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Abstract 

Applications of mobile robots are continuously capturing importance in numerous areas 

such as agriculture, surveillance, defense and planetary exploration to name a few. Accurate 

navigation of a mobile robot is highly significant for its uninterrupted operation. Simultaneous 

localization and mapping (SLAM) is one of the widely used techniques in mobile robots for 

localization and navigation. SLAM consists of front and back end processes, wherein, the front 

end includes SLAM sensors. These sensors play signification role in acquiring accurate 

environmental information for further processing and mapping. Therefore, understanding the 

operational limits of the available SLAM sensors and accurate data collection techniques from 

single or multi-sensors is noteworthy.  In this work, we optimize selection of SLAM sensors, 

and implemented multisensory SLAM. The performance of SLAM sensors is compared using 

the analytical hierarchy process (AHP) based on various key indicators such as accuracy, range, 

cost, working environment and computational cost. 

Simulation were performed gazebo environment using ROS for simultaneous 

localization and mapping (SLAM) with the key focus on navigation of the agribot in the indoor 

agricultural field. The SLAM was performed by fusion of data from multiple sensors. Obstacle 

avoidance and handling of computational cost was performed by using the sonar sensor. 

Localization of the landmarks was solved with using 2D LiDAR and Microsoft Kinect (RGBD) 

sensor without prior knowledge of the environment. A well-known SLAM technique 

(Extended Kalman Filter) was used for solving localization issues and building the map for the 

environment. Extended Kalman filter (EKF) based SLAM was implemented on a two-wheeled 

mobile robot with encoders (for localization of robot). The robot was programmed to 

autonomously navigate inside the indoor static environment. Sonar sensor was used for 

minimizing the time duration and computational cost during obstacle avoidance. In 

experiments, localization of landmarks and mapping are achieved with sonar sensor and 

LiDAR using EKF. The accuracy mapping were 93% and 97% during experimentation and 

simulation, respectively (with LiDAR). In RGBD-SLAM, accuracy of localization and 

mapping was 95% and 80%, respectively (from experiment).  The accuracy of localization and 

mapping was 98% and 85% in RGBD SLAM with multi-sensors SLAM which include LiDAR, 

Microsoft Kinect, sonar and odometry sensor (in Gazebo simulation). 

Key Words: SLAM, Agribot, Computational Cost, SLAM sensors, Analytical Hierarchy 

Process 
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CHAPTER 1:    INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is a modern approach in which mobile 

robot can localize the landmarks, localize themself and build the map. Mobile robot has been 

programmed for exploring the environment without prior knowledge of environment in which it 

operates. We can note that these mobile robot projects are mostly used for limited applications, 

especially used for agriculture [1], dangerous places, surveillance, planetary exploration [2] and 

others. But mostly used for navigating the place where it’s very hardly reachable for human 

operations. Advantages of mobile robots are their operation for complex processes which reduces 

the range of labor for time-consuming tasks such as in the field of agriculture, hospital and 

industries (mostly used for shifting material from one place to other places). Different types of 

robots and drones are presented in robotic field for the ease of humans such as unmanned grounded 

vehicles (UGVs), unmanned aerial vehicles (UAVs) and autonomous underwater vehicles (AUVs) 

[3, 4]. We called a robot autonomous when it can execute its operations without human 

interference. An autonomous mobile robot should have the capability to localize itself, estimate 

the behavior of the surrounding environment, make perception according to environmental 

stimulus and path planning [5]. Different techniques are used for executing the robot 

autonomously like SLAM, fuzzy logic [6] and neural networks [7].         

Simultaneous localization and mapping (SLAM) is one of the widely used techniques in 

artificial intelligence mobile robots for localization and mapping. It is a union of various 

disciplines such as computer vision, range sensor, graph theory, mathematical modeling, and 

probabilistic estimation [8]. SLAM is used in mobile robots for solving the complexities related 

to self-explore the unknown environment, localize the landmarks, build the map and avoids the 

obstacle within an environment. This algorithm is also used for resolving complex challenges such 

as navigation and odometry of mobile robots. 

SLAM consist of front-end and back-end process, front-end consists of sensors like encoder, 

Inertial Measurement Unit (IMU), Ultrasonic, LiDAR and visual sensor (monocular, stereo and 

Kinect sensor) [9]. SLAM-based robots are largely dependent on sensing capabilities and are 

equipped with multiple sensors because of localization of the landmarks and themselves, build the 

map and exploring the unknown environment is a very complex challenge. A robot is called a 
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reliable autonomous mobile robot when it has capabilities to sense its environment condition 

precisely, which is depended on characteristics of the SLAM sensor such as range, reliability in 

every condition (rainy, smoke and dust environment) and accuracy as well as other factors 

computational cost and cost of the individual sensor. 

Front end, SLAM sensors are employed for measuring the position, velocity and direction 

of the robot as well as observe and localize the landmarks. This paper also discussed the SLAM 

sensor and provides the best SLAM sensors for localization of landmarks such as acoustic 

sensor, camera, LiDAR, RADAR and RGB-D sensors. However, GPS and rotary encoders 

determine the position, location and velocity of the robot. 

In SLAM algorithms, front-end comprises of sensors (details given in section 3) which are 

mostly used to estimate the position and pose of the robot. The widely used SLAM sensors 

encompass Global Positioning System (GPS), rotary encoders, infrared (IR), acoustic sensors 

(ultrasound, microphone, sonar sensor), camera, LiDAR, RADAR, and RGB-D. GPS, rotary 

encoder and inertial measurement unit (IMU) are employed for location extraction of landmarks 

and estimation of position, velocity and direction of a mobile robot. Acoustic, camera, LiDAR, 

RADAR and Kinect sensors are utilized for tracing and tracking environmental landmarks. 

 Back-end consists of various techniques such as kalman filter family, particle filter [10], 

neural network (RATSLAM), graph SLAM, RGBD-SLAM (RANSAC and SIFT) [11] and 

ORB-SLAM (vision-based SLAM). These are used for address as a current state estimation in 

which prediction and correction of uncertainties are performed. It is consisting of one or couple 

of techniques used to estimate the pose, position of the robot and the locations of environmental 

landmarks with the help of front-end sensors.  

The research on SLAM raised greatly in few decades, with multiple algorithms, various 

sensors and different environments (indoor and outdoor). If we talk about pros and cons of 

sensor used for SLAM-based robot then Ultrasonic, monocular cameras, stereo camera, 

Microsoft Kinect sensors and LiDAR are mostly used to solve the SLAM issue [12]. A visual 

sensor such as monocular and stereo needs a very extraordinary algorithm for mapping because 

of lack in-depth measuring and also took high computational cost. These drawbacks decrease 

the accuracy of building the mapping of the environment. On the other hand, LiDAR and 

Microsoft Kinect sensor are mostly used for mapping [13], these sensors deliver much more 
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information in the form of point cloud data and faster. LiDAR gives the point cloud data of full 

terrain around the mobile robot as well as RGBD camera gives the point cloud data and video 

stream in the front side of the mobile robot. The price of LiDAR is very high for the middle-

end solution which makes it less superior than another sensor. 

The purpose of research is to accumulate an autonomous mobile robot with the SLAM 

technique for build a map of the indoor environment and outdoor in the agriculture field. LiDAR 

and Kinect sensor are the priorities for this because of their robustness and novel characteristics. 

Extended Kalman filter has been used for LiDAR sensor and RGBD-SLAM has been used for 

Kinect sensor because of versatile and accurate solution for the respective sensor. After an 

experiment in ROS, we find a very good experimental accuracy. 

1.1 Functions of robot 

This autonomous mobile robot has the following capabilities to complete efficiently its tasks 

in any environment (Our result is only for indoor constant environment for real-time as well as 

gazebo based result is also simulated in agriculture field). 

1.1.1 Human Machine Interfacing 

The user gives instructions to the robot about the location and the task to be done with the 

help of a user interface consists of an Android Smart Phone or Laptop. With the help of the camera 

user can use a robot as a telepresence agent for localization and mapping. 

1.1.2 Movement and Motion Control 

It consists of a wheeled mobile base so that it can move in the office, go to the desired location 

and perform the operation which is requested by a user. DC geared motors are used as actuators 

and rotary Encoders are used to count rotations and angular position of wheels. Encoders send 

pulses to the controller to count the number of rotations of motors’ shaft and the decision is taken 

when a particular position is achieved by robot. 

1.1.3 Localization, Mapping, Obstacle avoidance and Path planning 

Robot must determine its location and orientation in office indoor environment and 

agriculture field by using sensors and determination of location not only based on the signal sent 

by the sensor but also decided by the Microcontroller based on the previous history of location and 
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current direction. Ultrasonic sensors are used to detect an obstacle in its path, and a map has been 

built with the help of LiDAR and Microsoft Kinect sensor (RGBD). 

1.2 Working 

Autonomous robots are widely used in different fields to make human life easy and reliable. 

Ultrasonic sensors are used to avoid obstacles, camera is used to capturing pictures for mapping 

with RANSAC and SIFT as well a LiDAR sensor is also used for mapping. So that it knows its 

location, a Rotary encoder is used to measure linear acceleration, Velocity and Position along X 

and Y. 

1.2.1 Gazebo/ROS/Robots: 

A SLAM-based mobile robot should have capabilities that store information regarding 

situations that are going to achieve, so the robot can choose among multiple possibilities for 

building map, selecting the one which reaches the next state according to obstacles. Office 

Assistant Robot is a goal-based agent which uses its sensors to acquire knowledge about its 

environment and after imaging its final position it will act upon its surrounding through its 

actuators 

1.3 Motivation 

Autonomous mobile robots are increasing their popularity recently because of their 

application, but there are many fields where there is no prior knowledge of the environment so 

that is why robot need their expertise in technology which allows the robots to move and 

navigate in the environment and build a mapping simultaneously. The most popular field used 

for doing these is SLAM, which is used to localize the location of landmarks and build the map. 

These algorithms can be used for natural disasters like earthquakes, agriculture and rescue, 

which can give any information that how many people are traps in an earthquake environment. 

Figure 1.1 shows an example earthquake and SLAM-based mobile robot can rescue and give 

information about the environment that how we can rescue. 
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SLAM-based robots can have used in agriculture action for determining the yield of crops 

as well as for finding the disease that’s an attack on crops. Mobile robots are also spraying and 

picking the food from the field. Figure 1.3 shows Mobile robots in the agriculture field.  

SLAM-based robots can use in military actions shown in Figure 1.2. A small mobile robot 

could be used for navigating the enemy places and report the base of enemy and prison soldiers. 

SLAM-based robots can also create a map of the cave where there is any danger of snakes and 

scorpions or any dangerous animal like lions, tigers, etc. 

 

Figure 1.1: The collapsed building of PGC [14] 

 

Figure 1.2: SLAM possible used in the military [15]. 

 

Figure 1.3: SLAM possible used in Agriculture [152]  
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1.4 Objectives 

The objectives of this project is to research the best SLAM sensor for every environment 

and computational cost, optimize SLAM sensor selection process and implement multi-sensor 

SLAM for robust localization which accumulate on small mobile robot that can move around 

freely without the knowledge of a map. It should give good accuracy for localization of 

landmarks and itself and build the map of these landmarks for future planning. For achieving 

these, some of the goal are listed below. 

1) Implementation SLAM by using Multi-sensor, Fusion of multisensory data. 

2) Select the best SLAM sensor based on characteristics such as accuracy, measuring range, 

computational cost and environmental situation. 

3) Implement a robust SLAM technique for better localization and Mapping  

4) Handle the computational complexity by using loop Closure problem. 

1.5 Scope 

This project has been designed for implementation of SLAM algorithm (EKF, RGBD-SLAM) 

in the indoor environment as well as gazebo based agriculture environment. There are many 

algorithms used for SLAM but these procedures have focused only on EKF SLAM and RGBD-

SLAM algorithms, more detail are given in literature review. 
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CHAPTER 2:    LITERATURE REVIEW 

In this chapter, we review the progress on SLAM (filter based SLAM and RGBD SLAM), 

sensors used for SLAM (such as LiDAR, RADAR, monocular camera, acoustic sensor and 

Microsoft Kinect sensor) and background of SLAM history. Catogiries (single sensor and multi-

sensor based SLAM) of SLAM sensor is also discussed in this section. 

2.1 Background  

SLAM is being popularity and made remarkable signs of progress in the past 30 years to work 

in the real-world applications, and applicable in the industry for different tasks [8]. The history of 

SLAM is divided into different ages, classical age, algorithmic-analysis age as well as robust-

perception age. The classical age is from 1986 to 2004 [8]. Initially SLAM was proposed by R.C 

Smith and P. Cheeseman in 1986; it is one of the broadly used techniques in mobile robots for 

localization, mapping and navigation [16]. Over time numerous improvements were integrated 

with SLAM. In 1991, a probability technique (Kalman filter) was introduced which takes a series 

of measurements (sensor data) over time to optimize the control input and resolve the sensor noise 

[17]. Kalman filter was upgraded to Extended Kalman Filter (EKF) to deal with the non-linear 

behavior of the system by linearizing a series of measurements from the sensor. Early research 

focuses on visual SLAM for navigation [18, 19, 20] with ultrasonic sensor by Kalman filter 

algorithms, that result after soon by [21]. Localization and mapping have been done with Kalman 

filter-based SLAM [22]. In the algorithmic-analysis age, the different researchers worked on 

increasing the efficiency of the algorithm and increase the exactness of localizing and mapping of 

mobile robots, in this age different types of the new algorithms were built by the researchers. In 

2002, Fast-SLAM was introduced which measures individual landmarks independently so that 

robots could explore its environment [23]. Subsequently, UFastSLAM based on an unscented 

transformation matrix was developed [24]. Various new filters were also implemented after the 

extended Kalman filters, such as the extended information filter, and the unscented Kalman filter 

[25].  

This algorithmic-analysis period from 2004 and 2015 [8], in this age period, consistency, 

accuracy and a new method was introduced; As we can predict by name, age characterize 
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productivity in the analysis of established SLAM technique. In this age other essential properties 

of SLAM includes observation and convergence of mobile robots and obstacles. Observation of 

mobile robots is the ability to manage the control vector and arrangement of control actions and 

explanations of location of landmarks [26]. In these sensors, specific sensors are also targeted to 

manage the mobile for increasing the accuracy of localization and mapping [27]. Convergence is 

the estimation of robot movement can be observed by a rotary encoder, Inertial measurement unit 

(IMU) and Global Positioning System in a specific time, then convergence is accomplished [26]. 

For this purpose, Kalman filter has been introduced that use linear movement, then the Kalman 

filter was upgraded to Extended Kalman Filter (EKF) to deal with the non-linear behavior of the 

system by linearizing a series of measurements from the sensor. Consistency or loop closures are 

introduced by Bar-Shalom, Y et al [28]. In EKF SLAM, irregularity is a drawback that can occur 

when Jacobians are not estimated [26]. For this purpose, visual SLAM is widely used, in which 

image processing plays a vital role, and can predict the pose, location of landmarks by using input 

image(s) from visual sensors like monocular camera, stereo camera and Microsoft Kinect sensor 

[29]. In visual sensor, motion can be detected by variations in the received images by RANSAC 

and SIFT algorithm in machine vision. These sensor needs to have enough illumination in an 

environment for increasing accuracy and operative results of the algorithm [30, 31, 32]. 

RGBD-SLAM is a SLAM technique used for a visual sensors such as monocular, stereo and 

Microsoft Kinect sensors (RGB-D). RGBD-SLAM is used to computing the 3D-construction map 

(RTAB map in ROS) of the environment and trajectory planning of the visual sensor [33]. The 

map can be range from a small rooms to several building blocks environment.   Monocular 

cameras, Stereo cameras or RGB-D cameras in [34, 35] and 3D LiDAR in [36], are widely used 

for localizing the cited algorithm and constructing the 3D map.  

Robust Perception Age is a period starting in 2015 to now the question is that “has SLAM 

been solved?” Such types of questions are very complex to answer; because SLAM is a 

combination of multiple fields such as algebra, matrix, machine vision, graphical studies, 

geometry, artificial intelligence, mechanical, image processing, robotics, etc. For example, SLAM 

algorithm fails up to now for motion in a complex environment or give poor performance in such 

types of the environment [8]. During this period, researcher on robustness in performance, good 

level of understanding and perception of motion is working on. RADAR-based SLAM is an 
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emerging field in SLAM, medium ranges RADARs were also introduced for autonomous mobile 

robots; RADAR-based robots are mostly short-ranged machines systems [37, 12]. The RADAR-

based SLAM problem is an emerging technology which has been done in 2014 by DICKMANN 

and Juergen et al [38]. 

From all of the background, we are focus on robust perception age. EKF and RGBD SLAM 

algorithm has been used because of its novelty as discussed in this section. Currently, research on 

SLAM is focused on increasing the accuracy in localization and mapping. In this research, our 

goal is to increase the accuracy in localization and mapping for the indoor environments.   

Simultaneous planning, localization and mapping (SPLAM) is an emerging area used for 

autonomous navigation with the combination of SLAM and path planning techniques (see figure 

2.1). One of the best approaches used for SPLAM is Bellman and shooting methods [39]. 

Bellman's approach shows signs of progress in terms of smoothness and accuracy in localization, 

map building and optimal path planning. Optimal path planning is used for finding the shortest, 

accurate and robust path. Path planning is carried out using multiple search techniques such as A* 

STAR, Breathe First Search, Depth-First Search and Dijkstra's algorithm. The robot must locate 

and have access to the map for route planning. 

 

Figure 2.1: Difference between SLAM and SPLAM based on their working and autonomous 

behavior, Reproduced with permission from [40].  

2.2 SLAM based Sensors 

In the early SLAM system, acoustic and LiDAR sensors were used as range sensors. Acoustic 

sensors are generally used for underwater (sonar sensor) and short-range applications. LIDAR-
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based SLAM was introduced by Nguyen et al. in 2005 [51], this sensor is used for measuring 

distance at long ranges, however, lack of visual information and feature extraction is their main 

drawbacks.  Cameras are used as a vision sensor for resolving this issue; these sensors are used in 

mobile robot since the early 1990s, however, dedicated visual-sensor-based SLAM has been done 

in 2011 by H. Lategahn et al. [52]. Furthermore, the monocular camera lacks depth measurement 

which is essentially required to estimate the distance from the location of the object. In the last few 

years, stereo camera and RGB-D [53,54] sensors are introduced in SLAM-based robots, which are 

compatible with depth measurements. RGB-D sensor is an advanced version of the camera with 

depth measurement. The first RGB-D SLAM system was introduced by Henry et al in 2012 [55]. 

Medium ranges RADARs were also introduced for autonomous mobile robots; RADAR-based 

robots are mostly short-ranged machines systems [56,57]. The RADAR-based SLAM problem is 

an emerging technology which has been done in 2014 by DICKMANN and Juergen et al [58].  

2.3 Categorization of SLAM based sensor 

SLAM-based sensors are classified into multiple front-end sensors these are classified into 

two to multiple sensors such as GPS, rotary encoders and IMU for localization of mobile robots 

as well as sonar sensors, LIDAR, RADAR, Microsoft Kinect sensor and Camera used for 

localization of landmarks and mapping. In this section combination of the different or single sensor 

has been discussed for localization and mapping. 

2.3.1 Single Sensor 

SLAM-based Single sensor are widely used for low-cost robots. It has been seen that it is not 

possible that a single sensor can be used for both localization and mapping. But encoder or GPS 

has been used for localization. Localization of landmarks such sonar sensor, LiDAR and visual 

sensor are mostly used for an autonomous robot. Advantages of single sensor SLAM based robots 

are less costly, low computational complexity and easy to handle. Table 2.1 shows the only 

approaches, pros and cons focus based on a single SLAM sensor.  

 

 

 



 

11 
 

 

Table 2.1: A literature review of single sensor-based SLAM 

SLAM 

Sensors 
Approach Pros Cons 

Acoustic 

sensor 

EKF [59] 
Increase the return for estimation 

of pose and orientation 

Error in building a map 

up to 7% due to large 

area 

Particle Filter 

[60] 

 

Computational complexity and 

better accuracy in a dynamic 

environment. 

Ignore Previous 

location, Orientation of 

mobile robot 

Kalman 

Filter [61] 

Use of three sonar sensors, Grid-

based mapping, Low cost, Low 

computational 

Stack of the followed 

path, Manual operation, 

Discrete motion 

Camera 

EKF(Probab

ilistic) 

Single-camera, probabilistic 

map, low cost, advanced robot 

Static environment, 

Fast motion 

Particle 

Filter [62] 

Multiple robots, More 

information,  Use of corner 

detector for build precise map 

Computational cost, 

Corresponding is low 

but occur 

LiDAR 

SVM 

classifier 

[63] 

Build a map in three-layer, good 

obstacle detection, good 

accuracy and better real-time 

performance 

Unable to distinguished 

items, high speed 

Coordinate 

Nodding on 

sensor data  

[64] 

Developed 3D sensor with 2D 

LiDAR, 40-degree vertical 

movement 

Complexity, accuracy, 

Mobile odometry error. 

Kinect 

sensor 

ORB SLAM 

(Smoothing 

based 

SLAM) [65] 

Uniform speed model tracking, 

Path accuracy, lower 

computational complexity, Loop 

closure 

Change of 

environment, Blur and 

track improvement 

R-CNN [66] Identify a different kinds of 

objects, Dynamics environment, 

Semantic mapping, Fast 

algorithm 

During the second 

phase, create an error 

during the dynamic 

error of static items 
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2.3.2 Multi-Sensors 

As in the previous section, single sensor-based SLAM has been used by the different 

researchers. Multiple sensor-based sensors are also widely used for increasing precision and 

accuracy of the SLAM algorithms. One of the main reason for using multisensory, that every 

sensor has strengths and issues based on their parameter. Like sonar sensor and 2D LiDAR sensors 

are the best sensor for obstacle avoidance in SLAM but the drawback of these sensors are they 

cannot build 3D map and give more information about physical properties of landmarks. For this 

purpose, camera and Microsoft Kinect sensor are mostly used. But a drawback of these sensors is 

computational cost. Table 2.2 shows the advantages in SLAM based on Multi sensor. 

Table 2.2: Literature review of Multi sensor-based SLAM 

Sensors Approach  Pros  Cons  

2D 

LiDAR, 

camera 

Particle filter 

[67] 

Build a map for 

static environment, as 

well as dynamic 

observations, have been 

researched for detected 

with better reliability, 

Unmapped items. 

Slow due to calculating 

particle weight, large 

data 

Sonar and 

a CCD 

camera. 

Hough 

transform, 

Kalman filter 

[68] 

localization precision is 

highly improved 

Dynamics 

environment, error in 

dead reckoning 

[estimation]  

Kinect 

sensor 

and Sonar 

array 

Rat SLAM 

[69] 

Self-motion calibration, 

Place recognition,  

Unknown places (forest 

and building of college) 

Online preprocessing 

of sensor and 

estimation of robot 

take 80% power of 

computer processor, 

Robot odometry  

Lidar and 

Sonar 

sensors 

Extended 

Kalman 

Filter [70] 

Closure loop, low cost 

and computation 

complexity, static 

environment and 

Manual interaction, 

Small environment  

2D laser 

sensor, 

Fast SLAM 

[71] 

Creating of Image by 

laser sensor values, Low 

cost and computational 

Range measurement, 

Edge detection 
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Acoustic 

sensor 

complexity, Grid map 

generation 

 

 

A humanoid robot was designed for SLAM that moves autonomously [72]. An 

omnidirectional robot was used for this purpose [73]. A two-wheel mobile robot was used for 

SLAM that is almost similar to this robot with EKF for localizing and mapping [74]. Four-wheel 

robots were used for SLAM using multisensory for improving accuracy of localization and 

mapping [75,76]. 

Different platforms are used for handling complex environment with average accuracy [73], 

such as maintenance, and robotic competition [77], soil sampling [76]. Ubuntu is used for Robotics 

operating system (ROS) [72] and Gazebo environment [73,76,77].  

The laser range (LiDAR) is one popular choice among SLAM sensor [72, 74, 75, 76, 77]. On 

the other hand, RGB-D is also used for creating 3D map. EKF SLAM used for SLAM was 

completed with an indoor environment [74, 75, 78]. Santhanakrishnan et al. have implemented 

SLAM with EKF along with point features to increase accuracy with an average error of ±0.11m 

in map building and find 98% in localization as shown in Figure 2.2 (a). Shojaei et al. [80] have 

implemented SLAM with EKF with an Iterative kalman filter for better accuracy in map building. 

Localization was done with 83.82% accuracy. Mapping errors up to 0.2746 m in X and 0.4121 m 

in the Y direction shown in figure 2.2 (b).  
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Figure 2.2: Filter based SLAM (a) Build a map using Filter based SLAM for robot's trajectory 

[74] (b) EKF and IKF has been compared with each other 

 

                                                             (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                    (b) 
 

 

 In [79] 2D and 3D map was generated by RGBD SLAM in ROS gazebo environment using 

ideal situation. The result was extraordinary because noise was negligible in the ideal situation 

shown in figure 2.3. In [81] fusion of Visual SLAM Algorithm and robot Odometry by encoders 

was performed by comparing based on the Kalman filter. Whenever, localization and mapping was 

carried for indoor environment with a distance of 43.47 m. Relative error of visual RGBD SLAM 

was 2.7%, as well as relative error of wheel odometry was 1.04%. Real-time indoor environment 

was used for performing visual SLAM as shown in figure 2.4. 
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Figure 2.3: Robot localization with mapping in ROS (indoor gazebo environment) [79] 

 

Figure 2.4: Real-time visual SLAM was implemented [81] 

2.4 Literature Review related to Agribot based SLAM 

 In agriculture, a Mobile robot conduct different tasks such as chemical spray, checking of 

field, an inspection of fruit as well as picking of fruits. some of them are in the field of navigation 

and control, object tracking, and field monitoring. Unmanned Aerial vehicles (UAV) are also 

useful robots for agriculture. Novel sensor was used with fusion technique for navigating of 

sprayer robot. SLAM-based mobile robot are also widely used as agribot for localization and 

mapping by using multisensory fusion. Even, probabilistic robot was used same pattern by using 

the extended Kalman filter for distinguish between trees with the help of a laser scanner and 

camera. Reina et.al. worked on agricultural robot by using four sensors RADAR, LiDAR, stereo 

vision, and thermography for obstacle avoidance and mapping.  

 Autonomous agri-robots are intensively used to implement for agriculture for chemical 

spraying, planting, inspection and harvesting. Global revenue statistics of agribot system in the 

agricultural range up to $7.4 billion in 2020 to $ 20.6 billion by 2025. Robot are the best option 
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for these activities in the field of crops. Another necessary option is also required that can possible 

for former to do in a field like harvesting and inspection show in table 2.3.  

Table 2.3: Different research work on spray, inspection, harvesting and planting 

Object Parameter  Ref Objective 

Spray Volume rate, Target location  [82] Green House crop detection 

Detect weed species by a camera  [83] Weed detection in carrot farm as 

well also remove disease 

Harves

ting 

The visual camera has been used to 

determining target by feature (color, 

shape) 

 [84] Low cost and simplest design for 

achieving the object 

Laser sensor has been used for 

determining features of 3D object 

 [85] On the base of object obtain 3D 

feature, decide on the base of 

features 

 

 The main purpose of this literature is to implement SLAM for the indoor agricultural 

environment and localization and mapping. SLAM has been implemented in a simulated Gazebo 

environment using ROS. In this work, multisensory data has been used to implement SLAM for 

the agricultural environment. Different categories of sensors (Sonar sensors, LiDAR, Microsoft 

Kinect Sensor and build in Odomtery sensor) has been implemented for localization of landmarks 

and build a map of unknown environment.  
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CHAPTER 3:    OPTIMIZATION OF SENSOR SELECTION 

PROCESS FOR SLAM 

This section provides a holistic review of the SLAM-sensors which are widely employed in 

autonomous mobile robots. SLAM-based robots are largely dependent on sensing capabilities, 

therefore subject to their varied functionality; these robots are equipped with single or multiple 

sensors. In the front end of SLAM, different sensors like acoustic, Infrared (IR), camera, LiDAR, 

RADAR and RGB-D are used for sensing the landmarks of the environment. The selection of 

appropriate sensor plays an important role in the accurate measurement of landmarks during robot 

navigation. With the help of front-end sensors, the back-end algorithm constructs an artificial map, 

which is used for path planning and navigation. Obstacle avoidance during the autonomous 

operation of a mobile robot is one of the widely researched areas. One of the criteria for a reliable 

autonomous robot is the ability to sense its environment precisely and transmits the environmental 

conditions into the required signal for mobile robot actuation.  

3.1 Characteristic of sensors 

A variety of sensors are used for obstacle detection, landmark exposure, finding the robot’s 

location concerning landmarks, pose and orientation. However, few major sensors have been 

discussed here which include acoustic sensors, cameras, RADAR, LiDAR, and RGB-D [86].  

3.1.1 Acoustic sensor 

The acoustic sensor is widely exploited in solving the SLAM problem because of its properties 

such as accuracy, simplicity, low power consumption (0.01-1 W), low computational and 

economical cost [87]. Sonar and ultrasonic sensors (also regarded as a subcategory of sonar stream 

sensors) are widely used acoustic sensors. Sonar transmits sound waves in the underwater 

environment [88] while ultrasonic sensor emits the ultrasonic waves on the ground surfaces and 

their measurements are characterized by frequency and wavelength. The sensor transmits an 

acoustic wave at a specific frequency and locates the object by sensing the echo signals from the 

object. In the case of the ultrasonic sensor, the waves travel in the air at the speed of light and 

bounce back after striking the landmark with the same speed. An object's distance can be measured 
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by calculating the time of the signal from signal emission to echo reception [89]. Likewise, the 

position and location of landmarks can be estimated from sensor data using a back-end algorithm 

such as Particle filters and EKF [90, 91], more details are given in table 4.1 and table 4.2.  

The measurement of the sonar sensors is more accurate in the underwater environment in 

comparison to the LiDAR and vision sensors [92]. Limited range is the only drawback of these 

sensors which is normally 2 to 10 meters. Due to their restricted range, these sensors are 

comparatively rare in industrial applications [93]. As microphones and speakers are also used as 

acoustic sensor, therefore, acoustic sensors are very cheap and they are useful for localizing 

landmarks, obstacle avoidance, and measuring the distance from a nearby object. Usually, sonar 

sensor actuates in an underwater environment at low-frequency [94] and ultrasonic sensors operate 

at high frequency.                                                                                                                                                                                                                       

3.1.2 Light Detection and Ranging (LiDAR) 

Light Detection and Ranging (LiDAR) is a preferable sensor for mobile and aerial robotic 

platforms because of low computational cost, better measurement range, omnidirectional detection 

and environmental compatibility [95]. Robots can measure distance in 2-D and 3-D using LiDAR 

[96]. Feature and module of different LiDAR sensor in the literature review are given in table 4.1. 

LiDAR measures depth by sending and receiving laser light. Displacement and rotation of the 

robot is calculated by detecting the laser light line; these lines give information about the surface 

topography. The depth of an object can be measure by flight time [97]. Kalman filter is used to 

measure the position of multiple objects from LiDAR data. Ground filtration, surface extraction, 

and model construction of an urban building are performed by morphological transformation, 

Hogg transformation, RANSAC [98], CNN [99] and deep learning algorithms [100], more details 

are given in the table 4.2. 

In the case of LiDAR, scanning angle, accuracy in measuring distance, angle and depth are 

important parameters used for detecting the landmarks [101, 92]. The sensor parameters are used 

for map creation and obstacle avoidance. In addition, LiDAR has high accuracy (even in 

environmental disturbances such as fog, storm and rain) as compared to camera and RGB-D. 

Similarly, while LiDAR has omnidirectional detection (360 degrees) as compared to the line of 

sight sensors such as camera, acoustic, RGB-D and infrared. LIDARs are generally classified as 

solid-state, mechanical and hybrid LiDAR [103], and they can provide 360o visibility with high 
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accuracy while measuring remote landmarks with a measurement range from 20-300 meters (with 

an accuracy of 15 mm). However, the power consumption of LiDAR sensors is very high (50-200 

W).   

3.1.3 Camera 

Visual-based SLAM has increased its popularity in the last few decades and the camera is the 

most popular sensor used for SLAM. In the literature review, vision sensors are commonly used 

in SLAM-based robot because of simple configuration, and comparatively easy programmable 

techniques are used [104]. Two types of cameras are used for SLAM-based mobile robots such as 

mono-camera and stereo camera [105]. The first-time monocular camera is used in 2003 for the 

SLAM problem named as mono-Slam [106]. In the mono-camera, the main advantages are their 

simple hardware, economical, distance measuring, and smaller size but the disadvantage of these 

sensors is computation cost for measuring depth. However, a stereo camera can be used for 

reducing the computational cost while measuring depth because two cameras are used as one 

camera [107].  

Feature-based and direct approaches are two techniques used for solving V-SLAM problems. 

A feature-based filter is used in feature-based approaches with the help of the Kalman filter [108]. 

The problem of this method is computational cost because it can increase the size of a state vector 

for a large environment. The loop closures problem can be solved proficiently with the help of a 

feature-based technique [109]. Another technique used for V-SLAM is the direct method; it uses 

images directly without using any feature. In this technique direct tracking, mapping method and 

LSD method are used. The dense technique is also used as a direct method and is generally used 

for measuring depth pixels by pixels in each frame [110]. Calibration of cameras (stereo camera, 

monocular camera) is always a requirement for measuring the accurate depth of landmarks. The 

intrinsic and extrinsic parameters of the camera are required to exploit the calibration. The pose of 

a camera can be found by an extrinsic parameter of the camera. The intrinsic parameter consists 

of focal length, focal point, principle points and pixel per unit length [111]. In machine learning 

and deep learning, CNN and regression is a technique used for solving visual-based SLAM, more 

details are given in table 4.2. The range of a monocular camera is dependent on the resolution of 

pixels and electronics of the camera with the combination of intrinsic and extrinsic properties of 
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the camera. Power consumption for a monocular and stereo camera is 0.01-10 W and 2-15 W 

respectively. 

3.1.4 Microsoft Kinect sensor (RGB-D)  

Microsoft Kinect sensor is one of the widely used sensor in SLAM because of the combination 

of vision and range sensors as well as simple configuration, small and useful for 3-D and average 

cost-effectiveness. The digital value of this sensor is identical to the monocular camera with the 

inclusion of depth factor. The main feature of this sensor is the IR transmitter and receiver along 

with a monocular camera and works on SL (structure light) and TOF (time of flight) techniques. 

RGB-D sensor is released in November 2010 [112]. The hardware of RGB-D is compatible and 

needs low computational cost for working on it. It is mostly used in an indoor environment because 

the IR emitter and receiver don’t make a fine pattern in the outdoor environment and generates 

noise. Feature and module of RGB-D sensors from the literature review are given in table 4.2. 

RGB-D camera is an advanced technology in V-SLAM. It is similar to a camera that generates 

RGB color-based pixels, but the novelty of this sensor is depth. Methods studied for this sensor 

are Kinect fusion, SLAM++, and segmentation. The Kinect fusion method is used for representing 

a 3D environment with the help of voxel space. The SLAM++ method is used for recognizing the 

3D object. Segmentation is used by the segmented object from each other according to their feature 

and depth [110, 113]. The general use of the Kinect sensor is segmentation. It is comparatively 

cheaper than LiDAR but is expensive than the camera. The measuring range of it is not very good. 

The power consumption of this sensor is ranging from 2-5 W. The procedure of measuring distance 

is very simple and accurate. 

3.1.5 RADAR 

RADAR technique is an emerging technology in the SLAM used for measuring long-range 

distance. A rotating antenna is used in RADAR for localizing the landmarks by emitting the radio 

waves. RADAR is a robust sensor and can work in every environment such as dust, rainy, day and 

night. A moveable antenna is stroked in RADAR and this antenna can rotate up to 360° degrees 

for environment data acquisition [114]. The RADAR used for mobile robots is smaller in size; its 

range varies from 3m to 40 m [115]. Range depends on the power of the emitted RADAR radio 

waves. The price of RADAR depends on its size; people design RADAR by IR, radio and UV 
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wave [116]. Since the RADAR sensor lacks angular resolution as compared to LiDAR, therefore 

it is cheap. If we compare two different types of RADAR and LiDAR, such as MPR (RADAR) 

and Velodyne VLP-16 (LiDAR), the linear range of MRP is up to 20 m and Velodyne VLP-16 

LiDAR can measure up to 40 m. Moreover, the angular resolution of LiDAR and RADAR is 0.4° 

and 1.8° respectively [117]. 

 RADAR is a new sensor in the SLAM-based robot; some methods used for this sensor are 

identical with LiDAR. It is acquiring the data from each side in the environment, transmitting the 

radio signal while rotating the antenna and monitors the signal from these echoes. Its working 

principle relies on FMCW. The feature-based method [118], RANSAC, Kalman filter, and particle 

filter are used for processing the sensor data [119,120]. One of the other methods is used especially 

for RADAR is panorama for combining the whole side in one image for localizing landmarks 

[121]. Table 4.1, show sensors which were used previously for solving SLAM based robot; range, 

pros and cons along with the model of the individual sensors are discussed. 

Table 3.1: Evaluation of SLAM sensors based on their features are discussed, such as pros and 

cons and model of individual sensor 

Sensor Name Type of Sensor Operating range Bias of Sensor 

Acoustic Ultrasonic or 

Sonar 

Up to 4.5 m [122] Low 

Camera Vision up to 5m for Kinect camera Low  

LiDAR Laser based up to 20m ahead [117] Medium 

Radar Electromagnetic up to 20m ahead  High  

 

The SLAM algorithm consists of various parameters such as sensors, generated maps and 

environment. These parameters are integrated employing varied methods such as extended Kalman 

filter (EKF) and particle filter. These algorithms are used to minimize errors in robot parameters 

such as sensor artifacts, robot status, and landmark positions. Through literature review, the most 

commonly used sensors are acoustic sensors, LiDAR, vision sensors, RADAR and RGB-D. These 

sensors can work in multiple environments such as underwater, indoor, dynamic and ground. 

Errors in sensors are very common, these include caused by man-made, random errors, 

corresponding errors and imprecision. Due to a similar location in the environment, the closure 

loop can produce errors. In the literature review, people have been solving these errors by using 
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SLAM-based algorithms (EKF, particle filter, and Fast SLAM) and also generate maps and locate 

landmarks as shown in Table 4.2. 

Table 3.2: Uses of the sensor with different methods/approaches are deliberated like EKF, 

particle filter and others 

 

Table 3.3 show the sensors, the feature of the specific model of the individual sensors is discussed. 

Table 3.3:  Evaluation of SLAM sensors by different models 

Sensors Features 

Acoustic 

sensor 

An acoustic sensor is a range sensor used for obstacle avoidance in mobile 

robots such as ultrasonic and sonar sensors. These sensors are the cheapest for 

measuring distance. HC - SR04 is an ultrasonic sensor rarely used for 

measuring range purposes. The ranging accuracy of these sensors is up to 3mm 

and resolution is much better, but the range of this sensor is not good. The range 

of this sensor is up to 4m [94]. IS JSN-SR04T is a sonar sensor used for mobile 

robot underwater. It is ordinarily used for underwater sensor; it can find 

distance underwater up to 4.5m. But linearity of it is not very excellent. It gives 

35% when used up to 130cm. 

Sensors Approach Implemented Loop Closure 

Acoustic sensor 

EKF [122] No 

Particle Filter [60] No 

Camera 
EKF [123,124] Yes 

Particle Filter [125] No 

 

Lidar 

EKF [126] No 

Particle Filter+ scan matching [127] Yes 

PCA line feature [128] No 

Radar 
EKF+ICP [129] No 

Particle Filter [116] No 

Kinect Sensor 
EKF [117] Yes 

Particle Filter [130,133] Yes 
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Camera 

Camera is a vision-based sensor used to acquiring more information about 

environment. It used image capture used for measuring accuracy of parts, 

orientation, and presence of obstacles. Computer vision is vital for self-driving 

in which vision sensors are used to capture an image of the environment.  Two 

types of vision sensors are used for SLAM, which is the monocular and stereo 

camera. Vision sensors create a problem for measuring the accurate depth 

because of the different pixel values. The measuring distance range is 

depending on pixel value and its high resolution [124]. 

LiDAR  

2D and 3D LIDAR are used for obstacle avoidance, a 3D Lidar sensor is 

detecting in a horizontal and vertical direction, Velodyne LiDAR Puck is 

mostly used as 3D LIDAR, it detects 360 degrees in left to right 15 degrees up 

and down. Range accuracy is round about 3cm. The range of this sensor is 

100m. It is mostly used for design 3D modeling and mapping as well as for 

autonomous vehicle navigation. It is rotating parts are not available, so that why 

take resistance in challenge environments. YDLIDAR TX20 LIDAR is used as 

2D Lidar, It detects information on the environment and acquires the angle 

information constantly. The range of this sensor is 20m. It has a precise and 

stable performance. It is a much expensive sensor for design cheap sensors and 

also it is a two-dimensional Lidar [53]. 

Radar 

Radar used electromagnetic waves for detecting, tracking, recognizing and 

localizing the object. Radar used for a mobile robots is small and portable. MRP 

is radar used for short-range. The range of this sensor is 20m. It can encode 

more complex and partial evaluation signals; it can operate at a different 

frequency for short and long-range purposes. It is mostly used for long-range 

and specifically used for military purposes [57]. UWB Radar is also used for a 

mobile robots. The range of this sensor is also 20m. It can operate well in smoky 

and dusty weather, also can filter dielectric material due to low frequencies.  

Availability, dynamics range and time stability are very good. Localization and 

positioning accuracy with the help of UWB Radar is mostly achieved by the 

advanced algorithm. Overall, it is computationally complex and expensive.  
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Microsoft 

Kinect 

sensor  

RGB-D Xbox 360 sensor gives 640x480 full sensor resolutions at the video 

frame rate 30Hz. It needs a high GPU system, needs so much computational 

complexity [19]. Kinect v2 is an upgraded version sensor Its function works on 

the Time-of-Flight camera. It gives good resolution up to 1920x1080. Due to 

high resolution, it requires more time to solve and needs more computational 

complexity [155]. 

3.2 A Comparison of SLAM Sensors based on parameters 

Every sensor has unique properties, which empowers the specific sensor with most 

significance over other competitive sensors. Depending upon that specific novelty, sensor selection 

depends upon cost, environment (workspace), computational cost, accuracy and measuring range 

(space requires during sensing). Each system has a different priority; it should not be too much 

expensive and sometimes accuracy is the requirement. Among multiple sensors, the sensor's ability 

to perform well in the desired environment and range measurement are the top priorities.  

3.2.1 Computational Cost 

The computational cost plays an essential role in the selection of the SLAM sensor. The 

computational cost is an important aspect while working on SLAM based mobile robot. The 

calculations performed on SLAM-based mobile robot are very complex because of complex 

acquisition signals; therefore, sensor data requires high specification computer hardware for 

solving such data. To achieve high accuracy in localization, the computer’s microprocessor should 

be very fast. Implementing such a demanding process on the embedded microcomputers is the real 

task. For example, a vision sensor camera provides abundant information in the form of a pixel. A 

camera with 1024x840x3 pixels provides 2.5 megabytes’ data in one count, for running the process 

smoothly computer or microcontroller should have good processing speed, which is very hard for 

microcontrollers to handle. The camera gets all data in digital form, i.e. big matrix, which 

increases the computational cost in comparison to other sensors. RADAR rotates 360o during 

landmarks localization, panoramic method is used to integrate all direction data in one image or 

matrix; this needs a remarkably high capacity RAM and processor. On the other hand, LiDAR is 

a good sensor for use in average computer hardware or microcontroller. It provides the required 
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information in every possible direction of the robot and the required signal of the sensor needs a 

low microprocessor system. The acoustic sensor is also a good choice because of its low 

computational cost. Camera-based systems give blur images during movement.  

Most visual SLAM sensors are solved by two methods i.e. feature-based and direct method. 

The feature-based method depends on features, for solving such methods demands less 

computational cost. On the other hand, the direct method needs high computation cost because of 

a lot of mathematics. However, during movement, the feature-based method doesn’t perform well, 

it is possible to miss features during landmarks localization as well as direct method needs high 

computation cost, therefore mostly LiDAR or sonar sensors are used in the SLAM field while 

computational cost is a superior factor. RGB-D sensor properties are also related to a monocular 

and stereo camera without distance measure (like RGB-D, RGB is a parametric factor as in-camera 

and stereo but D is a distance measure extra factor used for range measuring). Based on these 

parameters and literature reviews, I assign priorities (for every cited sensor) on AHP. The result 

of AHP is shown in figure 3.1. 

 

Figure 3.1:This figure illustrates computational cost for different SLAM sensors (Calculate from 

AHP), higher values show lower computational complexity. 

Figure 3.1 shows the computational cost for SLAM sensor's higher values with lower 

computation cost based on the Analytical hierarchy process (AHP). The acoustic sensor needs a 

minimum computer hardware system for solving that composed of one digital value like 2 to 5 m 

for SLAM based robots, however, all cited sensors require good computational hardware. LiDAR 

signal need an average microcontroller and computer hardware system for solving. The signal 

emitted from LiDAR consists of 25 to 360 digital values depend on the angular resolution. The 
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computer can solve these numbers of digital values very smoothly. RADAR comes next in priority 

in SLAM sensors. The signal received from RADAR is also similar to LiDAR but needs a 

panorama method for its integration, which increases its complexity. To solve vision sensors and 

RGB-D sensor signals, the system needs a very complex algorithm. For SLAM sensors, 

researchers used computer specifications as given in table 3.4. 

Table 3.4: A survey of software systems required for sensors. 

Sensor Specification 

Acoustic Intel Core i5-3317U 1.70 GHz CPU and 16 Gb RAM with MATLAB 2017a and 

vision toolbox software’s [132] 

Camera core i7-6700 CPU with 64 bit Ubuntu Linux [133] 

LiDAR Desktop PC with 6 GB RAM along with 64bit Operating System and 2.27 GHz 

Intel(R) Xeon(R) processor [134] 

RADAR An Intel i7-5557U processor, 16 GB RAM, SSD storage [135] 

RGB-D  Intel Core i5-6600 CPU (four cores @ 3.30 GHz),16 GB of RAM and Raspberry 

Pi(4) microcontroller with 4 GB of RAM are also used [136] 

3.2.2 Measuring Range  

For a mobile robot, the ability to measure accurate range is an important factor and in 

monocular vision sensors, range measurement is a major issue. Usually, a stereo camera sensor is 

utilized for range measurements; however, its accuracy is low as compare to LiDAR, sonar, and 

RADAR. In RGB-D, data acquisition raises complexities for range measurement and needs the 

best computer for solving range measurement algorithm but depth measuring parameter (RGB-D 

D is a parameter for measuring depth) superlative as compare mono-camera and a stereo camera. 

Sonar sensors are low cost and they possess a lower measurement range (2 – 5 m), which is 

insufficient for an industrial mobile robot. RADAR sensors are popular in mobile robots for long-

range measurements. LiDAR (20-300 m) is the preferred choice for range measurement in 

comparison to other sensors because of low computational cost as compared to the stereo camera, 

RADAR and RGB-D. Figure 3.2 shows the bar chart of measurement ranges of the individual 

sensor. 



 

27 
 

 

Figure 3.2: The average measurement range limits are based on the literature for autonomous 

mobile robot, in which LiDAR is superior for mobile robots with a given range and the camera is 

not cool for range measuring 

3.2.3 Environment 

A self-exploring mobile robot encounters number of environmental-related challenges such 

as complex geographical features and obstacles. Every SLAM sensors has certain limitations in 

different environmental conditions. Ideal SLAM sensors should be robust enough to work 

perfectly in different environmental conditions such as during a bright and sunny day, dust, rain, 

or smoke. The performance of camera is heavily compromised in the previously cited conditions. 

This can lead to fatal errors in data acquisition and interpretation, for example, at night camera 

gives all-zero digital values in an image. However, IR cameras can work well in bad weather 

conditions with a major compromise in the accuracy in case of rain and smoke. Similarly, the 

Kinect sensor also has some drawbacks such as pixel by pixel digital data (can be zero while night 

or smoke environment condition) similar to vision sensor. LiDAR perfectly works in every 

environment without underwater [91]. A sonar sensor also works in every environment, but these 

sensors generate artifacts in data acquisition. Keeping in view the above pros and cons, RADAR 

is one of the best choices for working in every environment without any compromise inaccuracy. 

Figure 3.3 shows the efficiency and compatibility ranking of different SLAM sensors in multiple 

environmental conditions. Based on these parameters and literature reviews, I assign priorities (for 

every cited sensor) on AHP.  According to the AHP results, RADAR works well in different 

environmental conditions while Camera and RGB-D are equally ranked and have lowest 

performance in case of bad environmental conditions such as smoky and rainy weather. 
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Figure 3.3: Pie chart represents compatibility ranking of the listed sensors in multiple 

environmental conditions; selection priority will be given to the sensor which has high 

compatibility indicator (value) estimated by AHP. 

3.2.4 Cost-effectiveness 

Cost is another major factor to keep in mind for selecting the SLAM sensor because every 

designer desires to make a low-cost autonomous robot. It is hard to compare the sensors while 

concerning cost because the cost is dependent on the properties of sensors like accuracy, size, life, 

range, and resolution. The acoustic sensor is one of the cheapest sensors among all SLAM sensors. 

Monocular camera is a little bit expensive as compare to the sonar sensor but less expensive as 

compare to other cited sensors. RGB-D has widely used in the field of SLAM-based robots and it 

is average expensive but it is good in computational complexity as compared to camera. RADAR 

is also a new emerging sensor and has different prices depending on the properties; RADAR used 

for the autonomous robot is not so much expensive as compared to ordinary RADAR because of 

small in size. LiDAR is the most expensive sensor used for a mobile robot, but the cost of LIDAR 

is drastically changed from time to time depending on their properties (Angular resolution, Range 

Measurement, Range resolution, Scan angle and others) [137]. 

3.3 Map Building in SLAM and Sensor Used 

The map is a symbolic representation of the environment in SLAM, where robots localize 

themselves and landmarks. The map has two mediums, static and dynamics. In a static map, every 

object in the environment is static. The sensor output is combined after finding a proportional scale 

of the object to the stationary world for build a map of static environment called active mapping 



 

29 
 

[138]. In a dynamic map, objects are in movement and continuously change drastically the 

environment. Various classifications of SLAM have been discussed based on its work. 

SLAM map-based classifications are online, offline, active and full SLAM. In online SLAM, a 

previous and current pose of the robot is estimated in the perspective of the map. In full SLAM, it 

estimates both maps and completes navigated path (History of a path) by the robot in the map. In 

Active SLAM, the robot actuates autonomously and acquires data of the environment for mapping. 

On the other hand, in passive SLAM, the robot is actuated manually and receives the data with the 

help of sensors autonomously. 

In the real-world, the static environment is not true because people, cars and animals are 

moving. The two types of dynamic objects are identified, such as high dynamic objects and low 

dynamics objects [139]. In high dynamics, objects are changing their location abruptly and sensors 

observe such types of objects for a short time. On the other hand, in the lower dynamic object, the 

object moves with low frequency even mostly sensor cannot observe the movement 

of objects such as movement of the door, furniture movement etc. A sensor with good accuracy 

can detect abrupt changes. Table 3.4 shows that different approaches have been used for building 

a map by using different sensors.   

Table 3.5: Survey of build mapping with help of sensor in a different environments is given. 

Main Features Mapping Output 

Acoustic Sensors 

The acoustic sensor can be used to create a 2D map of the 

environment while keeping track of the obstacles the robot 

might face during its course of action.  These sensors when 

combined with the Gaussian random variables can 

minimize the mapping uncertainty significantly, shows the 

figure of result [140] with the permission of copyright 

Elsevier 2017. Another method to generate a 2D map using 

acoustic sensors is SONAR. However, this type of mapping 

is limited to the provision of grid mapping [89] 

 

Environment: Indoor 

 

 

Camera 
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Vision-equipped robots proved to be very useful in 

carrying out the task of SLAM. The use of cameras 

facilitates the localization of robot, camera and robot 

interaction networks make the exploration easier. 

However, these systems suffer from the challenges of 

camera calibrations, shows the result of copyright images 

with the permission of Elsevier 2006 [141]. Another 

advantage of using camera systems is the ease in 

collaboration of multiple robots and their observations 

which can work together to extract the visual landmarks for 

better loop closure [142] 

 

Environment: Indoor 

 

Environment: Indoor 

 

LiDAR 

LiDAR sensors are usually used for long-range 

measurements and are more accurate than ultrasonic 

sensors. Moreover, even with lesser accuracy, these sensors 

can attain highly dense observations which can easily 

detect special features like corners in indoor environments 

[143]. Despite the advantages of LiDAR sensors, loop 

closure is always a challenge to attain due to the difficulty 

in extracting key features. Therefore, these sensors are 

often paired with various control networks for the back end 

optimization [144] 

 

Environment: Indoor 

 

Environment: Outdoor 

 

 

RADAR 
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RADAR sensors proved to be substantially useful for outdoor SLAM because of the provision of 

relative map observations. This makes map management and data association handling easy in 

practical outdoor environments [145] 

Kinect 

Kinect sensor belongs to a special class of vision-based 

sensors where the sensor can produce a 3D environment 

reconstruction. These sensors perform with much better 

accuracy as compared to the LASER sensor, however, its 

limited field of view makes its applications limited in many 

practical applications [146-147]  

 

Environment: Indoor  

 

 

3.4 Optimization of Selecting SLAM Sensors process using Analytical 

Hierarchy Process 

The AHP method is a technique used for the selection of objects based on their properties. It 

is a decision-making approach introduced by Thomas Satay [148]. It is used for different 

applications such as healthcare items, industrial sensors and government substances. It is a 

mathematical implementation and useful approach for dealing with decisions making of a complex 

problem. The goal of this technique is to select the most suitable leading category. In this 

technique, the decider sets priorities according to his experience and based on his priorities, this 

technique gives suitable decisions in the selection of categories, as in our case it will calculate the 

sensor value mathematically.  

Multi-Criteria Decision Making (MCDM) is a method used in the normalization technique to 

generate an aggregate of the categories, an important point of this method is to find the best result 

from a set of priorities. Data normalization is a necessary part of the decision-making process, that 

transfers input data into numerical data to comparing the result, rate and ranks for selecting the 

best items. The AHP covers mathematical properties (of SLAM sensor) and required preferences 

such as cost, computational complexity and reliability for the environment, and range. The 
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complexities of a problem can be reduced by converting each preference into pairwise comparison 

show in figure 3.5 [149]. 

3.4.1 Mathematical Model 

AHP is an effective tool for setting the decision making the weight of evaluation criteria for 

alternatives and built a process for weighting design criteria in a way, the process should be 

consistent. After setting the criteria, assign a score to all alternatives based on decision-maker 

pairwise comparisons criteria. The score values are always given within a range of 1-9, which 

shows different categories. Higher the score of the respective alternative, the better the 

performance of the alternative. In the final stage, from alternative and criteria matrix find the final 

weight global weight score, and achieved priority ranking of alternative to each criteria shows in 

figure 3.4.          

Step 1: Define the Objective 

Step 2: Structure the Criteria 

Step 3: Structure the Sub-Criteria 

Step 4: Make a pairwise comparison  

Step 5: Weighting & Consistency ratio  

Step 6: Evaluating alternatives  

Step 7: Get priority and Ranking  
 

Figure 3.4: AHP block diagram 
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The main object of using AHP is the selection of the best sensors for SLAM, these are 

consisting of proximity sensors as discussed at starting of this section. Cost-effectiveness, 

measuring range, computational cost and environmental behavior has been set as criteria for the 

selection of sensor. These have been briefly discussed in section 3. Acoustic sensor, Camera, 

LiDAR, RADAR and Microsoft Kinect sensor have been set as sub-criteria for selection of best 

sensor, briefly discussed in the section this section also shown in table 3.6. Pairwise comparison 

has been done from the 1-9 range according to standards based on table 3.7. This table has been 

build based on literature review as well as figures shows in this section such as 3.1, 3.2 and 3.3.  

Table 3.6: Parameter used for AHP 

AHP parameters Selection 

Selection of goal SLAM Sensors 

Criteria Cost-effectiveness, measuring range, computational cost and 

environmental behavior 

Sub-criteria Acoustic sensor, Camera, LiDAR, RADAR and Microsoft Kinect sensor 

 

Table 3.7: Pair wise comparison for AHP matrix 

Sr. 

no 
Sensors Range(m) Computer complexity Environment  

1 Acoustic 2-5 Excellent Good 

2 Cameras N-A Very Bad Bad 

3 LiDAR 50-300 Very Good Very Good 

4 
Kinect 

sensor 
5 Bad Very Bad 

5 RADAR 
Depend on 

Size 
Good Excellent 

         

AHP technique verification can be found through the following parameters. Consistency ratio 

(CR) is a ratio of Consistency Index by corresponding random matrix. The consistency ratio must 

be less than .01 values for consistency of weights. Equation 3.1 shows the A is multiple stones 

with W weights. The multiplication result of A.W is λmax.W, λmax shows the larger eigenvalues 
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of matric. All eigenvalues are zero except one. So the sum of the eigenvector is equal to the trace 

of matrix A. On the other hand, to make W unique normalization has been done on its matrix by 

dividing its values by their sum.  λmax ≥ n shows that A is consistent if it is verifying. 

A.w = λmax. w        λmax ≥ n                                                                      (3.1) 

Small changes in A implies the 𝜆𝑚𝑎𝑥, the deviation of latter from n make a deviation in n 

from consistency called consistency index (CI). The formula of CI is given in equation 3.2.  

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                                              (3.2) 

A= Pairwise in the form of Vector  

W= Normalized weight in the form of Vector 

λmax: Maximum eigenvalue 

n: Eigenvalues of A 

aij: Numerical pairwise values i and j 

The average consistency of consistency index at the same matrix index is called random index 

(RI). Then the ratio of consistency index by the random index is called consistency ratio shown in 

equation 3.3. Values of CR less than .1 show the inconsistency in setting the criteria or sub-criteria. 

CR =
𝐶𝐼

𝑅𝐼
      CR ≤ 10%                             (3.3) 

 

Figure 3.5: Analytical rating process (AHP) for the entire sensor is based on cost-effectiveness, 

computational complexity, environment and range measurement. Some of the priorities are set 

based on the requirements and the category is prioritized. 
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Our requirement for selecting SLAM sensors consists of some priorities such as cost-

effectiveness, computational complexity, environment and range measurement. These priorities 

can be changed based on requirement depend on the user; people live in developed countries give 

more emphasis on accuracy, working in environment and range. However, people from 

underdeveloped countries give more priorities to the cost and computational complexity of sensors. 

According to this, we have set priorities based on literature reviews from multiple research papers, 

and gave more importance to the environment and range measurement for our mobile robot. 

SLAM sensor's priorities are also shown in figure 3.4 with the help of the AHP technique.    

The analytic hierarchy process comprises five sensors (Acoustic sensor, Camera, RADAR, 

LiDAR, and RGB-D) that has been shown for the SLAM problem. Figure 3.4 shows the acoustic 

sensor is a superior sensor based on cost-effectiveness and the vision sensor ranks  second. In the 

priorities of the environmental factor, RADAR seems one of the best sensors to counter 

environmental problems and LiDAR is on the second mark based on numerical value. Based on 

computational complexity, the acoustic sensor seems one of the reliable sensors and LiDAR can 

also be used for lower computer specifications. While considering range measurement as the prime 

factor, LiDAR is the best choice with the range capabilities of 20-100 m.         

Table 3.8: Final Results based on Analytical hierarchy process (AHP).  

Sensor Type Priority Rank 

LiDAR 30.03% 1 

RADAR 29.53% 2 

Acoustic Sensor 24.83% 3 

Camera  9.48% 4 

RGB-D 6.19% 5 

According to the AHP method, we can thus summarize that LiDAR can be the best sensor 

because of its best range measurement, good performance in every environmental condition and 

compatibility with average computer hardware. RGB-D is last because of its range, environmental 

reliability and cost-effectiveness. Our priorities (cost-effectiveness, computational complexity, 

and environment and range measurement) are shown in table 3.5 for SLAM sensors (acoustic 

sensor, vision sensor, LiDAR, RADAR, and RGB-D). This calculation has been done online in 

the AHP software [150]. 
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CHAPTER 4:    RGBD SLAM AND FILTER BASED SLAM 

 

In this chapter, different step and component of robot has been described. First of all, a 

multisensory SLAM-based two-wheel robot has been designed for performing experimental 

results of SLAM, block diagram has been shown in figure 4.1. 

Acquisition of  

Sensors

Feature 

Extraction 

Fusion of 

sensor

ROS 

Implementation

Localization 

and Mapping

Computational 

complexity

Implement  

algorithm
 

Figure 4.1: Real-time mobile robot process that has been used for an experimental result 

A well-known controller has been used with an average cost microcontroller and integration 

of Bluetooth and WIFI called ESP 32, It is developed by espressif system (Shanghai-based Chinese 

company). It is a very high-speed processor 160 to 240 MHz with a single core and dual-core. The 

reason that has been used is because of its pin configuration and Wifi module, we can make any 

digital pin as interrupt and there is also two pins that we use as DAC for using analog value. Further 

information is including in Table 4.1. 

Table 4.1: A detailed information about ESP 32 that make it more superior to another controller 

Sr Feature Values 

1  Xtensa dual-core 160-240 MHz 

2 WiFi module  802.11 

3 Bluetooth module v4.2 BR/EDR and BLE 

4 ADC 18 x 12  

5 DAC 2 × 8 

6 TX/RX 8 Channel 

LiDAR and Microsoft Kinect sensors have been used for localization of landmarks and 

building a map of the environment. LiDAR is a well-known sensor used for SLAM-based mobile 

robot for building the map and obstacle avoidance as well as used for range measuring. Working 

of this sensor is like it emits the laser waves and received the laser waves then can measure the 

https://en.wikipedia.org/wiki/IEEE_802.11
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distance by time of flight. LiDAR is also used for 3D mapping and navigation for a mobile robot. 

The first time LiDAR is introduced by Hughes Aircraft Company in 1961. Hokuyo LiDAR sensor 

has been used with mobile robot for measuring the range. 

Microsoft Kinect sensor is consisting of a depth camera, RGB camera, microphone and IR 

sensor for night vision. Kinect sensor is the line of motion sensing input device used for building 

the 3D map in SLAM. This device is produced by Microsoft and released in 2010. Mostly popular 

application of this sensor is gamming; people mostly used Xbox 360 for gaming purposes. From 

table 3.8, we can see RGBD sensor has been ranked 5th number, but this sensor has been preferred 

to be used in SLAM experimental and simulation result due to requirement of depth values for 

building 3D mapping. 3D LiDAR is used for building the 3D map but is expensive. Low cost 

sensor such Microsoft Kinect sensor is used on the basis of literature review and requirements, 

they used other sensor for fulfil the requirement of LiDAR. 

Ultrasonic or sonar sensors are widely used for measuring range and obstacle avoidance. It is 

one of the cheapest sensor that why people mostly used for a different purposes. There are three 

categories in this board such as a transmitter, receiver and transceiver. Working of it is, it emits 

the Sonar sensor wave from a transmitter and receives these waves from receiver and transceiver 

is used for converting these waves into an electrical wave. The main purpose of this sensor is to 

minimize the time duration as well as computational cost. 

In the SLAM, different methods are used for finding the localization of mobile robot and 

landmarks and create a map of the environment. Rotary encoder and GPS sensors are frequently 

used for localization in indoor and outdoor environments, respectively. Rotary encoders generate 

the number of pulses per revolution as an output signal; to identify the position and speed of the 

robot as well as the location of the landmarks. The Global Positioning System (GPS) is a satellite-

based radio navigation signal to estimate the position, velocity and time of a mobile robot.  The 

signal of GPS can only be detected outdoor and it is widely used as a robust and accurate system 

for localization, however, it is quite expensive as compared to the rotary encoders. In a rotary 

encoder, the initial position of the robot is difficult to predict, whereas, in GPS, the estimation of 

position and speed is complicated, additionally, GPS is less accurate than encoders. Some of the 

properties are given in table 4.2. 

Table 4.2: A brief comparison of Global positioning system (GPS) and Encoders 
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GPS Encoders 

The Global Positioning System (GPS) is 

a satellite-based radio navigation.  

Encoders provide the current orientation, 

position and odometry information.   

Provides high precision capabilities Provide high reliability and accuracy with the 

advantage of being compact in size. 

The GPS needs to be coupled with 

INS/Encoders to overcome the noisy GPS 

receivers [49] 

Subject to direct light or radio interferences 

 

In this project, rotary encoder has been used with high torque motors. Due to high torque and 

current, a Monster H-bridge is used. Monster H-bridge is used for driving the DC motors; we can 

see that after 3 to 4 min, due to high current IC burn. For this purpose, Monster H-Bridge has 

extraordinary performance for reliability. It can bear up to 30A. Its max PWM frequency is up to 

20KHz.  

ROS-based agriculture artificial environment has been created for inspection of crops in the 

simulated result and implement SLAM in indoor environment such as green house. For this 

purpose, Microsoft Kinect sensor, LiDAR, Sonar sensor and encoder has been used for the robust 

result. A holistic review of these SLAM sensors has been discussed in the early section. And the 

reason for choosing these sensor has been also discussed in the previous section based on the AHP 

process.   

SLAM-based techniques are an emerging fields and lot of experimental results are going on 

the research side. Based on our requirement and setup of agriculture environment, mainly filter-

based SLAM and RGBD SLAM has been used for indoor agriculture in indoor environment. 

RGBD-SLAM is the best technique using for visual 3D mapping and localization. The only visual 

sensor can give much more information for agriculture crops. Based on RGB camera and depth 

camera, a map can be generated for analyzing the quality of crops. For this purpose, RANSAC and 

SIFT technique has been used that is part of RGBD-SLAM technique. A method that has been 

used for achieving our result is given in figure 4.2. The identified point feature estimate 6D 

transformation by using the RANSAC method in RGBD SLAM. Rigid transform combines the 

https://en.wikipedia.org/wiki/Radionavigation-satellite_service
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rotational and translation motion, find the best optimized rigid transform T (Tp=Rp+tp). Iterative 

closest point (ICP) is used to build a 3D map by using point cloud of LiDAR and RGBD sensors, 

and by using this technique localize the position of robots and accomplish optimal path planning. 

Initial inputs are required are classified as reference point clouds and source point clouds, initial 

transformation, on the behalf of these parameters ICP give output in the form refined 

transformation. 

RGB Image
Depth 

Camera

Extract 2D Feature by 

using SIFT

Extract translation and 

rotation of Robot by 

RANSAC Technique

Loop Closure 

Detection

Graph optimization of new 

Feature

NO

Yes

RTAB/ Octo 

Mapping

STOP

Iterative Closest Point

 

Figure 4.2: RGBD-SLAM block diagram for localization and mapping with Kinect sensor 

https://en.wikipedia.org/wiki/3D_reconstruction
https://en.wikipedia.org/wiki/Path_planning
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Filter based SLAM are classified into many techniques has been discussed in the above 

section, but a memory robust method has been picked for completing our experimental and 

simulation for operating it smoothly without needing high computational performance. On the base 

of the literature review, a table gives detail about how much good and high-performance computer 

has been used for completing these high-quality methods. For this purpose, an Extended Kalman 

filter has been used because this method is good for compensating the average computer.  A table 

has been given for discussing parameters for EKF used as compare to the particle filter. 

Table 4.3: Difference between EKF and Particle filter 

Sr 

no 
Properties Kalman Particle 

1 Time Duration Fast 
More time required due to particle 

(so time need 5000 particles) 

2 Efficiency 
Less than 100% but give 

good result 

Accurate (Depend on the number of 

particles) 

3 
Computational 

Cost 
Less Much 

4 Memory 
Less memory required for 

storage past states 
More 

5 Solution Exactly Approximate 

6 Prediction 
Only signal state for 

correction 
Multiple state due to weights 

7 
Implementation 

complexity 
Fewer iterations (Simple) More iterations  (Complicated) 

   

Extended Kalman filter is used in a different platforms other than SLAM, detail mathematical 

procedure and methodology is given in the next section. Robot deals with different classifications 

such as the present state of the robot, sensor measurement, controlling the robot and generating 

the map of the environment.  

4.1 Extended Kalman Filter 

Extended Kalman Filter (EKF) (SLAM based) is a technique used for estimating the state 

vector that contains the robot pose which consists of landmarks and the location of the mobile 



 

41 
 

robot. EKF is the procedure, in which the nonlinear model measures the current state and the new 

state estimate. The reason EKF has been used is because of its simple implementation and 

straightforward method. EKF consists of two processes in which first we predict the next state 

and then correction process in which, on the basis of landmarks correction will be done with 

covariance vector. 

 In SLAM, the robot needs to deal with numerous tasks such as the current state of the robot, 

sensor measurement, robot control and environmental map building. Let the current state of the 

robot be ‘Xk’ that represents its position in the XY plane. The robot updates its position or state 

according to its path and control input from k = 0 to k = ȸ. The input control stimulus or execution 

of action ‘Uk’ can be measured by varying the robot's direction and position which acts as a control 

input (linear velocity or angular velocity of wheels). The current state can be identified from sensor 

data such as a rotary encoder or GPS. ‘Zk’ is another sensor measurement in SLAM and under that, 

the robots can distinguish objects in the environment and construct an artificial map ‘mi’ of the 

landmarks using an obstacle avoidance sensor. Figure 5.1 shows the error between the estimated 

state and the real case with the SLAM algorithm. 

 

Figure 4.3: SLAM states, control, environmental mapping and sensor data acquisition 

used for measuring predicted location (estimated location) of landmarks and correction by 

using SLAM algorithm [151] 
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4.1.1 Prediction 

The prediction process is used for kinematics and movement of a mobile robots; in which we 

are only discussing the next state that what will be the next state based on the control vector. The 

next state of the robot’s odometry measurements were obtained from wheels’ encoders and width 

and radius of mobile robot for the angular velocity of both wheels. The new pose or state of mobile 

can be determined by turning or moving forward. As discussed, the current pose (x, y, θ) and 

movement of the mobile robot depend on angular velocity of both wheels (l and r) that we can get 

from wheels’ encoders; this kinematic-based model has been derived from [128].  

The full derivation of Kinematics model for Prediction step 
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P' x  C x  W sin  ' 


( R
  

)    

 cos 

 
  


P'

 y  
C

 y  2   ' 

 

P’x and P’y are the predicted values in x and y coordinates (m). 

 

P' x  Px  cos    

P' y

P y
lsin                                                 (5.8) 

       

z  h( x)T  1 z  h( x)                                             (5.9) 
  

 H HT Q                                                       (5.10) 

 

z consists of landmark depth and bearing values in m, rad. 
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h(x) are the values of depth and bearing of added landmark (state vector) in m, rad. 

Ѱ
-
 is a covariance matrix of the landmark in the State vector. 

H is the Jacobian derivative of the landmark. 

is the values of covariance of the current state? 

Q is the value of measurement error. 

4.1.2 Correction 

The correction step is in EKF-SLAM used for a correction next state on the basis of 

landmarks data and covariance matric. Like bottom equation shows the current equation based on 

jocabian. 

      
 

x 
 ( R 

   

g ( x, y, , l, r ) 


y 




( R 
      

    
   
      
      

 

g1 and g2 are the current values of mobile robot in x-y coordinates (m). 

g3 is the angle of the predicted pose (rad). 

Equation (5.11) shows the new predicted values that we can find on the basis of the previous pose 

and location and new angular values which are control vectors. The Jacobian matrix (G) has been 

calculated with the partial derivative of g with respect to states, control vector and landmarks 

location. If l and r are not equal. 
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V is also the Jacobian vector of new state. When l not equal to r: 
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The covariance of the control vector (control) can be calculated by then l is equal to r 
 

   l 2 0  (l ) 2  ( (l  r )) 2   0     
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 (2 (l  r )) 

2  (5.14) 

   0 r          

 

The predicted covariance for next state can be calculated using equation (5.15). 
 

t   G 
t 1 

GT V 
control 

V T   (5.15) 
 t  t t  T   

 

Value of landmarks detection plays an important role in all this scenario, this state vector is 

represented in the Cartesian coordinates, in which for making map we our data in polar 

coordinates, for converting Cartesian to polar coordinate bottom equation has been used. 
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



 Y m  y l     
  



    



  

                          (5.17)  

  ------ ------    



xm  xl 

  

       

xl   x  d cos  , yl   y  d sin                            (5.16)  
 

 

 

 

xm and ym are the values landmark’s location in coordinates environment in meter. 

 

xl and yl are the robot’s current location in xy-coordinates (m). 

 

α is the values of angle of a landmark from robot in rad. 

 

θ is the robot’s current heading in rad. 

 

H is jacobian vector of landmarks matrix with respect to state g. 
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Kalman gain (K) is used for minimizing the error by finding the factor. 
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t is the predicted covariance 

Q is the covariance vector of measurement. 

 
2 is the standard deviation of measurement distance. 

 

r is the value of distance along with the landmark from LiDAR in the meter. 
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
2 is the standard deviation of the measurement angle. 

 

The new state and new covariance have been corrected using equations. 

t t   K t ( zt   h( t ))                                                         (5.20) 

 
 
  


t  (I  K t H t ) T                                                        (5.21) 

 

 

μt are the vector of new corrected state 

 

Σt is the vector of new covariance. 
 

t is the vector of the predicted state. 
 

h() is the vector of polar coordinates of landmarks. 
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CHAPTER 5:    RESULT AND DISCUSSION 

 

RGBDSLAM is a SLAM technique used with Microsoft Kinect sensor RGB-D. In this 

technique, with the help of point cloud data of the RGBD sensor, we can create an octomap and 

RTAB map. It is RGB-D SLAM that takes the depth camera values and RGB images for measuring 

all information regarding the distance and feature of an object by RGB-D cameras. In this 

technique, there are multiple methods used for measuring the current position of Kinect sensor and 

feature detection with random samples consensus RANSAC, iterative closest points (ICP) and 

scale-invariant feature transform (SIFT). RANSAC is used for finding the transformation matrix 

of Kinect sensor by using SIFT features. Depth and RGB-images data have been collected 

synchronously to perform this method. RANdom SAmple Consensus (RANSAC) is well known 

as an iterative method consists of a scientific model for experimental data. The method is 

characterized by three parameters of RANSAC.  

1. When data is not in the model then error tolerance will be maximized.  

2. The maximum number of iterations used in the algorithm.  

This technique is used for constructing the 3D mapping, in which depth measuring and feature 

extraction technique is used. On the other hand, an extended Kalman filter has been used that is 

filter-based SLAM. Detail description of it has been given in the above chapter consist of the 

current state, building map, path and movement matrix.   

5.1 Simulation-based Result 

5.1.1 Simulation environment  

Experiment conduct in agriculture environment in gazebo robotics operating system (ROS), 

and conducted in different scenarios discussed in this section. ROS and gazebo environment have 

been performed in Linux Ubuntu 16.04. This simulation environment runs in real-time simulation 

are shown in figure 5.1. As a show that simple robot has been designed for simulation with the 

combination of multisensory such as laser sensor, Infra-red sensor, Microsoft Kinect sensor and 

Odometry for localization. In this artificial agriculture robot, the ground has been designed like a 

mud block and the green block color has shown the field for inspection and mapping. 
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Figure 5.1: Real-time simulation environment for the result 

5.1.2 Hector SLAM and Programmable map  

Hector SLAM is a well-known technique used for approximation of the robot position and for 

building maps.  It is the combination of filter-based SLAM technique and grid mapping tool for 

mapping in the form of graphical mapping. Graphical mapping by using hector SLAM is 

performed by laser sensor in Gazebo tool environment. Figure 5.2 shows the hector SLAM-based 

mapping result for localization and mapping by using a laser sensor (2D LiDAR). The simulation 

result of this hector SLAM is very holistic and some the error shown in mapping because of 

computational cost, because of building rtabmap (Octo mapping by using RGBD SLAM) take 340 

Mb. Which makes the computer slow to process the simulation.  

 

Figure 5.2:  Build a map by hector SLAM based mapping result 

Localization and the graphical map have been built for extracting the exact boundaries, 

obstacle position and trial of agribot arena. So they can differentiate between boundaries farm 

sides and wall sides. Odometry of agribot and localization of boundaries are exactly according to 
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agricultural environment shown in figure 4. Accuracy of this related to localization is very good 

and almost up to +95% localize the position of agribot and localization of boundaries. Accuracy 

of mapping is also very good and robust up to +93% shown in table 1. 

 

Figure 5.3: Build a map in the form of  result to localization and mapping by using 

extended Kalman filter 

5.1.3 RTAB Map for RGBDSLAM by using OPENNI platform 

RTAB-Map that has been built with RGBD-SLAM in ROS, stands for Real-Time 

Appearance-Based Mapping (RTAB). It depends on a visual depth sensor and RGB images instead 

of a laser range sensor such as LiDAR, Sonar sensor and RADAR sensor for localization and 

mapping. It is a graph-based online SLAM technique that has been built by use of a depth image. 

It can settle the loop-closure in a very efficient way. RTAB-MAP is a 3D map used for the 

reconstruction of the indoor environment. After installing full libraries, OPENNI has been install, 

real-time mapping has been shown with Kinect sensor shown in figure 5.4, in which I have attached 

the Kinect sensor with Ubuntu and construct all the 3D maps in Gazebo. 
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Figure 5.4: Built-up model for constructing 3D map 

In chapter 3, It is suggested that LiDAR is the best choice sensor on the basis of characteristics 

(Range, cost, environment and computation cost) with the analytical hierarchy process. Based on 

AHP, LiDAR is superior sensor and the second choice is the Radar sensor, sonar sensor is ranked 

as 3rd and monocular camera and Microsoft Kinect sensor ranked as 4th and 5th. Our main focus 

in this project is to design a robot with multiple sensor SLAM systems. So we have to make the 

two different systems in which first we have designed the Sonar sensor and LiDAR-based robot in 

ROS environment by using real time odometry of robot. Another robot was designed with Sonar 

sensors and Kinect sensors in real-time as shown in figure 5.5. The result of the simulated model 

is given in table 5.1. 

The simulation result of RGBDSLAM by using the RTAB map with the help of OPENNI has 

showed in figure 5.5. Localization was carried according to the movement of robot in gazebo, so 

localization and mapping are faultless with good accuracy. Microsoft Kinect sensor was used with 

build-in odometry sensor (rostopic echo /tf) for building the octomap. SIFT, RANSAC and ICP 

technique was used for building this octomap. SIFT was used for feature collection, RANSAC and 

ICP was used to an estimate the transformation to construct the 3D map and localize the position 

of Kinect sensor.  
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Figure 5.5: Build an RTABMAP by using RGBDSLAM 

Table 5.1: Simulated agriculture environment results 

Sr 

No 
Feature Hector SLAM RGBD-SLAM 

2D Map 

generation 

1. 
Total number 

of frames 
1496 1496 415 

2. 
Loop Closure 

Detection 
- 25 - 

3. Localization 
Up to 95% 

 

Almost 98% success 

rate 

 

Localize the 

border almost at 

the same position 

4. Mapping 
±0.3 m 

+90% (Accuracy) 
+85 % (Accuracy) 

±0.057 m 

+96% in real time 

 

Handling the computation cost is one of the priority objective of this research. For this 

purpose, Sonar sensor used for obstacle avoidance instead of using Microsoft Kinect sensor and 

LiDAR that take so much computational cost. LiDAR and Sonar sensor, point cloud of LiDAR 

data was received 515-time, but data has used 11-time, which automatically save processing speed 

and memory. On the other hand, Microsoft Kinect sensor, Sonar and LiDAR-based sensor received 

the 1496-time data from each sensor. Which takes 262 MB for 13.9-meter distance from LiDAR 

and Kinect sensor in 240 seconds shown in figure 5.6 but in this case by using Sonar sensor it takes 

340 MB in 73.8 meters in 211 seconds figure 5.6. In this case, 23.588% of memory has been saved.    
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Figure 5.6: Computational complexity reduction result by proposed methodology 

5.2 Experimental Results 

Localization of mobile robot is the foremost step for high accuracy because with sensor 

measure the position of landmarks according to the location of a mobile robot for localization and 

mapping. Incremental encoders are utilized for this purpose to conclude the pose from the 

coordinate system. if initial values (x, y and theta) are known then next pose and state can be 

determined using rotation and translation measurement of wheel encoders as shown in figure 5.7. 

The current state and orientation of robot can be represented by 

Position = [xt yt θt]
T        (5.1) 

 

Figure 5.7: Shows the real-time path followed by robot in the x and y-direction 

Every robot pose and location can be determined step by step in time interval (Δt). Δx and Δy 

small time interval in x and y direction that robot takes along the path in time interval Δt. Δθ is 

posed interval can be determined by the width of the mobile robot and angular velocity of the 



 

53 
 

individual wheel. The next state of mobile robot can be found by simply added these interval values 

(Next equations Δx, Δy and Δθ) in previous state values. In the extended Kalman filter, the 

previous and next state of the mobile robot are carried by the control vector (ut that consists of ΔR 

and ΔL). The algorithm of EKF used for approximation the location of mobile robot shows the 

entire path by encoder motor based on the angular velocity of both wheels. 

Δx = ΔL cosine (θ + Δθ / 2)             (5.2) 

Δy = ΔL sine (θ + Δθ / 2)         (5.3) 

Δθ = (ΔR − ΔL)/ W             (5.4) 

Localization of landmarks is dependent on the state of mobile robot. The values of LiDAR or 

Kinect sensor are taken from the position of robot and location of the obstacle. LiDAR real-time 

data is given in Figures 5.8 and 5.9. During 2πϴ rotation LiDAR emits 720 rays of data points. 

 

Figure 5.8: Data acquisition of LiDAR map in rviz 
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Figure 5.9: Measurement of real-time LiDAR data  

The feature can be extracted by the derivative of all received values from LiDAR shown in 

the figure. These values have been scale from 200 for a better representation. The values of more 
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than ±100 had shown the position of landmarks. The values shown a little bit peak values in figure 

5.10 are the values of walls changing from all sides.  

Fe
at

ur
e 

E
xt

ra
ct

io
n 

by
 d

er
iv

at
iv

e

Number of Sample  

Figure 5.10: Derivative of LiDAR values for feature extraction for localizing the 

landmarks 

To verify the accuracy, robustness, real-time efficiency of the proposed methodology, LiDAR 

and Kinect sensor are used in real-time and in the Gazebo environment. EKF and RGBD SLAM 

algorithm are used with LiDAR and Kinect sensor for localization and mapping. EKF creates a 

fast 2D grid map by using LiDAR with low computational cost while RGBD SLAM creates a 3D 

octomap by using an RGB camera and depth camera. 

The map is a symbolic representation of the environment in SLAM, where robots localize 

themselves with landmarks. The map has two mediums, static and dynamics. SLAM map-based 

classifications are online, offline, active and full SLAM. Our robot moves in a static map where 

every obstacle is in static (no movement in an arena) and active SLAM was implemented and the 

robot actuates autonomously and acquires data of the environment for mapping. 
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Figure 5.11: Real-time environment in which the LiDAR rays are emitted from robot to 

localize the landmarks in Gazebo. 

 

Kinect Xbox sensor are mounted on the front side of the mobile robot and LiDAR sensor is 

mounted on the middle for minimizing the error in building the map. The movement of mobile 

robot was programed, the obstacle and walls were mapped in two dimensions with LiDAR and in 

3 dimensions with Kinect sensor. As dependent by result is given in figure 5.12. 

 

Figure 5.12: Map building in ROS using LiDAR sensor 

A map was built with EKF as shown in figure 5.13. The map was built with an accuracy 

of more than +85%. Some of the errors in mapping are shown in the figure 5.13 which are related 

to spread around the actual location of landmarks, that is because of fully active SLAM procedure 

using EKF with robot angular pose (θ) and positional values (x and y). In figure 5.13 shows EKF 

filter which is implemented for a mobile robot with an accuracy of localization is 93 %. 
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Figure 5.13: Map building with LiDAR sensor, in this first line shows the actual path of the 

mobile robot and the second line shows the path achieved with EKF based on control vector 

 

In figure 6.14, these is real-time images from Microsoft Kinect sensor in which depth camera 

and RGB images play their role. This is a simple map form of 3D images, which can use for build 

3D images with Microsoft Kinect sensor.  

 

Figure 5.14: Real-time environment with Kinect sensor Xbox 360 in RVIZ 

In the other SLAM-based robot system, we have merged the Sonar sensor and Kinect sensor 

for localization and mapping.  Another RTAB map was designed with the help of RGBD-SLAM 

in ROS as shown in figure 5.15, Map was designed successfully with some noise due to low-

quality pixel of Kinect sensor. 

Line 2 

Line 1 
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Figure 5.15: Map building with Kinect sensor in ROS, dotted line shows the path of the mobile 

robot and yellow dot show the feature of landmarks, this map has been achieved in a Real 

environment with 15x12 feet room with RGBD-SLAM. 

 

Accuracy of loop closure in RGBD-SLAM with Kinect sensor is better than EKF LiDAR 

because Kinect sensor gives much more information, so it is quite simple to extract features in 

RGB and depth camera as compared to 2D-LiDAR. Overall the feature are discussed in table 5.2. 

Table 5.2: RGBD-SLAM feature has been detected during localization and mapping. 

Sr no Feature RGBD-SLAM 

with Kinect sensor 

EKF based SLAM with LiDAR 

1. Total number of frames 1078 274 

2. Loop Closure Detection 134 3 

3. Localization  95% (Accuracy) +93% (Accuracy) 

4. Accuracy of building a 

map 

+80 % (Accuracy) ±0.4 m with +85% in real time & 

+97% in ROS environment 

 

Multisensory SLAM based method was performed for indoor environment in real time (for a 

room) and in simulation based on indoor in green warehouse environment.  

 

 

 

 

Line  
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CHAPTER 6:    CONCLUSION AND FUTURE WORK 

 

In this work, we optimize selection of SLAM sensors, and implemented multisensory 

SLAM. The performance of SLAM sensors is compared using the analytical hierarchy process 

(AHP) based on various key indicators such as accuracy, range, cost, working environment and 

computational cost. Autonomous Robots are dependent on sensors data for localization, pose and 

location estimation of the robot and map building. Proper sensors selection for the desired 

application is highly important and such selection AHP based method is an appropriate choice.  

AHP method shows that LiDAR is the best choice for long-range applications as compared to 

acoustic, vision sensors, RADAR and RGB-D sensors. RADAR is widely explored for application 

in autonomous mobile robotics. Vision sensors provide more details about the environment; 

however, complex algorithms and computational complexity are limitations. Acoustic sensor cost-

effective with a linear output however, the limited range is its key limitation. AHP analysis reveals 

that LiDAR is preferred among all the cited sensors for SLAM problems due to long-range, 

minimal computational complexity and capability to work in some noisy and smoke environments. 

The analysis further shows that RADAR can be the second choice after LiDAR due to its optimal 

measurement range and moral performance in diverse environmental conditions. 

SLAM was carried by using EKF and RGBD-SLAM in simulation and experimental 

environment for indoor agricultural static conditions. EKF algorithm was programmed in ROS to 

navigate the robot in the Gazebo environment for mapping. Localization of landmarks and 

mapping of the environment is achieved with a sonar sensor and LiDAR with accuracy of 93% 

and 85 %, respectively (experimental result). RGBD-SLAM has been used in ROS for 3D mapping 

of the same environment. Accuracy of the localization and mapping was up to 95% and 80%. In 

simulation based environment, accuracy of localization and mapping was 98% and 85% in RGBD 

SLAM with multi-sensor data (Build in Odometry in ROS, LiDAR, Kinect sensor, Sonar sensor).  

 SLAM technique is one of the well-known techniques and still, more research is still 

required. We have built 2D and 3D maps from the different sensors in static environment. For 

future work it is recommended to perform such investigations in dynamic environment. 
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