
A PARALLEL IMPLEMENTATION OF
ADVANCED ENCRYPTION STANDARD FOR

HIGH PERFORMANCE COMPUTING
PLATFORM USING MPJ EXPRESS

By

MEHREEN TAHIR

NUST201463280MRCMS64214F

Masters of Science in Systems Engineering

RESEARCH CENTER FOR MODELING AND SIMULATION (RCMS)

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

(NUST), ISLAMABAD, PAKISTAN

2017

A Parallel Implementation of Advanced

Encryption Standard for High Performance

Computing Platform Using MPJ Express

Supervised by

Dr. Muhammad Junaid Hussain

Research Center for Modeling and Simulation (RCMS)

A thesis submitted to the National University of Sciences and

Technology in partial fulfillment of the requirement for the degree of

Masters of Science

2017

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Ms. Mehreen Tahir, Registration No.

NUST201463280MRCMS64214F of RCMS has been vetted by undersigned, found complete

in all aspects as per NUST Statutes/Regulations, is free of plagiarism, errors, and mistakes

and is accepted as partial fulfillment for award of MS/MPhil degree. It is further certified

that necessary amendments as pointed out by GEC members of the scholar have also been

incorporated in the said thesis.

Signature with stamp:

Name of Supervisor: Dr. Muhammad Junaid Hussain

Date:

Signature of HoD with stamp:

Date:

Countersign by

Signature (Dean/Principal):

Date:

APPROVAL

It is certified that contents of the thesis entitled "A Parallel Implementation of Advanced En-

cryption Standard for High Performance Computing Platform using MPJ Express" sub-

mitted by Ms. Mehreen Tahir, Registration No. NUST201463280MRCMS64214F of RCMS

have been found satisfactory as partial fulfillment for award of MS/MPhil degree.

Name of Supervisor: Dr. Muhammad Junaid Hussain

Signature:

Date:

Name of GEC member 1: Ammar Mushtaq

Signature:

Date:

Name of GEC member 2: Fawad Khan

Signature:

Date:

Name of GEC member 3: Muhammad Tariq Saeed

Signature:

Date:

Dedication

Dedicated to my beloved parents whose prayers and sacrifices

made me what I am today. This achievement is a part of their

dream to give me the best education as they could. And to my

dear husband who supported and encouraged me at every step.

STATEMENT OF ORIGINALITY

I hereby certify that the work embodied in this thesis is the result of original research and has

not been submitted for a higher degree to any other University or Institution.

 Date Mehreen Tahir

Acknowledgments

I fail to find enough words to acknowledge the greatest source of support and knowledge

Allah Almighty; for giving me the knowledge, determination and health to achieve my goals,

whose expert guidance and divine presence always strengthens me.

I would like to show my deepest gratitude to my supervisor Dr. Muhammad Junaid Hussain for

his support, guidance and mentorship throughout this project.

I sincerely appreciate the efforts of my GEC members Engr. Fawad Khan and Dr. Ammar

Mushtaq for giving their insightful input at every step. Specially Mr. Muhammad Tariq Saeed

without his assistance and vision it was impossible for me to complete this project.

I am also thankful to Engr. Muhammad Hassan for his help and all those people who supported

me indirectly during my project.

I am highly obliged to my all family members, without their unending support, tolerance and

prayers the very idea of this study was impossible.

i

Contents

List of Abbreviations vi

List of Tables vii

List of Figures ix

Abstract xi

1 Introduction 1

1.1 High Performance Computing . 1

1.2 Encryption and Decryption . 2

1.2.1 Symmetric Algorithm . 3

1.2.1.1 Data Encryption Standard (DES) 3

1.2.1.2 Advanced Encryption Standard (AES) 4

1.2.1.3 Implementation of Symmetric Algorithms 4

1.2.2 Asymmetric Algorithm . 4

1.3 Research Objectives . 5

1.4 Methodology of Research . 6

1.5 Contributions . 6

1.6 Organization of Thesis . 7

2 Advanced Encryption Standard (AES) 8

ii

2.1 Introduction . 8

2.2 AES Selection Procedure . 8

2.2.1 First Round . 9

2.2.2 Second Round . 10

2.2.3 Final Round: Selection . 10

2.3 Dissimilarities between Rijndael and the AES 11

2.4 Overview of AES . 11

2.5 Working of AES . 14

2.5.1 Byte Substitution . 16

2.5.2 Shift Row . 16

2.5.3 Mix Columns . 18

2.5.3.1 Galois Field Multiplication 18

2.5.4 Key Addition . 21

2.6 Summary . 21

3 Literature Review 22

3.1 Introduction . 22

3.2 Parallel Implementation of AES . 22

3.2.1 Software Approach . 23

3.2.1.1 Central Processing Unit . 23

3.2.1.2 Graphical Processing Unit 26

3.2.2 Hardware Approach . 29

3.3 Summary . 34

4 Parallel Implementation of AES using MPJ Express on HPC Platform 35

4.1 Introduction . 35

iii

4.2 Multicore and Cluster Systems . 36

4.3 Parallel Programming . 39

4.3.1 Parallel Programming Model . 40

4.3.2 Data Parallelism . 41

4.3.3 Message-Passing Programming . 42

4.3.3.1 MPJ Express Library . 43

4.4 Motivation . 45

4.5 Methodology . 47

4.5.1 Algorithm . 47

4.5.1.1 Pseudo Code . 50

4.6 Summary . 51

5 Results 52

5.1 Introduction . 52

5.2 System Specification . 52

5.3 Performance Parameters . 53

5.4 Parallel AES in Java using MPJ Express . 54

5.4.1 Multicore Platform . 54

5.4.2 Cluster Platform . 56

5.5 Parallel AES in C . 58

5.5.1 Multicore Platform . 59

5.5.2 Cluster Platform . 61

5.6 Parallel AES in C using CUDA . 61

5.7 Summary . 68

6 Conclusion 70

iv

6.1 Future Work . 72

Bibliography 73

Appendix 84

A AES Encryption with Java using MPJ Express 84

B AES Encryption with C 89

C AES Encryption with CUDA 104

v

List of Abbreviations

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DES Data Encryption Standard

FIPS Federal Information Processing Standard

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

HPC High Performance Computing

MPICH Message Passing Interface Chameleon

MPI Message Passing Interface

MPJ Message Passing Interface Java

NIST National Institute of Standards and Technology

OpenMP Open Multi-Processing

vi

List of Tables

2.1 15 Submissions for the First Round of AES Selection [61] 9

2.2 Differences between AES and Rijndael . 11

2.3 AES Key Lengths with Corresponding Number of Rounds [61] 12

5.1 Execution Time (milli seconds (ms))of MPJ Express based AES on Multicore

Platform for Different File Sizes and Threads 54

5.2 Speed up and % Efficiency of MPJ Express based AES on Multicore Platform

for Different File Sizes . 54

5.3 Execution time for MPJ Express based AES Encryption of Different File Sizes

for Cluster Platform . 57

5.4 Speed up of MPJ Express based AES on Cluster Platform for Different File Sizes 57

5.5 Execution time for OpenMP based AES Encryption of Different File Sizes for

Multicore Platform . 59

5.6 Speed up and % Efficiency of OpenMP based AES on Multicore Platform for

Different File Sizes . 60

5.7 Execution time for MPICH based AES Encryption of Different File Sizes for

Cluster Platform . 62

5.8 Speed up for MPICH based AES Encryption of Different File Sizes for Cluster

Platform . 62

vii

5.9 Execution Time of CUDA based AES Encryption of Different File Sizes for

GPU Platform . 67

5.10 Comparison of Speed up of AES Encryption on all Platforms 67

6.1 Multiple AES implementations used in this research 70

viii

List of Figures

1.1 Symmetric Key Cipher [57] . 3

1.2 Asymmetric Key Cipher [57] . 5

1.3 Research Methodology . 6

2.1 AES Input/Output Parameters [61] . 12

2.2 AES Encryption Block Diagram [61] . 13

2.3 AES Round Functions from 1-nr [61] . 15

2.4 Substitution Box [61] . 16

2.5 Inverse Substitution Box [61] . 17

2.6 L Table [61] . 19

2.7 E Table [61] . 20

2.8 Key Addition . 21

4.1 Multicore System Architecture [22] . 36

4.2 Multicore System with Multithreading [69, 4] 37

4.3 Modern HPC Cluster Platform [7, 3] . 38

4.4 Synchronization of Threads/Processes [1] 40

4.5 Message Passing Model [49] . 43

4.6 MPJ Express Configurations [2] . 44

4.7 MPJ Express Hybrid (Multicore + Cluster) Configuration [2] 45

ix

4.8 MPJ Express Cluster Configuration [2] . 46

4.9 Proposed Methodology . 47

4.10 Working of Algorithm . 48

5.1 Graph showing Execution Time of AES Encryption for Multiple File Sizes

on Multicore Platform . 55

5.2 Graph showing Throughput of AES Encryption for Different File Sizes on

Multicore Platform . 56

5.3 Graph showing Execution Time of AES Encryption for Different File Sizes

on Cluster Platform . 58

5.4 Graph showing Throughput of AES Encryption for Multiple File Sizes on

Cluster Platform . 58

5.5 Graph showing Execution Time of AES Encryption for Different File Sizes

on Multicore Platform . 60

5.6 Graph showing Throughput of AES Encryption for Different File Sizes on

Multicore Platform . 61

5.7 Graph showing Execution Time of AES Encryption for Different File Sizes

on Cluster Platform . 63

5.8 Graph showing Throughput of AES Encryption for Multiple File Sizes on

Cluster Platform . 63

5.9 Tesla T10 Architecture [46] . 64

5.10 High level view of Nvidia Tesla S1070 GPU [8] 65

5.11 GPU Implementation Flow Chart of AES Encryption 66

5.12 Graph showing Speed up of CUDA based AES Encryption of Different File

Sizes for GPU Platform . 68

x

Abstract

The use of Java language for High Performance Computing (HPC) is becoming increasingly

popular due to appealing language features and availability of parallel programming libraries

and tools. In this work, we use MPJ (Message Passing Interface Java)-Express, a Java based

library to accelerate Advanced Encryption Standard (AES) algorithm. MPJ-Express is an MPI

(Message Passing Interface)-like implementation that supports acceleration of Java code on

multicore and cluster computer systems. We have partitioned the problem at two levels. By em-

ploying a data parallel approach, we first divide the data length among available processors and

then data at each processor is further divided among processor cores. The experimental results

show almost linear throughput in case of multicore platform (1 node or stand alone system)

and non linear throughput for cluster platform. These experimental results are compared with

the AES algorithm accelerated by separately using other parallel programming tools in C lan-

guage such as OpenMP API (Open Multi Processing Application Program Interface), MPICH

(Message Passing Interface Chameleon) and CUDA (Compute Unified Device Architecture)

programming model. Parallel AES implementation using MPJ Express provides high speed up

factor and efficiency for multicore and cluster platform as compared to AES accelerated in C

using OpenMP and MPICH. But the speed up of GPU based implementation of AES in C using

CUDA (1 node) out performed AES in MPJ Express using multcore platform. Overall perfor-

mance of AES accelerated in C on all platforms is best as compared to AES accelerated using

MPJ Express. Accordingly it is concluded that this implementation is suitable for applications

that are platform independent.

xi

Chapter 1

Introduction

1.1 High Performance Computing

High Performance Computing or Supercomputing emerged in late 1970s and dramatically took

over the whole world. Initially it was employed by defense and high tech industries but nowa-

days it is used in every type of industry. Supercomputing underwent substantial changes from

technology point of view in 1990s. The most noticeable development was the architectural in-

novation in processor technology[23]. Many chip manufacturers began developing processors

on single chip with power efficient computing units or cores. Multicore chips were produced

to address the high power consumption issue of high clock speed systems that were unreli-

able. Cluster systems, built from multiple nodes (computers acting as servers) are extensively

available and are now frequently used for high performance computing [64]. Software based

advancements like Parallel Virtual Machine (PVM) also surfaced. PVM, a group of worksta-

tions and supercomputers is a single high performance parallel machine and network computing

used to solve large scale problems. Of similar importance is a single portable message passing

library having functions to be called from different programming languages (C, FORTRAN) to

create parallel programs.[23]

1

Chapter 1: Introduction 2

Parallel programming is a significant attribute of high performance computing. Parallel pro-

cessing is the practice that has been used for increasing the efficiency of processing large data.

Conventionally, parallel processing signifies the idea of decreasing the execution time of a pro-

gram by apportioning it into multiple portions, each of which is executed concurrently on its

own processor. Theoretically, concurrent execution of these portions on n separate processors

reduce the execution time by n times. The terms concurrent and parallel are used to refer to

the condition where the period for executing two or more processes overlap in time, even if

they start and stop at different times. It is possible to perform parallel processing by connecting

multiple computers in a network and distributing fragments of the program to different com-

puters on the network [78]. These high performance systems are very helpful in running large

simulations as they lead to improved results. A suitable programming language is required to

formulate algorithms for parallel programs. Execution of these programs is frequently managed

through particular run time libraries or compiler directives which are included in a standard pro-

gramming language like FORTRAN, Java or C [64].

1.2 Encryption and Decryption

Encryption is the process of transforming data into illegible format, also called as cipher, such

that only authorized persons can read it. Decryption, on the other hand, is the process of re-

forming illegible data into its legible form, also called as decipher [58]. Encryption algorithms

can be classified as:

1. Symmetric Algorithm

2. Asymmetric Algorithm

Chapter 1: Introduction 3

1.2.1 Symmetric Algorithm

Symmetric algorithm or Symmetric Key Cipher as the name indicates, uses identical keys for

the encryption and decryption processes i.e. same key is used while transferring (send/receive)

the data (if communication is done over the network) as shown in Figure 1.1 . The input data

(plaintext) can be encrypted as a block (block ciphers) or a stream of bits (stream ciphers).

Symmetric algorithms like Data Encryption Standard (DES), AES, blowfish, twofish are block

ciphers. Whereas Rivest cipher 4 (RC4) is a stream cipher.

Figure 1.1 : Symmetric Key Cipher [57]
Symmetric Algorithm takes secret key and converts plain text into cipher text. Same key is used
for encryption and decryption.

1.2.1.1 Data Encryption Standard (DES)

DES is derived from a symmetric block cipher called Lucifer and became the first Federal

Information Processing Standard (FIPS) in 1976 to get rid of various attacks. It has a key length

and block size of 56 bits and 64 bits respectively [41]. Even though it had the necessary security

features, DES algorithm was unable to resist several attacks due to small key size i.e. 56 bits.

Many variations of DES were produced to pawn these attacks but they did not provide a fully

secure algorithm. Therefore, DES was superseded by Advanced Encryption Standard in 2001

and became new FIPS [57].

Chapter 1: Introduction 4

1.2.1.2 Advanced Encryption Standard (AES)

Unlike DES, AES has variable key lengths. Each key length has different number of encryption

and decryption rounds. It has a block size of 128 bits. The whole process becomes more secure

due to variable key size as it solves the key length issue in DES. The key sizes are: 1) 128-bits

with 10 rounds. 2) 192-bits with 12 rounds. 3) 256-bits with 14 rounds. In 1998, a competition

for replacing DES was organized by the National Institute of Standards and Technology (NIST)

USA. In 2001, NIST announced that an algorithm called Rijndael [21] has been nominated as

the new standard. AES is one of the most popular symmetric key encryption algorithms. It is

frequently employed as a benchmark for encrypting/decrypting data throughout the world due

to its security [30].

1.2.1.3 Implementation of Symmetric Algorithms

In networked applications that provide security, data encryption and decryption are frequent

actions. But in order to match high data input rate of networked applications such as real

time data processing or multimedia streaming very fast encryption and decryption schemes are

required [74]. HPC is being used to increase the efficiency of processing large data at run time

by executing symmetric algorithms in parallel.

1.2.2 Asymmetric Algorithm

Asymmetric/public key algorithm or Asymmetric Key Cipher is a technique which uses dissim-

ilar keys for the encipher and decipher process as shown in Figure 1.2 . The major problem with

symmetric key algorithm is the management of keys. Secure communication of key between

sender and receiver requires a secure network. The risk increases with increase in number of

users in the network. To solve this problem, asymmetric ciphers were developed. Two math-

ematically related different keys are used by sender and receiver. One is public key (can be

Chapter 1: Introduction 5

distributed publicly) and the other is private key. Examples of asymmetric key algorithms are

Elliptic Curve Cryptography (ECC), Ron Rivest, Adi Shamir and Leonard Adleman (RSA), and

Digital Signature Algorithm (DSA) etc.

Figure 1.2 : Asymmetric Key Cipher [57]
Asymmetric Algorithm uses pubic key and converts plain text into cipher text. On the other
hand, decryption requires private key to convert cipher text into plain text.

1.3 Research Objectives

The objectives of this research endeavor are to:

• Parallelizing AES using MPJ Express by utilizing multicore and cluster configuration on

HPC platform in Java

• Parallelizing AES using OpenMP threads and MPICH on HPC platform in C

• Parallelizing AES by utilizing CUDA on GPUs

• Comparing the results of above mentioned implementations of AES

Chapter 1: Introduction 6

1.4 Methodology of Research

Figure 1.3 highlights the steps of research methodology of this thesis work. First step is to

select domain of the research and formulate research theme which in our case lies between

parallel computing and encryption. After this, literature is reviewed and objectives are defined.

On the basis of literature and defined objectives a methodology is developed. Implementation

of this methodology must satisfy the objectives. Results of this implementation are evaluated at

the end and conclusion is drawn.

Figure 1.3 : Research Methodology
The research work carried out in current thesis is done by using this six step method. Domain
of research is decided first and literature is reviewed accordingly. This literature review pro-
vides gap in literature. Research objectives are formulated to fill this gap and methodology is
developed to achieve these objectives. Methodology is implemented and results are evaluated.

1.5 Contributions

Symmetric ciphers also known as bulk ciphers [5], are used to encrypt large amount of data.

Their common use is found in the static storage of large amounts of sensitive data, as well as its

communication over the network or across Internet. Bulk encryption offers safe and effective

methods for protecting data from being compromised and stolen as they are encrypted with one

symmetric key and cannot be decrypted with any other key. However, data encryption of bulk

data requires very large response times.

HPC provides raw computational power to solve this problem. Parallel processing is the prac-

tice to utilize this computational power for increasing the efficiency of processing large data.

Chapter 1: Introduction 7

Parallel implementation of AES on HPC platform using MPJ Express provides a platform inde-

pendent and scalable implementation that can be used at enterprise level to solve the problem of

bulk encryption. Same implementation can be used on any HPC platform for bulk encryption

purpose.

1.6 Organization of Thesis

A brief outline of the chapters included in this thesis is presented below:

Chapter 1 gives an introduction of HPC and Encryption. Objectives of the research along with

the research methodology are explained afterwards. The chapter concludes with the contribu-

tion of this study in practical applications. Chapter 2 provides detailed explanation of AES

algorithm starting from its inception. A detailed literature review is presented in Chapter 3 in-

cluding both international as well as local scope of work. Some of the missing links are also

identified. All the terms and concepts of HPC used in our methodology are discussed in Chapter

4. Last section of this chapter explains our proposed methodology. In Chapter 5, implementa-

tion of proposed methodology along with its comparison to AES parallelized in other platforms

are presented. A comprehensive discussion of observed results along with potential reasoning

is also stated. Chapter 6 is the Conclusion in which results of current study are presented. Rec-

ommendations for future research are also proposed in this chapter.

Chapter 2

Advanced Encryption Standard (AES)

2.1 Introduction

Two Belgian cryptographers, Joan Daemen and Vincent Rijmen, developed Advanced Encryp-

tion Standard Algorithm. This algorithm is frequently used as a benchmark for encrypting/de-

crypting data throughout the world due to its security [30]. AES is also required in numerous

industrial standards and is utilized in several commercial applications and systems [21]. This

chapter provides detailed description of Advanced Encryption Standard algorithm beginning

from its formulation. Section 2.2 discusses the AES Selection procedure in detail. It consists of

three rounds and results in Rijndael as final choice for AES. Section 2.3 highlights differences

between AES and Rijndael. Section 2.4 is a high level view of AES. Section 2.5 comprises of

detailed working of AES. Section 2.6 summarizes the chapter.

2.2 AES Selection Procedure

In September of 1997, the final invitations for nominee proposals of AES were issued. NIST

stated that they are looking for an algorithm that must be more efficient and secure than 3DES.

The author of selected algorithm must agree to make it open source. These were minimum

8

Chapter 2: Advanced Encryption Standard (AES) 9

requirements for the cipher that must be met to qualify for the competition. Qualifying ciphers

must have fixed 16 bytes (128 bits) block size but key length should be variable (128, 192 and

256 bits). The variable key length requirement was later dropped. But some candidates opted

for the variable key length requirement in their design (e.g. RC6 and Rijndael) as NIST revealed

that additional functionality would be received positively.

2.2.1 First Round

From all the submitted designs, 15 were selected to go into the first round. First round was

a conference named as The First Advanced Encryption Standard Candidate Conference. It

was organized on 20-22 August 1998 at Ventura, California where all accepted nominees were

presented. All the designs were evaluated by international cryptographers.

Table 2.1: 15 Submissions for the First Round of AES Selection [61]

In the first round, all candidates were evaluated on the basis of cost, security and implementation

characteristics. NIST invited cryptology experts to evaluate the candidates by mounting attacks

and crypt analyse them or evaluate the implementation cost if anyone is interested. The first

Chapter 2: Advanced Encryption Standard (AES) 10

round consisted of 2 conferences. Second AES Conference was joined with the yearly Fast

Software Encryption Workshop. It was organized at Rome, Italy in March 1999. The workshop

ended in August 1999. NIST selected the following 5 algorithms out of 15:

• RC6

• MARS

• Twofish

• Serpent

• Rijndael

2.2.2 Second Round

In April, 2000 at New York, 3rd AES conference was held. Fast Software Encryption Workshop

was again joined with it. Three sessions were held:

1. Cryptographic attacks

2. Software implementation

3. Field Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits

(ASIC)

Attendants of conference were asked about their choice of AES through a questionnaire. Rijn-

dael was unquestionably elected as the people’s choice.

2.2.3 Final Round: Selection

NIST, on 2 October, 2000, formally announced Rijndael to be AES, without any modifications.

NIST issued an excellent report of 116 pages in which they summarized all contributions. Mo-

tivations behind using Rijndael algorithm were

Chapter 2: Advanced Encryption Standard (AES) 11

1. It performs really well in wide variety of both hardware and software environments

2. Very well suited for memory restricted environments

3. Internal structure of this algorithm makes it an excellent candidate for instruction level

parallelism

4. Provide defense against power and timing attacks without impacting its own performance

2.3 Dissimilarities between Rijndael and the AES

The value for accepted block size and supported key length, is the only difference that separates

Rijndael from AES.

Table 2.2: Differences between AES and Rijndael

The variable block size and key lengths are not a part of current FIPS standard as it was not

assessed in AES selection process.

2.4 Overview of AES

Figure 2.1 shows the basic input output of AES. 128 bit plaintext x is the input of AES black

box along with key k (use anyone of them 128/192/256 bits) and 128 bit cipher text y is the

output. AES key length governs the number of round function of the algorithm.

DES does not encrypt complete plaintext block per iteration as it has feistal structure, unlike

AES. Fesital networks are common in block ciphers but AES does not possess it, due to which

it encrypts the entire block per iteration. Hence, it takes comparatively small number of rounds

Chapter 2: Advanced Encryption Standard (AES) 12

Figure 2.1 : AES Input/Output Parameters [61]
AES takes 128 bits of block and variable key length (128/192/256 Bits) as input. The output
block size is 128 Bits.

Table 2.3: AES Key Lengths with Corresponding Number of Rounds [61]

as compared to DES. Figure 2.2 shows block diagram of AES Encryption. Each round of AES

comprises of three layers, except first. Furthermore, last round does not have mix column, which

makes the encryption and decryption arrangement symmetrical. Three layers are as follows:

• Key Addition layer: A key scheduler is present that makes round keys/sub-keys out

of main key. Each 128 bit sub key is then XORed (Exclusive OR) with the 128 bit of

plaintext.

Chapter 2: Advanced Encryption Standard (AES) 13

Figure 2.2 : AES Encryption Block Diagram [61]
Plaintext x is input and y ciphertext is output of AES. It has variable rounds depending upon
the key length used. Each round has three layers. Last round misses mix column. Sub keys are
generated from key k.

Chapter 2: Advanced Encryption Standard (AES) 14

• Byte Substitution layer (S-Box): An S-Box (Substitution Box) is formed with special

mathematical properties that non linearly transforms data which introduces confusion in

it.

• Diffusion layer: This layer consists of 2 sub layers. Each layer performs different linear

operation.

– Shift Rows layer: byte level permutation of the data

– Mix Column layer: matrix operation that mixes 4x4 matrix of input with another

4x4 matrix

We will not discuss Key Scheduler as it is not in the scope of this thesis.

2.5 Working of AES

Figure 2.3 is interior structure of AES which shows that A0,...,A15 is a 16 byte input to S-Box.

B0,...,B15 , the 16 byte output of S-Box is fed into the Shift Row layer that permutes it and then

Mix Column layer mixes it to form 16 byte C0,...,C15 intermediate result. Key Addition layer

XORs 128 bit round key to this result to complete one round of AES.

One major difference between DES and AES is that latter is byte oriented. To properly under-

stand how data flows through each layer of AES, it is important to know how data is arranged.

Each block (16 bytes A0,A1,...,A15) of input data is in the form of 4x4 byte matrix:



A0 A4 A8 A12

A1 A5 A9 A13

A2 A6 A10 A14

A3 A7 A11 A15


In the same way key bytes are arranged depending on the key length. 128-bit key forms 4x4

Chapter 2: Advanced Encryption Standard (AES) 15

matrix, 192-bit key forms 4x6 matrix and 256-bit key 4x8 matrix. Following is an example of a

192-bit key matrix: 

K0 K4 K8 K12 K16 K20

K1 K5 K9 K13 K17 K21

K2 K6 K10 K14 K18 K22

K3 K7 K11 K15 K19 K23


We will not discuss the mathematics of AES as it is out of the scope of this thesis.

Figure 2.3 : AES Round Functions from 1-nr [61]
Block diagram of internal structure of AES shows each layer with its respective product . A is
the input. B and C are intermediate products of byte substitution and diffusion (shift row and
mix column) respectively. Ki is the sub key of respective round.

Chapter 2: Advanced Encryption Standard (AES) 16

2.5.1 Byte Substitution

During encryption and decryption, each value of the current block is replaced by its correspond-

ing S-Box and Inverse S-Box value respectively. Figure 2.4 is an S-Box, for example 19 (HEX)

is one value of the current block. It will be replaced by D4 (HEX). Go straight to the intersec-

tion of 1 (vertical index) and 9 (horizontal index) which is D4. Figure 2.5 is the corresponding

inverse S-Box. During decryption, D4 (HEX) will be replaced by 19 (Intersection of D and 4).

Figure 2.4 : Substitution Box [61]
S-Box used by Byte Substitution layer during encryption. Each value in plaintext block is
replaced by its corresponding value of S-Box.

2.5.2 Shift Row

The Shift Row layers performs circular shift on 4x4 matrix. The matrix is formed column wise

but shifted row wise. If we have a 16 byte block with following values:

Chapter 2: Advanced Encryption Standard (AES) 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Its 4x4 matrix will be:

Row 1

Row 2

Row 3

Row 4



1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16



−→ No shift

−→ One position right shift

−→ Two position right shift

−→ Three position right shift

Figure 2.5 : Inverse Substitution Box [61]
Inverse S-Box used by Byte Substitution layer during decryption. Each value in ciphertext block
is replaced by its corresponding value of Inverse S-Box.

Chapter 2: Advanced Encryption Standard (AES) 18

Resultant matrix: 

1 5 9 13

6 10 14 2

11 15 3 7

16 4 8 12


2.5.3 Mix Columns

Mix Column operation is all about matrix multiplication. We have two 4x4 matrices. One is

input and another is multiplication matrix.

16 byte Input Matrix Multiplication Matrix

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

b4 b8 b12 b16




2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2




Each value of the input matrix is multiplied with all the values of the multiplication matrix.

Matrix multiplication is carried out in traditional way. (*) is Galois Field Multiplication and

instead of adding values we XOR them. Multiplication of one column of input matrix is given

below:

2.5.3.1 Galois Field Multiplication

Mathematics of Galois Field is beyond the scope of this thesis. We will discuss multiplication

with the help of 2 HEX look up tables. Matrices must be in HEX format with maximum two

Chapter 2: Advanced Encryption Standard (AES) 19

digits. Look up table L and E give values of multiplication and addition respectively. Figure

2.6 and 2.7 are L and E Tables respectively.

Figure 2.6 : L Table [61]
Instead of calculating value of each Galois field multiplication, a look up table is generated that
gives values of multiplication.

For example, if we have (b1*2)

From table L, b1=AF

Go straight to the intersection of A (vertical index) and F (horizontal index) which is B7. Now

check for 02, which is 19.

So, AF*02=B7+19=D0

If the result is greater than FF, e.g.

7B+B4= 12F > FF

Then

12F-FF=30

Chapter 2: Advanced Encryption Standard (AES) 20

Figure 2.7 : E Table [61]
Instead of calculating value of each Galois field multiplication, a look up table is generated that
gives values of multiplication.

Exclusions:

Above procedure will not be applied in two cases:

After performing all the multiplication operations and XORs, we will get one value. For exam-

ple, if we have below mentioned equation

And after performing all operations we get 8A

b1=8A

Now, we will use look up table E

8A=32

Chapter 2: Advanced Encryption Standard (AES) 21

Hence, b1=32

All these operations will be done on whole input matrix, and then we will get the result of Mix

Column.

2.5.4 Key Addition

Key Scheduler generates sub keys. Each sub key is XORed with 16 byte block of input. Each

round uses new sub key. In first round, 1-16 indices of key are used then in second round, 17-32

indices are used and so on. Figure 2.8 shows key addition of first two rounds.

Figure 2.8 : Key Addition
Sub keys are generated through key scheduler and each sub key is of 16 byte. In each round, 16
byte input block is XORed with 16 byte sub key. Every round has its own sub key.

2.6 Summary

In this chapter, Advanced Encryption Standard is explained in detail. We discussed how AES

came into being along with the internal structure and working of AES. Mathematics is not

discussed in this chapter as it is out of the scope of this thesis.

Chapter 3

Literature Review

3.1 Introduction

This literature review provides research background on parallel implementation of Advanced

Encryption Standard Algorithm. In section 3.2, literature is divided into two approaches; hard-

ware approach and software approach. A brief summary of research work regarding hardware

implementation of AES is given in Section 3.2.1 and software implementation of AES in Sec-

tion 3.2.2. Software approach is partitioned into two types; Central Processing Units (CPUs)

and Graphical Processing Units (GPUs) in sections 3.2.2.1 and 3.2.2.2 r respectively. Summary

of this chapter in Section 3.3, categorizes gap in the literature as a framework for the unique

contribution of this study.

3.2 Parallel Implementation of AES

With the inception of AES, researchers are working to enhance the performance of AES. There

are two methods used for speedup:

1. Software Approach

22

Chapter 3: Literature Review 23

2. Hardware Approach

3.2.1 Software Approach

CPU and GPU have tremendous computational power depending on their configuration. They

are used in wide variety of applications where computationally expensive tasks are done. Cryp-

tography is one of the most important applications. Symmetric and asymmetric algorithms

require considerable computational power for their execution. Besides security, efficiency of

an algorithm plays a vital role in real world applications where we need faster encryption and

decryption process. GPUs or CPUs can execute AES in parallel with multiple threads as it op-

erates on 16-bytes of independent blocks. Work of some researchers is discussed in following

section.

3.2.1.1 Central Processing Unit

Parallelizing AES on a CPU has been thoroughly explored in recent years. This is because there

are still some computers that lack GPUs or equipped with old GPUs that do not support general

computing.

Holget et al parallelized AES using OpenMP on ARM MPCore featuring four ARM11 pro-

cessor cores. They investigated the parallelization effect on performance to power ratio by

inspecting parameters like number of threads in a running program. They derived functional

and instruction level power model for MPCore with power efficient codes. They achieved aver-

age speed up factor of 3.4 and efficiency gain factor of 1.8 [16].

Ortega et. al. implemented parallel AES with Open MP on multicore CPU system and CUDA

on GPU. For openMP, data is divided into 16 bytes of blocks and assigned to threads. These

threads go to specified cores and encrypt data. Their study proved that OpenMP is a good for

paralleling AES [54].

Chapter 3: Literature Review 24

Pachori et. al. presented the parallel implementation of AES using Java Parallel Programming

Framework (JPPF). They used control and data parallelism and their design provided perfor-

mance improvement. Four layers of AES are divided into two independent parts thus modifying

structures of original AES. These independent parts are assigned to separate processors. These

processors exchange intermediate results during processing and further process them. After

that single processor combines output of these independent parts and encrypts them. Their

study showed significant improvement [56].

Pousa et. al. followed the same line and realized 3 parallel AES algorithm versions by making

use of MPI, CUDA and Open MP respectively. Researchers parallelized AES with OpenMP

by initializing number of threads equal to total number of cores available. Key is generated

sequentially. Each block of data is assigned to each thread which is in turn assigned to each

core. Each core encrypts 16 bytes of block independently. In case of MPI, number of processes

equal to number of available processors is generated. Data is divided in sets of 16 bytes and

each block is assigned to each process. This processes goes to separate processor and encrypts

respective blocks independently [60].

Duta et. al. realized parallel AES by making use of CUDA, Open MP, and Open Computing

Language (OpenCL) respectively. They not only parallelize AES but also emphasize impor-

tance of I/O operations by implementing AES in Cipher Block Chaining mode and Interleaved

Cipher block chaining mode. They achieved remarkable performance by using parallel pro-

gramming models and APIs [24].

Navalgund et. al. parallelized AES by dividing it into parallel and non-parallel parts and im-

plemented parallel parts with OpenMP. It was also used to deal with synchronization and data

dependency problems. It was done by using join and fork model. Results have shown significant

improvement and authors claim this implementation to be useful for hardware implementation

[52].

Chapter 3: Literature Review 25

As we are discussing parallel implementation of AES, parallelism is of different types. Most

common types are task, instruction, loop and data level parallelism. Liu et. al. examined gran-

ularity of task and data level parallelism and mapped sixteen implementations of AES with

offline and online key expansion on a fine-grained multicore system. Their smallest design re-

quires 6 processors. Fastest design achieved throughput of 4.375 cycles/byte. They optimized

area of all 16 implementations by examining load on each processor and reduced it by 18%.

They have shown efficiency in terms of throughput and energy as compared to available AES

implementations on multicore systems and demonstrated fine-grained multicore system to be

an excellent solution for AES software implementation [47].

Nagendra et. al. analyzed the efficiency of the AES using Open MP. They compared sequen-

tial and parallel algorithm execution time and found that parallel AES cipher implemented on

Dual Core system is faster than sequential AES. They observed that performance was less for

small file size but increased by increasing file size and became constant after particular file size.

Time reduced by 38% for a small size and as much as 45% for large files. Subsequently time

reduced with increasing file size. Their research work proved that multi-core processors can be

efficiently used to speed up algorithms[51].

Elkabbany et. al. used multi processors to parallelize AES. It is scalable and suitable for real

time applications. As AES has inherent qualities of parallelism, so they took advantage of this

characteristic and used pipelining along with parallelization to accelerate AES. Most of the

researchers use pipelined parallelization or MixColumn parallelization. But these researchers

pipelined all rounds and parallelized MixColumn and Add Round Key transformations. In or-

der to enhance system performance, instead of pipelining 9 stages unlike previous studies, they

pipelined 11 stages. Their results demonstrated that pipelining improved results upto 95% while

introducing parallelization of MixColumn and Add Round Key elevate it upto 98%. These re-

sults were achieved by using 8 and 16 processors respectively for encryption and decryption.

Chapter 3: Literature Review 26

But it should be noted that after a certain limit, performance of algorithm degrades by increas-

ing number of processors[26].

Pendli et. al. analyzed the effectiveness of the AES using Open MP on dual core processor.

This process is validated using JAVA platform. They compared sequential and parallel algo-

rithm execution time and found that parallel AES cipher implemented on Dual Core system

works 40-45% faster than sequential AES. Their research work proves that multi-core proces-

sors can be efficiently used to speed up algorithms[59].

3.2.1.2 Graphical Processing Unit

Graphics processors (GPUs) are hardware accelerators that perform computationally intensive

tasks that general purpose processors (CPUs) cannot perform efficiently. GPUs possess large

number of simple deeply multithreaded cores. GPU architectures are fully programmable pro-

cessors. Today the raw computational power of GPUs has exceeded that of high end general

purpose CPU.

Manavski was the first to use CUDA for parallelizing AES on GPU. The performance of newly

developed algorithm was compared with CPU implementation. This research opened new ways

for parallelizing algorithms. The proposed implementation offered same range of performance

as other hardware based implementation and was 20 times faster than OpenSSL implementation

[48].

Biagio et. al. used coarse and fine grained approaches to implement AES using CUDA pro-

gramming model. They inferred that GPU as a co-processors works efficiently for AES and this

is cost effective as compared to CPU based AES implementation on OpenSSL [15].

Bos et. al. implemented AES on GPUs and reported problems that were encountered in this

process. They also evaluated if GPU was a good option for cryptography or not and con-

cluded that GPU was a good option for cryptography as compared to CPU. Although there

Chapter 3: Literature Review 27

were problems but they could be alleviated by using different programming models like CUDA

and AMD/ATI’s Close to Metal (CTM) [17].

Le et al devised a way for overcoming the issue of low throughput of AES encryption process

on CPUs. They proposed and implemented AES on GPU and gained a speed up of 7x as com-

pared to CPU. They claimed that this scheme can be used in digital forensics to achieve high

encryption and decryption rates [43].

To encounter the problem of low throughput of AES encryption on CPUs, Tran et. al proposed

and implemented new algorithm for parallel AES encryption on GPU. Their algorithm showed

significant performance gain[74]. Ortega et. al. concluded from their research that GPU en-

crypts data with AES in economical way and is faster as compared to sequential code or code

that has been parallelized using OpenMP [54].

GPUs are very helpful in processing multiple types of data concurrently. The processing power

of CPUs cannot be compared with GPUs. But we can combine CPUs and GPUs to take advan-

tage of their power. CPUs have large and fast cache memories and are of great benefit if data

transfer rate is greater than processing time or instruction branching is obstructing continuous

processing of instruction on all GPU cores. Barlas et. al. proposed a framework for optimal

utilization of CPU and GPU resources combined for encryption and decryption in block ciphers

like AES. They have highlighted all the aspects that must be kept in mind while using GPUs in

any application [14].

Li et. al. proposed a CUDA implementation of AES in CBC and ECB mode on GPU. One

important concept that we will discuss in next chapter is granularity which is division of task

into number of instructions. Granularity of the proposed implementation is 16 bytes (one block)

per thread. It showed 50 times speed up than sequential implementation. They also discussed

optimization techniques for real world application [44].

Nhat et. al. proposed a technique for parallel execution of AES in counter mode on GPUs.

Chapter 3: Literature Review 28

They increased the block size (16 bytes) of plaintext across the boundaries of data by a factor

E to create larger blocks. This approach helps in decreasing the distribution time of blocks to

cores, their synchronization, and number of encryption function calls by factor E at the end of

whole process as compared to coarse grained approach. It gives significant performance gain

on general purpose multicore system and GPU [53].

Mocanu et. al. implemented parallel AES on General Purpose Graphical Processing Unit

(GPGPU) platforms from different manufacturers using C++ Accelerated Massive Parallelism

(C++ AMP) and compared results with CPU based parallel and sequential implementation [50].

Guo et. al tested sequential implementation with improved fast AES implementation which was

50 times faster. After that they tested Intel Advanced Encryption Standard New Instructions

(AES-NI) extended instruction sets with fast implementation. And Intel AES-NI extended im-

plementation was 50 times faster. Lastly, they parallelized AES on GPU with CUDA and found

that it is 18 times faster than fast AES implementation. AES has lot of practical applications

[35].

Fei et. al. proposed parallel AES algorithm for encryption on cloud for massive users’ data

by using GPU parallelism or CPU parallelism. They decomposed data into small chunks and

encrypted them. They proposed 6 algorithms with different schemes. These 6 algorithms were

implemented on two different platforms and found that CPU and GPU parallelism improved

results greatly [29].

Fei et. al. worked on another application of AES. They proposed a secure file system using

parallel AES and secure hashing algorithm. They implemented their proposed system by using

CPU parallelism, GPU parallelism and hybrid of both. They tested on a pair of representative

platforms [30].

Chapter 3: Literature Review 29

3.2.2 Hardware Approach

After NIST approved AES in 2001, most of research effort was headed towards effective hard-

ware implementations of AES [20] algorithm. The former schemes mostly focused on high

speed thoroughly pipelined implementations, and after that research shifted on low area and

low power architectures keeping in view economical devices and feedback operational modes.

Current research work is mostly focused on decreasing the execution time of algorithm.

FPGAs are a smart choice [9] when it comes to hardware implementation of AES. FPGAs were

primarily used as glue logic. Due to incredible growth of technology in past few years, FPGAs

are being used in many complex applications like cryptographic applications are one of them.

Latest cryptographic applications are being increasingly realized on FPGAs, varying from fully

parallel pipelined to compact, low cost and low power architectures. FPGAs are used most

commonly because ASICs require more time to market as compared to FPGAs. Secondly, de-

velopmental process of FPGAs is a lot more effective and economical. Furthermore, unlike

ASICs, the reconfigurable nature of FPGAs provides the provision to modify the already im-

plemented algorithm. This characteristic is helpful in reconfiguring the device at run time by

addressing flaws from already implemented design and can be optimized for fixed set of re-

quirements. Contributions of different researchers in this regard have been discussed below.

Gaj et. al implemented 5 AES finalists by using iterative architecture. This type of architecture

was appropriate for feedback cipher modes. The FPGA device used was Xilinx Virtex XCV-

1000. They also implemented four non-feedback cipher mode AES algorithms by using full

mixed inner-round pipelining and outer-round pipelining. All AES nominees achieved roughly

same throughput. Their research work supported Rijndael as the new AES [32].

Fischer et al. assessed two different approaches of mapping Rijndael algorithm to FPDs. They

also worked on suitability of these approaches to available FPD families. Results of these

scheme were implemented on Altera FLEX, ACEX and APEX FPD. They were contrasted

Chapter 3: Literature Review 30

with the efficient known Xilinx FPGA implementation at that time and result came out to be

faster than others. The Altera ACEX FPD proved to be a tremendous device for implementing

very fast AES on reconfigurable hardware. ACEX FPD family fits cost sensitive encryption

applications. A new solution based on T-boxes allowed AES implementation with the same

performance of encryption and decryption [31].

Chitu et. al. implemented finite state machine-based encryption/decryption of AES (128 bit

block and key size) on FPGA that took 84% of total area. The architecture was implemented on

Virtex-II XC2V100-4 device which achieved throughput of 0.739Gb/s [19].

Chodowiec et. al. proposed and implemented compact 128 bit AES architecture on FPGA for

embedded applications. They used folded register concept and implemented it on low cost Spar-

tan II device that has achieved 1.3Gb/s throughput. They explored new way of implementing

MixColumn and Inverse MixColumn transformations [20].

Compact and high speed architectures were proposed by Standaert et. al. They not only did al-

gorithmic optimizations of S-Box but also proficient arrangements between Mix Column, Shift

Row and key addition layer. To cater place and route constrictions, heuristic rules were applied

for optimized efficiency. It was implemented on VIRTEX-E technology. This design yielded

throughput up to 18.5 Gb/s. The throughput/area ratio improved with area requirements limited

to 542 slices and 10 RAM blocks [73].

Rouvroy et. al. made an assembly suitable for small embedded applications, as key was precom-

puted before the encryption or decryption process. This design was implemented on Virtex-II

device that delivered 0.358Gb/s throughput [65].

Zhang et. al. used sub-pipelining to increase the efficiency of design. The design did not use

lookup tables instead they used combinational logic. Composite field arithmetic reduced the

area of design and achieved 21.566Gb/s throughput on Xilinx XCV1000 e-8 device [80].

Hodjat et. al. worked on inner and outer round pipelining along with loop unrolling methods

Chapter 3: Literature Review 31

and achieved throughput of 21.54Gb/s. This design was implemented on Virtex-II Pro device

[38].

Yoo et. al. proposed a parallel pipelined high speed architecture. They achieved 29.77Gb/s

throughput by employing an effective inter and intra round pipeline scheme [77].

Kotturi et al increased the throughput of AES algorithm by proposing a hardware efficient de-

sign. It was high speed parallel pipelined architecture. It utilized inter and intra round pipelin-

ing. Their design yielded encryption throughput of 29.77 Gb/s [42].

Hamalainen et. al. introduced 8 bit low area and power architecture. Area was reduced by co-

alescing partial storage of state and Shift Row operation into the byte permutation unit. Power

was reduced by executing Mix Columns operation in parallel with remaining of the cipher. The

architecture attained throughput of 0.121Gb/s [36].

128 bit key AES algorithm was proposed by Liberatori et. al. Key was precomputed and stored

in the memory. The circuitry to store keys was included in the architecture. The 8 bit FPGA im-

plementation was done on Altera Flex 10K EPF10K20 that delivered 1.1Gb/s throughput [45].

128 bit AES cipher processor had been designed by Fan et. al. They used new high speed and

hardware functional sharing blocks technique. The AES functional calculations havd been ap-

plied on four layers, which were SubBytes, ShiftRows, MixColumns and AddRoundKey. The

FPGA tool used was Xilinx ISEtrade 7.1 with XSTtrade synthesizer. Proposed sequential AES

design can reach operational frequency of 75.3 MHz and throughput of 0.876 Gb/s while in

fully pipelined AES design it can reach 250 MHz and 32 Gb/s respectively [27].

Gielata et. al proposed pipeline architecture that was used to increase the efficiency of imple-

mentation in terms of performance and flexibility of AES algorithm. It was implemented in

Virtex4 series of Xilinx using VHDL language. They accomplished throughput of 21.2 Gb/s in

case of encryption and 16.6 Gb/s for decryption [33].

Qu et. al developed a pipelined AES architecture in Counter mode to provide the high through-

Chapter 3: Literature Review 32

put. This was done while implementing byte transformation in 1 clock cycle by placing some

registers in appropriate places to shorten the delay. It was implemented on Xilinx Foundation

ISETM 10.1 FPGA. It achieved throughput of 73.737Gbps in 576.07MHz frequency with re-

source efficiency of 3.21Mbps/LUT [62].

Van et. al. worked on three low power encryption schemes that tried to attain best power results

without degrading the throughput of design. These schemes were then compared with each

other in terms of area, and power consumption [75].

FPGA possesses qualities of hardware and software. Granado et. al. took advantage of these

qualities and implemented AES on FPGA by using 3 hardware languages Handel-C, VHDL

and JBits. This methodology had partial and dynamic reconfiguration along with parallel and

pipelined architecture. This methodology can be applied to other cryptographic algorithms.

This design achieved throughput of 22.922 Gb/s and efficiency (throughput/ratio area) of 6.97

Mb/s per slice [34].

Soliman et. al. proposed a high throughput crypto coprocessor for a general purpose proces-

sor implemented on FPGA for encryption/decryption. It was implemented on Xilinx Virtex V

FPGA with VHDL programming language. This co-processor hid memory latency as it was

built on a decoupled architecture. Architecture also consisted of AES pipelines. Four pipelines

could yield throughput of 222 Gb/s at 444 MHz. While decreasing the frequency could reduce

power utilization and offered scalable system [71].

Hoang et al. implemented AES that resulted in high throughput. It is best for applications that

require high performance and high speed. The architecture was 128 bit AES cipher based on

iterative looping approach and S-Box lookup table implementation. This simplified architecture

and effortlessly achieved low latency and high throughput [37].

Banu et. al worked on increasing the throughput of 128 bit AES algorithm by employing

different hardware and software techniques. They used pipelining technique in hardware to

Chapter 3: Literature Review 33

speed up algorithm by executing multiple rounds in parallel. It was implemented using Xilinx

xc5vlx110t-1 device. It achieved throughput of 31.25Gbps [13].

Folded parallel architecture is proposed by Rahimunisa et. al, with the aim to reduce delay

through implementation of byte transformation step in one clock cycle. They inserted registers

in suitable places. They achieved throughput of 73.737Gbps [63].

Farashah et. al. presented digital design of 128 bit AES cantered on the 2-slow re-timing

method. They had attained 86Gb/s throughput and 671.5241 MHz maximum operational fre-

quency on Virtex-5 device [28].

Anwar ey. al. proposed parameterized crypto coprocessor based on AES which was fully

pipelined. Different number of AES rounds encountered different latencies varying to the ap-

plication requirement. If low-latency design is application constraint, the number of rounds is

increased whereas if we have limited area, number of rounds is reduced. Effect of number of

rounds on area, latency and throughput had been explored by performing different experiments.

Parameterized crypto coprocessor worked according to application demand [9].

Soltani et. al. proposed a fully pipelined architecture for AES that yielded excessively high

throughput on FPGA. They used full and sub pipelining, loop-unrolling methods in their imple-

mentations. Their finest implementation on Virtex-6 device achieved 260Gb/s throughput [72].

AES can be implemented in hardware with minimum hardware utilization; it is more secure

and costs less. This approach was presented by James et. al. Lightweight block ciphers were

efficiently implemented in hardware. An approach, to make AES a lightweight block cipher,

was being discussed such that designing the steps of AES such as mix columns, substitute byte

in AES was to be implemented in a parallel manner. The latency in this implementation was

considered to be less comparing to the conventional implementation of AES. The conventional

and the new approach were simulated in XILINX 14.2 and compared in the aspects of area and

latency. The design was implemented in SPARTAN 6 FPGA [39].

Chapter 3: Literature Review 34

Oukili et. al. used pipelining to enhance speed and maximum operating frequency. The imple-

mentations had been successfully done by virtex-6 (xc6vlx240t) FPGA. Proposed unmasked

and masked architectures in this technique were very fast. They achieved a throughput of

93.73Gbps and 58.57Gbps, respectively [55].

3.3 Summary

A brief review of the literature has been discussed to give an overview of the techniques that

have been used to parallelize AES. These techniques are divided into hardware and software ap-

proaches. The literature review has shown that although hardware approach gives high through-

put but cost of implementation is high too. On the contrary, software implementation is eco-

nomical but does not yield as high throughput as hardware implementation. Depending on the

nature of application, hardware or software approach is selected. Software implementation can

be done on CPUs and GPUs. If we compare CPUs and GPUs, GPUs yield higher throughput

but there are some computers that lack GPUs or equipped with application specific GPUs. CPU

implementation is economical as CPUs are readily available. Researchers have worked on va-

riety of languages and platforms to parallelize AES. A parallel implementation of AES using

MPJ Express is of very preliminary nature in literature [25]. So we did a detailed study on

parallel implementation of AES using MPJ Express and accessed its performance.

Chapter 4

Parallel Implementation of AES using

MPJ Express on HPC Platform

4.1 Introduction

Performance is an ongoing topic in the field of information technology. It is an unending race.

Parallelization is a common technique for increasing performance. In this chapter, we will

discuss the proposed parallelization methodology for increasing the performance of AES. We

begin with the introduction of multicore and cluster systems in Section 4.2. Section 4.3 is related

to the concepts of parallel programming that leads to our methodology. This section is further

divided into subsections which are Parallel Programming Model, Data Parallelism, Message

Passing Programming and Message Passing Model which consists of MPJ Express Library.

Section 4.4 comprises of motivation for this research work. Section 4.5 provides Methodology

that explains the parallelization algorithm. Section 4.6 summarizes the chapter.

35

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 36

4.2 Multicore and Cluster Systems

Earlier computers were uniprocessor in which single central processing unit was used to execute

all computer tasks sequentially. While multiprocessors, as opposed to single processor, refers to

executing multiple contemporary processes in parallel [12]. Top most chip producers started to

create chips, each chip having processors with numerous power effective computing elements.

There were physical causes that resulted in the technological growth towards multicore proces-

sors. Overheating restraints the clock speed as transistors on a chip increases. These processors

have independent control and memory units. Generally, core is referred as single computing

unit unlike multicore that refers to complete processor possessing numerous cores. Multicore

processors deliver enhanced performance as they carry multiple cores per processor. Therefore,

multicore processors form a small parallel computer system. Figure 4.1 is showing a typical

multicore architecture.

Figure 4.1 : Multicore System Architecture [22]
A multicore system consists of N processing cores. Each core has its exclusive Level 1 (L1)
cache. All this is integrated on a single chip. They share a common Level 2 (L2) cache. All
processing cores share the bandwidth among main memory and L2 cache.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 37

To completely exploit the power of multicore processors, thread level parallelism must be used

[67]. A multicore system consists of N processing cores. Each core has its exclusive Level 1

(L1) cache. All this is integrated on a single chip. They share a common Level 2 (L2) cache.

All processing cores share the bandwidth among main memory and L2 cache. Multicore system

supports concurrent multithreading. Figure 4.2 shows a multicore system with multithreading.

Individual threads can run concurrently on same core. Each thread can execute different task

independently [40]. Integrating multiple multicore systems connected by a high speed network

makes up a cluster system as shown in Figure 4.3 . Each multicore system is referred as a node.

Nodes can work independently or work together to perform a task in parallel. Such cluster

systems provide enhanced performance, hence called as HPC platform.

Figure 4.2 : Multicore System with Multithreading [69, 4]
A multicore system consists of N processing cores. All processing cores share the bandwidth
among main memory. Multicore system supports concurrent multithreading. Individual threads
can run concurrently on same core. Each thread can execute different task independently.

Symmetric and asymmetric algorithms are complex and require high computational power. The

sequential execution of the algorithms would need a significant amount of execution time. This

may not be practicable for most of the applications that require faster encryption and decryption

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 38

Figure 4.3 : Modern HPC Cluster Platform [7, 3]
Integrating multiple multicore systems connected by a high speed network makes up a cluster
system. Cluster system can be homogeneous or heterogeneous depending on the processing
power of processors.

rate to meet the required data flow [12]. For the sake of increased speed and enhanced expe-

rience, significance of performance can not be neglected. There are two ways to increase the

speed of computer systems; increase CPU frequency/clock speed or increase number of cores.

Former method provides poor reliability and high power consumption [30].

Multiple cores are global microprocessor chips. It enables the chip manufacturers to gain high

collective performance while circumventing the high power consumption of high frequency

CPUs. As shown by the systems on the TOP500 list [6], todays sophisticated computer man-

ufacturing companies take benefit of economies of scale by using multiple multicore chips to

build large HPC systems. The leading HPC architectures consists of clusters of such nodes

joined together through high speed network [79].

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 39

4.3 Parallel Programming

Primary phase of parallel programming is to convert the given application problem into parallel

algorithm. First of all divide application into several parts with respect to computations, called

tasks. Execution of these tasks can be done in parallel on cores/processors in multicore or

cluster system. The size of tasks (number of instructions) depends on the programmer, it is

referred as granularity. Granularity is of two types

• Coarse grained −→ Tasks with numerous instruction

• Fine grained −→ Tasks with few instructions

If granularity of the task is extremely fine grained, the cost of mapping tasks to processors

and their scheduling is enormous and yields a substantial total execution time. Therefore, task

division needs to be a right compromise of number of tasks and granularity. The tasks of a

program are then allocated to threads or processes, which are then allocated to cores/processors

for execution. Based on the memory structure of execution environment either thread or process

is used. Thread is more appropriate for shared memory environment like multicore processors

while processes are suitable for distributed environment like cluster system. A process can

consists of several threads but vice versa is not possible. We can say that thread is a lightweight

task while process is a heavy weight task.

Scheduling is the allocation of tasks to processes/threads and defines the order of task execution.

The tasks of a program may be independent or dependent on each other. Dependent tasks

surface the issue of data and control dependencies, which means that tasks must execute in a

specific order. Management and Synchronization of threads/processes is required for orderly

execution of tasks. Figure 4.4 illustrates the synchronization of threads/processes. Associated

with all these is the time for data synchronization and computation on processors/cores called

as parallel execution time. Speed up and efficiency are calculated by comparing the sequential

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 40

execution time on one processor with the resultant parallel execution time, for a quantifiable

assessment of the parallel execution time of programs. [64]

Figure 4.4 : Synchronization of Threads/Processes [1]
Management and Synchronization of threads/processes is required for orderly execution of
tasks. All the threads/processes stop at a barrier and wait for other threads/processes in the
group to reach barrier before proceeding further.

4.3.1 Parallel Programming Model

There are many models of parallel systems like machine, architectural, computation and pro-

gramming model [64]. Parallel programming model is an abstraction of parallel computing

architecture and defines a parallel computing environment with respect to semantics of the pro-

gramming language/environment. This vision of parallel computing environment is affected by

the language, runtime libraries, complier and architectural design. Therefore, same architec-

ture possesses many different parallel programming models. Parallel programming models can

differ in many ways:

• The level of parallelism (statement , parallel loops , instruction or procedure)

• Parallel program design is implicit or explicit

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 41

• The specification of parallel program units

• The execution mode of parallel units (Single Program Multiple Data /Single Instruction

Multiple Data, synchronous/asynchronous)

• The interchange of information between computing units (shared variables/ explicit com-

munication)

• Synchronization between parallel parts

4.3.2 Data Parallelism

In many applications, different components of a larger data require same operation. This can

be done in parallel, if components are independent of each other. The components are divided

equally among the processors. Each processor is the owner of its data and applies same op-

eration on it. This kind of parallelism is same as Single Instruction Multiple Data Model and

is known as data parallelism. Data parallelism is used via extending sequential programming

languages by incorporating special constructs to express parallel operations. It can be utilized

for both distributed and shared memory. For a distributed address space, each processor needs

to get the program data in its local memory on which it has to do computations.

The programming models for distributed memory space are different. These are message pass-

ing programming models. Communication operations are performed by exchange of data be-

tween participating processes. This exchange of data between participating processes is done

through messages, such that one process receives the data stored in another process’s local

memory. Dozens of parallel programming languages have been introduced in the past. Many

of them are high level languages that simplify various aspects of managing parallelism. How-

ever, no single high level parallel language has gained widespread acceptance in the parallel

programming community. As a result, most parallel programming made use of FORTRAN or

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 42

C, enhanced with message passing functionality. MPI is the most popular message passing

standard backing parallel programming. Nearly, every commercial parallel computer supports

MPI and other open libraries supporting MPI standard. [49]

4.3.3 Message-Passing Programming

Message passing library interface specifications are standardized and referred as message pass-

ing interface. Figure 4.5 is a Message passing model. It outlines the library routines for

standard communication patterns. There is a group of processors, each processor having its pri-

vate memory with data and instructions stored in it. Processors are linked by an interconnection

network. Processor A can send its data through message to processor B, thus providing indirect

access of its data to processor B. In this model, all processors can communicate with each other.

The user provides number of processes upon program execution that remains constant through-

out the program. Each process carries its own unique ID. Typically all processes perform same

operation but they can perform different functions as well depending on application. Each pro-

cess works on its local data and communicates with other processes or I/O devices. Message

passing model has variety of advantages over other parallel programming models.

• Message passing programs are suitable for Multiple Instruction Multiple Data architec-

tures. They are a natural fit for multi computers. Message passing programs can be

executed on multiprocessors by using shared variables as message buffers but have no

support for global memory. Message passing model provides the multiprocessor pro-

grammer with the tools needed to manage the memory hierarchy.

• Debugging message passing program is easier than debugging shared memory program.

As each process controls its own memory, it is not possible for one process to by chance

overwrite a variable contained by another process, a common bug in shared variable pro-

grams.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 43

Figure 4.5 : Message Passing Model [49]
This model is used in distributed memory computers or cluster systems for communication.
Each node of a cluster or computer of distributed memory system communicate with each other
through processes.

4.3.3.1 MPJ Express Library

Java is proving itself to be a successful platform for all kind of simulations. Its success can be

accredited to its good performance, portable characteristic, and innate support for security, ob-

jects, threads, visualization. [66] introduced a message passing interface called MPJ Express,

which is pure java message passing interface. MPJ Express provides support for paralleliz-

ing extensive Java simulations on distributed and multicore platforms [10], a middleware that

provides a channel for communication between processors of a cluster or multicore system.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 44

MPJ Express supports a programming model which is Single Program Multiple Data (SPMD).

Though MPJ Express is intended for distributed memory environment but it is possible to ef-

fectively execute parallel user applications on shared memory or multicore systems.

Configuration There are 2 main configurations of MPJ Express, as shown in Figure 4.6 .

• Multicore configuration −→ for running MPJ Express programs on laptops/ desktops

• Cluster configuration −→ for running MPJ Express programs on clusters and network of

computers. The cluster configuration makes use of communication devices. MPJ Express

supports 4 devices

– Java New I/O (NIO) device, niodev: niodev for clusters using Ethernet

– Myrinet device, mxdev: mxdev for clusters using Myrinet express interconnects

– Hybrid device, hybdev: hybdev for clusters of multicore computers

– Native device, native: native above MPI native library (Open MPI, MPICH, or MS-

MPI)

Figure 4.6 : MPJ Express Configurations [2]
MPJ Express works in multicore and cluster configurations. Cluster configuration supports 4
devices; niodev, mxdev, hybdev and native.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 45

Multicore Configuration Multicore configuration is intended for the devices that have

share memory and multi processors. Users can create their MPJ Express message passing par-

allel application and port it on multi processors. It is recommended to first write MPJ Express

application for multicore and then use the same code for cluster configuration without modifica-

tion. This configuration is suitable for teaching purposes. Each MPI process is a single thread.

The multicore communication device uses effective inter thread mechanism.

Figure 4.7 : MPJ Express Hybrid (Multicore + Cluster) Configuration [2]
Cluster consists of standalone multicore systems. All cores or nodes communicate through their
respective MPJ Express process.

Cluster Configuration Cluster configuration is meant for distributed memory environ-

ment. In Figure 4.8 , there are 6 compute nodes interconnected via private network. MPJ

Express will start one MPJ Express process on each node. They will communicate with each

other using message passing. Each node of modern HPC clusters is mostly equipped with mul-

ticore processors. Hybrid device transparently uses both multicore and cluster configuration for

intra and node communication as shown in Figure 4.7 .

4.4 Motivation

• AES is an ideal candidate for parallel implementation [21].

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 46

Figure 4.8 : MPJ Express Cluster Configuration [2]
Cluster system consists of multiple nodes or standalone systems. All nodes communicate

through their respective MPJ Express process.

• Despite the fact that term Standard refers to applications of United States government

only, AES is also required in numerous industrial standards and is utilized in several com-

mercial applications and systems. Commercial standards that incorporate AES include

Transport Layer Security (TLS), Skype, Internet Protocol Security (IPsec), SSH (Secure

Shell), IEEE 802.11i the Wi-Fi encryption standard and many other security products

around the world to date. [61]

• AES is computationally intensive and open source. Its decoding is still a challenge for

the world. Only possible solution is brute force which is highly infeasible.

• Reason for preferring MPJ Express on other Java messaging passing libraries is due to the

fact that MPJ Express performs considerably well in contrast to other Java MPIs including

MPJ/Ibis and mpiJava [68].

• MPJ Express performed well in cosmological simulations that are massively parallel

codes [11].

• Parallel implementation of AES using MPJ Express is of very preliminary nature in liter-

ature [25].

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 47

4.5 Methodology

Each MPJ Express process that runs on a single node (computer system) initialize its own

instance of program and create its own threads consequently. Each process reads data from a

file and divides it among its threads. Threads encrypt data using Java Cryptographic library

and return encrypted data written in a file. The Java Cryptography Extension (JCE) provides

security features in Java. It is an application program interface and offers a uniform framework.

Figure 4.9 is high level view of proposed methodology.

Figure 4.9 : Proposed Methodology
High level view of proposed methodology that shows the working of algorithm on computer
system.

4.5.1 Algorithm

The AES algorithm has been parallelized on HPC platform using MPJ Express, to cut down the

encryption time. Figure 4.10 explains proposed parallel implementation of AES. Paralleliza-

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 48

tion is done using High Level data parallelism. High Level data parallelism refers to dividing

data and then applying same operations on divided data in parallel.

Figure 4.10 : Working of Algorithm
High level block diagram of algorithm that shows working of algorithm.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 49

Initialize MPJ Express process(es).

1. User provides number of process(es) (np). This number remains constant throughout the

program. Each process has unique ID and reads corresponding data (task) from the input

file (input file is divided into np blocks). File size must not be very small. Encrypting a

few bytes of file with large number of thread and processes adds thread overhead to total

encryption time. Encrypting that file serially would be more economical.

2. For each process, data is further divided into n blocks (fine grained), where n is the

number of threads you want to create in a process for encryption. In short, each block

from np is further divided into n blocks.

3. Assign each block to each thread (scheduling) and start encryption.

4. Each thread encrypts its corresponding data and waits (synchronization) for other threads

to complete encryption before returning it to master thread.

5. When encryption is complete by one process it waits for other processes to complete

encryption (synchronization) before returning to master process.

6. When encryption is complete, each process writes encrypted data into a file one by one.

7. When file is written, MPJ Express processes return resources to operating system.

8. Number of total created processes and threads must not be greater than (#processors in

the system * 2), if hyper threading is enabled.

np≤#processors ∗ 2

Each physical/logical core can handle one thread at a time (one clock cycle). Operating

system handles the thread and process assignment to cores. Overhead is added to total

execution time, if number of threads become greater than 2 x number of cores.

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 50

4.5.1.1 Pseudo Code

1 MPI .Initialize () ; /∗ i n i t i a l i z e MPJ E x p r e s s P r o c e s s ∗ /

2 Size=MPI_Total_Processes () ; /∗ T o t a l number o f p r o c e s s e s c r e a t e d ∗ /

3 Rank=MPI_Current_Process () ; /∗ C u r r e n t p r o c e s s r u n n i n g t h e program ∗ /

4 Buffer=Read (input_file) ; /∗ Read i n p u t f i l e i n a b u f f e r ∗ /

5 i f (Rank==0) { /∗ Rank 0 i s r e p o n s i b l e f o r s e n d i n g d a t a t o o t h e r p r o c e s s e s ∗ /

6 i n t bytes=file_size /Size ; /∗ Number o f b y t e s t o be a s s i g n e d t o each p r o c e s s←↩

f o r e n c r y p t i o n ∗ /

7 Buffer_Process [Rank]=Copy (Buffer , (Rank∗bytes) : ((Rank∗bytes) +bytes) ; /∗ ←↩

Copy b y t e s form " B u f f e r " and send t o each p r o c e s s ∗ /

8 f o r (i=1;i<Size ;i++) {

9 Send (i ,Buffer_Process [i]) ; }

10 MPI .COMM_WORLD .Barrier () ; /∗ Wait u n t i l a l l d a t a i s send ∗ /

11 write (encrypt (Buffer_Process [0]) ,Total_Threads ,output_file)) ; /∗ A f t e r ←↩

send ing , Rank 0 e n c r y p t s i t s d a t a and w r i t e t o o u t p u t f i l e ∗ /

12 }

13 e l s e {

14 Recv (Rank ,Buffer_Process [Rank]) ; /∗ P r o c e s s e s o t h e r t h a n Rank 0 r e c e i v e ←↩

t h e i r d a t a ∗ /

15 MPI .COMM_WORLD .Barrier () ; /∗ Wait u n t i l l a l l p r o c e s s e s r e c e i v e t h e i r d a t a ←↩

∗ /

16 write (encrpyt (Buffer_Process [Rank]) ,Total_Threads ,output_file) ; /∗ E n c r y p t ←↩

d a t a and w r i t e t o o u t p u t f i l e ∗ / }

17 MPI .Finalize () ; /∗ r e t u r n r e s o u r c e s t o OS ∗ /

Chapter 4: Methodology for Parallel Implementation of AES using MPJ Express 51

4.6 Summary

In this chapter, proposed methodology is discussed along with the key concepts of parallel

computing, multicore and cluster system. MPJ Express is the programming model used for

parallelizing AES. Results are discussed in next chapter.

Chapter 5

Results

5.1 Introduction

AES is implemented using proposed methodology. Specifications of the system that is used

for implementation is mentioned in section 5.2 and Performance Parameters in Section 5.3.

Remaining chapter is divided into 3 parts. Section 5.4 is Parallel AES in Java using MPJ

Express, Section 5.5 Parallel AES in C using OpenMP and MPICH, Section 5.6 Parallel AES

in C using CUDA. We compared and discussed the results in this chapter.

5.2 System Specification

Cluster consists of 31 nodes and each node is equipped with 2x2.27 GHz 64bit Intel 4-core Xeon

E5520 processors with total of eight physical cores (sixteen logical cores with hyper threading)

having 24 Giga Bytes(GB) DDR3 RAM and Linux platform along with NVidia Tesla S1070

GPU having

• 4 x 1 Tesla T10 Processors

• CUDA Driver Version/ Runtime Version: 6.5

52

Chapter 5: Results 53

• CUDA Capability Version: 1.3

• 4 x 240 CUDA Cores

• GPU Clock Rate of 1.44 GHz

5.3 Performance Parameters

Performance parameters are:

• Execution Time −→ Total encryption time. It does not include communication, decom-

position or synchronization time.

• Throughput −→ Number of bytes encrypted per second

Throughtput = T =

Data Size

Execution time using a multiprocessor with p processors
(1)

• Speed up −→ Ratio of serial encryption time to parallel encryption time

Speed up = S =

Execution time using one processor (sequential algorithm)

Execution time using a multiprocessor with p processors

S =
ts
tp

(2)

• Efficiency −→ Ratio of speed up to total number of processors

Efficiency = E =
Speed up factor

No. of processors
=

S

p
=

ts
p ∗ tp

(3)

Note: p=16 as we have maximum 16 logical cores at one node.

Performance parameters are calculated by using formula (1), (2) and (3) for multicore platform

while formula (1) and (2) for cluster platform .

Chapter 5: Results 54

5.4 Parallel AES in Java using MPJ Express

AES is implemented with Java cryptographic framework using Java inbuilt threads and MPJ

Express.

5.4.1 Multicore Platform

Multicore platform is one node of the cluster, where we have 16 logical cores. We have created

variable threads (1,2,4,8,16) and encrypted each file (size in Mega Bytes (MBs)) with these

threads. As mentioned in Chapter 4, np≤#processors ∗ 2. So, maximum 16 threads are

created to get maximum system utilization. Results of these experiments are given in Table 5.1

and 5.2 .

Table 5.1: Execution Time (milli seconds (ms))of MPJ Express based AES on Multicore Plat-
form for Different File Sizes and Threads

No. of Threads
File Size

107MBs 207MBs 654MBs 1080MBs

1 1835ms 3670ms 10987ms 18615ms

2 927ms 1853ms 5497ms 9099ms

4 500ms 912ms 2761ms 4557ms

8 260ms 489ms 1395ms 2294ms

16 136ms 255ms 729ms 1165ms

Table 5.2: Speed up and % Efficiency of MPJ Express based AES on Multicore Platform for
Different File Sizes

File Size 107MBs 207MBs 654MBs 1080MBs

Speed up 13.49 14.39 15.07 15.97

% Efficiency 84.32 89.95 94.19 99.86

Chapter 5: Results 55

It is clear from the Table 5.1, by increasing number of threads execution time decreases. After

a certain limit when number of threads become equal to number of cores, further increasing

threads adds up time to total execution time. Execution time depends on file size as well. Very

smaller file size takes more execution time in parallel encryption process. As we have discussed

in Chapter 4, if granularity of the task is extremely fine-grained, the cost of mapping tasks

to processors and their scheduling is enormous and yields a substantial total execution time.

Increasing number of threads and decreasing data size for constant number of threads both

increase granularity of the task. From Table 5.2, Speed up and % efficiency is less for small

file and increases by increasing file size. But there is a limit to which they can be increased. It

depends on the configuration and load on the system at which encryption is being performed.

Figure 5.1 and 5.2 are illustrating execution time and throughput respectively for all file sizes

and threads.

0 2 4 6 8 10 12 14 16

0

0.5

1

1.5

2

·104

No. of Java Threads

E
xe

cu
tio

n
Ti

m
e

(m
s)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.1 : Graph showing Execution Time of AES Encryption for Multiple File Sizes
on Multicore Platform

From Figure 5.1 , all file sizes are following the same trend. We have achieved scalability.

Execution time taken by 2 threads is almost half of 1 thread. Time of 4 threads is almost half

Chapter 5: Results 56

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

No. of Java Threads

T
hr

ou
gh

pu
t(

G
B

ps
)

107 Mbs
207 Mbs
654 Mbs
1080 Mbs

Figure 5.2 : Graph showing Throughput of AES Encryption for Different File Sizes on
Multicore Platform

of 2 threads and so on. Execution time of 107 MBs and 207 MBs files are very close to each

other because their file size difference is very small. Execution time difference between file

sizes is large in the beginning but it decreases as number of threads increase, it is because of

the fact that small file sizes face threads overhead but as file size increases the overheads be-

come minimal thus execution time decreases at a good rate. From Table 5.1, we can see that

scalability for small file size is less and it increases as file size increases. Increasing number of

threads increases the throughput as shown in Figure 5.2 . Biggest file has the highest through-

put. Throughput difference of file sizes for small number of threads is less but this difference

increases since number of threads are increasing as more number of bytes are being encrypted

in less time.

5.4.2 Cluster Platform

Our cluster platform comprises of 31 nodes while each node has 16 logical processors. The

experiments are performed on various set of nodes. The results are stated in Table 5.3 and 5.4.

Chapter 5: Results 57

Table 5.3: Execution time for MPJ Express based AES Encryption of Different File Sizes for
Cluster Platform

No. of Processes
File Size

107MBs 207MBs 654MBs 1080MBs

1 138ms 254ms 731ms 1200ms

4 52ms 98ms 197ms 315ms

8 34ms 49ms 109ms 165ms

12 29ms 44ms 85ms 119ms

16 23ms 34ms 79ms 110ms

20 18ms 32ms 75ms 100ms

24 17ms 29ms 70ms 92ms

28 16ms 25ms 64ms 88ms

31 15ms 23ms 59ms 82ms

Table 5.4: Speed up of MPJ Express based AES on Cluster Platform for Different File Sizes

File Size 107MBs 207MBs 654MBs 1080MBs

Speed up 122.33 159.56 186.22 227.01

Results of execution time and throughput are shown in Figure 5.3 and 5.4 respectively.

From Table 5.3, result for 1 process is almost same as multicore 16 threads. Execution time

decreases by increasing number of processes. Trend of scalability is same but execution time

is not cutting down at good rate that is why throughput graph is not a straight line graph. We

are creating large number of threads (Number of processes * 16) and file size is same which is

causing overheads (extremely fine grained). 16 threads are created on each node, as each node

has 16 logical processors to get maximum system utilization. Speed up increases by increasing

file size.

Chapter 5: Results 58

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

200

400

600

800

1,000

1,200

No. of MPJ Processes

E
xe

cu
tio

n
Ti

m
e

(m
s)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.3 : Graph showing Execution Time of AES Encryption for Different File Sizes
on Cluster Platform

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

2

4

6

8

10

12

14

No. of MPJ Processes

T
hr

ou
gh

pu
t(

G
B

ps
)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.4 : Graph showing Throughput of AES Encryption for Multiple File Sizes on
Cluster Platform

5.5 Parallel AES in C

The implementation results informed in this section evaluates serial and parallel implementation

of algorithm. AES is implemented with OpenSSL cryptographic library using OpenMP threads

Chapter 5: Results 59

and MPICH as a message passing interface. Results are evaluated on multicore and cluster

platform.

• MPICH is a broadly portable and high performance MPI standard (MPI-1, 2, 3). It profi-

ciently supports different platforms including high speed networked clusters and propri-

etary high performance computer systems.

• OpenSSL is a general purpose cryptographic library

• OpenMP is an application program interface (API) that supports shared memory multi

process programming on multi platform. It is portable and scalable that allows develop-

ment of parallel applications from desktop to super computer.

5.5.1 Multicore Platform

We have 16 logical cores and created variable threads (1/2/4/8/16) for each file size. Multicore

implementation of AES in C using OpenMP yielded better results as compared to multicore

Java implementation using MPJ Express. Results are presented in Table 5.5 and 5.6.

Table 5.5: Execution time for OpenMP based AES Encryption of Different File Sizes for Mul-
ticore Platform

No. of Threads
File Size

107MBs 207MBs 654MBs 1080MBs

1 698ms 1330ms 4200ms 6880ms

2 380ms 708ms 2116ms 3370ms

4 190ms 359ms 1070ms 1750ms

8 140ms 268ms 800ms 902ms

16 117ms 218ms 660ms 798ms

Chapter 5: Results 60

Table 5.6: Speed up and % Efficiency of OpenMP based AES on Multicore Platform for Dif-
ferent File Sizes

File Size 107MBs 207MBs 654MBs 1080MBs

Speed up 5.96 6.10 6.36 8.62

% Efficiency 37.28 38.13 39.77 53.88

Execution time is far more less and throughput is far greater as compared to MPJ Express.

Trend of both implementations is different. Execution time is less scalable as compared to MPJ

Express implementation that resulted in less speed up and efficiency. Execution time for 107

MBs and 207 MBs files are very close as file size difference is small. Results are demonstrated

graphically in Figure 5.5 and 5.6 .

0 2 4 6 8 10 12 14 16

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

No. of OpenMP Threads

E
xe

cu
tio

n
Ti

m
e

(m
s)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.5 : Graph showing Execution Time of AES Encryption for Different File Sizes
on Multicore Platform

Throughput is number of bytes encrypted per second; so scalability of execution time is directly

affecting it which explains the behavior of throughput graph. Throughput is not a straight line

graph; slope of 1080 MBs file is changing after 8 threads while for others slope is changing

after 4 threads. This is because throughput is following the scalability trend of execution time.

Chapter 5: Results 61

0 2 4 6 8 10 12 14 16

0.2

0.4

0.6

0.8

1

1.2

1.4

No. of OpenMP Threads

T
hr

ou
gh

pu
t(

G
B

ps
)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.6 : Graph showing Throughput of AES Encryption for Different File Sizes on
Multicore Platform

5.5.2 Cluster Platform

Cluster platform has 31 nodes and each node has 16 logical processors. Each file is encrypted

for variable sets of nodes. Results are presented in Table 5.7 and 5.8. Execution Time is

not showing scalability because thread overhead is increasing. Speed up increases as file size

increases. Results are displayed in a graph format in Figure 5.7 and 5.8 . Throughput is not

a straight line graph for the same reason. Slope is changing at every node.

5.6 Parallel AES in C using CUDA

The implementation results informed in this section evaluates the implemented algorithm. AES

is implemented with OpenSSL cryptographic library using CUDA programming model.

• CUDA is a parallel programming model and computing platform developed by NVIDIA.

It allows intense increase in performance of computer systems by utilizing the power of

GPUs.

Chapter 5: Results 62

Table 5.7: Execution time for MPICH based AES Encryption of Different File Sizes for Cluster
Platform

No. of Processes
File Size

107MBs 207MBs 654MBs 1080MBs

1 111.93ms 161.25ms 500.48ms 800.30ms

4 35.95ms 60.62ms 175.80ms 264.82ms

8 29.24ms 45.01ms 85.68ms 132.70ms

12 27.36ms 35.48ms 64.56ms 97.21ms

16 24.68ms 29.80ms 57.65ms 79.48ms

20 20.67ms 26.28ms 51.86ms 71.82ms

24 19.07ms 23.55ms 47.57ms 62.84ms

28 17.35ms 21.30ms 44.44ms 56.54ms

31 16.65ms 19.37ms 40.90ms 52.02ms

Table 5.8: Speed up for MPICH based AES Encryption of Different File Sizes for Cluster
Platform

File Size 107MBs 207MBs 654MBs 1080MBs

Speed up 41.90 68.64 102.67 132.23

• Tesla architecture is created on a scalable processor array. NVidia Tesla S1070 GPU has

4 x 1 Tesla T10 Processors. Each T10 processor is composed of 10 independent texture

processor clusters (TPCs) that contain 30 streaming multiprocessors (SMs) which are

made up with 240 streaming processor (SP) Figure 5.9 , 5.10 . We will not discuss

details of architecture.

Although GPUs are entirely programmable processors, but they are used in union with CPUs

as they cannot execute stand-alone applications. CPU supervises GPU as it only does the heavy

computation in most cases. CPU offloads the input data to GPU memory. GPU code that runs

Chapter 5: Results 63

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

200

400

600

800

No. of MPICH Processes

E
xe

cu
tio

n
Ti

m
e

(m
s)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.7 : Graph showing Execution Time of AES Encryption for Different File Sizes
on Cluster Platform

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0

5

10

15

20

No. of MPICH Processes

T
hr

ou
gh

pu
t(

G
B

ps
s)

107 Mbs
207 Mbs
654 Mbs

1080 Mbs

Figure 5.8 : Graph showing Throughput of AES Encryption for Multiple File Sizes on
Cluster Platform

in parallel is called as kernel. Apparently kernel is a sequential code but thousands of parallel

GPU threads run it. Hardware controls the in-dependency (unique identifier, control path, data)

of these threads. CPU runs the main program and copies the data to GPU memory for parallel

Chapter 5: Results 64

processing that calls up GPU kernel and in return thousands of threads. A GPU kernel maintains

its state that may include GPU-optimized data structures not shared with the CPU. After the

computation is done, processed data is copied back to CPU memory. Each thread handles 128-

bit block of data. Plaintext blocks are encrypted in parallel by numerous threads. Block size

and number of threads are optimization factors that balances the compromise in replicating

data to GPU memory [76]. To maintain maximum GPU utilization, latency is being hidden

by launching more threads [18]. After encryption/decryption is done, data is copied back from

GPU to CPU memory [70]. Flow chart of AES encryption on GPU is shown in Figure 5.11 .

Figure 5.9 : Tesla T10 Architecture [46]
Tesla architecture is created on a scalable processor array. NVidia Tesla S1070 GPU has 4 x
1 Tesla T10 Processors. Each T10 processor is composed of 10 independent texture processor
clusters (TPCs) that contain 30 streaming multiprocessors (SMs) which are made up with 240
streaming processor (SP)

There are two differences between CPU and GPU threads. [70]

Chapter 5: Results 65

1. GPU threads are lightweight and facilitate fine grained parallelism (1 operation/thread).

2. Number of cores/processors does not give the number of GPU threads that GPU can

support at an instant. We can create large number of threads. Performance of GPU is best

with large number of threads.

Figure 5.10 : High level view of Nvidia Tesla S1070 GPU [8]
S1070 GPU consists of four T10 Tesla processors each having 4 GB DRAM. They are con-
nected to NVidia switch with PCIe x16 slots. GPU has its own thermal management and system
monitoring unit.

Result for GPU implementation is presented in Table 5.9 and Figure 5.12 . The order in which

number of threads is increasing is not uniform. This is because Table 5.9 was becoming very big

and to reduce the size of table we have taken values that are showing significant time difference.

That is why graph is not showing uniform increase in speed up factor. For uniform increase in

number of threads, the graph would be a smooth curve. This is evident from these results that

increasing number of threads is increasing speed up factor. But there is a limit to which speed

Chapter 5: Results 66

Figure 5.11 : GPU Implementation Flow Chart of AES Encryption
Keys, constants and plaintext blocks are copied to GPU memory. These blocks are divided
among processors. CPU threads are created and mapped to GPU threads. Blocks are encrypted
by respective processors and ciphertext blocks are copied from GPU to CPU memory.

up factor can increase after that it becomes constant. This limit depends on file size. The bigger

the file size the higher is the limit and vice versa for small file size. It highly depends on the

logic of the application along with configuration of the system. For example, number of active

threads that a GPU can handle (occupancy) differs from one type of GPU to another (system

configuration). AES is more suitable for parallel implementation than other ciphers (logic of

application). The PCI Express interface used in our system is x16 that is further composed

of two x8. It slows down process and thus speed up factor decreases (system configuration).

The GPU implementation outperforms CPU implementations either on multicore or cluster

platform. They are even better in computing cryptographic primitives, as they are able to attain

better throughput specially due to coarse grain parallelism in some ciphers [76]. GPUs work

better with larger data size, as increase in size refers to increase in number of threads working

on large data, hence increase in computational proficiency concealing the latency encountered

in copying data.

Chapter 5: Results 67

Table 5.9: Execution Time of CUDA based AES Encryption of Different File Sizes for GPU
Platform

No. of GPU Threads
File Size

107MBs 207MBs 654MBs 1080MBs

1K 1505.86ms 3049.74ms 4782.92ms 11865.01ms

10K 116.69ms 212.43ms 520.06ms 826.04ms

50K 56.24ms 83.99ms 142.75ms 209.48ms

100K 49.30ms 61.75ms 89.72ms 117.37ms

500K 42.22ms 46.57ms 53.20ms 61.06ms

1000K 40.47ms 42.24ms 46.12ms 56.46ms

5000K 40.60ms 40.89ms 41.81ms 53.72ms

10000K 41.34ms 41.11ms 40.04ms 47.68ms

20000K 41.31ms 41.07ms 40.52ms 40.95ms

50000K 41.43ms 40.55ms 40.75ms 40.22ms

Table 5.10: Comparison of Speed up of AES Encryption on all Platforms

Platform 107 MB 207 MB 654 MB 1080 MB

MPJ Multicore (1 node) 13.49 14.39 15.07 15.97

MPJ Cluster (31 nodes) 122.33 159.56 286.22 277.01

MPICH Multicore (1 node) 5.96 6.10 6.36 8.62

MPICH Cluster (31 nodes) 41.90 68.64 102.67 132.33

CUDA (1 node) 17.24 103.36 178.60 178.60

Chapter 5: Results 68

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

·107

0

20

40

60

80

100

120

140

160

180

No. of GPU Threads

Sp
ee

d
up

107 MBs
207 MBs
654 MBs

1080 MBs

Figure 5.12 : Graph showing Speed up of CUDA based AES Encryption of Different File
Sizes for GPU Platform

5.7 Summary

In this chapter implementation of proposed methodology is discussed. A comparative evalu-

ation is presented using tables and graphs. In this work, we used MPJ-Express to accelerate

Advanced Encryption Standard (AES) algorithm. We have partitioned the problem at two lev-

els. By employing a data parallel approach, we divide the data length first among available

processors and then data at each processor is further divided among processor cores. The ex-

perimental results show almost linear throughput in case of multicore platform (1 node or stand

alone system) and non linear throughput for cluster platform. These experimental results are

Chapter 5: Results 69

compared with the AES algorithm accelerated by separately using other parallel programming

tools in C language such as OpenMP API , MPICH and CUDA programming model. Parallel

AES implementation using MPJ Express provides high speed up and efficiency for multicore

and cluster platform as compared to AES accelerated in C using OpenMP on multicore platform

and MPICH on cluster platform. But the speed up of GPU based implementation of AES in C

using CUDA (1 node) is higher as compared to AES in MPJ Express using multicore. Overall

performance of AES accelerated in C on all platforms is best as compared to AES accelerated

using MPJ Express.

Chapter 6

Conclusion

The current research is done to explore the parallel implementation of AES with MPJ Express

on multicore and cluster platform and then compare its results with other implementations.

Figure 6.1 shows multiple implementations of AES that we have used in this research.

Table 6.1: Multiple AES implementations used in this research

Hardware Programming Model Platform Programming Language

CPU

MPJ Express
Multicore

Java
Cluster

MPICH
Multicore

C
Cluster

GPU CUDA 1 node of cluster

A series of conclusions were made which are following:

• Performance of AES in C using MPICH and OpenMP is great as compared to AES in

Java using MPJ Express.

• Although throughput and execution time of AES in C using MPICH and OpenMP is

70

Chapter 6: Conclusion 71

superior than MPJ Express but speed up factor and efficiency of AES in Java using MPJ

Express is better as compared to them.

• AES in Java using MPJ Express provides platform independent implementation.

• AES in C using CUDA (1 node) out performed AES in MPJ Express multicore imple-

mentations.

• To obtain optimal performance, user must find a compromise between number of threads

and data size (granularity).

• It all depends on requirement of application while selecting platform for implementation.

If performance is a priority then AES in C using MPICH, OpenMP and CUDA is the best.

Platform independent application in MPJ Express costs performance.

• MPJ Express is a good choice for parallel programming developers as it has inherent

qualities of Java e.g.

– Automatic garbage collection

– Inbuilt security

– Run time error checking

– Vast variety of available libraries

– Built in support for threads

– Memory safe

– Frequently used for enterprise applications

– Ease of programming due to high level programming concepts

– Less lines of code and takes less time for development due to vast variety of available

resources

Chapter 6: Conclusion 72

6.1 Future Work

Based on the work done in this dissertation some recommendations for future research are as

follows:

• Increasing granularity by parallelizing internal operations of AES and then applying data

parallelism.

• Implement it on CPU (MPJ Express , MPICH) and compare its results with current

research findings

• Implement it on GPU (CUDA , Java Compute Unified Device Architecture (JCUDA))

and compare its results with current research findings

Bibliography

[1] http://m.2cto.com/os/201607/528685.html.

[2] http://mpj-express.org/docs/guides/linuxguide.pdf.

[3] https://www.biomedcentral.com/content/figures/1471-2105-11-217-1-l.jpg.

[4] https://www.cs.rit.edu/ ark/251/module05/notes.shtml.

[5] https://www.ibm.com/support/knowledgecenter/en/ssb23s_1.1.0.13/gtps7/bulkcip.html.

[6] https://www.top500.org/lists/.

[7] http://www.admin-magazine.com/hpc/articles/building-an-hpc-cluster.

[8] http://www.nvidia.com/docs/io/43395/sp-04154-001_v02.pdf.

[9] Hassan Anwar, Masoud Daneshtalab, Masoumeh Ebrahimi, Juha Plosila, Hannu Ten-

hunen, Sergei Dytckov, and Giovanni Beltrame. "Parameterized AES-based crypto pro-

cessor for FPGAs". In Digital System Design (DSD), 2014 17th Euromicro Conference

on, pages 465–472. IEEE, 2014.

[10] Mark Baker, Bryan Carpenter, and Aamir Shafi. "MPJ: A New Look at MPI for Java". In

Proc. of the UK e-Science All Hands Meeting. Citeseer, 2005.

73

Bibliography 74

[11] Mark Baker, Bryan Carpenter, and Aamir Shafi. "MPJ Express meets Gadget: towards a

Java code for cosmological simulations". In European Parallel Virtual Machine/Message

Passing Interface UsersâĂŹ Group Meeting, pages 358–365. Springer, 2006.

[12] T Balamurugan and T Hemalatha. "Parallelization of Symmetric and Asymmetric security

Algorithms for MultiCore Architectures".

[13] J Saira Banu, M Vanitha, J Vaideeswaran, and S Subha. "Loop parallelization and pipelin-

ing implementation of AES algorithm using OpenMP and FPGA". In Emerging Trends

in Computing, Communication and Nanotechnology (ICE-CCN), 2013 International Con-

ference on, pages 481–485. IEEE, 2013.

[14] Gerassimos Barlas, Ahmed Hassan, and Yasser Al Jundi. "An analytical approach to the

design of parallel block cipher encryption/decryption: A CPU/GPU case study". In Paral-

lel, Distributed and Network-Based Processing (PDP), 2011 19th Euromicro International

Conference on, pages 247–251. IEEE, 2011.

[15] Andrea Di Biagio, Alessandro Barenghi, Giovanni Agosta, and Gerardo Pelosi. "Design

of a parallel AES for graphics hardware using the CUDA framework". In Proceedings of

the 2009 IEEE International Symposium on Parallel&Distributed Processing, pages 1–8.

IEEE Computer Society, 2009.

[16] Holger Blume, Jörg von Livonius, Lisa Rotenberg, Tobias G Noll, Harald Bothe, and Jörg

Brakensiek. "OpenMP-based parallelization on an MPCore multiprocessor platform–A

performance and power analysis". Journal of Systems Architecture, 54(11):1019–1029,

2008.

[17] Joppe W Bos, Dag Arne Osvik, and Deian Stefan. "Fast Implementations of AES on

Various Platforms.". IACR Cryptology ePrint Archive, 2009:501, 2009.

Bibliography 75

[18] Jianmin Chen, Xi Tao, Zhen Yang, Jih-Kwon Peir, Xiaoyuan Li, and Shih-Lien Lu.

"Guided region-based GPU scheduling: utilizing multi-thread parallelism to hide memory

latency". In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th International

Symposium on, pages 441–451. IEEE, 2013.

[19] Cristian Chitu, David Chien, Charles Chien, Ingrid Verbauwhede, and Frank Chang. "A

hardware implementation in FPGA of the Rijndael algorithm". In Circuits and Systems,

2002. MWSCAS-2002. The 2002 45th Midwest Symposium on, volume 1, pages I–507.

Ieee, 2002.

[20] Paweł Chodowiec and Kris Gaj. "Very compact FPGA implementation of the AES algo-

rithm". In International Workshop on Cryptographic Hardware and Embedded Systems,

pages 319–333. Springer, 2003.

[21] Joan Daemen and Vincent Rijmen. "The design of Rijndael: AES-the advanced encryption

standard". Springer Science & Business Media, 2013.

[22] Max Domeika. Software development for embedded multi-core systems: a practical guide

using embedded Intel architecture. Newnes, 2011.

[23] Jack J Dongarra, L Grandinetti, J Kowalik, and GR Joubert. "High performance comput-

ing: technology, methods and applications", volume 10. Elsevier, 1995.

[24] Cristina-Loredana Duta, Gicu Michiu, Silviu Stoica, and Laura Gheorghe. "Accelerat-

ing encryption algorithms using parallelism". In Control Systems and Computer Science

(CSCS), 2013 19th International Conference on, pages 549–554. IEEE, 2013.

[25] Fadi El-Faleet. "A HIGH PERFORMANCE ENHANCED SEQUENTIAL AND PAR-

ALLEL AES, MS Thesis,Islamic University of Gaza, Deanery of Higher Studies Faculty

of Engineering Computer Engineering Department", 2011.

Bibliography 76

[26] Ghada F Elkabbany, Heba K Aslan, and Mohamed N Rasslan. "A Design of a Fast

Parallel-Pipelined Implementation of AES: Advanced Encryption Standard". arXiv

preprint arXiv:1501.01427, 2015.

[27] Chih-Peng Fan and Jun-Kui Hwang. "Implementations of high throughput sequential and

fully pipelined AES processors on FPGA". In Intelligent Signal Processing and Com-

munication Systems, 2007. ISPACS 2007. International Symposium on, pages 353–356.

IEEE, 2007.

[28] Reza Rezaeian Farashahi, Bahram Rashidi, and Sayed Masoud Sayedi. "FPGA based fast

and high-throughput 2-slow retiming 128-bit AES encryption algorithm". Microelectron-

ics journal, 45(8):1014–1025, 2014.

[29] Xiongwei Fei, Kenli Li, Wangdong Yang, and Keqin Li. "Practical parallel AES algo-

rithms on cloud for massive users and their performance evaluation". Concurrency and

Computation: Practice and Experience, 2015.

[30] Xiongwei Fei, Kenli Li, Wangdong Yang, and Keqin Li. "A secure and efficient file

protecting system based on SHA3 and parallel AES". Parallel Computing, 52:106–132,

2016.

[31] Viktor Fischer and Miloš Drutarovskỳ. "Two methods of Rijndael implementation in re-

configurable hardware". In International Workshop on Cryptographic Hardware and Em-

bedded Systems, pages 77–92. Springer, 2001.

[32] Kris Gaj and Pawel Chodowiec. "Fast implementation and fair comparison of the final

candidates for Advanced Encryption Standard using Field Programmable Gate Arrays".

Topics in CryptologyâĂŤCT-RSA 2001, pages 84–99, 2001.

Bibliography 77

[33] Artur Gielata, Pawel Russek, and Kazimierz Wiatr. "AES hardware implementation in

FPGA for algorithm acceleration purpose". In Signals and Electronic Systems, 2008.

ICSES’08. International Conference on, pages 137–140. IEEE, 2008.

[34] José M Granado-Criado, Miguel A Vega-Rodríguez, Juan M Sánchez-Pérez, and Juan A

Gómez-Pulido. "A new methodology to implement the AES algorithm using partial and

dynamic reconfiguration". INTEGRATION, the VLSI journal, 43(1):72–80, 2010.

[35] Guang-liang Guo, Quan Qian, and Rui Zhang. "Different implementations of AES crypto-

graphic algorithm". In High Performance Computing and Communications (HPCC), 2015

IEEE 7th International Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE

12th International Conferen on Embedded Software and Systems (ICESS), 2015 IEEE 17th

International Conference on, pages 1848–1853. IEEE, 2015.

[36] Panu Hamalainen, Timo Alho, Marko Hannikainen, and Timo D Hamalainen. "Design and

implementation of low-area and low-power AES encryption hardware core". In Digital

System Design: Architectures, Methods and Tools, 2006. DSD 2006. 9th EUROMICRO

Conference on, pages 577–583. IEEE, 2006.

[37] Trang Hoang et al. "An efficient FPGA implementation of the Advanced Encryption Stan-

dard algorithm". In Computing and Communication Technologies, Research, Innovation,

and Vision for the Future (RIVF), 2012 IEEE RIVF International Conference on, pages

1–4. IEEE, 2012.

[38] Alireza Hodjat and Ingrid Verbauwhede. "A 21.54 Gbits/s fully pipelined AES processor

on FPGA". In Field-Programmable Custom Computing Machines, 2004. FCCM 2004.

12th Annual IEEE Symposium on, pages 308–309. IEEE, 2004.

[39] Mary James and Deepa S Kumar. "An implementation of modified lightweight advanced

encryption standard in FPGA". Procedia Technology, 25:582–589, 2016.

Bibliography 78

[40] Pradeeban Kathiravelu and Luis Veiga. "An adaptive distributed simulator for cloud and

mapreduce algorithms and architectures". In Utility and Cloud Computing (UCC), 2014

IEEE/ACM 7th International Conference on, pages 79–88. IEEE, 2014.

[41] Louiza Khati, Nicky Mouha, and Damien Vergnaud. "Full Disk Encryption: Bridging

Theory and Practice. In Cryptographers’ Track at the RSA Conference, pages 241–257.

Springer, 2017.

[42] Deen Kotturi, Seong-Moo Yoo, and John Blizzard. "AES crypto chip utilizing high-speed

parallel pipelined architecture". In Circuits and Systems, 2005. ISCAS 2005. IEEE Inter-

national Symposium on, pages 4653–4656. IEEE, 2005.

[43] Deguang Le, Jinyi Chang, Xingdou Gou, Ankang Zhang, and Conglan Lu. "Parallel AES

algorithm for fast data encryption on GPU". In Computer Engineering and Technology

(ICCET), 2010 2nd International Conference on, volume 6, pages V6–1. IEEE, 2010.

[44] Qinjian Li, Chengwen Zhong, Kaiyong Zhao, Xinxin Mei, and Xiaowen Chu. "Imple-

mentation and analysis of AES encryption on GPU". In High Performance Computing

and Communication & 2012 IEEE 9th International Conference on Embedded Software

and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages 843–

848. IEEE, 2012.

[45] MC Liberatori and Juan Carlos Bonadero. "AES-128 cipher: Minimum area, low cost

FPGA implementation". Latin American applied research, 37(1):71–77, 2007.

[46] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. "NVIDIA Tesla: A

unified graphics and computing architecture". IEEE micro, 28(2), 2008.

[47] Bin Liu and Bevan M Baas. "Parallel AES encryption engines for many-core processor

arrays". IEEE transactions on computers, 62(3):536–547, 2013.

Bibliography 79

[48] Svetlin A Manavski. "CUDA compatible GPU as an efficient hardware accelerator for

AES cryptography". In Signal Processing and Communications, 2007. ICSPC 2007. IEEE

International Conference on, pages 65–68. IEEE, 2007.

[49] J Quirm Michael. "Parallel Programming in C with MPI and OpenMP". Dubuque, IA:

McGraw-Hill, 2004.

[50] Stefan Mocanu, Gabriel Munteanu, and Daniela Saru. "GPGPU optimized parallel im-

plementation of AES using C++ AMP". Journal of Control Engineering and Applied

Informatics, 17(2):73–81, 2015.

[51] M Nagendra and M Chandra Sekhar. "Performance improvement of Advanced Encryption

Algorithm using parallel computation". International Journal of Software Engineering

and Its Applications, 8(2):287–296, 2014.

[52] SS Navalgund, Akshay Desai, Krishna Ankalgi, and Harish Yamanur. "Parallelization of

AES algorithm using OpenMP". Lecture Notes on Information Theory Vol, 1(4), 2013.

[53] TRAN Nhat-Phuong, LEE Myungho, HONG Sugwon, and LEE Seung-Jae. "High

throughput parallelization of AES-CTR algorithm". IEICE TRANSACTIONS on Infor-

mation and Systems, 96(8):1685–1695, 2013.

[54] Julian Ortega, Helmuth Trefftz, and Christian Trefftz. "Parallelizing AES on multicores

and GPUs". In Electro/Information Technology (EIT), 2011 IEEE International Confer-

ence on, pages 1–5. IEEE, 2011.

[55] Soufiane Oukili and Seddik Bri. "Hardware Implementation of AES Algorithm with Logic

S-box". Journal of Circuits, Systems and Computers, page 1750141, 2017.

Bibliography 80

[56] Vishal Pachori, Gunjan Ansari, and Neha Chaudhary. "Improved performance of advance

encryption standard using parallel computing". International Journal of Engineering Re-

search and Applications (IJERA), 2(1):967–971, 2012.

[57] Dwiti Pandya, Khushboo Ram Narayan, Sneha Thakkar, Tanvi Madhekar, and

BS Thakare. "Brief History of Encryption. International Journal of Computer Appli-

cations, 131(9):28–31, 2015.

[58] OZGUR PEKCAGLIYAN. "Parallel Implementation of AES algorithm using CUDA and

MPI, MS Thesis,CANKAYA UNIVERSITY THE GRADUATE SCHOOL OF NATU-

RAL AND APPLIED SCIENCES COMPUTER ENGINEERING", September 2013.

[59] Vandan Pendli, Mokshitha Pathuri, Subhakar Yandrathi, and Abdul Razaque. "Improvis-

ing performance of Advanced Encryption Standard algorithm". In Mobile and Secure Ser-

vices (MobiSecServ), 2016 Second International Conference on, pages 1–5. IEEE, 2016.

[60] Adrian Pousa, VICTORIA Sanz, and ARMANDO De Giusti. "Performance analysis of a

symmetric cryptographic algorithm on multicore architectures". In Computer Science &

Technology Series-XVII Argentine Congress of Computer Science-Selected Papers. Edulp,

2012.

[61] Bart Preneel, Christof Paar, and Jan Pelzl. "Understanding Cryptography". Springer,

2014.

[62] Shanxin Qu, Guochu Shou, Yihong Hu, Zhigang Guo, and Zongjue Qian. "High through-

put, pipelined implementation of AES on FPGA". In Information Engineering and Elec-

tronic Commerce, 2009. IEEC’09. International Symposium on, pages 542–545. IEEE,

2009.

Bibliography 81

[63] K Rahimunnisa, P Karthigaikumar, Soumiya Rasheed, J Jayakumar, and S SureshKumar.

"FPGA implementation of AES algorithm for high throughput using folded parallel archi-

tecture". Security and Communication Networks, 7(11):2225–2236, 2014.

[64] Thomas Rauber and Gudula Rünger. "Parallel programming: For multicore and cluster

systems". Springer Science & Business Media, 2013.

[65] Gaël Rouvroy, F-X Standaert, J-J Quisquater, and J-D Legat. "Compact and efficient

encryption/decryption module for FPGA implementation of the AES Rijndael very well

suited for small embedded applications". In Information Technology: Coding and Com-

puting, 2004. Proceedings. ITCC 2004. International Conference on, volume 2, pages

583–587. IEEE, 2004.

[66] Aamir Shafi, Bryan Carpenter, and Mark Baker. "Nested parallelism for multi-core HPC

systems using Java". Journal of Parallel and Distributed Computing, 69(6):532–545,

2009.

[67] Aamir Shafi and Jawad Manzoor. "Towards efficient shared memory communications in

MPJ express". In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE Interna-

tional Symposium on, pages 1–7. IEEE, 2009.

[68] Aamir Shafi, Jawad Manzoor, Kamran Hameed, Bryan Carpenter, and Mark Baker.

"Multicore-enabling the MPJ Express messaging library". In Proceedings of the 8th In-

ternational Conference on the Principles and Practice of Programming in Java, pages

49–58. ACM, 2010.

[69] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz. "Operating sys-

tem concepts", volume 4. Addison-wesley Reading, 1998.

Bibliography 82

[70] Mark Silberstein. "GPUs: High-performance Accelerators for Parallel Applications: The

multicore transformation (Ubiquity symposium)". Ubiquity, 2014(August):1, 2014.

[71] Mostafa I Soliman and Ghada Y Abozaid. "FPGA implementation and performance eval-

uation of a high throughput crypto coprocessor". Journal of Parallel and Distributed

Computing, 71(8):1075–1084, 2011.

[72] Abolfazl Soltani and Saeed Sharifian. "An ultra-high throughput and fully pipelined imple-

mentation of AES algorithm on FPGA". Microprocessors and Microsystems, 39(7):480–

493, 2015.

[73] Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, and Jean-Didier

Legat. "Efficient implementation of Rijndael encryption in reconfigurable hardware: Im-

provements and design tradeoffs". In International Workshop on Cryptographic Hardware

and Embedded Systems, pages 334–350. Springer, 2003.

[74] Nhat-Phuong Tran, Myungho Lee, Sugwon Hong, and Seung-Jae Lee. "High through-

put parallelization of AES-CTR algorithm". IEICE TRANSACTIONS on Information and

Systems, 96(8):1685–1695, 2013.

[75] Jason Van Dyken and José G Delgado-Frias. "FPGA schemes for minimizing the power-

throughput trade-off in executing the Advanced Encryption Standard algorithm". Journal

of Systems Architecture, 56(2):116–123, 2010.

[76] Vivek Venugopal and Devu Manikantan Shila. "High throughput implementations of cryp-

tography algorithms on GPU and FPGA". In Instrumentation and Measurement Technol-

ogy Conference (I2MTC), 2013 IEEE International, pages 723–727. IEEE, 2013.

Bibliography 83

[77] S-M Yoo, Deen Kotturi, DW Pan, and John Blizzard. "An AES crypto chip using a high-

speed parallel pipelined architecture". Microprocessors and Microsystems, 29(7):317–

326, 2005.

[78] Yuan Yu, Dennis Fetterly, Michael Isard, Ulfar Erlingsson, and Mihai Budiu. "General

purpose distributed data parallel computing using a high level language", August 18 2015.

US Patent 9,110,706.

[79] Shanghong Zhang, Zhongxi Xia, Rui Yuan, and Xiaoming Jiang. "Parallel computation of

a dam-break flow model using OpenMP on a multi-core computer". Journal of hydrology,

512:126–133, 2014.

[80] Xinmiao Zhang and Keshab K Parhi. "High-speed VLSI architectures for the AES algo-

rithm". IEEE transactions on very large scale integration (VLSI) systems, 12(9):957–967,

2004.

Appendix A

AES Encryption with Java using MPJ

Express

Multicore and Cluster Platform

1 import java .io . ∗ ;

2 import java .nio .ByteBuffer ;

3 import java .nio .channels .FileChannel ;

4 import java .nio .file .Paths ;

5 import java .security .Key ;

6 import java .util .Arrays ;

7 import java .util .concurrent .CyclicBarrier ;

8 import javax .crypto . ∗ ;

9 import mpi . ∗ ;

10

11

12 p u b l i c c l a s s cluster_aes {

13 s t a t i c i n t num ;

84

Appendix A 85

14 s t a t i c i n t rank ;

15 s t a t i c i n t check=0;

16 File out = new File (" o u t p u t . t x t ") ;

17 FileWriter fw = null ;

18 s t a t i c CyclicBarrier barrier ;

19 s t a t i c l ong startTime=0;

20 s t a t i c AES aes=new AES () ;

21

22 p r i v a t e Runnable enc (byte [] input ,Cipher cipher , i n t n) {

23 r e t u r n new Runnable () {

24 p u b l i c vo id run () {

25

26 t r y {

27

28 fw = new FileWriter (f , t r u e) ;

29 / / e n c r y p t i o n f u n c t i o n from c l a s s AES and w r i t i n g i n o u t p u t f i l e

30 fw .write (aes .encrypt (input ,cipher)) ;

31 barrier .await () ;

32 } / / end t r y

33 c a t c h (Exception e) {

34 / / TODO Auto−g e n e r a t e d c a t c h b l o c k

35 e .printStackTrace () ;

36 } / / end c a t c h

37 } / / end run

38 } ; / / Runnable

39 } / / end enc ()

40

41 p u b l i c s t a t i c vo id main (String [] args) throws Exception {

42

43 MPI .Init (args) ;

Appendix A 86

44 rank= MPI .COMM_WORLD .Rank () ; / / p r o c e s s number

45 i n t size= MPI .COMM_WORLD .Size () ; / / no o f t o t a l p r o c e s s e s c r e a t e d

46 String data = System .getProperty (" u s e r . d i r ") ;

47 data=data .replace (" \ \ " , " / ") ;

48 data=data .concat (" / "+args [3]) ; / / I n p u t f i l e

49 / / no o f t h r e a d s c r e a t e d i n each p r o c e s s

50 num=Integer .parseInt (args [4]) ;

51 cluster_aes cluster=new cluster_aes () ; / / c r e a t i n g c l a s s o b j e c t

52 byte [] sub_buf ;

53 Key key = null ;

54 File f = new File (data) ;

55 FileInputStream fin = new FileInputStream (f) ;

56

57 / / C y c l i c b a r r i e r a c t i o n .

58 / / When a l l t h r e a d s r e a c h b a r r i e r f o l l o w i n g a c t i o n w i l l be pe r fo rmed

59 barrier = new CyclicBarrier (num ,

60 new Runnable () {

61 p u b l i c vo id run () {

62 i f (rank==0 && check==0) {

63 f l o a t time=(f l o a t) (System .currentTimeMillis ()−startTime) ;

64 check++;

65 System .out .print (" E x e c u t i o n Time="+time+"ms") ;

66 }

67 }

68 }) ; / / end b a r r i e r

69

70

71 t r y {

72 key = aes .password (" 12345678 qwer tyu ipzxcvbnmamhetcbh ") ;

73 } / / end t r y

Appendix A 87

74 c a t c h (Exception e) {

75

76 e .printStackTrace () ;

77 } / / end c a t c h

78

79 i n t count=(i n t)f .length () ; / / No of b y t e s i n i n p u t f i l e

80 f l o a t temp=(f l o a t)count / (f l o a t)size ; / / no o f b y t e s t o be a s s i g n e d t o ←↩

each f i l e

81 i n t sub=(i n t)Math .floor (temp) ;

82 / / I f c o u n t i s n o t d i v i s i b l e by no of t o t a l p r o c e s s e s ,

83 / / we w i l l g e t a f r a c t i o n .

84 i n t diff=(i n t) ((temp∗size)−(sub∗size)) ;

85 / / Th i s s t a t e m e n t w i l l c a t e r f o r t h o s e e x t r a b y t e s .

86

87 i f (rank==size−1)

88 {

89 sub_buf=new byte [sub+diff] ; / / a s s i g n i n g t h o s e

90 / / e x t r a b y t e s t o l a s t p r o c e s s

91 fin .skip (rank∗sub) ;

92 fin .read (sub_buf) ; / / each p r o c e s s w i l l r e a d d e s i g n a t e d b y t e s ←↩

from b u f f e r

93 }

94 e l s e

95 {

96 sub_buf=new byte [sub] ;

97 fin .skip (rank∗sub) ;

98 fin .read (sub_buf) ;

99 }

100 / / r e p e a t i n g same method of b y t e s

101 / / d i v i s i o n among t h r e a d s i n each p r o c e s s

Appendix A 88

102 temp= ((f l o a t)sub_buf .length / (f l o a t)num) ;

103 i n t g0=(i n t)Math .floor (temp) ;

104 i n t t0=(i n t) (((temp) ∗num) −((g0) ∗num)) ;

105 Cipher c=aes .initialization (key) ; / / i n i t i a l i z i n g AES c i p h e r

106 startTime= System .currentTimeMillis () ; / / s t r a t i n g t i m e r

107 / / c r e a t i n g i n p u t number o f t h r e a d s

108 f o r (i n t i = 0 ; i <(num) ; i++)

109 {

110 i f (i==num−1)

111 {

112 new Thread (cluster .enc (Arrays .copyOfRange

113 (sub_buf ,i∗ (g0) , ((i∗ (g0)) +(g0+t0))) ,c ,i)) .start () ;

114 } / / end i f

115 e l s e

116 {

117 new Thread (cluster .enc (Arrays .copyOfRange

118 (sub_buf ,i∗ (g0) , ((i∗ (g0)) +(g0))) ,c ,i)) .start () ;

119 } / / end e l s e

120 } / / end f o r

121 MPI .Finalize () ;

122

123 } / / end main

124 } / / end c l a s s

Appendix B

AES Encryption with C

AES Encryption with C using OpenMP

1 # i n c l u d e < o p e n s s l / con f . h>

2 # i n c l u d e < o p e n s s l / evp . h>

3 # i n c l u d e < o p e n s s l / e r r . h>

4 # i n c l u d e < s t r i n g . h>

5 # i n c l u d e < s t d i o . h>

6 # i n c l u d e <math . h>

7 # i n c l u d e < t ime . h>

8 # i n c l u d e <omp . h>

9

10

11 vo id handleErrors (vo id)

12 {

13 ERR_print_errors_fp (stderr) ;

14 abort () ;

15 }

16

89

Appendix B 90

17 t y p e d e f s t r u c t {

18 u n s i g n e d c h a r ∗plaintext ;

19 i n t plaintext_len ;

20 i n t ciphertext_len ;

21 u n s i g n e d c h a r key [3 2] ;

22 u n s i g n e d c h a r iv [1 7] ;

23 u n s i g n e d c h a r ∗ciphertext ;

24 i n t flag ;

25 } args_struct ;

26

27

28

29 i n t encrypt (u n s i g n e d c h a r ∗plaintext , i n t plaintext_len , u n s i g n e d c h a r ∗←↩

key ,

30 u n s i g n e d c h a r ∗iv , u n s i g n e d c h a r ∗ciphertext)

31 {

32 EVP_CIPHER_CTX ∗ctx ;

33 i n t len ;

34 i n t ciphertext_len ;

35 f l o a t time_spent ;

36 f l o a t begin ;

37 f l o a t end ;

38

39 / / i n i t i a l i z e c i p h e r

40 i f (! (ctx = EVP_CIPHER_CTX_new ())) handleErrors () ;

41 i f (1 != EVP_EncryptInit_ex

42 (ctx , EVP_aes_256_cbc () , NULL , key , iv))

43 handleErrors () ;

44 i f (omp_get_thread_num () ==0)

45 {

Appendix B 91

46 begin=omp_get_wtime () ;

47 }

48 i f (1 != EVP_EncryptUpdate (ctx , ciphertext , &len ,

49 plaintext , plaintext_len)) / / s t a r t e n c r p t i o n

50 handleErrors () ;

51 ciphertext_len = len ;

52 i f (omp_get_thread_num () ==0) {

53 end=omp_get_wtime () ;

54

55 }

56 i f (1 != EVP_EncryptFinal_ex (ctx , ciphertext + len , &len))

57 handleErrors () ; / / f i n a l i z e e n c r y p t i o n

58 ciphertext_len += len ;

59 EVP_CIPHER_CTX_free (ctx) ; / / f r e e memory

60 r e t u r n ciphertext_len ;

61 }

62

63 i n t main (vo id)

64 {

65 / / No of t h r e a d f o r e n c r y p t i n g i n p u t f i l e

66 c o n s t l ong total_threads = 1 / 2 / 4 / 8 / ;

67 u n s i g n e d c h a r ∗plaintext=NULL ;

68 u n s i g n e d c h a r ∗∗cipherbuf =NULL ;

69 u n s i g n e d c h a r ∗∗pBuffers =NULL ;

70 l ong size ;

71 i n t i ,j ;

72 FILE ∗fp = NULL ;

73 FILE ∗f ;

74 args_struct ∗a [total_threads] ;

75 l ong sub_size ;

Appendix B 92

76 / / 256 b i t e n c r y p t i o n key

77 u n s i g n e d c h a r key [3 2] = ←↩

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 } ;

78 / / 136 b i t i n i t i a l i z a t i o n v e c t o r

79 u n s i g n e d c h a r iv [1 7] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

80 ERR_load_crypto_strings () ;

81 OpenSSL_add_all_algorithms () ;

82 OPENSSL_config (NULL) ;

83 / / i n p u t f i l e f o r e n c r y p t i o n

84 fp = fopen (" i n p u t _ f i l e . t x t " , " r ") ;

85 i f (fp==NULL)

86 {

87 printf (" u n a b l e t o open ") ;

88 }

89 f = fopen (" o u t p u t . t x t " , "w+") ;

90 / / S i z e o f f i l e

91 fseek (fp , 0 , SEEK_END) ;

92 size = ftell (fp) ;

93 fseek (fp , 0 , SEEK_SET) ;

94

95 pBuffers = (u n s i g n e d c h a r ∗∗)calloc (total_threads ,

96 s i z e o f (u n s i g n e d c h a r ∗)) ;

97 cipherbuf = (u n s i g n e d c h a r ∗∗)calloc (total_threads ,

98 s i z e o f (u n s i g n e d c h a r ∗)) ;

99 / / no o f b y t e s t o be a s s i g n e d t o each t h r e a d

100 sub_size=floor ((f l o a t)size / (f l o a t)total_threads) ;

101

102 fseek (fp , 0 , SEEK_CUR) ;

103

104 f o r (i = 0 ; i < total_threads ; i++) {

Appendix B 93

105

106 i f ((i==(total_threads−1))&&

107 (total_threads∗sub_size) <size)

108 / / I f " s i z e " i s n o t d i v i s i b l e by t o t a l _ t h r e a d s ,

109 we will get a fraction .

110 / / Th i s s t a t e m e n t w i l l c a t e r f o r t h o s e e x t r a b y t e s .

111 {

112 sub_size=(size−(total_threads∗sub_size)) +sub_size ;

113 }

114 pBuffers [i] = (u n s i g n e d c h a r ∗)calloc

115 (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

116 cipherbuf [i] = (u n s i g n e d c h a r ∗)calloc

117 (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

118 fread (pBuffers [i] , s i z e o f

119 (u n s i g n e d c h a r) ,sub_size , fp) ;

120 / / r e a d i n g s p e c i f i e d b y t e s from i n p u t f i l e

121 }

122

123 f o r (j=0;j<total_threads ;j++)

124 { / / copy ing d a t a i n " s t r u c t a " f i e l d s f o r e n c r y p t i o n

125

126 a [j] = (args_struct∗)calloc (1 , s i z e o f (args_struct)) ;

127 i f ((j==(total_threads−1))&&

128 (total_threads∗sub_size) <size)

129 {

130 sub_size=(size−(total_threads∗sub_size)) +sub_size ;

131 }

132 a [j]−>plaintext=(u n s i g n e d c h a r ∗)

133 calloc (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

134 a [j]−>ciphertext=(u n s i g n e d c h a r ∗)

Appendix B 94

135 calloc (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

136 a [j]−>plaintext_len=sub_size ;

137 a [j]−>flag=0;

138 memcpy (a [j]−>iv ,iv , 1 7) ;

139 memcpy (a [j]−>key ,key , 3 2) ;

140 memcpy (a [j]−>plaintext ,pBuffers [j] ,sub_size) ;

141 }

142 omp_set_num_threads (total_threads) ; / / i n i t i a l i z i n g t h r e a d s

143 #pragma omp parallel / / s t a r t i n g t h r e a d s i n p a r a l l e l

144 {

145 a [omp_get_thread_num ()]−>ciphertext_len=

146 encrypt (a [omp_get_thread_num ()]−>plaintext ,

147 a [omp_get_thread_num ()]−>plaintext_len ,

148 a [omp_get_thread_num ()]−> key ,

149 a [omp_get_thread_num ()]−>iv ,

150 a [omp_get_thread_num ()]−>ciphertext) ;

151 a [omp_get_thread_num ()]−>flag=1;

152 memcpy (cipherbuf [omp_get_thread_num ()] ,

153 a [omp_get_thread_num ()]−>ciphertext ,

154 a [omp_get_thread_num ()]−>ciphertext_len

155 fputs (cipherbuf [omp_get_thread_num ()] , f) ;

156 #pragma omp barrier

157 }

158 fclose (f) ;

159 EVP_cleanup () ; / / c l e a n up p r o c e s s

160 ERR_free_strings () ;

161 time_spent = (end−begin) ∗1000 ;

162 printf (" T o t a l t ime=%f ms \ n " ,time_spent)

163 r e t u r n 0 ;

164 }

Appendix B 95

AES Encryption with C using MPICH

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e <mpi . h>

3 # i n c l u d e < o p e n s s l / con f . h>

4 # i n c l u d e < o p e n s s l / evp . h>

5 # i n c l u d e < o p e n s s l / e r r . h>

6 # i n c l u d e < s t r i n g . h>

7 # i n c l u d e < s t d i o . h>

8 # i n c l u d e <math . h>

9 # i n c l u d e <omp . h>

10 # i n c l u d e < s t d l i b . h>

11 # i n c l u d e < s t d i o . h>

12

13 i n t rank ;

14 i n t total_pro ,z ,k ;

15

16 vo id handleErrors (vo id)

17 {

18 ERR_print_errors_fp (stderr) ;

19 abort () ;

20 }

21

22 t y p e d e f s t r u c t {

23 u n s i g n e d c h a r ∗plaintext ;

24 i n t plaintext_len ;

25 i n t ciphertext_len ;

26 u n s i g n e d c h a r key [3 2] ;

27 u n s i g n e d c h a r iv [1 7] ;

Appendix B 96

28 u n s i g n e d c h a r ∗ciphertext ;

29 i n t flag ;

30 } args_struct ;

31

32

33 / / E n c r y p t i o n F u n c t i o n

34 i n t encrypt (u n s i g n e d c h a r ∗plaintext , i n t plaintext_len ,

35 u n s i g n e d c h a r ∗key , u n s i g n e d c h a r ∗iv , u n s i g n e d c h a r ∗ciphertext)

36 {

37

38 EVP_CIPHER_CTX ∗ctx ;

39

40 i n t len ;

41 f l o a t begin ;

42 f l o a t time_spent ;

43 f l o a t end ;

44 i n t ciphertext_len ;

45

46 i f (! (ctx = EVP_CIPHER_CTX_new ())) handleErrors () ; / / i n i t i a l i z e c i p h e r

47 i f (1 != EVP_EncryptInit_ex (ctx , EVP_aes_256_cbc () , NULL , key , iv))

48 handleErrors () ;

49 i f (rank==0 && omp_get_thread_num () ==0)

50 {

51 begin=omp_get_wtime () ;

52 }

53 i f (1 != EVP_EncryptUpdate (ctx , ciphertext , &len , plaintext ,

54 plaintext_len)) / / s t a r t e n c r p t i o n

55 handleErrors () ;

56 i f (rank==0 && omp_get_thread_num () ==0) {

57 end=omp_get_wtime () ;

Appendix B 97

58

59 }

60

61 ciphertext_len = len ;

62 i f (1 != EVP_EncryptFinal_ex (ctx , ciphertext + len , &len))

63 handleErrors () ; / / f i n a l i z e e n c r y p t i o n

64 ciphertext_len += len ;

65 EVP_CIPHER_CTX_free (ctx) ; / / f r e e memory

66

67 r e t u r n ciphertext_len ;

68 }

69

70

71

72 i n t main (i n t argc , c h a r ∗argv [])

73 {

74

75 u n s i g n e d c h a r ∗∗cipherbuf =NULL ;

76 u n s i g n e d c h a r ∗pBuffers =NULL ;

77

78 FILE ∗fp = NULL ;

79 FILE ∗f ;

80 l ong size ;

81 i n t i ,j ,y ,m ;

82 l ong sub_size ;

83 l ong temp ;

84 l ong subsub_size ;

85 l ong total_threads ;

86 args_struct ∗∗a ;

87 i n t x [1] ;

Appendix B 98

88 / / 256 b i t e n c r y p t i o n key

89 u n s i g n e d c h a r key [3 2] = ←↩

{ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 }

90 / / 136 b i t i n i t i a l i z a t i o n v e c t o r

91 u n s i g n e d c h a r iv [1 7] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 } ;

92 sum=0;

93 ERR_load_crypto_strings () ;

94 OpenSSL_add_all_algorithms () ;

95 OPENSSL_config (NULL) ;

96 fp = fopen (" i n p u t _ f i l e . t x t " , " r ") ; / / i n p u t f i l e f o r e n c r y p t i o n

97 i f (fp==NULL)

98 {

99 printf (" u n a b l e t o open ") ;

100 }

101 f = fopen (" o u t p u t . t x t " , "w+") ;

102 MPI_Init(&argc , &argv) ; / / i n i t i a l i z e MPI p r o c e s s

103 MPI_Comm_rank (MPI_COMM_WORLD,&rank) ; / / p r o c e s s number

104 / / no o f t o t a l p r o c e s s e s c r e a t e d

105 MPI_Comm_size (MPI_COMM_WORLD,&total_pro) ;

106 / / S i z e o f f i l e

107 fseek (fp , 0 , SEEK_END) ;

108 size = ftell (fp) ;

109 fseek (fp , 0 , SEEK_SET) ;

110 / / no o f b y t e s t o be a s s i g n e d t o each p r o c e s s

111 sub_size=floor ((f l o a t)size / (f l o a t)total_pro) ;

112 / / no o f t h r e a d s c r e a t e d i n each p r o c e s s

113 total_threads = strtol (argv [1] , NULL , 0) ;

114 a = (args_struct∗∗)calloc (total_threads , s i z e o f (args_struct∗)) ;

115 i f (rank==0)

116 {

Appendix B 99

117 / / no o f b y t e s t o be a s s i g n e d t o each t h r e a d

118 sub_size=floor ((f l o a t)size / (f l o a t)total_pro) ;

119 fseek (fp , 0 , SEEK_CUR) ;

120 f o r (i = (total_pro−1) ; i > −1 ; i−−)

121 {

122 i f ((i==(0))&&(total_pro∗sub_size) <size)

123 / / I f " s i z e " i s n o t d i v i s i b l e by t o t a l _ p r o , we w i l l g e t a f r a c t i o n .

124 / / Th i s s t a t e m e n t w i l l c a t e r f o r t h o s e e x t r a b y t e s .

125 {

126 sub_size=(size−((total_pro−1)∗sub_size)) ;

127 }

128 x [0] =sub_size ;

129 pBuffers = (u n s i g n e d c h a r ∗)calloc (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

130 / / r e a d i n g s p e c i f i e d b y t e s from i n p u t f i l e

131 fread (pBuffers , s i z e o f (u n s i g n e d c h a r) ,sub_size , fp) ;

132 i f (i ! = 0) / / s e n d i n g t h o s e b y t e s t o o t h e r p r o c e s s e s

133 {

134 MPI_Send(&x , s i z e o f (x) / s i z e o f (x [0]) ,MPI_INT ,i ,i+100 ,MPI_COMM_WORLD) ;

135 MPI_Send (pBuffers ,sub_size ,MPI_CHAR ,i ,i ,MPI_COMM_WORLD) ;

136

137 }

138 e l s e

139 {

140 / / when s e n d i n g d a t a t o o t h e r p r o c e s s e s i s done .

141 / / P r o c e s s 0 s t a r t s e n c r y p t i n g i t s own d a t a

142 / / no o f b y t e s t o be a s s i g n e d t o each t h r e a d

143 subsub_size=floor ((f l o a t)sub_size / (f l o a t)total_threads) ;

144 cipherbuf = (u n s i g n e d c h a r ∗∗)calloc

145 (total_threads , s i z e o f (u n s i g n e d c h a r ∗)) ;

146 f o r (y=0;y<total_threads ;y++)

Appendix B 100

147 {

148 a [y] = (args_struct∗)calloc (1 , s i z e o f (args_struct)) ;

149 i f ((y==(total_threads−1))&&(total_threads∗subsub_size) <sub_size)

150 {

151 temp=subsub_size ;

152 subsub_size=(sub_size−(y∗subsub_size)) ;

153 a [y]−>plaintext=(u n s i g n e d c h a r ∗)calloc

154 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

155 a [y]−>ciphertext=(u n s i g n e d c h a r ∗)calloc

156 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

157 a [y]−>plaintext_len=subsub_size ;

158 a [y]−>flag=0;

159 memcpy (a [y]−>plaintext ,pBuffers+(y∗temp) ,subsub_size) ;

160 memcpy (a [y]−>iv ,iv , 1 7) ;

161 memcpy (a [y]−>key ,key , 3 2) ;

162 }

163

164 e l s e

165 {

166 a [y]−>plaintext=(u n s i g n e d c h a r ∗)

167 calloc (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

168 a [y]−>ciphertext=(u n s i g n e d c h a r ∗)

169 calloc (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

170 a [y]−>plaintext_len=subsub_size ;

171 a [y]−>flag=0;

172 memcpy (a [y]−>iv ,iv , 1 7) ;

173 memcpy (a [y]−>key ,key , 3 2) ;

174 memcpy (a [y]−>plaintext ,pBuffers+(y∗subsub_size) ,subsub_size

175 }

176 }

Appendix B 101

177 omp_set_num_threads (total_threads) ; / / c r e a t i n g t h r e a d s

178 # pragma omp p a r a l l e l / / t h r e a d s e x e c u t i n g i n p a r a l l e l

179 {

180 a [omp_get_thread_num ()]−>ciphertext_len=encrypt

181 (a [omp_get_thread_num ()]−>plaintext ,a [omp_get_thread_num ()]−>

182 plaintext_len ,a [omp_get_thread_num ()]−> key ,a [omp_get_thread_num ()]

183 −>iv , a [omp_get_thread_num ()]−>ciphertext) ;

184 a [omp_get_thread_num ()]−>flag=1;

185 # pragma omp b a r r i e r

186 }

187 }

188 }

189 }

190

191 e l s e i f (rank>0)

192 {

193 MPI_Recv(&x , s i z e o f (x) ,MPI_INT ,MPI_ANY_SOURCE ,rank+100 ,

194 MPI_COMM_WORLD ,MPI_STATUSES_IGNORE) ; / / p r o c e s s e s r e c e i v e s t h e i r d a t a

195 pBuffers = (u n s i g n e d c h a r ∗)calloc (x [0] , s i z e o f (u n s i g n e d c h a r ∗)) ;

196 MPI_Recv (pBuffers ,x [0] ,MPI_CHAR ,MPI_ANY_SOURCE ,rank ,

197 MPI_COMM_WORLD ,MPI_STATUSES_IGNORE) ;

198 subsub_size=floor ((f l o a t)x [0] / (f l o a t)total_threads) ;

199 cipherbuf = (u n s i g n e d c h a r ∗∗)calloc (total_threads ,

200 s i z e o f (u n s i g n e d c h a r ∗)) ;

201 f o r (y=0;y<total_threads ;y++)

202 {

203 a [y] = (args_struct∗)calloc (1 , s i z e o f (args_struct)) ;

204 i f ((y==(total_threads−1))&&(total_threads∗subsub_size) <sub_size)

205 {

206 temp=subsub_size ;

Appendix B 102

207 subsub_size=(sub_size−(y∗subsub_size)) ;

208 a [y]−>plaintext=(u n s i g n e d c h a r ∗)calloc

209 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

210 a [y]−>ciphertext=(u n s i g n e d c h a r ∗)calloc

211 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

212 a [y]−>plaintext_len=subsub_size ;

213 a [y]−>flag=0;

214 memcpy (a [y]−>iv ,iv , 1 7) ;

215 memcpy (a [y]−>key ,key , 3 2) ;

216 memcpy (a [y]−>plaintext ,pBuffers+(y∗temp) ,subsub_size) ;

217 }

218 e l s e

219 {

220 a [y]−>plaintext=(u n s i g n e d c h a r ∗)calloc

221 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

222 a [y]−>ciphertext=(u n s i g n e d c h a r ∗)calloc

223 (subsub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

224 a [y]−>plaintext_len=subsub_size ;

225 a [y]−>flag=0;

226 memcpy (a [y]−>iv ,iv , 1 7) ;

227 memcpy (a [y]−>key ,key , 3 2) ;

228 memcpy (a [y]−>plaintext ,pBuffers+(y∗subsub_size) ,subsub_size) ;

229 }

230

231 }

232 omp_set_num_threads (total_threads) ;

233 # pragma omp p a r a l l e l

234 {

235 a [omp_get_thread_num ()]−>ciphertext_len=

236 encrypt (a [omp_get_thread_num ()]−>plaintext ,

Appendix B 103

237 a [omp_get_thread_num ()]−>plaintext_len ,

238 a [omp_get_thread_num ()]−> key ,a [omp_get_thread_num ()]−>iv ,

239 a [omp_get_thread_num ()]−>ciphertext) ;

240 a [omp_get_thread_num ()]−>flag=1;

241 memcpy (cipherbuf [omp_get_thread_num ()] ,a [omp_get_thread_num ()]

242 −>ciphertext ,a [omp_get_thread_num ()]−>ciphertext_len) ;

243 fputs (cipherbuf [omp_get_thread_num ()] , f) ;

244 # pragma omp b a r r i e r

245 }

246

247 }

248 time_spent = (end−begin) ∗1000 ;

249 printf (" T o t a l t ime=%f ms \ n " ,time_spent) ;

250 EVP_cleanup () ;

251 ERR_free_strings () ;

252 MPI_Finalize () ;

253 r e t u r n 0 ;

254

255 }

Appendix C

AES Encryption with CUDA

AES Encryption with C using CUDA

1 # i n c l u d e < s t d i o . h>

2 # i n c l u d e <omp . h>

3 # i n c l u d e < s t r i n g . h>

4 # i n c l u d e <math . h>

5 # i n c l u d e < s t d l i b . h>

6 # i n c l u d e < s t d i n t . h>

7 # i n c l u d e < t ime . h>

8 # i n c l u d e < c u d a _ r u n t i m e . h>

9

10 c o n s t i n t Nb_h = 4 ;

11 c o n s t i n t Nr_h = 1 0 ;

12 c o n s t i n t Nk_h = 4 ;

13 c o n s t uint8_t key [1 6] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0 , 1 , 2 , 3 , 4 , 5 , 6 } ;

14 do ub l e begin ;

15 f l o a t diff ;

16 do ub l e end ;

104

Appendix C 105

17

18 c o n s t uint8_t s_h [256]=

19 {

20 0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 ,

21 0x30 , 0x01 , 0x67 , 0x2B , 0xFE , 0xD7 , 0xAB , 0x76 ,

22 0xCA , 0x82 , 0xC9 , 0x7D , 0xFA , 0x59 , 0x47 , 0xF0 ,

23 0xAD , 0xD4 , 0xA2 , 0xAF , 0x9C , 0xA4 , 0x72 , 0xC0 ,

24 0xB7 , 0xFD , 0x93 , 0x26 , 0x36 , 0x3F , 0xF7 , 0xCC ,

25 0x34 , 0xA5 , 0xE5 , 0xF1 , 0x71 , 0xD8 , 0x31 , 0x15 ,

26 0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A ,

27 0x07 , 0x12 , 0x80 , 0xE2 , 0xEB , 0x27 , 0xB2 , 0x75 ,

28 0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 ,

29 0x52 , 0x3B , 0xD6 , 0xB3 , 0x29 , 0xE3 , 0x2F , 0x84 ,

30 0x53 , 0xD1 , 0x00 , 0xED , 0x20 , 0xFC , 0xB1 , 0x5B ,

31 0x6A , 0xCB , 0xBE , 0x39 , 0x4A , 0x4C , 0x58 , 0xCF ,

32 0xD0 , 0xEF , 0xAA , 0xFB , 0x43 , 0x4D , 0x33 , 0x85 ,

33 0x45 , 0xF9 , 0x02 , 0x7F , 0x50 , 0x3C , 0x9F , 0xA8 ,

34 0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 ,

35 0xBC , 0xB6 , 0xDA , 0x21 , 0x10 , 0xFF , 0xF3 , 0xD2 ,

36 0xCD , 0x0C , 0x13 , 0xEC , 0x5F , 0x97 , 0x44 , 0x17 ,

37 0xC4 , 0xA7 , 0x7E , 0x3D , 0x64 , 0x5D , 0x19 , 0x73 ,

38 0x60 , 0x81 , 0x4F , 0xDC , 0x22 , 0x2A , 0x90 , 0x88 ,

39 0x46 , 0xEE , 0xB8 , 0x14 , 0xDE , 0x5E , 0x0B , 0xDB ,

40 0xE0 , 0x32 , 0x3A , 0x0A , 0x49 , 0x06 , 0x24 , 0x5C ,

41 0xC2 , 0xD3 , 0xAC , 0x62 , 0x91 , 0x95 , 0xE4 , 0x79 ,

42 0xE7 , 0xC8 , 0x37 , 0x6D , 0x8D , 0xD5 , 0x4E , 0xA9 ,

43 0x6C , 0x56 , 0xF4 , 0xEA , 0x65 , 0x7A , 0xAE , 0x08 ,

44 0xBA , 0x78 , 0x25 , 0x2E , 0x1C , 0xA6 , 0xB4 , 0xC6 ,

45 0xE8 , 0xDD , 0x74 , 0x1F , 0x4B , 0xBD , 0x8B , 0x8A ,

46 0x70 , 0x3E , 0xB5 , 0x66 , 0x48 , 0x03 , 0xF6 , 0x0E ,

Appendix C 106

47 0x61 , 0x35 , 0x57 , 0xB9 , 0x86 , 0xC1 , 0x1D , 0x9E ,

48 0xE1 , 0xF8 , 0x98 , 0x11 , 0x69 , 0xD9 , 0x8E , 0x94 ,

49 0x9B , 0x1E , 0x87 , 0xE9 , 0xCE , 0x55 , 0x28 , 0xDF ,

50 0x8C , 0xA1 , 0x89 , 0x0D , 0xBF , 0xE6 , 0x42 , 0x68 ,

51 0x41 , 0x99 , 0x2D , 0x0F , 0xB0 , 0x54 , 0xBB , 0x16

52 } ;

53

54 uint8_t Rcon_h [2 5 6] = {

55 0x8d , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 ,

56 0x80 , 0x1b , 0x36 , 0x6c , 0xd8 , 0xab , 0x4d , 0x9a ,

57 0x2f , 0x5e , 0xbc , 0x63 , 0xc6 , 0x97 , 0x35 , 0x6a ,

58 0xd4 , 0xb3 , 0x7d , 0xfa , 0xef , 0xc5 , 0x91 , 0x39 ,

59 0x72 , 0xe4 , 0xd3 , 0xbd , 0x61 , 0xc2 , 0x9f , 0x25 ,

60 0x4a , 0x94 , 0x33 , 0x66 , 0xcc , 0x83 , 0x1d , 0x3a ,

61 0x74 , 0xe8 , 0xcb , 0x8d , 0x01 , 0x02 , 0x04 , 0x08 ,

62 0x10 , 0x20 , 0x40 , 0x80 , 0x1b , 0x36 , 0x6c , 0xd8 ,

63 0xab , 0x4d , 0x9a , 0x2f , 0x5e , 0xbc , 0x63 , 0xc6 ,

64 0x97 , 0x35 , 0x6a , 0xd4 , 0xb3 , 0x7d , 0xfa , 0xef ,

65 0xc5 , 0x91 , 0x39 , 0x72 , 0xe4 , 0xd3 , 0xbd , 0x61 ,

66 0xc2 , 0x9f , 0x25 , 0x4a , 0x94 , 0x33 , 0x66 , 0xcc ,

67 0x83 , 0x1d , 0x3a , 0x74 , 0xe8 , 0xcb , 0x8d , 0x01 ,

68 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x1b ,

69 0x36 , 0x6c , 0xd8 , 0xab , 0x4d , 0x9a , 0x2f , 0x5e ,

70 0xbc , 0x63 , 0xc6 , 0x97 , 0x35 , 0x6a , 0xd4 , 0xb3 ,

71 0x7d , 0xfa , 0xef , 0xc5 , 0x91 , 0x39 , 0x72 , 0xe4 ,

72 0xd3 , 0xbd , 0x61 , 0xc2 , 0x9f , 0x25 , 0x4a , 0x94 ,

73 0x33 , 0x66 , 0xcc , 0x83 , 0x1d , 0x3a , 0x74 , 0xe8 ,

74 0xcb , 0x8d , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 ,

75 0x40 , 0x80 , 0x1b , 0x36 , 0x6c , 0xd8 , 0xab , 0x4d ,

76 0x9a , 0x2f , 0x5e , 0xbc , 0x63 , 0xc6 , 0x97 , 0x35 ,

Appendix C 107

77 0x6a , 0xd4 , 0xb3 , 0x7d , 0xfa , 0xef , 0xc5 , 0x91 ,

78 0x39 , 0x72 , 0xe4 , 0xd3 , 0xbd , 0x61 , 0xc2 , 0x9f ,

79 0x25 , 0x4a , 0x94 , 0x33 , 0x66 , 0xcc , 0x83 , 0x1d ,

80 0x3a , 0x74 , 0xe8 , 0xcb , 0x8d , 0x01 , 0x02 , 0x04 ,

81 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x1b , 0x36 , 0x6c ,

82 0xd8 , 0xab , 0x4d , 0x9a , 0x2f , 0x5e , 0xbc , 0x63 ,

83 0xc6 , 0x97 , 0x35 , 0x6a , 0xd4 , 0xb3 , 0x7d , 0xfa ,

84 0xef , 0xc5 , 0x91 , 0x39 , 0x72 , 0xe4 , 0xd3 , 0xbd ,

85 0x61 , 0xc2 , 0x9f , 0x25 , 0x4a , 0x94 , 0x33 , 0x66 ,

86 0xcc , 0x83 , 0x1d , 0x3a , 0x74 , 0xe8 , 0xcb , 0x8d

87 } ;

88

89

90 __constant__ uint8_t s [2 5 6] ;

91 __constant__ uint8_t Rcon [2 5 6] ;

92 __constant__ i n t Nb ;

93 __constant__ i n t Nr ;

94 __constant__ i n t Nk ;

95 __constant__ uint32_t ek [4 4] ;

96

97 # d e f i n e gpuEr rchk (ans) { g p u A s s e r t ((ans) , __FILE__ , __LINE__) ; }

98 i n l i n e vo id cudaDevAssist (cudaError_t code , i n t line , boo l abort= t r u e)

99 {

100 i f (code != cudaSuccess)

101 {

102 fprintf (stderr , " c u d a D e v A s s i s t a n t : %s %d \ n " ,

103 cudaGetErrorString (code) , line) ;

104 i f (abort) exit (code) ;

105 }

106 }

Appendix C 108

107

108 __device__ uint32_t sw (uint32_t word)

109 {

110 un ion {

111 uint32_t word ;

112 uint8_t bytes [4] ;

113 } subWord __attribute__ ((aligned)) ;

114 subWord .word = word ;

115

116 subWord .bytes [3] = s [subWord .bytes [3]] ;

117 subWord .bytes [2] = s [subWord .bytes [2]] ;

118 subWord .bytes [1] = s [subWord .bytes [1]] ;

119 subWord .bytes [0] = s [subWord .bytes [0]] ;

120

121 r e t u r n subWord .word ;

122 }

123

124 __device__ vo id sb (uint8_t∗ in)

125 {

126 f o r (i n t i = 0 ; i < 1 6 ; i++) { in [i] = s [in [i]] ; }

127 }

128

129 __device__ vo id mc (uint8_t∗ arr)

130 {

131 f o r (i n t i = 0 ; i < 4 ; i++)

132 {

133 uint8_t a [4] ;

134 uint8_t b [4] ;

135 uint8_t c ;

136 uint8_t h ;

Appendix C 109

137 f o r (c=0;c<4;c++) {

138 a [c] = arr [(4∗c+i)] ;

139 h = (uint8_t) ((s i g n e d c h a r)arr [(4∗c+i)] >> 7) ;

140 b [c] = arr [(4∗c+i)] << 1 ;

141 b [c] ^= 0x1B & h ;

142 }

143 arr [(i)] = b [0] ^ a [3] ^ a [2] ^ b [1] ^ a [1] ;

144 arr [(4 +i)] = b [1] ^ a [0] ^ a [3] ^ b [2] ^ a [2] ;

145 arr [(8 +i)] = b [2] ^ a [1] ^ a [0] ^ b [3] ^ a [3] ;

146 arr [(1 2 +i)] = b [3] ^ a [2] ^ a [1] ^ b [0] ^ a [0] ;

147 }

148

149 }

150

151 __device__ vo id sr (uint8_t∗ arr)

152 {

153 uint8_t out [1 6] ;

154 / / On per−row b a s i s (+1 s h i f t ea row)

155 / / Row 1

156 out [0] = arr [0] ;

157 out [1] = arr [1] ;

158 out [2] = arr [2] ;

159 out [3] = arr [3] ;

160 / / Row 2

161 out [4] = arr [5] ;

162 out [5] = arr [6] ;

163 out [6] = arr [7] ;

164 out [7] = arr [4] ;

165 / / Row 3

166 out [8] = arr [1 0] ;

Appendix C 110

167 out [9] = arr [1 1] ;

168 out [1 0] = arr [8] ;

169 out [1 1] = arr [9] ;

170 / / Row 4

171 out [1 2] = arr [1 5] ;

172 out [1 3] = arr [1 2] ;

173 out [1 4] = arr [1 3] ;

174 out [1 5] = arr [1 4] ;

175

176 f o r (i n t i = 0 ; i < 1 6 ; i++)

177 {

178 arr [i] = out [i] ;

179 }

180 }

181

182 __device__ uint32_t rw (uint32_t word)

183 {

184 un ion {

185 uint8_t bytes [4] ;

186 uint32_t word ;

187 } subWord __attribute__ ((aligned)) ;

188 subWord .word = word ;

189

190 uint8_t B0 = subWord .bytes [3] , B1 = subWord .bytes [2] , B2 =

191 subWord .bytes [1] , B3 = subWord .bytes [0] ;

192 subWord .bytes [3] = B1 ; / / 0

193 subWord .bytes [2] = B2 ; / / 1

194 subWord .bytes [1] = B3 ; / / 2

195 subWord .bytes [0] = B0 ; / / 3

196

Appendix C 111

197 r e t u r n subWord .word ;

198 }

199

200 __global__ vo id K_Exp (uint8_t∗ pk , uint32_t∗ out)

201 {

202 i n t i = 0 ;

203 un ion {

204 uint8_t bytes [4] ;

205 uint32_t word ;

206 } temp __attribute__ ((aligned)) ;

207 un ion {

208 uint8_t bytes [4] ;

209 uint32_t word ;

210 } univar [4 4] __attribute__ ((aligned)) ;

211

212 f o r (i = 0 ; i < Nk ; i++)

213 {

214 univar [i] . bytes [3] = pk [i ∗ 4] ;

215 univar [i] . bytes [2] = pk [i∗4 + 1] ;

216 univar [i] . bytes [1] = pk [i∗4 + 2] ;

217 univar [i] . bytes [0] = pk [i∗4 + 3] ;

218 }

219

220 f o r (i = Nk ; i < Nb∗ (Nr+1) ; i++)

221 {

222 temp .word = univar [i−1] .word ;

223 i f (i % Nk == 0)

224 {

225 temp .word = (sw (rw (temp .word))) ;

226 temp .bytes [3] = temp .bytes [3] ^ (Rcon [i /Nk]) ;

Appendix C 112

227 }

228 e l s e i f (Nk > 6 && i % Nk == 4)

229 {

230 temp .word = sw (temp .word) ;

231 }

232 i f (i−4 % Nk == 0)

233 {

234 temp .word = sw (temp .word) ;

235 }

236 univar [i] . word = univar [i−Nk] . word ^ temp .word ;

237 }

238 f o r (i = 0 ; i < 4 4 ; i++)

239 {

240 out [i] = univar [i] . word ;

241 }

242 }

243

244 __device__ vo id ark (uint8_t∗ state , i n t strD , uint32_t∗ eK)

245 {

246 un ion {

247 uint32_t word ;

248 uint8_t bytes [4] ;

249 } kb [4] __attribute__ ((aligned)) ;

250

251 kb [0] . word = eK [strD] ;

252 kb [1] . word = eK [strD+ 1] ;

253 kb [2] . word = eK [strD+ 2] ;

254 kb [3] . word = eK [strD+ 3] ;

255

256 f o r (i n t i = 0 ; i < 4 ; i++)

Appendix C 113

257 {

258 state [i] = state [i] ^ kb [i] . bytes [3] ;

259 state [i+4] = state [i+4] ^ kb [i] . bytes [2] ;

260 state [i+8] = state [i+8] ^ kb [i] . bytes [1] ;

261 state [i+12] = state [i+12] ^ kb [i] . bytes [0] ;

262 }

263 }

264

265 __global__ vo id cudaRunner (uint8_t ∗state)

266 {

267 ark (state , 0 , ek) ;

268 f o r (i n t i = 1 ; i < Nr ; i++)

269 {

270 sb (state) ;

271 sr (state) ;

272 mc (state) ;

273 ark (state , i∗Nb , ek) ;

274 }

275

276 sb (state) ;

277 sr (state) ;

278 ark (state , Nr∗Nb , ek) ;

279 }

280

281 vo id ∗ mainCypher (uint8_t ∗tc , i n t pro)

282 {

283 uint8_t ∗devState = NULL ;

284 cudaSetDevice (pro) ;

285 cudaDevAssist (cudaMalloc ((vo id ∗∗)&devState ,

286 16∗ s i z e o f (uint8_t)) , 266 , t r u e) ;

Appendix C 114

287 cudaDevAssist (cudaMemcpy (devState , &tc , 16∗ s i z e o f (uint8_t)

288 ,cudaMemcpyHostToDevice) , 267 , t r u e) ;

289 cudaDevAssist (cudaDeviceSynchronize () , 268 , t r u e) ;

290 cudaSetDevice (pro) ;

291 cudaRunner<<<1 ,1>>>(devState) ;

292 cudaDevAssist (cudaDeviceSynchronize () , 270 , t r u e) ;

293 cudaDevAssist (cudaMemcpy(&tc , devState , 16∗ s i z e o f (uint8_t)

294 , cudaMemcpyDeviceToHost) , 271 , t r u e) ;

295 cudaDeviceSynchronize () ;

296 cudaFree (devState) ;

297 r e t u r n NULL ;

298 }

299 vo id encrypt_gpu (u n s i g n e d c h a r ∗pBuffer , i n t len , i n t processor , i n t ←↩

gpu_threads)

300 {

301 uint32_t ∗dev_ek ;

302 uint8_t ∗dev_pkey ;

303 uint32_t eK [4 4] ;

304 i n t count=0;

305 i n t i10=−1;

306 i n t index [1 6] = { 0 , 4 , 8 , 1 2 , 1 , 5 , 9 , 1 3 , 2 , 6 , 1 0 , 1 4 , 3 , 7 , 1 1 , 1 5 } ;

307 i n t in=−1;

308 i n t spawn = 0 ;

309 uint8_t∗∗ state ;

310 i n t x=0;

311 i n t y=0;

312 i n t z ;

313 state = (uint8_t∗∗)calloc ((i n t)floor (len / 1 6) +1 ,

314 s i z e o f (uint8_t∗)) ;

315 cudaSetDevice (processor) ;

Appendix C 115

316 cudaDevAssist (cudaMemcpyToSymbol (Nk , &Nk_h , s i z e o f (i n t) ,

317 0 , cudaMemcpyHostToDevice) , 535 , t r u e) ;

318 cudaDevAssist (cudaMemcpyToSymbol (Nr , &Nr_h , s i z e o f (i n t) ,

319 0 , cudaMemcpyHostToDevice) , 543 , t r u e) ;

320 cudaDevAssist (cudaMemcpyToSymbol (Nb , &Nb_h , s i z e o f (i n t) ,

321 0 , cudaMemcpyHostToDevice) , 903 , t r u e) ;

322 cudaDevAssist (cudaMemcpyToSymbol (Rcon , &Rcon_h ,

323 256∗ s i z e o f (uint8_t) , 0 , cudaMemcpyHostToDevice) , 534 , t r u e) ;

324 cudaDevAssist (cudaMemcpyToSymbol (s , &s_h , 256∗ s i z e o f (uint8_t) ,

325 0 , cudaMemcpyHostToDevice) , 920 , t r u e) ;

326 cudaDevAssist (cudaMalloc ((vo id ∗∗)&dev_pkey ,

327 16∗ s i z e o f (uint8_t)) , 317 , t r u e) ;

328 cudaDevAssist (cudaMalloc ((vo id ∗∗)&dev_ek ,

329 44∗ s i z e o f (uint32_t)) , 932 , t r u e) ;

330 cudaDevAssist (cudaMemcpy (dev_pkey , &key ,

331 16∗ s i z e o f (uint8_t) , cudaMemcpyHostToDevice) , 318 , t r u e) ;

332 cudaThreadSynchronize () ;

333 cudaSetDevice (processor) ;

334 K_Exp<<<1 , 1>>>(dev_pkey , dev_ek) ;

335 cudaThreadSynchronize () ;

336 cudaDevAssist (cudaMemcpy(&eK , dev_ek , 44∗ s i z e o f (uint32_t) ,

337 cudaMemcpyDeviceToHost) , 368 , t r u e) ;

338 cudaThreadSynchronize () ;

339 cudaDevAssist (cudaMemcpyToSymbol (ek , &eK , 44∗ s i z e o f (uint32_t) ,

340 0 , cudaMemcpyHostToDevice) , 823 , t r u e) ;

341 cudaThreadSynchronize () ;

342 cudaFree (dev_ek) ;

343 cudaFree (dev_pkey) ;

344 cudaDeviceReset () ;

345

Appendix C 116

346 w h i l e (len>count)

347 {

348 i10++;

349 state [i10] = (uint8_t∗)calloc (1 6 , s i z e o f (uint8_t∗)) ;

350 in=0;

351 spawn++;

352 w h i l e (in<16)

353 {

354 state [i10] [index [in]] = pBuffer [count] ;

355

356 count++;

357 in++;

358 i f ((len==count) && (in > 0))

359 {

360 w h i l e (in<16)

361 {

362 state [i10] [index [in]] = 0x00 ; in++;

363 }

364 }

365 }

366 }

367 i f (gpu_threads>spawn)

368 {gpu_threads=spawn ; }

369 x=floor (spawn /gpu_threads) ;

370 i f (processor==0 && omp_get_thread_num () ==0)

371 {begin=omp_get_wtime () ; }

372 f o r (z=0;z<x ;z++)

373 {

374 i f (z==(x−1) && ((z∗gpu_threads) +gpu_threads)

375 <spawn)

Appendix C 117

376 {

377 y=spawn−((z∗gpu_threads) +gpu_threads) ;

378 omp_set_num_threads (gpu_threads+y) ;

379 }

380 e l s e

381 {

382 omp_set_num_threads (gpu_threads) ;

383 }

384 #pragma omp parallel

385 {

386 cudaSetDevice (processor) ;

387 mainCypher (state [(z∗gpu_threads) +

388 (omp_get_thread_num ())] ,processor) ;

389 #pragma omp barrier

390 }

391 }

392

393 i f (processor==0 && omp_get_thread_num () ==0) {

394 end=omp_get_wtime () ;

395 diff = (end−begin) ∗1000 ;

396 }

397 }

398

399

400

401 i n t main (i n t argc , c h a r ∗argv [])

402 {

403

404 i n t total_pro ;

405 u n s i g n e d c h a r ∗pBuffers =NULL ;

Appendix C 118

406 FILE ∗fp = NULL ;

407 l ong size ;

408 l ong sub_size ;

409 fp = fopen (argv [1] , " r ") ;

410 i f (fp==NULL)

411 {

412 printf (" u n a b l e t o open ") ;

413 }

414

415 total_pro=4;

416 fseek (fp , 0 , SEEK_END) ;

417 size = ftell (fp) ;

418 fseek (fp , 0 , SEEK_SET) ;

419 sub_size=floor ((f l o a t)size / (f l o a t)total_pro) ;

420 sub_size=floor ((f l o a t)size / (f l o a t)total_pro) ;

421 fseek (fp , 0 , SEEK_CUR) ;

422 pBuffers = (u n s i g n e d c h a r ∗)calloc (size , s i z e o f (u n s i g n e d c h a r ∗)) ;

423 fread (pBuffers , s i z e o f (u n s i g n e d c h a r) ,size , fp) ;

424 omp_set_num_threads (total_pro) ;

425 #pragma omp parallel

426 {

427 i f ((omp_get_thread_num () ==(total_pro−1))&&

428 ((total_pro−1)∗sub_size) <size)

429 {

430 sub_size=(size−((total_pro−1)∗sub_size)) ;

431 }

432

433 u n s i g n e d c h a r ∗plaintext =NULL ;

434 plaintext = (u n s i g n e d c h a r ∗)calloc (sub_size , s i z e o f (u n s i g n e d c h a r ∗)) ;

435 memcpy (plaintext ,pBuffers+(omp_get_thread_num () ∗sub_size) ,sub_size) ;

Appendix C 119

436 encrypt_gpu (plaintext ,sub_size ,omp_get_thread_num () ,

437 strtol (argv [2] , NULL , 10)) ;

438 #pragma omp barrier

439

440 }

441 printf (" Done − Time t a k e n : %f ms \ n " , diff) ;

442 r e t u r n 0 ;

443 }

	List of Abbreviations
	List of Tables
	List of Figures
	Abstract
	Introduction
	High Performance Computing
	Encryption and Decryption
	Symmetric Algorithm
	Data Encryption Standard (DES)
	Advanced Encryption Standard (AES)
	Implementation of Symmetric Algorithms

	Asymmetric Algorithm

	Research Objectives
	Methodology of Research
	Contributions
	Organization of Thesis

	Advanced Encryption Standard (AES)
	Introduction
	AES Selection Procedure
	First Round
	Second Round
	Final Round: Selection

	Dissimilarities between Rijndael and the AES
	Overview of AES
	Working of AES
	Byte Substitution
	Shift Row
	Mix Columns
	Galois Field Multiplication

	Key Addition

	Summary

	Literature Review
	Introduction
	Parallel Implementation of AES
	Software Approach
	Central Processing Unit
	Graphical Processing Unit

	Hardware Approach

	Summary

	Parallel Implementation of AES using MPJ Express on HPC Platform
	Introduction
	Multicore and Cluster Systems
	Parallel Programming
	Parallel Programming Model
	Data Parallelism
	Message-Passing Programming
	MPJ Express Library

	Motivation
	Methodology
	Algorithm
	Pseudo Code

	Summary

	Results
	Introduction
	System Specification
	Performance Parameters
	Parallel AES in Java using MPJ Express
	Multicore Platform
	Cluster Platform

	Parallel AES in C
	Multicore Platform
	Cluster Platform

	Parallel AES in C using CUDA
	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix
	AES Encryption with Java using MPJ Express
	AES Encryption with C
	AES Encryption with CUDA

