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Abstract

The emerging multiprocessors technology is increasingly penetrating into the advanced

real-time systems which poses great challenges for job scheduling in real-time resource

management systems. An efficient and reliable scheduling analysis technique is vi-

tal for non-deterministic tasks in safety-critical systems. This study explores state-of-

the-art automated stochastic formal techniques for real time scheduling analysis and

verification. This is the first work so far that employs colored stochastic Petri nets

(SPN C) and probabilistic model verification based framework for multiprocessor real-

time scheduling algorithms. Stochastic Petri net (SPN ) model of general job sched-

uler is evaluated via simulations, structural analysis and stochastic model checking.

Specifically, this study demonstrates SPN C model of preemptive and dynamic prior-

ity based global earliest deadline first (gEDF), a non-trivial scheduling algorithm for

real time multiprocessor environment. The underlying SPN model of SPN C and its

continuous-time Markov chain are deeply examined and validated using stochastic sim-

ulations and model checking technique. Hence, this work suggests a framework for the

formal analysis of real time scheduling algorithms and it successfully proves to provide

a live, scalable and robust solution for gEDF scheduling algorithm. This study will fur-

ther serve as a basis to systematically analyze the real time multiprocessor scheduling

problems tremendously using probabilistic formal methods.

x



Chapter 1

Introduction

In this chapter, a brief overview of the research problem is discussed along with the

introduction of important terms and concepts related to this research work. The prob-

lem statement is given in Section 1.4. The research aim and objectives are stated in

Section 1.5 along with our contributions in Section 1.6. A brief outline of the thesis

document is given in Section 1.7.

1.1 Overview

Modern safety-critical systems are moving towards increasingly parallel and distributed

computing environments. They highly rely on their integrated concurrent systems that

are by nature very complex e.g. Tele-presence systems, Automatic tracking systems,

E-health system etc.. An efficient modeling of multiprocessor systems for sophisticated

1
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real time applications is particularly a very challenging problem because a single miss

in some important interactions will often lead to malfunctioning of whole system and

which may cause in ecological, human or economic disaster. The early failure analysis

of real time tasks scheduling is very important to protect the system from serious acci-

dents. All the real-time tasks must fulfill their timing constraints and thus real-time job

scheduler must be very reliable during development cycle from design to final imple-

mentation phase. Over the years, real time scheduling analysis is done using calculus

based techniques. In the recent research, mathematics based formal method approaches

are widely used that guarantee the reliability of safety critical systems at high abstrac-

tion level [1, 2].

The automated stochastic formal modeling and verification techniques are proved to be

very useful for predictability and performance properties of the non-deterministic com-

plex systems architectures [3]. The expressive power of Petri nets modeling formalism

can be used for performance evaluation of real time scheduling problems with less com-

plexity. Qualitative and quantitative properties verification can be done through model

checking which further provides deep insights into the behaviors of modeled system

and also precisely validates the correctness of a system. The selection of an appropriate

formal method depends on underlying system and its important features to be verified.

Therefore, in this study, as opposed to traditional analytical methods, stochastic formal

modeling and verification techniques are exploited to investigate the non-deterministic

behavior of real time tasks scheduling.
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1.2 Real Time Systems
Real-time systems are those reactive computing systems (reactive systems interact with

their environment continuously and generates an output on the basis of certain inputs)

in which the correctness of the system depends not only on the logical computational

results but also on the time instance at which the computational results are produced [4].

The pervasive real time systems are used in many different application areas, for ex-

ample, Command Control Systems, Air Traffic Control Systems, defence and space

systems, networked multimedia systems etc., in order to monitor and control the envi-

ronment.

If the real time system follows its time constraints stringently then it is known as hard

real time system (HRTS). If the deadline timing constraints are tolerable then the real

time system is said to be soft real time system (SRTS). HRTS is also known as safety-

critical because a single miss to meet the deadline time will lead the system to serious

damages as shown in Figure 1.1. However, SRTS is best-effort depicting that the dead-

line failures are tolerable but not desired because the system performance degrades as

shown in Figure 1.2. Some important differences between HRTS and SRTS are listed in

Table 1.1 [5].
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Figure 1.1: Safety Critical Task.
The behavior of figure depicts that if the safety critical task does not complete within
deadline then the system will headed towards damage.
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Figure 1.2: Soft Deadline Task.
The behavior of figure depicts that the system will not go to damage state as the task
does not complete within deadline but the performance of system degrades.



Chapter 1: Introduction 5

Table 1.1: Differences between HRTS and SRTS
Characteristic Hard Real Time Soft Real Time

Response Time Hard-required response time that
should be in milliseconds or less

Soft-desired response time that
are flexible

Peak-load Performance It must be predictable such that it
should not violate the deadlines

Degraded performance peak
load are tolerable.

Control of pace HRTS must remain synchronous
with the environment in all the
circumstance

Computer dependent i.e. the re-
sponse time of SRTS slows down
in case of high load on comput-
ing nodes.

Safety Critical Non-Critical

Data Integrity It has short-term data integrity as
it deals with real-time data files

Data integrity in SRTS is long-
term as it has to deal with larger
databases, e.g. on-line reserva-
tion systems

Error Detection Error detection in HRTS
is autonomous and roll-
back/recovery of computations
is of limited use.

It is user-assisted i.e. the compu-
tation is rolled back to a previous
checkpoint in order to initialize a
recovery action.

1.3 Real Time Scheduling

Real time scheduling theory is the analysis and verification of scheduler system as well

as scheduling policy adopted for real-time applications. There came a paradigm shift

in real time systems from uniprocessors to multiprocessor computing architectures that

brought significant and challenging problems to real time scheduling theory. More

efficient and reliable advance scheduler schemes are required to handle parallel jobs

in multiprocessor real time systems. The scheduling policy in HRTS must provide

guaranteed response time [6] as it follows strict timing constraints. On the other hand,

the aim of scheduling in SRTS is to optimize the average response time (Best effort
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scheduling policy) [7] since timing constraints are flexible. In this study, our focus is

on real time tasks that have hard deadline constraints.

In HRTS (best-known as safety critical systems), the tasks are executed by multiple

processors in such a manner that task strictly completes within its deadline, or else the

system will go into catastrophic state which indicates that it needs extreme reliability

and safety. A real time resource management system handles the load on processors for

all the specified compute nodes by keeping the jobs from competing with each other. A

common resource management system is illustrated in Figure 1.3. Job scheduler, a fun-

damental element in real time resource management systems, is responsible to make

scheduling decisions in order to manage all the load on computing nodes justifiably

and efficiently [9, 8]. The model of scheduler is not only required but its verification is

also necessary. A sound scheduler that cannot verify the truthness of generated sched-

ule is counterproductive in real-time applications because real time system designer

needs an efficient scheduling algorithm in which fundamental property of HRTS must

be proved (i-e deadline of any task should not be missed) [10]. Thus, soundness of

existing schedulability tests plays a central role in the selection of any job scheduler. A

stochastic Petri net model of general job scheduler is presented below in Figure 4.1 and

is further elaborated in section 5.
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Figure 1.3: A Common Real Time Resource Management System.
Resource management system generally consists of a resource manager and a job
scheduler. It has a built-in internal job scheduler but external job scheduler may also be
added to enhance the functionality. A resource manager keep track of available com-
pute resources and notify the user about the status of previously submitted jobs. It also
assists to organize already submitted jobs on the basis of priority, requested resources
and processors availability. The resource manager sends information about job queues
and idle resources to the scheduler continuously and makes the schedule keeping into
account all the constraints e.g. priority, on the basis of which job scheduler determines
the order of jobs execution along with the corresponding compute nodes [8].
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1.4 Problem Statement
With the increase in the development of multiprocessors technology, real time systems

are becoming complex day by day. These concurrent systems demand a well-defined

reliable method in order to manage the computationally intensive and safety-critical

tasks efficiently. To investigate the probabilistic nature of job scheduling in real time

resource management system, the existing analysis techniques are limited in their scope

and generally evaluate the deterministic behavior of real time system. The expressive

graphical modeling based colored stochastic Petri net techniques are employed to eval-

uate the non-deterministic performance of real time scheduling algorithm via multiple

simulations. Moreover, probabilistic model checking approach completely verifies the

scheduling properties of the stochastic model. Thus, automated stochastic formal meth-

ods are proposed to get robust and precise solution for the probabilistic and complex

real time job scheduling. They also provide deep insights into the dynamics of the

model and completely validate the system.

1.5 Research Aim & Objectives
The aim of this research work is to provide an efficient model based scheduling solution

for real time resource management system. This aim is achieved with the following

objectives:

• To construct a formal model of colored stochastic Petri nets of real time schedul-

ing algorithms.
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• To evaluate the performance of real time scheduling algorithms for multiproces-

sors via simulations of colored stochastic Petri net (SPN C) model.

• Formal verification and validation of continuous-time Markov chain (CTMC)

through probabilistic model checking approach using PRISM tool.

It will ultimately assist the researchers to combine the efforts of performance engineers

and verification engineers by handling modeling and analysis challenges together in a

very precise manner.

1.6 Our Contributions

Probabilistic formal modeling and analysis based approach is proposed for real time

task scheduling on multiprocessors. Colored stochastic Petri net (SPN C) based frame-

work is used for performance evaluation of real time scheduling algorithms. SPN C

model of Preemptive global earliest deadline first (gEDF) algorithm is constructed in

Snoopy tool and the dynamic behavior of gEDF is analyzed via multiple simulations.

Furthermore, a probabilistic model checker PRISM is used to build continuous-time

Markov chain (CTMC) which can assist to formally validate and verify the model. A

simple stochastic Petri net (SPN ) model of General Job scheduler, one of the critical

element in resource management system, is also formulated. Structural properties of

model are analyzed through the Charlie tool. The framework comprises of colored Petri

nets and the probabilistic model checking plays a dominant role in evaluating the per-
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formance of real time job scheduling problem on multiprocessors. Thus, our approach

permits precise analysis of random behavior of real time systems. This study will play

a significant role to further explore the problems in multiprocessor real time scheduling

area.

1.7 Organization of the Thesis

The thesis document is organized in the following manner. In Chapter 1, brief intro-

duction of the problem is stated along with the discussion of some important terms

and concepts that are related to real time systems and its scheduling. Chapter 2 pro-

vides the extensive review of formal modeling and verification techniques for real time

scheduling. In addition to that, real time scheduling algorithms are also discussed. The

techniques adopted for modeling and verification are demonstrated in Chapter 3 along

with the proposed methodology. SPN model of general job scheduler and SPN C

model of gEDF are formulated in Chapter 4. The results obtained via simulations,

quantitative & qualitative analysis findings are elaborated and discussed in Chapter 5.

Subsequently, the study is concluded on the basis of results in Chapter 6. Finally, the

potential future directions using the proposed methodology are given in Section 6.2.



Chapter 2

Literature Review

This chapter provides an overview of research background on formal modeling and

analysis based approaches to workout real time scheduling problem. Section 2.1 elab-

orates modeling based techniques that were applied to solve real time scheduling prob-

lem with the main focus on Petri nets (PN ). The literature of formal verification based

approaches for real time scheduling is briefly explained in section 2.2. Section 2.3

discusses the real time scheduling algorithms and further demonstrates the reason for

selection of global earliest deadline first (gEDF) scheduling algorithm in section 2.3.1.

2.1 Petri net Based Modeling for Real-Time Scheduling

Over the past two decades, real time scheduling problem has been modeled by utiliz-

ing various approaches e.g. timed automata (TA) [11, 12], high order logics (HOL)

11
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theorem proving method [13], Petri nets (PN s) [14] etc., in oder to obtain its better

understanding and solutions. The models based on Petri nets and its extensions provide

immense articulacy, dynamic behavior and simulation features, that make it favourable

for modeling and analysis of real time scheduling problem. PN s simulations make

it possible to detect system design errors and violation of time constraints in early de-

sign phases prior to the deployment of real time systems. Martin Naedele suggested

a novel approach of using Petri nets for modeling of real time systems and develop

general model for scheduling of tasks on a uniprocessor [15]. W. M. P. van der Aalst

mapped scheduling problem to timed Petri nets for the first time to model and analyze

the scheduling problem. Few structural properties and behavioral properties are dis-

cussed in this study e.g. reachability graphs are used to determine feasible schedules.

This link between scheduling and Petri nets stimulated further research in scheduling

and Petri net analysis [16]. S. BALAJI et al. introduced S-nets for performance evalua-

tion of real time scheduling algorithms using scheduler block along with deterministic

timed Petri nets [17]. Koriem, S. M used real-nets (R-nets) for performance analysis of

HRTS using extended version of time Petri nets with probability density function [18].

In [19], periodic real time tasks of off-line scheduling algorithms are analyzed using

state graph of Petri net models. SETPN (Scheduling Extended T-time PNs) are pro-

posed in [20] to analyze the static scheduling policy using extended t-timed PNs [21].

Priority extension of time Petri nets known as dynamic priority time Petri nets (dPTPN)

are introduced for partitioned multiprocessor schedulability verification of periodic task
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sets of real time systems [22]. The literature shows that Petri net and its extensions used

for real time scheduling are becoming more complex for large parallel systems and it

is difficult to analyze non-deterministic behavior of real time scheduling. Hence, the

current work proposes scalable, parameterized and powerful colored stochastic Petri

net (SPN C) based approach for real time scheduling algorithms. To evaluate the per-

formance of the system, a number of simulations are carried out for the verification

purposes.

2.2 Formal Verification and Scheduling

Formal verification makes it possible to explore all the potential and achievable system

behaviors [23]. In this way, it not only provides performance estimates but also guar-

antees system’s performance. Most of the previous studies are based on temporal logic

reasoning [24, 25, 26]. Model checking, an automated and rigorous formal verification

approach is not widely exploited to workout real time scheduling problem. In [27],

the authors proposed model checking approach for static scheduling of periodic real

time tasks as an alternative to quantitative logic reasoning. Ranjeev et al. [28] applied

model checking approach over DTMC with time based branching temporal specifi-

cations TCTL for real time systems. Real time systems are formally verified under

preemptive scheduling policy in [29]. Some tools are also established for scheduling

of real time applications. For example, Roméo that performs on-the-fly TCTL model-
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checking of Petri nets. Cheddar tool is based on Ada framework for temporal behavior

analysis of real time scheduler but it does not perform model checking [30]. Kronos

tool is introduced for analysis of bounded response and reachability properties of real

time systems using timed automata and TCTL [31]. A model checker tool PARC for

verification of dPTPN in scheduling of real time systems is proposed by Karamti and

Mahfoudhi [32]. Recently, Liu et al. [33] formally model and verify Rate Monotonic

Scheduling (RMS) algorithm using logical reasoning in real-time Maude formal mod-

eling tool.

Formal model checking approaches applied to real time scheduling are not well estab-

lished and is employed in very few works even in emerging real time applications do-

main. It is still designed at low abstraction level using empirical techniques, that could

not guarantee the reliability and predictability of real time applications, consequently,

system may collapse [34]. Probabilistic formal model checking approaches are proved

techniques that ensure the reliability in real time applications [35]. Therefore, proba-

bilistic model verification based approaches are used that make use of continuous-time

Markov chain (CTMC) which is not utilized till now, to the best of our knowledge, in

multiprocessor real time scheduling field.

2.3 Real Time Scheduling Algorithms
Real time Scheduling Algorithm defines a rule set to manage real time tasks/programs

in strict and timely manner. Although extensive work has been done for scheduling of
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real time multiprocessor platforms since 1969 but real time community is still work-

ing hard to find out effective and optimal scheduling algorithms for multiprocessor

computing systems [36, 37]. These systems have their own intricacies; consequently,

uniprocessor scheduling algorithms cannot be applied directly to multiprocessor sys-

tems [38]. Real time multiprocessor systems are developing day by day with multi-core

and many-core processors technology and are widely exploited in computationally in-

tensive applications [39]. As the real time systems are those reactive systems that not

only need logical correctness but temporal verification is also essential. Formal analysis

techniques not only boost the guaranteed performance in real time applications but also

provide accurate proofs of schedulability. Therefore, it is vital to use more expressive

and significant formal methods in order to fully utilize the computing resources such

that all the jobs are completed within their deadlines [40].

Uniprocessor scheduling is a 1-dimensional problem that only deals with the temporal

organization of tasks as depicted in Figure 2.1. As opposed to uniprocessors, multipro-

cessor scheduling is a 2-dimensional problem as presented in Figure 2.2, i.e. in addition

to the temporal management of tasks, it also deals with their spatial organization [7].

For every job set, it determines when the task should begin, suspend and/or terminate

(priority problem) as well as identify the processor to which task should be assigned

(allocation or migration problem) [36].
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Figure 2.1: Mono-processor Scheduling.
A uniprocessor scheduling is one dimensional problem that takes care of only the tem-
poral management of all the tasks i.e. the time at which the task should be started,
preempted and/or resumed.
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Figure 2.2: Multiprocessor Scheduling.
A multiprocessor scheduling is two dimensional problem that deals with both the tem-
poral as well as spatial organization of tasks i.e when and to which processor the tasks
should be assigned



Chapter 2: Literature Review 17

On the basis of migration problem, scheduling algorithms for multiprocessors are clas-

sified into two groups:

(a) Global scheduling algorithms: A task can be run and migrated to any proces-

sor such that there is no pre-allocation of tasks to processors

(b) Partitioned scheduling algorithm: There is no migration of tasks allowed once

it is assigned to the processor.

On the basis of priority problem the scheduling algorithms are classified as dynamic-

priority and static-priority scheduling algorithms [41, 42]. In the former approach, the

active jobs are being checked for priorities at each time instant. These type of sched-

ulers are also known as on-line schedulers because the scheduling decisions are taken at

execution/run time of real-time application [43]. In static priority scheduling algorithm,

the jobs priorities are fixed and all the scheduling decisions must be taken a priori. It

is also known as fixed priority clock-driven scheduling [44]. Static scheduling algo-

rithms are quite limited and uncompromisable to be used in highly non-deterministic

real time systems whereas dynamic algorithms are flexible enough to change schedul-

ing decisions at run time based on overloads occurrence e.g. burst of task arrivals,

malfunctioning of few machine parts etc.. Thus, dynamic scheduling algorithms are

significantly used to manage the random occurrences of real time tasks [45]. If the

scheduling policy allows the jobs to be interrupted i.e. suspended temporarily and then

resumes later to another processor then scheduling algorithm is said to be preemptive.
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In contrary to that a scheduling algorithm is non-preemptive if the job, once in running

phase, could not be terminated till the completion of task [36]. This research work con-

siders global, preemptive and dynamic priority based real time scheduling algorithms.

Different multiprocessor scheduling algorithms have been proposed to achieve user

as well as high system level performance and reliability. As in real time systems, in

addition to predictability and fairness that are essential factors, efficiency is also impor-

tant [46, 47]. Therefore, the most desirable characteristics of hard real-time scheduling

algorithms are:

• It must guarantee and ensure average response time. The optimization of re-

sponse time is the secondary goal.

• It must guarantee that the deadlines are always met if the tasks have hard real

time constraints.

• The degree of resource utilization should be high or maximum. The miss ratio

must be zero.

• The scheduling stability is guaranteed even during temporary overloads i.e. dead-

lines of critical tasks must be met (task should not expire) even during overload

conditions. Such scheduling algorithm is said to be stable.

These are the important objectives on the basis of which scheduling algorithm is eval-

uated and its rank is determined for real-time applications.
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In this study global earliest deadline first (gEDF), a well known real time multiproces-

sor scheduling algorithm, is selected which provides a basis for analysis and verification

of dynamic behavior of real time scheduling problem. gEDF algorithm is discussed in

section 2.3.1.

2.3.1 Global Earliest Deadline First (gEDF) Scheduling Algorithm

gEDF is a deadline driven preemptive scheduling algorithm for multiprocessor real

time systems [45]. The task is prioritized on the basis of how much a task is close to

its deadline. A flow diagram of gEDF is illustrated in Figure 2.3. gEDF is a deadline

based dynamic priority scheduling algorithm in which jobs with the least deadline has

given the highest priority.

Let τ = {τ1, τ2, ..., τn} be the set of sporadic tasks then the tasks are processed by

EDF algorithm such that :

Priority(τi) > Priority(τi+1) ⇐⇒ DL(τi) < DL(τi+1) ∀ i ∈ {1, 2..., n}

where ‘DL’ is the absolute deadline.

EDF when used for real time multiprocessor applications is known as global EDF . As

it is global scheduling algorithm so jobs are assigned dynamically from ready queue

to computing nodes. There is a single queue for all the processors which gives bet-

ter response on average instead of one queue per processor as in case of partitioned

scheduling [48]. gEDF is a part of planning based real time scheduling algorithms
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Figure 2.3: Flow Chart of Global Earliest Deadline First Scheduling Algorithm
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because scheduling decisions are taken such that all the tasks meet their deadlines [49].

The scheduling analysis in multiprocessor systems must be specified using dynamic

priority [50]. Moreover, gEDF is a memoryless algorithm since it takes scheduling

decisions only over current state of the system and active/ready tasks at the present

time ‘t’, irrespective of previous scheduling decisions [36]. The motivation behind

selection of gEDF scheduling algorithm is its memorylessness and dynamic nature

which is coherent with stochastic formal techniques since they also exhibit memoryless

property.



Chapter 3

Methodology

3.1 Methodology Overview

The scheduling theory of real time systems is a framework which further provides

analytical methods, called schedulability tests. It allows system designer to early

analyze/compute the system’s behavior before implementation/execution phase. The

modeling techniques provide a basis for systematic designing of real time systems and

extremely simplify their verification [51]. Building a model for scheduling of modern

safety critical systems is a non-trivial problem. Job scheduler plays a functional role in

the resource management of real time systems as discussed in Introduction (Section 1)

which indicates that scheduler modeling is a very challenging problem.

Traditional scheduling analysis techniques are restricted in their scope to quite sim-

ple systems. Moreover, existing implementation theories lack verification of functional

model level properties such as liveness, deadlock freeness and fairness properties. The

22
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proposed methodological framework for modeling real time scheduling is presented in

Figure 3.1 and explained below:

Real Time System 

Multiprocessor Real Time 

Scheduling Algorithms

Identify Specifications 

& Requirements 

Colored Stochastic Petri Net 

Model of  gEDF Algorithm

Conversion to 

Continuous Time Markov Chain 

(CTMC)

Probabilistic Model Checking

Conversion of System 

Properties to 

Continuous Stochastic 

Logic (CSL)
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Stochastic Petri Net (SPN)
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Analysis and Verification

Literature Review

Qualitative Formal 
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Probabilistic 
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Figure 3.1: Proposed Methodology.
An overview of the organization and structure of the study is presented in this work-
flow diagram. After the comprehensive literature research of real time systems and their
scheduling algorithms, global earliest deadline first (gEDF) scheduling algorithm is
selected. It is modeled using colored stochastic Petri net in Snoopy tool. The model
is analyzed through simulations and qualitative analysis by using Snoopy and Charlie
tool respectively. The formal model properties of the system are further analyzed quan-
titatively through probabilistic model checking via PRISM tool that takes (i) CTMC
of probabilistic model and (ii) CSL encoded system specifications, to completely
verify the system.
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3.2 Petri Nets

Petri net is a very powerful mathematical and graphical modeling tool used to visual-

ize the behavior of concurrent, asynchronous, deterministic and/or non-deterministic

systems. In 1962 Carl Adam while doing his PhD thesis “Kommunikationmit Auto-

maten” [Communication with automata] gives the idea of Petri nets which significantly

advanced the fields of distributed, parallel computing. In 1989 TADAO MURATA [52]

wrote the first review paper of Petri nets. PN s are very suitable for concurrent, paral-

lel and distributed discrete event dynamic systems. Now after more than half a century,

PN s are extensively used to solve multidisciplinary real world problems. The diverse

applications of this mathematical and logical formalism are still an ongoing research

area [53].

PN is basically a directed bipartite graph (see Definition 1 & 2) in which directed arcs

are used to connect places and transitions. The places usually represent state variables

whereas transitions are “state transformers” usually express the actions/events to neigh-

boring places. The tokens allocated to all places are termed as markings. A place ‘p’ is

an input place if there is a directed arc from ‘p’ to transition ‘t’ and if there is a directed

arc from ‘t’ to ‘p’ then ‘p’ is an output place. A transition is enabled or fire-able if

each of the input place contains tokens equal to the weight of the transition. The fir-

ing of enabled transition extract tokens from input place(s) and adds tokens to output

place(s) equal to weight of the arc joining transition to place [54]. These simple rules of
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transition firing results in the trajectories of marking. In this way, the dynamic behavior

of the system is produced. Formally, standard Petri net is explained in Definition 2.

Definition 1 (Directed Graph) A directed graph G is a pair 〈A, ξ) in which:

• A is a set of all nodes / vertices {v1, v2, ... vn}, and

• ξ is ordered pair of edges such that if (e1, e2) is an arc from e1 to e2 then it is

distinct from (e2, e1) i.e. (e1, e2) 6= (e2, e1). Edges are used to connect vertices.

Definition 2 (Directed Bipartite Graph) A directed graph G (A, ξ) is bipartite

in graph theory, iff:

• A = P ∪ T such that P ∩ T = Ø where P and T are two mutual exclusive sets

of nodes, and

• ξ ⊆ (P × T ) ∪ (P × T ) is a directed arc from P to T or from T to P .

For example, in Job Assignment problem the resources and jobs are two disjoint sets of

vertices and edges. These are used to represent the compatibility of Jobs with different

available resources.

Definition 3 (Standard Petri Net) A standard Petri net is a quadruple PN =

〈P , T , Fw, I0 〉, where :

• P is a bounded, non empty set of places {p1, p2, ...., pn}

• T is a bounded, non empty set of transitions {t1, t2, ...., tm}
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• Fw : ((T ×P )∪ (P ×T ))→ Z≥0 is a weight function assigned to directed arcs.

It is basically an arc multiplicity that maps a positive integer to ordered pair of

edges (pi, tj) and (tj, pi), ∀ pi ∈ P , tj ∈ T & i, j ∈ N

• I0 : P → Z≥0, is function of the initial marking which assigns discrete positive

marks to set of places and leads to further markings, thus exhibits the dynamic

portion of Petri net model.

• P ∩ T = ϕ & P ∪ T 6= ϕ i.e. places and transitions must be two mutual exclu-

sive partites. The example of simple Petri net model of machine cycle in Fig3.2

illustrates the semantics of standard Petri net PN

3.2.1 Extended Petri Nets

Petri nets can be extended by adding some special features of directed arcs, for instance,

read arcs and/or inhibitor arcs. These two additions simplify the model to represent

positive and negative actions/conditions comparatively in an easy manner. These arcs

are always from place (p ∈ P) to transition (t ∈ T ).

• Read Arc: A directed edge (p, t) that inspects the existence of tokens at corre-

sponding input place(s) without consuming them. It is also known as “Test Arc"

represented with directed arc that ends with a filled circle (−−−•). Let IN(pi) be

the marking at the input place pi and I′N(pi) be the marking after firing of transi-

tion tj , then formally, it is enabled if:
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Figure 3.2: An example of Standard Petri Net.
(A) Simple Petri Net Model of a Machine Cycle: (i) Fetch Instructions from memory
(ii) Control unit decode instructions into commands and send to arithmetic & logic
unit (ALU) (iii) ALU then execute commands and store results in main memory. It
consist of set of places P = {p1, p2, p3}, set of transitions T = {t1, t2, t3}, the
weight Fw of each directed arc is 1 and a token at place p1 means main memory is
available. From the initial marking I0(1, 0, 0), transition t1 is 1 enabled, t2 & t3 are
0 enabled. (B) The reachability graph of Petri net obtained from initial state I0.
This graph of markings consist of vertices and enable transitions on arcs, correspond to
tokens at places after firing of transitions. It has one cycle I0(1, 0, 0) → I1(0, 1, 0) →
I2(0, 0, 1) → I0(1, 0, 0) which shows how the system evolves with the repetitive
firing sequence S = t1t2t3. This PN model is reversible, 1-bounded and deadlock
free.

IN(pi) > Fw(pi, tj) ∀i, j ∈ Z>0 &

IN(pi)
tj→ I′N(pi) & IN(pi) = I′N(pi) i.e. the marking remains same

• Inhibitor Arc: An inhibitor arc, contrary to read arc, is a directed edge (p, t)

that checks absence of markings at corresponding input place(s) without utilizing

them. It is generally presented as a directed arc that ends with a small empty

circle (−−(). Based on definition 3, it is enabled if:
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IN(pi) < Fw(pi, tj) ∀i, j ∈ Z>0, where IN(pi) are markings at input place ‘pi’

and

Number of tokens at place do not change after enabling of transition. i.e.

IN(pi)
tj→ I′N(pi) & IN(pi) = I′N(pi)

• Equal Arc is another very useful directed edge that verifies exactly equal tokens

at input place, so it ends with two filled small circles (−−−•−•). Formally, a tran-

sition is enabled if:

IN(pi) = Fw(pi, tj) ∀i, j ∈ Z>0 &

IN(pi)
tj→ I′N(pi) & IN(pi) = I′N(pi)

The graphical notations are given in Table 3.1.

Table 3.1: Graphical Notations of directed arcs for Extended PN

Arc Type Graphical Representation

Inhibitor Arc

Read Arc (Test
Arc)

Equal Arc
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3.3 Non Autonomous Petri Nets

With the advancement in technology, the discrete model formalism of Petri net has

been evolved. PN can be synchronized with some external events and/or it can be

used to model time dependent systems i.e. system evolves with respect to the condi-

tions associated with the transitions. Hence, these types of Petri nets are said to be

non autonomous [54]. Deterministic timed Petri nets and non-deterministic stochastic

Petri nets of this class are especially used for performance evaluation of the complex

systems that is the prime goal of our work. In section 3.3.1 & 3.3.2, timed Petri nets

and stochastic Petri nets are discussed briefly.

3.3.1 Timed Petri Nets

Timed Petri net modeling formalism is used to model and analyze the timing behavior

of the system. The time of event occurrence is known a priori so this time is taken as

deterministic delay, associated with transitions e.g. customer’s waiting time, elapsing

time of machine, data transmission time etc.. The transition, once enabled, is fired after

this deterministic delay time.

Definition 4 (Timed Petri Net) A timed Petri net is 5-tuple TdPN = 〈P , T , Fw, I0, dt〉,
where:

• P , T , Fw, I0 are same as discussed in standard Petri nets definition 3.

• dt : T → Q≥0 is deterministic time associated with each transition Tj . This
delay time must be elapsed between enabling and firing of a respective transition.
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Figure 3.3 illustrates the definition 4 of timed Petri nets.
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Figure 3.3: (A) Timed Petri net model of Simple Traffic Light Signal.
It consist of set of places {p1, p2, p3} as green, yellow & red light, set of transitions
{t1, t2, t3} and delay as t1 → 30s, t2 → 10s & t3 → 20s. The timing behavior of
system is illustrated through delay transitions. Initially p1 has one token means light
is green so transition t1 is 1-enabled and will be fired after the delay d1 of 30seconds.
Token is deposited from p1 to p2 indicates the traffic light will turn to amber, transition
t2 is enabled but the signal will go to red state after the delay d2 of 10 seconds is elapsed.
Afterwards t3 is enabled but signal will turn to green (i.e. initial state) after the elapsed
time of of 20 seconds (d3). (B) Reachability Graph. Graph shows reachable markings
after each enabled deterministic transition. The directed arcs shows enabled transition
with delay and resultant markings are shown through 1-D vector. The graph is cyclic
hence it is live and strongly connected with no deadlock.

Most of the events in real time system are random [55], so non-deterministic time delay

must be considered to evaluate different behaviors of the system. Hence, timed Petri

net with stochastic timings is presented in section 3.3.2.

3.3.2 Stochastic Petri Nets

Stochastic Petri net (SPN ) is a very significant type of timed Petri nets TdPN in which

negative exponential distributed firing rates are associated with the transitions [56].

SPN s, first introduced in 1982, offers promising benefits even after more than three



Chapter 3: Methodology 31

decades and has been extensively used to evaluate the performance of complex sys-

tems [57, 58, 59, 60, 61]. The non deterministic and independent event occurrence is

encountered probabilistically i.e. a random variable Dt that follows exponential dis-

tributed time delay with expected delay E(Dt) of 1
/
ωt denoted as:

Dt ∼ Exp (ωt(m), T) (3.1)

where ωt(m) ∈ R+ is the firing rate function that depends upon number of tokens in

input place(s) of transitions tj i.e. m(pi) > Fw(pi,
◦tj) and T represents continuous

time such that ∀ T ∈ [0, ∞).

Probability distribution function (PDF) and probability density function (pdf) of ex-

ponential law with rate parameter ωt(m) are mathematically given in equation 3.2 &

equation 3.3, respectively.

PDt
(T;ωt(m)) = 1− e−ωt(m)·T, T > 0 (3.2)

pDt
(T;ωt(m)) = ωt(m) · e(−ωt(m)·T), T > 0 (3.3)

Furthermore, memoryless property is a fundamental characteristic of negative expo-

nential distribution i.e. probability of firing rate (or delay) of random variable Dj at

time T is independent of previous behaviors and depends only on current time:

Pr[Dj(T1) 6 T0 + T1 | Dj(T1) > T0] = Pr[Dj(T1) 6 T1] (3.4)
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In SPN , events occur continuously and independently at random time interval which

signifies that it exhibits memoryless property, also known as Markov property [56].

Consequently, stochastic systems can be analyzed through continuous-time Markov

chain (CTMC) [59].

Definition 5 (Stochastic Petri Net) Formally, a stochastic Petri net is defined as 5-tuple

SPN := 〈P , T , Fw, I0, ∇ 〉, where:

• P , T , Fw, I0 corresponds to places, transitions, weight function and initial

marking as illustrated in definition 3 of standard Petri net PN .

• ∇ : T → R is a stochastic rate function assigned to each transition t ∈ T ,

where:

– R ⊆ R+, i.e. stochastic rate belongs to the subspace of positive real num-

bers (R ∈ [0, ∞)) and the rate function, as discussed above, obeys negative

exponential distribution.

Figure 3.4 demonstrates a stochastic Petri net example to understand definition 5 and

to further analyze the semantics of SPN (3.3.2.1).

3.3.2.1 Semantics of Stochastic Petri Nets.

The stochastic transition rate is associated with its enabling degree e̊ defined in equa-

tion 3.6. The firing rate of transition tj ∈ T that is e̊-enabled with marking ‘m’ is
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defined as the product of its enabling degree at time ’t’and rate ωj associated with tran-

sition tj [54], given as :

ωj · e̊ = ωj(m) (3.5)

e̊ = min
i|pi∈◦tj

(
m(pi)

Fw(pi, ◦tj)

)
, and e̊ ∈ Z>0 (3.6)

where ◦tj shows the set of input places of transition tj .

The reachability graph of stochastic Petri net model SPN is isomorphic to CTMC,

thus, discrete state space in continuous domain is generated through which stochastic

timed PN model will be exhaustively analyzed and verified [62]. CTMC is homo-

geneous state-transition graph where each state of chain is linked with the reachable

markings in reachability graph of SPN and probability of transition rates is deter-

mined from equation 3.5. Figure 3.4(C) further exemplifies CTMC of SPN model.

Generalized stochastic Petri net (GSPN ) is SPN s formalism that has immediate

transitions along with exponential stochastic transitions extended with priorities, read

and/or inhibitor edges [53]. Immediate transitions have always highest priority i.e.

once enabled will be fired with zero delay as its firing rate is infinite. Researchers have

successfully exploited the power of GSPN to evaluate the performance of dynamic

complex systems [63, 59].

It is worth to mention here that SPN is the best modeling technique to analyze the

non-deterministic behavior of real time computing systems since the automatic state
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Figure 3.4: Illustration of stochastic Petri net.
(A) SPN Model. Here P = {p1, p2}, T = {t1, t2} with stochastic rates ω1 & ω2,
where, P and T indicates set of places & transitions respectively with initial marking
I0 = (2, 0) (B) The Graph of Reachability. Graph present markings of each place
after firing of each enabled transition. (C) Markov chain. A Markov process with 3
different states obtained from reachability graph in (B). The directed arcs are labeled
with the firing rate obtained from equation 3.5 i.e. product of enabling degree of corre-
sponding transition and its exponential rate e.g. from initial markingm0, t1 is 2-enabled
since it is 2-times fire-able and t2 is 0-enabled so next state m1 is reached after firing
rate of 2 · ω1.

space generation of SPN model simplifies and improves the reliability of complex sys-

tem’s verification process [60]. Despite the fact that Markovian analysis is suitable for

bounded SPN model, the graphical model generation of large, complex system is very

complicated and thereafter, an infinite state space Markov chain. Consequently, high

level Petri net formalism is introduced to overcome the liability of SPN s. Colored

Petri net (CPN ), an abstract high level formalism, is employed to get more structured

and compact representation of PN s and further elaborated in Section 3.4.
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3.4 Colored Petri Nets Framework

Colored Petri nets (CPN ) was first proposed by Kurt Jensen for model formulation

and validation of concurrent systems [64, 65]. The risk of modeling errors due to size

and complexity of the model can be reduced momentously by using these high level

Petri nets. In CPN , standard Petri net is extended by introducing some programming

language features like data types known as color sets, color functions, arcs expressions

etc. to get more abstract, hierarchical and parameterized model. The copies of identical

Place/Transition subsystem are folded to one colored Petri net by applying colors to

each subnet with certain conditions without losing the actual behavior of the system.

Even in some cases the system with multiple same subnets can be extended just by

adding colors. These general principles are applied when converting similar subsystems

to color Petri net models. Thus, CPN modeling significantly simplifies the formal

representation as well as analysis of strongly symmetric and large complex systems.

Colored Petri nets are formally defined in definition 6.

Definition 6 (Colored Petri Net)

A Colored Petri net is 9-tuple CPN = 〈P , T , A, Λ, Ω, E , Γ, µ, I0〉 , where:

• P & T are bounded, non empty set of places {p1, p2, ...., pn} and transitions

{t1, t2, .., tm}, respectively.

• A ⊆ ((T×P )∪(P×T )) is a set of an ordered pair of edges. Each pair indicates

a directed arc from place to transition (p, t) or from transition to place (t, p) and
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(p, t) 6= (t, p)

• Λ is a non-empty set of color sets analogous to data types. Each place belongs to

only one type of color-set. The data types for color-sets have two classes [66]:

(i) Simple data types: It includes dot, integer, boolean, string, enumeration and

index.

(ii) Compound data types: It is a tuple based on simple data types. e.g. Product

and Union.

• Ω : P → Λ is a color function that maps each instance of place p ∈ P to colorset

Ω(p) ∈ Λ.

• E is set of expressions made-up of constants, variables, functions, operation sym-

bols of colorsets etc.. An expression is used to represent arcs inscription, guard

function and/or to define initial marking.

• Γ : A → E is an arc expression, assigned to each arc a ∈ A and evaluates to

a single element or a multiset (definition 7). It determines which type of tokens

can flow over the arc and thus color set of the arc expression must match with the

color set of the place attached to the arc.

• µ : T → E is a guard function i.e. a constraint on each transition such that

t ∈ T and E is of boolean type evaluates to True or False. Firing of transition

is allowed only if the guard is satisfied.
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• I0 : P → E , is initialization function assigned to each place p ∈ P . E eval-

uates multiset of tokens with colors that corresponds to colorset of the place

(Ω(p)). Multiset addition operator (++) is combined with multiset operator(`)

to briefly represent the markings of a place. For example, a boolean multiset

“3`true++2`false" presents 3 instances of true and 2 instances of false, with to-

tal of 5 boolean values.

• P ∩ T ∩ A = ϕ & P ∪ T ∪ A 6= ϕ i.e. places, transitions and arcs are inde-

pendent sets. Figure 3.5 demonstrate semantics of CPN (definition 6). The

example presents Qualitative Colored Petri net model of a system consist of two

vans Blue and Red that have similar behavior i.e. moving from left to right and

then back from right to left continuously. They have same structure (Figure 3.5a)

thus folded to its equivalent colored Petri net( 3.5b, 3.5c) by defining colors with

certain constraints ( [54], Chapter 01).

Definition 7 (Multiset): A multi-set is a generalized form of set which represent sev-

eral occurrences of the same element. The number of times an event occurs is its

multiplicity or co-efficient and cardinality is the total elements in the set.

Formally, it is defined as a pair (X , γ) where X is a nonempty set of finite elements

and γ : X → Z≥1 is a mapping which associate each element of X to the set of natural

numbers. For instance in Figure 3.5b, X = {blue, red} is a color set and γ =1`red

++ 1`blue is a multi-set over X means 1 occurrence of blue van and 1 event of red van,

i. e. γ(blue) = 1 & γ(red) = 1 whereas cardinality of X is 2.
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Table 3.2: Declarations for the CPN model of Figure 3.5

Declarations
Colorset Van = enum with Blue, Red;

Variable van : Van;

Function Van Identity (Van van1) [van1=Blue]1‘Blue++[van1=Red]1‘Red;

LeftMove Blue LeftMove Red

RightMove Blue RightMove Red

T 0 Blue T 0 Red

T 1 Blue T 1 Red

(a) Unfolded Ordinary Petri Net

RightMove
1`all()

Van

LeftMove
Van

[van=Blue|van=Red]T1

[van=Blue|van=Red]T2

Identity(van)

Identity(van)

Identity(van)

Identity(van)

(b) Colored Petri Net

RightMove
1`Red

Van

LeftMove
1`Blue

Van

[van=Blue|van=Red]T1

[van=Blue|van=Red]T2

Identity(van)

Identity(van)

Identity(van)

Identity(van)

(c) Animation: Marking
after firing of transition T1

Figure 3.5: Folding and Unfolding of Colored Petri Nets Example
(a) PN model of a system comprises of two Vans (blue & red) exhibiting same struc-
ture, modeled with two isolated subnets. (b) Folding of Simple Petri net model to
Colored Petri net by defining colors with declarations given in Table 3.2. Two vans
are represented as one colored place and variable van is defined with color-set/data-
type Van also known as binding. Identity function with variable ‘van’ is defined as
arcs expression to distinguish the movements of vans accordingly. Each transition is
associated with boolean expression i. e guard over defined variable ‘van’ and transition
is enabled only if guard evaluates to true. Initial marking is 1`all() means there is 1
occurrence of each color of Van. (c) From the initial marking T1 is 1-enabled for blue
van, 1-enabled for red van and T2 is 0-enabled. Both vans have same probability of
moving hence, randomly chosen, state of net indicates one blue van (1`Blue) will move
from right to left after firing of transition T1 once.
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3.4.1 Colored Stochastic Petri Nets

Colored stochastic Petri nets (SPN C) are the colored extension of stochastic Petri nets

(Section 3.3.2) and have tremendous modeling power to present large scale complex

systems. “Colors" are used to identify tokens where arcs expressions & guards have

same semantics as that of standard CPN (Definition 6) [67, 68].

Definition 8 A Colored stochastic Petri net is a tuple SPN C = 〈 P , T , A, Λ, Ω,

E , Γ, µ, I0, ∇, λ 〉, where:

• (P , A, Λ, Ω, E , Γ, µ, I0) are same as defined in standard CPN (6)

• T ∈ Tstochastic∪Timmeduate∪Ttimed i.e. it consists of transitions with exponentially

distributed firing rates (Tstochastic), transitions with zero delay (Timmediate) and

transitions with deterministic delay (Ttimed).

• ∇ : I(T stochastic) → R is stochastic rate function assigned to each colored in-

stance of stochastic transition ‘t(c)’ where t(c) corresponds to the binding which

after unfolding will become an uncolored SPN transition, ∀t(c) ∈ I(T stochastic) &R ⊆

R+.

• λ : I(T timed)→ R+ is deterministic non negative delay assigned to each colored

instance of timed transition ∀ t(c) ∈ I(T timed).
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3.5 Formal Verification

Formal verification is like “bug hunting”[69] i.e. It searches for errors in the system

and gives counter example if error comes. Formal analysis techniques, as opposed to

simulation-based testing, provide deeper insights into the system model [70], and are

also essential for safety-critical systems in which most of the events are probabilistic.

Hence, characterization of these events through formal analysis techniques gives proof

of reliability and guarantees the performance of real time system. Model checking

is one of the most extensive automatic and efficient formal verification technique for

validation of concurrent systems [71, 72].

3.5.1 Model Checking

The pioneers of model checking techniques, Clarke and Emerson, introduced a very

efficient formal method technique for verification of the system in 1980’s [73]. Model

checking is a rigorous method that exhaustively explores the whole reachable states

of the system to check the correctness of system properties written in some formal

specification language e.g. linear-time temporal logic (LTL), computational tree (or

branching-time) logic (CTL) or probabilistic computational tree logic (PCTL) etc. [74].

If there is a violation of the property, model checker gives counter example i.e. identi-

fies the path in which property is not satisfied and in this way, the model can be updated

continuously. Thus this guarantees the correctness of the system. Figure 3.6 demon-

strates the process of model checking.
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Model

(System Requirements)

Specification

(System Property)

MODEL 

CHECKER

M   ϕ 

Property 

Satisfied

Counter 

Example

Locate Errors

Simulation

Violated X

Figure 3.6: Model Checking. In model checking technique, the model checker takes
the formal model of the system along with its formal specifications and produce results
in either of two forms: (i) True i.e. property is fulfilled. (ii) False i.e. property is
violated and in this case it also generates counter example based on which we identify
the errors, refine the model and repeat the process. Hence, it gives the proof that the
system is in good condition.

3.5.2 Probabilistic Model Checking

The randomness in real world problems demands a very efficient and reliable method

that will guarantee the performance of the system. Probabilistic model checking is in-

troduced for automated quantitative analysis and verification of inherently probabilistic

systems. It models the informal specifications of system to formal specifications. The

stochastic model checker takes the stochastic transition state model and probabilistic

temporal properties as an input. Its output results are twofold: (a) it checks whether the

property is True or False (Verified/ Not-verified) and (b) it can also provide quantitative
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results in terms of probability or the expected reward time [75]. Moreover, if the prop-

erty does not satisfy then it indicates a path that leads to an exceptional anomaly state

(also known as Counter Example). The whole probabilistic model checking process is

illustrated in Figure (3.7).

RESULTSRESULTS

Quantitative 

Results

System

System 

Requirements

Probabilistic Temporal 

Logic properties e.g 

CSL,PCTL, PLTL

Probabilistic 

Model Checking 

Tool

E.g. PRISM

Probabilistic 

Automaton E.g: 

Markov Chain

Property is 

FALSE

Property is 

TRUE

Property is 

TRUE

Property is 

TRUE

Counter Example

Trace

0.82315P>=1 [F ~critical state] 

Figure 3.7: Probabilistic Model Checking Process.
A stochastic state transition model and probabilistic temporal specifications, according
to systems requirements, are given to stochastic model checker. Its output results are of
two types: (i) either the property is true or false (If the property is false, it indicates the
path of bad state.) (ii) it can also generate numerical results e.g. expected time of state
or likelihood of event occurrence etc..

Continuous-time Markov chains (CTMCs) are used to model the stochastic behavior

of real-time systems and are commonly used for the performance analysis of nonde-
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terministic real-time systems. In contrast to discrete time-step for DTMC (discrete

time Markov chain), the event/transition occurrence in CTMC is in real time [35]. In

CTMC model, states are discrete and transitions between states occur with exponen-

tially distributed rates. It is formally defined in definition 9. A state-of-the-art prob-

abilistic model checking tool, PRISM, is used in this work for schedulability analy-

sis of stochastic real time systems. PRISM takes CTMC model of the system along

with the temporal formal specifications written in continuous stochastic logic (CSL).

CTMCs are best-known to adequately portray the stochastic real-time systems as well

as economical solutions for computation of performance analysis and verification of

the system [76].

Definition 9 (Continuous-time Markov chain) A labelled Continuous-time Markov

chain is a quadruple [35], CTMC = (St, so, TR, L)

• St is a finite state space

• so ∈ St is the initial state in the state space

• TR : StxSt → R ≥ 0 is the stochastic negative exponential rate matrix function

over state space St. It indicates that the probability to stay in state s maximally t

time units is 1− e−TR(s)·t. It means if TR(s, s′) = ω, then the average speed from

s to s′ is 1/ω.

• L : St → 2AP is a label function that assigns a set of atomic propositions logic

(‘AP’) to each state of state space St.
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The implicit stochastic process in SPN is a CTMC, discussed above in section 3.3.2.1.

Therefore, CTMC models of SPN and SPN C are defined in PRISM to analyze their

probabilistic behavior. The PRISM modeling is based on reactive modules [77], finite

state variables and guards/transition rules. The guarded commands express the evolu-

tion of states, labeled with rates (or probabilities in DTMC) and actions. Its syntax is

specified as:

[action] guard ω1 : µ1 + ...+ ωn : µn (3.7)

where label actions are for synchronization of transitions, guard represents predicate

over variables, ωi expression is the stochastic rate assigned to transitions and µi expres-

sion shows the updated values of state variables only if the guard is satisfied. Quantita-

tive properties are specified by extending CTMC through reward structures, expressed

as:

[action] guard : γw (3.8)

Here action labels are optional and γw is the expression of reward assigned to the state

variables when guard evaluates to true.

3.5.3 Continuous Stochastic Logic Model Checking over CTMC

The probabilistic temporal logics are the developed techniques for performance evalu-

ation and verification of systems [76]. CSL is the probabilistic representation of CTL

(computational tree logic) for properties encoding of CTMC. It uses probabilistic logic
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quantifiers rather than standard path quantifiers. The properties of underlying stochas-

tic state-transition model are formally specified in CSL which also provides numerical

methods represented as rewards [78]. CSL syntax is formally defined by:

Ψ ::= TRUE | AP | ∼ Ψ | Ψ ∨ Ψ | SEp (Ψ) | PEp (ϕ) | REγ (F Ψ)

ϕ ::= X Ψ | Ψ U I Ψ

Here AP is an atomic proposition, comparison operator E∈ {<, ≤, ≥, >},

probability p ∈ [0, 1], reward γ ∈ R≥0 and I is the time interval of R≥0.

• SEp (Ψ) formula indicates the steady-state probability of Ψ being true is E p.

• PEp (ϕ) represents probability of path formula ϕ being satisfied is E p. The

temporal path formula operators are: X (neXt), F (in future/eventually),

U (Until) or U≤t (Bounded Until), G (always satisied/globally true), W (Weak

Until) and/or their complex combinations.

• REγ (F Ψ) expression specifies the expected reward rate. Reward-based prop-

erties provide quantitative performance evaluation based on states and/or transi-

tions of CTMC model [79].

The numerical analysis of properties is done by altering comparative bound in

S, P and R expressions with =?.
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The CSL model verification problem is decidable [80]. LetM be a CTMC model, s

is the state inM and Ψ represents CSL temporal formula against CTMC states, then

the stochastic model checking problem is to find out whether the property Ψ satisfies in

state s of the modelM. Mathematically, it is represented as : s �M Ψ .

The non-deterministic behavior of a real-time scheduling problem is modeled through

CTMC based on SPN . CSL properties are specified over different states of CTMC

in order to verify the correctness of simulation results and performance evaluation. A

CTMC model of general job scheduler (Figure 4.1) is given in the Appendix A. The

model starts with the keyword ctmc that indicates the type of probabilistic model an-

alyzed in this study. It comprises of state variables and constants. The guarded com-

mands represent behavior of module and follow the syntax as defined in equation 3.7.

A symbol −> is used to isolate the guarded transition rules and their exponential rates.

The state variables are updated to new values (s’) when corresponding transition rules

satisfy. The module ends with the keyword endmodule. The reward rules are defined in

reward structure, enclosed in the keywords rewards and endrewards. Various behav-

ioral properties are encoded in CSL over CTMC model. The CSL temporal stochastic

properties against CTMC model are formally defined and elaborated in section 5.3.
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3.6 Software Environment for Modeling & Verification

In this research work, an extensive unifying Snoopy tool [81] is used for Petri net

modeling and performance evaluation of real time scheduling via multiple simulations.

The behavioral and structural properties of Petri nets are analyzed through Charlie

tool [82, 83]. Moreover, continuous time Markov chain (CTMC) of Petri net model

is analyzed in symbolic model checker PRISM [84] to further verify the scheduling

properties and quantitative analysis of the system [75].
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Model Formulation

This chapter formulates two important formal models used in this study. Stochastic

Petri net (SPN ) model of general job scheduling is elaborated in section 4.1. In sec-

tion 4.2, SPN C model of global earliest deadline first (gEDF) scheduling algorithm is

demonstrated in detail.

4.1 SPN Model of General Job Scheduler

Real time job scheduler handles the real time workload in such a manner that all the

submitted tasks are executed following their timing constraints and it extremely de-

pends on available resources. Moreover, a job scheduler must also be satisfied enough

to manage the ergodic occurrence of real time events. Thus, a feasible Job scheduler is

necessary for dynamic workload management to satisfy the ever increasing computing

48
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demands [85]. Thereupon, a very efficient non-deterministic SPN modeling formal-

ism as discussed in section 3.3.2, is applied to determine the dynamic behavior of a

general job scheduler (Figure 4.1). Peri net places are used to express the states of the

system e.g. Task is dormant (in JOB_POOL), in Ready state, Run state, Waiting or

completed (Tasks_Completed) and transitions represent events/conditions at random

time interval upon which system goes from one state to another whereas markings of a

place shows the evolution of system.

Suppose initially ‘N’ independent tasks are submitted by the user to JOB_POOL and

‘M’ number of Resources/processors are available. The inter-arrival time of tasks

follows exponential distribution function represented here with stochastic transition

Task_Arrives. The description of each place and transition is given in Table 4.1 and

Table 4.2. The scheduler always schedules the active tasks, if the processor is avail-

able, based on some scheduling policy. The process will repeat itself once N jobs are

completed such that JOB_POOL = φ ∧ TasksCompleted ≥ N , depicted in Fig-

ure 4.1 as inhibitor arc and read arc. The simulation plots of this model are presented

in Figure 5.1 and Figure 5.2. Furthermore, SPN’s reachability graph that is isomorphic

to CTMC and verification of various probabilistic properties of model are also done

in Section 5.3. Different experiments can be performed on this model according to

the system requirements e.g. by changing the values of N and M . Thus this model

provides a basis to automate real time workload management and analysis based on

different parameters.



Chapter 4: Model Formulation 50

If these N real time jobs are to be processed, in parallel, by ‘M’ number of processors

using real time scheduling algorithms then SPN model becomes very large and com-

plex. So in order to overcome this limitation, colored Petri net, a compact modeling

technique, is exploited and demonstrated in the next section.

//No. of Available Resources= [ 5:10 ];Mintall:

//No. of Tasks in Job Queue= [ 10:15 ];Nintall:

Ready

Run

Resources

M

Waiting

TasksCompleted

JOB POOL

RESTART ω7

N
Task Arrives

ω1

Scheduling
ω2

Preemption

ω3

Ei
ω4

Resources Available
ω6

Suspend
ω5

N

N

Figure 4.1: SPN Model of Job Scheduler.
An SPN model comprises of set of places P =
{JOB_POOL,Ready,Run,Resources,Waiting, TasksCompleted}, set of
transitions T = { Task_Arrives, Scheduling, Preemption, Ei, Suspend,
Resources_Available, RESTART } with initial marking m0 = (N, 0, 0,M, 0, 0)
where N and M are declared as constant values for initial number of tasks and idle
processors respectively. Each directed arc has a weight ‘1’ except input arc from
RESTART to JOB_POOL that has a multiplicity of ‘N’ which indicates ‘N’ new Tasks
will be submitted to the JOB_POOL when transition RESTART becomes enabled.
Here the multiplicity of read arc is also ‘1’.
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Table 4.1: Description of Places in Figure 4.1

Place Description

JOB_POOL Total number of tasks in Job Queue

Ready Task is ready for execution and waiting to be assigned to the
processor

Resources Tokens at this place show the number of available resources
or idle_processors with equal computing power

Run Task in running state means that it has been assigned to pro-
cessor for execution.

Waiting Active task is suspended as all the processors are busy and
it has to wait for processor to get free.

TasksCompleted Task is completed after elapsing random execution time
(Ei)

Table 4.2: Description of Transitions in Figure 4.1

Transition Description Rate function

Task_Arrives Real time jobs are released with firing rate
of ω1 and jobs are now ready for execution

ω1

Scheduling It indicates that tasks are scheduled based
on some scheduling policy constraints and
processors are assigned to them with rate ω2

ω2

Preemption A running task may be preempted by some
high priority task. This event occurs for dy-
namic scheduling algorithm.

ω3

Suspend This transition is enabled when all the pro-
cessors are busy and the task has to wait for
a free processor.

ω5

Resources_Available Waiting task goes to ready state on the avail-
ability of resources and is re-prioritized.

ω6

Ei The random occurrence of each computa-
tional task has exponentially distributed ex-
ecution time (Ei) with rate ω4 after which
the task is completed and processor is re-
leased at the same time.

ω4

RESTART The process repeats itself after completion
of N tasks submitted by user.

ω7
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4.2 Colored Stochastic Petri Net of gEDF Scheduling

Algorithm

A powerful and expressive modeling formalism of colored stochastic Petri nets (SPN C)

is proposed to deeply understand the probabilistic nature of real time scheduling algo-

rithms. SPN C modeling technique is robust enough to manage the strategy changes

in real time applications. In this study, gEDF multiprocessor scheduling algorithm is

evaluated using SPN C . A work flow of gEDF is demonstrated above in Figure 2.3

and its SPN C model is illustrated in Figure 4.2.

The following assumptions are taken into account while SPN C model formulation of

gEDF :

(A1) All the processors are homogeneous i.e. each processor has equal computing

power and once the task execution is preempted, it can resume on any other idle

processor.

(A2) Multiple jobs are manipulated in this model. All the jobs are independent and

each job has only one task.

(A3) All the tasks are Sporadic (i.e. Asynchronous tasks with minimum inter-arrival

time and hard deadlines [86]).

(A4) All the tasks have static deadline that is defined a priori and scheduling policy is

applied immediately once the job releases.
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(A5) For simplicity of the model, deadline time is represented in integers and no two

tasks have same deadline.

(A6) For experimental purposes, number of Tasks and Processors are deliberately lim-

ited.

(A7) The preemption cost, context switches and systems overheads are assumed to be

negligibly small, thus ignored.

All the declarations of SPN C model of gEDF are given in Table 4.3. SPN C places are

associated with color-sets that represent different states. Each place must have tokens

of one color type and all the color instances have either same markings depicted here

as all() or different markings that can be assigned by applying predicates. Furthermore,

stochastic transitions have random rate functions as well as guards. The stochastic

rate may also be associated separately with each color instance and the transition is

fire-able when the guard expression evaluates to “true". The system evolves on the

basis of markings that depends on corresponding arc’s expression (formulated from

variables and constants) and enabling transition(s). Multiple tasks are distinguished

on the basis of colors as in the place Job_Pool that is defined as a 2-tuple Product

color-set (TaskId, Deadline) to define each task. The set of places and transitions are

demonstrated in Table 4.5 and Table 4.6. The directed arcs in SPN C have expressions

instead of integer numbers in standard Petri nets. The expression evaluates to a multi-

set that must have color domain of its associated place. For example, in Figure 4.2 the
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arc expression from coarse transition Check to place Task_IN_Ready is:

[new_DL ≥ DL]1`(NewId, new_DL)

It implies if the condition [new_DL ≥ DL] fulfills, ’1’ token of product type (NewId,

new_DL) will be added to place Task_IN_Ready which also has product color type.

Here new_DL, NewId & DL are variables of type Deadline, TaskId & Deadline as shown

in Table 4.3. The rest of the arcs expressions are determined in the same manner.

Moreover, the active task with the shortest absolute deadline is always scheduled first

by the scheduler specified through transitions ‘Check_Priorities’, ‘New_Priorities’

and macro transition ‘Check’(see Table 4.6).

Table 4.3: Declarations for the SPN C model of Figure 4.2

Declarations
Colorset ID = int with 1-N; Colorset Deadline = int with 0-10; Colorset Processors = int with 1-10;
Colorset Count = int with 1-10;
Colorset Status = bool;
Colorset Dot = dot;
Colorset T_IDXDeadline = product with ID, Deadline;

Variable TaskId : ID;
Variable DL : Deadline;
Variable new_DL : Deadline;
Variable z : T_IDXDeadline;
Variable NewId : ID;
Variable s : Count;
Variable dl : Deadline;

Constant N = int with 10;
Constant Total_Tasks = int with 10;
Constant Timer = int with 0;
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Figure 4.2: SPN C Model of gEDF Scheduling Algorithm.The folded net com-
prises of 39 colored places, 40 stochastic Transitions, 1 Deterministic Transition, 134
Standard Arcs, 23 Read Arcs, 13 Inhibitor Arcs and 1 Equal Arc.
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Task Deadline

Deadline

Task IN Ready

T IDXDeadline

New Tasks

5
1`(6,4)++
1`(7,6)++
1`(8,1)++
1`(9,7)++
1`(10,9)

T IDXDeadline

NewTask

Deadline

New DL

Deadline

T11

1`(NewId,new DL)

[new DL<DL]1`new DL

[new DL>=DL]1`(NewId,new DL)1`new DL

1`DL

Figure 4.3: Check Module.
Hierarchical structure behind Macro Transition “Check”. Place New_Tasks is
declared as Colorset T_IDXDeadline = product with ID, Deadline (Table 4.3) with
initial markings explained in Table 4.4. Blue part of sub-net shows its association with
neighboring elements from super-net (immediate higher level) viz. Figure 4.2

The extensive attributes of Petri nets (Section 3.2.1) are applied to the SPN C model of

gEDF as well. For example, “Read Arc" from Place Task_Deadline to Check labeled

with 1´DL that reads the task deadline to compare with the deadline of new task and the

place marking remains same. “Inhibitor Arc" from Procs_Idle to Suspend transition

is there in order to check when all the processors become busy. “Equal arc" from the

place Completed_Tasks with arc inscription Total_Tasks`dot enables the transition, if

tokens at place Completed_Task exactly equals to arc’s multiplicity Total_Tasks (Total

number of tasks submitted) which implies all the tasks are executed successfully.
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The graphical representation of SPN C model is simplified and much more understand-

able by utilizing following advanced features:

• Macro Nodes: Macro Nodes (also known as coarse nodes) are used to define the

hierarchical representation of the Petri net model [81]. Even larger PN models

can be designed more systematically using coarse transitions and coarse places.

Macro-Transition is enclosed with a unique transition surrounded by a sub-net.

It is linked with super-net (one level high in hierarchy) whereas Macro-Place is

a place bounded subnet and associated with the super-net. In Figure 4.2, only

macro-transitions are used e.g. “Check" and “CLOCKS" are coarse-transitions.

• Logical Nodes : The graphical duplicates of places and transitions are known

as logical nodes, used to improve the model readability. They have logically

same interpretation and just different physical identities. These nodes are also

commonly known as fusion nodes. In this study, logical places and transitions

are represented with filled Grey color (Figure 4.2, Figure 4.3).

4.2.1 CLOCKS MODULE

The hierarchical structure behind coarse transition “CLOCKS" in Figure 4.2 contin-

uously checks the deadline of each task (Figure 4.4). It is like a deadline timer that

eventually begins when the Task with highest priority starts execution after the proces-

sor is assigned to it. In Figure 4.5, only one clock of Task (1, 2) (1st element is ID

followed by its deadline) is illustrated. All other clocks illustrated in Figure 4.4 are
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working on the same principle.
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Figure 4.4: CLOCKS Module.
Hierarchical Model behind Coarse Transition “CLOCKS"
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Figure 4.5: Hierarchical Model behind Coarse Transition “CLOCKS".
The clock for Task_Id = 1 and Deadline = 2 {(1,2)} from Figure 4.4 is shown here. The
blue part of the net shows its link to super-net (Figure 4.2) and the logical nodes are
colored in Grey. The declarations are: Colorset ID = int with 1-N; Colorset Deadline
= int with 0-10, Colorset Count = int with 1-10 and Variable TaskId : ID, Variable DL
: Deadline, Variable s : Count, Variable dl : Deadline and Constant N = int with 10

Figure 4.5 shows that when the task with deadline DL = 2 starts execution, transi-

tion t1 is enabled and produce output token at Counter2 place. This eventually will

start the decrement counter by enabling transition t2 i.e. while (dl 6= 0) {dl- - } and

also produces token at output place “RESIDUAL" shown with the arc expression dl.

But if deadline reaches 0 and task is still in running state then transition t3 becomes
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fire-able which indicates that the processing of task is not completed within deadline

and it will be expired. It is specified in the model (Figure 4.5) with the transition t3

which reads Task_Id from place “RUN" (shown with read arc) and compares it with

the serial number s of deadline that reaches to zero. This is formulated with arc expres-

sion [dl=0]1`dl and guard condition [(s = 1&DL = 2)&(s = TaskId)]. The “true"

result of guard condition will add a token 1`s to TaskExpire that shows task does not

complete within deadline and thus system fails. Here the variable dl is used to store

residual time to deadline and variable s is used as a serial number to identify Task_Id.

It also evaluates remaining time to deadline (dl) of each task by depositing token into

the RESIDUAL place that is linked to the transition PREEMPTION in super-net to de-

termine when the task should be interrupted. The clock is evolving with rate 1 (i.e.

dx
dt

= 1).

This is how clocks, the fundamental element of real time scheduling systems, are func-

tioning at the back-end for each task.

In summary, SPN C model in Figure 4.2 is able to cope with the dynamic behaviors

of hard real time tasks. A number of experiments can be performed very efficiently on

this model to explore the desired performance parameters via multiple simulations pre-

sented in section 5. More importantly, in order to schedule arbitrary ‘N’ different tasks

using gEDF scheduling algorithm, there is no need to modify structure of the model

instead just additional colors are to be added and guards/predicates are modified i.e.

adding color means another subnet. Additionally, SPN C model can also be unfolded
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to uncolored stochastic Petri net model e.g. the flat SPN model of Figure 4.2 comprises

of 781 places, 13,936 transitions, 47,247 standard arcs, 13,265 read arcs, 735 inhibitor

arcs and 1 equal arc. It thus provides sufficient analysis schemes for model validation

and verification of valuable distinct system attributes.

Table 4.4: Initial Markings defined in SPN C model illustrated in Figure 4.2

Place Marking Description

Job_Pool 1`(1,2)++
1`(2,10)++
1`(3,8)++
1`(4,5)++
1`(5,3)

Different jobs are in Job_Pool ab-initio. Each
job has a task with unique ID and deadline e.g.
1`(2,10) means one occurrence of taskID ‘2’ with
deadline ‘10 time units’. Here ‘++’ is the multi-
set operator that combines multiple markings.
These are the example markings that can be mod-
ified according to the system requirements.

Procs_Idle 4`all()
or 4`dot

It defines the presence of available resources ini-
tially. Marking function all() represents all the
colors in a color-set have same number of tokens.
Here “4`all()" means 4 tokens of color-set Dot or
presence of 4 initial processors. Color-set ‘Dot’
is used to indicate all the processors are homoge-
neous. Initial markings can be altered according
to the experiments performed.

New_Tasks 1`(6,4)++
1`(7,6)++
1`(8,1)++
1`(9,7)++
1`(10,9)

During execution of tasks, new jobs may ar-
rive depicted here with place New_Tasks in Fig-
ure 4.3 . It is of compound color-set type ‘Prod-
uct’ indicating tasks keep their own IDs and dead-
lines i.e. (New_ID, New_Deadline). e.g. marking
1`(6,4) means 1 co-efficient of Task ID ‘6’ and
deadline ‘4 time units’

S 1` dot A token at this place is like one-server machine
and moves out immediately once all the tasks are
completed.
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Table 4.5: Description of Set of Places in Figure 4.2

Place Color_Set Description
JOB_POOL T_IDXDeadline It represents jobs submitted by the user initially. Each token in

this place is interpreted as an instance of a job with two fields
i.e. unique Task ID and Deadline indicated here as: Colorset
T_IDXDeadline = product with TaskId, Deadline.

Task_IN_Ready T_IDXDeadline Tasks are arriving after exponential time delay to Ready queue
(i.e. tasks are available for execution). Tasks whether pre-
empted or suspended ultimately comes to the ready queue.

TaskId ID Unique Task IDs are separated to keep track of each task iden-
tity

Task_Deadline Deadline Deadline of the tasks are isolated in this place that will make it
easy to apply deadline based gEDF scheduling policy.

NewTask Deadline It maintains the deadlines of new tasks only if it is less than
deadline of already submitted tasks depicted here with the arc
expression: ([new_DL <DL] 1’new_DL ) and hence priority is
assigned to new task.

Procs_Idle Dot It represents the initial available processors. Token at this place
indicates that processor is idle. All the processors are homoge-
neous so default color-set “Dot" is assigned to this place.

RUN ID It represents task is being executed by the processor. The prior-
ities are checked before this place so highest priority task will
always execute first and processor is now busy.

Waiting T_IDXDeadline This place maintains all the waiting tasks along with their IDs
and Deadlines. Tasks in this state means all the processors are
busy and so ready queue tasks are suspended.

Pre_empt T_IDXDeadline It indicates preempted tasks as running tasks are interrupted
by high priority task. Preempted Task IDs and their remaining
time to deadline (dl) are maintained in this state

TaskExpire ID It represents the expired tasks that do not complete their exe-
cution within deadline. Terminated tasks are identified through
unique IDs. This state should always be empty for successful
completion of all the task depicted here with inhibitor arcs that
has expressions 1`NewId and 1`TaskId.

Deadlines Deadline It represents initial deadlines of Job_Pool tasks that are then
used to maintain the clocks and makes sure that no deadline
will be missed.

New_DL Deadline This place represents Deadlines of newly arrival tasks to keep
track of missing deadlines.

RESIDUAL Deadline This place holds remaining time to deadline(dl) of each task
evaluated through CLOCKS to determine when the running
task should be preempted so that there is no starvation of tasks.
The output directed arc from place RESIDUAL to transition
PREEMPTION is labeled with variable ‘dl’.

CompletedTasks Dot It indicates task is completed after exponential distributed exe-
cution time. A token is added to this place once the task com-
pletes its execution within deadline.

Successful Status Represents whether all the tasks complete their execution
within deadline. This place is of boolean type and evaluates to
“true" only when tokens at ‘CompletedTasks’ becomes equal
to Total tasks depicted here with equal arc.
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Table 4.6: Interpretation of Transitions in Figure 4.2
Transition Guard Description

START – Indicates system is functionally ready to work. This
event occurs when jobs are ready to be processed i.e.
its pre-place JOB_Pool holds some jobs. The system
begins and Task arrives randomly in Task_IN_Ready
state with exponential firing rate.

T1 – It fires once the task arrives to ready queue and splits
TaskIDs & Deadlines to place them in their corre-
sponding states i.e.TaskId & Task_Deadline, respec-
tively.

Check_Priorities – It checks and sorts the deadlines of ready queue tasks
continuously and the least deadline task is given the
highest priority. This is done by defining predicates
and rate functions corresponding to each deadline (see
Table 5.1). Firing of this transition means processor
is assigned to task and now added to RUN state for
execution.

Check – A module shown in Figure 4.3 is a very impor-
tant macro transition, responsible to compare former
deadlines (DL) with new task deadline (new_DL)
that may come after random time interval. If the con-
dition ‘New_DL < DL’ fulfills then highest priority
is given to new task otherwise new task will go to
ready queue and assigned some low priority accord-
ing to algorithm, depicted here with the arc expression
[new_DL ≥ DL] 1`(NewId, new_DL) from Check
to Task_IN_Ready.

New_Priorities NewId <> TaskId It examines new deadlines and again check for prior-
ities such that highest priority is given to task with
least deadline according to EDF algorithm. The
predicates and rate functions are depicted in Table 5.1.

Execution – Running computational tasks are executed with the
exponential firing rate and accomplished after elaps-
ing of execution time with a dot added to the post-
place CompletedTasks.

Suspend – This event occurs when no processor is available and
tasks are ready for execution means active tasks have
to wait until the processor becomes idle.

PREEMPTION new_DL < dl It indicates that running task should be preempted. It
is fired when the guard is satisfied i.e. if deadline of
new task is less than residual deadline of running task.

Resources_Available – same as in Table 4.2

CLOCKS – The hierarchy of CLOCKS presented in Figure 4.4 is
a macro-transition behind that clock for each task is
running according to the deadlines in order to make
certain that no deadline miss happens and task does
not expire.
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Results & Discussions

The stochastic simulation results of SPN and SPN C models (Figure 4.1 and Fig-

ure 4.2) are presented in this chapter. Qualitative analysis of some structural proper-

ties of the model are determined using PN analysis tool Charlie. Verification results

of probabilistic model properties from PRISM tool are also presented in this section.

Gillespie’s Algorithm [87] provided by Snoopy tool is adapted in this work for simula-

tions of non-deterministic real time scheduling problem. These stochastic simulations

follow Monte-Carlo method that plays a pivotal role to analyze probabilistic nature of

complex systems [88].

64
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5.1 General Job Scheduling Simulation Results Using

Snoopy

SPN model illustrated in Figure 4.1 is analyzed through stochastic simulations ob-

tained from Snoopy tool. The initial markings (I0) are specified as: N = 10, M =

5, JOB_POOL(0) = 10, Ready(0) = 0, Run(0) = 0, Resources(0) = 5, Wait-

ing(0) = 0, TasksCompleted(0) = 0 and firing rate of transitions are: ω1 = 0.9, ω2 =

0.9, ω3 = 0.02, ω4 = 0.5, ω5 = 0.5, ω6 = 0.1 and ω7 = 1.

These parameter values applied to SPN model (Figure 4.1) result in average stochas-

tic simulation graph shown in Figure 5.1. This graph shows dynamic behavior of all

the SPN states with respect to simulation time. Initially, all the processors are idle

and tasks are in job pool so JOB_POOL and Resources curves are at their maximum.

The tasks arrive with exponentially distributed minimum inter-arrival time to the ready

queue as the simulation plot depicts. It is observed that the trace of Ready is increasing

when JOB_POOL is decreasing in the initial timings indicating Jobs have been arrived

and tasks are ready for execution. Over the time as the Resources drop-off, Run trace

increases. It implies processor is busy in executing the tasks. It is also noticed from

the graph that JOB_POOL is decreasing rapidly in the initial timings and then it slowly

rises up since more jobs are continuously added to the JOB_POOL, once initial as-

signed tasks (N) are completed indicating the system is reversible and live. Moreover,

the sinusoidal curve of Ready is slightly higher than Run trace in the beginning then



Chapter 5: Results & Discussions 66

Run abruptly increases as Ready curve approaches to zero. It indicates more tasks are

in execution than ready queue. The end behavior shows that Run curve lags behind

exponentially fast growing Ready curve because the process initiates again and in this

way jobs are progressing towards completion. The graph also shows that the non-linear

TasksCompleted trace activates with faster rate but by the time processors become busy,

task completion rate slightly slows down since they are suspended.
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Figure 5.1: Stochastic simulation of General Job Scheduler SPN model presented
in Figure 4.1
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These behaviors can be analyzed more intelligibly from Figure 5.2 that indicates as

the Resources decreases gradually in the initial timings, the Ready and Run traces are

rising, however, Waiting peak increases when Resources approaches to zero and vice

versa. Thus, it is inferred from the graph (Figure 5.2) that there is a negative correlation

between Resources and Run trace. Additionally, system performance can be optimized

based on certain active resources, ready & waiting time and so forth the study of general

job scheduler serves as a basis for advance scheduling schemes.
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Figure 5.2: Dynamic behavior of significant states in SPN model of General Job
Scheduler. Simulation plot showing how the different states in Figure 4.1 affects each
other and their evolution with respect to time.



Chapter 5: Results & Discussions 68

5.2 Simulation Results of SPN C Model of gEDF Using

Snoopy

In this section, the dynamic behavior of gEDF is analyzed and investigated from

stochastic simulation results of SPN C model presented in Figure 4.2. The initial

experimental marking values are given in Table 4.4 with the transition firing rates in

Table 5.1.

Figure 5.3 shows general behavior of proposed SPN C model. The stochastic sim-

ulation result indicates the evolution of system with respect to time. This scenario

considers mapping of 10 deadline-based tasks to four available processors that are idle

initially. At 0 time unit, Procs_Idle is at its maximum while all other entities are at

minimum level showing all processors are free and no task is in execution. From

JOB_POOL tasks go to READY and from there into RUN making processors busy.

The graph is clearly showing this behavior; Procs_Idle curve decreases and RUN trace

increases which means tasks are being executed by the processors. Procs_Idle and

RUN are affecting CompletedTasks, Waiting and Pre_empt as they tend to increase

with increasing RUN trace and decreasing Proc_Idle. Once Procs_Idle approaches its

minimum level, RUN attains its maximum level indicating all processors are busy be-

ing occupied by active tasks, Waiting reaches its highest point means new arriving

tasks are waiting for processors to get free. Pre_empt peak shows highest priority tasks

in Ready queue that cause preemption of tasks in execution. Moreover, the behavior
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of TaskExpire is very significant for scheduling of deadline-based algorithms which

must be zero over the period of Job Execution. It is demonstrated from the graph

that Task_Expire(t) = 0 ∀ t ∈ [0,∞). Therefore, all the tasks are completed within

deadline and no task expires. Finally, when CompletedTasks reaches to maximum, Suc-

cessful eventually becomes 1(or true) that shows all the tasks are executed successfully.

CompletedTasks rises up to maximum while Run and Waiting curves reach zero which

make processors idle all over again. None of task is in waiting constantly and all tasks

execute within deadline (Run = 0, Waiting = 0).
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Figure 5.3: Stochastic simulation plot of SPN C model presented in Figure 4.2 with
transition firing rates in Table 5.1 and initial markings listed in Table 4.4
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Table 5.1: Rate Functions of transitions in SPN C model (Figure 4.2)
Transition Predicate Rate Function

START true 0.7

T1 true 0.05

Check_Priorities DL=1
DL=2
DL=3
DL=4
DL=5
DL=6
DL=7
DL=8
DL=9
DL=10

1/3
1/5
1/15
1/25
1/35
1/45
1/55
1/65
1/75
1/85

T11 (Transition behind ‘Check’) true 0.5

New_Priorities new_DL=1
new_DL=2
new_DL=3
new_DL=4
new_DL=5
new_DL=6
new_DL=7
new_DL=8
new_DL=9
new_DL=10

1/10
1/20
1/30
1/40
1/50
1/60
1/70
1/80
1/90
1/100

Execution true 0.009

Suspend true 0.8

PREEMPTION true 0.08

Resources_Available true 0.05

Figure 5.4 shows the interdependencies of different states in SPN C on the basis of

results obtained in Figure 5.3. The dynamic behavior of Waiting and RUN traces with

respect to CompletedTasks is depicted. Procs_Idle and Run curves are showing negative
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correlation and are inversely proportional to each other since processors are occupied

by the tasks for execution Run curve starts rising. It is also observed from the graph

that when upside down curve of Procs_Idle reaches to its trough, Waiting curve rises up

to peak point depicting that new arriving tasks are waiting for the processor to be idle

again and Waiting starts decreasing as processors are getting idle. In addition to that

Run is higher than Waiting curve that indicates more tasks are in execution than waiting

which is the desired behavior. When all the tasks get completed (10 in this case), Run

and Waiting trace converges to zero point while Procs_Idle curve has flattened out since

all the resources are now available. These significant behaviors will help to optimize

the system as well.
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Figure 5.4: Behavior of different states of SPN C with respect to Tasks Com-
pletion. Graph shows mean time from submission of 1st task till the completion of
last task. It includes execution time as well as waiting time, also termed as average
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Furthermore, SPN C model is analyzed systematically based on different scenarios that

will help to evaluate the performance and predictability of gEDF scheduling model as

well. Figure 5.5 shows the dynamic behavior of the system when available resources

and tasks are equal. The simulation result shows that RUN curve is always lagging

behind Procs_Idle and trace of CompletedTasks rises up with high rate because tasks

are completing their execution more quickly as compared to Figure 5.3. Also, Waiting

trace is constantly zero means no task has to wait and Procs_Idle curve is upside down

because the processors are getting busy initially but they are available again after exe-

cution of tasks. Finally, Successful curve rises up to 1 abruptly indicating all the tasks

accomplished within deadline.
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Figure 5.5: Scenario 1.Behavior of stochastic simulations of proposed SPN C
model when available resources are equal to number of tasks. For initial mark-
ings, Table 4.4 is modified such that Procs_Idle=10`dot whereas stochastic transition
rates are same as in Table 5.1
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The graph in Figure 5.6 shows the effect of deadlines on waiting state. In this scenario,

deadline varies from 1 to 10 time units with 1 being the highest priority task while 10

the lowest. The initial markings are modified such that Job_Pool = 1`(1, N)++ 1`(2,

N)++ 1`(3, N)++ 1`(4, N)++ 1`(5, N); New_Tasks=1`(5, N)++ 1`(6, N)++ 1`(7, N)++

1`(8, N)++ 1`(9, N)++ 1`(10, N) for the trace of Deadline N. The firing rates corre-

sponding to each deadline are listed in Table 5.1. The behavior of gEDF model is

analyzed by keeping the same deadline (or same priority) for each task (JOB_Pool as

well as New_Task). All ready tasks with the same deadline have equal priority to exe-

cute depicted behind the transitions Check_Priorities and New_Priorities in Figure 4.2.

It is observed from the graph that waiting function shows minimum peak value for the

largest deadline trace because tasks are arriving with slower rate. Consequently, new

task arrives once the running tasks finish execution or near to completion and processor

is free indicating less tasks are in Waiting queue. In contrast to that, the curve of small-

est deadline trace exhibits maximum peak waiting function because task arrival rate is

high. Due to which any new task that arrives will go to waiting since all processors are

busy in executing the RUN tasks. New tasks reside in waiting state until the processor

becomes idle again (note that initial idle processors are less than total tasks). With the

passage of time, number of tasks from waiting queue start reducing as they are assigned

to processors for execution. Thereupon, all the curves are exponentially decaying and

finally converge to zero point. The results obtained in this scenario highly depend on

firing rates. Hence, the entirely different behaviors will be obtained by altering the rates
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of transitions associated with each deadline (Table 5.1).
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Figure 5.6: Scenario 2. SPN C model simulation results of Waiting queue for
varying deadlines with constant number of tasks and processors. On a time scale
from 1 to 10 with 1 being the highest priority task while 10 is lowest. Transition rate
functions are listed in Table 5.1. The initial markings are : Job_Pool = 1`(1,1)++
1`(2,1)++ 1`(3,1)++ 1`(4,1)++ 1`(5,1); Procs_Idle=4`all(); New_Tasks=1`(5,1)++
1`(6,1)++ 1`(7,1)++ 1`(8,1)++ 1`(9,1)++ 1`(10,1) for the trace of Deadline01, it
means all the tasks have same priority. Similarly, the simulations are rerun for each
trace by varying initial deadlines.

The box plot in Figure 5.7 displays the average throughput of gEDF model with vary-

ing number of processors. As the number of multiprocessors increases, rate of com-

pletion of average number of tasks also increases. The initial markings of SPN C in
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Table 4.6 are modified such that Procs_Idle=n`dot, for Processors_n and for all the

traces 10 deadline-based tasks are considered. The median line in each box shows the

average throughput and possible variations in completed tasks from minimum to max-

imum values for each processor trace. This also assists in the identification of outliers

for different deadline-based tasks in Job_Pool. The number of processors directly af-

fects the throughput of the system. It is also observed that average tasks completion

ratio increases as the number of initial idle processors becomes greater than half of

total tasks.
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Figure 5.7: Scenario 3 (a). The box plot obtained from simulations of SPN C

model with varying available processors initially (i.e. Procs_Idle=n`dot, for Proces-
sors_n) to determine average throughput using gEDF scheduling algorithm according
to the idle multiprocessors. Remaining initial markings are same as in Table 4.4 and
firing rates for transitions are as in Table 5.1.
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In Figure 5.8, throughput (Number of tasks completed per unit of time) is analyzed

based on varying initial number of idle processors. The rate functions are listed in Ta-

ble 4.6 and initial markings given in Table 4.4 are modified such that Procs_Idle=n`dot.

It is observed that multiprocessors greatly affect the performance of scheduling algo-

rithm. The simulation plot shows that throughput curve becomes more steeper as the

number of processors increases and it becomes shallow as the number of processors

decreases. Processors_N trace is steep if N ≥ 1

2
∗ (TotalTasks). There is a strong

steady growth in throughput when initial available processors increases indicating tasks

are completing more quickly. The shallow throughput curve of Processors_02 trace in-

dicates that it takes long time to complete the tasks.
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Figure 5.8: Scenario 3 (b). Stochastic simulation plots of SPN C model to deter-
mine throughput by applying gEDF scheduling policy with varying initial multi-
processors. Here total number of tasks are 10. Initial markings given in Table 4.4 are
modified such that Procs_Idle=n`dot, for trace Processors_n and transition rate values
are listed in Table 5.1.
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Figure 5.9 and Figure 5.10 specify that there is a strong relationship between latency,

throughput and execution time of tasks. Latency of tasks becomes high as the number

of processors are increasing because tasks take long time to run. Figure 5.9 shows that

Processors_N trace has maximum peak forN ≤ 1

2
∗(TotalTasks) because more tasks

are in waiting state indicating all processors are busy. When number of processors are

equal to tasks, no task has to wait for the processor whereas there is larger area under

the curve for Processors_02 trace for two processors because higher number of tasks

are waiting for processors. All the Waiting queue curves drop off steadily and finally

converges to zero indicating that none of task is in waiting state. As opposed to waiting

state, Figure 5.10 shows that greater number of processors accelerates the task com-

pletion process. Thus running curves are exponentially growing with the increasing

number of processors indicating more tasks are in execution instead of waiting. It also

depicts that running queue curve for Processors_02 trace is short and wider than other

traces means tasks are coming to running state slowly and continuously until all the

tasks complete execution. Processors_10 curve grows and drops off sharply indicating

tasks are executing very quickly. Moreover, Running queue curves in Figure 5.10 di-

minish when throughput curves (Figure 5.8) rises up to maximum value. Hence, the

algorithm will be more efficient when processors are closed to total number of tasks

and in this way highest peak performance is achieved.
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of gEDF . Each trace is obtained by modifying initial markings (Table 4.4) such that
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Figure 5.10: Scenario 5. The stochastic simulation results obtained from simula-
tions of SPN C model with different initial idle multiprocessors to determine their
effect on execution of tasks (RUN state in model) by applying gEDF scheduling
policy. For initial markings Table 4.4 is modified such that (i.e. Procs_Idle=n`dot, for
Processors_n) whereas firing rates for transitions are listed in Table 5.1.
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5.3 Verification Results

The behavior of model is exhaustively analyzed using formal model checking approach.

Probabilistic model checking is applied to analyze and verify the stochastic behav-

ior of SPN and SPN C model. This SPN model is transformed into CTMC and

the model properties encoded in continuous stochastic logic (CSL) over CTMC model

are verified via PRISM tool. PRISM is very powerful and an open-source probabilis-

tic model checking software tool widely used in diverse application areas [84]. In

CSL, ‘P ’ the probability operator replaces PCTL path quantifiers ‘A (forall)’ and

‘E (there exists)’. It takes the form as: P bound [ pathprop ] where pathprop is the

path property to be verified and path from state s must meets the probability bound

which has range [0,1]. The PRISM properties are customized using filters. A key-

word filter is used to specify the filters that verify the properties simultaneously from

all the states of the model, formulated as: filter(op, prop), where op is the opera-

tor applied to the values of prop probabilistic property and returns single value [84].

The model parameters for experimental purposes are defined as: Max = 10, N(0) =

1,M(0) = 1, Tomega1 = 0.9, Tomega2 = 0.8, Tomega3 = 0.02, Tomega4 = 0.5, Tomega5 =

0.5, Tomega6 = 0.1, Tomega7 = 1. Various queries in CSL language are defined to deeply

investigate the behavior of the model and its verification.

The specification properties are given and discussed as follow:
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• Deadlock-Freeness Property: The deadlocks in the model are inspected by

using PRISM filter queries that test the existence of deadlock state from all the

reachable states. Deadlocks can also be identified by using the print operator.

filter (exists, ! “deadlock”) or filter (print, “deadlock”) (5.1)

The property result of filter (exists, ! “deadlock”) is True that verifies the

system is deadlock-free. A real time scheduler should never be in a state where

no progress is possible. Hence, our model satisfies the desirable feature of the

real time systems.

• Safety Property: Safety property is defined as something bad must never happen

during execution of the system under provided circumstances [89]. It is formally

presented for the model as:

P <= 0 [G(TasksCompleted! = N&Resources >= 1& Run = 0&Waiting! = 0 )]

or TasksCompleted! = N&Resources >= 1 => P >= 1[GF (Run! = 0)]

(5.2)

This property is stated as “the probability that tasks are in running state when

processors are idle is always zero". It is verified in our model means when

TasksCompleted is less than TotalTasks and processors are idle then tasks must

be in running state instead of waiting state.

• Fairness Property : Fairness property means a desirable event of the system is

occurring frequently, formally expressed for our model as:
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Waiting = 1 => P >= 1[G(X(Run = 1))] (5.3)

This property asserts that if the task is in waiting state then next state will always

be the run state. This event will occur infinitely often.

• P =? [ G Resources = 0 ]: This property inquires about processors utilization.

It evaluates to ‘0’ that indicates processors are always busy in executing the tasks.

Thus, it shows maximum processors utilization and minimum response time.

• filter (forall, P >= 1 [ F (Waiting = 0) & (Run = 0) ]): All the wait-

ing and running tasks will eventually be completed successfully. It is formalized

using filters with pathop ‘forall’ which checks that starting from any reachable

state, Run and Waiting states will eventually reach to zero with probability 1.

This query is verified in our model and hence follows the simulation results.

• ( P >= 1 [G((Waiting ! = 0) U F(Resources ≥ 1)) ]): The assertion query

is stated as, “The probability that, globally, tasks will be in waiting state until pro-

cessors become available again is 1". This global property evaluates to true and

thus verifies the simulation results.

• S =? [ (Run > Waiting)]: This query inquires, “What is the steady-state

probability of tasks being more in running state than Waiting state.?". The re-

sult shows, in long run there is 73% probability that tasks in execution are greater

than waiting. Thus, it proves that waiting time is reduced.
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• S =?[(Resources < Max)]: This property is stated as, “What is the long run

probability that Resources are less than maximum available processors?". This

query evaluates to “0.999" indicating most of the time processors are busy in

executing the tasks. This property is formulated in another way as:

R{“time”} =? [ F Resources = Max ] which means “What is the expected

time that resources reaches to Maximum value?". The expected reward is infinity

in this case, which indicates a state, where all the processors are idle, will never

be reachable.

A unit reward to each model state is assigned using reward structure “time" and

different accumulated reward properties are determined.

• R{“time”} =? [ F Ready > 0] : This property determines the expected time

of the task to reach the ready state. The result is 0.1111 time units.

• R{“time”} =? [ F Run > 0] : It inquires, “What is the expected accumu-

lated reward for the tasks to eventually reaches to Run state?". The expected

reward is 0.5494 time units from the initial state.

• R{“time”} =? [ F Waiting > 0]: This query interrogates, “What is the ex-

pected accumulated reward time for the tasks to eventually reaches to Waitng

state?". The expected reward result is 36.2899 time units from the initial state.

The above accumulated reward results indicates that tasks in waiting state are

always less than active and executing tasks.
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• ( P >= 1 [F((JOB_POOL = 0) & (TasksCompleted = N)) ]): This as-

sertion query is stated as, “From the initial state, eventually JOB_POOL becomes

empty and all the tasks are completed with unit probability ". This property holds

in our model which proves that all the scheduled tasks are executed successfully.

5.3.1 Stochastic Model Checking of SPN C Model of gEDF

In order to explore the behavior of SPN C (Figure 4.2), the first step is to unfold SPN C

into corresponding flat SPN and then investigate its CTMC in PRISM. For spatial lim-

itations, CTMC of the model is not presented here. The following CSL queries are

formulated for probabilistic validation of gEDF model:

• Query 1: P >= 1 [ X true ]. It is deadlock freeness property which states,

“The probability that each state has the next state is 1". This property is satisfied

in our model thus guarantees that there are no deadlocks in the model.

• Query 2: P =? [ G Procs_Idle_dot = 0]. This property inquires, “What

is the probability that idle processors become zero ". It evaluates to ‘0’ which

implies processors become free and available again after execution. Most of the

time processors are busy in executing the tasks, formally stated as,

S =? [ Procs_Idle_dot ≥ Max] and evaluates to ‘0’. It means maximum

processor utilization is achieved as tasks are being occupied by the processors.
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• Query 3: filter (forall, P >= 1 [ F ((RUNN = 0 ))) ]), where N={ 1, 2,

..., Total_Tasks} : All the running tasks must be executed eventually. The asser-

tion query is formalized using filters in PRISM which states that the probability

to reach a state where RUN becomes zero is unity. This property is verified in

our model.

• Query 4: P =? [ F (CompletedTasks_dot = Max ) & (Successful_true = 1 ) ].

This query interrogates, “What is the probability that completed tasks reach to

maximum and the status of successful becomes high?". It is verified with proba-

bility ‘1’ in our model, hence signifies an important “schedulability property"

that all the tasks are completed successfully.

• Query 5: P >= 1[ G (( TaskExpireN = 0 )) ]. It is the “safety property" of

our model that states, “System will never reach the state where task expires". This

assertion query is verified in our model, thus implies all the tasks are completed

within time constraints

The aim of probabilistic model checking is to determine the verification of various

attributes of task scheduling and to identify the failures. The two most important at-

tributes of real time scheduling algorithms are “schedulability" and “correctness" [33],

presented above in Query 4 and Query 5. The proof of these properties signifies that

all the tasks are scheduled according to gEDF algorithm and completed meeting their

deadlines. This provides sound knowledge of dynamics of the system.
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The structural Petri net properties of SPN model are determined using qualitative

analysis tool Charlie [83]. It proves the following behavioral properties of general job

scheduling SPN model in Figure 4.1 :

• Liveness : It means each of the transition in SPN model is enabled for every

reachable marking. All transitions in the net evolves infinitely often. It is the

most significant property of Petri net model.

• Reversible : SPN model is also reversible. Once the tasks in Job_Pool are

completed, the process reinitializes.

• Deadlock-free: None of the transitions in the model become disabled on perma-

nent basis. It means there is no deadlock in the system design.

• Strongly connected: A live PN must be strongly connected [90]. Our analy-

sis also shows that the net is strongly connected as there exists a directed path

between every node.

The results presented above indicates that system is always live and always able to

evolve under provided circumstances. Various qualitative and quantitative stochastic

specifications are formalized and investigated. The verification of safety properties

proves that no task expires and all the tasks meet their deadlines. Fairness property

specifies that the scheduling of tasks is performed infinitely often. Deadlock-freeness

property indicates there are no deadlocks in the systems. Quantitative properties facil-

itate us to explore the different performance parameters. The system never achieved
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any deadlock nor halted under any condition. This schedules all the tasks successfully

before/at deadline, thus, feasibility is also achieved. Moreover, the model verification

results are highly coherent with the simulation results. Thus, model checking allows us

to evaluate the performance of model and let us ascertain that the system is reliable and

valid at each time step.



Chapter 6

Conclusions & Future Work

6.1 Conclusions

In this study, a novel approach was proposed for the probabilistic analysis of dynamic

real time scheduling algorithm. An automated colored stochastic Petri net (SPN C)

modeling and probabilistic verification based framework was proposed for the dynamic

analysis of real time scheduling algorithms. The model of the system was analyzed via

simulations that helped to evaluate different performance parameters efficiently e.g. the

throughput, latency and execution rate of the jobs etc.. The model properties were also

validated further with stochastic model checking approach e.g. scheduling property

and correctness property were also verified which guarantees that all the tasks were

successfully completed.

87
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Real time pervasive multiprocessor systems are widely promoted to life critical applica-

tions that must be utterly reliable. The trend to use embedded and ubiquitous comput-

ing technology in numerous real time fields is growing which demands a very reliable

system without any user interference. The non-deterministic events must be managed

such that the system satisfied the rigorous timing constraints. A number of accidents

reported in past due to mismanagement of real time tasks e.g. in flying automobiles,

Google Self Driving Car etc.. These real time applications demand high computational

processing and are highly critical. Reliability and predictability in real time scheduler

are interpreted as the extreme likelihood of meeting the critical deadlines of real time

tasks. Petri net modeling formalism was applied to analyze the behavior of scheduler.

SPN model of general job scheduler was analyzed based on stochastic simulations and

model verification. In addition to that, Colored Petri net modeling formalism was uti-

lized to accurately and precisely investigate the non-deterministic behavior of real time

scheduling algorithm. A preemptive dynamic priority gEDF deadline-based real time

scheduling algorithm for multiprocessor systems was designed using state-of-the-art

SPN C formal modeling approach. In order to explore and evaluate the performance of

gEDF , the stochastic simulations of SPN C model are analyzed. Moreover, CTMC of

the model was utilized to further examine and validate the probabilistic behavior of the

system by the verification of desirable CSL encoded properties. In addition to strategic

performance analysis, it was proved in this model that system is deadlock free, live and

all the real time tasks meet their deadlines. The probabilistic approaches are not well
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exploited earlier for real time systems. Hence, this study will serve as a foundation for

specification of real time scheduling algorithms using high level Petri net techniques.

A framework based on automated stochastic modeling and verification will help the

designers to deeply analyze the system failures in early design phases and optimize

its performance. Hence, it provides guaranteed, mountable and robust solution for

dynamic and stochastic real time scheduling problems especially in life-critical appli-

cations. The increase in model size directly increases the variables of the system which

may result in state space explosion. Accordingly, this study is restricted due to state

space explosion problem for very large models and thus the only limitation of this

study for the model checking process.

6.2 Future Work

Probabilistic formal methods based methodology proposed in this work has been proved

to be persistently reliable. The significance of this study is manifold. This work can

be extended in several research areas which must be investigated. One of the exten-

sion of this work can be applied to multi-core computing systems for scheduling of

multi-threaded parallel task model [39, 91]. Fault tolerance and overload management,

two very important attributes in real time scheduling [92, 93], will be encountered

when applying formal methods on real time systems. Scheduling of mixed-critical

and cyber-physical systems can be done in future, as current study focuses on HRTS.
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In later studies, heterogeneous computing platforms as well as partitioned multiproces-

sor scheduling algorithms will be taken into account. Moreover, real time applications

are also security critical [94], so this essential aspect can also be well-explored using

probabilistic formal methods.
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Appendix A

CTMC of SPN model of General Job Scheduling

ctmc //type of probabilistic model

// constants

const int Max; //upper limit

const int N; //Total Jobs

const int M;// idle processors

const double T_omega1;//the rate at which the task arrives

const double T_omega2;//the rate of task scheduling

const double T_omega3;//the rate at which the task may preempt

const double T_omega4;//the rate at which the task is executed

const double T_omega5;//Waiting rate of tasks

106



Appendix A 107

const double T_omega6;//the rate at which

//the resources become available once task is suspended

const double T_omega7;//the rate at which the process restarts

module GeneralScheduling //Name of the module

//Definition of State Variables

JOB_POOL: [ 0..Max ] init N;

Waiting: [ 0..Max ] init 0;

Ready: [ 0..Max ] init 0;

TasksCompleted: [ 0..Max ] init 0;

Resources: [ 0..Max ] init M;

Run: [ 0..Max ] init 0;

//Definition of Transition rules

//State variables are updated with the corresponding rates

//only if the guard condition fulfills

[Task_Arrives]

(JOB_POOL > 0) & (Ready < Max )-> T_omega1 * JOB_POOL :

(JOB_POOL’ = JOB_POOL-1) & (Ready’ = Ready+1);
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[Scheduling]

(Ready > 0) & (Resources > 0) & (Run < Max ) -> T_omega2 * Ready:

(Ready’ = Ready-1) & (Resources’ = Resources-1) & (Run’ = Run+1);

[Preemption]

(Run > 0) & (Ready < Max ) & (Resources < Max ) -> T_omega3 * Run:

(Ready’ = Ready+1) & (Resources’ = Resources+1) & (Run’ = Run-1);

[Ei]

(Run > 0) & (Resources < Max ) & (TasksCompleted < Max ) ->

T_omega4 * Run : (Resources’ = Resources+1) & (Run’ = Run-1) &

(TasksCompleted’ = TasksCompleted+1);

[Suspend]

(Resources < 1) & (Ready > 0) & (Waiting < Max ) -> T_omega5:

(Ready’ = Ready-1) & (Waiting’ = Waiting+1);

[Resources_Available]

(Waiting > 0) & (Ready < Max ) -> T_omega6 * Waiting :

(Ready’ = Ready+1) & (Waiting’ = Waiting-1);



Appendix A 109

[RESTART]

(TasksCompleted > 9) & (JOB_POOL < 1) ->

T_omega7 * TasksCompleted :

(JOB_POOL’ = JOB_POOL+10)&(TasksCompleted’ = TasksCompleted-10);

endmodule//end of module

//Definition of the reward

rewards "time"

true : 1; //assign reward 1 to each state

endrewards

// end of reward
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