
 Manual Testing Execution Time Estimation

By

Muhammad Imran Khawar

Fall 2015-MS-15-(CSE)

00000119432

Supervisor

Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

July, 2019

Manual Testing Execution Time Effort Estimation

By

Muhammad Imran Khawar

Fall 2015-MS-15-(CSE)

00000119432

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

July, 2019

i

Declaration

I hereby certify that I have developed this thesis titled as “Manual Testing Execution Time

Effort Estimation” entirely on the basis of my personal efforts under the sincere guidance of my

supervisor Dr. Wasi Haider Butt. All of the sources used in this thesis have been cited and contents

of this thesis have not been plagiarized. No portion of the work presented in this thesis has been

submitted in support of any application for any other degree of qualification to this or any other

university or institute of learning.

Signature of Student

Muhammad Imran Khawar

 Fall 2015-MS-15-(CSE)

 00000119432

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic, grammatical

and spelling mistakes. Thesis is also according to the format given by the university.

Signature of Student

Muhammad Imran Khawar

Fall 2015-MS-15-(CSE)

 00000119432

Signature of Supervisor

 Dr. Wasi Haider Butt

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST College of Electrical & Mechanical Engineering

(CEME). Details may be obtained by the Librarian. This page must form part of any such

copies made. Further copies (by any process) may not be made without the permission (in

writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of Electrical & Mechanical Engineering (CEME), subject to any

prior agreement to the contrary, and may not be made available for use by third parties

without the written permission of the CEME, which will prescribe the terms and conditions

of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of Electrical & Mechanical

Engineering, Islamabad.

iv

Acknowledgements

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work

at every step and for every new thought which You setup in my mind to improve it. Indeed I could

have done nothing without Your priceless help and guidance. Who so ever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed none

be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of

walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Wasi Haider Butt for his

help throughout my thesis and also for Requirement Engineering course which he has taught me.

I can safely say that I haven't learned any other engineering subject in such depth than the ones

which he has taught.

I would also like to express my gratitude to my very kind Engr. Dr. Shoab A Khan, Head

of Department of Computer Engineering; from the deep core of my heart for all he has done for

me to complete this work. Without his kind advice, encouragement, guidance and support, it was

impossible for me to carry out this task.

I would also like to thank Dr. Urooj Fatima, Dr. Arsalan Shaukat and Dr. Usman Akram

for being on my thesis guidance and evaluation committee.

Finally, I would like to express my gratitude to all the individuals who have rendered

valuable assistance to my study.

v

Abstract

In software development practices of software industry. Testing plays a crucial role in the software

development life cycle and it does so by verifying and validating the software’s quality.

Since testing is thought to be a high-cost process in software development and the fact that the

budget for testing the product is limited, finding the execution time needed for software testing

activities like the prioritization, scheduling and progress monitoring of test cases is of significant

importance.

Manual testing remains a prevailing and significant approach to validating software applications,

particularly in certain areas such as domain-specific testing. To carry out test planning,

prioritization and progress tracking, it is essential to know the execution time of test instances. In

this work, we apply, assess and present on the basis of the specifications of test for execution time

estimation and prediction of manual test-cases. Our method operates by extracting timing data in

manual test specification for different steps. This data is then utilized for prediction of maximum

time for those test steps that were not executed. An approach for time of execution prediction and

estimation for manual test-cases is suggested in this thesis. The technique utilizes test

specifications and historical information accessible from test instances that were previously

performed. Our strategy works by acquiring timing data from each and every step of test instances

earlier carried out.

The gathered data is used from their test specifications to predict the execution period for non-

executed test instances. Classification test case scores are extracted from the test specification

contained in the Test Manager Tool and plotted with the acquired timing information.

Classification is used on Test Cases to estimate the execution period of non-executed sample

instances after estimating the time from this mapping. LMKR performed a case survey where the

suggested technique is applied and the outcomes are validated. The results obtained show that the

predicted time of execution of studied test cases is close to their actual time of execution.

Key Words: Test Case Point (TP); Quality Assurance (QA); Function Point Analysis (FPA);

Software Test Estimation; Test Case Management; Source Lines of Code (SLOC)

vi

Table of Contents

Declaration ..i

Language Correctness Certificate ... ii

Copyright Statement ... iii

Acknowledgements ...iv

Abstract .. v

Table of Contents ..vi

List of Figures .. viii

List of Tables ...ix

CHAPTER 1: INTRODUCTION... 1

1.0 Introduction .. 1

Background .. 2

1.1 Problem Statement behavior .. 4

1.2 Structure of Thesis Report ... 4

CHAPTER 2: LITERATURE REVIEW AND RESEARCH METHODOLOGY ... 6

2.1 Literature Review ... 6

2.1.1 Related Work ... 7

2.2 Case Study Design ... 11

2.2.1 Research Questions .. 11

2.2.2 Case and Subject Selection .. 11

2.2.3 Data Collection Procedures.. 12

2.2.4 Analysis Procedures ... 12

2.2.5 Validity Procedures.. 12

CHAPTER 3: DATASET COLLECTION .. 13

3.1 Introduction .. 13

3.1.1 Dataset ... 13

3.1.2 Manual Testing Dataset ... 13

3.2 Dataset Collection Methods ... 14

3.2.1 Interviews and Questioners .. 14

3.2.2 Test Manager ... 14

CHAPTER 4: PROPOSED MODEL FOR ESTIMATION USING CLASSIFIER .. 15

4.1 Proposed Model ... 15

4.2 Test-Cases .. 16

4.3 Pre-Processing of Data ... 16

4.3.1 Anomalies Removal ... 17

4.3.2 Merging Duplicates.. 18

4.3.3 Removing Unwanted ... 18

vii

4.4 Classification and Prediction .. 18

4.4.1 Classifiers .. 18

4.4.2 Cross Validation .. 19

4.4.3 Voting .. 19

4.5 Estimation .. 20

CHAPTER 5: RESULTS AND DISCUSSION ... 21

5.1 Building Dataset ... 21

5.1.1 Pre-processing Data ... 21

5.2 Classification .. 22

5.2.1 Rapid.Miner ... 22

5.2.2 Rapid Minor Process .. 22

5.2.3 Classification ... 22

5.3 Training and Testing .. 24

5.3.1 Naïve Bayes ... 25

CHAPTER 6: CONCLUSION AND FUTURE WORK .. 26

6.1 Conclusion ... 26

6.2 Future Works.. 27

REFERENCES .. 28

APPENDIX .. 34

viii

List of Figures

Figure 2.1 Flow chart showing the process followed for literature review ... 8

Figure 3.1 Test Cases in Test Manager .. 15

Figure 3.2 Data Process Diagram ... 15

Figure 5.10 Classification Process on Unseen Data .. 25

ix

List of Tables

Table 3-1: Attributes for Test-Case DataSet ... 23

Table 5-6: Performance.Review of proposed modal for Test-Case complexity detection 23

Table 5-7: Classifier Comparison ... 23

1

 CHAPTER 1: INTRODUCTION

1.0 Introduction

Software testing is significant for delivering high quality software projects [1, 2]. Program

testing is overall costly and a time taking procedure. It is even truer for manual testing which

requires a tester to complete tests on the system under test (SUT) without utilizing automation [3].

Test automation is currently turning into a well-known technique to cut the expenses related with

software testing; a computer can pursue and finish the testing quicker than a human being and can

finish the tests medium-term to introduce the outcomes in the first part of the day [4, 5]. The time

and exertion spared in actual testing can be spent on composing the program for testing. Automatic

testing may require more effort first and foremost relying upon the sort of utilization to be tried

and the automation tools that are picked [6]. Furthermore, test automation right now can't contend

with human instinct, derivation, inductive thinking, nor would it be able to change ways in a test

to examine something that had not been recently estimated [1]. In this way, manual.testing.still.has

a.significant.job in the product testing procedure and it is hard to supplant it totally.

In the course of recent years, the industry has begun to take interest for finding approaches to

improve efficiency and quality of testing [7, 8]. Effective software testing procedures cut the

general expenses of testing and result in prior issue recognition [9, 10, 11], and furthermore

consider a few factors, for example, inclusion, test technique, test execution, arranging and

investigation of test outcomes. [12, 13]. In this point of view, test choice and prioritization are

connected to one another and are quickly turning into an indistinguishable piece of a general testing

strategy [14]. So as to do test choice, prioritizing and scheduling, there are a few proposed

strategies [15, 11, 9, 16], where the underlying issue.of.test.prioritization.is.recognized.as.a

multi.criteria.problem, which means a specific criteria must be created before execution. The

execution time is a key factor that can effect test booking, prioritization and execution observing

In our previous works [17, 18], we.suggested.a.multi.criteria.decision.support.system

(DSS) for selection and prioritization of manual test cases for integration while taking other.factors

such as.time, .dependency, .coverage into consideration.

2

This research paper is an enhanced version of [19], which presents a new methodology for

evaluating and predicting the implementation time of manual tests depending upon specifications

and historical data available on the past tests. The execution time is organized into following two

categories: 1) Maximum Time (MT) and 2) the Automatic Time (AT) whereas MT stays constant

while AT can vary. Afterwards we have given formal definitions of MT and AT. Our suggested

technique separates timing data for different.activities. It is an integral step of our technique that

language.parsing.of.specifications is done to recognized word groupings which are then used

accordingly for checking if current timing data on various test exercises is accessible or not. In

addition, regression models are employed greatly to anticipate the actual time for manual tests.

Our suggested technique for surveying and anticipating the execution time of software testing is

as follows: We quantified the time of manual tests through perceiving few essential components

in tests, examining the historical test data. Since the actual time for tests is on a very basic level a

time dependent on system, the. Polynomial.and.spline.regression.representations are utilized for

giving an estimate of this time. Likewise, the forecast blunder of the relapse models has been

evaluated in order to survey the expectation calculations. A study at LMKR is moreover done to

gauge the suggested technique.[20]. The association of this postulation is spread out.as pursues:

Section 2 gives an establishment of the underlying issue and besides an audit of research on

execution time figure, Section 3 depicts the proposed strategy. An advanced relevant examination

has been arranged in Section 4, threats to validity and limitations are discussed in Section 5.

Section 6 is about the discussion and some future course of the present work and finally Section 7

wraps up the whole thesis.

This chapter covers the motivation for the selection of topic and background works and

problem statement.

Background

Testing is one of the most important activity in software development [7] for both the

developers and the software users. It is a process in which a software product is being analyzed to

compare and distinguish the actual and expected results. In other words, it is a process of

identifying faults in the software. It is also used to check the quality of software product. Software

testing ensures the reliability of the product. In order to ensure the maximum reliability of working

3

software, researchers have identified several techniques at different testing levels namely unit,

integration and system testing. A software is composed of several modules and such modules are

separately tested in Unit testing. It requires deep knowledge about the modules and it can be

performed in the initial stages of the development of software. Only 65 % of errors can be detected

in this level of testing [8]. The next level of testing is the integration testing. It is also known as

integration and test (I&T). In this testing level, different modules are integrated and tested for

errors. It aims at testing the variable exchange between the modules and inter-module

communication [9]. In System testing, complete working of the software is tested for the user-

specified requirements. Also, it is tested whether the software is acceptable in the market, which

is also termed as Acceptance testing. This research work will focus on the test cases from

integration testing. In the process of Software Development Life Cycle (SDLC), testing of software

is an important phase [10]. It is considered as an expensive and time consuming activity which

requires more than 50% of software development cost. This percentage will be higher in safety

critical applications. A software is composed of several units called as modules or components.

After the individual units are tested separately, it is necessary to combine them and see how they

interact with each other to form a complete system. If system still has defects, then the severity of

the defect decide whether to proceed onto the integration phase or to run both the unit testing and

integration testing in parallel. For example, there may exist some error like “404: Page not found”,

which makes the system incomplete and leads to integration issues. During integration testing,

hardware integration with the software is also tested. This is to test how the hardware behaves on

the software under test. The test plan for the integration testing will be written before performing

integration testing. One of the part of integration testing is interface testing which is used to test

the interface between components or modules in a system [11]. A test specification consists of

number of test cases. In the manual testing there are number of steps in the single test case. The

test steps consists of actions, input data and expected output from the system. These actions are

the activities conducted in the system being tested. This is to ensure that it has same behavior of

the system for expected and in the actual.

4

1.1 Problem Statement behavior

The aim of this research is to perform estimate manual testing execution time estimation.

In order to achieve first we need to collect the test case data sets then perform the Test Point

Analysis

Given a program Prog = {P1, P2, … , Pn} contains of a set of namespace N, a namespace

that contains of a set of classes N = {C1, C2, … , Cm}, a class contains of set of methods C =

{M1, M2, … , Mk}.

A set of test-cases is described to check the program for bugs including class, techniques,

number and kinds of inputs, excepted outputs, and status. The test case set is described as T = {t1,

t2, … , tx}, where ti = { a1, a2, a3, …., at } and type (a) {Integer, string, double, bolean, char,

byte} is a test-case described to cover one of the following:

Class Coverage: Ccov(ti) = {C1, C2, … , Cm1} C covered by ti

Method Coverage: Mcov(ti) = {M1, M2, … , Mk1} M covered by ti

Input Coverage: Icov(ti) = |a| covered by ti

In order to identify the number of generated complex test cases, two classifiers are used to

find out whether a test-case is complex or normal. The two methodologies are being used Naïve

ayesian and the other one is Decision Tree. For prediction of status of the test-cases we used these

three principles. Specifically, a test-case is marked as complex if it is satisfied with all of the three

principles, else; the test-case is declared to be normal. The three principles are:

Ɐ (i,j) where i ≠ j , (Ccov(ti) = Ccov(tj)) C

Ɐ (i,j) where i ≠ j , (Mcov(ti) = Mcov(tj)) M

Ɐ (i,j) where i ≠ j , Icov(ti) = Icov(tj))

1.2 Structure of Thesis Report

The structure of this thesis report is as follows:

• Chapter 2 presents the methodology used for the thesis. It also focus on the literature study

in the area of software effort estimation and drawbacks of the methods identified from the

literature. Another methodology used for this thesis is case study. An overview and design

of the case study is also defined in this section.

• Chapter 3 describes the architecture of the implemented system to predict and estimate the

execution time of test cases. It focuses on the creation of a database and the source from

which the data are extracted to build our database. Implementation of the proposed

algorithm is also explained in this section.

5

• Chapter 4 presents the input test cases used to test our implemented algorithm and the

obtained result. The results are evaluated and presented in this section.

• Chapter 5 discusses the challenges faced during the implementation, limitations of the

proposed approach and some of the techniques used to overcome the limitations.

• Chapter 6 concludes the report with some future works.

6

CHAPTER 2: LITERATURE REVIEW AND RESEARCH

METHODOLOGY

The first phase in this thesis work is the literature review of existing studies conducted in

the area of test effort estimation followed by an industrial case study.

2.1 Literature Review

One of the research techniques we used in this thesis report was the systematic literature

review, to identify the related work and existing approaches used for time of execution prediction

and estimation of test-cases. This review helped in finding a suitable method for prediction and

estimation of the time execution from manual test-cases written English which is a natural

language.

The databases used for the literature review are as following:

• Scopus

• IEEE Xplore

• Google Scholar

In this process, we started with Scopus followed by IEEE Xplore and Google Scholar to

find relevant literature. The selection of these sources is motivated by its extensive coverage of

different types of academic sources such as scientific journals, books, conference papers and so

on. The queries used for searching are as following:

 (((Prediction) OR (Estimation)) AND (Time) AND (Test))

 (((Prediction) OR (Estimation)) AND ((Time) OR (Effort)) AND (Test))

 (((Prediction) OR (Estimation) OR (Guess)) AND (Time) AND (Test))

 (((Prediction) OR (Estimation)) AND (Time) AND ((Test) OR (Execution)))

 (((Prediction) OR (Estimation)) AND (Time) AND ((Test) OR (Execution) OR (Execute)))

 (((Prediction) OR (Estimation)) AND ((Time) OR (Effort)) AND ((Test) OR (Cases)))

 (((Prediction) OR (Estimation)) AND (Time) AND (Test) AND (Manual))

These search queries have resulted in 67,684 papers. To narrow down the search, the papers

which were published in “Computer Science” subject area and during the last five years have been

selected. This reduced the sample size to 1,282 papers. From the obtained results, each and every

papers was analyzed based on the title. If the title is related to our search, then in order to obtain

7

more information, the abstract, introduction and conclusion of the documents were carefully read.

By the process, relevant papers in the related field of test effort prediction or estimation were

identified. When a paper in the field of our study is obtained from Scopus, the citations to that

paper have been found using Google Scholar. The papers relevant to our search is obtained using

“cited by” feature of Google Scholar. 96 relevant papers were gathered and analyzed. Among

them, 12 were identified for our study as they were in the field of test effort prediction and

estimation. The overall process followed for the literature review is depicted in Figure 1.

2.1.1 Related Work

In [16], Nageswaran et al., proposed a technique called Use Case Point (UCP). In this

method, use cases are considered for the estimation of time for execution of test. Initially, the

number of actors and use cases are identified for this approach. In addition to that, requirements of

software, factors used either technical or environmental for estimation and time for execution of

time. Using this technique, the estimation of the test effort can be measured in the initial level of

development of software because it does not depend on LOC. This UCP strategy is utilized for

estimation of exertion for testing effort all in all which incorporates test-plan, structure, execution,

observing and revealing. In any case, this technique isn't utilized to catch every single occurrence

of test action, for example, single test-case execution [17].

8

Figure 2.1 Flow chart showing the process followed for literature review

In [18], an approach similar to UCP [16] has been proposed that is known as cuckoo

technique for searching. This approach is also applied on use-cases for effort estimation of testing.

This mainly differentiate search technique cuckoo and UCP. The UCP assigns weightage or a fixed

value to their parameters such as actors or use-cases, whereas cuckoo search assigns a range of

values for each and every parameters. This range of values assigned on the parameters can be

either static (fixed) on dynamic (changing). It depends on the target system in which the estimation

is done. This methodology additionally assess the ability of the team of development and testing.

Based on all these parameters, test effort is estimated. So as to apply this strategy for assessing the

effort of another undertaking, we need chronicled information from at any rate one anticipate.

9

Since the information is required from both the designers and analyzers, it depends on human for

effort estimation.

In order to use this approach for estimating the effort of a new project, we require previous

data from a minimum one project. Since the data is needed from both the testers and developers,

it relies on human for effort estimation. This is considered as one of the drawback of this approach.

Another method has been introduced in [19] called as Accumulated Efficiency Method which also

uses use case for estimation. This method is used to estimate the execution effort for testing based

on the efficiency of the team. Along with the use cases, LOC is also used for software test

estimation. This approach is applicable only for manually executed tests and do not apply for

automated test execution. Usually small test teams prefer manual testing rather than the automated

testing because of budget restrictions. The method does not require any information from historical

data. Also, it does not use any natural language processing for estimation. However, estimation

cannot be completed in the initial stages in development of software, because it uses LOC as one

of the input. This method is also used to estimate the complete effort for testing instead of effort

for single test-case execution. In order to minimize the usage of use cases for estimating the test

execution effort, Nageswaran et al., proposed another method in [16] called as Function Points

Estimation (FPE) method. This approach uses function points to estimate the execution effort for

software testing. It requires some factors like transaction and person-hours to estimate the effort.

These values are obtained from the previously executed projects of the same domain. These details

are not easy to collect. Therefore, it suffers adaptive problems [17]. And also it is costly to

implement. Therefore, this method is not widely used for estimation of software testing effort.

Another direction for estimating test execution is carried out in [20] called as Case-Based

Reasoning (CBR). This approach used data mining techniques to classify the data. It is a reasoning

approach in which previous cases are considered and reused to solve the problem of test effort

estimation. This method uses data from similar cases (or situations) and hence it is difficult to

identify or solve a problem if new case arrives. In such scenario, there won’t be any data to be

reused to solve the problem. Even if the case is same, adopting same solution for similar problem

may not yield the same result. Due to such limitations, this approach can be used only in small

projects. In [21], Sharma et al., proposed the Software Requirement Specification (SRS) method.

It uses SRS document to estimate the execution effort. Since this approach uses Requirement

Specification document, the estimation can be done in very initial software development stage.

10

This method works in such a way that requirements are extracted from requirement document and

complexities are mapped to them based on the level of requirements. With the assistance of the

weightage alloted to the necessities dependent on multifaceted nature, test effort is evaluated. This

strategy utilizes prerequisite specification rather than test specification. Therefore, it lacks clarity

over test specifications. In [22], Aranha et al., overcome the above problem by using specification

of test rather than specification of requirement. They created an estimation model that estimates

the software test execution effort based on the test specifications. This method extracts test steps

of test cases from the test specification document. It uses size and execution points for estimation

the test execution effort. The points for execution are fixed based on the previous data which stores

data of executed test-cases previously. For this method, test specifications should be written in a

CNL. CNL is similar to that of natural language. The only difference is that the test specifications

written in a CNL uses standard format (some restrictions in the usage of lexicon and grammar). In

this way, there is no probability of composing an activity from numerous points of view. This

methodology identifies that every single test step has one primary action word and zero or

numerous contentions supporting the fundamental action word. Every single action word identifies

in a test step speaks to the activity and contentions adds more data to the activity. The entire process

of this approach for estimation the time execution of test is given by,

• Once the test specification file is obtained, each and every line is parsed for verb

and supporting arguments

• An execution point (measure of size and execution complexity) is assigned to each

and every step

• Add all the execution points obtained from the previous step

• Estimate the time used in execution of test for test-cases in man-hours

When utilizing this technique for effort estimation, experiments ought to be promptly

accessible. Likewise, this strategy uses test ventures for time used in execution estimation. In this

manner, the estimation expense becomes higher. Each time, the connection between test execution

time and execution focuses must be demonstrated. In the proposed modal, we also utilized

specifications of test for time regarding estimation, without the use of points for execution as in

above method. In addition to the size of the test cases, we consider the waiting time of the test

steps for test effort estimation. I also build a database that consists of previous data of test cases

executed in history. Another difference with above model is that I use MT the time for execution

11

for estimation. The MT of test cases comes from a tool called Script Editor (Section 3.1.3), where

testers of LMKR fix an upper bound of time within which the test cases have to be executed. Along

with the MT, I use log files from previous execution to predict AT.

2.2 Case Study Design

In addition to the literature review, a case study was also used as our research method. I

communicated with LMKR testers personally and required data were collected from them. The

collected data includes test execution logs. Such data are used to find the time for execution of

previously executed test-cases. Based on the obtained data and the method identified from the

review of literature, a modal is proposed to predict and estimate the execution time of manual test

cases.

2.2.1 Research Questions

The objective of this case study is refined into a set of research questions as follows. These

questions will be answered in our study analysis.

RQ1: How can the execution time of test cases can be estimated and predicted?

RQ2: How to implement and validate the execution time prediction and estimation

classification?

2.2.2 Case and Subject Selection

This case study targets at finding a method for prediction and estimation of time for

execution based on the test-cases that were executed before in LMKR. GeoGraphix project from

LMKR is considered as a case for our study. GeoGraphix is the underground subway train used as

public transportation in Stockholm, Sweden. This project is called as MOVIA C30 metro. The new

fleet is running on the Red Line from northeastern Stockholm to the sub-urban part of south-west,

crossing the city centre. These vehicles have driver’s cab in both sides of train and also built with

driver-less functionality. It satisfies environmental standards such as efficient energy usage and

built using recyclable materials [23]. The test cases and test specifications obtained from this

project are used as the input for our case study.

12

2.2.3 Data Collection Procedures

The data collection involves the use of direct method [24] and collecting di.e., personal

communication (informal interviews) with LMKR Domain Testing team. In other words, the

subjects are contacted directly and the real test cases are collected. This collected data acts as the

input/starting point of the research.

2.2.4 Analysis Procedures

The time mentioned in the Test Manager tool (Section 3.1.3) and log files are the main

source for our analysis procedure. The test case also contains time such as WT. These times are

utilized for our algorithm. MT, WT plays a major role in the execution time estimation. There are

the cases where the test case does not contain specific times. Such cases will use our database. The

database is searched across the ‘verb’ and ‘arguments’ for the execution time (Section 3.1.3).

2.2.5 Validity Procedures

The validity of collected data is verified throughout the phases of case study. The collected

data is analyzed to define a prototype/algorithm to predict and estimate the execution time. Once

it has been done, the data is validated in the implemented prototype. The execution time from the

proposed solution is validated with the actual execution time of the selected test cases.

13

CHAPTER 3: DATASET COLLECTION

3.1 Introduction

This chapters provides the brief overview of the term Data Set or Dataset. More on detailed

information on the Test Cases and their complexities. The procedures to get the data or create the

datasets for personal use or commercial use. The TFS repository to gather the datasets for the

analysis of the proposed models and research methods.

3.1.1 Dataset

A collection of the Data and information is called the Dataset. Most commonly the dataset

is representing a single relation of the database. The data set contains the properties for every

object, like height and weight. Each value is known as a datum. The dataset may consist of data

for one or more than one members that corresponds to the number of rows [25].

3.1.2 Manual Testing Dataset

The datasets of test cases consists of complex and normal test cases.

Table 3-1: Attributes for Test-Case DataSet

Name Description Type

TestCaseID An identifier for a test-case Number

TestCaseClassCoverage The class number covered by the test case. We

choose 2 classes, that range from 1-2

Number

TestCasePathCoverage The paths covered in the test-case Number

TestCaseMethodCoverage The methods covered in the test-case Number

TestCaseBrancheCoverage The branches covered in the test-cases. Number

TestCaseRunTimeDurartion The time required for execution of test-case Number

TestCaseInput The test-case inputs varchar

TestCaseOutput The test-case expected outputs varchar

TestCaseStatus An Indicator to represent the test-case faults or not.

If the status shows fail, it mean that fault is

detected

T/F

[0, Fail]

[1,

Pass]

14

TestCaseCycomaticComplex

ity

The cyclomatic complexity for the test-case Number

TestCaseSteps The steps for execution of test-case Number

TestCaseClassLabel An identifier of Classlabel Normal=

0

Complex

=1

3.2 Dataset Collection Methods

3.2.1 Interviews and Questioners

The Dataset collection and data mining techniques are directly connected to each other.

Most simple and traditional way to create a dataset is to create the questionnaires and ask questions

manually. Manual collection methods for example paper based and electronic survey are used to

creation of the test-cases, but the dataset collected in such a manner can contain biasness and

uninterested behavior of the persons.

3.2.2 Test Manager

The data is extracted from Test Manager Database by exporting the required attributes of

the Test Case work item. Through forums the data that can be collected is limited in the size and

quantity.

15

Figure 3.1 Test Cases in Test Manager

Figure 3.2 Data Process Diagram

CHAPTER 4: PROPOSED MODEL FOR ESTIMATION USING

CLASSIFIER

Our strategy to estimating the test-case effort comprises of three steps. We begin by getting

the test-cases for the system being tested and producing them. Then we construct our test-case

dataset based on the test-case's most significant attribute. Finally, we recognize the complex test-

case, pick the classifier and rules to be applied and extract the outcomes for this. Below we describe

each of these steps in detail.

4.1 Proposed Model

Our Proposed framework is to detect the complex Test cases then apply the classification

methods for the evaluation.

Extract Test

Case Data Disk Test Manager

16

Figure 4.1 Proposed Model

4.2 Test-Cases

A TEST-CASE is a set of conditions or variables under which a tester will determine

whether a test scheme meets or operates properly. The method of creating test-cases can also assist

to identify issues in an application at requirement or design phase.

4.3 Pre-Processing of Data

Data pre-processing is essential part of the Time estimation Analysis. Data sets are often

noisy. This need to handle data issue before classification as data set is required to test and train

our model and unclean data can affect classifier results. Pre-processing of data have several steps

some of them are removal of ambiguities and anomalies, either merge or remove the same nodes

to remove data repetition and establish pillars in multi-layer structure. Pre-processing also includes

17

the transformation of the data into desired format and saving the required file at desired

location.[27].

 Figure 4.2 Pre-processing flow

4.3.1 Anomalies Removal

4.3.1.1 Missing Values

 Remove the values with the missing terms

o Removal should not delete more than the 6% of the Data

 Fill the missing values

o Either replace with frequent or average value

 Use the predicting algorithm to predict the missing values

o Decision Tree

o Classification Model

o Regression

4.3.1.2 Aggregation

Purpose:

•Noisy Data

•Duplicates Nodes

•Unwanted Data

Un-Processed
Data

•Anomalies Removal

•Merging Duplicates

•Removing Unwanted Test
cases

•Data Annotation

Pre-Procssing
•Clean Data

•No Duplicates

Processed
Data

18

The Purpose of the aggregation is to remove the irrelevant features and merge the same

attributes. For example date and time can be merged, similarly Month, day and year can be

combined to create the single attribute. Aggregation provides the following benefits:

 Reduction of the Data

 Abstract view

 Stable data

4.3.1.3 Irrelevant features

Irrelevant features, we mean sometime the data contain such information that is of no use

in the analysis and visualization. Several attributes have information that is not useful in the

analysis and prediction e.g. Students' ID is often irrelevant to the task of predicting student’s grades

4.3.2 Merging Duplicates

In Test suite there is one Test case can have more than one similar Test case steps.

4.3.3 Removing Unwanted

The Dataset collected by anyways can have various anomalies. The Dataset can have the

attributes that are not relevant to our research. The Dataset can have various steps that are not

reliable or can be fake.

4.4 Classification and Prediction

Classification of data is very popular in machine-learning technique. Classification uses

the given input to predict the outcome. Classification is used to solve out the wide range of the

problems i.e. either simple or complex problems [28] [29].

4.4.1 Classifiers

Classifiers use the phenomenon of training and testing. They divide the provided data into

two disjoint sets i.e. training and testing subsets. f(x) =fxtr + fxte Training fxtr and testing fxte

subsets contains the objects of the both classes i.e. (Complex and Normal). The objects in these

subsets are added randomly, so that the subsets are biasness free. The selected classifier is trained

using the subset fxtr for training and performance of the model is evaluated by testing the subset

fxte.

19

4.4.1.1 Naïve Bayes

Naive Bayes is a very high biased, very low in variance classifier, and it can generate a

perfect model even with a very-small dataset. It is very simple in use and very inexpensive for

computation. Normally used for text categorization, spam-detection, sentiment-analysis, and

recommender systems.

4.4.1.2 Decision Tree

Decision-tree is a tool for making decision that apply graph like a tree for prediction of

possible results. In Decision Tree we divide the complete dataset into smaller subsets sets and

generates decision tree. The main algorithm used for decision trees is known as ID3 created by J.

R. Quinlan.

4.4.2 Cross Validation

Cross validation is process which is used to estimate and evaluate the performance of a

created and designed model. The operator that is mostly for Cross-validation is mostly used for

testing the performance of the operator that was trained used in the practice.

Cross Validation is process that is dependent on two sub processes. These two processes

are called the testing sub phase and the training sub phase. During the training phase on the labeled

dataset the model is trained. Then this trained model is applied in the testing phase. The results of

the testing phase determines the performance of the trained model.

Example Set is divided into K subsets of equal sizes. The K-1 subsets are than used for the

training and the remaining one is used for the testing of the trained model. The process is repeated

K many times such that the data once used for the testing is not tested again. The results from all

the iterations are combined or either averaged to produce the single output estimation.

The trained model may perform well on the unlabeled data of same training and testing

dataset. This means that the model may perform well on the testing data, but for the unseen and

generalize data the model may be worse than the testing outcomes.

4.4.3 Voting

Operator of Rapid Minor used for voting to combine the prediction power used for more

than one classifiers to attain better results than the results of the only one classifier was used.

20

Rather than training one classifier two classifiers were trained to predict the possible outcome,

these classifier are Cdt, CNaive.

For each test example 𝑣𝑖, 𝑎𝑖 is computed for n classifiers trained using feature vector

𝑓𝑣𝑖.Voting methods depending on majority prediction finally predict 1 (Complex) or 0 (normal

testcase).

𝒂 = 𝒗𝒐𝒕𝒆(𝒂𝒊(𝒄) , 𝒂𝒊(𝒄+𝟏), . . , 𝒂𝒊(𝒄+𝒏))

Where
ai(c)=Cknn(fvi),

ai(c+1)=Cdt(fvi),

ai(c+n)=Csvm(fvi).

It is possible to classify testing operations into four major categories, test planning, test

design, test execution, and defects reporting. During the course of the project, test execution and

reporting of defects may be carried out multiple times for a single test case. However, all of these

operations are taken into consideration by the size measured in Test Case Point, assuming that

each activity is carried out once. It is possible to generate the allocation of testing effort using

historical information. The distribution of test phase effort shown in Table 6 was achieved from

the same study conducted to collect the above-mentioned constants. Again, these values represent

primarily the experience in LMKR and that was encouraged to modify these figures using their

own or previous data.

4.5 Estimation

Activities for testing can be categorized into four areas, test organization, test arrangement,

test execution, and flaw declaring. Of these activities, test execution and disfigurement

enumerating may be played out various events for a lone investigation during endeavor. In any

case, the size evaluated in Test Case Point thinks about these activities, tolerating that each activity

is performed once. The assignment of effort used in these activities licenses assessing the effort

used in case the test-execution & flaw uncovering activities are performed more than once. The

scattering of testing effort can be made using chronicled data. The scattering of effort of testing

stages showed up in Table 6 was gained from a comparative diagram performed to assemble the

constants depicted beforehand. Afresh, these characteristics generally reflect the contribution in

target affiliation, and consequently, the evaluators are encouraged to change the numbers based on

their own understanding or recorded data previously.

21

CHAPTER 5: RESULTS AND DISCUSSION

This Chapter of the Research includes results and analysis of the proposition which is

identification of the important test cases in the testing.

5.1 Building Dataset

The data sets of our research have several features. Table 5 has all of these attributes listed. Several

plugins and tools have been used to get the values of the mentioned attributes. For instance to

measure the values of coverage for class, path, method; Eclemma [20] a plugin in Eclipse has been

used. We have used Team Explorer[21] which is also a plugin in Visual Studio to calculate runtime

duration required for each test case. Lastly we use Test Manager [20] to calculate cyclomatic

complexity. There are total 493 test cases in the data set with a total of 10 attributes and Class

labels. The normal test cases are 268 whereas 225 are complex test cases indicating a balanced

dataset. Lastly we have provided the inputs outputs and status of each test case. We have used

Replace Missing Value Filter to substitute the missing value by mean value of other instances in

the same attribute. There were many proposed tools including RAPID MINER, WEKA, &

ORANGE however we chose RAPID MINER for this purpose because of its higher accuracy and

as well as the fact that it has different types of classifiers. When applied to different data sets Naïve

Bayes classifier is the best classifier because of its accuracy [22]. In order to generate different

patterns and set of rules we have applied machine learning techniques on Rapid Miner which

include Naïve Bayes and J48 Decision Tree for deciding whether a test case is normal or complex.

As described in Section 2 the following are the rules used to predict whether or not a test case is

complex:

5.1.1 Pre-processing Data

The data collected by the crawler is preprocessed before apply any of the graph theory. The

Missing values were handled, various nodes have been merged as they were pointing towards the

same person (Node). The Data is then visualized and analyzed through Gephi Visualization

software.

22

5.2 Classification

5.2.1 Rapid.Miner

Rapid.miner.is an open source software.tool that provides the users the platform to train

and test the classification models for various applications [33]. We have used the Rapid miner to

test and train the proposed hybrid classifier to predict the complex test cases.

5.2.2 Rapid Minor Process

The Figures below depicts the model process of the classification. The Figure 1

(Appendix) shows the main and level 0 of the Process having Dataset Retrieval and Cross

Validation connected to Output. While Figure 2 (Appendix) show the level 1 of the process that

is inside of the cross validation operator. It contains the operators to measure the performance and

prediction classifiers. And the 2nd level of the process is the Voting operator which combines the

generated result of all three classifiers is shown in Figure 3 (Appendix).

5.2.3 Classification

The detailed results of the proposed schema is depicted in the following section. The

performance rating and throughput of proposed schema is calculated using various measures, these

measures include:

 Sensitivity

 Specificity

 Accuracy

 (ROC) curves (AUC)

These measures are calculated using Eq. (6.1), Eq. (6.2) and Eq. (6.3)

respectively.

Sensitivity =
 TP

(TP + FN)
 (6.1)

Specificity =
TN

(TN + FP)
 (6.2)

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
 (6.3)

23

 TP are the number of the complex test cases that are identified correctly by the model

known as true positive

 TN is called the true negatives. It is the number of the normal nodes that are correctly

identified.

 FP means false positives, it defines the number of the normal nodes that are identified as

the complex test cases.

 FN means False Negatives, it illustrates the number of the complex test cases that are

identified as the normal during the classification phase.

The trained models are tested with the help of the cross validation. The Value of K is

selected in such a way that for training about 70%.of.data.was used as.and.remaining.data used for

testing which is 30%. The experimental procedures are repeated K times and their average or

combined results are.given. Table below illustrates the results of proposed paradigm for complex

test cases detection on all projects given in case studies.

Table 5-1: Performance.Review of proposed modal for Test-Case complexity

detection

Case study Sensitivity Specificity Accuracy

I 90.91% 99.76% 99.52%

II 100.00% 99.39% 99.40%

The classifier which is hybrid is compared with individual, Naïve Bayes and Decision Tree

classifiers. Below Table 5-6 compares all these in terms of accuracy for complex test case

detection.

Table 5-2: Classifier Comparison

Method Case Study - 1 Case Study – 2

24

Naive Bayes 94.15% 96.97%

Decision Tree 65.79% 78.34%

The proposed modal has been tried utilizing two contextual analyses.and.number of factual

measures. The outcomes taken unmistakably demonstrate the legitimacy and accuracy of proposed

modal. Another examination from real nearby occasion is taken and proposed framework is tried

on that also.

This thought recognized experiments with accuracies of 79%, 83.33% for both cases

individually. The proposed modal accomplished accuracies of 96.73%, 99.59% for same

contextual investigations separately. The outcomes demonstrated the legitimacy of our structure

and it very well may be utilized for location complex experiments for any area.

5.3 Training and Testing

In This section we have applied the several classifiers i.e. Naïve Bayes and Decision tree

further more we also applied the hybrid classifier to predict the roles of the nodes in an unlabeled

and unseen dataset for the hybrid classification. The logical diagram below depicts the process

followed to achieve the results. The reference screenshots of the whole process is also available in

the Appendix section.

25

Figure 5.10 Classification Process on Unseen Data

5.3.1 Naïve Bayes

Naïve Bayes Classifier is used in the above figure for the testing and training. The Table

Below depicts the results obtained by the classification. We have used Case-I for the training and

Case-II for the testing.

Decision Tree Classifier is used in the above figure for the testing and training. The Table

Below depicts the results obtained by the classification. We have used Case-I for the training and

Case-II for the testing.

Training Dataset

Classifier Unseen Dataset

Training and Testing

Module

Classification

26

CHAPTER 6: CONCLUSION AND FUTURE WORK

In this chapter we have concluded all the results and evaluated the contributions that are

made in the field of the business. The latest information and technologies are used to improve the

business. We have also provided the direction to carry on the research in this domain

6.1 Conclusion

In this thesis report, we have presented system for time of execution estimation for

experiments. Programming testing assumes a significant job in the achievement of programming

advancement and upkeep ventures. Assessing testing exertion precisely is a key advance towards

to that objective. While trying to plug.the gap in assessing programming.testing, this paper has

suggested a strategy known as Test.Case.Analysis to gauge and figuring the size and exertion of

programming testing exercises. The contribution of this investigation is experiments, and the yield

is the quantity of Test-Case Points for the experiments being tallied.

An invaluable component of.this methodology is that it quantifies the unpredictability of

experiment, the fundamental work item that the analyzer creates and utilizes for test execution.

Therefore, it better copies the exertion that the analyzer spends on their exercises.

Another.preferred.perspective is that the investigation could be accomplished effectively through

tallying the quantity of checkpoints, estimating the multifaceted nature of precondition and test

information, and deciding the sort of each test-case.

One is the estimation algorithm, which is used to time for execution estimation for

maximum time to execute the test-cases a system takes. The other one is the prediction algorithm

which is used for prediction of actual time required to execute a test case with the help of its

estimated maximum time. Using our proposed algorithms, we are able to predict and estimate the

maximum and actual time required to execute the manual test case from integration testing. We

used Test case work Items as an input for the algorithm. Initially we have created a database that

has been captured from different sources namely Test case work Items, log files and Test Manager

tool. The database is build for the previously executed test-cases. By utilizing the database, our

algorithm estimates the MT and predicts the AT. A case study has been conducted in LMKR where

both the algorithms are implemented and verified. The results are validated with the logs from the

system in which the test cases are executed.

27

6.2 Future Works

As a future work, we propose that this approach has to be fine-tuned in such a way the

predicted time should be close to the actual time. In reality, execution time for manually executing

the test cases are dependent on some other factors like characteristics of system, in which it is

executed and also the skills of testers. In our results section, it has been already seen that the

execution time varies within a system.

In any case, there are a few constraints of this methodology, consequently recommending

headings for future enhancements of the methodology. One impediment is that the Test-Case Point

measure has not been exactly approved. Information of the past testing undertakings of different

areas should be utilized to approve the impact and convenience of the size measure in assessing

the exertion of the product test-case. Another constraint is the worry of whether the multifaceted

nature scopes of the experiment's precondition and test information can appropriately mirror the

real intricacy of these traits. Future enhancements for the strategy need to address these

confinements.

With respect to the testers’ skills, an experienced tester will take less time to execute a test-

case when compared with an inexperienced tester. These factors should also be considered during

prediction and estimation work in future.

28

REFERENCES

[1] V. Casey, Software Testing and Global Industry: Future Paradigms, Cambridge Scholars

Publisher, 2008.

[2] W. Afzal, S. Alone, K. Glocksien, R. Torkar, Software test process improvement

approaches, Journal of Systems and Software 111 (C) (2016) 1–33.

[3] J. Itkonen, M. V. Mantyla, C. Lassenius, Defect detection efficiency: Test case based vs.

exploratory testing, in: First International Symposium on Empirical Software Engineering

and Measurement, 2007, pp. 61–70.

[4] E. Dustin, T. Garrett, B. Gauf, Implementing Automated Software Testing: How to Save

Time and Lower Costs While Raising Quality, Pearson Education, 2009.

[5] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand, E. J. Weyuker, Experience report:

Automated system level regression test prioritization using multiple factors, in: 2016 IEEE

27th International Symposium on Software Reliability Engineering (ISSRE), 2016.

[6] D. Flemstro¨m, P. Potena, D. Sundmark, W. Afzal, M. Bohlin, Similarity-based

prioritization of test case automation, Software Quality Journal.

[7] V. Garousi, M. Felderer, M. Kuhrmann, K. Herkilog˘lu, What industry wants from

academia in software testing? hearing practitioners’ opinions, in: Proceedings of the 21st

International Conference on Evaluation and Assessment in Software Engineering, ACM,

2017, pp. 65–69.

[8] W. Afzal, A. N. Ghazi, J. Itkonen, R. Torkar, A. Andrews, K. Bhatti, An experiment on

the effectiveness and efficiency of exploratory testing, Empirical Software Engineering 20

(3) (2015) 844–878.

[9] J. Kasurinen, O. Taipale, K. Smolander, Test case selection and prioritization: Risk-based

or design-based?, in: Proceedings of the 2010 ACM-IEEE International Symposium on

Empirical Software Engineering and Measurement, 2010, pp. 10:1–10:10.

[10] S. Tahvili, W. Afzal, M. Saadatmand, M. Bohlin, D. Sundmark, S. Larsson, Towards

earlier fault detection by value-driven prioritization of test cases using fuzzy topsis, in: 13th

International Conference on Information Technology : New Generations, 2016.

29

[11] E. Engstr¨om, P. Runeson, Decision support for test management and scope selection in a

software product line context, in: 2011 IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops, 2011, pp. 262–265.

[12] M. Felderer, R. Ramler, Integrating Risk-based Testing in Industrial Test Processes, Vol.

22, Kluwer Academic Publishers, 2014, pp. 543– 575.

[13] P. E. Strandberg, W. Afzal, D. Sundmark, Decision making and visualizations based on

test results, in: 12th International Symposium on Empirical Software Engineering (ESEM),

2018.

[14] S. Singh, F. Sahib, Optimized test case prioritization with multi criteria for regression

testing, in: International Journal of Advanced Research in Computer Engineering &

Technology, 2014.

[15] Z. Li, M. Harman, R. M. Hierons, Search algorithms for regression test case prioritization,

IEEE Transactions on Software Engineering 33 (4) (2007) 225–237.

[16] D. Hao, L. Zhang, H. Mei, Test-case prioritization: achievements and challenges, Frontiers

of Computer Science 10 (5) (2016) 769–777.

[17] S. Tahvili, M. Saadatmand, S. Larsson, W. Afzal, M. Bohlin, D. Sundmark, Dynamic

integration test selection based on test case dependencies, in: The 11th Workshop on

Testing: Academia-Industry Collaboration, Practice and Research Techniques, 2016.

[18] S. Tahvili, A Decision Support System for Integration Test Selection, 2016.

[19] S. Tahvili, M. Saadatmand, M. Bohlin, W. Afzal, S. H. Ameerjan, Towards execution time

prediction for test cases from test specification, in: 43rd Euromicro Conference on Software

Engineering and Advanced Applications, 2017.

[20] Garousi, M. Felderer, J. a. M. Fernandes, D. Pfahl, M. V. Ma¨ntyl¨a, Industry-academia

collaborations in software engineering: An empirical analysis of challenges, patterns and

anti-patterns in research projects, in: Proceedings of the 21st International Conference on

Evaluation and Assessment in Software Engineering, 2017, pp. 224–229.

[21] W. Afzal, R. Torkar, Incorporating metrics in an organizational test strategy, in: 2008 IEEE

International Conference on Software Testing Verification and Validation Workshop,

2008.

30

[22] L. Angelis, I. Stamelos, M. Morisio, Building a software cost estimation model based on

categorical data, in: Proceedings Seventh International Software Metrics Symposium,

2001, pp. 4–15.

[23] S. Nageswaran, Test effort estimation using use case points, Quality Week (2001) 1–6.

[24] X. Zhu, B. Zhou, F. Wang, Y. Qu, L. Chen, Estimate test execution effort at an early stage:

An empirical study, in: International Conference on Cyberworlds, 2008.

[25] P. R. Srivastava, A. Varshney, P. Nama, X.-S. Yang, Software test effort estimation: A

model based on cuckoo search, Int. J. Bio-Inspired Comput. 4 (5) (2012) 278–285.

[26] D. G. e. Silva, B. T. de Abreu, M. Jino, A simple approach for estimation of execution

effort of functional test cases, in: Second International Conference on Software Testing

Verification and Validation, 2009.

[27] E. R. C. de Almeida, B. T. de Abreu, R. Moraes, An alternative approach to test effort

estimation based on use cases, in: 2009 International Conference on Software Testing

Verification and Validation, 2009, pp. 279–288.

[28] A. Sharma, D. S. Kushwaha, An empirical approach for early estimation of software testing

effort using srs document, CSI Transactions on ICT 1 (1) (2013) 51–66.

[29] A. Sharma, D. S. Kushwaha, Complexity measure based on requirement engineering

document and its validation, in: 2010 International Conference on Computer and

Communication Technology (ICCCT), 2010, pp. 608–615.

[30] E. Aranha, P. Borba, An estimation model for test execution effort, in: First International

Symposium on Empirical Software Engineering and Measurement, 2007.

[31] R. Torkar, N. Awan, A. Alvi, W. Afzal, Predicting software test effort in iterative

development using a dynamic bayesian network, in: Proceedings of the 21st International

Symposium on Software Reliability Engineering - Industry Track, 2010.

[32] V. Nguyen, V. Pham, V. Lam, qestimation: A process for estimating size and effort of

software testing, in: Proceedings of the 2013 International Conference on Software and

System Process (ICSSP’13), 2013.

[33] ISO/IEC/ STANDARD IEEE 29119-1, Software and systems engineering — Software

testing — Part 1: Concepts and definitions, Standard, ISO/IEC/IEEE (2013).

31

[34] A. Bush, G. Baladi, A. C. D.-. on Road, P. Materials, A. C. D.-. on Soil, Rock,

Nondestructive Testing of Pavements and Backcalculation of Moduli, no. no. 1026 in

ASTM STP 1026, ASTM, 1989.

[35] R. Revlin, Cognition: Theory and Practice, Worth Publishers, 2012.

[36] A. Knott, Sensorimotor Cognition and Natural Language Syntax, MIT Press, 2012.

[37] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C.

Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, P.

Stenstro¨m, The worst-case execution time problem - overview of methods and survey of

tools, ACM Trans. Embed. Comput. Syst. 7 (3) (2008) 36:1–36:53.

[38] P. Refaeilzadeh, L. Tang, H. Liu, Cross-Validation, Springer US, Boston, MA, 2009, pp.

532–538.

[39] F. Harrell, Regression Modeling Strategies: With Applications to Linear Models, Logistic

Regression, and Survival Analysis, Graduate Texts in Mathematics, Springer, 2001.

[40] J. H. Friedman, C. B. Roosen, An introduction to multivariate adaptive regression splines,

Statistical Methods in Medical Research 4 (3) (1995) 197–217.

[41] Y. Chang, C. Hsieh, K. Chang, M. Ringgaard, C. Lin, Training and testing low-degree

polynomial data mappings via linear svm, Journal of Machine Learning Research 11 (2010)

1471–1490.

[42] D. Dipayan, Deep learning with Hadoop: build, implement and scale distributed deep

learning models for large-scale datasets, Birmingham, UK, 2017.

[43] S. Bird, E. Klein, E. Loper, Natural Language Processing with Python, O’Reilly, 2009.

[44] P. Runeson, M. Ho¨st, Guidelines for conducting and reporting case study research in

software engineering, Empirical Software Engineering 14 (2) (2008) 131.

[45] E. Engstro¨m, P. Runeson, A. Ljung, Improving regression testing transparency and

efficiency with history-based prioritization – an industrial case study, in: 2011 Fourth IEEE

International Conference on Software Testing, Verification and Validation, 2011, pp. 367–

376.

[46] BOMBARDIER, Bombardier wins order to supply new generation movia metro fleet for

stockholm, Tech. rep. (2017).

[47] S. Tahvili, Polynomial and spline regression analysis, https://github. com/sahar82/JSS

(2018).

32

[48] J. Devore, Probability and Statistics for Engineering and the Sciences, Cengage Learning,

2011.

[49] K. R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to kernel-based

learning algorithms, IEEE Transactions on Neural Networks 12 (2) (2001) 181–201.

[50] A. K. Jain, R. P. W. Duin, J. Mao, Statistical pattern recognition: A review, IEEE Trans.

Pattern Anal. Mach. Intell. 22 (1) (2000) 4–37.

[51] C. Chen, Y. Wang, Y. Chang, K. Ricanek, Sensitivity Analysis with Cross-Validation for

Feature Selection and Manifold Learning, Springer Berlin Heidelberg, Berlin, Heidelberg,

2012, pp. 458–467.

[52] W. Afzal, R. Torkar, R. Feldt, Resampling methods in software quality classification,

International Journal of Software Engineering and Knowledge Engineering 22 (02) (2012)

203–223.

[53] H. Martens, M. Martens, Multivariate analysis of quality. an introduction, Measurement

Science and Technology 12 (10) (2001) 1746.

[54] E. L. G. Alves, P. D. L. Machado, T. Massoni, S. T. C. Santos, A refactoring-based

approach for test case selection and prioritization, in: 8th International Workshop on

Automation of Software Test (AST), 2013, pp. 93–99.

[55] W. Guang, M. Baraldo, M. Furlanut, Calculating percentage prediction error: A user’s note,

Pharmacological Research 32 (4) (1995) 241 – 248.

[56] C. Robson, Real world research : a resource for users of social research methods in applied

settings, third edition Edition, Chichester, West Sussex John Wiley & Sons, 2011.

[57] C. Wohlin, P. Runeson, M. Ho¨st, M. C. Ohlsson, B. Regnell, A. Wessl´en,

Experimentation in Software Engineering: An Introduction, Kluwer Academic Publishers,

2000.

[58] P. Cozby, C. Rawn, Methods in Behavioural Research, McGraw-Hill Ryerson, 2012.

[59] E. A. Drost, Validity and reliability in social science research, Education, research and

perspectives. 38 (1).

[60] S. Tahvili, M. Saadatmand, M. Bohlin, Multi-criteria test case prioritization using fuzzy

analytic hierarchy process, in: The Tenth International Conference on Software

Engineering Advances, 2015.

33

[61] J. Hipp, U. Gu¨ntzer, G. Nakhaeizadeh, Algorithms for association rule mining - a general

survey and comparison, SIGKDD Explor. Newsl. 2 (1) (2000) 58–64.

[62] H. Yamamoto, Network system, server, client terminal, timeout information providing

method, timeout information display method, and programs, sA Patent 8495222 (Jul. 23

2013).

[63] T. G. Dietterich, Approximate statistical tests for comparing supervised classification

learning algorithms, Neural Comput. 10 (7) (1998) 1895– 1923.

34

APPENDIX

Below are the image representation of the created classification model in the Rapid Minor.

These images are very helpful to set up the workflow.

Figure 1. Level 0 Classification Process Diagram

Figure 2. Level 1 Classification Process Diagram

35

Figure 3. Level 2 Classification Process Diagram

Section 2: Unseen Data Evaluation

Step 1: Open Blank Process.

Step 2: Load the Datasets

Press the Add Data Button to open a new dialogue box for the addition of the Dataset. Navigate to

the path where dataset is located.

36

Step 3: Create the Process

Search for the required operators in the search bar. Join the wires to create the connection

Naïve Bayes Process

37

Decision Tree Process

Classifier Process

38

