaction

, Turkey 

[15] The proposed mechanism 

relies on providing energy 

credits to the end-users on 

the basis of their contribution 

during a DR event, which in 

turn can be used in periods 

outside the time span of a DR 

event in order to reduce their 

energy procurement cost. 

Synthetic. 40 identical 

households having the 

structural parameters. 

Reference HVAC power is 

nonzero and initially 

assumed to be 12 kW from 

the total of the 40 

households. 
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7 IEEE 

Transaction

, UAE 

[17] DR scheme in the context of 

a day-ahead Bi-level 

electricity market for a VPP. 

A centralized DR aggregator 

then select an optimal 

combination of individual 

daily load profiles. 

Synthetic. Considered a 

VPP system aggregating 

only solar PV generation 

with a total rated power of 

1MW. 

9 IEEE 

Transaction

, Australia 

[18] The tool estimates the 

available domestic hot water 

loads in a controlled area, 

and determines optimal 

switching programs. The tool 

employs Monte Carlo 

simulations to generate hot 

water consumption profiles. 

Exporter block then exports 

the data to an external 

(Excel) file. 

Parameters used in the 

simulations are based on the 

results of a survey 

conducted on 1000 

randomly selected 

households and actual 

energy metering data of 279 

households across 

Tasmania. 

Probabilistic simulations 

are incorporated. 

1 Conference

, Nepal 

[19] 

 

Used survey technique for 

actual and forecasted energy 

demand considering different 

scenarios of growth rate. 

LEAP (Long term energy 

alternative planning 

modeling software). 

Actual. 96 households were 

surveyed for data collection. 

Family size and income are 

parameters. 

Primitive loads. 

2 IEEE 

transaction, 

China 

[20] Cost efficiency based 

algorithm to optimize cost 

benefit per unit cost 

Synthetic. 

3 consumption patterns by 

clustering method. 

25 IEEE 

Conference

, Belgium 

[21] The model considered the 

factors of land use, energy 

landscape, and customer 

inclination. The area under 

consideration is divided into 

different zones by using 

socio-demographic 

parameters. An action based 

on activity is related with 

every agent and electricity 

load model and heat demand 

models are produced. 

Synthetic. 

26 Applied 

energy, 

USA 

[22] The four elements for office 

energy consumption are 

considered. These are Energy 

Management Policies, 

Energy Management 

Technologies, Energy User's 

behaviors, and Office 

Synthetic. 
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Electric Equipment and 

Appliances. 

3 IEEE 

Transaction

, America 

[23] Energy Management 

controller using Markov 

modeling 

Detecting User behavior 

pattern through preset 

reference models. 

4 Int. Journal 

of Energy 

research,  

USA 

[24] Genetic algorithm is applied 

to implement each EMC and 

smart meter of users by 

categorizing loads into 

delayable (timed, regular 

appliances) and non-

delayable. 

The RTP data for 60 days 

(from January 1, 2014 to 

March 1, 2014) is obtained 

from Illinois Power 

Company. 

5 IEEE 

Transaction

s, Spain 

[25] Non-Cooperative game 

theory, Day ahead energy 

market is considered and 

minimization of cost in 

robust situations with 

distributed algorithm is 

presented. 

Synthetic, general 

framework 

6 IEEE 

Transaction

s, Canada 

[26] Implemented DCCM, TSCM 

using SQ (state queuing) 

approach for refrigerator load 

to achieve hybrid scheme 

HCM for better regulation 

and load management 

capabilities. 

Simulation of model uses 

Calgary city estimated 

900 000 devices rated at 

110W, resulting in 99 MW 

of power Capacity. 

8 IEEE 

Conference

, Germany 

[27] To measure the customers' 

electricity consumption 200 

Smart Meters were installed 

at the participants 

measurement points. Half of 

the devices are working with 

Powerline Communication 

and the other half are using 

mobile GPRS. 

Data is obtained from daily 

load consumption of users 

of small town of Germany 

14 IEEE 

Transaction

, Denmark 

[28] The control strategy at the 

aggregator consists of an 

model predictive control 

(MPC) design plus a manual 

controller. The setup 

consisted of an aggregator 

connected via Internet to a 

laboratory refrigeration 

system and a real HVac 

The DERs available for the 

experiment are supermarket 

refrigeration system located 

at 

the refrigeration laboratory 

at the Danfoss headquarters 

in 
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chiller in conjunction with an 

ice storage. The aggregator 

aimed to control the active 

power consumption of the 

consumers directly, such that 

the aggregated power 

consumption stays below a 

certain level during an 

activation time. 

Nordborg, Denmark. The 

ice storage system is located 

at 

the Grundfos headquarters 

in Bjerringbro, Denmark 

15 IEEE 

Transaction

, Canada 

[29] This paper proposes a 

methodology to build a real 

time simulator by identifying 

the thermodynamic 

parameters for individual 

DEWHs and estimate 

individual DEWH water 

demand profiles, based on 

limited measurements. 

Results show that the 

simulator can accurately 

predict the actual load profile 

in the presence or absence of 

load shed control action. 

Therefore, the proposed 

simulator may be used for 

assessment and validation of 

control performance in DLC 

programs. 

Using measurements of 

power consumption of 

DEWHs in 

the PowerShift Atlantic 

pilot project, 

thermodynamic parameters 

were identified and water 

usage profiles were 

estimated. 

 

20 ICEIA 

Conference 

, Iran 

[30] Produced structures by DLC 

are optimized by Integer 

Genetic Algorithm that is 

discussed in this paper. 

In residential area, it is 

assumed that 210 

equipment are controllable 

out of 1650 and in industrial 

area, 50 equipment are 

controllable 

18 IEEE 

Transaction

, USA 

[31] Proposed approach utilizes 

the average consensus 

algorithm to distribute 

portions of the desired 

aggregated demand to each 

EMC in a decentralized 

fashion. The allocated 

portion corresponds to 

each building’s 

aforementioned local power 

consumption target which its 

EMC then uses to schedule 

the in-building appliances. 

The result will be an 

aggregated demand over this 

Synthetic. Typical 

residential appliances’ 

power consumptions are 

considered, the power 

consumptions of appliances 

are uniformly distributed as 

(50 W, 2000 W). It is 

assumed the cycle durations 

of appliances follow a 

uniform distribution of (15, 

135) min in the simulation. 
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region that more closely 

reaches the desired demand. 

10 IET, China [32] Aggregate TCL’s do not 

have Markov chain property 

which is necessary for SQ 

modelling to characterize 

loads. A modification 

method is proposed for the 

SQ model so that its 

accuracy is greatly improved. 

The modification is 

implemented by multiplying 

the original transition matrix 

P by a modification matrix 

M, which is derived through 

GA-based optimization 

Synthetic. Considered 

10,000 individual TCLs 

with normally distributed 

parameters of mean and 

relative standard deviations. 

11 IEEE 

Transaction

, China 

[33] Model determines proper 

amount of DR loads to be 

shifted from peak hours to 

off-peaks under the ISO 

direct load control for 

reducing the operation cost 

and ensuring that DR load 

payments will not deteriorate 

significantly after load 

shifting. 

The proposed model is 

solved in its original mixed-

integer nonlinear 

programming formulation 

and the mixed-integer linear 

programming reformulation 

Synthetic. A 6-bus system 

is adopted to illustrate the 

effectiveness of the 

proposed MINLP model. 

The modified IEEE 30-bus 

system is used to study the 

proposed approach on 

larger systems,  

12 IET 

Journal, 

India 

[34] This paper considers CPSDS 

(Cyber physical smart 

distribution system) in which 

RLAs are presented with 

various categories of 

incentives and underlying 

operating conditions offered 

by DRAA for event-based 

DSM mechanism. 

Thereupon, customers are 

encouraged to select 

incentive category of their 

own depending on their load 

consumption pattern. 

Synthetic. The proposed 

DSM framework for 

CPSDS is examined using 

IEEE 37 bus test system 

with three types of loads 

categorized as residential, 

industrial and commercial. 
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13 IEEE 

Transaction

, Belgium 

[35] In this work, batch RL is 

used, where an estimate of 

the Q-function is obtained 

offline. A regression 

algorithm is used to 

generalize the estimate of the 

Q-function to unobserved 

state-action combinations. 

Synthetic. Second-order 

model has been used to 

describe the dynamics of 

each building. the values 

are selected random from a 

normal distributions 

17 Elsevier, 

Spain 

[36] Power constraints from the 

system operator are the input 

of this method. An algorithm, 

based on the Multi-Objective 

Particle Swarm Optimization 

(MOPSO), is applied to 

satisfy these constraints that 

modify the operation of the 

appliances. 

The main concern of this 

paper is how to adapt a 

MOPSO method to deal with 

a complex and dynamic 

system. 

Synthetic. Parameterization 

of model is done by 

assuming 1350 households.  

19 IEEE 

Conference

, Ireland 

[37] The paper describes the 

modelling of simple DLC-

DR and DR using a fuzzy 

system approach which is 

typically a rational decision 

making model.  

Synthetic. Two peak 

periods (6am-9am, 6pm-

9pm) are considered with 

peak of 3.1 kw. 

21 IEEE 

Conference

, India 

[38] PSO is implemented, hour 

breakdown scheme is used to 

arrange appliances according 

to particular type. RLM 

(Reducible load margin) 

scheme is used to make 

forecasted load nearer to 

objective load.  

Synthetic. 14 different 

controllable types of 

appliances are considered. 

22 Springer, 

Conference

,Pakistan 

[39] GA and Binary PSO are 

utilized to build a hybrid 

algorithm GAPSO. Peak and 

cost minimization with 

maximizing user comfort is 

considered. 

Synthetic. 14 types of 

appliances considered. 

23 Applied 

Energy 

Journal, 

USA 

[40] An agent-based model is 

developed for electricity 

consumption of a single 

representative household of 

U.S. to study demand 

response schemes. 

Synthethic. 
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24 Applied 

energy 

Journal, 

Abu Dhabi 

UAE 

[41] In this paper, ABM 

framework is developed to 

model an urban area with 

several buildings along with 

the movements and actions 

of people within the 

environment and calculating 

key performance metrics 

such as indoor/outdoor 

thermal comfort and energy 

consumption levels. This test 

and propose strategies to 

optimize sustainable building 

operation.  

Synthehic. Suitable 

assumptions were made in 

respect of stochastic 

techniques PMV and 

regression. 
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   Chapter 4  

System Model 

This chapter provides understanding of how the proposed framework modelled different considerations 

of the system and the reason behind the decisions. It shows how the simulation considered the usage 

patterns of household appliances, the number of bedrooms in houses, occupancy patterns, loads having 

fixed and those having variable loads, and the effect of weather conditions on some loads. This chapter 

explains the proposed method of ABM implementation in a household scenario and its problem 

formulation. Fig. 4.1 shows proposed framework which is explained in this chapter in detail and 

the description of the proposed approach includes the detail of inputs applied to a model and its 

outcomes while considering external factors affecting the simulation parameters. The equations 

involved in model formulation are also discussed in detail where the purpose of using each 

equation is elaborated. 

 

 

4.1. Modelling Household appliances and their usage patterns 

A house would typically have appliances that exert different power loads. For instance, the load 

emerging from using a water heater will differ from that of lights. The usage of these appliances is 

typically independent of each other. For instance, one would use them for different durations, leading 

to varying power consumption for each power consumer. It is possible to classify these loads according 

to their usage. Specifically, some of them will always be on throughout the day, even when the houses 

are empty. For instance, loads, like digital clocks, will always be on throughout the day, even when 

they are not in the house [5]. Moreover, they run at constant power and therefore, in each household, 

they will always have similar loads per day. 

 

Therefore, when modelling a house, this project considered and includes them in the developed model. 

This project considered baseloads to include refrigerators, routers, digital clocks, and freezers. These 

loads will always run throughout the day for houses having them. The project considered these loads  
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Fig. 4.1: Proposed Model Framework 

 

to have power ratings as follows. Freezers have a rating of 80 W, the rating for routers is 4 W, that for 

digital clocks is 3 W, while for refrigerators is 50 W, and these values were obtained from [5]. While 

this project used these values, some variations in their power allowed some people not to have all these 

appliances, while others may have different power ratings. 

Other loads found in a house do not fit in the categorization of the baseloads described above. 

They include loads, whose usage depends on occupancy of the house and activity of the residents. 

For instance, a computer load will only be connected when a person is in the house and needs to 

use it. Same is the case of other loads, such as domestic hot water, televisions, and cooking. A 

person will always connect these loads instantaneously when needed and disconnect them after 
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finalizing using them. A good example is cooking, whereby a person will power a cooker before 

a meal, use it for a given duration, and then power it off. The usage patterns of these loads may 

not depend on their ratings. As shown, their power consumption is not constant in a house, and 

their usage has varying durations. This project considered different usage patterns for these loads. 

Another category of loads exists, and it represents loads having adjustable power ratings. The 

power consumption of these loads will depend on the setting of a user. An excellent example of 

these loads is an air conditioner. Its load will depend on the prevailing weather condition, which 

will cause a user to select a power rating that gives them comfort. A person can vary the 

consumption of these loads from a minimum value of zero to 1000 W [5]. Another factor that 

determines their consumption is the climatic conditions. The name of the category containing 

these loads is adjustable loads, and the two most common examples of these loads are air 

conditioners and fans. 

The final category of loads that this project considered is that a user can shift to different times. 

They include dishwashing, laundry, and charging of electric vehicles. While these loads are 

critical, a user does not need to connect them instantaneously. This factor makes it harder to model 

their power consumption compared to other loads. Some people will connect some of these loads 

when they are asleep and others when they are awake. For instance, a person can charge an electric 

vehicle and use the laundry machine once a week. Such factors make it hard to model these loads. 

This project considered all these varying usage patterns when modelling them. When a power 

generation company intends to optimize their grids' power consumption, they may encourage 

people to shift these loads to low-consumption hours [6]. Such a step would improve the efficiency 

of the grid. Recommended actions may include charging an electric vehicle when sleeping to 

avoid straining the grid during peak hours. This project also simulated this case to ensure that it 

reduces large spikes emerging from these transferrable loads. 

Fig. 4.2 illustrates system model overview. The chapter in following sections discuss each sub- 

system design parameters and conditions in detail. The model considered categorised loads to 

have different usage patterns for each house. Since houses have different numbers of rooms, the 

baseloads would vary. This project update agent characteristics modelled this factor by creating a 
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triangular distribution with its mode set at its average and a 30% variation from this mean. This 

variation accounted for the fact that some houses would have a higher or lower number of rooms 

than most households (mode). The model then multiplied the summation of all the baseloads by 

24 hours a day to get the number of power units in KWh for the houses.  

Fig. 4.2: System Model overview 

4.2. Modelling of Households’ size and Load units 

Agent-based modelling makes it possible to simulate the behavior of complex domestic power 

usage profiles. As stated above, people do not follow similar power consumption profiles, making 

it hard to generalize their power usage. For instance, while one person may decide to use their 

personal computer while the television is on, others will only use one of these appliances, and 

therefore, they will have different power consumption profiles. This variation will emerge from 

loads, such as lighting, fans, air conditioners, phone charging, personal computer loads, other 

appliances, depending on the room numbers [11]. The number of rooms in a house, particularly 
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bedrooms, significantly affects people's power usage variation. It is, therefore, vital to consider 

this factor when modelling the power usage of different households. 

Assigning all houses in a system the same number of rooms and bedrooms would lead to an 

inaccurate model. Moreover, the results of such a simulation would not be viable for use in usage 

power profiling. A good model should consider this factor and then allow the simulation agents 

to have different room and bedroom numbers. Including this feature makes a model give results 

that approximate an actual setting. When developing this model, this project considered the 

number of occupants and their activities. At some times, a house will have no occupant, and 

therefore, even if it has many bedrooms, it will have close to no power consumption. Such times 

include during daytime when all the residents are out of the houses. Additionally, the residents 

will be asleep at other times, and therefore, the house's number of bedrooms will not affect its 

electric power consumption.  

This project considered these factors when developing the simulation. It combined them with 

other variables discussed in this paper. For instance, these other variables include the usage 

patterns of appliances in a house, house occupancy patterns, and the climatic conditions. 

Combining these conditions led to the development of an actual modelling of its occupants' power 

usage profiles.  

This project did not have a specific function that considers the number of rooms or bedrooms, 

instead, it incorporated it in each function. For instance, case described above of the appliances in 

a house, the project modelled their usage to vary according to some triangular distribution. These 

functions are defined to consider the number of rooms and bedrooms in the houses. 

4.3. Modelling Household Occupancy patterns 

As stated above, some electrical loads depend on the presence of a person in the house. They also 

depend on the person's activities in the house, whereby they must be using them for their load to exist. 

They include lights, air conditioners, televisions, radios, cooking, dishwashing machines, and other 

similar appliances. Such loads will only occur when a house has an occupant. A person in a house may 
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still decide not to use such appliances, which causes the loads to cease existing. Precisely, an occupant 

will only use such loads when needed. In some cases, occupied houses will not have these loads. For 

example, a person can be in the house, yet asleep. Such an individual will not need loads, such as the 

computer, cooking loads, light, and television. Therefore, when modelling households' electric power 

consumption, it is crucial to consider this factor to produce a realistic simulation. 

This project modelled household occupancy patterns to ensure that it simulates houses' actual 

condition to generate realistic power consumption. In order to achieve this, it modelled people 

sleeping, going to work, and being at home. Each of these states attracts varying electric loads. 

Precisely, when a person is at work, they cannot use electrical appliances in the house, and 

therefore, the only existing loads will the baseloads discussed above. Furthermore, if the person 

is asleep, they will not use as many electric loads as when they are awake. In such a case, the only 

loads that they will have are the transferrable loads discussed above. For instance, people with 

electric vehicles can charge them at night, and therefore, their electric consumption at these times 

will have to include the loads ensuing from this activity. Moreover, in cases where generation 

companies need to improve their grids' performance, they can encourage their clients to use such 

loads at low-power consumption hours [13]. These hours include at night when most users are 

asleep. 

Characteristically, when people return to the house from their daily activities, they start engaging 

many loads, such as fans or air conditioners, lights, televisions, and many other instantaneous 

loads. This sudden connection of many loads in almost all houses leads to a sudden rise in 

households' total power consumption. Other individuals will also start charging their electric 

vehicles, contributing to the spike in power consumption. After some time, these people will 

disconnect some of these loads, which will cause a variation in power consumption.  

This project modelled the houses' different occupancy patterns to ensure a variation that simulates 

actual household occupancy. It considered several factors when developing this model. Firstly, 

not all people wake up at the same time. Therefore, it modelled the occupants of the houses to 

wake at different times following a triangular distribution whereby the earliest person woke at 
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3:00 am, the last one at 5:30 am, and most people waking at 5:00 am. This project selected this 

pattern hypothetically and it devises strategy to model people’s waking up to a close to real life 

scenario. It ensures that their loads do not experience a sharp peak at the same time. Secondly, 

while many people go to work at around 8 am, they do not leave at the same time. This project 

ensured that they leave their houses at different times, by setting them to leave for work from 6:00 

am to 8:00 am and a majority to leave at 7:30 am. 

Thirdly, while many people leave work at 5 pm, they do not arrive in their houses together. Some 

will return home earlier than others keeping in view different factors e.g distance from the house 

to workplace, time constraint etc. Moreover, when they enter houses, people do not always start 

engaging particular loads. Therefore, the project varied the number of appliances that they engage 

randomly to ensure a near-actual profile. It modelled their return home and loading of power 

devices using a triangular distribution varying from 5:00 pm to 9:00 pm, and a majority arriving 

at 6:30 pm. Furthermore, even with this variation, the model added a second layer of variation 

when calculating the power consumption of each household. It varied them accordingly to reflect 

the number of hours that the residents would use their appliances. This factor affected all the loads, 

and leads to a secondary variation, which closely approximates actual usage profile for these 

electrical appliances. 

Fourthly, this project considered when occupants go to bed and ensured that it varies from one 

individual to another. It modelled the occupants to go to bed using a triangular distribution 

whereby the first person goes to sleep at 8:00 pm, the last one at 11:59 pm, and the average time 

being 9:30 pm. This distribution accounts for the gradual drop of power consumption recorded in 

the simulation. It approximates people’s actual sleeping patterns. Fig. 4.3 shows a flowchart of 

how the occupancy pattern affects the total load consumption by considering different conditions 

under which certain load connects resulting into different electrical power consumption 

subsequently. Connected load depends on the occupancy state and patterns exhibited by the agents 

and in connection to consumption and utilization of a specific category of load. Four occupancy states 

which model the usage patterns are discussed in the next chapter.          
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Fig. 4.3: Flowchart of occupancy pattern and power consumption 
 

 

4.4. Modelling Impact of weather on usage of Air-conditioners and fans 

Other than the factors described above, climatic and weather conditions can also affect people's power 

consumption in a community. High-temperature conditions bring discomfort to people, which causes 

them to use air conditioning appliances that bring their houses' temperatures to conducive conditions. 

Similarly, when the temperatures are too low, people use appliances that regulate it, making it 

comfortable for occupants of a house. These devices typically have high power ratings, which causes 

them to exert a large load on people's power consumption. For instance, air conditioners have a typical 

power rating of 1000 W. Such a rating has a significant impact on the total power consumption of a 

house. In extreme climatic conditions, such as during winter or summer, people are most likely to use 

fans and air conditioners more than in other periods. These loads may also be in use even when people 

are asleep. In such instances, they will not follow similar patterns as described above. When modelling 

people's power consumption profile, it is crucial to consider these loads since they can account for 

large consumption variations from other times. 

While these loads are large and can cause a sudden surge in the total power consumed in a 

community, they are adjustable. For instance, a user can reduce or increase an air conditioner's 
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power output without affecting their comfort. This variability in the operational power rating of 

these devices causes them to cause a substantial effect on the power variation between houses. 

Furthermore, just as in many other loads, people typically do not use them being high wattage 

equipment when they are not at home. Therefore, its usage depends on the occupancy of a house. 

They also relate to the number of rooms in a house, particularly bedrooms. A house with many 

rooms will typically have a higher load emerging from these loads since it has more air to heat or 

cool. Therefore, this project considers this dissimilarity and models it to produce a good simulation 

of its impact on the total load.  

It is expected that in times of unfavourable temperature conditions, people would use these 

appliances more than at other times. Moreover, other than in times of extreme temperatures, 

people may also use these devices even when climatic conditions are not too high or low. In this 

operation, these loads are regulated by thermostats, which regulate their power depending on the 

house's heat conditions. Their power consumption will typically depend on the temperature of a 

room. When a room is warm enough, these loads will have a low value. However, when it is much 

farther from a set point, then the thermostat would cause these loads to have a significantly high 

rating, which would affect the overall load of a house. This variability of these loads causes them 

to contribute significantly to the power variations of different houses. Therefore, it is crucial to 

model their behaviour to produce a realistic simulation that approximates houses' actual power 

usage.  

This project made it possible to change the temperature at runtime. This factor allows one to see 

the impact of temperature variation on the model. When the temperature is below 20℃ it engages 

the heater and when it is higher than 28℃ it starts the air conditioner. Moreover, being the 

inductive load, the wattage consumption of the heater or air conditioner depends on the extent of 

the heat or cold. This is discussed in the next chapter. Markedly, if the building is at 18℃, an 

occupant would select a lower power rating for the heater than when it is 5℃. The same applies 

to temperatures exceeding 28℃. When the household is at 30℃, the air conditioner will operate 

at a lower power rating than when it is 37℃. 
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Fig. 4.4: Impact of climatic conditions on the model 

The flowchart in Fig. 4.4 illustrates how the model responds to different climatic conditions. It 

shows that when the temperature is high (greater than 28℃), then the model considers air 

conditioning loads, and when it is cold (i.e. temperature lower than 20℃), it considers heating 

loads according to the rules described above. 

4.5. Modelling Loads with Variable and Fixed Power consumption 

Another crucial factor to consider when simulating domestic power consumption is the variability of 

loads of different appliances. In this case, there are two types of appliances, which include adjustable 

fixed loads. Variable loads include air conditioners and fans as discussed above. The operation of these 

loads depends on the need of the person using them. Another instance is the case of charting electric 

vehicles. The amount of time that this load would exist on the grid typically depends on equation (1) 

described below [5]. Charging duration is directly proportional to the amount of power consumed. 

 

𝑇 =
𝐶 − (𝐶 × 𝑆𝑜𝐶)

𝑃
(1) 

Where T = total charging time. 
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C = Total battery capacity. 

SoC = Current state of charge of the battery. 

P = Charging power consumption. 

Moreover, the value of SoC uses the relationship in equation (2) below. 

 

𝑆𝑜𝐶 = 1 −
𝐷

𝑀𝑎𝑥 𝐷
(2) 

Where D is the daily trip distance, while Max D is the maximum trip distance that the vehicle can 

travel.  

As equations (1) and (2) show, some vehicles may need more time to charge than others. 

Therefore, charging of electric vehicles is a variable load and thus, when modelling the power 

consumption of different people, it is crucial to include this variability. Such a load will be 

different from a fixed load, such as a digital clock's power consumption in a house. However, 

while it is not possible to adjust the power that fixed loads use, their value is usually not the same 

for all cases. This variability comes from the power usage differences between people as described 

above. Specifically, people will always use different appliances at dissimilar times and for varying 

durations. Consequently, when comparing two households, their power consumption emerging 

from fixed loads will also be different. Therefore, when developing a model, it is crucial to 

consider the variability of bot adjustable and fixed loads to produce a valid model.  

This project modelled these variations differently. In the case of fixed loads, it only varied the 

usage patterns of users. Precisely, it gave the agents a different amount of time to use these fixed 

loads. However, in variable loads, it modelled different usage durations and their varying power 

ratings. The result was a load variation that remarkably simulates practical situations. This factor 

applied to the charging of electric vehicles and air conditioners in the project. 

An important part of this model is its handling of inductive loads. These loads include fans, 

refrigerators, dishwashing machines, vacuum cleaners, water pumps, and many other appliances 

that have motors. Unlike with resistive loads, inductive loads usually have a spike in their power 

during starting, which gives them a different behaviour than resistive loads. It also makes it hard 

to model them using an on off step function [12]. Typically, these loads have a spike in their 
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consumption, when starting after which they have a somewhat stable level. This project 

considered this factor and modelled it using the following reasoning. Firstly, the simulation 

focuses more on the power consumption given in units of kWh. Secondly, the spike noted above 

would significantly influence the power consumed in kW and since it occurs for a very short time 

during starting, it would not have a substantial influence on the kWh consumed. Thirdly, the 

variations are not significantly large compared to the power rating of these appliances. Therefore, 

when considering their consumption for a long period, such as a whole day, their usage can ignore 

these fluctuations. However, when the model shows the power consumption in kW for a short 

duration, such as an hour, then it has to consider this spike in the consumption.  

Fig. 4.5 from [12] shows the influence of this fluctuation in a model that uses two hours. It can be 

seen that as the load switches on, a huge transient spike of electricity power occurs and as time 

(x-axis) passes by, wattage consumption begins to show decreasing trend. After about 15 min of 

initial spike and a decreased power consumption, there is an increasing trend for a short span of 

time, after which again power consumption moves downwards. This whole process can be seen 

to last for about 30 minutes after which power consumption steadies down to a normal power 

consumption value which comes up the around 20% less than initial spike value. 

Fig. illustrates the process used in modeling inductive and non-inductive loads. Due to the large 

number of home appliances being inductive, and since their power consumption differs from that 

of resistive loads, it was crucial for this project to model them differently. It calculated their total 

consumption in kWh and then added a consumption equal to the initial spike in their consumption. 

Typically, these spikes last for not more than two minutes and might be up to 6 times more than 

the actual power of these appliances. This project incorporates this spike by adding a consumption 

that varies from ten seconds to five minutes and having a power rating of between two to seven 

times that of the load. This modelling approach is different from the fixed resistive loads, which 

only consider the rated power for the appliances. Using this approach helps the model to have 

actual power usage properties of a typical household. 
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Fig. 4.5: The power consumption of a refrigerator [12] 

 

A refrigerator is an inductive load, and as every time the motor starts, it records a large spike in 

the power consumed after which it stabilises. Moreover, even when the power appears stable, it 

still exhibits some fluctuations. 
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Fig. 4.6: Process flowchart showing modeling of inductive and non-inductive loads 
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  Chapter 5 

Simulations 

 

 
The previous chapters have discussed the factors to consider when developing an excellent 

domestic power consumption agent-based model. This section will now describe the model in 

great details, and it will also provide the results emerging from the simulation of this developed 

system. As discussed above, the best method to create this model is to use an agent-based 

approach. This project used the Any-Logic software to develop and simulate the model described 

here. It considered a small population of 300 households. This software is ideal for making such 

models since it creates the agents and assigns them the defined characteristics and then runs them 

in an environment where they can interact. This feature leads to developing a practical model of 

people's power consumption profile in a population. This modelled population had similar 

characteristics as an actual population. Specifically, the residents of these houses could sleep, go 

to work, be at home, and choose when to use some electric loads and when not to use them. 

Based on this project's complex nature and its potential significance, it was essential to ensure that 

the different loads do not affect each other. This way, it would be possible to monitor each 

independently. This project considered loads of the following appliances: light, television, 

personal computers, domestic hot water, cooking, laundry, dishwashing, air conditioners, and 

charging of electric vehicles.  

Each of these loads was defined as a variable to make it easy to monitor it independent of the rest. 

This approach also makes it easy to plot the values of the different loads on a time plot. While it 

would be possible to achieve the same results without using variables, that alternative would be 

more complicated than the chosen approach. These variables also made it much easier to calculate 

the different consumption values than it would be without them. Had the model not used these 

variables, it would have had to define the loads every time it needed to use them. Such an approach 

would have led to some problems in the model’s java code, making it complex, which would have 

increased the chances of errors in the programming. However, the chosen method eliminates the 
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need for defining the loads anew. Whenever the model needs to use a variable, it only needs to 

call it. Besides, at runtime, the system shows the values of these variables, which helps in 

visualising their values. The model also considered the total loads, which is a sum of all the 

variables described above.  

Another feature of this project is that it shows a modelled average duration within which the 

occupants of the households were at work, at home, and awake. As described above, these factors 

affect some appliances' usage and the model's total load. As the simulation runs, it shows these 

variables' values, making it possible to follow them and see their effect. This model also defined 

four independent phases in which the occupants can be. They define the house occupancy patterns 

of the people, including morning, working, evening, and sleeping. The morning phase includes 

the time after a person wakes and before leaving for work. Its duration depends on the time when 

an individual wakes and when they leave home for work. This duration affects the amount of 

power they will use on appliances, such as lighting, television, cooking, and other applicable 

loads. Between this phase and the working state is a transition that simulates people going to work. 

It models that many people leave for work from around 6 am to 8 am, with some variation in their 

time. The variation models the practical occurrence of this event. When a person is at work, their 

homes do not have many loads. The only ones that will continue occurring are baseloads as 

described above. The simulation should show a slight decline in the amount of power consumed 

in the houses at this phase. The duration that individuals spend at work is shown during the 

simulation, and it depends on a function in the model, which aims to make it realistic. Specifically, 

it would be incorrect to assume that all people work for the same amount of time.  

After this state is a transition that models people returning to their homes, it acts as an interface 

between the working and evening states in the model. Just like the transition to work, this one also 

depends on a random function that makes the model simulate people returning to their homes. 

Upon reaching home, these individuals move to the evening state to continue using their electric 

appliances. It is here that most of the consumption occurs since people engage in many activities. 

Like the case of morning and working states, the duration that one spends in this state depends 

follows a modelled function that allocates the time randomly. After this state, a person goes 

through a transition named going to sleep, which comes before sleeping. The last phase is sleeping, 



 

39  

in which time a person's consumption of electricity is lower than it was before. At this instant, 

most of the running loads are the baseloads and others that have been described above. This cycle 

takes 24 hours in model times, and it shows the amount of power that the occupants use throughout 

their day. 

Asleep

Awake

At work

Home from 

work

Waking up

Returning 

home

Going to 

work

Going 

to bed

 

Fig. 5.1: The four states 

Fig. 5.1 shows these four states and their respective transitions as modelled in this project.  The 

mode presents its data in two ways. Firstly, it uses the numerical values of the variables described 

above. Secondly, it uses graphs that plot the values of these variables during run time. Using plots 

makes it easy to note higher than other variables, making it easy to compare them. Moreover, the 

variables offer an advantage to a person running the model, since they allow one to copy their 

historical data, which can then be analysed further using Microsoft Excel or any other statistical 

program. Moreover, other than showing the electric loads incurred in the model, the simulation 

also shows the occupants graphically as they move through all these states. It uses different colours 

to illustrate different activities. For instance, a person sleeping is shown in the colour lavender, 

one awake is yellow, working is lime green, while an occupant from work is coloured in gold. 

The plots indicate times of the day on the x-axis and power consumption on the y-axis. These 

features of the model make its analysis to be easy. 



 

40  

Table 5.1 lists the parameters for household appliances and load scheduling according to four 

different category of loads. EV load service time is determined by SoC, P and C values from Eq. 

(1) explained in previous chapter.  

Table 5.1: Parameters for Appliance Agents  

Load category Appliances Service time Power rating 

 

Baseload 

Digital clocks Continuous 3W 

Routers Continuous 4W 

Refrigerators Continuous 50W 

Freezers Continuous 70W 

Occupancy 

dependent load 

Computer State dependent 100W 

Television State dependent 60W 

Lighting load State dependent 40W 

Adjustable    power 

rating   / Variable 

load 

Air conditioner 
Run time Temperature 

dependent 

350-2400W 

 

 

Shift able load 

Washing machine 
Cycle 1 20 min 1000W 

Cycle 2 40 min 400 W 

Dishwasher 
Cycle 1 25 min 1800W 

Cycle 2 65 min 1200 W 

EV charging T depending on SoC & P 5480 W 

  

Table 5.2 gives the conditions and constraints linked to occupancy states. The model used triangular 

distribution varying from each time period while adding a second layer of variation when calculating 

power consumption to reflect number of hours that residents would use appliances. 

 

Table 5.2: Occupancy conditions and constraints  

State Behaviours Time constraint  

1 Awaking up 0300-0530 hrs 

2 Going to work / Leave home 0600-0800 hrs 

3 Returning home 1700-2100 hrs 

4 Going to bed 2000-2359 hrs 
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5.1. Results 

The following are the results obtained from this simulation. These results use graphs of time on 

the x-axis and power units of kilowatt hours (kWh) along the y-axis. Each result was obtained in 

separate simulation. Since some required short time durations, such as a few hours per day like in 

5.2 and 5.3, a week like in Fig. 5.4 and Fig. 5.5, and a year like in Fig. 5.6 and Fig. 5.7, the time 

scale was adjusted accordingly. Results for a few hours used a short duration on the x-axis, 

producing detailed power consumption data. When showing results for a week or a year, the time 

was adjusted accordingly to show seven or 366 days. Before running the simulation, it is important 

to adjust the time scale to provide the required graph. The power scale on the y-axis has been set 

to adjust automatically depending on the data to be plotted. When the power consumption is high, 

the scale adjusts itself to capture all the data. This scale shows the amount of power consumed in 

power units of kWh. 

 

Fig. 5.2: Different loads from evening to sleeping time 

The plot in Fig. 5.2 illustrating load curve has Time (24 hrs) on x-axis and units consumed (kWh) on 

y-axis. It shows individual load curve of each appliance modelled in the proposed framework. It shows 

a gradual rise in people's consumption around evening and in morning when people are about to go to 

work and then a sudden drop right before midnight. EV load shows maximum kWh consumption of 
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460 units in 24 hrs. The simulation also shows that the total power recorded i.e sum of all connected 

loads power varies depending on the individual loads, as shown in Fig. 5.3. Energy consumed (kWh) 

on y-axis shows increase in value when calculated for total power consumption for all appliances as a 

whole. Power consumption trend is noticeable with two portions of the day where kWh consumption 

is more than other parts, one being at night time before midnight when all occupants are at home 820 

kWh and other – in the morning from 07:30 till 09:00 Hrs with 750 kWh units peak when people 

engage loads as most of the occupants set to leave home for respective work stations. 

 

Fig. 5.3: Plot of total power consumption 

 

When shown across a scale of one week, the plot shows a recurrent rise and drop in the power 

consumption throughout the week, as shown in Fig. 5.4. It shows major share of power consumed by 

EV load is 430 kWh in one day of the week which turns out to be weekend and Heater recording second 

most consumption given reading taken in month of winter season. Other loads such as baseloads are 

shown to consume less amount of power because of low power rating. 

Total Power consumption 
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Fig. 5.4: Power of different loads within a week 

Fig. 5.5 shows total power consumption recorded in a week. Graph shows maximum value of 700 

kWh consumption on y-axis on a particular day of week while days of a specific week of month 

of March are shown as x-axis. Trend shows a relatively consistent power consumption throughout 

a day on weekends in comparison to week days given change in occupancy pattern of household 

due to vacation factor. People tend to leave home for less time on weekend than a weekday.   

 

Fig. 5.5: Plot of total loads within a week 

Total Power consumption 
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The model has been designed to have an automatically updating temperature that corresponds 

with actual values depending on climatic conditions. Specifically, it simulates temperatures for 

winter from December to March and summer between June and September. Therefore, when the 

simulation runs, the values for A/C and heating loads will change depending on corresponding 

climatic conditions. Moreover, the model allows one to change the temperature, making it possible 

to simulate different temperature conditions and override the climatic temperature. Fig. 5.6 shows 

the corresponding result of Air-conditioner (A/C) and heating loads depending on the two main 

seasons. Air conditioner load gives maximum spike of 50 kWh on one instance in August while 

average consumption of heating load is 12 kWh. In Fig. 5.6, the bluish (medium turquoise) lines 

show the consumption of air conditioners, while the purplish (light slate blue) lines show the 

heating loads. 

 

Fig. 5.6: Influence of climate on A/C and heating loads 

The climatic condition not only affects the heating and air conditioning loads, it also influences 

the total power consumed in a household for a given time duration. For instance, considering the 

case above of two years, the graph in Fig. 5.7 shows the corresponding total power consumed 

depending on the climatic conditions. 
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Fig. 5.7: Impact of climate on A/C, heating, and total power consumption 

Fig. 5.7 shows that when the heating loads are high, the corresponding total power consumption 

also goes high and heating loads record more power consumption KWh shown as y-axis compared 

to Air-conditioner loads. This is due to the fact that heating loads are resistive in nature and energy 

drop out occurs by converting flow of electrical energy to thermal energy. 

Fig. 5.8 shows the power consumption in the second week of June, when it is in summer season. 

Total power consumption 
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It is noticeable that there should be no heating loads while air conditioning is high for that period. 

This results in less value of kWh units consumed as shown on y-axis. Maximum amount of power 

consumption is 4,250 kWh on a particular day in two week period under consideration. It is 

evident from the Fig. 5.8 that at weekend days, power consumption is showing slightly upwards 

trend than week days while most power consumption takes place at days having end of weekday 

and start of weekend. 

   

Fig. 5.8: Summer loads two weeks in June 

Furthermore, Fig. 5.9 shows the consumption during winter, in the first week of January. At that 

time, the temperatures are low, and therefore, A/C loads are missing, while heating load is high. 

Maximum value of consumption on one particular day of corresponding period is 8,750 kWh. 

Furthermore, the graph shows that electricity consumption is higher in weekends since people are 

in their homes. This relates to the modelling of occupancy profiles of the occupants. The model 

simulates weekends by letting all people to stay at home and not go to work. Therefore, their 

consumption is much higher than during weekdays when they are not at home. 

Total power consumption 
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Fig. 5.9: Winter loads two weeks in January 

Fig. 5.10 shows the occupants' states in terms of different colours as formulated according to time 

constraints.  Occupants are modelled as agents in the simulation and their occupancy state changes 

with respect to time. Fig. 5.10 is showing states at a time in simulation model right before agents 

(people) return to their homes from work. Most of the people are still at work shown as green, while 

others already at home are shown in golden colour. Occupants in neither of these two states (asleep) 

are represented in grey colour. 

 
 

 Fig. 5.10: Any-logic graphical representation of the agents in different states 

Total power consumption 
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Fig. 5.11: Appliance-wise consumption 

Fig. 5.11 shows the appliance-wise consumption data of 300 households for a period of one month. 

X-axis shows date of a particular month and y-axis shows total energy consumed in KWh. The 

graph shows important factors worth noting about power consumption for the modelled 

community. The three largest power consumers are electric vehicles, followed by hot water 

systems, and air conditioning. One factor that makes electric vehicles to consume large power 

quantities is the fact that the residents use them daily, and therefore, they have to charge them 

each day. Moreover, a significant number of households modelled had electric vehicles, which 

made them to have substantial power consumption. The consumption of hot water systems is high 

due to the large power rating of these heaters. The case of air conditioners depends on the season 
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under consideration. In hot times, the consumption for these A/C systems will be high. When 

seasons change, the consumption of A/C reduces to minimum and heating becomes significant as 

shown in Fig. 5.11. Therefore, the third most significant consumer is heating or air conditioners 

depending on season of the year. 

It can be seen that major power consumption load in simulation environment is Electric vehicle 

(EV) load. EV load impacts and resultantly cause to modify the electric load curve. The most 

pronounced effect found is an increase in evening peak loads, as user plug-in their EVs for 

charging upon returning home from work. The residential designated places and other such 

marked points of EV charging, such as public Electric vehicle fast-charging stations and other  

vehicle booths, will see increase in local peak loads. In order to predict changes in the electricity 

load curve in domestic household areas, a German organization McKinsey conducted a Monte 

Carlo analysis. For a typical residential feeder circuit of 150 homes at 25 percent local EV 

penetration, the analysis indicated that the local peak load would increase by approximately 30 

percent [42]. 

Energy sector policy makers have different set of remedial actions to address this situation. They 

can have an impact on behavioral response: for example, Time of use (ToU) electricity tariffs give 

motivation to EV owners to recharge after midnight instead of in the early evening. Analysis 

shows this could result in halve of the increase in peak load. Time-of-use tariffs have been easily 

implemented for a good amount of time and will demand supervision and further monitoring 

because it can result in “timer peaks,” or “rebound peaks” which occur when most of the people 

inadvertently deploy their chargers for the purpose of charging simultaneously. Alternatively, 

energy sector stakeholders can employ more local solutions to this, such as co-locating an energy-

storage unit with the transformer that charges the unit during times of low demand. The storage 

unit then discharges at times of peak demand, thus reducing the peak load [42]. 
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5.2. Comparison of Results 
  

It is essential to find the validity of this data by comparing with actual results collected. This 

process helps show if the developed model simulates a practical case of power consumption or 

not. This paper compares the results with those of a similar case titled “Agent-based modelling of 

high-resolution household electricity demand profiles: A novel tool for policy evaluation”  [5]. 

The results of that study showed a similar response over a day. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.12: Reference results for evaluation purposes [5] 

Fig. 5.12 shows the total load for one day in that study. The obtained results showed a strict adherence 

to the conditions discussed above. For instance, it showed that the domestic power consumption is not 

equal for all households. It fluctuates depending on people's usage profile, which depends on the house 

occupancy patterns. Many models, including the one developed in this project, showed that when users 

are not at home or are sleeping, the total power load used is much lower than when they return from 

work [5]. Interestingly, this and many other models show that even when the houses are occupied, their 

loads are usually not stable, and they show many variations. These changes emerge from the fact that 

people engage in different activities at different times. For instance, immediately people get home from 

work in the evening; many models show that their power consumption is usually higher than when 

they have spent more time at home. A good model should produce such behaviour. 
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This project performs further validation of its results using actual power consumption data from 300 

households. The project collected data for the usage statistics of about 14,000 houses for all the months 

in 2020. It then selects a sample of 300 households containing specific features from the collected data. 

The project considered houses in urban areas, since the simulation was for urban dwellers. This data 

will provide better validation for the accuracy of this project and the simulation. Summary for the 

selected data for the purpose of validation is shown in Table 5.3. The data in the table shows the total 

power and average for the values. The average consumption data is also same as the mean power that 

each person consumed for the month. 

 

Table 5.3: Summary of the validation data 

Month Total power Average 

Jan 25875 87 

Feb 24512 82 

Mar 23685 79 

Apr 35520 120 

May 63082 213 

Jun 61293 206 

Jul 76365 258 

Aug 68140 229 

Sep 75687 255 

Oct 66950 225 

Nov 41943 141 

Dec 25214 85 

 

The simulation was set to record total power per day for a whole year. This data was then summed 

to form monthly consumption and then shown as Table 5.4. Producing this monthly consumption 

data makes it possible to compare it with the real time data for the purpose of validation. Total 

power / consumption units are given in kWh in both Table 5.3 and Table 5.4 respectively. 
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Table 5.4: Summarized simulation data 

Month Total power Personal 

March 28917 96 

April 43677 146 

May 61593 205 

June 68789 229 

July 79917 266 

August 72076 240 

September 77510 258 

October 69339 231 

November 48287 161 

December 31742 106 

January 24005 80 

February 23675 79 

 
The data in Table 5.3 and Table 5.4 were then plotted on the same axes as shown to produce the bar chart in 

Fig. 5.13. The graph uses the total power that all the residents consumed for each month. Plotting them in a 

single graph in this way makes it easy to compare their values and validate the simulation. The graph is shown 

in Fig. 5.13. 

 

Fig. 5.13: Validation graph 
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The graph in Fig. 5.13 shows that the developed model closely approximates actual power 

consumption data. However, the two data sets have some noticeable differences. Specifically, 

most of the points for the simulated data are higher than the actual power consumption. These 

differences could have resulted from several causes. The first one could be the fact that the 

population that the validation data belongs to do not have electric vehicles while the simulation 

considered it. Electric vehicles have a high power consumption, and therefore, their effect on the 

consumed power is significant. Another cause of the variation could result from the usage of 

power for other uses that either the validation or simulation data does not consider. The graph also 

shows that from May to October, the power consumed is much higher than other months of the 

year. This high consumption is the result of usage of air conditioners during the hot season.  

Another considerable trend appearing from the validation graph is that validation data energy 

consumption units (kWh) are more than units calculated from simulated model in the months of 

January, February and May while the opposite stands true for the remaining of the months of year 

under consideration i.e. 2020. This can be attributed to the fact that there is great degree of varying 

usage pattern in respect of consumption of heating load used in winter season. Graph also shows 

that lowest value of units consumed in respect of validated data are in the Month of March and 

value comes down to 23,685 kWh. Similarly lowest consumption units measured in respect of 

simulated consumption data is 23,675 kWh for the month of February. Furthermore highest value 

of units consumed in respect of validated data are in the Month of July and value comes up to 

76,365 kWh. Similarly highest consumption units measured in respect of simulated consumption 

data is 79,917 kWh for the month of February. The greatest difference in percentage between the 

simulated kWh units and actual kWh consumption units is recorded in the month of December i.e 

25.1%. Similarly the months in which simulated data closely approximates the real time data are 

May and September with value comes out to be 2.4 %. This is most likely because of the 

mathematical fact that more consumption units in a particular month allows simulated data to be 

in close proximity with the actual data taken from the power distribution company. Hence heavy 

usage of A/C load in summer season makes energy consumption go on increasing trend thus 

enabling simulation model to forecast demand profiles with least error.  
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Chapter 6 

Conclusion and Future Work 

 

 

6.1. Conclusion 
 

Demand side management is the way forward for efficient utilization of the available energy 

resources without increasing the supply side energy. The results of this research apply to many 

situations. They can help power generation and distribution companies to optimize their grids. 

They can also advise their clients on better ways of using the power to have almost stable power 

supply patterns. As this paper shows, the agent-based approach leads to developing a realistic 

model of power usage in domestic settings. This project shows that the total power consumed in 

a house depends on several factors, and it is never constant. This paper has discussed all the factors 

that affected the electric load in the domestic setting. Moreover, comparing its data with other 

similar projects showed that its results are practical since they resemble other studies. Based on 

the accuracy and validity of this paper's results, it is correct to say that concerned parties can use 

them in decision making about how to optimize power consumption in people's houses.  

This project shows that power loads normally vary for each person and they depend on several 

factors. The conditions that determine this power consumption profile include the number of 

rooms present in a house, the number of its occupants, loads in the house and their usage patterns. 

Moreover, the occupancy patterns of the house are of great concern and they include issues such 

as when people go to bed, when they wake, and when they go to work. These factors affect the 

amount of time that they use their devices, which determines the amount of power used in the 

house. Other than these issues internal to a house, other external conditions, such as temperature 

can affect the power consumed due to the use of fans and air conditioners. This paper has 

considered all these factors and modelled them in a population of 300 households to find their 

contribution to the total power consumption of the population.
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6.2. Future Work 
 

Few parameters could be incorporated in the problem formulation of a proposed approach to 

enhance the viability of results further. In the future, designed model may be extended for 

implementation of demand response strategies to reduce the peak load and analyze critical peak pricing. 

Furthermore, the model may be validated for appliance level simulation, sensitivity analysis. Our 

proposed framework may be equipped with more data driven approach to explicitly model new 

parameters such as clothing level of occupants and precise temperature monitoring through parameters 

such as window opening and light switching patterns of the occupants. We also aim to extend our 

framework for other sectors including commercial, industrial and agricultural and integrate all these 

sectors to form a country scale energy consumption model. 
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